11.5 Mudança de representação paramétrica

Seja $\mathbf{r}:A\rightarrow \mathbf{r}\left( A\right) $ a região do plano-$uv.$ Suponha $\mathbf{G}:B\rightarrow A$ injetiva e continuamente diferenciável.

  \begin{equation}  \mathbf{G}\left( s,t\right) =U\left( s,t\right) \mathbf{i}+V\left( s,t\right) \mathbf{j\  \  \  }\text {se }\left( s,t\right) \in B \label{mudpar1}\end{equation}   (11)

Considere $\mathbf{R}$ definida por

  \begin{equation}  \mathbf{R}\left( s,t\right) =\mathbf{r}\left[ \mathbf{G}\left( s,t\right) \right] \label{mudpar2}\end{equation}   (12)

$\mathbf{r}$ e $\mathbf{R}$ são regularmente equivalentes, representam a mesma superf\'{\i }cie.

Sejam $\mathbf{r}$ e $\mathbf{R}$ regularmente equivalentes ligadas por $\left( \ref{mudpar2}\right) ,$ donde $\mathbf{G=}U\mathbf{i}+V\mathbf{j}$ é injetiva e continuamente diferenciável. Temos então

  \[  \frac{\partial \mathbf{R}}{\partial s}\times \frac{\partial \mathbf{R}}{\partial t}=\left( \frac{\partial \mathbf{r}}{\partial u}\times \frac{\partial \mathbf{r}}{\partial v}\right) \frac{\partial \left( U,V\right) }{\partial \left( s,t\right) } \]    
donde $\frac{\partial \mathbf{r}}{\partial u}=\frac{\partial \mathbf{r}}{\partial u}\left( U,V\right) $ e $\frac{\partial \mathbf{r}}{\partial v}=\frac{\partial \mathbf{r}}{\partial v}\left( U,V\right) .$

Demonstração: $\frac{\partial \mathbf{R}}{\partial s}=\frac{\partial \mathbf{r}}{\partial u}\frac{\partial U}{\partial s}+\frac{\partial \mathbf{r}}{\partial v}\frac{\partial V}{\partial s},\  \  \frac{\partial \mathbf{R}}{\partial t}=\frac{\partial \mathbf{r}}{\partial u}\frac{\partial U}{\partial t}+\frac{\partial \mathbf{r}}{\partial v}\frac{\partial V}{\partial t}$ da\'{\i }

  \[  \frac{\partial \mathbf{R}}{\partial s}\times \frac{\partial \mathbf{R}}{\partial t}=\left( \frac{\partial \mathbf{r}}{\partial u}\times \frac{\partial \mathbf{r}}{\partial v}\right) \left( \frac{\partial U}{\partial s}\frac{\partial V}{\partial t}-\frac{\partial U}{\partial t}\frac{\partial V}{\partial s}\right) .  \]    

Se $\mathbf{r}$ e $\mathbf{R}$ são equivalentes e se ${\displaystyle \iint \limits _{\mathbf{r}\left( A\right) }} fdS$ existe então ${\displaystyle \iint \limits _{\mathbf{R}\left( B\right) }} fdS$ $\  $existe e

  \[ {\displaystyle \iint \limits _{\mathbf{r}\left( A\right) }} fdS={\displaystyle \iint \limits _{\mathbf{R}\left( B\right) }} fdS.  \]    

Demonstração: ${\displaystyle \iint \limits _{\mathbf{r}\left( A\right) }} fdS={\displaystyle \iint \limits _{A}} f(\mathbf{r}\left( u,v\right) )\left\Vert \frac{\partial \mathbf{r}}{\partial u}\times \frac{\partial \mathbf{r}}{\partial v}\right\Vert dudv$ agora

  $\displaystyle {\displaystyle \iint \limits _{A}} f(\mathbf{r}\left( u,v\right) )\left\Vert \frac{\partial \mathbf{r}}{\partial u}\times \frac{\partial \mathbf{r}}{\partial v}\right\Vert dudv  $ $\displaystyle  ={\displaystyle \iint \limits _{B}} f(\mathbf{r}\left( \mathbf{G}\left( s,t\right) \right) )\left\Vert \frac{\partial \mathbf{r}}{\partial u}\times \frac{\partial \mathbf{r}}{\partial v}\right\Vert \left\vert \frac{\partial \left( U,V\right) }{\partial \left( s,t\right) }\right\vert dudv $    
  $\displaystyle  $ $\displaystyle  ={\displaystyle \iint \limits _{B}} f\left( \mathbf{R}\left( s,t\right) \right) \left\Vert \frac{\partial \mathbf{R}}{\partial s}\times \frac{\partial \mathbf{R}}{\partial t}\right\Vert dsdt={\displaystyle \iint \limits _{\mathbf{R}\left( B\right) }} fdS.  $