Published and Accepted Papers


 

          Israel J. Math., to appear.

  • On the Maurey-Pisier and Dvoretzky-Rogers theorems. (with G. Araújo)

          Bull. Braz. Math. Soc., 51 (2020), 1–9.

  • An anisotropic approach to mid summable sequences. (with J. Campos)

          Colloq. Math., 161 (2020), 35–49.

  • Remarks on the Bohnenblust-Hille inequalities. (with D. Pellegrino and D. Paulino)

          Port. Math., 76 (2020), 395–406.

  • A unified factorization theorem for Lipschitz summing operators. (with G. Botelho, M. Maia and D. Pellegrino)

          Q. J. Math., 70 (2019), 1521–1533.

  • Optimal Hardy-Littlewood inequalities uniformly bounded by a universal constant. (with N. Albuquerque, G. Araújo, M. Maia, T. Nogueira and D. Pellegrino)

          Ann. Math. Blaise Pascal, 25 (2018), 1–20.

  • On the mixed (ℓ1,ℓ2)-Littlewood inequalities and interpolation. (with M. Maia)

          Math. Inequal. Appl., 21 (2018), 721–727.

  • Optimal blow up rate for the constants of Khinchin type inequalities. (with D. Pellegrino and D. Santos)

          Quaest. Math., 41 (2018), 303–318.

  • A regularity principle in sequence spaces and applications. (with D. Pellegrino, D. Serrano-Rodríguez and E. Teixeira)

          Bull. Sci. Math., 141 (2017), 802–837.

  • On the Bohnenblust-Hille inequality for multilinear forms. (with T. Velanga)

          Results Math., 72 (2017), 239–244.

  • Operator ideals related to absolutely summing and Cohen strongly summing operators. (with B. Botelho and J. Campos)

          Pacific J. Math., 287 (2017), 1–17.

  • An index of summability for pairs of Banach spaces. (with M. Maia and D. Pellegrino)

          J. Math. Anal. Appl., 441 (2016), 702–722.

  • Absolutely summing multilinear operators via interpolation. (with N. Albuquerque, D. Núñez-Alarcón and D. Serrano-Rodríguez)

          J. Funct. Anal., 269 (2015), 1636–1651.

  • Uniformly dominated sets of summing nonlinear operators. (with D. Pellegrino)

          Arch. Math., 105 (2015), 55–66.

  • A Pietsch domination theorem for (ℓsp,ℓp)-summing operators. (with G. Botelho)

          Arch. Math., 104 (2015), 47–52.

  • Abstract extrapolation theorems for absolutely summing nonlinear operators. (with G. Botelho, D. Pellegrino and J. Seoane-Sepúlveda)

          J. Math. Anal. Appl., 421 (2015), 730–746.

  • When is the Haar measure a Pietsch measure for nonlinear mappings? (with G. Botelho, D. Pellegrino, P. Rueda and J. Seoane-Sepúlveda)

          Studia Math., 213 (2012), 275–287.

  • A general extrapolation theorem for absolutely summing operators. (with D. Pellegrino and J. Seoane-Sepúlveda)

          Bull. Lond. Math. Soc., 44 (2012), 1292–1302.

  • On summability of nonlinear mappings: a new approach. (with D. Pellegrino)

          Math. Z., 270 (2012), 189–196.

  • Some techniques on nonlinear analysis and applications. (with D. Pellegrino and J. Seoane-Sepúlveda)

          Adv. Math., 229 (2012), 1235–1265.

  • Absolutely summing multilinear operators: a panorama. (with D. Pellegrino)

          Quaest. Math., 34 (2011), 447–478.

  • A general Pietsch domination theorem. (with D. Pellegrino)

          J. Math. Anal. Appl., 375 (2011), 371–374.

 

Submitted Papers