contact me at bhcr-at-academico.ufpb.br

Prof. Bruno Ribeiro 

Research interests and papers 

 

“A mathematician is a machine for turning coffee into theorems” 

Alfred Rényi 

 

 

Current research interests:  I am mainly interested in investigating results of existence of solutions to elliptical problems using variational methods. Currently, I have focused on studying Hamiltonian systems with mixed critical growth via direct approaches in Lorentz or Orlicz spaces and also via reduction by inversion methods, working with higher order operators. 

 

Submitted manuscripts 

 

1. Barboza, Eudes; Ribeiro, Bruno; Elliptic systems of Hénon Type with one-sided critical growth. To appear. 

 

 

 

 

 

 

 

 

 

Published papers  

 

 

1 - do Ó, João Marcos; Macedo, Abiel; Ribeiro, Bruno. Hamiltonian elliptic systems with critical polynomial-exponential growth.  Nonlinear Analysis (2022) 112579. https://doi.org/10.1016/j.na.2021.112579 

 

2 - Carvalho, Jonison; Medeiros, Everaldo; Ribeiro, Bruno. On a planar Choquard equation involving exponential critical growth. Z. Angew. Math. Phys. 72, 188 (2021). https://doi.org/10.1007/s00033-021-01617-4 

 

3 - Silva, E.D., Ribeiro, Bruno; Resonant-Superlinear Elliptic Problems at High-Order Eigenvalues. Mediterr. J. Math. 18 (2021), 121. https://doi.org/10.1007/s00009-021-01762-0. 

 

4 - do Ó, João Marcos; Gloss, E.;  Ribeiro, Bruno. Quasilinear elliptic equations with critical growth involving jumping nonlinearities. Mathematische Nachrichten, 293 (2020), no. 6, 1094-1109. 

 

5 - do Ó João Marcos; Ribeiro, Bruno; Ruf, Bernhard; Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A (2020), doi: 10.3934/dcds.2020138. 

 

6 - Barboza, Eudes Mendes; do Ó, João Marcos; Ribeiro, Bruno; Hénon type equations with jumping nonlinearities involving critical growth. Adv. Differential Equations 24 (2019), no. 11-12, 713–744. 

 

7 - Barboza, Eudes Mendes; do Ó, João Marcos; Ribeiro, Bruno. Hénon type equations with one-sided exponential growth. Topol. Methods Nonlinear Anal. 49 (2017), no. 2, 783–816.

8 - da Silva, Edcarlos Domingos; Ribeiro, Bruno. Resonant-superlinear elliptic problems using variational methods. Adv. Nonlinear Stud. 15 (2015), no. 1, 157–169.

9 - Ribeiro, Bruno. Critical elliptic problems in ℝ2 involving resonance in high-order eigenvalues. Commun. Contemp. Math. 17 (2015), no. 1, 1450008, 22 pp. 
 
10 - Ribeiro, Bruno. The Ambrosetti-Prodi problem for elliptic systems with Trudinger-Moser nonlinearities. Proc. Edinb. Math. Soc. (2) 55 (2012), no. 1, 215–244
 
11 - Ribeiro, Bruno. The Ambrosetti-Prodi problem for gradient elliptic systems with critical homogeneous nonlinearity. J. Math. Anal. Appl. 363 (2010), no. 2, 606–617