UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE MATEMÁTICA CAMPUS I

INICIAÇÃO AO ESTUDO DA ANÁLISE NÃO LINEAR

RELATÓRIO FINAL

GILBERTO FERNANDES VIEIRA

BOLSISTA PELO PROGRAMA PIBIC/UFPB/CNPQ

João Marcos Bezerra do Ó

ORIENTADOR

UBERLANDIO BATISTA SEVERO

COORIENTADOR

Cajazeiras, agosto de 2003

Sumário

1	Apresentação				
2	Identificação do projeto				
3	Objetivos				
4	Metodologia				
5	Conteúdo estudado — Resumo				
	5.1	Funçõ	es no Espaço Euclidiano	7	
		5.1.1	Norma e Produto Interno	7	
		5.1.2	Subconjuntos do Espaço Euclidiano	8	
		5.1.3	Funções e Continuidade	10	
5.2 Diferenciação				11	
		5.2.1	Derivadas Parciais	11	
		5.2.2	Derivadas	12	
		5.2.3	Funções Inversas	12	
		5.2.4	Teorema da Função Implícita	13	
5.3 Integração			ação	14	
		5.3.1	Conjuntos de Medida Zero	14	
		5.3.2	Funções Integráveis	15	
		5.3.3	Teorema de Fubini	16	
		5.3.4	Partição da Unidade	16	
		5.3.5	Mudança de Variáveis	17	
	5.4	Teorer	ma da Existência e Unicidade para Equações Diferenciais		
		Parcia	uis de Primeira Ordem	19	
	5.5	5.5 Grau Topológico em Dimensão Finita			

	5.5.1	Unicidade do Grau \hdots	20		
	5.5.2	Construção de Grau	24		
	5.5.3	Aplicações do Grau	27		
	5.5.4	Teorema de Borsuk	31		
	5.5.5	A Fórmula do Produto	32		
	5.5.6	Observação Final	33		
6	Conclusão		34		
Referências					

Relatório Final

1 Apresentação

Esse trabalho apresenta o relato final das atividades de pesquisa desenvolvidas pelo bolsista, Gilberto Fernandes Vieira, de agosto de 2002 a julho de 2003, pelo Programa Institucional de Bolsas de Iniciação Científica, PIBIC/CNPq/ Instituto do Milênio-AGIMB. Identifica também, o projeto e seus objetivos, expondo ainda a metodologia, os conteúdos trabalhados e a bibliografia utilizada.

2 Identificação do projeto

Esse projeto trata de uma iniciação ao estudo da análise não linear e aplicações, que direciona a análise não linear às equações diferenciais periódicas. A análise não linear é uma sub-área da Matemática que relaciona-a com a Biologia, a Física e outras ciências naturais. Aqui, pode-se estudar conceitos básicos necessários para o estudo de problemas que surgem em diversos ramos da matemática que podem ser solucionados com as técnicas da análise não-linear. Para tanto, estuda-se a Teoria do Grau de Brouwer e suas aplicações, principal objetivo deste trabalho.

O tema abordado nesse estudo está ligado à interdisciplinaridade entre as ciências, além disso, permite que os envolvidos ampliem seus conhecimentos na área de matemática, o que fundamenta a importância desse projeto.

A princípio, foram estudadas as funções no espaço euclidiano como fundamentação teórica para: compreender a diferenciação e a integração, juntamente com alguns teoremas fundamentais como o Teorema da Mudança de Variáveis e o Teorema de Sard; e desenvolver o trabalho. Em seguida, estudou-se as equações diferenciais lineares e o Teorema da Existência e Unicidade de Soluções para Equações Diferenciais Ordinárias. Por fim, estudamos o Grau Topológico de Brouwer: unicidade, construção, propriedades e aplicações.

O orientador é o professor Dr. João Marcos Bezerra do Ó, do Departamento de Matemática, o coorientador é o professor Ms. Uberlandio Batista Severo, do Departamento de Ciências Exatas e da Natureza, e o aluno, Gilberto Fernandes Vieira, estudante do curso de Licenciatura em Ciências, matrícula 59921211.

3 Objetivos

- Fundamentar o aluno, em sua formação, a trabalhar com pesquisa;
- Estudar os conceitos básicos de análise no \mathbb{R}^n , que serão fundamentais para compreender a Teoria do Grau de Brouwer;
- Compreender a importância e generalização de alguns teoremas clássicos;
- Compreender a Teoria abstrata do grau topológico, visando aplicá-la ao estudo de problemas envolvendo equações diferenciais.

4 Metodologia

- Encontros semanais para discussão de conteúdo e/ou apresentação de seminários;
- Leitura de textos da bibliografia.

5 Conteúdo estudado — Resumo

Este capítulo apresenta alguns conhecimentos necessários para se estudar a Teoria do Grau Topológico de Brouwer.

5.1 Funções no Espaço Euclidiano

5.1.1 Norma e Produto Interno

No espaço vetorial euclidiano tem-se a noção de comprimento de um vetor $x = (x_1, \dots, x_i, \dots, x_n)$, chamado de **norma** de x e definida por $|x| = \sqrt{\sum_{i=1}^{n} (x_i)^2}$. Tem-se também o conceito de produto interno, cuja relação com a norma é muito importante.

Propriedades da norma de um vetor:

Teorema 5.1.1 Se $x, y \in \mathbb{R}^n$ e $a \in \mathbb{R}$, então

- 1. $|x| \ge 0$, e|x| = 0 se, e somente se, $x = \vec{0}$;
- 2. $|\sum_{i=1}^{n} x^{i} y^{i}| \leq |x| \cdot |y|$; a igualdade se conserva se, e somente se, x e y são linearmente dependentes;
- 3. $|x+y| \le |x| + |y|$;
- 4. $|ax| = |a| \cdot |x|$.

Propriedades do produto interno:

Teorema 5.1.2 Se x, x_1, x_2 e y, y_1, y_2 são vetores no \mathbb{R}^n e $a \in \mathbb{R}$, então

1.
$$\langle x, y \rangle = \langle y, x \rangle$$

2.
$$\langle ax, y \rangle = \langle x, ay \rangle = a \langle x, y \rangle$$

 $\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$
 $\langle x, y_1 + y_2 \rangle = \langle x, y_1 \rangle + \langle x, y_2 \rangle$

3.
$$\langle x, x \rangle \geq 0$$
, $e \langle x, x \rangle = 0$ se, e somente se, $x = \vec{0}$

4.
$$|x| = \sqrt{\langle x, x \rangle}$$

5.
$$\langle x, y \rangle = \frac{|x+y|^2 - |x-y|^2}{4}$$

5.1.2 Subconjuntos do Espaço Euclidiano

Aqui serão apresentados alguns teoremas e corolários importantes na topologia do Espaço Euclidiano.

Teorema 5.1.3 (Heine-Borel) O intervalo fechado [a, b] é compacto.

Teorema 5.1.4 Se B é compacto e \mathcal{O} é uma cobertura aberta de $\{x\} \times B$, então existe um conjunto aberto $U \subset \mathbb{R}^n$ contendo x tal que $U \times B$ é coberto por uma subcobertura finita de \mathcal{O} .

Corolário 5.1.5 Se $A \subset \mathbb{R}^n$ e $B \subset \mathbb{R}^m$ são compactos, então $A \times B \subset \mathbb{R}^{n+m}$ é compacto.

Corolário 5.1.6 $A_1 \times A_2 \times ... \times A_k$ é compacto se cada A_i for compacto. Em particular, um retângulo fechado em \mathbb{R}^k é compacto.

Corolário 5.1.7 Um subconjunto fechado e limitado do \mathbb{R}^n é compacto

Dem.: Se $A \subset \mathbb{R}^n$ é fechado e limitado, então $A \subset B$ para algum retângulo aberto B. Se \mathcal{O} é uma cobertura aberta de A, então \mathcal{O} , juntamente com $\mathbb{R}^n - A$ é uma cobertura aberta de B. Assim, um número finito U_1, \ldots, U_n de conjuntos em \mathcal{O} , juntamente com $\mathbb{R}^n - A$ talvez cubra B. Então U_1, \ldots, U_n cobrem A.

O conceito de **conjuntos conexos** será bastante utilizado no estudo do grau topológico.

Segue-se a definição e alguns resultados:

Uma cisão de um subconjunto $A \subset \mathbb{R}^n$ é uma decomposição $A = X \cup Y$, onde $X \cap Y = \emptyset$ e os conjuntos X, Y são ambos abertos em A. Todo conjunto $A \subset \mathbb{R}^n$ admite pelo menos a $cisão \ trivial \ A = A \cup \emptyset$.

Um subconjunto $A \subset \mathbb{R}^n$ chama-se *conexo* quando não admite outra cisão além da trivial. Assim, se A é conexo, $A = X \cup Y$ com X, Y disjuntos e abertos em $A \Rightarrow X = \emptyset$ ou $Y = \emptyset$.

Teorema 5.1.8 A imagem de um conjunto conexo por uma aplicação contínua é um conjunto conexo.

Corolário 5.1.9 Todo conjunto homeomorfo a um conjunto conexo é também conexo.

Teorema 5.1.10 Um aberto $A \subset \mathbb{R}^n$ é conexo se, e somente se, é conexo por caminhos.

Corolário 5.1.11 Se $A \subset \mathbb{R}^n$ é aberto e conexo, dois pontos quaisquer de A podem ser ligados por um caminho poligonal contido em A.

Componentes conexas

Uma componente conexa é um conjunto conexo o qual é maximal (com respeito à inclusão) em relação aos demais conjuntos conexos.

Proposição 5.1.12 As componentes conexas de um subconjunto aberto em \mathbb{R}^n são conjuntos abertos.

Conjuntos convexos

Um subconjunto $A \subset \mathbb{R}^n$ diz-se convexo quando contém qualquer segmento de reta cujos extremos pertençam a A, ou seja: $x, y \in A \Rightarrow [x, y] = \{(1-t)x + ty; 0 \le t \le 1\} \subset A$.

Teorema 5.1.13 Toda bola $B \subset \mathbb{R}^n$ é convexa.

5.1.3 Funções e Continuidade

Nesta seção, se faz referência a uma classe de funções muito especial.

Teorema 5.1.14 Se $A \subset \mathbb{R}^n$, uma função $f: A \to \mathbb{R}^m$ é contínua se, e somente se, para cada conjunto aberto $U \subset \mathbb{R}^m$, existe algum conjunto aberto $V \subset \mathbb{R}^n$ tal que $f^{-1}(U) = V \cap A$.

Será dada a demonstração do próximo resultado, que será muito utilizado mais adiante.

Teorema 5.1.15 Se $f: A \to \mathbb{R}^m$ é contínua, onde $A \subset \mathbb{R}^n$, e A é compacto, então $f(A) \subset \mathbb{R}^m$ é compacto.

Dem.: Seja \mathcal{O} uma cobertura aberta de f(A). Para cada conjunto aberto $U \subset \mathcal{O}$ existe um conjunto aberto V_U tal que $f^{-1}(U) = V_U \cap A$. A coleção de todo V_U é uma cobertura aberta de A. Desde que A é compacto, um número finito V_{U_1}, \ldots, V_{U_n} cobrem A. Então U_1, \ldots, U_n cobrem f(A).

Teorema 5.1.16 A função limitada f é contínua em a se, e somente se, o(f,a)=0.

O símbolo o(f, a) representa a oscilação de f em a, que é definida por

$$o(f, a) = \lim_{\delta \to 0} [M(a, f, \delta) - m(a, f, \delta)].$$

Teorema 5.1.17 Seja $A \subset \mathbb{R}^n$ fechado. Se $f: A \to \mathbb{R}$ é qualquer função limitada, $e \in A$, então $\{x \in A; o(f, x) \geq \epsilon\}$ é fechado.

A seguir, será dada uma rápida alusão a um dos elementos mais importantes na Matemática.

5.2 Diferenciação

Definição: Uma função $f: \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável em $a \in \mathbb{R}^n$, se existe uma transformação linear $\lambda: \mathbb{R}^n \to \mathbb{R}^m$ tal que

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - \lambda(h)|}{|h|} = 0$$

Teorema 5.2.1 Se $f: \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável em $a \in \mathbb{R}^n$, existe uma única transformação linear $\lambda: \mathbb{R}^n \to \mathbb{R}^m$ tal que

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - \lambda(h)|}{|h|} = 0$$

Teorema 5.2.2 (Regra da Cadeia) Se $f: \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável em $a, e g: \mathbb{R}^m \to \mathbb{R}^p$ é diferenciável em f(a), então a composição $g \circ f: \mathbb{R}^n \to \mathbb{R}^p$ é diferenciável em a, e

$$D(g \circ f)(a) = Dg(f(a)) \circ Df(a).$$

5.2.1 Derivadas Parciais.

Seja $f: \mathbb{R}^n \to \mathbb{R}$ e $a \in \mathbb{R}^n$, o limite

$$\lim_{h \to 0} \frac{f(a^1, \dots, a^i + h, \dots, a^n) - f(a^1, \dots, a^n)}{h},$$

se existe, é denotado por $D_i f(a)$, e chamado a i-ésima derivada parcial de f em a.

Teorema 5.2.3 Se $D_{i,j}f$ e $D_{j,i}f$ são contínuas em um conjunto aberto contendo a, então

$$D_{i,j}f(a) = D_{j,i}f(a).$$

A função $D_{i,j}$ é chamada derivada parcial mista de segunda ordem de f.

Teorema 5.2.4 Seja $A \subset \mathbb{R}^n$. Se o máximo (ou mínimo) de $f : A \to \mathbb{R}$ ocorre em um ponto a no interior de A e $D_i f(a)$ existe, então $D_i f(a) = 0$.

Dem.: Seja $g_i(x) = f(a^1, \dots, x, \dots, a^n)$. Evidentemente g_i tem um máximo (ou mínimo) em a^i , e g_i é definida em um intervalo aberto contendo a^i . Portanto, $0 = g'_i(a^i) = D_i f(a)$.

Observação: A recíproca não é verdadeira.

5.2.2 Derivadas.

Teorema 5.2.5 Se $f: \mathbb{R}^n \to \mathbb{R}^m$ é diferenciável em a, então $D_j f^i(a)$ existe para $1 \le i \le m$, $1 \le j \le n$ e f'(a) é a matriz $(D_j f^i(a))_{m \times n}$.

Teorema 5.2.6 Se $f: \mathbb{R}^n \to \mathbb{R}^m$, então Df(a) existe se todas as $D_j f^i(x)$ existem em um conjunto aberto contendo a, e se cada função $D_j f^i$ é contínua em a.

Tal função f é chamada continuamente diferenciável em a.

Teorema 5.2.7 Sejam $g_1, \ldots, g_m : \mathbb{R}^n \to \mathbb{R}$ continuamente diferenciáveis em a, e seja $f : \mathbb{R}^m \to \mathbb{R}$ diferenciável em $(g_1(a), \ldots, g_m(a))$. Definindo a função $F : \mathbb{R}^n \to \mathbb{R}$ por $F(x) = f(g_1(x), \ldots, g_m(x))$, então

$$D_i F(a) = \sum_{j=1}^m D_j f(g_1(a), \dots, g_m(a)) \cdot D_i g_j(a).$$

Nos próximos dois tópicos, serão expostos, sem demonstração, resultados que acompanham um matemático em toda sua jornada.

5.2.3 Funções Inversas

Lema 5.2.8 Seja $A \subset \mathbb{R}^n$ um retângulo e seja $f: A \to \mathbb{R}^n$ continuamente diferenciável. Se existe um número M tal que $|D_j f^i(x)| \leq M$ para todo x no interior de A, então

$$|f(x) - f(y)| \le n^2 M|x - y|$$

para todo $x, y \in A$.

Teorema 5.2.9 (Teorema da Função Inversa) Seja $f: \mathbb{R}^n \to \mathbb{R}^n$ uma função continuamente diferenciável em um conjunto aberto contendo a, e det $f'(a) \neq 0$. Então existe um conjunto aberto V contendo a e um conjunto aberto W contendo f(a) tal que $f: V \to W$ tem uma função inversa contínua $f^{-1}: W \to V$ que é diferenciável, e para todo $y \in W$ satisfaz

$$(f^{-1})'(y) = [f'(f^{-1}(y))]^{-1}.$$

5.2.4 Teorema da Função Implícita

Teorema 5.2.10 Seja $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ uma função continuamente diferenciável em um conjunto aberto contendo (a,b) e f(a,b) = 0. Considere M a matriz de ordem m definida por

$$(D_{n+j}f^i(a,b)) 1 \le i, j \le m.$$

Se det $M \neq 0$, existe um conjunto aberto $A \subset \mathbb{R}^n$ contendo a e um conjunto $B \subset \mathbb{R}^m$ contendo b, com a seguinte propriedade: para cada $x \in A$ existe um único $g(x) \in B$ tal que f(x, g(x)) = 0. A função g é diferenciável.

O próximo resultado é uma generalização da idéia deste teorema.

Teorema 5.2.11 Seja $f: \mathbb{R}^n \to \mathbb{R}^p$ continuamente diferenciável em um conjunto aberto contendo a, onde $p \leq n$. Se f(a) = 0 e a matriz $(D_j f^i(a))$ tem posto p, então existe um conjunto aberto $A \subset \mathbb{R}^n$ contendo a e uma função diferenciável $h: A \to \mathbb{R}^n$ com uma inversa diferenciável tal que

$$f \circ h(x^1, \dots, x^n) = (x^{n-p+1}, \dots, x^n).$$

5.3 Integração

A definição da integral de uma função $f:A\to\mathbb{R}$, onde $A\subset\mathbb{R}^n$ é um retângulo fechado, é semelhante a de integral ordinária.

Uma partição do bloco $A=\prod_{i=1}[a_i,b_i]$ é um conjunto finito do tipo $P=P_1\times\ldots\times P_m,$ onde cada P_i é uma partição do intervalo $[a_i,b_i].$

Lema 5.3.1 Suponha que a partição P' refina P (isto é, cada subretângulo de P' está contido em um subretângulo de P). Então

$$s(f, P) \le s(f, P')$$
 e $S(f, P') \le S(f, P)$.

Onde

$$s(f, P) = \sum_{R} m_R(f) \cdot v(R)$$
 e $S(f, P) = \sum_{R} M_R(f) \cdot v(R)$,

para $m_R(f) = \inf\{f(x); x \in R\}$ e $M_R(f) = \sup\{f(x); x \in R\}$, em que v(R) é o volume de cada subretângulo R de uma partição P.

Corolário 5.3.2 Se P e P' são duas partições quaisquer, então $s(f,P') \leq S(f,P)$.

Teorema 5.3.3 Uma função limitada $f: A \to \mathbb{R}$ é integrável se, e somente se, para todo $\epsilon > 0$ existe uma partição P de A tal que $S(f, P) - s(f, P) < \epsilon$.

5.3.1 Conjuntos de Medida Zero

Definição: Um subconjunto A do \mathbb{R}^n tem medida 0 se para cada $\epsilon > 0$ existe uma cobertura $\{U_1, U_2, U_3, \ldots\}$ de A por retângulos fechados, tais que $\sum_{i=1}^{\infty} v(U_i) < \epsilon$. É óbvio que se A tem medida 0 e $B \subset A$, então B tem medida 0.

Definição: Um subconjunto A do \mathbb{R}^n tem conteúdo 0 se para cada $\epsilon > 0$ existe uma cobertura finita $\{U_1, \ldots, U_n\}$ de A por retângulos fechados, tais

que $\sum_{i=1}^{n} v(U_i) < \epsilon$. Se A tem conteúdo zero, evidentemente tem medida zero

Teorema 5.3.4 Se $A = A_1 \cup A_2 \cup A_3 \cup \dots$ e cada A_i tem medida zero, então A tem medida zero.

Se A tem conteúdo zero, então A tem medida zero.

Teorema 5.3.5 Se a < b, então $[a,b] \subset \mathbb{R}$ não tem conteúdo 0. De fato, se $\{U_1,\ldots,U_n\}$ é uma cobertura finita de [a,b] por intervalos fechados, então $\sum_{i=1}^n v(U_i) \geq b-a$.

Se a < b, também é verdadeiro que [a, b] não tem medida zero. Isto segue do próximo teorema.

Teorema 5.3.6 Se A é compacto e tem medida 0, então A tem conteúdo 0.

Observação. O Teorema não é válido se A não for compacto.

5.3.2 Funções Integráveis

Lema 5.3.7 Seja A um retângulo fechado e seja $f:A\to\mathbb{R}$ uma função limitada tal que $o(f,x)<\epsilon$ para todo $x\in A$. Então existe uma partição P de A com $S(f,P)-s(f,P)<\epsilon\cdot v(A)$.

Teorema 5.3.8 Seja A um retângulo fechado e f : $A \to \mathbb{R}$ uma função limitada. Seja $B = \{x; f \text{ não \'e contínua em } x\}$. Então f \acute{e} integrável se, e somente se, B \acute{e} um conjunto de medida 0.

Se $C \subset \mathbb{R}^n$, a função característica χ_C de C é definida por

$$\chi_C(x) = \begin{cases} 0, & \text{se} \quad x \notin C \\ 1, & \text{se} \quad x \in C \end{cases}$$

Se $C \subset A$ para algum retângulo fechado A e $f: A \to \mathbb{R}$ é limitada, então $\int_C f$ é definida como $\int_A f \cdot \chi_C$, desde que $f \cdot \chi_C$ seja integrável.

Teorema 5.3.9 A função $\chi_C : A \to \mathbb{R}$ é integrável se, e somente se, a fronteira de C tem medida 0 (e consequentemente, conteúdo 0).

5.3.3 Teorema de Fubini

A redução de uma integral sobre um bloco m-dimensional (integral múltipla) a uma seqüencia de m integrais de funções de uma variável (integral repetida) é um eficaz instrumento de cálculo. Para tal, utiliza-se o teorema abaixo:

Teorema 5.3.10 (Teorema de Fubini) Sejam $A \subset \mathbb{R}^n$, $B \subset \mathbb{R}^m$ retângulos fechados e $f: A \times B \to \mathbb{R}$ integrável. Para $x \in A$ seja $g_x: B \to \mathbb{R}$ definida por $g_x(y) = f(x,y)$ e considere

$$\varphi(x) = s \int_{B} g_{x} = s \int_{B} f(x, y) dy,$$
$$\psi(x) = S \int_{B} g_{x} = S \int_{B} f(x, y) dy.$$

Então φ e ψ são integráveis em A e

$$\int_{A\times B} f = \int_{A} \varphi = \int_{A} \left(s \int_{B} f(x, y) dy \right) dx,$$

$$\int_{A\times B} f = \int_{A} \psi = \int_{A} \left(S \int_{B} f(x, y) dy \right) dx.$$

5.3.4 Partição da Unidade

Nesta seção, tem-se uma ferramenta muito importante na teoria da Integração.

Teorema 5.3.11 Seja $A \subset \mathbb{R}^n$ e seja \mathcal{O} uma cobertura aberta de A. Então, existe uma coleção Φ de funções φ de classe C^{∞} definidas em um conjunto aberto contendo A, com as seguintes propriedades:

- 1. Para cada $x \in A$, temos $0 \le \varphi(x) \le 1$.
- 2. Para cada $x \in A$ existe um conjunto aberto V contendo x tal que todas as $\varphi \in \Phi$, exceto um número finito, são 0 em V.
- 3. Para cada $x \in A$, temos $\sum_{\varphi \in \Phi} \varphi(x) = 1$ (por (2), para cada x esta soma é finita em algum conjunto aberto contendo x).
- Para cada φ ∈ Φ existe um conjunto U em O tal que φ = 0 fora de algum conjunto fechado contido em U. (A coleção Φ satisfazendo (1) a (3) é chamada uma partição da unidade de A, de classe C[∞]. Se Φ também satisfaz (4), dizemos que ela é subordinada à cobertura O.)

Uma cobertura aberta \mathcal{O} de um conjunto aberto $A \subset \mathbb{R}^n$ é admissível se cada $U \in \mathcal{O}$ está contido em A

Teorema 5.3.12 1. Se Ψ é outra partição da unidade subordinada a uma cobertura admissível \mathcal{O}' de A, então $\sum_{\psi \in \Psi} \int_A \psi \cdot |f|$ também converge, e

$$\sum_{\varphi \in \Phi} \int_A \varphi \cdot f = \sum_{\psi \in \Psi} \int_A \psi \cdot f.$$

2. Se A e f são limitadas, então f é integrável no sentido estendido.

5.3.5 Mudança de Variáveis

Antes de iniciar o estudo do grau de Brouwer é necessário conhecer os seguintes teoremas, para compreender alguns resultados que seguir-se-ão.

Teorema 5.3.13 Seja $A \subset \mathbb{R}^n$ um conjunto aberto e a função $g: A \to \mathbb{R}^n$ injetiva, continuamente diferenciável tal que $\det g'(x) \neq 0$ para todo $x \in A$. Se $f: g(A) \to \mathbb{R}$ é integrável, então

$$\int_{g(A)} f = \int_A (f \circ g) |\det g'|.$$

O próximo teorema é de fundamental importância na construção do Grau Topológico.

Lema 5.3.14 Seja $A \subset \mathbb{R}^n$ um retângulo $e \ g : A \to \mathbb{R}^n$ continuamente diferenciável. Se existe M tal que $|D_j g^i(x)| \leq M$ para todo x no interior de A, então

$$|g(x) - g(y)| \le n^2 M|x - y| \quad \forall x, y \in A.$$

Teorema 5.3.15 (Teorema de Sard) Seja $g: A \to \mathbb{R}^n$ continuamente diferenciável, onde $A \subset \mathbb{R}^n$ é aberto, e seja $B = \{x \in A; \det g'(x) = 0\}$. Então g(B) tem medida 0.

Dem.: Considere $U \subset A$ sendo um retângulo fechado, tal que todos os lados têm comprimento l. Se N é suficiente grande e U é dividido em N^n retângulos com lados l/N. Seja S cada retângulo de lado l/N, se $x \in S$ e sendo g diferenciável, tem-se

$$\lim_{y \to x} \frac{|g(y) - g(x) - Dg(x)(y - x)|}{|y - x|} = 0,$$

ou seja, dado $\epsilon > 0$, $\exists \, \delta > 0$ tal que

$$0 < |y - x| < \delta \Rightarrow \frac{|g(y) - g(x) - Dg(x)(y - x)|}{|y - x|} < \epsilon$$
$$\Rightarrow |g(y) - g(x) - Dg(x)(y - x)| < \epsilon |y - x|.$$

Além disso,

$$|y - x| \le \sqrt{n} \ l/N$$

 $\epsilon |y - x| \le \epsilon \sqrt{n} \ l/N.$

Daí $|g(y) - g(x) - Dg(x)(y - x)| < \epsilon |y - x| \le \epsilon \sqrt{n} (l/N) \, \forall y \in S$. Se S intercepta B pode-se escolher $x \in S \cap B$; como det g'(x) = 0, o conjunto $\{Dg(x)(y - x); y \in S\}$ está contido num subespaço V de dimensão (n - 1).

Portanto $\{g(y) - g(x); y \in S\}$ está a uma distância $\epsilon \sqrt{n} (l/N)$ de V, de modo que $\{g(y); y \in S\}$ está a uma distância $\epsilon \sqrt{n} (l/N)$ do plano V + g(x).

Por outro lado, pelo Lema 5.3.14, existe M tal que

$$|g(x) - g(y)| < M|x - y| \le M\sqrt{n} (l/N).$$

Assim, se S intercepta B, $\{g(y); y \in S\}$ está contido em um cilindro cuja altura é menor que $2\epsilon\sqrt{n}(l/N)$ e cuja base é uma esfera (de dimensão (n-1)) de raio menor que $M\sqrt{n}(l/N)$. Este cilindro tem volume menor que $C(l/N)^n\epsilon$ para alguma constante C. Há, no máximo, N^n retângulos semelhantes a S, portanto $g(U\cap B)$ encontra-se em um conjunto de volume menor que $C(l/N)^n\cdot\epsilon\cdot N^n=Cl^n\cdot\epsilon$. Desde que isto é verdadeiro para todo $\epsilon>0$, o conjunto $g(U\cap B)$ tem medida zero. Como A pode ser coberto por uma seqüencia de retângulos semelhantes a U, pelo Teorema 5.3.4, g(B) tem medida nula.

5.4 Teorema da Existência e Unicidade para Equações Diferenciais Parciais de Primeira Ordem

Este teorema afirma que, sob certas condições de f(t,y), o problema de valor inicial

$$y' = f(t, y), \quad y(t_0) = y_0$$

tem uma única solução num certo intervalo que contém o ponto t_0 .

Observe que basta considerar o problema no qual o ponto inicial (t_0, y_0) é a origem; isto é, o problema

$$y' = f(t, y), \quad y(0) = 0.$$

Se o ponto inicial for outro, pode-se sempre fazer uma mudança de variáveis correspondente a uma translação dos eixos do sistema de coordenadas, e levar o ponto dado (t_0, y_0) para a origem.

Teorema 5.4.1 (Existência e Unicidade) Se f e $\partial f/\partial y$ forem contínuas no domínio retangular $R: |t| \leq a, |y| \leq b$, então há um intervalo $|t| \leq h \leq a$ no qual existe uma solução única $y = \phi(t)$ do problema de valor inicial $y' = f(t,y), \quad y(0) = 0$

5.5 Grau Topológico em Dimensão Finita

O Grau Topológico $d(f, \Omega, y)$ é uma ferramenta que nos dá informações quanto a existência de soluções de equações da forma f(x) = y, onde f é uma função contínua definida em um subconjunto $\Omega \subset \mathbb{R}^n$ com valores em \mathbb{R}^n e y é um ponto dado em \mathbb{R}^n .

Nestas notas serão trabalhadas sua unicidade, construção e, também, algumas aplicações, partindo-se do fato de que tal função exista com as seguintes propriedades:(a) Assume valor 1 quando f = id; (b) Traz informações sobre a localização das soluções de f; e (c) É invariante por homotopia.

5.5.1 Unicidade do Grau

Nesta seção serão apresentados os passos que mostram a existência de uma única função $d:\{(f,\Omega,y)\}\to\mathbb{Z}$ sendo $\Omega\subset\mathbb{R}^n$ aberto e limitado, $f:\Omega\to\mathbb{R}^n$ contínua e $y\in\mathbb{R}^n\backslash f(\partial\Omega)$, satisfazendo:

- (d1) $d(id, \Omega, y) = 1$ para $y \in \Omega$.
- (d2) $d(f, \Omega, y) = d(f, \Omega_1, y) + d(f, \Omega_2, y)$ onde Ω_1, Ω_2 são subconjuntos abertos disjuntos de Ω tais que $y \notin f(\overline{\Omega} \setminus (\Omega_1 \cup \Omega_2))$.

(d3) $d(h(t,\cdot),\Omega,y(t))$ é independente de $t\in J=[0,1]$ onde $h:J\times\overline{\Omega}\to\mathbb{R}^n$ é contínua, $y:J\to\mathbb{R}^n$ é contínua e $y(t)\not\in h(t,\partial\Omega)$ para todo $t\in J$.

Isso será feito por reduções a situações mais simples. Inicialmente mostra-se que o grau é unicamente determinado para valores de funções \overline{C}^{∞} .

De
$$C(\overline{\Omega})$$
 para $\overline{C}^{\infty}(\Omega)$.

As duas proposições que seguem são imprescindíveis para o restante do trabalho.

Proposição 5.5.1 Seja $A \subset \mathbb{R}^n$ compacto $e \ f : A \to \mathbb{R}^n$ contínua. Então f pode ser estendida continuamente para o \mathbb{R}^n , isto \acute{e} , existe uma contínua $\widetilde{f} : \mathbb{R}^n \to \mathbb{R}^n$ tal que $\widetilde{f}(x) = f(x)$ para todo $x \in A$.

Proposição 5.5.2 (a) Seja $A \subset \mathbb{R}^n$ compacto, $f \in C(A)$ $e \in A$. Então existe uma função $g \in C^{\infty}(\mathbb{R}^n)$ tal que $|f(x) - g(x)| \leq \epsilon$ em A.

(b) Dado
$$f \in \overline{C}^1$$
, $\epsilon > 0$ $e \delta > 0$ tal que $\Omega_{\delta} = \{x \in \Omega; \quad \varrho(x, \partial\Omega) \geq \delta\} \neq \emptyset$, existe $g \in C^{\infty}(\mathbb{R}^n)$ tal que $|f - g|_{\circ} + \max_{\Omega_{\delta}} |f'(x) - g'(x)| \leq \epsilon$

Concluindo essa primeira etapa, tem-se:

Proposição 5.5.3 Sejam $f \in C(\overline{\Omega}), y \notin f(\partial \Omega)$ e $\alpha = \varrho(y, f(\partial \Omega)) > 0$. Então existe $g \in \overline{C}^{\infty}(\Omega)$ tal que $|f - g|_{\circ} < \alpha$, e

$$d(f,\Omega,y)=d(g,\Omega,y)$$

De valores regulares para valores singulares.

Este é um dos resultados fundamentais na unicidade do Grau, e também muito útil para sua construção.

Proposição 5.5.4 Sejam $f \in \overline{C}^{\infty}(\Omega)$ e $y \notin f(\partial \Omega)$. Se y é um valor regular de f, então f(x) = y tem um número finito de soluções.

Dem.: Como y é um valor regular de $f, J_f(x_0) \neq 0$ e o Teorema 5.2.9 nos garante a existência de $U = B_{\epsilon}(x_0)$ tal que $f|_U$ é um homeomorfismo, e portanto, uma bijeção. Daí segue que, para $x_o \in f^{-1}(y)$, podemos tomar $U = B_{\epsilon}(x_0)$ tal que $f^{-1}(y) \cap B_{\epsilon}(x_0) = \{x_o\}$. Concluímos, portanto, que os elementos de $f^{-1}(y)$ são pontos isolados. Conseqüentemente, $f^{-1}(y)$ deve ser finito.

Suponha que $f^{-1}(y)$ seja infinito. Então existe ponto de acumulação pertencente a $\overline{\Omega}$. Pela compacidade de $\overline{\Omega}$ e a continuidade da f, mostra-se que um dado $x_0 \in f^{-1}(y)$ pertence a Ω e é ponto de acumulação, que não é isolado, o que é um absurdo.

Proposição 5.5.5 Sejam $y_0 \in \mathbb{R}^n$ e $f \in \overline{C}^{\infty}(\Omega)$ tais que $y_0 \notin f(\partial \Omega)$. Então existe $\alpha > 0$ tal que $d(f, \Omega, y) = d(f, \Omega, y_0)$ para todo $y \in B_{\alpha}(y_0)$.

Dem.: Seja $\alpha = \varrho(y_0, f(\partial\Omega)) > 0$, então $B_{\alpha}(y_0) \cap f(\partial\Omega) = \emptyset$. Defina h(t,x) = f(x) e $y(t) = ty_0 + (1-t)y$ com $y \in B_{\alpha}(y_0)$, $t \in [0,1]$. Temos que h(t,x) e y(t) cumprem as condições de **(d3)**. Assim, concluímos que $d(h(t,x),\Omega,y(t))$ independe de $t \in [0,1]$. Portanto

$$d(f, \Omega, y) = d(f, \Omega, y_0) \quad \forall y \in B_{\alpha}(y_0).$$

Esta proposição e o Teorema 5.3.15 permitem concluir que para calcular o $d(f, \Omega, y)$ basta considerar y valor regular de f.

De \overline{C}^{∞} para Transformações Lineares.

Esta é a última etapa na redução do problema da unicidade do Grau.

Resultados decorrentes de (d2):

Lema 5.5.6 Sejam $\Omega \subset \mathbb{R}^n$ aberto e limitado, $f \in C(\overline{\Omega})$ e $y \in \mathbb{R}^n$ tal que $y \notin f(\partial \Omega)$, então:

- (a) $d(f, \emptyset, y) = 0$;
- (b) Se Ω_1 é um subconjunto aberto de Ω e $y \notin f(\overline{\Omega} \setminus \Omega_1)$ então $d(f, \Omega_1, y) = d(f, \Omega, y)$;

(c) Se
$$f \in \overline{C}^{\infty}(\Omega)$$
, $y \notin f(S_f(\Omega))$ e $f^{-1}(y) = \emptyset$, então $d(f, \Omega, y) = 0$.

Finalizando essa última etapa, será enunciado um dos principais resultados desta seção; fazendo uso do mesmo, juntamente com a Proposição 5.5.8, conclui-se a unicidade do Grau.

Proposição 5.5.7 Sejam $f \in \overline{C}^{\infty}(\Omega)$, $y \notin f(\partial \Omega \cup S_f(\Omega))$ e $f^{-1}(y) = \{x^1, x^2, \dots, x^m\}$. Então existe r > 0 tal que

$$d(f, \Omega, y) = \sum_{i=1}^{m} d(f'(x^{i}), B_{r}(0), 0).$$

O Caso Linear

Proposição 5.5.8 Seja A uma matriz $n \times n$ real com det $A \neq 0$, sejam $\lambda_1, \ldots, \lambda_m$ os autovalores negativos de A e $\alpha_1, \ldots, \alpha_m$ suas multiplicidades como zeros de det $(A - \lambda id)$, assumindo que A tenha tais autovalores. Então \mathbb{R}^n é a soma direta de dois subespaços N e M, $\mathbb{R}^n = N \oplus M$, tais que:

- (a) M e N são invariantes por A;
- (b) $A|_N$ tem somente os autovalores $\lambda_1, \ldots, \lambda_m$ e $A|_M$ não tem autovalores negativos;
- (c) $dimN = \sum_{k=1}^{m} \alpha_k$.

Teorema 5.5.9 (Unicidade do Grau) Seja

$$M = \{ (f, \Omega, y) : \Omega \in \mathbb{R}^n \text{ aberto } e \text{ limitado, } f \in C(\overline{\Omega}) \text{ } e \text{ } y \in \mathbb{R}^n \backslash f(\partial \Omega) \}.$$

Então existe no máximo uma função $d: M \to \mathbb{Z}$ satisfazendo as propriedades (d1)-(d3). Além do mais, tais propriedades implicam que $d(A,\Omega,0) = sgn \det A$ para aplicações lineares A com $\det A \neq 0$ e $0 \in \Omega$.

5.5.2 Construção de Grau

Nesta seção, o Grau será definido em três etapas.

Definição do grau restrita a valores regulares de $f \in \overline{C}^1(\Omega)$.

Seja $\Omega \subset \mathbb{R}^n$ aberto e limitado, $f \in \overline{C}^1(\Omega)$ e $y \in \mathbb{R}^n \backslash f(\partial \Omega \cup S_f)$. Então:

$$d(f,\Omega,y) = \begin{cases} \sum_{x \in f^{-1}(y)} sgnJ_f(x), & \text{se } f^{-1}(y) \neq \emptyset \\ 0, & \text{se } f^{-1}(y) = \emptyset \end{cases}$$

A fim de generalizar a definição do Grau para além de valores regulares, substitui-se $\sum sgn J_f(x)$ por uma integral apropriada, tendo em vista que ela não enxerga conjuntos de medida nula.

Proposição 5.5.10 Sejam $\Omega \subset \mathbb{R}^n$ aberto e limitado, $f \in \overline{C}^1(\Omega)$ e $y \in \mathbb{R}^n \backslash f(\partial \Omega \cup S_f)$, e $(\varphi_{\epsilon})_{\epsilon} > 0$ a família de funções regularizantes dada por

$$\varphi_{\epsilon}(x) = \epsilon^{-n} \varphi_1\left(\frac{x}{\epsilon}\right),$$

onde $\varphi_1: \mathbb{R}^n \to \mathbb{R}$ de classe $C^{\infty}(\mathbb{R}^n)$ é dada por

$$\varphi_1(x) = \begin{cases} c \cdot exp\left(\frac{-1}{1-|x|^2}\right), & para & |x| < 1\\ 0, & caso \ contrário. \end{cases}$$

Então existe $\epsilon_0 = \epsilon_0(y, f)$ tal que

$$d(f,\Omega,y) = \int_{\Omega} \varphi_{\epsilon}(f(x) - y) J_f(x) dx, \quad para \quad 0 < \epsilon \le \epsilon_0.$$

De valores regulares para valores singulares

Uma vez definido o Grau para valores regulares, a definição será modificada de modo a abranger também os valores singulares.

Proposição 5.5.11 Considere $f \in \overline{C}^2(\Omega)$ e $y_0 \notin f(\partial\Omega)$. Seja $\alpha = \varrho(y_0, f(\partial\Omega))$ e suponha que $y^1, y^2 \in B_{\alpha}(y_0)$ são dois valores regulares de f. Então

$$d(f, \Omega, y^1) = d(f, \Omega, y^2).$$

Daí, tem-se a seguinte definição:

Definição do grau para qualquer valor de $f \in \overline{C}^2(\Omega)$.

Sejam $\Omega \subset \mathbb{R}^n$ aberto e limitado, $f \in \overline{C}^2(\Omega)$ e $y \notin f(\partial\Omega)$. Definimos $d(f,\Omega,y)=d(f,\Omega,y^1)$, onde y^1 é um valor regular de f tal que $|y^1-y|<\varrho(y,f(\partial\Omega))$ e $d(f,\Omega,y^1)$ é dado pela definição anterior.

A definição do Grau será ampliada a sua forma mais genérica, ou seja, para $f \in C(\overline{\Omega})$.

Definição do grau para $f \in C(\overline{\Omega})$.

Sejam $f \in C(\overline{\Omega})$ e $y \in \mathbb{R}^n \setminus f(\partial \Omega)$. Então definimos $d(f, \Omega, y) = d(g, \Omega, y)$, em que $g \in \overline{C}^2(\Omega)$ é uma função tal que $|g - f|_o < \varrho(y, f(\partial \Omega))$ e $d(g, \Omega, y)$ é dado pela definição anterior.

O Grau assim definido, apresenta as propriedades a seguir:

Propriedades do Grau

Proposição 5.5.12 Sejam $M = \{(f, \Omega, y) : \Omega \subset \mathbb{R}^n \text{ aberto } e \text{ limitado}, f \in C(\overline{\Omega}) \text{ } e \text{ } y \notin f(\partial\Omega)\} \text{ } e \text{ } d : M \to \mathbb{Z} \text{ } o \text{ } grau \text{ } topológico. Então } d \text{ } satisfaz:$ (d1) $d(id, \Omega, y) = 1 \text{ } para \text{ } y \in \Omega;$

- (d2) $d(f, \Omega, y) = d(f, \Omega_1, y) + d(f, \Omega_2, y)$ quando Ω_1 e Ω_2 são subconjuntos abertos e disjuntos de Ω tais que $y \notin f(\overline{\Omega} \setminus (\Omega_1 \cup \Omega_2))$;
- (d3) $d(h(t,\cdot),\Omega,y(t))$ independe de $t \in J = [0,1]$ sempre que $h: J \times \overline{\Omega} \to \mathbb{R}^n$ e $y: J \to \mathbb{R}^n$ forem contínuas e $y(t) \notin h(t,\partial\Omega)$ para todo $\in J$;

- (d4) $d(f, \Omega, y) \neq 0$ implies $f^{-1}(y) \neq \emptyset$;
- (d5) $d(\cdot, \Omega, y)$ e $d(f, \Omega, \cdot)$ são constantes em $\{g \in (\overline{\Omega}); |g f|_0 < r\}$ e $B_r(y) \subset \mathbb{R}^n$, respectivamente, onde $r = \varrho(y, f(\partial\Omega))$. Além disso, $d(f, \Omega, \cdot)$ é constante em cada componente conexa de $\mathbb{R}^n \setminus f(\partial\Omega)$;
- (d6) $d(g, \Omega, y) = d(f, \Omega, y)$ sempre que $g|_{\partial\Omega} = f|_{\partial\Omega}$;
- (d7) $d(f, \Omega, y) = d(f, \Omega_1, y)$ para todo subconjunto aberto Ω_1 de Ω tal que $y \notin f(\overline{\Omega} \setminus \Omega_1)$.

Dem.: Pelo Teorema 5.5.9 as três primeiras propriedades são verdadeiras, daí mostraremos as restantes.

- (d4) Já sabemos que $f^{-1}(y)=0$ implica que $d(f,\Omega,y)=0$. Então, se $d(f,\Omega,y)\neq 0, \ f^{-1}(y)=\emptyset.$
- (d5) As duas primeiras partes vêm da definição do Grau. Daremos a prova da última. Desde que $\mathbb{R}^n \backslash f(\partial\Omega)$ é aberto, suas componentes conexas são abertos de \mathbb{R}^n , sendo portanto conexas por caminhos. Daí se \mathcal{K} é uma componente conexa de $\mathbb{R}^n \backslash f(\partial\Omega)$ e $y^1, y^2 \in \mathcal{K}$, existe uma curva contínua $y: [0,1] \to \mathcal{K}$ com $y(0) = y^1$ e $y(1) = y^2$; portanto, por (d3), temos $d(f,\Omega,y^1) = d(f,\Omega,y^2)$.
- (d6) Seja $h(t,x)=tf(x)+(1-t)g(x), \quad t\in [0,1]$, que é contínua. Basta verificar que $y\not\in h(t,\partial\Omega)$ para todo $t\in [0,1]$. Para tanto, seja $x\in\partial\Omega$, então

$$h(t,x) = tf(x) + (1-t)g(x)$$
$$= tf(x) + (1-t)f(x)$$
$$= f(x) \neq y$$

(d7) Vê-se facilmente que resulta de (d2).

Pode-se perceber que (d4)-(d7) são conseqüências de (d1)-(d3).

5.5.3 Aplicações do Grau

Ponto Fixo de Brouwer

Teoremas que asseguram a existência de um ponto fixo para certos tipos de aplicações são sempre interessantes pois, em princípio, a busca de uma solução x para uma equação do tipo f(x) = y reduz-se à procura de um ponto fixo para a aplicação \mathcal{F} , definida por $\mathcal{F}(x) = f(x) + x - y$. Com efeito, $\mathcal{F}(x) = x \Leftrightarrow f(x) = y$.

Lema 5.5.13 Seja $D \subset \mathbb{R}^n$ um conjunto qualquer e B o conjunto de todas as combinações convexas de elementos de D, isto é,

$$B = \left\{ \sum_{i=1}^{n} \lambda_i x^i : x^i \in D; \lambda_i \in [0, 1] \ e \ \sum_{i=1}^{n} \lambda = 1; n \in \mathbb{N} \right\}.$$

 $Ent\tilde{ao} \ B = convD$

Teorema 5.5.14 (Brouwer) Seja $D \subset \mathbb{R}^n$ um conjunto compacto convexo não-vazio e $f: D \to D$ uma função contínua. Então f tem um ponto fixo.

Dem.: Parte 1. Suponha que $D = \overline{B}_r(0)$ e que f não possui pontos fixos na fronteira de D. Defina $h: [0,1] \times D \to \mathbb{R}^n$ por h(t,x) = x - tf(x). Mostremos que $0 \notin h([0,1] \times \partial \Omega)$. Se tivéssemos $x_0 \in \partial D$ e $t_0 \in [0,1]$ tais que $h(t_0,x_0) = 0$ obteríamos $f(x_0) = x_0$, o que é absurdo. Assim, aplicando (d3) obtemos

$$d(id - f, int D, 0) = d(id, B_r(0), 0) = 1.$$

Logo, a equação x - f(x) = 0 possui pelo menos uma solução em D.

Parte 2. Para o caso de um domínio mais geral, considere a extensão contínua de f dada por

$$\widetilde{f}(x) = \begin{cases} f(x), & \text{se } x \in D \\ \left(\sum_{i \ge 1} 2^{-i} \varphi_i(x)\right)^{-1} \sum_{i \ge 1} 2^{-i} \varphi_i(x) f(a^i), & \text{se } x \notin D \end{cases}$$

em que $\{a^1,a^2,\ldots\}$ é um subconjunto enumerável denso em D e

$$\varphi_i(x) = \max\left\{2 - \frac{|x - a^i|}{\varrho(x, D)}, 0\right\} \quad \forall x \notin D.$$

Mostremos que $\widetilde{f}(\mathbb{R}^n) \subset D$, e que tem ponto fixo. Denotemos por X = conv f(D) e notemos que $\widetilde{f}(\mathbb{R}^n) \subset \overline{X}$. Quando $x \in D$ é trivial. No caso em que $x \notin D$ note que $\widetilde{f}(x) = \lim S_m$ onde

$$S_m = \left[\sum_{i>1}^m 2^{-i}\varphi_i(x)\right] \sum_{i>1}^m 2^{-i}\varphi_i(x)f(a^i).$$

Um simples raciocínio verifica que $S_m \in X$. Podemos então concluir que $\widetilde{f}(\mathbb{R}^n) \subset \overline{X} = \overline{convf(D)}$. Assim, pela compacidade de D, fica provado que $\widetilde{f}(\mathbb{R}^n) \subset D$.

Para concluir, tomemos r suficientemente grande para que D esteja contido em $\overline{B}_r(0)$. Pela primeira parte, existe $x \in \overline{B}_r(0)$ tal que \widetilde{f} tem ponto fixo. Mas $\widetilde{f}(x) \in D$, o que implica $x \in D$, e daí, que f possui ponto fixo.

Observação. O resultado acima permanece válido se D for somente homeomorfo a um compacto convexo.

Dem.: Suponha que D_0 seja compacto convexo e h o homeomorfismo tal que $D = h(D_0)$. Então $h^{-1}fh: D_0 \to D_0$ cumpre as condições do Teorema 5.5.14, e portanto, tem ponto fixo, ou seja, para algum $x_0 \in D_0$ $h^{-1}(f(h(x_0))) = x_0$, isto é, $f(h(x_0)) = h(x_0)$, onde $h(x_0)$ é o ponto fixo de f.

Exemplo (Perrom-Frobenius). Seja $A = (a_{ij})_{n \times n}$ com $a_{ij} \ge 0$. Então existe $\lambda \ge 0$ e $x \ne 0$ tal que $x_i \ge 0$ para todo i e $Ax = \lambda x$. Noutras palavras, A tem um autovetor não-negativo correspondente a um autovalor não-negativo.

Exemplo. Não existe uma função contínua definida da bola fechada na sua

fronteira que deixe fixos todos os pontos da fronteira.

A partir deste resultado, tem-se uma equivalência ao Teorema do Ponto Fixo, como se segue:

Teorema 5.5.15 Suponha que não exista $f: \overline{B}_r(0) \to \partial B_r(0)$ contínua tal que f(x) = x para todo $x \in \partial B_r(0)$. Então $g: \overline{B}_r(0) \to \overline{B}_r(0)$ contínua possui um ponto fixo.

Funções Sobrejetivas

Pelo teorema seguinte tem-se que sob certas condições de crescimento em $f \in C(\mathbb{R}^n), f(\mathbb{R}^n) = \mathbb{R}^n$.

Teorema 5.5.16 Se $f \in C(\mathbb{R}^n)$ tal que $\left\langle f(x), \frac{x}{|x|} \right\rangle \to \infty$ quando $|x| \to \infty$. $Ent\tilde{ao}\ f(\mathbb{R}^n) = \mathbb{R}^n$.

Teorema do Ouriço

Teorema 5.5.17 Sejam Ω aberto e limitado com $0 \in \Omega$ e $f : \partial \Omega \to \mathbb{R}^n \setminus \{0\}$ contínua. Suponha também que o espaço n-dimensional é ímpar. Então existe $x_0 \in \partial \Omega$ tal que $f(x_0) = \lambda x_0$, para $\lambda \neq 0$.

Dem.: Pode-se supor que $f \in C(\overline{\Omega})$. Como n é impar então $d(-id, \Omega, 0) = -1$. Considere $d(f, \Omega, 0) \neq -1$. Então h(t, x) = (1 - t)f(x) + t(-x) é tal que h(0, x) = f(x) e h(1, x) = -x = -id(x). Se $h(t, x) \neq 0 \ \forall x \in \partial \Omega$ e $t \in [0, 1]$ então $d(h(0, \cdot), \Omega, 0) = d(h(1, \cdot), \Omega, 0) = -1$, o que não ocorre por hipótese. Assim, $h(t_0, x_0) = 0$ para algum $t_0 \in (0, 1)$ e $x_0 \in \partial \Omega$. Dessa maneira

$$h(t_0, x_0) = (1 - t_0)f(x_0) + t_0(-x_0)$$

$$0 = (1 - t_0)f(x_0) + t_0(-x_0) \Rightarrow f(x_0) = \frac{t_0}{1 - t_0}x_0 = \lambda x_0$$

em que
$$\lambda = \frac{t_0}{1 - t_0} \neq 0$$
.

Suponha agora que $d(f,\Omega,0)=-1$. Então h(t,x)=(1-t)f(x)+tx é tal que h(0,x)=f(x) e h(1,x)=x=id(x). Se $h(t,x)\neq 0 \,\forall x\in\partial\Omega$ e $t\in[0,1]$ então $d(f,\Omega,0)=d(id,\Omega,0)=1$ o que não ocorre por hipótese. Logo $h(t_0,x_0)=0$ para algum $t_0\in(0,1)$ e $x_0\in\partial\Omega$. Dessa maneira,

$$h(t_0, x_0) = (1 - t_0)f(x_0) + t_0 x_0$$

$$0 = (1 - t_0)f(x_0) + t_0 x_0 \Rightarrow f(x_0) = \frac{-t_0}{1 - t_0} x_0 = \lambda x_0$$

em que $\lambda_1 = \frac{t_0}{t_0 - 1} \neq 0$.

Observação. Uma rotação por $\pi/2$ de uma esfera unitária no $\mathbb{C} = \mathbb{R}^2$, isto é $f(x_1, x_2) = (-x_2, x_1)$ é um bom contra-exemplo, quando n é par.

Observação. No caso em que $\Omega = B_1(0)$, o teorema nos diz que não há um campo contínuo de vetores tangentes que não se anule em $S = \partial B_1(0)$. De fato, seja $f: S \to \mathbb{R}^n$ tal que $f(x) \neq 0$ e $\langle f(x), x \rangle = 0$ para todo $x \in S$. Pelo Teorema 5.5.17 existe $x_0 \in S$ tal que $f(x_0) = \lambda x_0$, com $\lambda \neq 0$. Mas

$$\langle f(x_0), x_0 \rangle = \langle \lambda x_0, x_0 \rangle = \lambda |x_0|^2 = 0$$

implica $x_0 = 0$, que é uma contradição. Logo, f tem valor nulo em algum ponto de S.

Veja dois exemplos que ilustram esta observação.

Exemplos. 1) Suponha que você tenha uma esfera cabeluda. Tente penteála, e verá que sempre haverá um redemoinho.

2) O vento na superfície da Terra é um campo contínuo de vetores tangentes à sua superfície. Então, pelo teorema, em pelo menos um ponto sobre a superfície do planeta não venta.

5.5.4 Teorema de Borsuk

Este Teorema é importante pelo fato de garantir a existência de soluções quando f e Ω satisfazem certas condições.

Teorema 5.5.18 (Borsuk) Seja $\Omega \subset \mathbb{R}^n$ aberto, limitado e simétrico com respeito à origem, e $0 \in \Omega$. Seja $f \in C(\overline{\Omega})$ uma função ímpar com $0 \notin f(\partial \Omega)$. Então $d(f,\Omega,0)$ é ímpar.

O resultado seguinte é uma generalização do teorema.

Corolário 5.5.19 Seja $\Omega \subset \mathbb{R}^n$ aberto, limitado e simétrico com respeito à $0 \in \Omega$. Seja $f \in C(\overline{\Omega})$ tal que $0 \notin f(\partial \Omega)$ e $f(-x) \neq \lambda f(x)$ em $\partial \Omega$ para todo $\lambda \geq 1$. Então $d(f, \Omega, 0)$ é impar.

Corolário 5.5.20 (Borsuk-Ulam) Sejam $\Omega \subset \mathbb{R}^n$ como no enunciado do Teorema 5.5.18, $f: \partial \Omega \to \mathbb{R}^m$ contínua com m < n. Então f(x) = f(-x) para algum $x \in \partial \Omega$.

Dem.: Suponha o contrário, isto é, que $g(x) = f(x) - f(-x) \neq 0$, para todo $x \in \partial \Omega$. Seja então \tilde{g} a parte ímpar da extensão contínua de g para todo o $\overline{\Omega}$, a qual é também contínua. Seja agora $\hat{g}: \overline{\Omega} \to \mathbb{R}^n$ dada por

$$\hat{g} = (\tilde{g}(x), \underbrace{0, 0, \dots, 0}_{n-m \ termos}).$$

Naturalmente, $\hat{g}(-x) = -\hat{g}(x)$ para $x \in \partial\Omega$. Como $0 \notin \hat{g}(\partial\Omega)$ e \hat{g} é ímpar, pelo Teorema 5.5.18, $d(\hat{g}, \Omega, 0) \neq 0$. Por **(d5)** temos que $d(\hat{g}, \Omega, y) = d(\hat{g}, \Omega, 0) \neq 0$ para todo y em alguma bola n-dimensional $B_r(0)$. Desta forma **(d4)** implica que $\hat{g}(\overline{\Omega})$ contém um aberto de \mathbb{R}^n , o que é um absurdo tendo em vista a definição de \hat{g} .

Exemplo. Considerando a Terra redonda, uma aplicação deste corolário, é

que existem dois pontos opostos sobre a Terra que têm a mesma temperatura e pressão. Se assumirmos que a temperatura e a pressão variam continuamente sobre os pontos da Terra, teremos um caso particular do corolário com a superfície da Terra sendo $\partial\Omega$, n=3 e m=2.

O Teorema 5.5.18 ajuda encontrar uma condição suficiente para que uma aplicação contínua f seja aberta, a saber: deve ser localmente injetiva.

Teorema 5.5.21 Seja $\Omega \subset \mathbb{R}^n$ aberto $e \ f : \Omega \to \mathbb{R}^n$ contínua e localmente injetiva. Então $f \ \'e \ uma \ aplicação \ aberta.$

Exemplo. Uma aplicação $f: \mathbb{R}^n \to \mathbb{R}^n$ contínua, localmente injetora e tal que $\lim_{|x| \to \infty} |f(x)| = \infty$ é obrigatoriamente sobrejetiva.

5.5.5 A Fórmula do Produto

A Fórmula do Produto relaciona o grau de uma aplicação composta g(f(x)) com o grau de g e f.

Teorema 5.5.22 Sejam $\Omega \in \mathbb{R}^n$ aberto e limitado, $f \in C(\overline{\Omega})$, $g \in C(\mathbb{R}^n)$, K_i as componentes conexas limitadas de $\mathbb{R}^n \setminus f(\partial \Omega)$ e $y \notin (gf)(\partial \Omega)$. Então

$$d(gf, \Omega, y) = \sum_{i} d(f, \Omega, K_i) \cdot d(g, K_i, y)$$

onde somente uma quantidade finita de termos é diferente de zero.

O próximo teorema, aparentemente trivial, exige sutileza na sua demonstração. Com o auxílio do Grau, é possível uma prova menos trabalhosa.

Teorema 5.5.23 (Jordan) Seja $C \subset \mathbb{R}^2$ o traço de uma curva fechada sem auto- intersecções. Então C divide o plano em duas componentes conexas: G_1 e G_2 . Além disso, $C = \partial G_1 = \partial G_2$ e $G_2 = \mathbb{R}^2 \backslash \overline{G_1}$.

Prova-se que este teorema é equivalente ao seguinte.

Teorema 5.5.24 Seja $C \subset \mathbb{R}^2$ o traço de uma curva homeomorfo a $\partial B_1(0)$, então $\mathbb{R}^2 \setminus C$ tem exatamente duas componentes conexas.

O próximo teorema é uma generalização deste último, para o \mathbb{R}^n .

Teorema 5.5.25 Sejam $\Omega_1, \Omega_2 \subset \mathbb{R}^n$ conjuntos compactos e homeomorfos um ao outro. Então $\mathbb{R}^n \backslash \Omega_1$ e $\mathbb{R}^n \backslash \Omega_2$ têm a mesma quantidade de componentes conexas.

5.5.6 Observação Final

Até agora, foi visto que na construção do grau, $\Omega \subset \mathbb{R}^n$ deve ser limitado para que $f^{-1}(y) \subset \Omega$ seja compacto, quando $f \in C(\overline{\Omega})$ e $y \notin f(\partial\Omega)$. Considerando $\Omega \subset \mathbb{R}^n$ ilimitado, ainda é possível encontrar uma função $f \in C(\overline{\Omega})$ tal que $f^{-1}(y)$ seja compacto e $y \notin f(\partial\Omega)$. Nessas condições, pode-se definir o grau da seguinte forma:

Definição. Sejam $\Omega \subset \mathbb{R}^n$ aberto e $\tilde{C}(\overline{\Omega})$ o conjunto de toda $f \in C(\overline{\Omega})$ tal que $\sup_{\overline{\Omega}} |x - f(x)| < \infty$. Seja $\tilde{M} = \{(f, \Omega, y) : \Omega \subset \mathbb{R}^n \text{ aberto, } f \in \tilde{C}(\overline{\Omega}) \text{ e } y \notin f(\partial\Omega)\}$. Então, $\tilde{d} : \tilde{M} \to \mathbb{Z}$ é definido por $\tilde{d}(f, \Omega, y) = d(f, \Omega \cap \Omega_0, y)$, onde Ω_0 é qualquer conjunto aberto e limitado que contém $f^{-1}(y)$.

6 Conclusão

As Universidades vêm desenvolvendo um trabalho muito prestimoso junto ao PIBIC/Instituto do Milênio-AGIMB, com bolsas de iniciação científica, estimulando novos estudantes para uma carreira de pesquisador e abrindo espaço para um co-relacionamento entre alunos de diversos cursos, propiciando uma harmonia entre as Ciências.

O bolsista reconhece que é de importância salutar participar de um projeto desse nível, pois lhe abre perspectivas de uma atuação maior da pesquisa em estudos acadêmicos, além de embasar o aluno para estudos futuros, em uma pós-graduação.

Referências

- [1] LIMA, Elon Lages. *Curso de Análise Vol. 1.* Rio de Janeiro: Projeto Euclides-IMPA, 1976.
- [2] LIMA, Elon Lages. Curso de Análise Vol. 2. Rio de Janeiro: Projeto Euclides-IMPA, 1981.
- [3] SPIVAK, Michael. Calculos on Manifolds. New York: Benjamin, 1965.
- [4] BOYCE, Willian E.; DIPRIMA, Richard C. Equações Diferenciais Elementares e Problemas de Valores de Contorno. Rio de Janeiro: LTC, 1998.
- [5] DEIMLING, Klaus. *Nonlinear Functional Analysis*. New York: Springer-Verlag, 1980.