Questão 1.

- (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional.
- (1,0) (b) Mostre que $\sqrt{2} + \sqrt{5}$ é irracional.

UMA SOLUÇÃO

- (a) Seja $n \in \mathbb{N}$. Se $\frac{p}{q} \in \mathbb{Q}$ é tal que $\left(\frac{p}{q}\right)^2 = n$, então $p^2 = nq^2$. Como os fatores primos de p^2 e q^2 aparecem todos com expoente par, o mesmo deve ocorrer com os fatores primos de n. Então n é o quadrado de algum número natural.
- (b) Se $\sqrt{2}+\sqrt{5}$ fosse racional então seu quadrado

$$q = (\sqrt{2} + \sqrt{5})^2 = 2 + 2\sqrt{10} + 5 = 7 + 2\sqrt{10}$$

também seria. Mas a
í $\frac{q-7}{2}=\sqrt{10}$ também seria racional, o que não é possível, pois 10 não é o quadrado de um número natural.

Questão 2.

(2,0) No instante em que uma pedra caiu (sem sofrer impulso inicial) ao momento em que se ouviu o som de seu choque com a água no fundo do poço decorreram S segundos. Calcular a profundidade do poço. Dar a resposta em função da aceleração g da gravidade e da velocidade v do som. Usar a fórmula $s=\frac{g}{2}t^2$ do espaço percorrido no tempo t por um corpo em queda livre que partiu do repouso.

DUAS SOLUÇÕES

Uma solução. O tempo $S=t_1+t_2$ é a soma do tempo t_1 que a pedra levou para chegar ao fundo mais o tempo t_2 que o som levou para vir até o nível da borda. Chamando de x a profundidade do poço, temos $x=\frac{g}{2}t_1^2$ e, por outro lado, $x=vt_2=v(S-t_1)$. Logo

$$\frac{g}{2}t_1^2 = v(S - t_1)$$

ou

$$gt_1^2 + 2vt_1 - 2vS = 0,$$

que é uma equação quadrática na incógnita t_1 . As soluções desta equação são

$$\frac{-2v + \sqrt{4v^2 + 8gvS}}{2g}, \frac{-2v - \sqrt{4v^2 + 8gvS}}{2g}.$$

A segunda é negativa e neste problema não faz sentido. A primeira é positiva, porque $\sqrt{4v^2 + 8gvS} > \sqrt{4v^2} = 2v$. Então, dividindo por 2 o numerador e o denominador da fração,

$$t_1 = \frac{-v + \sqrt{v^2 + 2gvS}}{g} \,,$$

logo

$$x = vt_2 = v(S - t_1) = Sv + \frac{v^2}{g} - \frac{v}{g}\sqrt{v^2 + 2gvS}$$
.

Outra solução. A solução é essencialmente determinada por aquilo que escolhemos como incógnita $(t_1, t_2 \text{ ou } x)$. Se equacionarmos diretamente em x iremos pelo seguinte caminho. Observe que $t_1 = \sqrt{\frac{2x}{g}}$ e $t_2 = \frac{x}{v}$. Então, de $t_1 + t_2 = S$ resulta uma equação em x:

$$\frac{x}{v} + \sqrt{2g^{-1}}\sqrt{x} - S = 0$$
.

Definamos $y = \sqrt{x}$. Então precisamos achar soluções positivas de

$$v^{-1}y^2 + \sqrt{2g^{-1}}y - S = 0.$$

A única solução positiva dessa equação quadrática é

$$y = \frac{-\sqrt{2g^{-1}} + \sqrt{2g^{-1} + 4Sv^{-1}}}{2v^{-1}}.$$

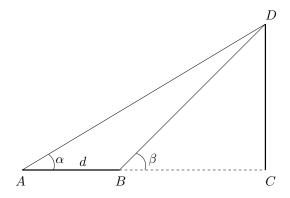
Então

$$x = y^2 = \frac{v^2}{4} \left[\frac{2}{g} + \left(\frac{2}{g} + \frac{4S}{v} \right) - 2\sqrt{\frac{4}{g^2} + \frac{8S}{vg}} \right],$$

que equivale à expressão obtida na primeira solução.

Questão 3.

(2,0) Percorrendo, ao longo de uma reta horizontal, a distância d=AB em direção à base inacessível de um poste CD, nota-se (com o auxílio de um teodolito) que os ângulos $C\hat{A}D$ e $C\hat{B}D$ medem, respectivamente, α e β radianos. Qual é a altura do poste CD?



UMA SOLUÇÃO

Temos $CD = AC \operatorname{tg} \alpha = BC \operatorname{tg} \beta$. Como AC = BC + d, vem $(BC + d)\operatorname{tg} \alpha = BC \operatorname{tg} \beta$, e daí

$$BC = d \cdot \frac{\operatorname{tg} \alpha}{\operatorname{tg} \alpha - \operatorname{tg} \beta}$$

e

$$CD = BC \operatorname{tg} \beta = d \cdot \frac{\operatorname{tg} \alpha \operatorname{tg} \beta}{\operatorname{tg} \alpha - \operatorname{tg} \beta} \,,$$

que é a resposta para a pergunta.

Questão 4.

(2,0) Um reservatório contém uma mistura de água com sal (uma salmoura), que se mantém homogênea graças a um misturador. Num certo momento, são abertas duas torneiras, com igual capacidade. Uma despeja água no reservatório e a outra escoa. Após 8 horas de funcionamento, verifica-se que a quantidade de sal na salmoura reduziu-se a 80% do que era antes que as torneiras fossem abertas. Que percentagem do sal inicial permanecerá na salmoura após 24h de abertura das torneiras?

UMA SOLUÇÃO

Seja M_0 a massa de sal existente no início da operação. Decorrido o tempo t, essa massa será $M(t) = M_0 a^t$, onde a é uma constante (0 < a < 1). Isto se justifica porque, sendo a salmoura da torneira de saída uma amostra da salmoura do tanque, supostamente homogênea, a quantidade de sal que sai por unidade de tempo é proporcional à quantidade de sal no tanque, e isto é o princípio que rege o decaimento exponencial.

No entanto, a constante a não precisa ser calculada para se resolver o problema. O enunciado nos diz (supondo o tempo t medido em horas) que $M(8) = M_0 a^8 = 0, 8M_0$, logo $a^8 = 0, 8$. Após 24 horas, a quantidade de sal é $M_0 a^{24}$. Ora, $a^{24} = (a^8)^3 = 0, 8^3 = 0, 512$. Portanto a resposta é 51, 2%, isto é, pouco mais que a metade.

Questão 5.

Considere a função $f:[1,+\infty)\to\mathbb{R}$, definida por $f(x)=x^3-x^2$.

- (1,0) (a) Defina função crescente e prove que f é crescente.
- (1,0) (b) Defina função ilimitada e prove que f é ilimitada.

UMA SOLUÇÃO

(a) Uma função $f: X \to \mathbb{R}$, definida no conjunto $X \subset \mathbb{R}$, chama-se crescente quando, para $x, y \in X$, x < y implica f(x) < f(y).

Em nosso caso, sejam $x, y \in [1, +\infty)$, com x < y. Vamos mostrar que f(y) - f(x) > 0. Temos

$$f(y) - f(x) = (y^3 - y^2) - (x^3 - x^2)$$

$$= (y^3 - x^3) - (y^2 - x^2)$$

$$= (y - x)(y^2 + xy + x^2) - (y - x)(y + x)$$

$$> (y - x)(y^2 + x^2) - (y - x)(y + x)$$

$$= (y - x)(y^2 - y + x^2 - x)$$

$$= (y - x)(y(y - 1) + x(x - 1)).$$

Como $x \ge 1$, então $x(x-1) \ge 0$; e como $y > x \ge 1$, então y(y-1) > 0 e y-x > 0. Portanto f(y) - f(x) > 0.

Outra solução. Podemos definir o número positivo h = y - x, ou seja, escrever y como x + h, e provar que f(x + h) - f(x) > 0. Temos

$$f(x+h) - f(x) = [(x+h)^3 - (x+h)^2] - [x^3 - x^2]$$

$$= (x^3 + 3x^2h + 3xh^2 + h^3) - (x^2 + 2hx + h^2) - x^3 + x^2$$

$$= 3x^2h + 3xh^2 + h^3 - 2hx - h^2.$$

Para mostrar que essa expressão é positiva, precisamos achar termos positivos que, somados aos negativos, resultem em um número positivo. Então a reescrevemos:

$$f(x+h) - f(x) = 3x^{2}h + 3xh^{2} + h^{3} - 2hx - h^{2}$$

$$= x^{2}h + 2xh^{2} + h^{3} + (2x^{2}h - 2hx) + (xh^{2} - h^{2})$$

$$= x^{2}h + 2xh^{2} + h^{3} + 2hx(x-1) + h^{2}(x-1).$$

Como $x \ge 1$ então os dois últimos termos são maiores do que ou iguais a zero. Acrescido do fato que os três primeiros são positivos, tem-se que f(x+h) - f(x) > 0, para qualquer $x \ge 1$ e h > 0.

(b) Uma função $f: X \to \mathbb{R}$, definida no conjunto $X \subset \mathbb{R}$, chama-se *ilimitada* quando, dado qualquer A > 0, pode-se achar $x \in X$ tal que f(x) > A. No nosso caso, f(x) > A significa $x^3 - x^2 > A$, ou seja, $x^3(1 - \frac{1}{x}) > A$. Ora, quando x > 2 já se tem $1 - \frac{1}{x} > \frac{1}{2}$. Então, para se ter $x^3(1 - \frac{1}{x}) > A$, basta tomar um $x \in [1, +\infty)$ que seja maior do que x = 1 e tal q