

Avaliação 1 - MA11 - 2015.1 - Gabarito

Questão 01 [2,0 pts]

Faça um esboço do conjunto dos pontos do plano tais que

$$|x|^2 + |y|^2 = 4; \ x, y \in \mathbb{R},$$

onde $\lfloor x \rfloor = \max\{m \in \mathbb{Z} : m \leqslant x\}$ representa o maior inteiro menor do que x ou igual a x.

Solução

Note que o número $\lfloor x \rfloor$ é sempre um número inteiro, e então $\lfloor x \rfloor^2$ é um inteiro não-negativo quadrado perfeito. Logo, as únicas possíveis soluções inteiras para a equação são $\lfloor x \rfloor^2 = 0$, o que implica necessariamente $\lfloor y \rfloor^2 = 4$, ou $\lfloor x \rfloor^2 = 4$ o que implica $\lfloor y \rfloor^2 = 0$.

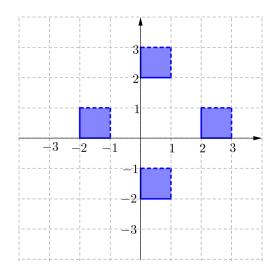
Temos

$$\lfloor x \rfloor^2 = 0 \Longleftrightarrow \lfloor x \rfloor = 0 \Longleftrightarrow x \in [0, 1)$$
$$\lfloor x \rfloor^2 = 4 \Longleftrightarrow \lfloor x \rfloor = \pm 2 \Longleftrightarrow x \in [-2, -1) \cup [2, 3)$$

e analogamente para y. Desta forma, os pares ordenados (x, y) que satisfazem à equação são os que pertencem ao conjunto

$$\bigg([0,1)\times\Big([-2,-1)\cup[2,3)\Big)\bigg)\cup\bigg(\Big([-2,-1)\cup[2,3)\Big)\times[0,1)\bigg),$$

cujo esboço é



onde, na figura, os segmentos tracejados representam os pontos da fronteira que não pertencem ao conjunto e as linhas contínuas, bem como as regiões internas pintadas, representam os pontos do conjunto.

Questão 02 [2,0 pts]

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função monótona injetiva. Prove que, se o acréscimo $f(x+h) - f(x) = \varphi(h)$ depender apenas de h, mas não de x, então f é uma função afim.

Solução

Teorema 5.11, página 102 do livro texto.

Questão 03 [2,0 pts]

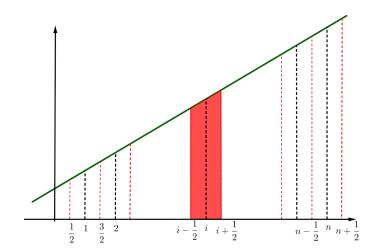
Os termos a_1, a_2, \ldots, a_n de uma progressão aritmética positiva e crescente são os valores $f(1), f(2), \ldots, f(n)$ de uma função afim.

(a) Mostre que cada a_i é igual à área de um trapézio delimitado pelo gráfico de f, pelo eixo OX e pelas retas verticais de equações

 $x = i - \frac{1}{2}$ e $x = i + \frac{1}{2}$.

- (b) Mostre que a soma $S = a_1 + a_2 + \dots + a_n$ é igual à área do trapézio delimitado pelo gráfico de f, pelo eixo OX e pelas retas verticais $x = \frac{1}{2}$ e $x = n + \frac{1}{2}$.
- (c) Conclua que $S = \frac{(a_1 + a_n)n}{2}$.

Solução



(a) A área do trapézio da figura é

$$A = \frac{\left[f\left(i + \frac{1}{2}\right) + f\left(i - \frac{1}{2}\right)\right]}{2}.$$

Visto que $a_i = f(i)$, onde f(x) = mx + b é uma função afim, temos

$$A = \frac{\left[f\left(i + \frac{1}{2}\right) + f\left(i - \frac{1}{2}\right)\right]}{2} = \frac{2mi + 2b}{2}$$
$$= mi + b = f(i) = a_i.$$

(b) Visto que o intervalo $\left[\frac{1}{2}, n + \frac{1}{2}\right]$ pode ser particionado como

$$\left[\frac{1}{2}, n + \frac{1}{2}\right] = \bigcup_{i=1}^{n} \left[i - \frac{1}{2}, i + \frac{1}{2}\right],$$

o trapézio em questão pode ser particionado em n trapézios como os do item (a). Dessa forma a área do trapézio é

$$A_T = \sum_{i=1}^{n} \frac{\left[f\left(i + \frac{1}{2}\right) + f\left(i - \frac{1}{2}\right)\right]}{2} = \sum_{i=1}^{n} a_i = S.$$

(c) A área do trapézio do item anterior é

$$A_{T} = \frac{\left[f\left(\frac{1}{2}\right) + f\left(n + \frac{1}{2}\right)\right] \left[\left(n + \frac{1}{2}\right) - \frac{1}{2}\right]}{2} = \frac{\left(m \cdot \frac{1}{2} + b + m\left(n + \frac{1}{2}\right) + b\right)n}{2}$$
$$= \frac{\left((m + b) + (mn + b)\right)n}{2} = \frac{f(1) + f(n)}{2}$$
$$= \frac{(a_{1} + a_{n})n}{2}.$$

Como, pelo item (b), temos $S = A_T$, concluímos o resultado desejado.

Questão 04 [2,0 pts]

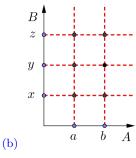
Dados dois conjuntos A e B, definimos o produto cartesiano de A por B, que denotamos por $A \times B$, como sendo o conjunto de todos os pares ordenados (a,b) tais que $a \in A$ e $b \in B$, isto é, $A \times B = \{(a,b) | a \in A, b \in B\}$.

- (a) Determine, justificando, se o conjunto $X = \{(1,3),(2,3),(2,4)\}$ é um produto cartesiano de dois conjuntos.
- (b) Suponha que A e B tenham exatamente 2 e 3 elementos, respectivamente. Quantos subconjuntos não vazios de $A \times B$ são também produtos cartesianos?

Solução



O conjunto X não é um produto cartesiano, pois caso pudéssemos escrever $X = A \times B$, deveríamos ter $\{1,2\} \subset A$ e $\{3,4\} \subset B$ e isto obrigaria termos $(1,4) \in A \times B = X$, o que não ocorre.



Sejam $A = \{a,b\}$ e $B = \{x,y,z\}$. Os subconjuntos não vazios de A são $\{a\}$, $\{b\}$, e $\{a,b\}$ e os subconjuntos não vazios de B são $\{x\}$, $\{y\}$, $\{z\}$, $\{x,y\}$, $\{x,z\}$, $\{y,z\}$, e $\{x,y,z\}$. Os subconjuntos de $A \times B$ que são produtos cartesianos são os produtos cartesianos dos subconjuntos não vazios de A pelos subconjuntos não vazios de B, o que nos dá $3 \times 7 = 21$ subconjuntos.

Questão 05 [2,0 pts]

Sejam E e F conjuntos com pelo menos 2 elementos e $f: E \to F$ uma função.

- (a) Prove que, se f é bijetiva então $f(E \backslash A) = F \backslash f(A), \ \forall A \subset E$.
- (b) Reciprocamente, prove que se $f(E \setminus A) = F \setminus f(A)$, $\forall A \subset E$, $A \neq \emptyset$ e $A \neq E$, então $f: E \to F$ é bijetiva.

Solução

- (a) Inicialmente observe que, se f é bijetiva, a identidade vale trivialmente para A = ∅ e A = E, desta forma, vamos nos ater à demonstração para subconjuntos não vazios com complementares não vazios.
 Vamos provar primeiro que f(E\A) ⊂ F\f(A), ∀A ⊂ E. Dado y ∈ f(E\A), existe x ∈ E\A tal que f(x) = y.
 Suponhamos por absurdo que y ∈ f(A). Nesse caso existe x₁ ∈ A tal que f(x₁) = y, isto é, f(x) = y = f(x₁). Como f é injetiva, segue que x₁ = x, o que é um absurdo, pois x ∈ E\A. Logo y ∈ F\f(A) e, portanto, f(E\A) ⊂ F\f(A).
 Reciprocamente, vamos mostrar que F\f(A) ⊂ f(E\A). Seia y ∈ F\f(A). Como f é sobrejetiva, existe x ∈ E tal que
 - Reciprocamente, vamos mostrar que $F \setminus f(A) \subset f(E \setminus A)$. Seja $y \in F \setminus f(A)$. Como f é sobrejetiva, existe $x \in E$ tal que f(x) = y. Suponhamos, por absurdo que $x \in A$. Nesse caso, $y = f(x) \in f(A)$, o que é um absurdo. Logo $x \in E \setminus A$ e $y = f(x) \in f(E \setminus A)$.
- (b) Primeiro vamos mostrar que f é injetiva. Sejam $x_1 \in E$ e $x_2 \in E$ tais que $f(x_1) = y = f(x_2)$. Vamos mostrar que $x_1 = x_2$. Considere $A = \{x_1\}$. Se $x_1 \neq x_2$, então $x_2 \in E \setminus A$. Isto implica que $y = f(x_2) \in f(E \setminus A) = F \setminus f(A)$, o que é um absurdo, pois $y = f(x_1) \in f(A)$. Logo $x_1 = x_2$ e f é injetiva.

Agora vamos mostrar que f é sobrejetiva. Seja $x \in E$ e $A = E \setminus \{x\}$. Como E tem pelo menos 2 elementos, $E \setminus \{x\}$ é não vazio. Temos $F \setminus f(A) = f(E \setminus A) = f(\{x\})$. Isto implica que

$$F = (F \backslash f(A)) \cup f(A) = f(\{x\}) \cup f(E \backslash \{x\}) = f(\{x\} \cup (E \backslash \{x\})) = f(E),$$

e portanto f é sobrejetiva.