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Doutorado em Matemática
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mencionar o professor Daniel Cordeiro de Morais Filho, meu tutor do grupo PET Matemática -
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Resumo

Este trabalho está dividido em duas partes. Na primeira parte, estamos interessados em obter

resultados de rigidez e de não existência baseados em prinćıpios do máximo relacionados a sub-

variedades Weingarten lineares imersas em variedades Riemannianas ou Lorentzianas. Usamos

fortemente a noção de convergência para zero no infinito e de crescimento de volume polinomial.

A segunda parte é dedicada também ao estudo de subvariedades Weingarten lineares, dessa vez

fechadas, em variedades Riemannianas ou Lorentzianas imersas com curvatura média normal-

izada paralela. Precisamente, estabelecemos desigualdades integrais a partir de uma estimativa

inferior adequada do operador de Cheng-Yau agindo sobre a norma ao quadrada da segunda

forma fundamental sem traço e a usamos para caracterizar subvariedades totalmente umb́ılicas.
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Abstract

This work is divided into two parts. In the first part, we are interested to get rigidity and nonex-

istence results based on suitable maximum principles related to linear Weingarten submanifolds

immersed into Riemannian or Lorentzian manifolds. We strongly use the notion of convergence

to zero at infinity and of polynomial volume growth. The second part is dedicated also to study

linear Weingarten submanifolds into Riemannian or Lorentzian manifolds, but this time closed

and immersed with parallel normalized mean curvature. Precisely, we establish sharp integral

inequalities from a suitable lower estimate of the Cheng-Yau operator acting on the squared

norm of the traceless second fundamental form and we use it to characterize totally umbilical

submanifolds.
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Introduction

This thesis is divided into two main parts as follows:

Part I: Rigidity and nonexistence results for complete sub-

manifolds.

The study of the rigidity of n-dimensional submanifolds immersed into a Riemannian or a

Lorentzian space constitutes an important thematic in Diferential Geometry and, in particular,

into the theory of isometric immersions. It is still profuse and many researchers have extensively

explored this area.

An analytical tool that has become fruitful for this research branch is a self-adjoint differential

operator acting on smooth functions defined on a Riemannian or on a Lorentzian manifold,

known as Cheng-Yau operator, which was introduced by Cheng and Yau in their remarkable

paper [31]. In this work, they used the square operator to classify n-dimensional compact

(without boundary) hypersurfaces with constant normalized scalar curvature R satisfying R ≥ c

and nonnegative sectional curvature immersed in a space form Qn+1
c . Posteriorly, Li [62] extended

the results of Cheng and Yau in terms of the squared norm of the second fundamental form of

the hypersurface. Next, Li [61] studied the rigidity of compact hypersurfaces with nonnegative

sectional curvature immersed in a unit Euclidean sphere Sn+1 under the assumption that the

scalar and mean curvatures are proportional.

Over the past few decades, significant advancements have been made in the field described

above. In 2009, for instance, Li, Suh and Wei [63] extended the results of [31] and [61] by exam-

ining the concept of linear Weingarten (LW) hypersurfaces immersed in Sn+1 whose normalized

scalar curvature R and mean curvature H satisfy a linear relation of the type R = aH + b, for

some constants a, b ∈ R. Subsequently, Shu [81] contributed to the field by presenting some

rigidity theorems concerning LW hypersurfaces with two distinct principal curvatures immersed

in Qn+1
c . Also working in this context, de Lima, Velásquez and Aquino [18] extended the re-

sults of [63] to complete LW hypersurfaces immersed in Qn+1
c resorting to a suitable Cheng-Yau

modified operator.

Regarding immersed submanifolds with (possibly) high codimension p ≥ 1 and whose nor-

malized mean curvature vector field is parallel as a section of the normal bundle, we also have

in the current literature several works addressing characterization results. In this setting, we

can highlight the papers of Cheng [34] and Guo and Li [59]. In the first one, the author applied
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the generalized maximum principle of Omori-Yau [74, 87] to show that the totally umbilical

sphere Sn(r), the totally geodesic Euclidean space Rn and the generalized cylinder R× Sn−1(r)

are the only n-dimensional complete submanifolds with constant scalar curvature and parallel

normalized mean curvature vector in the Euclidean space Rn+p satisfying a suitable constraint

on the norm of the second fundamental form. In the second one, the authors investigated the

problem of generalize the previous results of [62]. So, they proved that the only n-dimensional

compact (without boundary) submanifolds immersed in Sn+p with constant scalar curvature,

parallel normalized mean curvature vector and such that the second fundamental form satis-

fies an appropriate boundedness are the totally umbilical spheres Sn(r) and the Clifford torus

S1(
√

1 − r2) × Sn−1(r), where r > 0 stands for the positive radius.

More recently, Araújo, de Lima, dos Santos and Velásquez [25] obtained an Omori-type maxi-

mum principle for the Cheng-Yau operator and applied it to establish an extension of the results

of [34, 59] for n-dimensional complete submanifolds immersed with parallel normalized mean

curvature vector field in Qn+p
c , with constant normalized scalar curvature. Next, these same au-

thors [44] used the Hopf strong maximum principle and a maximum principle at infinity due to

Caminha [30] to obtain versions of the results of [25,34,59] for the context of n-dimensional com-

plete LW submanifolds immersed with parallel normalized mean curvature vector field in Qn+p
c .

In [23], Velásquez and Araújo established a version of the classical Liebmann’s rigidity theorem

showing that a compact LW surface immersed with flat normal bundle and parallel normalized

mean curvature vector with nonnegative Gaussian curvature in Q2+p
c must be isometric to a

totally umbilical round sphere. They also obtained in [22] another version of this Liebmann’s

result assuming that the ambient is the hyperbolic space (for other characterizations concerning

complete LW submanifolds in the hyperbolic space we refer the reader to [16,20,21,42]).

In a higher codimension, Liu [67] showed that the totally umbilical round spheres are the only

n-dimensional compact (without boundary) spacelike LW submanifolds of Sn+p
p with nonnegative

sectional curvature and flat normal bundle. Later on, Yang and Hou [85] applied the Omori-

Yau’s generalized maximum principle to show that a spacelike LW submanifold in Sn+p
p , with

a > 0, b < 1, having parallel normalized mean curvature vector and such that the squared

norm of its second fundamental form satisfies a suitable boundedness, must be either totally

umbilical or isometric to a certain hyperbolic cylinder. Afterwards, Liu and Zhang [66] used the

classical strong maximum principle of Hopf to obtain other classifications for complete spacelike

LW submanifolds in Sn+p
p having parallel normalized mean curvature.

In [24], raújo, de Lima, dos Santos and Velásquez obtained other characterization results

related to complete spacelike LW submanifolds with parallel normalized mean curvature vector

in Sn+p
p under suitable constraints on the values of the mean curvature and of the norm of the

traceless part of the second fundamental form, now through an extension of Hopf’s maximum

principle for complete Riemannian manifolds. Next, de Lima and Velásquez jointly with Barboza

and de Lima [26] studied the umbilicity of n-dimensional complete spacelike LW submanifolds

immersed with parallel normalized mean curvature vector field in Sn+p
p , with index p > 1. They

applied a generalized maximum principle for a modified Cheng-Yau operator L to show that
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such a spacelike LW submanifold must be either totally umbilical or isometric to a product

M1 × M2 × . . . × Mk, where the factors Mi are totally umbilical submanifolds of Sn+p
p which

are mutually perpendicular along their intersections. More recently, imposing some restrictions

on the values of the mean curvature function H, Antonia and de Lima in [40] established a

parabolicity criterion related to the operator L and used it to obtain sufficient conditions which

guarantee that a spacelike LW submanifold immersed in Sn+p
p must be either totally umbilical

or isometric to certain hyperbolic cylinders.

Lately, in [17], when the ambient space is a Lorentzian space form, de Lima jointly with

Aquino characterized constant mean curvature spacelike hypersurfaces, whose support functions

are linearly related. Continuing the study of the geometry of spacelike hypersurfaces, now with

da Silva, de Lima established in [39] a parabolicity criterion related to a suitable Cheng-Yau

modified operator L and used it to obtain sufficient conditions which guarantee that spacelike

hypersurfaces immersed in a more general Lorentz space, a locally symmetric Einstein spacetime

(that is, a Lorentz space whose metric and Ricci tensors are homothetic) obeying standard

curvature constraints must be either totally umbilical or isometric to an isoparametric spacelike

hypersurface with two distinct principal curvatures, one of which is simple.

Motivated by this research history, in this part of the work, the main aim is to establish

new rigidity and nonexistence results concerning n-dimensional submanifolds immersed in a

variety of spaces via certain maximum principles. In Chapter 1, we will briefly introduce these

maximum principles. Among them, the suitable maximum principles due to Aĺıas, Caminha

and do Nascimento [8,9], involving the concept of convergence to zero at infinity and polynomial

volume growth.

In Chapter 2, we are going to establish new rigidity theorems for n-dimensional spacelike

linear Weingarten submanifolds immersed with parallel normalized mean curvature vector field

in the (n + p)-dimensional de Sitter space Sn+p
p of index p. In one of them, we present a new

version of [85, Theorem 1.4] and of [66, Theorem 1.1].

Theorem 0.0.1 (Theorem 2.1.8). Let Mn be a complete noncompact spacelike LW submanifold

immersed with parallel normalized mean curvature vector in Sn+p
p , such that R = aH + b for

some a, b ∈ R with b < 1. If |A|2 ≤ 2
√
n− 1 and |Φ| converges to zero at infinity, then Mn is

isometric to either the Euclidean space Rn or the hyperbolic space Hn.

We also are going to use the one-parameter family of real functions (see (2.43)) given by

Pt,p(x) =
x2

p
− n(n− 2)√

n(n− 1)
tx− n(t2 − 1)

to study it behavior based on a limitation of the mean curvature H, as we can see below:

Theorem 0.0.2 (Theorem 2.1.20). Let Mn be a complete spacelike LW submanifold immersed

with parallel normalized mean curvature vector field in Sn+p
p , such that R = aH + b for some

a, b ∈ R with b < 1 and H + a
2
≥ β, for some positive constant β ∈ R. Suppose that supM |Φ| <
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ϑ(n, p) and that

H2 ≤ 4(n− 1)

Q(p)
,

where Q(p) = p(n − 2)2 + 4(n − 1), and ϑ(n, p) is the real root of PH,p. If Mn has polynomial

volume growth, then Mn is isometric to either the Euclidean space Rn or the Euclidean sphere

Sn(r), with radius r > 0.

The second section of this chapter is devoted to investigate the nonexistence and umbilicity

of n-dimensional (n ≥ 3) spacelike submanifolds immersed with parallel mean curvature vector

field in the (n + p)-dimensional de Sitter space Sn+p
q of index 1 ≤ q ≤ p. Also we prove

(see Theorem 2.2.6) that the only n-dimensional stochastically complete spacelike submanifold

immersed in Sn+p
q , which are maximal and having locally timelike second fundamental form, are

the totally geodesic ones.

In Chapter 3, we will study linear Weingarten submanifolds immersed in an (n+p)-dimensional

Riemannian space form Qn+p
c with constant sectional curvature c ∈ {−1, 0, 1}. Between the re-

sults obtained in this chapter, we can mention

Theorem 0.0.3 (Theorem 3.2.5). Let Mn be a complete LW submanifold immersed with parallel

normalized mean curvature vector field in a Riemannian space form Qn+p
c with n ≥ 4, such that

R = aH + b with a ≥ 0 and b ≥ c. Suppose that
(
H − a

2

)
≥ β on Mn, for some positive constant

β, and that R > n−2
n

for c = 1 and R > 0 when c = −1 or c = 0. Assume in addition that |∇Φ|
is bounded and such that supM |Φ| ≤ γ < x∗

R, for some constant γ and x∗
R defined in (3.16). If

Mn has polynomial volume growth and inf
R

(QR(γ)) > 0, then Mn is isometric to an Euclidean

sphere Sn(r), with radius r > 0.

Concerning the hyperbolic space, we cite

Theorem 0.0.4 (Theorem 3.2.8). Let Mn be a complete noncompact LW submanifold immersed

with parallel normalized mean curvature vector field into the hyperbolic space Hn+p with n ≥ 4,

such that R = aH + b with a ≥ 0 and b > −1. Suppose that
(
H − a

2

)
≥ 0 on Mn and that

R ≥ 0. Assume in addition that |Φ| ≤ x∗
R, for x∗

R defined in (3.16). If |Φ| converges to zero at

infinity, then Mn is isometric to a horosphere of Hn+1.

Reaching Chapter 4, we will study the geometry of linear Weingarten spacelike hypersurfaces

immersed in an Einstein space obeying some standard curvature conditions. Considering the

hypersurface immersed in the Lorentz space Ln+1
1 , we are going to assume that there exist

constants c1 and c2 such that the sectional curvature K of Ln+1
1 satisfies the two constraints (see

4.3 and 4.4)

K(u, η) = −c1
n
,

for any u ∈ TM and η ∈ TM⊥, and

K(u, v) ≥ c2,
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for any tangent vectors u, v ∈ TM . By doing this, we can use the modified Cheng-Yau operator

L to obtain some results concerning complete LW spacelike hypersurfaces immersed with parallel

normalized mean curvature vector field in an Einstein spacetime En+1
1 :

Theorem 0.0.5 (Theorem 4.1.8). Let Mn be a complete LW spacelike hypersurface immersed

with parallel normalized mean curvature vector field in an Einstein spacetime En+1
1 satisfying

curvature conditions (4.3) and (4.4), such that R = aH + b with b ≤ R < b + c, where c =

2c2 +
c1
n

> 0, and b ≤ R. In the case where b = R, assume further that the mean curvature

function H does not change sign. Then

(i) either supM |Φ|2 = 0 and Mn is a totally umbilical hypersurface,

(ii) or

sup
M

|Φ|2 ≥ α(n, a, b, c,R) > 0,

where α(n, a, b, c,R) is a positive constante depending on n, a, b, c and R.

In particular, if b < R, the equality supM |Φ|2 = α(n, a, b, c,R) holds and this supremum is at-

tained at some point of Mn, then Mn is an isoparametric hypersurface with two distinct principal

curvatures one of which is simple.

To the context of a hypersurface immersed in a Riemannian manifold M
n+1

, we will also

assume the existence constants c1 and c2 such that the sectional curvature K of M
n+1

satisfies

the following two constraints (see 4.70 and 4.71)

K(u, η) =
c1
n
,

for any tangent vector u ∈ TM and normal vector η ∈ TM⊥; and

K(u, v) ≥ c2,

for any tangent vectors u, v ∈ TM . Involving these constraints and the concept of polynomial

volume growth, we state the following:

Theorem 0.0.6 (Theorem 4.2.4). Let Mn be a complete LW hypersurface immersed in an

Einstein manifold En+1 satisfying curvature constraints (4.70) and (4.71) with n ≥ 3, such that

R = aH + b with b ≥ R. Suppose that
(
H − a

2

)
≥ β on Mn, for some positive constant β, and

that R > R− 2
n
c for c > 0 and R > R− c for c ≤ 0. Assume in addition that |∇Φ| is bounded

and supM |Φ| ≤ γ < x∗
R, for some constant γ and x∗

R defined in (3.16). If Mn has polynomial

volume growth and inf
R

(QR(γ)) > 0, then Mn is a totally umbilical hypersurface.

In the results of Chapter 5, we discuss about LW submanifolds in a semi-Riemannian space

form Nn+p
q (c) with second fundamental form locally timelike. For example, revisiting [89, Theo-

rem 2], we replace the assumption that the mean curvature function attains a global maximum

to arrive at:
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Theorem 0.0.7 (5.2.1). Let Mn be a complete LW spacelike submanifold immersed with parallel

normalized mean curvature vector in Nn+p
q (c), such that R = aH + b with b ≤ c. Suppose that

the second fundamental form of Mn is locally timelike and that it has nonnegative sectional

curvature. If H is bounded and, for some reference point o ∈ Mn and δ > 0,∫ +∞

δ

dt

vol(∂Bt)
= +∞,

where Bt is the geodesic ball of radius t in Mn centered at the reference point o, then Mn is either

totally umbilical or a product M1×M2×· · ·×Mk, where the factors Mi, mutually perpendicular

along their intersections, are totally umbilical submanifolds of Nn+p
q (c).

Part II: Sharp integral inequalities for closed submanifolds.

Let us first describe about the Riemannian context. In 1977, Cheng and Yau [31] studied

the rigidity problem for hypersurfaces Mn with constant scalar curvature in a space form Qn+1
c

of constant sectional curvature c, introducing a self-adjoint second order differential operator,

the so-called squared operator. By using Cheng-Yau’s technique, Li [62] studied the pinching

problem on the square norm of the second fundamental form for complete hypersurfaces with

constant scalar curvature. Afterwards, Li [61] also studied the rigidity of oriented and without

boundary compact hypersurfaces with nonnegative sectional curvature in a unit sphere Sn+1

with scalar curvature proportional to the mean curvature.

Later on, Wei [84] investigated compact rotational hypersurfaces in Sn+1, obtaining suitable

integral formulas and applying them to characterize Clifford tori S1(
√

1 − r2) × Sn−1(r), 0 <

r < 1, under the assumption that some higher order mean curvature vanishes identically. Next,

de Lima jointly with Aquino and Velásquez [16, 19] established another characterization results

related to complete linear Weingarten hypersurfaces in Qn+1
c , under appropriated restriction on

the norm of the traceless part of the second fundamental form.

In [12], de Lima, dos Santos, Aĺıas and Meléndez extended these results for the context of

complete linear Weingarten hypersurfaces in a locally symmetric Riemannian manifold obeying

some standard curvature conditions (in particular, in a Riemannian space with constant sectional

curvature). Under appropriated constrains on the scalar curvature function, they proved that

such a hypersurface must be either totally umbilical or isometric to an isoparametric hypersurface

with two distinct principal curvatures, one of them being simple.

More recently, Aĺıas and Meléndez [5] studied the rigidity of compact hypersurfaces with

constant scalar curvature in Sn+1. In particular, they established a sharp Simons type integral

inequality for the behavior of the norm of the traceless second fundamental form, with the

equality characterizing the totally umbilical hypersurfaces and the Clifford tori S1(
√

1 − r2) ×
Sn−1(r).

Towards the context of the Lorentzian geometry, Aiyama [3] studied closed (compact without

boundary) spacelike submanifolds Mn in Sn+p
p with parallel mean curvature vector field and
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proved that if the normal connection of Mn is flat, then Mn is totally umbilical. In the same

work [3], she proved that closed spacelike submanifolds in Sn+p
p with parallel mean curvature

vector field and nonnegative sectional curvatures must be also totally umbilical. Meanwhile, Aĺıas

and Romero [6] introduced a new method to study n-dimensional closed spacelike submanifolds

in de Sitter space Sn+p
q of index q (1 ≤ q ≤ p) by means of certain integral formulas which have

a very clear geometric meaning. In particular, they got a uniqueness result for closed spacelike

surfaces in S2+p
q with parallel mean curvature vector field. Next, Li [61] showed that Montiel’s

result [70] still holds for higher codimensional spacelike submanifolds in Sn+p
p .

Later on, Camargo, Chaves and Sousa [29] studied complete spacelike submanifolds with

parallel normalized mean curvature vector field and constant scalar curvature immersed in a

semi-Riemannian space form Qn+p
p (c) of constant sectional curvature c and index p. In particular,

they obtained characterizations results concerning totaly umbilical spacelike submanifolds and

hyperbolic cylinders of Sn+p
p , under certain constraints on both the squared norm of the second

fundamental form and on the mean curvature. Another outcome in this regard is attributed to

López [68], who proved that compact spacelike surfaces with constant mean curvature in the

3-dimensional Lorentz-Minkowski spacetime R3
1 with boundary on a plane can reach at most a

height of |H|A
2π

, where A is the area of the region of the surface above the plane containing its

boundary. Later on, Montiel [72] obtained height estimates of compact spacelike graphs in the

steady state spacetime and he applied them to prove some existence and uniqueness theorems

for complete spacelike hypersurfaces in the de Sitter spacetime with constant mean curvature

H > 1 and prescribed asymptotic future boundary. Also, de Lima studied height estimates and

obtained a sharp estimate of compact spacelike hypersurfaces with some constant higher order

mean curvature in the Lorentz-Minkowski spacetime Rn+1
1 and with boundary contained into a

spacelike hyperplane (see [41]).

This part of the thesis is devoted to use the ideas and techniques of [5] to establish a sharp

integral inequality related to closed linear Weingarten submanifolds and apply it to get rigidity

results based on a suitable lower estimate of the Cheng-Yau operator acting on the square norm

of the traceless second fundamental form of such a spacelike submanifold.

To be more precisely, in Chapter 6 we establish a sharp integral inequality for n-dimensional

closed spacelike submanifolds with constant scalar curvature immersed with parallel normalized

mean curvature vector field in the de Sitter space Sn+p
p of index p, and we use it to characterize

totally umbilical round spheres Sn(r), with r > 1, of Sn+1
1 ↪→ Sn+p

p . We set the following:

Theorem 0.0.8 (Theorem 6.0.3). Let Mn be a closed spacelike submanifold immersed in Sn+p
p

with parallel normalized mean curvature vector field and constant normalized scalar curvature

R ≤ 1. Then ∫
M

|Φ|q+2QR,n,p(|Φ|)dM ≤ 0,

for every real number q ≥ 2, where the real function QR,n,p(x) is

QR,n,p(x) =
(n− p− 1)

p
x2 − (n− 2)x

√
x2 + n(n− 1)(1 −R) + n(n− 1)R. (1)
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Moreover, assuming in addition that 0 < R < 1, the equality holds if, and only if, Mn is a totally

umbilical round sphere Sn(r), with r = 1
R
> 1, immersed in Sn+1

1 ↪→ Sn+p
p .

Later on, in Chapter 7 we prove a sharp Simons type integral inequality for n-dimensional

closed linear Weingarten hypersurfaces immersed in an Einstein manifold En+1 and we use it to

characterize totally umbilical hypersurfaces and isoparametric hypersurfaces with two distinct

principal curvatures, one which is simple, in such an ambient space, as stated bellow:

Theorem 0.0.9 (Theorem 7.1.1). Let Mn be a closed linear Weingarten hypersurface immersed

in an Einstein manifold En+1 satisfying curvature conditions (4.3) and (4.4), with R = aH + b

such that b ≥ R. In the case where b = R, suppose that a > 0. If its totally umbilical tensor Φ

satisfies (4.101), for some 1 ≤ p ≤ n−
√
n

2
, then∫

M

|Φ|q+2Qa,b,n,p,R,c0
(|Φ|)dM ≤ 0,

for every q ≥ 2, where the real function Qa,b,n,p,R,c0
is defined in (4.116). Moreover, assuming

b > R, the equality holds if and only if

(i) either Mn is a totally umbilical hypersurface,

(ii) or

|Φ|2 = α(a, b, n, p,R, c0) > 0,

where α(a, b, n, p,R, c0) is a positive constant depending only on a, b, n, p,R and c0, and

Mn is an isoparametric hypersurface with two distinct principal curvatures of multiplicities

p and n− p.

To close this part, in Chapter 8 we study complete LW spacelike submanifolds immersed

with parallel normalized mean curvature vector and second fundamental form locally timelike

in a semi-Riemannian space form Nn+p
q (c). In other words, we will state the next theorem:

Theorem 0.0.10 (Theorem 8.0.2). Let Mn be a closed LW spacelike submanifold immersed with

parallel normalized mean curvature vector in a semi-Riemannian space form Nn+p
q (c), such that

R = aH + b with b ≤ c and a ≥ 0 (suppose a > 0 when b = c). If the second fundamental form

of Mn is locally timelike, then ∫
M

|Φ|t+2φa,b,c,q,n(|Φ|)dM ≤ 0,

for every real number t > 2, where the real function φa,b,c,q,n is defined in (8.1). Moreover,

assuming in addition that either 0 < b < c or −a2

4
< b ≤ c ≤ 0, the equality holds if, and only

if, Mn is a totally umbilical submanifold of Nn+p
q (c).

We point out that, with the intention of all chapters being self-contained, we will place the

necessary preliminaries in each of them, seeking to avoid as much as possible the search for

results outside of them.
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Part I

Rigidity and nonexistence results for

complete submanifolds
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Chapter 1

A brief comment about some maximum

principles

For clarity, this chapter will present a number of important definitions and notations that will

be used consistently in the remainder of this thesis. For instance, we recall briefly a generalized

version of the Omori-Yau’s maximum principle for trace type differential operators proved in

[15] as well as the well known Omori-Yau’s maximum principle for the Laplacian operator.

Let Mn be a Riemannian manifold and let L = tr(P ◦hess) be a semi-elliptic operator, where

P : X(M) → X(M) is a positive semi-definite symmetric tensor. Following the terminology

introduced by Pigola et al. [77], we say that the Omori-Yau maximum principle holds on Mn for

the operator L if, for any function u ∈ C2(M) with u∗ = supu < +∞, there exists a sequence

of points {pj} ⊂ Mn satisfying

u(pj) > u∗ − 1

j
, |∇u(pj)| <

1

j
and Lu(pj) <

1

j
,

for every j ∈ N.

In this sense, the classical result given by Omori and Yau in [74, 87] states that the Omori-

Yau maximum principle holds for the Laplacian on every complete Riemannian manifold with

Ricci curvature bounded from below, that is:

Lemma 1.0.1. Let Mn be a complete Riemannian manifold whose Ricci curvature is bounded

from below and u ∈ C2(M) satisfying u∗ < +∞. Then, there exists a sequence of points {pj} ⊂
Mn such that

u(pj) > u∗ − 1

j
, |∇u(pj)| <

1

j
and ∆u(pj) <

1

j
.

Conversely, as observed also by Pigola et al. [77], the validity of Omori-Yau’s maximum

principle on Mn does not depend on curvatures bounds as much as one would expect. For

instance, the Omori-Yau maximum principle holds on every Riemannian manifolds which is

properly immersed into a Riemannian space form with controlled mean curvature (see [77],

Example 1.14). In particular, it holds for every constant mean curvature hypersurface properly

immersed into a Riemannian space form.
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Following the terminology introduced in [77], the weak Omori-Yau maximum principle is

said, more broadly, to hold on a (not necessarily complete) n-dimensional Riemannian manifold

Mn if, for any smooth function u ∈ C2(M) with u∗ < +∞ there exists a sequence of points

{pj} ⊂ Mn with the properties

u(pj) > u∗ − 1

j
and ∆u(pj) <

1

j
.

Proceeding, we say that a (non necessarily complete) Riemannian manifold Mn is said to be

stochastically complete if, for some (and, hence, for any) (x, t) ∈ Mn × (0,+∞), the heat kernel

p(x, y, t) of the Laplace-Beltrami operator ∆ satisfies the conservation property∫
M

p(x, y, t)dµ(y) = 1. (1.1)

From the probabilistic viewpoint, stochastic completeness is the property of a stochastic

process to have infinite life time. For the Brownian motion on a manifold, the conservation

property (1.1) means that the total probability of the particle to be found in the state space is

constantly equal to one (see [56–58,82]).

On the other hand, Pigola, Rigoli and Setti showed that stochastic completeness turns out

to be equivalent to the validity of a weak form of the Omori-Yau maximum principle (see

[76, Theorem 1.1] and [77, Theorem 3.1]), as is expressed below.

Lemma 1.0.2. A Riemannian manifold Mn is stochastically complete if, and only if, for every

u ∈ C2(M) satisfying supM u < +∞ there exists a sequence of points {pk} ⊂ Mn such that

lim
k→∞

u(pk) = sup
M

u and lim sup
k→∞

∆u(pk) ≤ 0.

We also note that stochastic completeness of Riemannian manifold Mn is equivalent (among

others conditions) to the fact that for every λ > 0, the only nonnegative bounded smooth

solution u of ∆u ≥ λu on Mn is the constant u = 0. Moreover, it is a direct consequence of

Lemma 1.0.2 jointly with the Omori-Yau maximum principle [74,87] that complete Riemannian

manifolds having Ricci curvature bounded from below are stochastically complete.

Let us recall that a Riemannian manifold Mn is said to be parabolic if the constant functions

are the only subharmonic functions on Mn which are bounded from above, that is, for a function

u ∈ C2(M) with

∆u ≥ 0 and u ≤ u∗ < +∞ imply u = constant.

We observe that every parabolic Riemannian manifold is stochastically complete. As a con-

sequence, the weak maximum principle holds on every parabolic Riemannian manifold (see

Corollary 6.4 of [57]). Obviously, every closed Riemannian manifold Mn is parabolic, where by

closed we mean compact and without boundary. Moreover, there are several interesting geo-

metric conditions which imply the parabolicity of a Riemannian manifold Mn. For instance,

in dimension n = 2 parabolicity is strongly related to the behavior of the Gaussian curvature;
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for instance, from a classical result by Ahlfors [2] and Huber [60] it is well known that every

complete Riemannian surface with nonnegative Gaussian curvature is parabolic. More gener-

ally, every complete Riemannian surface with finite total curvature is parabolic (see Section 10

of [64]).

Recently, many authors have explored new variations of the Omori-Yau maximum principle

in order to extend the investigation to a wider array of differential operators containing the

Laplacian operator. For a thorough understanding of this subject, we refer to the interested

reader the comprehensive book [15] due to Alias, Mastrolia and Rigoli.

Now, let (Mn, ⟨ , ⟩) be a connected, oriented, complete Riemannian manifold. We denote by

B(p, t) the geodesic ball centered at p with radius t. Given a polynomial function σ : (0,+∞) →
(0,+∞), we say that Mn has polynomial volume growth like σ(t) if there exists p ∈ Mn such

that

vol(B(p, t)) = O(σ(t)),

as t → +∞, where vol denotes the standard Riemannian volume. As it was already observed in

the beginning of Section 2 of [9], if p, q ∈ Mn are at distance d from each other, we can verify

that
vol(B(p, t))

σ(t)
≥ vol(B(q, t− d))

σ(t− d)
· σ(t− d)

σ(t)
.

Consequently, the choice of p in the notion of volume growth is immaterial. For this reason, we

will just say that Mn has polynomial volume growth.

Keeping in mind this previous digression and denoting by divX the divergence of a smooth

vector field X ∈ X(M) in the metric ⟨ , ⟩, we quote the following key lemma which corresponds

to a particular case of a new maximum principle due to Aĺıas, Caminha and do Nascimento (see

[9, Theorem 2.1]).

Lemma 1.0.3. Let (Mn, ⟨ , ⟩) be a connected, oriented, complete noncompact Riemannian man-

ifold and let X ∈ X(M) be a bounded smooth vector field on Mn. Assume that f ∈ C∞(M) is a

smooth function on Mn such that ⟨∇f,X⟩ ≥ 0 and divX ≥ αf , for some positive constant α.

If Mn has polynomial volume growth, then f ≤ 0 on Mn.

To finish this section, let us see the notion of convergence to zero at infinity established

in [8, Section 2]: If Mn is a connected, complete noncompact Riemannian manifold, we let

d(·, o) : M → [0,+∞) stand for the Riemannian distance of Mn, measured from a fixed point

o ∈ Mn. Thus, if f ∈ C0(M) satisfies

lim
d(x,o)→+∞

f(x) = 0,

we say that f converges to zero at infinity. In this context, we have the following maximum

principle which can be found in [8, Theorem 2.2(a)].

Lemma 1.0.4. Let (Mn, ⟨ , ⟩) be a connected, oriented, complete noncompact Riemannian man-

ifold and let X ∈ X(M) be a smooth vector field on Mn. Assume that there exists a nonnegative,
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non-identically vanishing function f ∈ C∞(M) which converges to zero at infinity and such that

⟨∇f,X⟩ ≥ 0. If divX ≥ 0 on Mn, then ⟨∇f,X⟩ ≡ 0 on Mn.
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Chapter 2

Submanifolds in the de Sitter space

Sn+pp

In this chapter we establish new rigidity and nonexistence theorems for n-dimensional space-

like submanifolds based on the maximum principles 1.0.3 and 1.0.4 due to Aĺıas, Caminha and

do Nascimento [8, 9] related to complete noncompact Riemannian manifolds. Here we present

the results of [50,51].

2.1 Spacelike LW submanifolds

The main intention of this section is to establish new rigidity theorems for n-dimensional

spacelike linear Weingarten (LW) submanifolds immersed with parallel normalized mean curva-

ture vector field in the (n + p)-dimensional de Sitter space Sn+p
p of index p.

The starting point is to prove that under suitable assumption that the norm of the total

umbilicity tensor converges to zero at infinity, a complete noncompact spacelike LW subman-

ifold of Sn+p
p must be either isometric to the Euclidian space Rn or the hyperbolic space Hn.

Afterwards, under the assumption that such a complete spacelike LW submanifold of Sn+p
p has

polynomial volume growth, we prove that it must be either isometric to the Euclidean space Rn

or a Euclidean sphere Sn(r) with radius r > 0.

2.1.1 Preliminaries

Let us consider the semi-Euclidean space Rn+p+1
p , that is, the (n + p + 1)-dimensional real

vector space Rn+p+1 endowed with the inner product of index p given by

⟨x, y⟩ = −
p∑

i=1

xiyi +

n+p+1∑
j=p+1

xjyj,
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where x = (x1, x2, . . . , xn+p+1) is the natural coordinate of Rn+p+1. The (n + p)-dimensional de

Sitter space Sn+p
p is defined as being the following hyperquadric of Rn+p+1

p

Sn+p
p =

{
(x1, x2, . . . , xn+p+1) ∈ Rn+p+1

p : ⟨x, x⟩ = 1
}
.

It is not difficult to verify that the induced metric ⟨ , ⟩ makes Sn+p
p a semi-Riemannian manifold

of index p with constant sectional curvature equal to 1.

We also recall that an n-dimensional submanifold Mn of Sn+p
p is said to be spacelike if the

induced metric on Mn from that of the ambient space Sn+p
p is positive definite. So, we choose

a local orthonormal frame e1, . . . , en+p in Sn+p
p , such that, at each point of Mn, e1, . . . , en are

tangent to Mn. Using the standard convention of indices

1 ≤ A,B,C, . . . ≤ n + p, 1 ≤ i, j, k, . . . ≤ n and n + 1 ≤ α, β, γ, . . . ≤ n + p,

and taking the corresponding dual coframe ω1, . . . , ωn+p, the semi-Riemannian metric of Sn+p
p is

given by ds2 =
∑

A ϵA ω2
A, where ϵi = 1 and ϵα = −1. So, denoting by {ωAB} the connection

forms of Sn+p
p , we have that the structure equations of Sn+p

p are given by

dωA =
∑
B

ϵB ωAB ∧ ωB, ωAB + ωBA = 0, (2.1)

and

dωAB =
∑
C

ϵC ωAC ∧ ωCB − 1

2

∑
C,D

ϵCϵDKABCD ωC ∧ ωD, (2.2)

where KABCD = ϵAϵB(δACδBD − δADδBC).

Restricting these forms to Mn, we note that ωα = 0 and, hence, the Riemannian metric of

Mn is written as ds2 =
∑

i ω
2
i . Since

∑
i

ωαi∧ωi = dωα = 0, from Cartan’s Lemma we can write

ωαi =
∑
j

hα
ijωj, hα

ij = hα
ji. (2.3)

This gives the second fundamental form of Mn, A =
∑
α,i,j

hα
ijωiωjeα and its squared norm |A|2 =∑

α,i,j(h
α
ij)

2. Moreover, the mean curvature vector field and the mean curvature function on Mn

are defined, respectively, by

h :=
1

n

∑
α

(∑
i

hα
ii

)
eα and H := |h| =

1

n

√√√√∑
α

(∑
i

hα
ii

)2

.

From (2.1) and (2.2), the structure equations of Mn are given by

dωi =
∑
j

ωij ∧ ωj, ωij + ωji = 0 and dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl, (2.4)
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where Rijkl are the components of the curvature tensor of Mn. Hence, from (2.4) we obtain the

Gauss equation

Rijkl = (δikδjl − δilδjk) −
∑
α

(hα
ikh

α
jl − hα

ilh
α
jk). (2.5)

The components of the Ricci curvature Rij and the normalized scalar curvature R of Mn are

given, respectively, by

Rij = (n− 1)δij −
∑
α

(∑
k

hα
kk

)
hα
ij +

∑
α,k

hα
ikh

α
kj and R =

1

n(n− 1)

∑
i

Rii. (2.6)

From (2.6) we obtain that

|A|2 = n2H2 + n(n− 1)(R− 1). (2.7)

We also have the structure equations of the normal bundle of Mn given by

dωα = −
∑
β

ωαβ ∧ ωβ, ωαβ + ωβα = 0 and dωαβ = −
∑
γ

ωαγ ∧ ωγβ −
1

2

∑
k,l

Rαβklωk ∧ ωl,

where Rαβjk satisfies the Ricci equation

Rαβij =
∑
l

(
hα
ilh

β
lj − hα

jlh
β
li

)
. (2.8)

From (2.3) we obtain the Codazzi equation

hα
ijk = hα

ikj = hα
kij, (2.9)

where hα
ijk are the components of the covariant derivative ∇A, which satisfy∑

k

hα
ijkωk = dhα

ij +
∑
k

hα
ikωkj +

∑
k

hα
jkωki −

∑
β

hβ
ijωβα. (2.10)

Taking the exterior derivative in (2.10) we obtain the following Ricci formula for the second

fundamental form

hα
ijkl − hα

ijlk =
∑
m

hα
mjRmikl +

∑
m

hα
imRmjkl +

∑
k,β

hβ
ikRαβjk. (2.11)

From equations (2.9) and (2.11), we get

∆hα
ij =

∑
k

hα
kkij +

∑
k,l

hα
klRlijk +

∑
k,l

hα
liRlkjk +

∑
k,β

hβ
ikRαβjk. (2.12)

Considering H > 0, we can choose a local orthonormal frame {e1, . . . , en+p} of TSn+p
p such
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that en+1 = h
H

. Consequently, we get

Hn+1 :=
1

n
tr(hn+1) = H and Hα :=

1

n
tr(hα) = 0, α ≥ n + 2, (2.13)

where hα denotes the matrix (hα
ij). From equations (2.5), (2.8), (2.12) and (2.13) we obtain the

following Simons type formula

1

2
∆|A|2 =

∑
α,i,j,k

(hα
ijk)2 + n

∑
α,i,j

hα
ijH

α
ij + n(|A|2 − nH2) +

∑
α,β

(
tr(hαhβ)

)2
−nH

∑
α

tr
(
hn+1(hα)2

)
+
∑
α,β

N
(
hαhβ − hβhα

)
, (2.14)

where N(B) = tr(BBt), for all matrix B = (bij).

In what follows, we will also consider the symmetric tensor

Φ =
∑
α,i,j

Φα
ijωi ⊗ ωjeα, (2.15)

where Φα
ij = hα

ij −Hαδij. Consequently, we have that

Φn+1
ij = hn+1

ij −Hδij and Φα
ij = hα

ij,

for n + 2 ≤ α ≤ n + p. So, let |Φ|2 =
∑

α,i,j(Φ
α
ij)

2 be the square of the length of Φ. It is not

difficult to check that Φ is traceless with

|Φ|2 = |A|2 − nH2. (2.16)

In addition, from (2.7) we obtain

|Φ|2 = n(n− 1)H2 + n(n− 1)(R− 1), (2.17)

We recall that a submanifold is linear Weingarten (LW) when its mean and normalized scalar

curvatures are linearly related, that is, when they satisfy the following relation

R = aH + b, (2.18)

for constants a, b ∈ R. We observe that when a = 0, (2.18) reduces to R constant. Moreover,

equation (2.17) becomes

|Φ|2 = |A|2 − nH2 = n(n− 1)H2 + n(n− 1)aH + n(n− 1)(b− 1). (2.19)

For a LW submanifold Mn satisfying (2.18) we introduce the second-order linear differential
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operator L : C∞(M) → C∞(M) defined by

L = L +
n− 1

2
a∆, (2.20)

where ∆ is the Laplacian operator on Mn and L : C∞(M) → C∞(M) denotes the Cheng-Yau’s

operator, which is given by

Lu = tr(P ◦ Hess (u)), (2.21)

for every u ∈ C∞(M), where Hess is the self-adjoint linear tensor metrically equivalent to the

Hessian of u and P : X(M) → X(M) denotes the first Newton transformation of Mn which is

given by P = nHI − A. So, from (2.20) and (2.21), we have that

Lu = tr(P ◦ Hess (u)), (2.22)

with

P =

(
nH +

n− 1

2
a

)
I − A, (2.23)

and it is verifies that L can be rewritten in the following divergence form (see, for instance,

[78, Section 4])

Lu = div(P(∇u)). (2.24)

Returnig to (2.14), we are going to obtain the following equality, reasoning as [24]:

Remark 2.1.1. Taking u = nH, we get

L(nH) = nH∆(nH) − n
∑
i,j

hn+1
ij Hij. (2.25)

Given this, from (2.7) and (2.25), we have

L(nH) =
1

2
∆|A|2 − n(n− 1)

2
∆R− n2|∇H|2 − n

∑
i,j

hn+1
ij Hij. (2.26)

Since R = aH + b, from (2.14) and (2.26),

L(nH) =
∑
α,i,j,k

(hα
ijk)2 + n

∑
i,j

hn+1
ij Hn+1

ij − n
∑
ij

hn+1
ij Hij − n2|∇H|2

+
∑
α,β

N
(
hαhβ − hβhα

)
+ n(|A|2 − nH2) + n

∑
α>n+1

∑
i,j

hα
ijH

α
ij

+
∑
αβ

(tr(hαhβ))2 − n− 1

2
a∆(nH). (2.27)

In the theorems of this chapter, we will deal with spacelike submanifolds Mn having parallel

normalized mean curvature vector field. In this context, we are going to rewrite (2.27). For this,

we choose a local orthonormal frame {ei} such that en+1 = h
H
. Since en+1 is parallel, denoting
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by ∇⊥ the normal connection of Mn, it follows that

0 = ∇⊥en+1 =
∑
α

ωαn+1eα.

Thus,

ωαn+1 = 0 for all α > n + 1. (2.28)

On the other hand, taking into account equation (2.10), we have∑
i,k

hα
ijkωk =

∑
i

dhα
ii + 2

∑
i,k

hα
ikωki −

∑
i,β

hβ
iiωβα. (2.29)

Considering α = n + 1, from (2.28) and (2.29), it follows that∑
k

Hn+1
k ωk = dH. (2.30)

Besides that, given a smooth function f on Mn, the first and second derivatives are given by

df =
∑
i

fiωi and
∑
j

fijωj = dfi +
∑
j

fjωji.

So, from (2.30), we get Hk = Hn+1
k . When α > n + 1, from (2.28) and (2.29), we have that∑

k H
α
k ωk = −Hωn+1α = 0 and, hence, Hα

k = 0. Making an analysis of the covariant derivative

Hα
kl, from (2.28), we also have ∑

l

Hn+1
kl ωl = dHk +

∑
l

Hlωlk

and we obtain Hkl = Hn+1
kl . Moreover, in the case that α > n+1, from (2.28), we have

∑
l H

α
klωl =

−Hkωn+1α = 0. Hence, Hα
kl = 0.

As a by-product of the previous digression, replacing Hkl = Hn+1
kl and Hα

kl = 0, for α > n+ 1

in (2.27), we conclude that

L(nH) =
∑
α,i,j,k

(hα
ijk)2 − n2|∇H|2 − nH

∑
α

tr(hn+1(hα)2) +
∑
α,β

N
(
hαhβ − hβhα

)
+
∑
αβ

(tr(hαhβ))2 + n(|A|2 − nH2) − n− 1

2
a∆(nH). (2.31)

We can now establish the following proposition that gives a sufficient criteria for the ellipticity

of the operator L, whose proof can be found in [85, Proposition 2.1] for a ̸= 0 and [10, Lemma

1] for a = 0.

Proposition 2.1.2. Let Mn be a n-dimensional spacelike linear Weingarten submanifold in the

de Sitter space Sn+p
p with R = aH + b. If b < 1, then L is elliptic.

Next, we introduce the following propositon, whose proof can be found in [85, Proposition

11



2.2], which gives us an inequality between the covariant derivative of the second fundamental

form and the gradient of the mean curvature.

Proposition 2.1.3. Let Mn be an n-dimensional spacelike linear Weingarten submanifold in

the de Sitter space Sn+p
p with R = aH + b. If (n− 1)a2 + 4n(1 − b) ≥ 0, then∑

α,i,j,k

(hα
ijk) ≥ n2|∇H|2.

Moreover, suppose that the equality holds, then H is constant on Mn.

Besides that, we will also need of the next key lemma, which is due to Barros et al. (see

[28, Lemma 1]).

Lemma 2.1.4. Let Mn be a Riemannian manifold isometrically immersed into a Riemannian

manifold Nn+p. Consider Ψ =
∑
α,i,j

Ψα
ijωi ⊗ ωj ⊗ eα a traceless symmetric tensor satisfying the

Codazzi equation. Then the following inequality holds

|∇|Ψ|2|2 ≤ 4n

n + 2
|Ψ|2|∇Ψ|2,

where |Ψ|2 =
∑
α,i,j

(Ψα
ij)

2 and |∇Ψ|2 =
∑
α,i,j,k

(Ψα
ijk)2. In particular, the conclusion holds for the

tensor Φ defined in (2.15).

Lastly, we also need the next algebraic lemma presented in [79, Lemma 2.6].

Lemma 2.1.5. Let C,D : Rn → Rn be symmetric linear maps such that [C,D] = CD−DC = 0

and trC = trD = 0. Then

− n− 2√
n(n− 1)

(trC2)(trD2)
1
2 ≤ trC2D ≤ n− 2√

n(n− 1)
(trC2)(trD2)

1
2 ,

and the equality holds on the right hand side if and only if n− 1 of the eigenvalues xi of C and

the corresponding eigenvalues yi of D satisfy

|xi| =
(trC2)

1
2√

n(n− 1)
, xixj ≥ 0, yi =

(trD2)
1
2√

n(n− 1)
.

2.1.2 Rigidity results for complete spacelike LW submanifolds with

parallel normalized mean curvature vector in Sn+p
p

In this subsection we will establish our initial rigidity results. Here, it is the first one:

Theorem 2.1.6. Let Mn (n ≥ 3) be a complete noncompact spacelike LW submanifold having

nonnegative sectional curvature and immersed with parallel normalized mean curvature vector in

Sn+p
p , such that R = aH + b for some a, b ∈ R with b < 1. If |Φ| converges to zero at infinity,

then Mn is isometric to the Euclidean space Rn.

12



Proof. Let us suppose that such a spacelike LW submanifold Mn is not a totally umbilical

submanifold, and we consider the smooth vector field X = P(∇|Φ|2) and the smooth function

f = |Φ|2. So, f is a non-identically vanishing function which converges to zero at infinity.

Moreover, Proposition 2.1.2 gives that P is positive definite for b < 1. Thus

⟨∇f,X⟩ = ⟨∇|Φ|2,P(∇|Φ|2)⟩ ≥ 0. (2.32)

In order to apply Lemma 1.0.4, we claim that divX ≥ 0. Indeed, applying L in (2.19) we

have that

1

2(n− 1)
L(|Φ|2) =

1

2
L(nH2) +

a

2
L(nH)

= HL(nH) + n⟨P∇H,∇H⟩ +
a

2
L(nH). (2.33)

In particular, since P is positive definite, from (2.33) we obtain

1

2(n− 1)
L(|Φ|2) ≥ (H +

a

2
)L(nH). (2.34)

From Ricci equation (2.8) we can verify that

∑
α,β,i,j,k

hα
ijh

β
kiRαβjk =

1

2

∑
α,β

N(hαhβ − hβhα). (2.35)

Thus, since we are assuming that that the normalized mean curvature vector is parallel, from

(2.12), (2.20), (2.31) and (2.35), we get

L(nH) =
∑
α,i,j,k

(hα
ijk)2 − n2|∇H|2 +

∑
i,j,k,m

(
hα
ijh

α
kmRmijk + hα

ijh
α
miRmkjk

)
(2.36)

+
1

2

∑
α,β

N
(
hαhβ − hβhα

)
.

For each fixed α, considering a local orthonormal frame {ei} such that hα
ij = λα

i δij, we have

∑
i,j,k,m

hα
ijh

α
kmRmijk +

∑
i,j,k,m

hα
ijh

α
miRmkjk ≥

1

2

∑
i,j

(λα
i − λα

j )2Rijij. (2.37)

Moreover, it is not difficult to verify that

N
(
hαhβ − hβhα

)
= N

(
ΦαΦβ − ΦβΦα

)
≥ 0. (2.38)

On the other hand, using once more that b < 1, from Proposition 2.1.3 we obtain

|∇A|2 =
∑
α,i,j,k

(hα
ijk)2 ≥ n2|∇H|2. (2.39)

13



Hence, taking into account that the sectional curvature of Mn is nonnegative, from (2.36), (2.37),

(2.38) and (2.39) we reach at

L(nH) ≥ 1

2

∑
i,j

(λα
i − λα

j )2Rijij ≥ 0. (2.40)

At this point, we observe that in [11] it was verified that (H + a
2
) ≥ 0. Thus, from (2.34)

and (2.40), we have

divX = div(P(∇|Φ|2)) = L(|Φ|2) ≥ 2(n− 1)
(
H +

a

2

)
L(nH) ≥ 0.

Hence, we can apply Lemma 1.0.4 to get that

⟨∇f,X⟩ = ⟨∇|Φ|2,P(∇|Φ|2)⟩ = 0.

Therefore, since the operator P is positive definite, we have that ∇|Φ| ≡ 0. Thus, f = |Φ|
is constant. But f converges to zero at infinity, so it must be identically zero, leading us to a

contradiction since we are supposing that Mn is not a totally umbilical submanifold.

Now, taking into account (2.13), we get

hα = ⟨H, eα⟩I = HαI = 0,

for all α > n + 1. Thus, we have that the first normal subspace,

N1 =
{
eα ∈ X⊥(Mn);hα = 0

}⊥
,

is parallel and it has dimension 1. Therefore, we can apply [38, Proposition 4.1] to reduce the

codimension of Mn to 1. Thus, from the characterizations of the totally umbilical spacelike

hypersurfaces of the de Sitter space (see, for instance, [71]), we conclude that Mn must be

isometric to Rn, since Mn is a complete noncompact submanifold with nonnegative sectional

curvature.

We obtain the following consequence of Theorem 2.1.6.

Corollary 2.1.7. Let Mn be a complete noncompact spacelike submanifold having nonnegative

sectional curvature and constant normalized scalar curvature R < 1, immersed with parallel

normalized mean curvature vector field in Sn+p
p . If |Φ| converges to zero at infinity, then Mn is

isometric to the Euclidean space Rn.

In the next theorem, we are going to establish a new version of [85, Theorem 1.4] and

of [66, Theorem 1.1].

Theorem 2.1.8. Let Mn be a complete noncompact spacelike LW submanifold immersed with

parallel normalized mean curvature vector field in Sn+p
p , such that R = aH + b for some a, b ∈ R

14



with b < 1. If |A|2 ≤ 2
√
n− 1 and |Φ| converges to zero at infinity, then Mn is isometric to

either the Euclidean space Rn or the hyperbolic space Hn.

Proof. From (2.34) we have

1

2(n− 1)
L(|Φ|2) ≥ (H +

a

2
)L(nH). (2.41)

On the other hand, from inequality (3.19) of [85] jointly with relation (2.16) we get

L(nH) ≥ |Φ|2
(
n− n

2
√

(n− 1)
|A|2

)
. (2.42)

Since we are assuming |A|2 ≤ 2
√
n− 1, from (2.42) we have that L(nH) ≥ 0. Then, from (2.41)

we obtain, for X = P(∇|Φ|2),

divX = div(P(∇|Φ|2)) = L(|Φ|2) ≥ 2(n− 1)
(
H +

a

2

)
L(nH) ≥ 0.

At this point, we can reason as in the last part of the proof of Theorem 2.1.6 to conclude

that Mn is a totally umbilical submanifold of Sn+p
p and, reducing the codimension of Mn to 1,

we infer that Mn must be isometric to either the Euclidean space Rn or the hyperbolic space

Hn.

When the spacelike submanifold has constant normalized scalar curvature, Theorem 2.1.8

reads as follows.

Corollary 2.1.9. Let Mn be a complete noncompact spacelike submanifold with constant nor-

malized scalar curvature R < 1, immersed with parallel normalized mean curvature vector field

in Sn+p
p . If |A|2 ≤ 2

√
n− 1 and |Φ| converges to zero at infinity, then Mn is isometric to either

the Euclidean space Rn or the hyperbolic space Hn.

Before presenting our next results, in the remark below we collect some properties related to

a suitable polynomial function, which will appear in their proofs.

Remark 2.1.10. Let it be the following one-parameter family of real functions given by

Pt,p(x) =
x2

p
− n(n− 2)√

n(n− 1)
tx− n(t2 − 1) (2.43)

where t ∈ R corresponds to the real parameter, while n and p are real constants. When t2 <
4(n−1)
Q(p)

, where

Q(p) = p(n− 2)2 + 4(n− 1), (2.44)

we have Pt,p(x) > 0 for all x ∈ R. In the case t2 = 4(n−1)
Q(p)

, we can write t = 2
√
n−1√
Q(p)

and Pt,p(x)

has only one real root, namely

ϑ(n, p) =
p(n− 2)

√
n√

Q(p)
. (2.45)
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In this case, Pt,p(x) is strictly decreasing for all x ≤ ϑ(n, p) and

Pt,p(x) =

(
x
√
p
−

(n− 2)
√
np√

Q(p)

)2

≥ 0,

for all x ∈ R.

Assuming t2 ≤ 4(n−1)
Q(p)

, from (2.17) we also have that

R =
|Φ|2

n(n− 1)
− t2 + 1 ≥ −4(n− 1)

Q(p)
+ 1 ≥ 0. (2.46)

When t2 >
4(n− 1)

Q(p)
, Pt(x) has two distinct real roots, which are given by

ϑ±(n, p, t) =

√
n

2
√
n− 1

(
p(n− 2)t±

√
pQ(p)t2 − 4p(n− 1)

)
. (2.47)

We observe that ϑ+(n, p, t) is always positive and ϑ−(n, p, t) is positive if, and only if,

4(n− 1)

Q(p)
≤ t2 < 1.

Taking into account the discussion made in Remark 2.1.10, we will prove our next result.

Theorem 2.1.11. There does not exist a complete noncompact spacelike LW submanifold Mn

with n ≥ 3 immersed with parallel normalized mean curvature vector field in Sn+p
p , such that

R = aH + b for some a, b ∈ R with b < 1, where |Φ| converges to zero at infinity and

H2 ≤ 4(n− 1)

Q(p)
(2.48)

on Mn, where Q is defined in (2.44).

Proof. Let us assume by contradiction that there exists such a submanifold and let us consider

the smooth vector field X = P(∇|Φ|2) and the smooth function f = |Φ|2. Suppose that Mn is

not a umbilical submanifold. So, f is non-identically vanishing function which converges to zero

at infinity. Moreover, we already know from (2.32) that

⟨∇f,X⟩ = ⟨∇|Φ|2,P(∇|Φ|2)⟩ ≥ 0.

Taking into account the Ricci equation (2.8) we can verify that hαhn+1 = hn+1hα for all α, that

is, hn+1 commutes with all the matrices hα. Thus, since

Φn+1 = hn+1 −Hn+1I and Φα = hα for all α > n + 1,

we also have that Φn+1 commutes with all the matrices Φα. Thus, taking into account that the

matrices Φα are symmetric and traceless, we can use Lemma 2.1.5 for Φα and Φn+1 in order to
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obtain ∣∣tr((Φα)2Φn+1)
∣∣ ≤ n− 2√

n(n− 1)
N(Φα)

√
N(Φn+1). (2.49)

On the other hand, using the Cauchy-Schwarz inequality we get that

p
∑
α,β

[tr(ΦαΦβ)]2 ≥ p
∑
α

[tr(Φα)2]2 = p
∑
α

[N(Φα)]2 ≥

(∑
α

N(Φα)

)2

= |Φ|4. (2.50)

Furthermore, from (2.31), it follows that

L(nH) =
∑
α,i,j,k

(hα
ijk)2 − n2|∇H|2 − nH

∑
α

tr
(
hn+1(hα)2

)
+
∑
α,β

N
(
hαhβ − hβhα

)
(2.51)

+
∑
α,β

(
tr(hαhβ)

)2
+ n(|A|2 − nH2).

Hence, since

N(Φn+1) = tr(Φn+1)2 ≤ |Φ|2 and
∑
α

N(Φα) = |Φ|2,

from (2.20), (2.49), (2.50) and (2.51) we obtain

L(nH) ≥ |Φ|2PH,p(|Φ|), (2.52)

where PH,p(x) is defined in (2.43). Consequently, since H2 ≤ 4(n− 1)

Q(p)
, from (2.52) and Re-

mark 2.1.10, we get that

L(nH) ≥ |Φ|2PH,p(|Φ|) ≥ 0. (2.53)

Since (H + a
2
) > 0, using (2.34) jointly with (2.53) we conclude that

divX = div(P(∇|Φ|2)) = L(|Φ|2) ≥ 2(n− 1)
(
H +

a

2

)
|Φ|2PH,p(|Φ|) ≥ 0.

Consequently, we can apply Lemma 1.0.4 to get that

⟨∇f,X⟩ = ⟨P(∇|Φ|2),∇|Φ|2⟩ = 0,

which implies ∇|Φ| ≡ 0. Thus, f = |Φ| is constant and, since f converges to zero at infinity,

it must be identically zero, leading us to a contradiction and Mn must be a totally umbilical

submanifold of Sn+p
p .

Now, taking into account (2.13), we get

hα = ⟨H, eα⟩I = HαI = 0,

for all α > n + 1. Thus, we have that the first normal subspace

N1 =
{
eα ∈ X⊥(Mn);hα = 0

}⊥
17



is parallel and it has dimension 1. Therefore, we can apply [38, Proposition 4.1] to reduce the

codimension of Mn to 1. Thus, from the characterizations of the totally umbilical hypersurfaces

of the de Sitter space, Mn is isometric to either the Euclidean space Rn with H = 1 or the

hyperbolic space Hn with H ∈ (1,∞), what cannot occur since H2 ≤ 4(n− 1)

Q(p)
< 1 for n ≥ 3.

From Theorem 2.1.11 we obtain the following.

Corollary 2.1.12. There does not exist a complete noncompact spacelike submanifold Mn with

n ≥ 3 and constant normalized scalar curvature R < 1, immersed with parallel normalized mean

curvature vector field in Sn+p
p such that inequality (2.48) holds and |Φ| converges to zero at

infinity.

We can study the case n = 2 and proceed as the proof of the Theorem 2.1.11 to conclude

that the submanifold M2 can be isometric to the Euclidean space and establish the following

theorem.

Theorem 2.1.13. Let M2 be a complete noncompact spacelike LW submanifold immersed with

parallel normalized mean curvature vector field in S2+p
p , such that R = aH + b for some a, b ∈ R

with b < 1 and suppose that H2 ≤ 1. If |Φ| converges to zero at infinity, then M2 is isometric

to the Euclidean space R2.

We also get a version of Corollary 2.1.12 for n = 2.

Corollary 2.1.14. Let M2 be a complete noncompact spacelike LW submanifold immersed with

constant normalized scalar curvature R < 1 in S2+p
p , such that H2 ≤ 1. If |Φ| converges to zero

at infinity, then M2 is isometric to the Euclidean space R2.

Moving foward, we present the following non-existence result.

Theorem 2.1.15. There does not exist a complete noncompact spacelike LW submanifold Mn

immersed with parallel normalized mean curvature vector field in Sn+p
p , such that R = aH + b

for some a, b ∈ R with b < 1, where |Φ| converges to zero at infinity and

4(n− 1)

Q(p)
< H2 < 1 and |Φ| ≤ ϑ−(n, p,H), (2.54)

in which ϑ− is the real root of PH given by (2.47).

Proof. Let us assume for contradiction that there exists such a submanifold. As it was observed

in Remark 2.1.10, hypotheses (2.54) guarantees that PH(x) defined in (2.43) has two distinct

real roots, which are given by (2.47). Moreover, from our constraint on H, we also get that

ϑ−(n, p,H) is positive. Consequently, we conclude that PH(|Φ|) ≥ 0 for |Φ| ≤ ϑ−(n, p,H). So,

using this fact jointly with (2.34) and (2.52), and taking into account that (H + a
2
) ≥ 0, we

obtain

divX = div(P(∇|Φ|2)) = L(|Φ|2) ≥ 2(n− 1)
(
H +

a

2

)
|Φ|2PH(|Φ|) ≥ 0.

Therefore, we can reason as in the proof of Theorem 2.1.8 to conclude that there does not exist

such manifolf Mn since H2 < 1.
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Considering the case of constant normalized scalar curvature, we get the following corollary

from Theorem 2.1.15.

Corollary 2.1.16. There does not exist a complete noncompact spacelike submanifold Mn with

constant normalized scalar curvature R < 1, immersed with parallel normalized mean curvature

vector field in Sn+p
p such that inequalities (2.54) hold and |Φ| converges to zero at infinity.

Before we continue, let us look at the following:

Remark 2.1.17. For a linear Weingarten submanifold with R = aH + b for some a, b ∈ R with

b < 1, we have from (2.19) that

nH(nH + (n− 1)a) = |A|2 + n(n− 1)(1 − b) ≥ n(n− 1)(1 − b) > 0.

In particular, H is far away from 0 and so nH + (n− 1)a ≥ 0, if a ≥ 0. Thus,

(H +
a

2
) ≥ β,

for a constant β > 0. If a < 0, we have

H +
a

2
> H +

n− 1

n
a =

nH + (n− 1)a

n
≥ 0

and we also obtain (H + a
2
) ≥ β > 0.

Now, we are in position to establish our next rigidity result.

Theorem 2.1.18. Let Mn be a complete spacelike LW submanifold immersed with parallel nor-

malized mean curvature vector field in Sn+p
p , such that R = aH + b for some a, b ∈ R with b < 1.

Suppose that |∇Φ| is bounded and that supM |A|2 < 2
√
n− 1. If Mn has polynomial volume

growth, then Mn is isometric to the Euclidean sphere Sn(r), with radius r > 0.

Proof. Taking the smooth vector field X = P(∇|Φ|2) and the smooth function f = |Φ|2, we

claim that the required conditions to apply Lemma 1.0.3 are satisfied. Indeed, since H and |A|
are bounded (see (2.19)), from definition (2.23) we get

|X| = |P(∇|Φ|2)| ≤ |P||∇|Φ|2| ≤ k|∇|Φ|2|,

for some positive constant k. Besides that, the boundedness of H and |A| also assure the

boundedness of |Φ| by equation (2.19). So, since we are supposing that |∇Φ| is bounded,

Lemma 2.1.4 guarantees that ∇|Φ|2 is also bounded and, consequently,

|X| ≤ C < +∞,

for some positive constant C.
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On the other hand, from (2.32) we have that the condition

⟨∇f,X⟩ = ⟨∇|Φ|2,P(∇|Φ|2)⟩ ≥ 0

is also verified.

Now, we must obtain divX ≥ αf on Mn, for some positive constant α ∈ R. For this, from

inequality (3.19) of [85] jointly with relation (2.19) we get

L(nH) ≥ |Φ|2
(
n− n

2
√

(n− 1)
|A|2

)
. (2.55)

Thus, using (2.34), from (2.24) and (2.55), we have

divX = div(P(∇H)) = L(|Φ|2) ≥ 2(n− 1)
(
H +

a

2

)(
n− n

2
√

(n− 1)
|A|2

)
|Φ|2. (2.56)

Since we are assuming sup(|A|2) < 2
√
n− 1 and, by Remark 2.1.17, (H + a

2
) ≥ β, for some

positive constant β ∈ R, from (2.56) we obtain

div(X) ≥ α|Φ|2,

where α = 2(n − 1)β

(
n− n

2
√

(n−1)
sup(|A|2)

)
> 0. Therefore, in case that Mn is a complete

noncompact submanifold, we are able to apply Lemma 1.0.3 to obtain that |Φ|2 ≤ 0 and, hence,

|Φ|2 = 0 on Mn, guaranteeing that Mn is totally umbilical.

In the case that Mn is a compact submanifold, we can integrate both sides of (2.55) and use

Divergence Theorem to get that

∫
M

|Φ|2
(
n− n

2
√

(n− 1)
|A|2

)
dM ≤

∫
M

L(nH) dM = 0,

since the operator L is a divergence type as it was observed in (2.24). Hence, as we are assuming

that sup(|A|2) < 2
√
n− 1, we must have |Φ| = 0 on Mn.

In both cases, we conclude that Mn is a totally umbilical submanifold of Sn+p
p . Taking into

account (2.13), we get

hα = ⟨H, eα⟩I = HαI = 0,

for all α > n + 1. Thus, we have that the first normal subspace,

N1 =
{
eα ∈ X⊥(Mn);hα = 0

}⊥
,

is parallel and it has dimension 1. Therefore, we can apply once more [38, Proposition 4.1] to

reduce the codimension of Mn to 1. Thus, from the characterizations of the totally umbilical

hypersurfaces of the de Sitter space, we conclude that Mn is isometric to either the Euclidean
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space Rn, in the noncompact case, or the Euclidean sphere Sn(r) with radius r > 0, in compact

case.

The next corollary is derived from Theorem 2.1.18.

Corollary 2.1.19. Let Mn be a complete spacelike submanifold with constant normalized scalar

curvature R < 1, immersed with parallel normalized mean curvature vector field in Sn+p
p . Suppose

that |∇Φ| is bounded and that supM |A|2 < 2
√
n− 1. If Mn has polynomial volume growth, then

Mn is isometric to either the Euclidean space Rn or the Euclidean sphere Sn(r), with radius

r > 0.

Proceeding, we obtain the following rigidity result.

Theorem 2.1.20. Let Mn be a complete spacelike LW submanifold immersed with parallel nor-

malized mean curvature vector field in Sn+p
p , such that R = aH + b for some a, b ∈ R with b < 1.

Suppose that supM |Φ| < ϑ(n, p) and that

H2 ≤ 4(n− 1)

Q(p)
, (2.57)

where Q and ϑ(n, p) are defined in (2.44) and (2.45), respectively. If Mn has polynomial volume

growth, then Mn is isometric to the Euclidean sphere Sn(r) with radius r > 0 when n ≥ 3, or

isometric to either the Euclidean space R2 or the Euclidean sphere S2(r) with radius r > 0, when

n = 2.

Proof. Reasoning as in the proof of Theorem 2.1.18, we take the smooth vector field X =

P(∇|Φ|2) and the smooth function f = |Φ|2. So, we have that

|X| ≤ C, (2.58)

for some positive constant C ∈ R, and

⟨∇f,X⟩ = ⟨∇|Φ|2,P(∇|Φ|2)⟩ ≥ 0. (2.59)

Moreover, from (2.34) and (2.52) we get

divX = div(P(∇H)) = L(|Φ|2) ≥ 2(n− 1)
(
H +

a

2

)
PH(|Φ|)|Φ|2. (2.60)

Now, let us take γ :=
4(n− 1)

Q(p)
. As we are supposing (2.57), we have

PH(x) =
x2

p
− n(n− 2)√

n(n− 1)
Hx−n

(
H2 − 1

)
≥ x2

p
− n(n− 2)√

n(n− 1)

√
γx−n (γ − 1) = Pγ(x). (2.61)

Besides that, taking into account (2.61) and the behavior of PH,p(x) described in Remark 2.1.10,
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for supM(|Φ|) < ϑ(n, p) we have that

PH(|Φ|) ≥ Pγ(|Φ|) ≥ Pγ(sup
M

|Φ|) > Pγ(ϑ(n, p)) = 0. (2.62)

Hence, since H+a
2
≥ β > 0 from Remark 2.1.17, for some positive constant β ∈ R, from (2.60)

and (2.62) we obtain

divX ≥ 2(n− 1)
(
H +

a

2

)
PH(|Φ|)|Φ|2 ≥ αf, (2.63)

where α = 2(n− 1)βPγ(supM(|Φ|)) > 0.

Supposing that Mn is a complete noncompact submanifold, since (2.58), (2.59) and (2.63)

were verified and Mn has polynomial volume growth, we are able to apply Lemma 1.0.3 to obtain

that |Φ|2 ≤ 0 on Mn. Then, |Φ| ≡ 0 and Mn is totally umbilical submanifold. In case Mn is

a compact submanifold, we can apply once more Divergence Theorem to infer that Mn is also

totally umbilical submanifold.

Therefore, reasoning as in the last part of the proof of Theorem 2.1.18, we can reduce the

codimension of Mn to 1 and conclude that it must be isometric to the Euclidean sphere Sn(r)

with radius r > 0 since H2 ≤ 4(n− 1)

Q(p)
< 1 for n ≥ 3. Moreover, as we have

4(n− 1)

Q(p)
= 1 for

n = 2, we get H2 ≤ 1 and, in this case, M2 is isometric to either the Euclidean space R2 or the

Euclidean sphere S2(r), with radius r > 0.

Theorem 2.1.20 gives the following particular case.

Corollary 2.1.21. Let Mn be a complete spacelike submanifold with constant normalized scalar

curvature R < 1, immersed with parallel normalized mean curvature vector field in Sn+p
p , such

that H is bounded away from zero. Suppose that supM |Φ| < ϑ(n, p), where ϑ(n, p) is defined

in (2.45), and that inequality (2.57) is satisfied. If Mn has polynomial volume growth, then Mn

is isometric to the Euclidean sphere Sn(r) with radius r > 0 when n ≥ 3, or isometric to either

the Euclidean space R2 or the Euclidean sphere S2(r), with radius r > 0 when n = 2.

In our last rigidity result of this section, we will present a new characterization of Theo-

rem 2.1.15, dealing with complete spacelike LW submanifolds immersed with parallel normalized

mean curvature vector field in Sn+p
p .

Theorem 2.1.22. Let Mn be a complete spacelike LW submanifold immersed with parallel nor-

malized mean curvature vector field in Sn+p
p , such that R = aH + b for some a, b ∈ R with b < 1.

Suppose that
4(n− 1)

Q(p)
< H2 < 1 and sup(|Φ|) < ϑ−(n, p,H), (2.64)

where ϑ− is the real root of PH given by (2.47). If Mn has polynomial volume growth, then Mn

is isometric to the Euclidean sphere Sn(r), with radius r > 0.

Proof. As in the proof of Theorem 2.1.20, we take the smooth vector field X = P(∇|Φ|2) and

the smooth function f = |Φ|2. So, we have that |X| ≤ C, for some positive constant C ∈ R,
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⟨∇f,X⟩ = ⟨∇|Φ|2,P(∇|Φ|2)⟩ ≥ 0 and

divX = div(P(∇|Φ|2)) = L(|Φ|2) ≥ 2(n− 1)
(
H +

a

2

)
PH(|Φ|)|Φ|2. (2.65)

From hypothesis (2.64), we saw in Remark 2.1.10 that the polynomial PH(x) defined in (2.43)

has two distinct real roots, which are positive and given by (2.47). So, taking γ := supM(H),

we have

PH(x) =
x2

p
− n(n− 2)√

n(n− 1)
Hx− n

(
H2 − 1

)
≥ x2

p
− n(n− 2)√

n(n− 1)

√
γx− n (γ − 1) = Pγ(x)

and, since supM(|Φ|) < ϑ−(n, p,H) and PH,p(x) is strictly decreasing for x ≤ ϑ−(n, p,H), we

have that

PH(|Φ|) ≥ Pγ(|Φ|) ≥ Pγ(sup
M

|Φ|) > Pγ(ϑ−(n, p, γ)) = 0.

Using this fact jointly with (H + a
2
) ≥ β > 0, for some positive constant β ∈ R, and (2.65),

we conclude that

divX = div(P(∇|Φ|2)) = L(|Φ|2) ≥ 2(n− 1)
(
H +

a

2

)
PH(|Φ|)|Φ|2 ≥ α|Φ|2,

where α = 2(n− 1)βPγ(supM |Φ|) > 0.

Therefore, proceeding as the proof of Theorem 2.1.20 we conclude that Mn is isometric to

the Euclidean sphere Sn(r) with radius r > 0.

2.2 Spacelike submanifolds with second fundamental form

locally timelike

The aim of this section is to investigate the nonexistence and umbilicity of n-dimensional

(n ≥ 3) spacelike submanifolds immersed with parallel mean curvature vector field in the (n+p)-

dimensional de Sitter space Sn+p
q of index 1 ≤ q ≤ p.

In the first part of this section, we show that there does not exist an n-dimensional complete

spacelike submanifold Mn immersed with parallel mean curvature vector, whose the second

fundamental form is locally timelike in Sn+p
q and the mean curvature H satisfies

4(n− 1)

Q(p)
< H2 <

1, where Q(x) = (n− 2)2x+ 4(n− 1), such that either |∇Φ| is bounded and Mn has polynomial

volume growth or Mn is noncompact and |Φ| converges to zero at infinity (see Theorem 2.2.2).

Afterwards, we show that a complete noncompact submanifold of Sn+p
p with H2 =

4(n− 1)

Q(p)
and such that |Φ| converges to zero at infinity, must be a totally umbilical submanifold (see

Theorem 2.2.3). Next, we suppose that the spacelike submanifold Mn is stochastically complete

in order to show that if H2 < 1, then either Mn is totally umbilical or supM |Φ| ≥ ϑ+
H , where

ϑ+
H is the positive root of the polynomial PH,q(x) defined in (2.43) (see Theorem 2.2.4). Finally,

we prove that the only n-dimensional stochastically complete spacelike submanifold immersed
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in Sn+p
q , which are maximal and having locally timelike second fundamental form, are the totally

geodesic ones (see Theorem 2.2.6). Our approach is based on a Simon’s type inequality involving

the norm of the total umbilicity tensor, obtained by Mariano in [69].

2.2.1 Preliminaries

Let Mn be an n-dimensional (connected) spacelike submanifold isometrically immersed into

the de Sitter space Sn+p
q of index 1 ≤ q ≤ p, meaning that the induced metric on Mn via immer-

sion is a Riemannian metric. In this setting, we choose a local orthonormal frame {e1, . . . , en+p}
in Sn+p

q , such that, at each point of Mn, e1, . . . , en are tangent to Mn and en+1, . . . , en+p are

normal to Mn. We use the following convention of indices:

1 ≤ A,B,C, . . . ≤ n + p, 1 ≤ i, j, k, . . . ≤ n and n + 1 ≤ α, β, γ, . . . ≤ n + p.

Let {ω1, . . . , ωn+p} be the dual frame of {e1, . . . , en+p}, so that the semi-Riemannian metric of

Sn+p
q is given by ds2 =

∑
A ϵA ω2

A, where ϵA = 1, if 1 ≤ A ≤ n + p − q, and ϵA = −1, if

n + p − q + 1 ≤ A ≤ n + p. Denoting by {ωAB} the connection 1-forms of Sn+p
q , we have that

the structure equations of Sn+p
q are given by

dωA = −
∑
B

ϵB ωAB ∧ ωB, ϵBωAB + ϵAωBA = 0, for all 1 ≤ A,B ≤ n + p, (2.66)

and

dωAB = −
∑
C

ϵC ωAC ∧ ωCB − 1

2

∑
C,D

ϵCϵDKABCD ωC ∧ ωD, (2.67)

where KABCD = ϵAϵB(δACδBD − δADδBC).

Restricting those forms to Mn, we note that ωα = 0 for n + 1 ≤ α ≤ n + p and, hence,

the Riemannian metric of Mn is written as ds2 =
∑

i ω
2
i . Since

∑
i

ωαi ∧ ωi = dωα = 0, from

Cartan’s Lemma we can write

ωαi =
∑
j

hα
ijωj, hα

ij = hα
ji. (2.68)

This gives the second fundamental form of Mn, A =
∑
α,i,j

ϵαh
α
ijωiωjeα and the square of its

length |A|2 =
∣∣∣∑α ϵα

∑
i,j(h

α
ij)

2
∣∣∣. Moreover, we define the mean curvature vector field and the

mean curvature function on Mn, respectively, by

h :=
1

n

∑
α

(∑
i

hα
ii

)
eα and H := |h| =

1

n

√√√√∑
α

ϵα

(∑
i

hα
ii

)2

.

In particular, Mn is called maximal when its mean curvature vector h vanishes identically.
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From (2.66) and (2.67), we get the structure equations of Mn

dωi = −
∑
j

ωij ∧ ωj, ωij + ωji = 0, and dωij = −
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl, (2.69)

where Rijkl are the components of the curvature tensor of Mn. Therefore, from (2.69) we obtain

the Gauss equation

Rijkl = (δikδjl − δilδjk) +
∑
α

ϵα(hα
ikh

α
jl − hα

ilh
α
jk).

The components of the Ricci curvature Rij and the normalized scalar curvature R of Mn are

given, respectively, by

Rij = (n− 1)δij +
∑
α

ϵα

{(∑
k

hα
kk

)
hα
ij −

∑
α,k

hα
ikh

α
kj

}

and

R = n(n− 1) +
∑
α

ϵα

(∑
i

hα
ii

)2

−
∑
α

∑
i,j

ϵα(hα
ij)

2.

We also have the structure equations of the normal bundle of Mn given by

dωα = −
∑
β

ωαβ ∧ ωβ, ωαβ + ωβα = 0 and dωαβ = −
∑
γ

ωαγ ∧ ωγβ −
1

2

∑
k,l

Rαβklωk ∧ ωl,

where the components Rαβjk satisfy the Ricci equation

Rαβij =
∑
l

(
hα
ilh

β
lj − hα

jlh
β
li

)
.

Moreover, from (2.68) we obtain the Codazzi equation

hα
ijk = hα

ikj = hα
kij, (2.70)

where hα
ijk are the components of the covariant derivative ∇A, which satisfy∑

k

hα
ijkωk = dhα

ij −
∑
k

hα
ikωkj −

∑
k

hα
jkωki +

∑
β

ϵβϵαh
β
ijωβα. (2.71)

Taking the exterior derivative in (2.71) we obtain the following Ricci formula for the second

fundamental form

hα
ijkl − hα

ijlk = −
∑
m

hα
mjRmikl −

∑
m

hα
imRmjkl +

∑
k,β

ϵβϵαh
β
ikRαβjk. (2.72)
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The Laplacian ∆hα
ij of the components hα

ij of second fundamental form is defined by

∆hα
ij :=

∑
k

hα
ijkk.

Therefore, from equations (2.70) and (2.72) we get the following formula

∆hα
ij =

∑
k

hα
kkij −

∑
k,l

hα
klRlijk −

∑
k,l

hα
liRlkjk +

∑
k,β

ϵβϵαh
β
ikRαβjk.

We will assume that the mean curvature vector field h is parallel as a section of the normal

bundle of Mn, which means that ∇⊥h = 0, where ∇⊥ is the normal connection of Mn. Con-

sidering H > 0, we can assume that the orthonormal frame {e1, . . . , en+p} in Sn+p
q is such that

en+p−q+1 = h
H

. Consequently, we get

Hn+p−q+1 :=
1

n
tr(hn+p−q+1) = H and Hα :=

1

n
tr(hα) = 0, α ̸= n + p− q + 1,

where hα denotes the matrix (hα
ij). Furthermore, we will also consider the total umbilicity tensor

Φ =
∑

i,j,α≥n+p−q+1

Φα
ijωi ⊗ ωjeα, (2.73)

where Φα
ij = hα

ij −Hαδij. We have that

Φn+p−q+1
ij = hn+p−q+1

ij −Hδij and Φα
ij = hα

ij,

for α ̸= n+ p− q + 1. Since |Φ|2 =
∑

α,i,j(Φ
α
ij)

2 is the square of the length of Φ, it is not difficult

to verify that Φ is traceless with

|Φ|2 = |A|2 − nH2.

Besides, we observe that |Φ| vanishes identically on Mn if and only if Mn is a totally umbilical

submanifold of Sn+p
q .

To establish some results, we will need the following Simon’s type inequality involving the

norm of the total umbilicity tensor, which is deduced in [69, Lemma 3.2]. At this point, we draw

attention that in the proof of this inequality it is not necessary to assume the hypothesis of the

spacelike submanifold be complete.

Lemma 2.2.1. Let Mn be a spacelike submanifold immersed with parallel mean curvature vector

in Sn+p
q (c), 1 ≤ q ≤ p, and such that its second fundamental form is locally timelike. Then the

following inequality holds:
1

2
∆|Φ|2 ≥ |Φ|2PH,q(|Φ|),

where PH,q(x) is the polynomial defined in (2.43).
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2.2.2 Nonexistence results for complete spacelike submanifolds im-

mersed with parallel mean curvature vector in Sn+p
p

For the context of spacelike submanifolds immersed in the de Sitter space, we start this

section obtaining the following nonexistence result.

Theorem 2.2.2. There does not exist an n-dimensional (n ≥ 3) complete noncompact spacelike

submanifold Mn immersed with parallel mean curvature vector in the (n + p)-dimensional de

Sitter space Sn+p
q of index 1 ≤ q ≤ p, such that the second fundamental form is locally timelike,

4(n− 1)

Q(q)
< H2 < 1, where Q(x) = (n− 2)2x + 4(n− 1), and |Φ| converges to zero at infinity.

Proof. Let us suppose by contradiction the existence of such a submanifold Mn. So, we take the

smooth vector field X = ∇|Φ|2 and the smooth function f = |Φ|2. Thus, we have that

⟨∇f,X⟩ = |∇|Φ|2|2 ≥ 0 (2.74)

is verified.

Assuming that Mn is noncompact and |Φ| converges to zero at infinity, since PH,q(|Φ|) ≥ 0

for |Φ| ≤ ϑ−
H from Remark 2.1.10, Lemma 2.2.1 gives

divX = div(∇|Φ|2) = ∆|Φ|2 ≥ PH,q(|Φ|)|Φ|2 ≥ 0.

Consequently, we can apply Lemma 1.0.4 to get that

⟨∇f,X⟩ = |∇|Φ|2|2 = 0

and conclude that ∇|Φ| ≡ 0. Thus, f = |Φ| is constant and, since f converges to zero at infinity,

it must be identically zero and Mn must be a totally umbilical submanifold of Sn+p
q .

However, from the proof of item (d) of [69, Theorem 1.1], our constraint on the value of the

mean curvature imply that ϑ−
H ≤ supM |Φ| ≤ ϑ+

H with ϑ−
H > 0, leading us to a contradiction.

2.2.3 Rigidity of complete noncompact and stochastically complete

spacelike submanifolds in Sn+p
p

Proceeding, we obtain a characterization for totally umbilical spacelike submanifolds of Sn+p
q .

Theorem 2.2.3. Let Mn be an n-dimensional (n ≥ 3) complete noncompact spacelike subman-

ifold immersed with parallel mean curvature vector field in the (n + p)-dimensional de Sitter

space Sn+p
q of index 1 ≤ q ≤ p, such that the second fundamental form is locally timelike and

H2 =
4(n− 1)

Q(q)
, where Q(x) = (n− 2)2x+ 4(n− 1). If |Φ| converges to zero at infinity, then Mn

is a totally umbilical submanifold of Sn+p
q .
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Proof. Let us consider once more the smooth vector field X = ∇|Φ|2 and the smooth function

f = |Φ|2. So,

⟨∇f,X⟩ = |∇|Φ|2|2 ≥ 0. (2.75)

Let us suppose that Mn is not a umbilical submanifold. So, we have that f is a non-identically

vanishing function which converges to zero at infinity. Moreover, since H2 =
4(n− 1)

Q(q)
, we have

from Remark 2.1.10 that PH,q ≥ 0. Hence, we can apply Lemma 1.0.4 to get that

⟨∇f,X⟩ = |∇|Φ|2|2 = 0,

which implies that ∇|Φ| ≡ 0. Thus, f = |Φ| is constant and, since f converges to zero at

infinity, it must be identically zero, leading us to a contradiction. Therefore, Mn must be a

totally umbilical submanifold of Sn+p
q .

Considering stochastically complete spacelike submanifolds with parallel mean curvature vec-

tor field, we obtain the following result.

Theorem 2.2.4. Let Mn be an n-dimensional (n ≥ 3) stochastically complete spacelike sub-

manifold immersed with parallel mean curvature vector field in the (n+ p)-dimensional de Sitter

space Sn+p
q of index 1 ≤ q ≤ p, such that the second fundamental form is locally timelike. If

H2 < 1, then either Mn is totally umbilical or supM |Φ| ≥ ϑ−
H .

Proof. From Remark 2.1.10, if H2 ≤ 4(n− 1)

Q(q)
, then PH,q ≥ 0. Also, ϑ−

H > 0 if, and only if

4(n− 1)

Q(q)
≤ H2 < 1. Hence, we have PH,q(|Φ|) ≥ 0 for |Φ| ≤ ϑ−

H . Thus, from Lemma 2.2.1, we

obtain

∆|Φ|2 ≥ PH,q(|Φ|)|Φ|2 ≥ 0, (2.76)

for H2 < 1.

If supM |Φ|2 = +∞, then it is immediate that supM |Φ| ≥ ϑ+
H . So, let us suppose that

supM |Φ|2 < +∞. Thus, Lemma 1.0.2 guarantees that there exists a sequence of points {pk} ⊂
Mn such that

lim
k→∞

|Φ|2(pk) = sup
M

|Φ|2 and lim sup
k→∞

∆|Φ|2(pk) ≤ 0.

Consequently, taking into account the continuity of the polynomial PH,q(x), from (2.76) we

have

0 ≥ 1

2
lim sup
k→∞

∆|Φ|2(pk) ≥ lim sup
k→∞

(|Φ|2PH,q(|Φ|))(pk) = lim
k→∞

(|Φ|2PH,q(|Φ|))(pk)

= lim
k→∞

|Φ|2(uk)PH,q( lim
k→∞

|Φ|(pk)) = sup
M

|Φ|2PH,q(sup
M

|Φ|).

Hence, we obtain

sup
M

|Φ|2PH,q(sup
M

|Φ|) ≤ 0. (2.77)
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Thus, either supM |Φ| > 0 and then

PH,q(sup
M

|Φ|) ≤ 0,

which implies that supM |Φ| ≥ ϑ−
H , or supM |Φ| = 0, which means that |Φ| ≡ 0 and Mn must be

totally umbilical.

We recall that a Riemannian manifold without boundary Mn is said to be parabolic when

the only superharmonic functions on Mn bounded from below are the constant ones. Taking

into account that every parabolic Riemannian manifold is stochastically complete, we obtain the

following consequence of Theorem 2.2.4.

Corollary 2.2.5. Let Mn be an n-dimensional (n ≥ 3) parabolic spacelike submanifold immersed

with parallel mean curvature vector field in the (n+ p)-dimensional de Sitter space Sn+p
q of index

1 ≤ q ≤ p, such that the second fundamental form is locally timelike. If H2 < 1, then either Mn

is a totally umbilical submanifold or supM |Φ| ≥ ϑ−
H .

We close this section extending the case c > 0 in [69, Theorem 1.2] for the context of

stochastically complete spacelike submanifolds.

Theorem 2.2.6. The only n-dimensional (n ≥ 3) stochastically complete spacelike submanifold

immersed in the (n+p)-dimensional de Sitter space Sn+p
q of index 1 ≤ q ≤ p, which are maximal

and having locally timelike second fundamental form, are the totally geodesic ones.

Proof. Let Mn be such a spacelike submanifold of Sn+p
q . Since H is identically zero, we obtain

from (2.43) that

P0,q(sup
M

|Φ|) =
(supM |Φ|)2

q
+ n > 0.

Hence, inequality (2.77) allows us to conclude that supM |Φ| = 0. Therefore, |Φ| = 0 and Mn

must be totally geodesic.
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Chapter 3

LW submanifolds in Riemannian space

forms Qn+1
c

This chapter is dedicated to establish new rigidity results concerning n-dimensional linear

Weingarten (LW) submanifolds immersed in an (n+p)-dimensional Riemannian space form Qn+p
c

with constant sectional curvature c ∈ {−1, 0, 1}. Under the assumption that a complete LW

submanifold has polynomial volume growth, we prove that it must be isometric to an Euclidean

sphere Sn(r), with radius r > 0. When the ambient space is the hyperbolic space Hn+p, we

suppose that the norm of the total umbilicity tensor converges to zero at infinity in order to

show that a complete noncompact LW submanifold of Hn+p must be isometric to a horosphere

of Hn+1. In this chapter we include the results of [49].

3.1 Preliminaries

Let us denote by Qn+p
c the standard model of an (n + p)-dimensional Riemannian space

form with constant sectional curvature c ∈ {0, 1,−1}. Actually, Qn+p
c denotes the Euclidean

(n + p)-space Rn+p when c = 0, the (n + p)-dimensional Euclidean sphere Sn+p when c = 1

and the (n + p)-dimensional hyperbolic space Hn+p when c = −1. We also denote by ⟨, ⟩ the

corresponding Riemannian metric induced on Qn+p
c ↪→ Rn+p+1.

Let Mn be an n-dimensional connected submanifold immersed in Qn+p
c . We choose a local

orthonormal frame {e1, . . . , en+p} in Qn+p
c with dual coframe {ω1, . . . , ωn+p} such that, at each

point of Mn, e1, . . . , en are tangent to Mn and en, . . . , en+p are normal to Mn. Moreover, let

{ωBC} denote the connection 1-forms on Qn+p
c . In what follows, we will use the following

convention for the indices:

1 ≤ A,B,C, . . . ≤ n + p, 1 ≤ i, j, k, . . . ≤ n and n + 1 ≤ α, β, γ, . . . ≤ n + p.

The second fundamental form A, the curvature tensor R and the normal curvature tensor

R⊥ of Mn are given by

ωiα =
∑
j

hα
ijωj, A =

∑
i,j,α

hα
ijωi ⊗ ωjeα,
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dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl,

dωαβ =
∑
γ

ωαγ ∧ ωγα − 1

2

∑
k,l

R⊥
αβklωk ∧ ωl.

It is not difficult to see that the components hα
ijkωk of the covariant derivate ∇A satisfy∑

k

hα
ijkωk = dhα

ij +
∑
k

hα
kiωkj +

∑
k

hα
kjωki +

∑
β

hβ
kjωki. (3.1)

Moreover, the Gauss equation is given by

Rijkl = c(δikδjl − δilδjk) +
∑
α

(hα
ikh

α
jl − hα

ilh
α
jk).

In particular, the components of the Ricci tensor Rik and the normalized scalar curvature R are

given, respectively, by

Rik = (n− 1)δik + n
∑
α

Hαhα
ik −

∑
α,j

hα
ijh

α
jk (3.2)

and

R =
1

n− 1

∑
i

Rii. (3.3)

From (3.2) and (3.3), we get the following relation

n(n− 1)R = n(n− 1)c + n2H2 − |A|2, (3.4)

where |A|2 =
∑

α,i,j(h
α
ij)

2 is the squared norm of the second fundamental form A and H = |H|
is the mean curvature function related to the mean curvature vector field H =

∑
αH

αeα =
1
n

∑
α(
∑

k h
α
kk)eα of Mn.

Furthermore, the Codazzi equation is given by

hα
ijk = hα

ikj = hα
jik. (3.5)

We will also consider the symmetric tensor

Φ =
∑
α,i,j

Φα
ijωi ⊗ ωjeα, (3.6)

where Φα
ij = hα

ij −Hαδij. Consequently, we have that

Φn+1
ij = hn+1

ij −Hδij and Φα
ij = hα

ij,

for n + 2 ≤ α ≤ n + p.

Let |Φ|2 =
∑

α,i,j(Φ
α
ij)

2 be the squared norm of Φ. It is not difficult to check that Φ is
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traceless with

|Φ|2 = |A|2 − nH2. (3.7)

In addition, from (3.4) we obtain

n(n− 1)R = n(n− 1)(c + H2) − |Φ|2. (3.8)

We recall once more that a submanifold is said to be linear Weingarten (LW) when its mean

and normalized scalar curvatures are linearly related, that is, when they satisfy the following

relation

R = aH + b, (3.9)

for constants a, b ∈ R. We observe that when a = 0, (3.9) reduces to R constant.

In this setting, equation (3.7) becomes

|Φ|2 = |A|2 − nH2 = n(n− 1)H2 − n(n− 1)aH − n(n− 1)(b− c). (3.10)

For a LW submanifold Mn satisfying (3.9) we consider again the second-order linear differ-

ential operator L : C∞(M) → C∞(M) defined by

L = L− n− 1

2
a∆, (3.11)

where ∆ is the Laplacian operator on Mn and L : C∞(M) → C∞(M) denotes the Cheng-Yau

operator, which is given by

Lu = tr(P ◦ Hess (u)), (3.12)

for every u ∈ C∞(M), where Hess is the self-adjoint linear tensor metrically equivalent to the

Hessian of u and P : X(M) → X(M) denotes the first Newton transformation of Mn which is

given by P = nHI − A. So, from (3.11) and (3.12), we have that

Lu = tr(P ◦ Hess (u)),

with

P =

(
nH − n− 1

2
a

)
I − A (3.13)

and we can rewrite L in the following divergence form

Lu = div(P(∇u)). (3.14)

In order to establish our main results, we present the next auxiliary propositions, which can

be found in [44, Lemma 4.1, Lemma 4.4].

Proposition 3.1.1. Let Mn be a linear Weingarten submanifold immersed in a Riemannian

space form Qn+p
c such that R = aH + b. If b > c (b ≥ c), then L is elliptic (semi-elliptic).
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Proposition 3.1.2. Let Mn be a linear Weingarten submanifold immersed in a Riemannian

space form Qn+p
c with R = aH + b for some a, b ∈ R. Suppose that (n − 1)a2 + 4n(b − c) ≥ 0.

Then

|∇A|2 ≥ n2|∇H|2.

Moreover, the equality holds on Mn if, and only if, Mn is an isoparametric submanifold of Qn+p
c .

We close this subsection recalling a classic algebraic lemma due to Okumura in [73], which

was completed with the equality case by Alencar and do Carmo in [4].

Lemma 3.1.3. Let κ1, . . . , κn be real numbers such that
∑
i

κi = 0 and
∑
i

κ2
i = β2, with β ≥ 0.

Then,

− (n− 2)√
n(n− 1)

β3 ≤
∑
i

κ3
i ≤

(n− 2)√
n(n− 1)

β3,

and equality holds if and only if at least (n− 1) of the numbers κi are equals.

3.2 Rigidity results for LW hypersurfaces immersed in

Qn+1
c

Before to present our results, we need to collect some properties related to the following

one-parameter family of real functions

Qt(x) = −(n− 2)x2 − (n− 2)x
√

x2 + n(n− 1)(t− c) + n(n− 1)t, (3.15)

where t ∈ R corresponds to the real parameter, while n and c are real constants. We note that

Aĺıas, Garćıa-Mart́ınez and Rigoli introduced in [13] the definition of the function QR(x) when

they were studying hypersurfaces with constant normalized scalar curvature R in an (n + 1)-

dimensional Riemannian space form of constant sectional curvature c.

For each nonnegative (positive) parameter t, we have that Qt(0) = n(n−1)t is also nonnega-

tive (positive). When n ≥ 3, each function Qt is (strictly) decreasing for x ≥ 0, with Qt(x
∗
t ) = 0

only at

x∗
t = t

√
n(n− 1)

(n− 2)(nt− (n− 2)c)
. (3.16)

Moreover, in the case n = 2, we have that Qt(x) = 2t.

Now, we are in position to present the next rigidity result concerning a complete LW hyper-

surface Mn immersed in Qn+1
c .

Theorem 3.2.1. Let Mn be a complete LW hypersurface immersed into a Riemannian space

form Qn+1
c with n ≥ 3, such that R = aH + b with b ≥ c. Suppose that

(
H − a

2

)
≥ β on Mn, for

some positive constant β, and that R > n−2
n

for c = 1 and R > 0 for c = 0 or c = −1. Assume

in addition that |∇Φ| is bounded and supM |Φ| ≤ γ < x∗
R, for some constant γ, and x∗

R defined
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in (3.16). If Mn has polynomial volume growth and inf
R

(QR(γ)) > 0, then Mn is isometric to an

Euclidean sphere Sn(r), with radius r > 0.

Proof. Taking the smooth vector field X = P(∇|Φ|2) and the smooth function f = |Φ|2, it will

fulfill the required conditions to apply Lemma 1.0.3. Indeed, by hypothesis we have that |Φ|
is bounded on Mn and, by equation (3.10), |A| is also bounded on Mn. Consequently, from

definition (3.13), we get

|X| = |P(∇|Φ|2)| ≤ |P||∇|Φ|2| ≤ k|∇|Φ|2|,

for some positive constant k. But, since we are supposing the boundedness of |Φ| and |∇Φ|,
Lemma 2.1.4 guarantees that ∇|Φ|2 is also bounded. Thus, we have that

|X| ≤ C < +∞,

for some positive constant C.

On the other hand, the condition

⟨∇f,X⟩ = ⟨∇|Φ|2,P(∇|Φ|2)⟩ ≥ 0

is also verified because Proposition 3.1.1 gives that P is positive semi-definite for b ≥ c.

Now, we must obtain divX ≥ αf on Mn, for some positive constant α. For this, we will find

a suitable lower bound for L(|Φ|2). Applying L in (3.10), we get that

1

2(n− 1)
L(|Φ|2) =

1

2
L(nH2) − a

2
L(nH)

= HL(nH) + n⟨P∇H,∇H⟩ − a

2
L(nH). (3.17)

In particular, since P is positive semi-definite, from (3.17) we obtain

1

2(n− 1)
L(|Φ|2) ≥ (H − a

2
)L(nH). (3.18)

Let us choose a (local) orthonormal frame {e1, . . . , en} on Mn such that hij = λiδij. Since

R = aH + b, from [19, Equation (2.19)] jointly with the definition of L and with Rijij = λiλj + c,

we get

L(nH) = |∇A|2 − n2|∇H|2 + nc(|A|2 − nH2) − |A|4 + nH
∑
i

λ3
i . (3.19)

Moreover, we have Φi,j = µiλij and, with straightforward computation, we verify that∑
i

µi = 0,
∑
i

µ2
i = |Φ|2 and

∑
i

µ3
i =

∑
i

λ3
i − 3H|Φ|2 − nH3. (3.20)
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Thus, using the Gauss equation jointly with (3.19) and (3.20), we get

L(nH) = |∇A|2 − n2|∇H|2 + nH
∑
i

µ3
i + |Φ|2(−|Φ|2 + nH2 + nc). (3.21)

We can apply Proposition 3.1.2 jointly with Lemma 3.1.3 for n ≥ 3, to obtain from (3.21)

that

L(nH) ≥ |Φ|2
(
−|Φ|2 − n(n− 2)√

n(n− 1)
H|Φ| + nH2 + nc

)
. (3.22)

Furthermore, from (3.8) we obtain

H2 =
1

n(n− 1)
|Φ|2 + (R− c). (3.23)

Thus, from (3.22) and (3.23) we achieve in

L(nH) ≥ 1

n− 1
|Φ|2QR(|Φ|), (3.24)

where QR is defined in (3.15). Hence, using (3.18) jointly with (3.24), from (3.14) we conclude

that

divX = div(P(∇|Φ|2)) = L(|Φ|2) ≥ 2
(
H − a

2

)
QR(|Φ|)|Φ|2. (3.25)

Since we have
(
H − a

2

)
≥ β > 0 by hypothesis and, from the behavior of QR(x) for 0 ≤ |Φ| ≤

supM |Φ| ≤ γ < x∗
R, we have that

QR(|Φ|) ≥ QR(γ) > inf
R

(QR(γ)) > 0. (3.26)

Then, from (3.25) and (3.26) we obtain

divX ≥ 2
(
H − a

2

)
QR(|Φ|)|Φ|2 ≥ α|Φ|2, (3.27)

and divX ≥ αf for α = 2β inf
R

(QR(γ)) > 0.

Consequently, supposing that Mn is noncompact and with polynomial volume growth, we

are able to apply Lemma 1.0.3 obtaining that |Φ|2 ≤ 0 on Mn. Then, |Φ| ≡ 0, which means that

Mn is a totally umbilical hypersurface. But, from the characterizations of the totally umbilical

hypersurfaces of the Riemannian space forms, we conclude that Mn must be isometric to Rn,

which corresponds to a contradiction with the hypothesis that R > 0.

Thus, Mn must be compact. So, we can integrate both sides of (3.27) and use Divergence

Theorem to get that ∫
M

|Φ|2dM = 0.

Therefore, we have that |Φ| ≡ 0 and, hence, Mn is a compact totally umbilical hypersurface of

Qn+1
c . So, Mn must be isometric to an Euclidean sphere Sn(r), with radius r > 0.

Revisiting the proof of Theorem 3.2.1, we observe that if n = 2, then
∑

i µ
3
i = 0. Conse-
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quently, from (3.21) we get

L(nH) ≥ |Φ|2
(
−|Φ|2 + 2H2 + 2c

)
,

and (3.22) is still true in this case. Hence, it is not difficult to verify that we also have the

following rigidity result.

Theorem 3.2.2. Let M2 be a complete LW surface immersed into a Riemannian space form

Q3
c, such that R = aH + b with b ≥ c. Suppose that

(
H − a

2

)
≥ β on M2, for some positive

constant β, and that infM R > 0. Assume in addition that |Φ| and |∇Φ| are bounded. If M2

has polynomial volume growth, then M2 is isometric to an Euclidean sphere S2(r), with radius

r > 0.

Observing that, when R > 0 is constant, the hypothesis inf
R

(QR(γ)) > 0 is automatically

satisfied, from Theorems 3.2.1 and 3.2.2 we obtain, respectively, the following consequences:

Corollary 3.2.3. Let Mn be a complete hypersurface immersed into a Riemannian space form

Qn+1
c with n ≥ 3, with constant normalized scalar curvature R ≥ 1 for c = 1 and R > 0 when

c = −1 or c = 0. Suppose that H ≥ β on Mn, for some positive constant β. Assume in addition

that |∇Φ| is bounded and supM |Φ| < x∗
R, for x

∗
R defined in (3.16). If Mn has polynomial volume

growth, then Mn is isometric to an Euclidean sphere Sn(r), with radius r > 0.

Corollary 3.2.4. Let M2 be a complete surface immersed into a Riemannian space form Q3
c,

with constant normalized scalar curvature R ≥ 1 for c = 1 and R > 0 when c = −1 or c = 0.

Suppose that H ≥ β on M2, for some positive constant β. Assume in addition that |Φ| and |∇Φ|
are bounded. If M2 has polynomial volume growth, then M2 is isometric to an Euclidean sphere

S2(r), with radius r > 0.

Proceeding, we will deal with LW submanifolds Mn of Qn+p
c having parallel normalized

mean curvature vector field H, which means that the mean curvature function H is positive and

that the corresponding normalized mean curvature vector field H
H

is parallel as a section of the

normal bundle. In this context, we can choose a local orthonormal frame {e1, . . . , en+p} such

that en+1 = H
H

. Consequently, we have

Hn+1 =
1

n
tr(hn+1) = H and Hα =

1

n
tr(hα) = 0, α ≥ n + 2. (3.28)

Considering this previous context, we can state a version of Theorem 3.2.1 for higher codi-

mension.

Theorem 3.2.5. Let Mn be a complete LW submanifold immersed with parallel normalized

mean curvature vector field in a Riemannian space form Qn+p
c with n ≥ 4, such that R = aH + b

with a ≥ 0 and b ≥ c. Suppose that
(
H − a

2

)
≥ β on Mn, for some positive constant β, and

that R > n−2
n

for c = 1 and R > 0 when c = −1 or c = 0. Assume in addition that |∇Φ| is
bounded and such that supM |Φ| ≤ γ < x∗

R, for some constant γ and x∗
R defined in (3.16). If Mn
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has polynomial volume growth and inf
R

(QR(γ)) > 0, then Mn is isometric to an Euclidean sphere

Sn(r), with radius r > 0.

Proof. Reasoning as in the proof of Theorem 3.2.1, we take the smooth vector field X = P(∇|Φ|2)
and the smooth function f = |Φ|2. So, we have that

|X| ≤ C, (3.29)

for some positive constant C, and

⟨∇f,X⟩ = ⟨∇|Φ|2,P(∇|Φ|2)⟩ ≥ 0. (3.30)

Moreover,
1

2(n− 1)
L(|Φ|2) ≥ (H − a

2
)L(nH). (3.31)

On the other hand, following the same initial steps of the proof of [44, Theorem 5.1], we can

achieve in [44, Inequality (5.16)] which is given by

L(nH) ≥ 1

n− 1
|Φ|2QR(|Φ|) + (|Φ| − |Φn+1|)(n− 2

n− 1
− 16

27
)|Φ|.

Thus, since we are also assuming that n ≥ 4, we get

L(nH) ≥ 1

n− 1
|Φ|2QR(|Φ|). (3.32)

So, using (3.31) jointly with (3.32), we conclude that

divX = div(P(∇|Φ|2)) = L(|Φ|2) ≥ 2
(
H − a

2

)
QR(|Φ|)|Φ|2. (3.33)

But, since
(
H − a

2

)
≥ β > 0, taking into account once more the behavior of QR(x), for

0 ≤ |Φ| ≤ supM |Φ| < γ < x∗, we have that

QR(|Φ|) ≥ QR(γ) > inf
R

(QR(γ)) > 0.

Hence, from (3.33) we obtain

divX ≥ 2
(
H − a

2

)
QR(|Φ|)|Φ|2 ≥ αf, (3.34)

where α = 2β inf
R

(QR(γ)) > 0.

Supposing that Mn is a noncompact submanifold, since (3.29), (3.30) and (3.34) were verified

and Mn has polynomial volume growth, we are able to apply Lemma 1.0.3 to obtain that |Φ|2 ≤ 0

on Mn. Then, |Φ| ≡ 0 and Mn is totally umbilical submanifold. Consequently, taking into

account (3.28), we get

hα = ⟨H, eα⟩I = HαI = 0,
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for all α > n + 1. Thus, we have that the first normal subspace,

N1 =
{
eα ∈ X⊥(Mn);hα = 0

}⊥
,

is parallel and it has dimension 1. Therefore, we can apply [38, Proposition 4.1] to reduce the

codimension of Mn to 1. So, since Mn is, in fact, a totally umbilical noncompact hypersurface

with polynomial volume growth, we infer that it is isometric to Rn, which corresponds to a

contradiction with the hypothesis R > 0.

At this point, we can reason as in the last part of the proof of Theorem 3.2.1 to conclude, re-

ducing the codimension of Mn again, that Mn must be isometric to a totally umbilical Euclidean

sphere Sn(r), with radius r > 0.

In what follows we will apply Lemma 1.0.4 to get further rigidity results concerning complete

noncompact LW submanifolds in the hyperbolic space. So, we state and prove our first one.

Theorem 3.2.6. Let Mn be a complete noncompact LW hypersurface immersed into the hyper-

bolic space Hn+1 with n ≥ 3, such that R = aH + b with b > −1. Suppose that R ≥ 0 and that

|Φ| ≤ x∗
R, for x∗

R defined in (3.16). If |Φ| converges to zero at infinity, then Mn is isometric to

a horosphere of Hn+1.

Proof. Let us consider the smooth vector field X = P(∇|Φ|2) and the smooth function f = |Φ|2

and let us suppose that Mn is not a umbilical hypersurface. So, f is non-identically vanishing

function which converges to zero at infinity. Moreover, we have that

⟨∇f,X⟩ = ⟨∇|Φ|2,P(∇|Φ|2)⟩ ≥ 0.

We claim that divX ≥ 0. Indeed, we already know that

1

2(n− 1)
L(|Φ|2) ≥ (H − a

2
)L(nH) and L(nH) ≥ 1

n− 1
|Φ|2QR(|Φ|), (3.35)

where QR is the one-parameter family of real functions given by (3.15). Thus, since
(
H − a

2

)
≥ 0,

from (3.35) jointly with the behavior of QR(x) for 0 ≤ |Φ| ≤ x∗
R, we conclude that

divX = div(P(∇|Φ|2)) = L(|Φ|2) ≥ 2
(
H − a

2

)
QR(|Φ|)|Φ|2 ≥ 0.

Hence, we can apply Proposition 1.0.4 to get that

⟨∇f,X⟩ = ⟨P(∇|Φ|2),∇|Φ|2⟩ ≡ 0.

Consequently, since Lemma 3.1.1 gives that P is positive definite, we have that ∇|Φ|2 ≡ 0.

Thus, f = |Φ|2 is constant. But, since f converges to zero at infinity, it must be identically

zero, leading us to a contradiction. Therefore, Mn is a complete noncompact totally umbilical

hypersurface of Hn+1 with R ≥ 0, which means that Mn is isometric to a horosphere of Hn+1.
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In the case n = 2, reasoning as in the proof of Theorem 3.2.6 we also obtain the following.

Theorem 3.2.7. Let M2 be a complete noncompact LW surface immersed into the hyperbolic

space H3, such that R = aH + b with b > −1. Suppose that R ≥ 0. If |Φ| converges to zero at

infinity, then M2 is isometric to a horosphere of H3.

Applying again a codimension reduction process, we obtain our next rigidity result.

Theorem 3.2.8. Let Mn be a complete noncompact LW submanifold immersed with parallel

normalized mean curvature vector field into the hyperbolic space Hn+p with n ≥ 4, such that

R = aH + b with a ≥ 0 and b > −1. Suppose that R ≥ 0 and that |Φ| ≤ x∗
R, for x∗

R defined

in (3.16). If |Φ| converges to zero at infinity, then Mn is isometric to a horosphere of Hn+1.

Proof. It is not difficult to verify that, using inequality (3.33) and following similar steps of the

proof of Theorem 3.2.6, we can achieve in ∇|Φ|2 ≡ 0. So, taking into account (3.28), we get

hα = ⟨H, eα⟩I = HαI = 0,

for every α > n + 1. This implies that the first normal subspace,

N1 =
{
eα ∈ X⊥(Mn);hα = 0

}⊥
,

is parallel and has dimension 1. Therefore, we are in position to apply once more [38, Propo-

sition 4.1], reducing the codimension of Mn to 1 and concluding that it is a totally umbilical

noncompact hypersurface of Hn+1 with R ≥ 0. Consequently, Mn must be a horosphere of

Hn+1.

In our last rigidity result of this section, we will deal with complete noncompact LW sub-

manifolds having nonnegative sectional curvature, which are immersed with globally flat normal

bundle in Hn+p.

Theorem 3.2.9. Let Mn be a complete noncompact LW submanifold with nonnegative sectional

curvature immersed into the hyperbolic space Hn+p, n ≥ 2 with globally flat normal bundle and

parallel normalized mean curvature vector field, such that R = aH + b with b > −1. If the total

umbilicity tensor of the immersion |Φ| converges to zero at infinity, then Mn is isometric to a

horosphere of Hn+1.

Proof. As before, we take the smooth vector field X = P(∇|Φ|2) and the smooth function

f = |Φ|2. Supposing that Mn is not a totally umbilical submanifold, reasoning as in the proof

of Theorem 3.2.6 we obtain that f is non-identically vanishing function which converges to zero

at infinity and such that ⟨∇f,X⟩ ≥ 0.

Now, let us verify that divX ≥ 0. Indeed, we have

1

2
∆|A|2 =

∑
i,j,α

hα
ij∆hα

ij +
∑
i,j,k,α

(hα
ijk)2. (3.36)
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Using Codazzi equation (3.5) into (3.36), we get

1

2
∆|A|2 = |∇A|2 +

∑
i,j,k,α

hα
ijh

α
kijk. (3.37)

On the other hand, by exterior differentiation of (3.1) and assuming that Mn has globally

flat normal bundle (that is, R⊥ = 0), we obtain the following Ricci identity

hα
ijkl − hα

ijlk =
∑
m

hα
mjRmikl +

∑
m

hα
imRmjkl. (3.38)

Thus, from (3.28), (3.37) and (3.38) we reach at

1

2
∆|A|2 = |∇A|2 +

∑
i,j

nHn+1
ij hn+1

ij +
∑

i,j,m,k,α

hα
ijh

α
miRmkjk +

∑
i,j,k,m,α

hα
ijh

α
kmRmijk. (3.39)

Consequently, taking a (local) orthonormal frame {e1, . . . , en} on Mn such that hα
ij = λα

i δij, for

every α, from (3.39) we obtain the following Simons-type formula

1

2
∆|A|2 = |∇A|2 +

∑
i

λn+1
i (nH)ii +

1

2

∑
i,j,α

Rijij(λ
α
i − λα

j )2. (3.40)

Moreover, using the definition (3.12), we obtain

L(nH) = nH∆(nH) −
∑
i

λn+1
i (nH)ii

=
n(n− 1)

2
∆R +

1

2
∆|A|2 − n2|∇H|2 −

∑
i

λn+1
i (nH)ii. (3.41)

Thus, inserting (3.40) into (3.41) we get

L(nH) =
n(n− 1)

2
∆R + |∇A|2 − n2|∇H|2 +

1

2

∑
i,j,α

Rijij(λ
α
i − λα

j )2. (3.42)

Provided that R = aH + b, from (3.11) and (3.42) we have

L(nH) = |∇A|2 − n2|∇H|2 +
1

2

∑
i,j

Rijij(λ
α
i − λα

j )2. (3.43)

Hence, since Mn is supposed to have nonnegative sectional curvature and using Proposition

3.1.2, from (3.43) we get L(nH) ≥ 0. Thus, since (H − a
2
) ≥ 0, from (3.35) we finally deduce

that

divX = div(P(∇|Φ|2)) = L(|Φ|2) ≥ 2(n− 1)
(
H − a

2

)
L(nH) ≥ 0.

Now, applying Lemma 1.0.4 we obtain

⟨∇f,X⟩ = ⟨P(∇|Φ|2),∇|Φ|2⟩ ≡ 0.
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So, since Proposition 3.1.1 guarantees that P is positive definite, we get that ∇|Φ|2 ≡ 0. Thus,

as in the last part of the proof of Theorem 3.2.6, we will have that f = |Φ|2 is identically

zero, leading us to a contradiction. Therefore, Mn must be totally umbilical and, reducing the

codimension of Mn to 1, we conclude that Mn is isometric to a horosphere of Hn+1.
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Chapter 4

LW hypersurfaces in Einstein manifolds

In this chapter we study the geometry of linear Weingarten (LW) spacelike hypersurfaces

immersed in an Einstein space obeying some standard curvature conditions.The results that will

be present in this chapter make part of [36,47,52,54]

4.1 Rigidity results for closed LW hypersurfaces in an

Einstein spacetime En+1
1

4.1.1 Preliminaries

In this section, we will consider complete spacelike hypersurfaces Mn immersed in a Lorentz

space Ln+1
1 . We choose a local orthonormal frame e1, · · · , en+1 in Ln+1

1 such that, at each point

of Mn, e1, . . . , en are tangent to Mn and en+1 is normal to Mn. Using the following convention

of indices

1 ≤ A,B,C, . . . ≤ n + 1 and 1 ≤ i, j, k, . . . ≤ n,

and taking the corresponding dual coframe ω1, . . . , ωn+1, the semi-Riemannian metric of Ln+1
1 is

given by ds2 =
∑

A ϵA ω2
A, where ϵi = 1 and ϵn+1 = −1. So, denoting by {ωAB} the connection

forms of Ln+1
1 , we have that the structure equations of Ln+1

1 are given by

dωA = −
∑
B

ϵB ωAB ∧ ωB, ωAB + ωBA = 0 (4.1)

and

dωAB = −
∑
C

ϵC ωAC ∧ ωCB − 1

2

∑
C,D

ϵCϵDRABCD ωC ∧ ωD, (4.2)

where RABCD denotes the components of the curvature tensor of Ln+1
1 .

In this setting, denoting by RCD and R the components of the Ricci tensor and the scalar

curvature of the Lorentz space Ln+1
1 , respectively, we also have

RCD =
∑
B

ϵBRBCDB, R =
∑
A

ϵARAA.
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We are going to assume that there exist constants c1 and c2 such that the sectional curvature

K of the Lorentz manifold Ln+1
1 satisfies the following two constraints

K(u, η) = −c1
n
, (4.3)

for any u ∈ TM and η ∈ TM⊥, and

K(u, v) ≥ c2, (4.4)

for any tangent vectors u, v ∈ TM . In particular, the Lorentzian space forms Ln+1
1 (c) of constant

sectional curvature c satisfy curvature conditions (4.3) and (4.4) for any spacelike hypersurface

Mn immersed in Ln+1
1 (c) and − c1

n
= c2 = c.

Moreover, there are several examples of Lorentz spaces which are not Lorentz space forms

and satisfy (4.3) and (4.4). For instance, Lorentz product manifolds Hk
1(−c1/n) × Nn+1−k(c2),

where c1 > 0, and Rk
1×Sn+1−k, where we are considering the spacelike hypersurface Mn as being

a slice of the ambient space. In particular, R1
1 × Sn is a so-called Einstein Static Universe. Also

the so-called Robertson-Walker spacetime N(c, f) = I ×f N3(c) is another general example of

Lorentz space, where I denotes an open interval of R1
1, f is a positive smooth function defined

on the interval I and N3(c) is a 3-dimensional Riemannian manifold of constant curvature c.

N(c, f) also satisfies curvature conditions (4.3) and (4.4) for an appropriate choice of the function

f and M3 = {t0} ×N3 for some t0 ∈ I (for more details, see [35,83]).

We also observe that denoting by RAB the components of the Ricci tensor of a manifold

M
n+1

satisfying curvature condition (4.3), the scalar curvature R of M
n+1

is given by

R =
n+1∑
A=1

εARAA =
n∑

i,j=1

Rijji − 2
n∑

i=1

R(n+1)ii(n+1) =
n∑

i,j=1

Rijji + 2c1. (4.5)

Consequently, if (En+1, g) is an Einstein manifold, the components of its Ricci tensor satisfy

RCD = λgCD, for some constant λ ∈ R. In particular, the scalar curvature R is constant and,

from (4.5), we conclude that
∑n

i,j=1 Rijji is also constant. So, for sake of simplicity, along this

chapter we will denote the constant 1
n(n−1)

∑
i,j Rijij by R.

The components RABCD;E of the covariant derivative of the curvature tensor of Ln+1
1 are

defined by∑
E

ϵERABCD;EωE =dRABCD −
∑
E

ϵE
(
REBCDωEA + RAECDωEB + RABEDωEC + RABCEωED

)
.

Furthermore, restricting all the tensors to the spacelike hypersurface Mn, since ωn+1 = 0 on

Mn, we get
∑
i

ω(n+1)i ∧ ωi = dωn+1 = 0. So, from Cartan’s Lemma we obtain

ω(n+1)i =
∑
j

hijωj and hij = hij. (4.6)
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This gives the second fundamental form of Mn, A =
∑
i,j

hijωiωjen+1, and its squared length

|A|2 =
∑
i,j

h2
ij. Beyond that, the mean curvature H of Mn is defined by H =

1

n

∑
i

hii.

From (4.1) and (4.2) we deduce that the connection forms {ωij} of Mn are characterized by

the following structure equations

dωi = −
∑
j

ωij ∧ ωj, ωij + ωji = 0 and dωij = −
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl, (4.7)

where Rijkl are the components of the curvature tensor of Mn. Hence, from (4.7) we obtain the

Gauss equation

Rijkl = Rijkl − (hikhjl − hilhjk) .

The components Rij of the Ricci tensor and the normalized scalar curvature R of Mn are given,

respectively, by

Rij =
∑
k

Rkijk − nHhij +
∑
k

hikhkj

and

|A|2 = n2H2 + n(n− 1)R−
∑
i,j

Rijij. (4.8)

Moreover, the first covariant derivatives hijk of hij satisfy∑
k

hijkωk = dhij −
∑
k

hikωkj −
∑
k

hjkωki. (4.9)

Then, by exterior differentiation of (4.6) we obtain the Codazzi equation

hijk − hikj = R(n+1)ijk. (4.10)

The second covariant derivatives hijkl of hij are given by∑
l

hijklωl = dhijk −
∑
l

hljkωli −
∑
l

hilkωlj −
∑
l

hijlωlk.

Taking the exterior derivative in (4.9) we obtain the following Ricci formula

hijkl − hijlk = −
∑
m

himRmjkl −
∑
m

hjmRmikl. (4.11)

Restricting the covariant derivative RABCD;E of RABCD on Mn, we get

R(n+1)ijk;l = R(n+1)ijkl + R(n+1)i(n+1)khjl + R(n+1)ij(n+1)hkl +
∑
m

Rmijkhml, (4.12)
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where R(n+1)ijkl denotes the covariant derivative of R(n+1)ijk as a tensor on Mn so that∑
l

R(n+1)ijklωl = dR(n+1)ijk −
∑
l

R(n+1)ljkωli −
∑
l

R(n+1)ilkωlj −
∑
l

R(n+1)ijlωlk.

Since the Laplacian ∆hij of hij is defined by ∆hij :=
∑
k

hijkk. From (4.10), (4.11) and

(4.12), we obtain

∆hij = (nH)ij − nH
∑
l

hilhlj + |A|2hij +
∑
k

(
R(n+1)ijk;k + R(n+1)kik;j

)
(4.13)

−
∑
k

(hkkR(n+1)ij(n+1) + hijR(n+1)k(n+1)k) −
∑
k,l

(2hklRlijk + hjlRlkik + hilRlkjk).

Thus, since ∆|A|2 = 2

(∑
i,j,k

h2
ijk +

∑
i,j

hij∆hij

)
, from (4.13) we get

1

2
∆|A|2 = (|A|2)2 +

∑
i,j,k

h2
ijk +

∑
i,j

(nH)ijhij +
∑
i,j,k

(
R(n+1)ijk;k + R(n+1)kik;j

)
hij

−
∑
i,j

nHhijR(n+1)ij(n+1) + |A|2
∑
k

R(n+1)k(n+1)k (4.14)

−2
∑
i,j,k,l

(hklhijRlijk + hilhijRlkjk) − nH
∑
i,j,l

hilhljhij.

Again, we will work with the following symmetric tensor

Φ =
∑
i,j

Φijωi ⊗ ωj, (4.15)

where Φij = hij −Hδij. Let |Φ|2 =
∑
i,j

Φ2
ij be the square of the length of Φ, we can check that

Φ is traceless and

|Φ|2 = |A|2 − nH2. (4.16)

Moreover, considering that Mn is a linear Weingarten with R = aH + b, it holds for an Einstein

spacetime the following algebraic relations from equations (4.8) and (4.16):

|Φ|2 = |A|2 − nH2 = n(n− 1)H2 + n(n− 1)aH + n(n− 1)(b−R), (4.17)

where R = 1
n(n−1)

∑
i,j Rijij. In the case that b < R, it follows from (4.17) that H(p) ̸= 0 for

every p ∈ Mn. In this case, we choose on Mn the orientation such that H > 0.

Following Cheng-Yau [31], we introduce the Cheng-Yau operator L : C∞(Mn) → C∞(Mn)

associated to ϕ acting on any smooth function f by

 L(f) =
∑
i,j

ϕijfij =
∑
i,j

(nHδij − hij)fij. (4.18)
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Hence, setting f = nH in (4.18) and taking a (local) orthonormal frame {e1, . . . , en} on Mn

such that hij = λiδij, from equation (4.8) we obtain the following

L(nH) =
1

2
∆(nH)2 −

∑
i

(nH)2i −
∑
i

λi(nH)ii (4.19)

=
1

2
∆|A|2 − n2|∇H|2 −

∑
i

λi(nH)ii

+
1

2
∆

(∑
i,j

Rijji − n(n− 1)R

)
.

In what follows, we will quote some key lemmas in order to prove the results of the next

section. The first one corresponds to [43, Lemma 3.2].

Lemma 4.1.1. Let Mn be a complete LW spacelike hypersurface immersed in an Einstein

spacetime En+1
1 satisfying curvature conditions (4.3) and (4.4), such that R = aH + b with

(n− 1)a2 − 4n(b−R) ≥ 0. (4.20)

Then,

|∇H|2 =
∑
i,j,k

h2
ijk ≥ n2|∇H|2. (4.21)

Moreover, if the inequality (4.20) is strict and equality occurs in (4.21), then H is constant on

Mn.

For a LW spacelike hypersurface Mn, we can also introduce the second-order linear differential

operator L : C∞(Mn) → C∞(Mn) defined by

L = L +
n− 1

2
a∆, (4.22)

where ∆ is the Laplacian operator on Mn and L : C∞(Mn) → C∞(Mn) denotes the Cheng-Yau

operator defined in (4.18), which is given by

Lu = tr(P ◦ Hess (u)), (4.23)

for every u ∈ C∞(Mn), where Hess is the self-adjoint linear tensor metrically equivalent to the

Hessian of u and P : X(Mn) → X(Mn) denotes the first Newton transformation of Mn which is

given by P = nHI − A. So, from (4.22) and (4.23), we have that

Lu = tr(P ◦ Hess (u)),

with

P =

(
nH +

n− 1

2
a

)
I − A. (4.24)
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Thus, by using the standard notation ⟨, ⟩ for the (induced) metric of Mn, we get

Lu =
∑
i

⟨P (∇ei∇u), e1⟩,

where {e1, · · · , en} is a (local) orthonormal frame on Mn. Consequently, we obtain

div(P (∇u)) =
∑
i

⟨(∇eiP )(∇u), ei⟩ +
∑
i

⟨P (∇ei∇u), e1⟩

= ⟨divP,∇u⟩ + L(u). (4.25)

Since we are assuming that En+1
1 is an Einstein manifold, there exist a constant λ such that

Ric = λ⟨, ⟩, in which Ric denotes the Ricci tensor of En+1
1 . Thus, from [7, Lemma 3.1]

⟨divP,∇u⟩ =
∑
i

⟨R(N, ei)ei,∇u⟩ = −Ric(N,∇u) = −λ⟨N,∇u⟩ = 0,

where N stands for the Gauss mapping of Mn. Hence, from equation (4.25), we conclude that

Lu = div(P (∇u)). (4.26)

Thus, from (4.22) and (4.26), we can verify that L can be rewritten in the following divergence

form

Lu = div(P(∇u)). (4.27)

In our next result, we establish a sufficient criteria of ellipticity for the operator L(see [43,

Lemma 3.3]).

Lemma 4.1.2. Let Mn be a LW spacelike hypersurface immersed in an Einstein spacetime En+1
1

satisfying curvature condition (4.3), such that R = aH + b. Let µ− and µ+ be, respectively, the

minimum and the maximum of the eigenvalues of the operator P defined in (4.24) at every point

p ∈ Mn.

If b < R, then the operator L defined in (4.22) is elliptic, with

µ− > 0 and µ+ < 2nH + (n− 1)a.

In the case where b = R, assume further that the mean curvature function H does not change

sign and b ≤ R. Then the operator L is semi-elliptic, with

µ− ≥ 0 and µ+ ≤ 2nH + (n− 1)a,

unless Mn is totally geodesic. Moreover, in the case where b < R on Mn, the above inequalities

are strict and the operator L is elliptic.

Remark 4.1.3. Regarding the ellipticity of L, observe that when Mn is totally geodesic then

the operator L reduces to L = n−1
2
a∆, which is elliptic if and only if a > 0. For that reason,
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in order to keep the validity of Lemma 4.1.2 when b = R even in the totally geodesic case we

choose a to be any positive constant.

The following lower boundedness for the operator L acting on the squared length of the trace-

less operator Φ of a LW spacelike hypersurface will be essential to establish our characterization

results.

Proposition 4.1.4. Let Mn (n ≥ 3) be a complete LW spacelike hypersurface immersed with

parallel normalized mean curvature vector in an Einstein spacetime En+1
1 satisfying curvature

conditions (4.3) and (4.4), such that R = aH + b with b ≤ R. In the case where b = R, assume

that the mean curvature function H does not change sign and b ≤ R. Then,

L(|Φ|2) ≥ 2(n− 1)|Φ|2φa,b(|Φ|)

√
|Φ|2

n(n− 1)
+ R− b +

a2

4
,

where

φa,b(x) =
n− 2

n− 1
x2 +

(
na− n(n− 2)√

n(n− 1)
x

)√
x2

n(n− 1)
+ R− b +

a2

4

+
n(n− 2)√
n(n− 1)

a

2
x− n

(
R− b− c +

a2

2

)
(4.28)

and c = 2c2 +
c1
n
.

Proof. Let us choose a local orthonormal frame {e1, . . . , en} on Mn such that hij = λiδij and

Φij = κiδij. Taking into account equations (4.14), (4.19), we get from (4.22) that

L(nH) = (|A|2)2 − nH
∑
i

λ3
i +

∑
i,j,k

h2
ijk − n2|∇H|2

−2
∑
i,k

(λiλkRkiik + λ2
iRikik) +

∑
i,k

λi(R(n+1)iik;k + R(n+1)kik;i) (4.29)

−

(
nH

∑
i

λiR(n+1)ii(n+1) + |A|2
∑
k

R(n+1)k(n+1)k

)
.

On the other hand, since (En+1
1 , g) is an Einstein spacetime, the components of its Ricci

tensor satisfy RCD = λgCD, for some constant λ ∈ R. Moreover, we can consider {e1, . . . , en}
a local orthonormal frame on Mn such that hij = λiδij. So, proceeding as in [65], from the

differential Bianchi identity and the fact that gAB;C ≡ 0 we get∑
i,k

λiR(n+1)iik;k = −
∑
i,k

λi

(
Rikik;(n+1) + Rk(n+1)ik;i

)
= −

∑
i

λi

(
Rii;(n+1) −R(n+1)i;i

)
= −

∑
i

λi

(
λgii;(n+1) − λg(n+1)i;i

)
= 0 (4.30)
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and ∑
i,k

λiR(n+1)kik;i =
∑
i

λiR(n+1)i;i =
∑
i

λiλg(n+1)i;i = 0, (4.31)

where Rijkl;m are the covariant derivatives of Rijkl on En+1
1 . Consequently, from (4.30) and (4.31)

we obtain ∑
i,j,k

(
R(n+1)ijk;k + R(n+1)iki;j

)
hij = 0. (4.32)

Still, since we are assuming that b ≤ R, we have that the relation (4.20) holds, and hence

we can apply Lemma 4.1.1 to guarantee that∑
i,j,k

h2
ijk − n2|∇H|2 ≥ 0. (4.33)

Thus, from (4.29), (4.32) and (4.33) we have

L(nH)≥ (|A|2)2 − nH
∑
i

λ3
i − 2

∑
i,k

(λiλkRkiik + λ2
iRikik)

−

(
nH

∑
i

λiR(n+1)ii(n+1) + |A|2
∑
k

R(n+1)k(n+1)k

)
. (4.34)

Moreover, it is not difficult to verify the following algebraic relations∑
i

κi = 0,
∑
i

κ2
i = |Φ|2 and

∑
i

κ3
i =

∑
i

λ3
i − 3H|Φ|2 − nH3. (4.35)

Hence, from equations (4.17) and (4.35), we have

(|A|2)2 − nH
∑
i

λ3
i = (|Φ|2 + nH2)2 − nH

∑
i

κ3
i − 3nH2|Φ|2 − n2H4

= |Φ|4 − nH2|Φ|2 − nH
∑
i

κ3
i .

At this point, we observe that, when n = 2, since Φ is traceless, we have
∑

i κ
3
i = 0 and so,

(|A|2)2 − 2H
∑
i

λ3
i = |Φ|2

(
|Φ|2 − 2H2

)
.

On the other hand, when n ≥ 3, it follows from Lemma 3.1.3 that

(|A|2)2 − nH
∑
i

λ3
i ≥ |Φ|2

(
|Φ|2 − n(n− 2)√

n(n− 1)
H|Φ| − nH2

)
. (4.36)

Consequently, inequality (4.36) holds for all n ≥ 2.
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By using the curvature conditions (4.3) and (4.4), after straightforward computations we get

−

(∑
i

nHλiR(n+1)ii(n+1) + |A|2
∑
k

R(n+1)k(n+1)k

)
= c1(|A|2 − nH2) (4.37)

and

−2
∑
i,k

(λiλkRkiik + λ2
iRikik)≥ c2

∑
i,k

(λi − λk)2

= 2nc2(|A|2 − nH2). (4.38)

Therefore, inserting (4.36), (4.37) and (4.38) in (4.34), we have

L(nH)≥ |Φ|2
(
|Φ|2 − n(n− 2)√

n(n− 1)
H|Φ| − nH2

)
+ c1|Φ|2 + 2nc2|Φ|2

= |Φ|2
(
|Φ|2 − n(n− 2)√

n(n− 1)
H|Φ| − n(H2 − c)

)
, (4.39)

where c = c1
n

+ 2c2.

But from (4.17), we obtain

1

n− 1
|Φ|2 = nH2 + naH + n(b−R). (4.40)

Since En+1
1 satisfies curvature condition (4.3), it follows that R is a constant. If Mn is totally

geodesic, then the operator L reduces to L = n−1
2
a∆ where a > 0 is any positive constant (see

Remark 4.1.3). In this case |Φ|2 ≡ 0 and the inequality in Proposition 4.1.4 holds trivially. On

the other hand, if Mn is not totally geodesic then Lemma 4.1.2 guarantees that the operator P
is positive definite if b < R, and P is positive semi-definite if b = R. In any case, from (4.40)

we have

1

n− 1
L(|Φ|2) = 2HL(nH) + 2n⟨P(∇H),∇H⟩ + aL(nH) (4.41)

≥ 2
(
H +

a

2

)
L(nH),

since (4.22) gives that L(u2) = 2uL(u) + 2⟨P(∇u),∇u⟩ for every u ∈ C2(M).

Therefore, from (4.39) and (4.41) we get

1

2(n− 1)
L(|Φ|2) ≥

(
H +

a

2

)
|Φ|2

(
|Φ|2 − n(n− 2)√

n(n− 1)
H|Φ| − n(H2 − c)

)
. (4.42)

Besides, from (4.23) we have

H2 =
1

n(n− 1)
|Φ|2 + R− aH − b. (4.43)
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Consequently, taking into account that (H + a
2
) ≥ 0, we can write

H +
a

2
=

√
|Φ|2

n(n− 1)
+ R− b +

a2

4
. (4.44)

From (4.39), after a straightforward computation, we have

|Φ|2 +
n(n− 2)√
n(n− 1)

H|Φ| − n(H2 − c) = φa,b(|Φ|), (4.45)

where φa,b(x) is the function defined in (4.28). Therefore, replacing (4.45) and (4.44) in (4.42),

we obtain the desired inequality.

4.1.2 Complete LW spacelike hypersurfaces immersed in En+1
1 satis-

fying standard curvature constraints

Having seen this, we are in position to establish our rigidity results using the two suitable

maximum principles due to [8, 9] jointly with the modified Cheng-Yau’s operator L concerning

complete LW spacelike hypersurfaces immersed with parallel normalized mean curvature vector

field in an Einstein spacetime En+1
1 .

Theorem 4.1.5. Let Mn be a complete noncompact LW spacelike hypersurface immersed with

parallel normalized mean curvature vector field in an Einstein spacetime En+1
1 satisfying curvature

conditions (4.3) and (4.4), such that R = aH+b for some constants a, b ∈ R with b < R. Suppose

that |A|2 ≤ 2
√
n− 1c with c = c1

n
+ 2c2 > 0. If |Φ| converges to zero at infinity, then Mn is a

totally umbilical hypersurface.

Proof. Let us suppose by contradiction that such a LW spacelike hypersurface Mn is not totally

umbilical. We consider the smooth vector field X = P(∇|Φ|2) and the smooth function f = |Φ|2

and we claim that the required conditions to apply Lemma 1.0.4 are satisfied. Surely, f is non-

identically vanishing function which converges to zero at infinity. Moreover, we can obtain from

Lemma 4.1.2 that P is positive definite for b < R and then

⟨∇f,X⟩ = ⟨∇|Φ|2,P(∇|Φ|2)⟩ ≥ 0. (4.46)

We affirm that divX ≥ 0. Indeed, we have from equation (4.41) that

1

2(n− 1)
L(|Φ|2) ≥ (H +

a

2
)L(nH). (4.47)

Besides that, from (4.17) we can verify that

|A|2 − 2nH2 =
1

2
√
n− 1

((√
n− 1 + 1

)
|Φ| −

(√
n− 1 − 1

)√
nH
)2

(4.48)

+
n(n− 2)√
n(n− 1)

H|Φ| − n

2
√
n− 1

|A|2.

51



Thus, from (4.39) and (4.48) we obtain

L(nH) ≥ |Φ|2
(
nc− n

2
√
n− 1

|A|2
)

≥ 0, (4.49)

from the assumption that |A|2 ≤ 2
√
n− 1c.

As
(
H + a

2

)
≥ 0, from (4.27), (4.47) and (4.49), we have

divX = div(P(∇|Φ|2)) = L(|Φ|2) ≥ 2(n− 1)
(
H +

a

2

)
L(nH) ≥ 0.

Hence, we can apply Lemma 1.0.4 to get that

⟨∇f,X⟩ = ⟨∇|Φ|2,P(∇|Φ|2)⟩ = 0.

Therefore, since the operator P is positive definite, we conclude that ∇|Φ| ≡ 0. Thus, f = |Φ|
is constant. But f converges to zero at infinity, so it must be identically zero, leading us to a

contradiction since we are supposing that Mn is not a totally umbilical hypersurface.

The next result involves polynomial volume growth.

Theorem 4.1.6. Let Mn be a complete noncompact LW spacelike hypersurface immersed with

parallel normalized mean curvature vector field in an Einstein spacetime En+1
1 satisfying curvature

conditions (4.3) and (4.4), such that R = aH + b for some a, b ∈ R with b < R. Suppose that

|∇A| is bounded and supM |A|2 < 2
√
n− 1c with c = c1

n
+ 2c2 > 0. If Mn has polynomial volume

growth, then Mn is is a totally umbilical hypersurface.

Proof. Let us take the smooth vector field X = P(∇|Φ|2) and the smooth function f = |Φ|2.
By hypothesis, we have that |A| is bounded on Mn and, consequently, from definition (4.24), we

get

|X| = |P(∇|Φ|2)| ≤ |P||∇|Φ|2| ≤ k|∇|Φ|2|,

for some positive constant k. Besides that, by equation (4.17), since |A| is bounded, |Φ| is also

bounded on Mn and as we are supposing the boundedness of |∇A|, it follows the boundedness

of |∇Φ|. Thereby, Kato’s inequality guarantees that

|X| ≤ k|∇|Φ|2| = 2k|Φ||∇|Φ|| ≤ 2k|Φ||∇Φ| ≤ C < +∞, (4.50)

for some positive constant C.

Now, we must have divX ≥ αf on Mn, for some positive constant α ∈ R. For this, we can

combine (4.27) and (4.49) with (4.47) to obtain

divX = div(P(∇|Φ|2)) = L(|Φ|2) ≥ 2(n− 1)
(
H +

a

2

)(
nc− n

2
√

(n− 1)
|A|2

)
|Φ|2. (4.51)

Since we are assuming supM(|A|2) < 2
√
n− 1c and (H + a

2
) ≥ β, for some positive constant
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β ∈ R (see Remark 2.1.17), from (4.51) we get

div(X) ≥ α|Φ|2, (4.52)

where α = 2(n− 1)β

(
nc− n

2
√

(n−1)
supM(|A|2)

)
> 0. Therefore, in case that Mn is a complete

noncompact hypersurface, conditions (4.46), (4.50) and (4.52) are verified and we are able to

apply Lemma 1.0.3 to obtain that |Φ|2 ≤ 0. Hence, |Φ| = 0 on Mn, guaranteeing that Mn is a

totally umbilical hypersurface.

In the case that Mn is a compact hypersurface, we can integrate both sides of (4.49) and use

the Divergence Theorem to get that

∫
M

|Φ|2
(
nc− n

2
√

(n− 1)
|A|2

)
dM ≤

∫
M

L(nH) dM = 0,

since the operator L is a divergence type as it was observed in (4.27). Consequently, as we are

assuming that supM(|A|2) < 2
√
n− 1c, we must have |Φ| = 0 on Mn and Mn is also a totally

umbilical hypersurface.

As an application of [14, Lemma 4.2] (see also [15, Theorem 6.13]), we establish the follow-

ing Omori-Yau maximum principle which will be our analytical key tool for the proof of our

characterization result of LW spacelike hypersurfaces in an Einstein spacetime En+1
1 .

Proposition 4.1.7. Let Mn be a complete noncompact LW spacelike hypersurface immersed with

parallel normalized mean curvature vector field in an Einstein spacetime En+1
1 satisfying curvature

conditions (4.3) and (4.4), such that R = aH + b with b ≤ R. In the case where b = R, assume

that the mean curvature function H does not change sign and b ≤ R. If supM |Φ|2 < +∞, then

the Omori-Yau maximum principle holds on Mn for the operator L defined in (4.22).

Proof. Since En+1
1 satisfies curvature condition (4.3), we have that R is constant. Now, taking

into account (4.17) we get

|Φ|2 = n(n− 1)
(
H2 + aH

)
+ n(n− 1)

(
b−R

)
. (4.53)

Since we are assuming supM |Φ|2 < +∞, from (4.53) we conclude that supM H < +∞. Thus,

from (4.24) we have

tr(P ) = n(n− 1)H +
n(n− 1)

2
a

and, hence,

sup
M

tr(P ) < +∞. (4.54)

On the other hand, from (4.17) and curvature condition (4.4) we see that the sectional

curvatures of Mn satisfy

Rijij ≥ c2 −
(
nH +

n− 1

2
a

)2

> −∞. (4.55)
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Furthermore, Lemma 4.1.2 guarantees that the operator L is semi-elliptic. Therefore, taking

into account (4.22), (4.54) and (4.55), we can apply [14, Lemma 4.2] to reach the desired result.

Now, applying Proposition 4.1.4, we are able to prove the following result for LW spacelike

hypersurfaces immersed in an Einstein spacetime En+1
1 .

Theorem 4.1.8. Let Mn be a complete LW spacelike hypersurface immersed with parallel nor-

malized mean curvature vector field in an Einstein spacetime En+1
1 satisfying curvature conditions

(4.3) and (4.4), such that R = aH + b with b ≤ R < b + c, where c = 2c2 +
c1
n

> 0, and b ≤ R.

In the case where b = R, assume further that the mean curvature function H does not change

sign. Then

(i) either supM |Φ|2 = 0 and Mn is a totally umbilical hypersurface,

(ii) or

sup
M

|Φ|2 ≥ α(n, a, b, c,R) > 0,

where α(n, a, b, c,R) is a positive constante depending on n, a, b, c and R.

In particular, if b < R, the equality supM |Φ|2 = α(n, a, b, c,R) holds and this supremum is at-

tained at some point of Mn, then Mn is an isoparametric hypersurface with two distinct principal

curvatures one of which is simple.

Proof. If supM |Φ|2 = 0, then Mn is totally umbilical and, hence, item (i) holds. If supM |Φ|2 =

+∞, then (ii) is trivially satisfied. So, let us suppose that 0 < supM |Φ|2 < +∞ and let us take

u = |Φ|2. Then, from Proposition 4.1.4 we get

L(u) ≥ f(u), (4.56)

where

f(u) = 2(n− 1)uφa,b(
√
u)

√
u

n(n− 1)
+ R− b +

a2

4

and φa,b(x) is given by (4.28).

If Mn is compact, there exists a point p0 ∈ Mn such that u(p0) = u∗ = supu. Consequently,

∇u(p0) = 0 and Lu(p0) ≤ 0. Therefore, from (4.56) we get f(u∗) ≤ 0. Now, assume that Mn

is complete and non-compact. Since u∗ < +∞, Proposition 4.1.7 guarantees that there exists a

sequence of points {pk}k∈N ⊂ Mn satisfying

u(pk) > u∗ − 1

k
and Lu(pk) <

1

k
, (4.57)

for every k ∈ N. Therefore from (4.56) and (4.57), we get

1

k
> Lu(pk) ≥ f(u(pk)). (4.58)
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Taking into (4.58) the limit when k → +∞, by continuity, we have

f(u∗) = 2(n− 1)u∗φa,b(
√
u∗)

√
u∗

n(n− 1)
+ R− b +

a2

4
≤ 0.

Since u∗ > 0 and b ≤ R, we obtain

φa,b(
√
u∗) ≤ 0. (4.59)

Note that the hypotheses b ≤ R < b + c and b ≤ R guarantee us that

φa,b(0) = na

√
R− b +

a2

4
− n

(
a2

2
+ R− b− c

)
≥ na

√
a2

4
− n

(
a2

2
+ R− b− c

)
= −n

(
R− b− c

)
> 0.

On the other hand, it is not difficult to verify that the function φa,b(x) is strictly decreasing

for x ≥ 0. Thus, by the continuity of φa,b(x), we may assume the equation φa,b(x) = 0 attains

its positive root at x0 =
√
α(n, a, b, c,R) > 0. Therefore, (4.59) implies

u∗ ≥ x2
0 = α(n, a, b, c,R),

that is,

sup
M

|Φ|2 ≥ α(n, a, b, c,R).

This proves the inequality in (ii).

Moreover, equality supM |Φ|2 = α(n, a, b, c,R) holds if and only if
√
u∗ = x0. Thus φa,b(

√
u) ≥

0 on Mn, which jointly with (4.56) implies that

L(u) ≥ 0 on Mn.

Now, suppose that b < R. Hence, Lemma 4.1.2 assures that the operator L is elliptic.

Therefore, if there exists a point p0 ∈ Mn such that |Φ(p0)| = supM |Φ|, from the maximum

principle the function u = |Φ|2 must be constant and, consequently, |Φ| ≡ x0. Thus,

0 = L(|Φ|2) ≥ 2(n− 1)|Φ|2φa,b(|Φ|)

√
|Φ|2

n(n− 1)
+ b−R +

a2

4
.

Hence, all the inequalities along the proof of Proposition 4.1.4 must be equalities. In particular,

since L is elliptic if and only if P is positive defined, returning to (4.41) we obtain that H is

constant. Moreover, it also occurs equality in (4.33) or, equivalently,

|∇A|2 =
∑
i,j,k

h2
ijk = n2|∇H|2 = 0.

So, it follows that λi is constant for every i = 1, . . . , n, that is, Mn is an isoparametric hyper-
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surface. Finally, (4.59) must be also an equality, which guarantees that occurs the equality in

Lemma 3.1.3. This implies that the hypersurface has exactly two distinct principal curvatures

one of which is simple.

Remark 4.1.9. Considering b = 0 in Theorem 4.1.8, we have the case when the mean and scalar

curvatures of the spacelike hypersurface are proportional to each other, that is, R = aH for a

nonzero constant a ∈ R. So, Theorem 4.1.8 can be regarded as a sort of extension of similar

characterization results obtained by Li in [61] and Shu in [80] when the ambient space is the de

Sitter space Sn+1
1 .

From Theorem 4.1.8, we use a classical result of congruence due to Abe, Koike and Yamaguchi

(cf. [1, Theorem 5.1]) to obtain the following

Corollary 4.1.10. Let Mn be a complete LW spacelike hypersurface immersed in de Sitter space

Sn+1
1 , such that R = aH + b with 0 < b ≤ 1 and R ≥ 1. In the case where b = 1, assume further

that the mean curvature function H does not change sign. Then

(i) either supM |Φ|2 = 0 and Mn is a totally umbilical hypersurface,

(ii) or

sup
M

|Φ|2 ≥ α(n, a, b, 1) > 0,

In particular, if b < 1, the equality supM |Φ|2 = α(n, a, b, 1) holds and this supremum is attained

at some point of Mn, then Mn is isometric to a hyperbolic cylinder H1(r) × Sn−1(
√

1 + r2) of

radius r > 0.

Recall that a Riemannian manifold Mn is said to be parabolic if the constant functions are

the only subharmonic functions on Mn which are bounded from above, that is, for a function

u ∈ C2(M)

∆u ≥ 0 and u ≤ u∗ < +∞ implies u = constant.

So, considering the Cheng-Yau modified operator L, we say that Mn is L-parabolic if the only

solutions of the inequality L(u) ≥ 0 which are bounded from above are the constant functions.

In this setting, and motivated by Theorem 3 in [14] we have the following result.

Theorem 4.1.11. Let Mn be a complete LW spacelike hypersurface immersed with parallel nor-

malized mean curvature vector field in an Einstein spacetime En+1
1 satisfying curvature conditions

(4.3) and (4.4), such that R = aH + b with b ≤ R < b + c, where c = 2c2 +
c1
n

> 0 and b ≤ R.

In the case b = R, assume further that the mean curvature function H does not change sign.

Suppose that Mn is not totally umbilical. If Mn is L-parabolic, then

sup
M

|Φ|2 ≥ α(n, a, b, c,R) > 0. (4.60)

Moreover, if the equality occurs in (4.60), then Mn is a isoparametric hypersurface with two

distinct principal curvatures one of which is simple.
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Proof. If supM |Φ|2 = +∞ then there is nothing to prove. On the other hand, in the case that

0 < supM |Φ|2 < +∞, reasoning as in the first part of the proof of Theorem 4.1.8, we guarantee

that supM |Φ|2 ≥ α(n, a, b, c,R). Moreover, if equality holds in (4.60), then we have φa,b(|Φ|) ≥ 0

and, consequently, L(|Φ|2) ≥ 0 on Mn. Therefore, from the L-parabolicity of Mn we conclude

that the function u = |Φ|2 must be constant and equal to α(n, a, b, c,R). At this point, we can

reason as in the proof of the previous theorem.

It is not difficult to verify that from Theorem 4.1.11 jointly with [10, Corollary 2] we get

Corollary 4.1.12. Let Mn be a complete LW spacelike hypersurface immersed in de Sitter

space Sn+1
1 , such that R = aH + b with 0 < b ≤ 1 and R ≥ 1. In the case where b = 1, assume

further that the mean curvature function H does not change sign. Suppose that Mn is not totally

umbilical. If Mn is L-parabolic, then

sup
M

|Φ|2 ≥ α(n, a, b, 1) > 0,

with equality if and only if Mn is isometric to a hyperbolic cylinder H1(r) × Sn−1(
√

1 + r2) of

radius r > 0.

We are also in a position to establish the following L-parabolicity criterium.

Proposition 4.1.13. Let Mn be a complete LW spacelike hypersurface immersed with parallel

normalized mean curvature vector field in an Einstein spacetime En+1
1 satisfying curvature con-

dition (4.3), such that R = aH + b and b ≤ R. In the case b = R, assume further that the mean

curvature function H does not change sign and that b ≤ R. If supM |Φ|2 < +∞ and, for some

reference point o ∈ Mn, ∫ +∞

0

dr

vol(∂Br)
= +∞, (4.61)

then Mn is L-parabolic. Here Br denotes the geodesic ball of radius r in Mn centered at the

origin o.

Proof. We consider on Mn the symmetric (0, 2) tensor field T given by

T (X, Y ) = ⟨PX, Y ⟩,

or, equivalently,

T (∇u, ·)♯ = P(∇u),

for every u ∈ C2(M), where ♯ : T ∗M → TM denotes the musical isomorphism. Thus, from

(4.27) we obtain

L(u) = div
(
T (∇u, ·)♯

)
.

On the other hand, as supM |Φ|2 < +∞, from equation (4.53), we have supM H < +∞. So,

we can define a positive continuous function ξ+ on [0,+∞), by

ξ+(r) = 2n sup
∂Br

H + (n− 1)a. (4.62)
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Thus, from (4.62) we have

ξ+(r) = 2n sup
∂Br

H + (n− 1)a ≤ 2n sup
M

H + (n− 1)a < +∞. (4.63)

Hence, from (4.61) and (4.63) we get∫ +∞

0

dr

ξ+(r)vol(∂Br)
= +∞.

Therefore, we can apply [75, Theorem 2.6] to conclude the proof.

4.2 Rigidity results for closed LW hypersurfaces in an

Einstein manifold En+1

Our purpose here is to study the umbilicity of LW hypersurfaces immersed in an Einstein

manifold satisfying standard curvature constraints which, in particular, are verified by a Rie-

mannian space with constant sectional curvature (see Remark 4.2.1). Our approach is based on

the maximum principles established in [8, 9].

4.2.1 Preliminaries

Along this section, we will consider an n-dimensional, orientable and connected hypersur-

face Mn immersed into a Riemannian manifold M
n+1

. We choose a local orthonormal frame

(e1, · · · , en+1) in M
n+1

with dual coframe (ω1, . . . , ωn+1) such that, at each point of Mn, e1, . . . , en

are tangent to Mn and en+1 is normal to Mn. So, we will use the following convention of indices

1 ≤ A,B,C, . . . ≤ n + 1 and 1 ≤ i, j, k, . . . ≤ n.

In this setting, RABCD, RCD and R denote respectively the Riemannian curvature tensor,

the Ricci tensor and the scalar curvature of M
n+1

. We have

RCD =
∑
B

RBCDB and R =
∑
A

RAA.

Furthermore, restricting all these tensors to Mn, since ωn+1 = 0 on Mn, we get

−
∑
i

ω(n+1)i ∧ ωi = dωn+1 = 0.

Thus, from Cartan’s Lemma we obtain

ω(n+1)i =
∑
j

hijωj and hij = hij. (4.64)
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This gives the second fundamental form of Mn, A =
∑
i,j

hijωiωjen+1, and its squared length

|A|2 =
∑
i,j

h2
ij. Beyond that, the mean curvature H of Mn is defined by H =

1

n

∑
i

hii.

As it is well-known, the Gauss equation is given by

Rijkl = Rijkl + (hikhjl − hilhjk) , (4.65)

where Rijkl are the components of the curvature tensor of Mn. Moreover, the first covariant

derivatives hijk of hij satisfy∑
k

hijkωk = dhij −
∑
k

hikωkj −
∑
k

hjkωki. (4.66)

By exterior differentiation of (4.64) we obtain the Codazzi equation

hijk − hikj = −R(n+1)ijk.

The second covariant derivatives hijkl of hij are given by∑
l

hijklωl = dhijk −
∑
l

hljkωli −
∑
l

hilkωlj −
∑
l

hijlωlk.

Taking the exterior derivative in (4.66) we obtain the following Ricci formula

hijkl − hijlk =
∑
m

himRmjkl +
∑
m

hjmRmikl.

From (4.65), the Ricci curvature Rik and the normalized scalar curvature R of Mn are given,

respectively, by

Rij =
∑
k

Rikjk + nHhij −
∑
k

hikhkj (4.67)

and

R =
1

n− 1

∑
i

Rii. (4.68)

Hence, from (4.67) and (4.68), we get the following relation

|A|2 = n2H2 + n(n− 1)R−
∑
i,j

Rijij. (4.69)

Returning to the context of a hypersurface immersed in a Riemannian manifold M
n+1

, we will

assume the existence constants c1 and c2 such that the sectional curvature K of M
n+1

satisfies

the following two constraints

K(u, η) =
c1
n
, (4.70)
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for any tangent vector u ∈ TM and normal vector η ∈ TM⊥; and

K(u, v) ≥ c2, (4.71)

for any tangent vectors u, v ∈ TM .

Remark 4.2.1. We note that, when the ambient Riemannian manifold M
n+1

has constant

sectional curvature c, it satisfies curvature constraints (4.70) and (4.71) for any hypersurface

Mn immersed in M
n+1

(c) with c1
n

= c2 = c. But, we can also find examples of Einstein

manifolds which do not have constant sectional curvature. Indeed, inspired by [65, Example

1.1], the product space R × Mn, where Mn is a Ricci flat Riemannian manifold (which is not

flat; for instance, the Schwarszchild space), is an Einstein manifold. Moreover, supposing that

the sectional curvature KM of Mn is such that KM(u, v) ≥ c2 for any u, v ∈ TM and some

constant c2 we can verify that the curvature constraint (4.71) is satisfied. Besides, we see that

curvature constraint (4.70) is verified for c1 = 0.

We remember that a hypersurface is linear Weingarten (LW) when its mean and normalized

scalar curvatures are linearly related, that is, when they satisfy the following linear relation

R = aH + b, (4.72)

for constants a, b ∈ R. We observe that when a = 0, (4.72) reduces to R constant.

For a LW hypersurface Σn satisfying (4.72) we introduce the second-order linear differential

operator L : C∞(Σ) → C∞(Σ) defined by

L = L− n− 1

2
a∆, (4.73)

where ∆ is the Laplacian operator on Σn and L : C∞(Σ) → C∞(Σ) denotes the Cheng-Yau

operator, which is given by

Lu = tr(P ◦ Hess (u)), (4.74)

for every u ∈ C∞(Σ), where Hess is the self-adjoint linear tensor metrically equivalent to the

Hessian of u and P : X(Σ) → X(Σ) denotes the first Newton transformation of Σn which is given

by P = nHI − A. So, from (4.73) and (4.74), we have that

Lu = tr(P ◦ Hess (u)),

with

P =

(
nH − n− 1

2
a

)
I − A. (4.75)

Thus, by using the standard notation ⟨, ⟩ for the (induced) metric of Σn, we get

Lu =
∑
i

⟨P (∇ei∇u), e1⟩,
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where {e1, · · · , en} is a (local) orthonormal frame on Σn. Consequently, we obtain

div(P (∇u)) =
∑
i

⟨(∇eiP )(∇u), ei⟩ +
∑
i

⟨P (∇ei∇u), e1⟩ (4.76)

= ⟨divP,∇u⟩ + Lu.

Let us assume that M
n+1

is an Einstein manifold, so that there exists a constant λ satisfying

Ric = λ⟨, ⟩, where Ric denotes the Ricci tensor of M
n+1

. Thus, from [7, Lemma 3.1]

⟨divP,∇u⟩ =
∑
i

⟨R(N, ei)ei,∇u⟩ = −Ric(N,∇u) = −λ⟨N,∇u⟩ = 0,

where N stands for the Gauss mapping of Σn. Hence, from equation (4.76), we conclude that

Lu = div(P (∇u)). (4.77)

Thus, from (4.73) and (4.77), we can verify that L can be rewritten in the following divergence

form

Lu = div(P(∇u)). (4.78)

We can state the versions of Lemmas 4.2.2 and 4.2.3 for the context that we are working

supposing that the hypersurface is immersed in an Einstein manifold En+1 (see [12, Lemma 3.2,

Lemma 3.4]).

Lemma 4.2.2. Let Mn be a complete LW spacelike hypersurface immersed in an Einstein

manifold En+1 satisfying curvature conditions (4.70) and (4.71), such that R = aH + b with

(n− 1)a2 + 4n(b−R) ≥ 0. (4.79)

Then,

|∇A|2 =
∑
i,j,k

h2
ijk ≥ n2|∇H|2. (4.80)

Moreover, if the inequality (4.79) is strict and equality occurs in (4.80), then H is constant on

Mn.

Lemma 4.2.3. Let Mn be a LW spacelike hypersurface immersed in an Einstein manifold En+1

satisfying curvature condition (4.70), such that R = aH + b. Let µ− and µ+ be, respectively, the

minimum and the maximum of the eigenvalues of the operator P defined in (4.75) at every point

p ∈ Mn.

If b > R, then the operator L defined in (4.73) is elliptic, with

µ− > 0 and µ+ < 2nH + (n− 1)a.

In the case where b = R, assume further that the mean curvature function H does not change
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sign and b ≥ R. Then the operator L is semi-elliptic, with

µ− ≥ 0 and µ+ ≤ 2nH + (n− 1)a,

unless Mn is totally geodesic. Moreover, in the case where b > R on Mn, the above inequalities

are strict and the operator L is elliptic.

In what follows, we will also work with the following symmetric tensor

Φ =
∑
i,j

Φijωi ⊗ ωj,

where Φij = hij −Hδij. Let |Φ|2 =
∑
i,j

Φ2
ij be the square of the length of Φ, we can check that

Φ is traceless and

|Φ|2 = |A|2 − nH2. (4.81)

Moreover, it holds for an Einstein manifold, from equations (4.69) and (4.81), the following

algebraic relation :

|Φ|2 = |A|2 − nH2 = n(n− 1)H2 − n(n− 1)aH − n(n− 1)(b−R), (4.82)

where R = 1
n(n−1)

∑
i,j Rijij.

4.2.2 Complete LW hypersurfaces immersed in En+1 satisfying stan-

dard curvature constraints

Now, we are in position to use the modified Cheng-Yau’s operator L jointly with the lemmas

quoted in the previous section to establish our umbilicity results concerning LW hypersurfaces

Mn immersed in an Einstein manifold En+1.

Theorem 4.2.4. Let Mn be a complete LW hypersurface immersed in an Einstein manifold

En+1 satisfying curvature constraints (4.70) and (4.71) with n ≥ 3, such that R = aH + b with

b ≥ R. Suppose that
(
H − a

2

)
≥ β on Mn, for some positive constant β, and that R > R− 2

n
c

for c > 0 and R > R− c for c ≤ 0. Assume in addition that |∇Φ| is bounded and supM |Φ| ≤
γ < x∗

R, for some constant γ and x∗
R defined in (3.16). If Mn has polynomial volume growth and

inf
R

(QR(γ)) > 0, then Mn is a totally umbilical hypersurface.

Proof. Let us see that if we take the smooth vector field X = P(∇|Φ|2) and the smooth function

f = |Φ|2, it will fulfill the required conditions to apply Lemma 1.0.3. Indeed, by hypothe-

sis we have that |Φ| is bounded on Σn and, by equation (4.82), |A| is also bounded on Mn.

Consequently, from definition (4.75), we get

|X| = |P(∇|Φ|2)| ≤ |P||∇|Φ|2| ≤ k|∇|Φ|2|,
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for some positive constant k. Besides that, as we are supposing the boundedness of |Φ| and of

|∇Φ|, Kato’s inequality guarantees that

|X| ≤ k|∇|Φ|2| = 2k|Φ||∇|Φ|| ≤ 2k|Φ||∇Φ| ≤ C < +∞, (4.83)

for some positive constant C.

Also the condition

⟨∇f,X⟩ = ⟨∇|Φ|2,P(∇|Φ|2)⟩ ≥ 0 (4.84)

is verified because Lemma 4.2.3 gives that P is positive semi-definite for b ≥ R.

Applying L in (4.82), we get that

1

2(n− 1)
L(|Φ|2) =

1

2
L(nH2) − a

2
L(nH)

= HL(nH) + n⟨P∇H,∇H⟩ − a

2
L(nH)

≥ (H − a

2
)L(nH). (4.85)

On the other hand, since (En+1, g) is an Einstein manifold, the components of its Ricci tensor

satisfy RCD = λgCD, for some constant λ ∈ R. Moreover, we can consider a local orthonormal

frame {e1, . . . , en} on Σn such that hij = λiδij. So, proceeding as in [65], from the differential

Bianchi identity and the fact that gAB;C ≡ 0 we get∑
i,k

λiR(n+1)iik;k = −
∑
i,k

λi

(
Rikik;(n+1) + Rk(n+1)ik;i

)
= −

∑
i

λi

(
Rii;(n+1) −R(n+1)i;i

)
(4.86)

= −
∑
i

λi

(
λgii;(n+1) − λg(n+1)i;i

)
= 0

and ∑
i,k

λiR(n+1)kik;i =
∑
i

λiR(n+1)i;i =
∑
i

λiλg(n+1)i;i = 0, (4.87)

where Rijkl;m are the covariant derivatives of Rijkl on En+1. Consequently, from (4.86) and (4.87)

we obtain ∑
i,j,k

(
R(n+1)ijk;k + R(n+1)iki;j

)
hij = 0. (4.88)

On the other hand, let us choose a (local) orthonormal frame {e1, . . . , en} on Mn such that

hij = λiδij. Since R = aH + b, from [12, Equation (2.10)] jointly with (4.88) and the definition

of L, we get

L(nH) =
∑
i,j,k

h2
ijk − n2|∇H|2 + nH

∑
i

λ3
i − |A|4 (4.89)

+
∑
i

R(n+1)i(n+1)i(nHλi − |A|2) +
∑
i,j

(λi − λj)
2Rijij.
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Moreover, we have Φi,j = µiλij and, with straightforward computation, we verify that∑
i

µi = 0,
∑
i

µ2
i = |Φ|2 and

∑
i

µ3
i =

∑
i

λ3
i − 3H|Φ|2 − nH3. (4.90)

Besides that, from curvature constraints (4.70) and (4.71), we get∑
i

R(n+1)i(n+1)i(nHλi − |A|2) = c1(nH
2 − |A|2) = −c1|Φ|2 (4.91)

and ∑
i,j

(λi − λj)
2Rijij ≥ c2

∑
i,j

(λi − λj)
2 (4.92)

= 2nc2(|A|2 − nH2) = 2nc2|Φ|2.

Since c = 2c2 − c1
n

, from the Gauss equation jointly with (4.89), (4.90), (4.91) and (4.92), we

obtain

L(nH) = |∇A|2 − n2|∇H|2 + nH
∑
i

µ3
i + |Φ|2(−|Φ|2 + nH2 + nc). (4.93)

Thereafter, as Lemma 4.2.2 is true as we are supposing b ≥ R, we can use Lemma 3.1.3 for

n ≥ 3 to get from (4.93) that

L(nH) ≥ |Φ|2
(
−|Φ|2 − n(n− 2)√

n(n− 1)
H|Φ| + nH2 + nc

)
. (4.94)

Furthermore, from (4.17) we get

H2 =
1

n(n− 1)
|Φ|2 + (R−R). (4.95)

Thus, from (4.94) and (4.95) we achieve in

L(nH) ≥ 1

n− 1
|Φ|2QR(|Φ|), (4.96)

where QR is defined in (3.15). Hence, using (4.85) jointly with (4.96), from (4.78) we conclude

that

divX = div(P(∇|Φ|2)) = L(|Φ|2) ≥ 2
(
H − a

2

)
QR(|Φ|)|Φ|2. (4.97)

Since we have
(
H − a

2

)
≥ β > 0 by hypothesis and from the behavior of QR(x) for 0 ≤ |Φ| ≤

supM |Φ| ≤ γ < x∗
R, we have that

QR(|Φ|) ≥ QR(γ) > inf
R

(QR(γ)) > 0. (4.98)
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Then, from (4.97) and (4.98) we obtain

divX ≥ 2
(
H − a

2

)
QR(|Φ|)|Φ|2 ≥ α|Φ|2 (4.99)

and divX ≥ αf for α = 2β inf
R

(QR(γ)) > 0.

If Mn is a noncompact hypersurface with polynomial volume growth, we are able to apply

Lemma 1.0.3 to obtain |Φ|2 ≤ 0 on Mn. Then, |Φ| ≡ 0, which means that Mn is a totally

umbilical hypersurface.

If Mn is a compact hypersurface, we can integrate both sides of (4.99) and use the Divergence

Theorem to get that ∫
M

|Φ|2dM = 0.

Therefore, we have |Φ| ≡ 0 and hence, Mn must also be a totally umbilical hypersurface.

Revisiting the proof of Theorem 4.2.4, we observe that if n = 2, then
∑

i µ
3
i = 0. Conse-

quently, from (4.93) we get

L(2H) ≥ |Φ|2
(
−|Φ|2 + 2H2 + 2c

)
and (4.94) is still true in this case. Hence, we also have the following umbilicity result.

Theorem 4.2.5. Let M2 be a complete LW surface immersed into an Einstein manifold E3

satisfying curvature constraints (4.70) and (4.71), such that R = aH + b with b ≥ R. Suppose

that
(
H − a

2

)
≥ β on M2, for some positive constant β, that infM R > 0 and that R > R − c.

Assume in addition that |Φ| and |∇Φ| are bounded. If M2 has polynomial volume growth, then

M2 is a totally umbilical surface.

Noting that when R > 0 is constant, the hypothesis inf
R

(QR(γ)) > 0 is automatically satisfied,

from Theorems 4.2.4 and 4.2.5 we obtain, respectively, the following consequences:

Corollary 4.2.6. Let Mn be a complete hypersurface immersed in an Einstein manifold En+1

satisfying curvature constraints (4.70) and (4.71) with n ≥ 3 and constant normalized scalar

curvature R ≥ R for c > 0 and R > R − c for c ≤ 0. Suppose that H ≥ β on Mn, for

some positive constant β and assume in addition that |∇Φ| is bounded and supM |Φ| < x∗
R,

for x∗
R defined in (3.16). If Mn has polynomial volume growth, then Mn is a totally umbilical

hypersurface.

Corollary 4.2.7. Let M2 be a complete surface immersed into an Einstein manifold E3 satisfying

curvature constraints (4.70) and (4.71), with constant normalized scalar curvature R ≥ R for

c > 0 and R > R − c for c ≤ 0. Suppose that H ≥ β on M2, for some positive constant β.

Assume in addition that |Φ| and |∇Φ| are bounded. If M2 has polynomial volume growth, then

M2 is a totally umbilical surface.

In what follows we will apply Lemma 1.0.4 to get further umbilicity results concerning com-

plete noncompact LW hypersurface in an Einstein manifold. So, we state and prove the following

theorem.
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Theorem 4.2.8. Let Mn be a complete noncompact LW hypersurface immersed in an Einstein

manifold En+1 satisfying curvature constraints (4.70) and (4.71) with n ≥ 3, such that R = aH+b

with b > R. Suppose that R > R− 2
n
c for c > 0 and R > R− c for c ≤ 0. Assume in addition

that |Φ| ≤ x∗
R, for x

∗
R defined in (3.16). If |Φ| converges to zero at infinity, then Mn is a totally

umbilical hypersurface.

Proof. Let us consider the smooth vector field X = P(∇|Φ|2) and the smooth function f = |Φ|2

and let us suppose that Mn is not a umbilical hypersurface. So, f is non-identically vanishing

function which converges to zero at infinity. Moreover, we have that

⟨∇f,X⟩ = ⟨∇|Φ|2,P(∇|Φ|2)⟩ ≥ 0.

We claim that divX ≥ 0. Indeed, we already know that

1

2(n− 1)
L(|Φ|2) ≥ (H − a

2
)L(nH) and L(nH) ≥ 1

n− 1
|Φ|2QR(|Φ|), (4.100)

where QR is the function given by (3.15). Thus, since
(
H − a

2

)
≥ 0, from (4.100) jointly with

the behavior of QR(x) for 0 ≤ |Φ| ≤ x∗
R, we conclude that

divX = div(P(∇|Φ|2)) = L(|Φ|2) ≥ 2
(
H − a

2

)
QR(|Φ|)|Φ|2 ≥ 0.

Hence, we can apply Lemma 1.0.4 to get

⟨∇f,X⟩ = ⟨P(∇|Φ|2),∇|Φ|2⟩ ≡ 0.

Consequently, since Lemma 4.2.3 gives that P is positive definite, we have that ∇|Φ|2 ≡ 0.

Thus, f = |Φ|2 is constant. But, since f converges to zero at infinity, it must be identically

zero, leading us to a contradiction. Therefore, Mn is a complete noncompact totally umbilical

hypersurface of En+1.

In the case n = 2, reasoning as in the proof of Theorem 4.2.8 we also obtain the following

result.

Theorem 4.2.9. Let M2 be a complete noncompact LW surface immersed into an Einstein

manifold E3 satisfying curvature constraints (4.70) and (4.71), such that R = aH + b with

b ≥ R. Suppose that R > R− c for c > 0 and R > R− c for c ≤ 0. If |Φ| converges to zero at

infinity, then M2 is a totally umbilical surface.

Taking into account the setup described in the previous section, we obtain the following

rigidity result:

Theorem 4.2.10. Let Mn be a complete LW hypersurface immersed in an Einstein manifold

En+1 satisfying curvature constraints (4.70) and (4.71) with R = aH + b such that a ≥ 0 and
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b > max{R − c0,R}. If its total umbilicity tensor Φ satisfies

tr(Φ3) ≥ − (n− 2p)√
np(n− p)

|Φ|3, (4.101)

for some 1 ≤ p ≤ n−
√
n

2
, then

(i) either sup |Φ| = 0 and Mn is a totally umbilical hypersurface,

(ii) or

sup
M

|Φ| ≥ α(a, b, n, p,R, c0) > 0,

where α(a, b, n, p,R, c0) is a positive constant depending only on a, b, n, p, R and c0.

Moreover, if the equality supM |Φ| = α(a, b, p, n,R, c0) holds and this supremum is attained

at some point of Mn, then Mn is an isoparametric hypersurface with two distinct principal

curvatures of multiplicities p and n− p.

Proof. Initially we must obtain a suitable lower bound for the operator L acting on the squared

norm of the total umbilicity tensor Φ of Mn. Since R is constant, we get from (4.82) that

1

2(n− 1)
L(|Φ|2) =

1

2
L(nH2) − a

2
L(nH)

= HL(nH) + n⟨P∇H,∇H⟩ − a

2
L(nH). (4.102)

By using Lemma 4.2.3, we have that the operator P is positive definite. In particular, from

(4.102) we obtain
1

2(n− 1)
L(|Φ|2) ≥ (H − a

2
)L(nH). (4.103)

Without loss of generality we can choose the orientation of Mn such that H > 0, occurring

the strict inequality because of b > R. From this, we claim that H− a
2
> 0. Indeed, it is enough

to see that we can rewrite equation (4.82) as

nH(nH − (n− 1)a) = |A|2 + n(n− 1)(b−R) > 0. (4.104)

So, formula (4.89) and inequality (4.103) jointly with Lemma 4.2.2 give

1

2(n− 1)
L(|Φ|2) ≥ (H − a

2
)(|∇A|2 − n2|∇H|2 + nHtr(A3) − |A|4)

+(H − a

2
)

(∑
i

R(n+1)i(n+1)i(nHλi − |A|2) +
∑
i,j

(λi − λj)
2Rijij

)
≥ (H − a

2
)(nHtr(A3) − |A|4) (4.105)

+(H − a

2
)

(∑
i

R(n+1)i(n+1)i(nHλi − |A|2) +
∑
i,j

(λi − λj)
2Rijij

)
.
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The curvatures constraint (4.70) and (4.71) yield∑
i

R(n+1)i(n+1)i(nHλi − |A|2) = −c1|Φ|2 (4.106)

and ∑
i,j

(λi − λj)
2Rijij ≥ 2nc2|Φ|2. (4.107)

Thus, plugging (4.106) and (4.107) into (4.105), we obtain

1

2(n− 1)
L(|Φ|2) ≥ (H − a

2
)(nHtr(A3) − |A|4 + nc0|Φ|2). (4.108)

On the other hand, it is not difficult to see that

tr(A3) = tr(Φ3) + 3H|Φ|2 + nH3. (4.109)

Putting (4.109) into (4.108) we find

1

2(n− 1)
L(|Φ|2) ≥ (H − a

2
)(−|Φ|4 + nHtr(Φ3) + n(H2 + c0)|Φ|2). (4.110)

Now, taking into account the Okumura type inequality (4.101), from (4.110) we get

1

2(n− 1)
L(|Φ|2) ≥ (H − a

2
)|Φ|2

(
−|Φ|2 − n(n− 2p)√

np(n− p)
H|Φ| + n(H2 + c0)

)
. (4.111)

Since H − a
2
> 0, we observe that equation (4.82) implies that the mean curvature can be

written as

H − a

2
=

1√
n(n− 1)

√
|Φ|2 + n(n− 1)(

a2

4
+ b−R). (4.112)

Thus, substituting (4.112) into (4.111) we get

1

2
L(|Φ|2)≥ (n− 1)√

n(n− 1)
|Φ|2

{
−|Φ|2− n(n− 2p)√

np(n− p)

(
1√

n(n− 1)

√
|Φ|2 + n(n− 1)(

a2

4
+ b−R) +

a

2

)

|Φ| + n

( 1√
n(n− 1)

√
|Φ|2 + n(n− 1)(

a2

4
+ b−R) +

a

2

)2

+ c0

} ·

·
√

|Φ|2 + n(n− 1)(
a2

4
+ b−R). (4.113)
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After some straightforward computations, inequality (4.113) gives us the next one

1

2
L(|Φ|2)≥ 1√

n(n− 1)
|Φ|2

{
− (n− 1)|Φ|2− n(n− 1)(n− 2p)a

2
√

np(n− p)
|Φ| − (n− 1)(n− 2p)√

(n− 1)p(n− p)
|Φ| ·

·
√

|Φ|2 + n(n− 1)(
a2

4
+ b−R) + n(n− 1)(

a2

4
+ b−R) + |Φ|2 (4.114)

+a
√
n(n− 1)

√
|Φ|2 + n(n− 1)(

a2

4
+ b−R) + n(n− 1)

a2

4
+ n(n− 1)c0

}
.

So, inequality (4.114) lead us to obtain the following estimate

1

2
L(|Φ|2) ≥ 1√

n(n− 1)
|Φ|2Qa,b,n,p,R,c0

(|Φ|)
√
|Φ|2 + n(n− 1)(

a2

4
+ b−R), (4.115)

where the function Qa,b,n,p,R,c0
is given by

Qa,b,n,p,R,c0
(x) = − (n− 2)x2 − n(n− 1)(n− 2p)a

2
√
np(n− p)

x

−

(
(n− 2p)

√
n− 1√

p(n− p)
x− a

√
n(n− 1)

)√
x2 + n(n− 1)(

a2

4
+ b−R)

+n(n− 1)(
a2

2
+ b−R + c0). (4.116)

Now, we are going to finish the proof by applying the Omori-Yau’s maximum principle to the

operator L acting on the function |Φ|2. We note that if supM |Φ| = +∞, then the claim (ii) of

Theorem 4.2.10 trivially holds and there is nothing to prove. Otherwise, if supM |Φ| < +∞, then

the Omori-Yau maximum principle holds on Mn for the operator L and there exists a sequence

of points {pj} in Mn such that

lim |Φ|(pj) = sup |Φ| and L(|Φ|2)(pj) <
1

j
.

Hence, estimate (4.115) implies that

1

j
> L(|Φ|2)(pj) ≥

2√
n(n− 1)

|Φ|2(pj)Qa,b,n,p,R,c0
(|Φ|(pj))

√
|Φ|2(pj) + n(n− 1)(

a2

4
+ b−R),

and, taking the limit as j → +∞, we infer

(
sup
M

|Φ|
)2

Qa,b,n,p,R,c0
(sup

M
|Φ|)

√
(sup

M
|Φ|)2 + n(n− 1)(

a2

4
+ b−R) ≤ 0.

It follows that either supM |Φ| = 0, which means that |Φ| ≡ 0 and the hypersurface is

totally umbilical, or supM |Φ| > 0 and then Qa,b,n,p,R,c0
(supM |Φ|) ≤ 0. In the latter case, since
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b > max{R − c0,R}, we have that

Qa,b,n,p,R,c0
(0) = n(n− 1)a

√
a2

4
+ b−R + n(n− 1)(

a2

2
+ b−R + c0) > 0.

Moreover, since 1 ≤ p ≤ n−
√
n

2
, the function Qa,b,n,p,R,c0

(x) is strictly decreasing for x ≥ 0.

Hence, we guarantee the existence of a unique positive real number α(a, b, n, p,R, c0) > 0,

depending only on a, b, n, p,R and c0, such that Qa,b,n,p,R,c0
(α(a, b, n, p,R, c0)) = 0. Therefore,

we must have

sup
M

|Φ| ≥ α(a, b, n, p,R, c0) > 0,

concluding the proof of the first part of Theorem 4.2.10.

Finally, let us assume that equality supM |Φ| = α(a, b, n, p,R, c0) holds. In particular, we get

Qa,b,n,p,R,c0
(|Φ|) ≥ 0

on Mn and then (4.115) assures that |Φ|2 is a L-subharmonic function on Mn, that is,

L(|Φ|2) ≥ 0 on Mn. (4.117)

Furthermore, since b > R, Lemma 4.2.3 asserts that the operator L is elliptic. Thus, since Mn

is complete and taking into account that we are assuming the existence of a point p ∈ Mn such

that |Φ(p)| = α(a, b, n, p,R, c0) = supM |Φ|, from (4.117) we can apply Hopf’s strong maximum

principle for the elliptic operator L acting on the function |Φ|2 to conclude that it must be

constant, that is, |Φ| = α(a, b, n, p,R, c0). Hence, it holds the equality in (4.115), namely,

1

2
L(|Φ|2) = 0 =

1√
n(n− 1)

|Φ|2Qa,b,n,p,R,c0
(|Φ|)

√
|Φ|2 + n(n− 1)(

a2

4
+ b−R).

Consequently, all the inequalities along the proof of (4.115) must be, in fact, equalities. In par-

ticular, we obtain that equation (4.103) must be an equality, which jointly with the positiveness

of the operator P imply that the mean curvature H is constant. Moreover, it also occurs equality

in (4.105), that is,

|∇A|2 = n2|∇H|2 = 0.

Therefore, the principal curvatures of Mn must be constant and Mn is an isoparametric hyper-

surface. Besides, equation (4.111) is also an equality, which implies by Lemma 3.1.3 that Mn has

exactly two distinct constant principal curvatures, with multiplicities p and n− p. This finishes

the proof.

Remark 4.2.11. When M
n+1

= Qn+1
c is a Riemannian space form of constant sectional curva-

ture c, the constants R and c0 in Theorem 4.2.10 just agree with c. For this reason, Theorem

4.2.10 can be regarded as a natural generalization of [53, Theorem 1].
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Chapter 5

LW submanifolds in a semi-Riemannian

space form Nn+p
q (c) with second

fundamental form locally timelike

We are going to present the results of [27].

5.1 Preliminaries

Let Mn be an n-dimensional complete spacelike submanifold immersed in the (n + p)-

dimensional semi-Riemannian space form Nn+p
q (c) of index 1 ≤ q ≤ p and constant curvature c.

We choose a local orthonormal frame {e1, . . . , en+p} in Nn+p
q (c), with dual coframe {ω1, . . . , ωn+p},

such that, at each point of Mn, e1, . . . , en are tangent to Mn. We will use the following convention

for the indices:

1 ≤ A,B,C, . . . ≤ n + p, 1 ≤ i, j, k, . . . ≤ n and n + 1 ≤ α, β, γ, . . . ≤ n + p.

In this setting, the metric of Nn+p
q (c) is defined by ds2 =

∑
A ϵA ω2

A, where ϵA = 1, 1 ≤ A ≤
n + p− q and ϵA = −1, n + p− q + 1 ≤ A ≤ n + p. Denoting by {ωAB} the connection forms of

Nn+p
q (c), we have that the structure equations of Nn+p

q (c) are given by:

dωA = −
∑
B

ϵB ωAB ∧ ωB, ϵBωAB + ϵAωBA = 0, (5.1)

dωAB = −
∑
C

ϵC ωAC ∧ ωCB +
1

2

∑
C,D

ϵCϵDKABCD ωC ∧ ωD, (5.2)

where KABCD = cϵAϵB(δADδBC − δACδBD).

Restricting all the tensors to Mn, we have

ωα = 0, n + 1 ≤ α ≤ n + p.
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Thus, the Riemannian metric of Mn is written as ds2 =
∑

i ω
2
i . Since

∑
i ωαi ∧ ωi = dωα = 0,

by Cartan’s Lemma we can write

ωαi =
∑
j

hα
ijωj, hα

ij = hα
ji.

This gives the second fundamental form of Mn, A = ϵα
∑

α,i,j h
α
ijωi ⊗ ωjeα. Furthermore, we

define the mean curvature vector field h and the mean curvature function H of Mn, respectively,

by

h =
1

n

∑
α

(∑
i

hα
ii

)
eα and H = |h| =

1

n

√√√√∑
α

(∑
i

hα
ii

)2

.

From (5.1) and (5.2), we get the structure equations of Mn

dωi = −
∑
j

ωij ∧ ωj, ωij + ωji = 0, and dωij = −
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl, (5.3)

where Rijkl are the components of the curvature tensor of Mn. Therefore, from (5.3) we obtain

the Gauss equation

Rijkl = c(δilδjk − δikδjl) +
∑
α

ϵα(hα
ilh

α
jk − hα

ikh
α
jl).

The components of the Ricci curvature Rij and the normalized scalar curvature R of Mn are

given, respectively, by

Rij = (n− 1)cδij +
∑
α

ϵα

{(∑
k

hα
kk

)
hα
ij −

∑
α,k

hα
ikh

α
kj

}
(5.4)

and

R = n(n− 1)c +
∑
α

ϵα

(∑
i

hα
ii

)2

−
∑
α

∑
i,j

ϵα(hα
ij)

2. (5.5)

From (5.4) and (5.5) we obtain

|A|2 = n2H2 + n(n− 1)(R− c), (5.6)

where |A|2 =
∑

α,i,j ϵα(hα
ij)

2 is the square of the length of the second fundamental form A of Mn.

We also have the structure equations of the normal bundle of Mn

dωα = −
∑
β

ωαβ ∧ ωβ, ωαβ + ωβα = 0 and dωαβ = −
∑
γ

ωαγ ∧ ωγβ −
1

2

∑
k,l

Rαβklωk ∧ ωl,

where Rαβjk satisfy Ricci equation

Rαβij =
∑
l

(
hα
ilh

β
lj − hα

jlh
β
li

)
. (5.7)
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Furthermore, we will consider the symmetric tensor

Φ =
∑

i,j,α≥n+p−q+1

Φα
ijωi ⊗ ωjeα,

where Φα
ij = hα

ij −Hαδij. We have that

Φn+p−q+1
ij = hn+p−q+1

ij −Hδij and Φα
ij = hα

ij,

for α ̸= n+ p− q + 1. Since |Φ|2 =
∑

α,i,j(Φ
α
ij)

2 is the square of the length of Φ, it is not difficult

to verify that Φ is traceless and, using (5.6),

|Φ|2 = |A|2 − nH2 = n(n− 1)H2 + n(n− 1)(R− c). (5.8)

Besides, we observe that |Φ| vanishes identically on Mn if and only if Mn is a totally umbilical

submanifold of Nn+p
q (c). For this reason, Φ is usually called the total umbilicity tensor of Mn.

Throughout this chapter, we will assume that the mean curvature vector field h is parallel

as a section of the normal bundle of Mn, which means that ∇⊥h = 0, where ∇⊥ is the normal

connection of Mn. We will also consider that the second fundamental form is locally timelike.

Then, we have

|A|2 =

n+p∑
α=n+p−q+1

∑
i,j

(hα
ij)

2

and h is timelike. So, considering H > 0, we can assume that the orthonormal frame {e1, . . . , en+p}
in Nn+p

q (c) is such that en+p−q+1 = h
H

. Consequently, we get

Hn+1 :=
1

n
tr(hn+p−q+1) = H and Hα :=

1

n
tr(hα) = 0, α ̸= n + p− q + 1,

where hα denotes the matrix (hα
ij).

We recall that a spacelike submanifold Mn is said to be linear Weingarten (LW) when its

mean curvature H and normalized scalar curvature R satisfy the following linear relation

R = aH + b, (5.9)

for some constants a, b ∈ R. We observe that when a = 0, (5.9) reduces to R constant. In this

context, equation (5.8) yields to

|Φ|2 = |A|2 − nH2 = n(n− 1)H2 + n(n− 1)aH + n(n− 1)(b− c). (5.10)

For a LW spacelike submanifold Mn satisfying (5.9), we introduce the second-order linear

differential operator L : C∞(Mn) → C∞(Mn) defined by

L = L +
n− 1

2
a∆, (5.11)
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where ∆ is the Laplacian operator on Mn and L : C∞(M) → C∞(Mn) denotes the Cheng-Yau

operator, which is given by

Lu = tr(P ◦ Hess (u)), (5.12)

for every u ∈ C∞(Mn). Here, Hess stands for the self-adjoint linear tensor metrically equivalent

to the Hessian of u and P : X(Mn) → X(Mn) denotes the first Newton transformation of Mn

which is given by P = nHI − A. So, from (5.11) and (5.12), we have that

Lu = tr(P ◦ Hess (u)),

with

P =

(
nH +

n− 1

2
a

)
I − A. (5.13)

We can verify that L can be rewritten as

Lu = div(P(∇u)). (5.14)

5.2 Rigidity results for complete LW spacelike submani-

fold immersed with parallel normalized mean curva-

ture vector field in Nn+p
q (c)

In our next result, we revisit [89, Theorem 2] replacing the assumption that the mean curva-

ture function attains a global maximum by hypothesis (5.15) that guarantees the L-parabolicity

of a complete LW spacelike submanifold.

Theorem 5.2.1. Let Mn be a complete LW spacelike submanifold immersed with parallel nor-

malized mean curvature vector field in Nn+p
q (c), such that R = aH + b with b ≤ c. Suppose

that the second fundamental form of Mn is locally timelike and that it has nonnegative sectional

curvature. If H is bounded and, for some reference point o ∈ Mn and δ > 0,∫ +∞

δ

dt

vol(∂Bt)
= +∞, (5.15)

where Bt is the geodesic ball of radius t in Mn centered at the reference point o, then Mn is either

totally umbilical or a product M1×M2×· · ·×Mk, where the factors Mi, mutually perpendicular

along their intersections, are totally umbilical submanifolds of Nn+p
q (c).

Proof. We can verify from Ricci equation (5.7) that

∑
α,β,i,j,k

hα
ijh

β
kiRαβjk =

1

2

∑
α,β

N(hαhβ − hβhα) ≥ 0, (5.16)

since N(A) = tr(AAt) for all matrix A = (aij) and (AAt)ij =
∑

k aika
t
kj gives us N(A) =

tr(AAt) =
∑

i,k aika
t
ki =

∑
i,k (atki)

2 ≥ 0.
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On the other hand, for each fixed α, considering a local orthonormal frame {ei} such that

hα
ij = λα

i δij, we have

∑
i,j,k,m

hα
ijh

α
kmRmijk +

∑
i,j,k,m

hα
ijh

α
miRmkjk ≥

1

2

∑
i,j

(λα
i − λα

j )2Rijij. (5.17)

Moreover, since we are also supposing that b ≤ c, from [86, Lemma 3.3] we have

|∇A|2 =
∑
α,i,j,k

(hα
ijk)2 ≥ n2|∇H|2. (5.18)

Hence, taking into account that the sectional curvature of Mn is nonnegative, as we are

assuming that the normalized mean curvature vector field is parallel, from [89, Equation 30],

(5.16), (5.17) and (5.18), we obtain

L(nH) =
∑
α,i,j,k

(hα
ijk)2 − n2|∇H|2 +

∑
i,j,k,m

(
hα
ijh

α
kmRmijk + hα

ijh
α
miRmkjk

)
(5.19)

+
1

2

∑
α,β

N
(
hαhβ − hβhα

)
≥ 1

2

∑
i,j

(λα
i − λα

j )2Rijij ≥ 0.

Now, we consider on Mn the symmetric (0, 2)-tensor field ξ given by

ξ(X, Y ) := ⟨PX, Y ⟩,

for all X, Y ∈ TM or, equivalently,

ξ(∇f, ·)♯ = P(∇f),

where ♯ : T ∗M → TM denotes the musical isomorphism, for all smooth function f : Mn → R,

and P is defined in (5.13), in which P is positive semi-definite since b ≤ c and, from (5.14), is true

Lf = div
(
ξ(∇f, ·)♯

)
. Taking a local orthonormal frame {ei} on Mn such that hn+1

ij = λn+1
i δij,

we get ∑
i,j

(
hn+1
ij

)2 ≤∑
α,i,j

(
hα
ij

)2
= |A|2

and thereafter from (5.10),

n2H2 ≥
(
λn+1
i

)2 − n(n− 1)aH,

for all i = 1, · · · , n. Furthermore, whereas

(
λn+1
i

)2 ≤ n2H2 + n(n− 1)aH ≤
(
nH +

n− 1

2
a

)2
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and the normalized mean curvature vector field is parallel on TM⊥, we have

−nH − n− 1

2
a ≤ λn+1

i ≤ nH +
n− 1

2
a, i = 1, · · · , n.

So, for all i ∈ {1, · · · , n}, we obtain

0 ≤ Σi ≤ 2nH + (n− 1)a,

where Σi := nH +
n− 1

2
a− λn+1

i are the eigenvalues of the operator P . Thus, we can define a

positive continuous function ξ+ on [0,+∞) by

ξ+(t) := 2n sup
∂Bt

H + (n− 1)a.

From the boundedness of H, it follows that

ξ+(t) ≤ 2n sup
M

H + (n− 1)a < +∞.

Hence, we reach at the following estimate∫ +∞

δ

dt

ξ+(t)vol(∂Bt)
≥
(

2n sup
M

H + (n− 1)a

)−1 ∫ +∞

δ

dt

vol(∂Bt)
.

Thus, from (5.15) we achieve in ∫ +∞

δ

dt

ξ+(t)vol(∂Bt)
= +∞

and we are in position to apply [75, Theorem 2.6] to conclude that Mn is L-parabolic. Conse-

quently, since H is bounded, from (5.19) we get that H is constant. Therefore, H attain the

maximum on Mn and we apply [89, Theorem 2] to finish the proof.

The next auxiliary lemma corresponds to [30, Proposition 2.1]. In what follows, L1(Mn)

stands for the space of Lebesgue integrable functions on Mn.

Lemma 5.2.2. Let X be a smooth vector field on a complete oriented Riemannian manifold

Mn, such that divX does not change sign on Mn. If |X| ∈ L1(M), then divX = 0.

Returning to the context of complete LW spacelike submanifolds of a semi-Riemannian space

form, we apply the previous lemma to obtain the following result.

Theorem 5.2.3. Let Mn be a complete LW spacelike submanifold immersed with parallel nor-

malized mean curvature vector field in Nn+p
q (c), such that R = aH + b with b < c. Suppose

that the second fundamental form of Mn is locally timelike and that it has nonnegative sectional

curvature. If H is bounded and |∇H| ∈ L1(M), then Mn is either totally umbilical or a product

M1×M2× · · ·×Mk, where the factors Mi, mutually perpendicular along their intersections, are

totally umbilical submanifolds of Nn+p
q (c).
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Proof. Since H is bounded on Mn, from equation (5.10) A is also bounded and so the operator P
by (5.13). That is, there exists C1 > 0 such that |P| ≤ C1. Since we are assuming |∇H| ∈ L1(M),

we have

|P(∇H)| ≤ |P||∇H| ≤ C1|∇H| ∈ L1(M). (5.20)

Following the same steps of Theorem 5.2.1, we can prove that
1

2

∑
α,β N(hαhβ − hβhα) ≥ 0

and then, from equation (5.19) and from [86, Lemma 3.3], we obtain

L(nH) =
∑
α,i,j,k

(hα
ijk)2 − n2|∇H|2 +

∑
i,j,k,m

(
hα
ijh

α
kmRmijk + hα

ijh
α
miRmkjk

)
(5.21)

+
1

2

∑
α,β

N
(
hαhβ − hβhα

)
≥

∑
α,i,j,k

(hα
ijk)2 − n2|∇H|2 +

1

2

∑
i,j

(λα
i − λα

j )2Rijij ≥ 0.

Thus, from (5.14), (5.20) and (5.21), we can apply Lemma 5.2.2 for X = P(∇H) to conclude

that L(nH) = 0 on Mn. Consequently, the inequality in (5.21) is, in fact, an equality and it

follows that ∑
α,i,j,k

(hα
ijk)2 = n2|∇H|2. (5.22)

Using again [86, Lemma 3.3], we obtain that H is constant on Mn. Thus, H attain the maximum

on Mn and we can apply [89, Theorem 2] to conclude the proof.

We close the Part I with the following rigidity result.

Theorem 5.2.4. Let Mn be a complete noncompact LW spacelike submanifold immersed with

parallel normalized mean curvature vector field in Nn+p
q (c), such that R = aH + b with b < c.

Suppose that the second fundamental form of Mn is locally timelike and that it has nonnegative

sectional curvature. If |Φ| converges to zero at infinity, then Mn is a totally umbilical submanifold

of Nn+p
q (c).

Proof. Let us suppose by contradiction that such a LW spacelike submanifold Mn is not totally

umbilical. We consider the smooth vector field X = P(∇|Φ|2) and the smooth function f = |Φ|2.
So, f is a nonnegative, non-identically vanishing function which converges to zero at infinity.

Moreover, we have that ⟨∇f,X⟩ ≥ 0 and that

1

2(n− 1)
L(|Φ|2) > (H +

a

2
)L(nH). (5.23)

Hence, taking into account that (H + a
2
) ≥ 0 and using equations (5.19) and (5.23), we reach

at

divX = div(P(∇|Φ|2)) = L(|Φ|2) ≥ 2(n− 1)
(
H +

a

2

)
L(nH) ≥ 0.

Then, we are in position to apply Lemma 1.0.4 and get that

⟨∇f,X⟩ = ⟨P(∇|Φ|2),∇|Φ|2⟩ = 0.
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Therefore, since the operator P is positive definite, we have that ∇|Φ| ≡ 0. Thus, f = |Φ|
is constant. But f converges to zero at infinity, so it must be identically zero, leading us to a

contradiction since we are supposing that Mn is not a totally umbilical submanifold.
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Part II

Sharp integral inequalities for closed

submanifolds
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Chapter 6

LW submanifolds immersed in the de

Sitter space

In this chapter, we extend the techniques of [5,10] in order to establish the results of [46,55],

a sharp integral inequality for a closed (compact without boundary) spacelike submanifold Mn

with constant scalar curvature immersed with parallel normalized mean curvature vector field

in the de Sitter space Sn+p
p , and we use it to characterize totally umbilical round spheres Sn(r)

of Sn+1
1 ↪→ Sn+p

p .

We begin stating that a complete spacelike submanifold immersed in Sn+p
p with parallel

normalized mean curvature vector and constant scalar curvature 0 < R ≤ 1 must be either

totally umbilical or it holds a sharp estimate for the norm of its total umbilicity tensor |Φ|2,
with equality if and only if the submanifold is isometric to a hyperbolic cylinder of the ambient

space.

Proposition 6.0.1 (Proposition 1 of [10]). Let Mn be a complete spacelike submanifold immersed

in Sn+p
p with parallel normalized mean curvature vector field and constant scalar curvature 0 <

R ≤ 1. Then

1. either supM |Φ|2 = 0 and Mn is a totally umbilical submanifold,

2. or

sup
M

|Φ|2 ≥ α(n, p,R) > 0,

where α(n, p,R) is a positive constant depending only on (n, p,R).

Moreover, the equality supM |Φ|2 = α(n, p,R) holds and this supremum is attained at some

point of Mn if and only if p = 1, n ≥ 3 and Mn is isometric to a hyperbolic cylinder H1(r) ×
Sn−1(

√
1 + r2) of radius r > 0.

In order to prove the main result of this chapter, we present a version of Proposition 4.1.4 in

the next lemma, a suitable lower estimate for the operator L acting on the square of the norm

of the total umbilicity tensor of a spacelike submanifold (see [10, Proposition 1]).
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Lemma 6.0.2. Let Mn be a spacelike submanifold in Sn+p
p , with parallel normalized mean cur-

vature vector field and constant scalar curvature R ≤ 1. Then

1

2
L(|Φ|2) ≥ 1√

n(n− 1)
|Φ|2QR,n,p(|Φ|)

√
|Φ|2 + n(n− 1)(1 −R),

where the real function QR,n,p(x) is defined by

QR,n,p(x) =
(n− p− 1)

p
x2 − (n− 2)x

√
x2 + n(n− 1)(1 −R) + n(n− 1)R. (6.1)

Once this is established, we ca obtain a sharp integral inequality involving the total umbilicity

tensor Φ apply it to characterize totally umbilical round spheres. More precisely,

Theorem 6.0.3. Let Mn be a closed spacelike submanifold immersed in Sn+p
p with parallel nor-

malized mean curvature vector field and constant normalized scalar curvature R ≤ 1. Then∫
M

|Φ|q+2QR,n,p(|Φ|)dM ≤ 0, (6.2)

for every real number q ≥ 2, where the real function QR,n,p(x) is defined in (6.1). Moreover,

assuming in addition that 0 < R < 1, the equality holds in (6.2) if, and only if, Mn is a totally

umbilical round sphere Sn(r), with r = 1
R
> 1, immersed in Sn+1

1 ↪→ Sn+p
p .

Proof. From Lemma 6.0.2 we have that

L(|Φ|2) ≥ 2√
n(n− 1)

|Φ|2QR,n,p(|Φ|)
√
|Φ|2 + n(n− 1)(1 −R). (6.3)

Now, let us take u = |Φ|2. So, (6.3) can be rewritten as follows

L(u) ≥ 2√
n(n− 1)

uQR,n,p(
√
u)
√

u + n(n− 1)(1 −R). (6.4)

Taking into account that u ≥ 0, R ≤ 1 and observing that when R = 1 (2.19) guarantees that

u > 0, from (6.4) we get

u
q+2
2 QR,n,p(

√
u) ≤

√
n(n− 1)

2

u
q
2√

u + n(n− 1)(1 −R)
L(u), (6.5)

for every real number q. As Mn is closed, we can integrate both sides of (6.5) in order to obtain∫
M

u
q+2
2 QR,n,p(

√
u)dM ≤

√
n(n− 1)

2

∫
M

u
q
2√

u + n(n− 1)(1 −R)
L(u)dM. (6.6)

But, from (2.24) we have

f(u)L(u) = div(f(u)P(∇u)) − f ′(u)⟨P(∇u),∇u⟩, (6.7)
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for every smooth function f ∈ C1(R). Integrating both sides of (6.7) and using the Divergence

Theorem, we deduce that∫
M

f(u)L(u)dM = −
∫
M

f ′(u)⟨P(∇u),∇u⟩dM, (6.8)

for every smooth function f . In our case, for every real number q ≥ 2, we choose

f(t) =
tq/2√

t + n(n− 1)(1 −R)
, for t ≥ 0.

Hence, assuming R ≤ 1 and that R = 1 only for t > 0, we get

f ′(t) =
(q − 1)tq/2 + n(n− 1)(1 −R)qt

q−2
2

2 (t + n(n− 1)(1 −R))3/2
≥ 0, (6.9)

for every real number q ≥ 2. Using (6.8) and (6.9) into (6.6), we can estimate∫
M

u
q+2
2 QR,n,p(

√
u)dM ≤ −

√
n(n− 1)

2

∫
M

f ′(u)⟨P(∇u),∇u⟩dM ≤ 0, (6.10)

since we know that the operator P is positive semi-definite. Therefore, we conclude∫
M

u
q+2
2 QR,n,p(

√
u)dM ≤ 0. (6.11)

This proves inequality (6.2).

Furthermore, if the equality holds in (6.2), from (6.10) we get∫
M

f ′(u)⟨P(∇u),∇u⟩dM = 0. (6.12)

But, since q ≥ 2 and assuming that R < 1, from (6.9) we have

f ′(u) =
(q − 1)uq/2 + n(n− 1)(1 −R)qu

q−2
2

2 (u + n(n− 1)(1 −R))3/2
. (6.13)

Observe that f ′(u) ≥ 0 with equality if and only if q > 2 and u = 0. Consequently, taking into

account [10, Lemma 1], (6.12) and (6.13) imply

⟨P(∇u),∇u⟩ = 0. (6.14)

Thus, since P is positive definite, from (6.14) we get that ∇u = 0 on Mn. Hence, the function

u = |Φ|2 must be constant.

In the case that |Φ| = 0, we can reason as in the last part of the proof of Theorem 1.3 of [59]

to conclude that Mn must be a totally umbilical round sphere Sn(r), with r = 1
R
> 1, immersed

in a totally geodesic de Sitter space Sn+1
1 ↪→ Sn+p

p . Indeed, let N1 be the sub-bundle spanned
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by {en+2, · · · , en+p}. Then, from our assumption ∇⊥en+1 = 0 it follows that N1 is parallel in

the normal bundle. Besides, from (2.13) and (2.15) we get that |Φα|2 =
∑

i,j(Φ
α
ij)

2 = 0 for

each n + 2 ≤ α ≤ n + p, which means Mn is totally geodesic with respect to N1. Hence, from

[88, Theorem 1] we obtain the desired conclusion.

Finally, let us consider the case that |Φ| is a positive constant. As in the last part of the proof

of [5, Theorem 1.2], we have that |Φ| = u0 is such that QR,n,p(u0) = 0 because of the equality in

(6.2). Consequently, we can apply Proposition 6.0.1 obtaining that p = 1, n ≥ 3 and that Mn

should be isometric to a hyperbolic cylinder H1(r) × Sn−1(
√

1 + r2) of radius r > 0. Therefore,

since we are assuming that Mn is closed, we conclude that this second case cannot occur.

Proceeding with this picture, we can obtain the same result for linear Weingarten hypersur-

faces through a similar process, starting from the following lemma(see [11, Proposition 6]):

Lemma 6.0.4. Let Mn be a linear Weingarten spacelike hypersurface immersed in Sn+1
1 , n ≥ 2,

such that R = aH + b with b ≤ 1. In the case where b = 1, assume that the mean curvature

function H does not change sign and R ≥ 1. Then,

L(|Φ|2) ≥ 2(n− 1)|Φ|2φa,b(|Φ|)

√
|Φ|2

n(n− 1)
+

a2

4
+ 1 − b,

where the real function φa,b(x) is given by

φa,b(x) =
n− 2

n− 1
x2 +

(
na− n(n− 2)√

n(n− 1)
x

)√
x2

n(n− 1)
+

a2

4
− b + 1 (6.15)

+
n(n− 2)√
n(n− 1)

a

2
x− n

(
a2

2
− b

)
.

Therefore, involving the total umbilicity tensor Φ of closed linear Weingarten spacelike hyper-

surfaces immersed in the de Sitter space Sn+1
1 , we can apply it to obtain our next characterization

result.

Theorem 6.0.5. Let Mn be a closed linear Weingarten spacelike hypersurface isometrically

immersed in the de Sitter space Sn+1
1 , n ≥ 2, such that R = aH + b with b ≤ 1. In the case

where b = 1, suppose that a > 0. Then∫
M

|Φ|q+2φa,b(|Φ|)dM ≤ 0, (6.16)

for every real number q > 2, where the real function φa,b(x) is defined in (6.15).

Moreover, assuming in addition that n ≥ 3 and 0 < b ≤ R < n−2
n
, the equality holds in (6.16)

if, and only if, Mn is a totally umbilical round sphere Sn(r) ↪→ Sn+1
1 , with r = 1

R
> 1.

Taking into account that when n = 2, a ≥ 0 and 0 < b ≤ 1 we have that φa,b(x) > 0 for all

x ≥ 0, and noting that R = K is the Gaussian curvature of M2, it is not difficult to verify that

from the integral inequality (6.16) we get the following consequence.
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Corollary 6.0.6. Let M2 be a closed linear Weingarten spacelike surface isometrically immersed

in the de Sitter space S3
1, such that R = aH + b.

(i) If 0 < b < 1 and a ≥ 0, then M2 is a totally umbilical round sphere S2(r) ↪→ S3
1, with

r = 1
K

> 1.

(ii) If b = 1 and a > 0, then M2 is a totally geodesic unit round sphere S2 ↪→ S3
1.
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Chapter 7

LW hypersurfaces in Einstein manifolds

In this chapter, we prove a sharp Simons type integral inequality for n-dimensional closed

linear Weingarten hypersurfaces immersed in an Einstein manifold En+1 and we use it to charac-

terize totally umbilical hypersurfaces and isoparametric hypersurfaces with two distinct principal

curvatures, one which is simple, in such an ambient space. Our approach is based on a suitable

lower estimate of a Cheng-Yau modified operator acting on the square norm of the traceless

second fundamental form of such a submanifold. The results presented in this chapter make

part of [45,47,48,54]

7.1 A sharp Simons type integral inequality for closed

LW hypersurfaces in an Einstein manifold En+1

In this first section, we will establish a sharp integral inequality concerning closed linear

Weingarten hypersurface when the ambient space is an Einstein manifold.

Theorem 7.1.1. Let Mn be a closed linear Weingarten hypersurface immersed in an Einstein

manifold En+1 satisfying curvature conditions (4.3) and (4.4), with R = aH+b such that b ≥ R.

In the case where b = R, suppose that a > 0. If its totally umbilical tensor Φ satisfies (4.101),

for some 1 ≤ p ≤ n−
√
n

2
, then ∫

M

|Φ|q+2Qa,b,n,p,R,c0
(|Φ|)dM ≤ 0, (7.1)

for every q ≥ 2, where the real function Qa,b,n,p,R,c0
is defined in (4.116). Moreover, assuming

b > R, the equality holds in (7.1) if and only if

(i) either Mn is a totally umbilical hypersurface,

(ii) or

|Φ|2 = α(a, b, n, p,R, c0) > 0,

where α(a, b, n, p,R, c0) is a positive constant depending only on a, b, n, p,R and c0, and

Mn is an isoparametric hypersurface with two distinct principal curvatures of multiplicities
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p and n− p.

Proof. Taking u = |Φ|2, we can rewrite inequality (4.115) as follows

L(u) ≥ 1√
n(n− 1)

uQa,b,n,p,R,c0
(
√
u)

√
4u + n(n− 1)(4(b−R) + a2).

Since u ≥ 0 and a > 0 when b = R, we obtain

u
q+2
2 Qa,b,n,p,R,c0

(
√
u) ≤

√
n(n− 1)

u
q
2√

4u + n(n− 1)(4(b−R) + a2)
L(u),

for every real number q. Besides that, Mn being closed guarantees us that we can integrate both

sides of the previous equation getting∫
M

u
q+2
2 Qa,b,n,p,R,c0

(
√
u)dM ≤

√
n(n− 1)

∫
M

u
q
2√

4u + n(n− 1)(4(b−R) + a2)
L(u)dM. (7.2)

But, from (4.27) we deduce that

f(u)L(u) = div(f(u)P(∇u)) − f ′(u)⟨P(∇u),∇u⟩,

for every smooth function f ∈ C1(R). So, integrating both sides and using the Divergence

Theorem, we reach at ∫
M

f(u)L(u)dM = −
∫
M

f ′(u)⟨P(∇u),∇u⟩dM,

for every smooth function f . In our case, we choose

f(t) =
t
q
2√

4t + n(n− 1)(4(b−R) + a2)
, for t ≥ 0. (7.3)

With this choice, we achieve in

f ′(t) =
(q − 1)4t

q
2 + n(n− 1)(4(b−R) + a2)qt

q−2
2

2(4t + n(n− 1)(4(b−R) + a2))
3
2

≥ 0, (7.4)

for every real number q ≥ 2 and t ≥ 0. Putting (7.3) and (7.4) into (7.2), we obtain∫
M

u
q+2
2 Qa,b,n,p,R,c0

(
√
u)dM ≤ −

√
n(n− 1)

∫
M

f ′(u)⟨P(∇u),∇u⟩dM ≤ 0, (7.5)

since P is positive semi-defined by Lemma 4.2.3. Therefore,∫
M

u
q+2
2 Qa,b,n,p,R,c0

(
√
u)dM ≤ 0, (7.6)
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proving inequality (7.1).

For the second part of Theorem 7.1.1, assuming that the equality holds in (7.1), from (7.5)

we obtain ∫
M

f ′(u)⟨P(∇u),∇u⟩dM = 0. (7.7)

Consequently, we get from (7.4) that

f ′(u) =
(q − 1)4u

q
2 + n(n− 1)(4(b−R) + a2)qu

q−2
2

2(4u + n(n− 1)(4(b−R) + a2))
3
2

≥ 0,

with equality if and only if u = 0 and q ≥ 2. Moreover, since b > R, we know from Lemma 4.2.3

that

⟨P(∇u),∇u⟩ ≥ 0,

with equality if and only if ∇u = 0. Thus, from (7.7) we have

f ′(u)⟨P(∇u),∇u⟩ = 0.

Hence, the function u = |Φ|2 must be constant, either u = 0 or ∇u = 0. In the case that

|Φ|2 = 0, Mn must be totally umbilical. Otherwise, |Φ|2 is a positive constant and the equality

in (7.1) implies Qa,b,n,p,R,c0
(|Φ|) = 0. Therefore, we can reason as in the last part of the proof of

Theorem 4.2.10 to conclude that Mn is an isoparametric hypersurface with two distinct principal

curvatures of multiplicities p and n− p.

Remark 7.1.2. With the same argumentation made in Remark 4.2.11, we conclude that The-

orem 7.1.1 corresponds to an extension of [5, Theorem 4.1].

Here, reasoning as we did in Theorem 7.1.1, it is going to be natural make the study for closed

linear Weingarten submanifolds immersed in a space form. In this first theorem, the ambient

space is the unit Euclidean sphere.

Theorem 7.1.3. Let Mn be a closed linear Weingarten submanifold immersed with parallel

normalized mean curvature vector field into the unit Euclidean sphere Sn+p(n ≥ 4), such that

R = aH + b with a ≥ 0 and b > 1. Then∫
M

|Φ|q+2φa,b,1(|Φ|)dM ≥ 0, (7.8)

for every real number q > 2, where the real function φa,b,1 is obtained making c = 1 in

φa,b,c(x) =
n− 2

n− 1
x2 −

(
na− n(n− 2)√

n(n− 1)
x

)√
x2

n(n− 1)
+

a2

4
+ b− c (7.9)

+
n(n− 2)√
n(n− 1)

a

2
x− n

(
a2

2
+ b− c

)
.

Moreover, the equality holds in (7.8) if, and only if,
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i. either Mn is a totally umbilical sphere Sn(r), with 0 < r < 1,

ii. or

|Φ|2 = α(n, a, b) > 0,

where α(n, a, b) is a positive constant depending on n, a, b and Mn is isometric to a Clifford

torus S1(
√

1 − r2) × Sn−1(r) ⊂ Sn+1, with r =
√

(n−2)
nR

> 0.

Proceeding, we consider the case that the ambient space Q is either the hyperbolic space

(c = 1) or the Eclidean space (c = 0). We finish this section addressing the Euclidean and

hyperbolic cases.

Theorem 7.1.4. Let Mn be a closed linear Weingarten submanifold immersed with parallel

normalized mean curvature vector field in a Riemannian space form Qn+p
c (c ∈ −1, 0 and n ≥ 4),

such that R = aH + b with a ≥ 0 and b > c. Then∫
M

|Φ|q+2φa,b,c(|Φ|)dM ≥ 0, (7.10)

for every real number q > 2, where the real function φa,b,c is defined in (7.9). Moreover, the

equality holds in (7.10) if, and only if, Mn is a totally umbilical sphere Sn(r), with r > 0.

7.2 A sharp integral inequality for closed LW hypersur-

faces in an Einstein spacetime En+1
1

For the Lorentzian context, we establish a sharp integral inequality concerning closed LW

spacelike hypersurfaces immersed in an Einstein manifold En+1
1 , which follows closely the ideas

and techniques of section 7.1. For that, let us enunciate the lower boundedness for the operator

L for this case.

Proposition 7.2.1. Let Mn be a LW spacelike hypersurface immersed in an Einstein manifold

En+1
1 satisfying curvature conditions (4.3) and (4.4), such that R = aH + b with b ≤ R. In the

case where b = R, assume that the mean curvature function H does not change sign and b ≤ R.

Then,

L(|Φ|2) ≥ 2(n− 1)|Φ|2φa,b(|Φ|)

√
|Φ|2

n(n− 1)
+ R− b +

a2

4
,

where

φa,b(x) =
n− 2

n− 1
x2 +

(
na− n(n− 2)√

n(n− 1)
x

)√
x2

n(n− 1)
+ R− b +

a2

4

+
n(n− 2)√
n(n− 1)

a

2
x− n

(
R− b− c +

a2

2

)
(7.11)

and c = 2c2 +
c1
n
.
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Now, we are in a position to establish our rigidity result.

Theorem 7.2.2. Let Mn be a closed LW spacelike hypersurface immersed in an Einstein man-

ifold En+1
1 satisfying curvature conditions (4.3) and (4.4), such that R = aH + b with b ≤ R. In

the case where b = R, suppose that a > 0. Then,∫
M

|Φ|q+2φa,b(|Φ|)dM ≤ 0, (7.12)

for every q ≥ 2, where the real function φa,b is defined in (7.11). Moreover, assuming b < R,

equality holds in (7.12) if and only if

(i) either Mn is a totally umbilical hypersurface,

(ii) or

|Φ|2 = α(n, a, b, c,R) > 0,

where α(n, a, b, c,R) is a positive constant depending on n, a, b, c,R, and Mn is an isopara-

metric hypersurface with two distinct principal curvatures, one of which is simple.

Proof. Let u = |Φ|2. So, we can rewrite the equation from Proposition 7.2.1 as

L(u) ≥ 2(n− 1)uφa,b(
√
u)

√
u

n(n− 1)
+ R− b +

a2

4
.

Since u ≥ 0 and a > 0 when b = R, we obtain

u
q+2
2 φa,b(

√
u) ≤

√
n

n− 1

u
q
2√

4u + n(n− 1)(4(R− b) + a2)
L(u),

for every real number q. Besides that, the fact of Mn be closed guarantees that we can integrate

both sides of the previous equation and get∫
M

u
q+2
2 φa,b(

√
u)dM≤

√
n

n− 1

∫
M

u
q
2√

4u + n(n− 1)(4(R− b) + a2)
L(u)dM. (7.13)

But, from (4.27), we gain

f(u)L(u) = div(f(u)P(∇u)) − f ′(u)⟨P(∇u),∇u⟩

for every smooth function f ∈ C1(R). We can integrate both sides and use the Stokes’ Theorem,

yielding ∫
M

f(u)L(u)dM = −
∫
M

f ′(u)⟨P(∇u),∇u⟩dM,
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for every smooth function f . In our case, we choose

f(t) =
t
q
2√

4t + n(n− 1)(4(R− b) + a2)
, for t ≥ 0. (7.14)

For this reason, we achieve in

f ′(t) =
(q − 1)4t

q
2 + n(n− 1)(4(R− b) + a2)qt

q−2
2

2(4t + n(n− 1)(4(R− b) + a2))
3
2

≥ 0, (7.15)

for every real number q ≥ 2 and t ≥ 0. Putting (7.14) and (7.15) into (7.13), we can estimate∫
M

u
q+2
2 φa,b(

√
u)dM ≤ −

√
n

n− 1

∫
M

f ′(u)⟨P (∇u),∇u⟩dM ≤ 0, (7.16)

since P is positive semi-definite by Lemma 4.1.2. Therefore,∫
M

u
q+2
2 φa,b(

√
u)dM ≤ 0. (7.17)

This proves inequality (7.12). For the second part of our theorem, if the equality holds

in (7.17), from (7.16) we obtain ∫
M

f ′(u)⟨P(∇u),∇u⟩dM = 0. (7.18)

Consequently, we get from (7.15) that

f ′(u) =
(q − 1)4u

q
2 + n(n− 1)(4(R− b) + a2)qu

q−2
2

2(4u + n(n− 1)(4(R− b) + a2))
3
2

≥ 0,

with equality if and only if u = 0 and q > 2. Besides that, since b < R, we know from

Lemma 4.1.2 that

⟨P(∇u),∇u⟩ ≥ 0,

with equality if and only if ∇u = 0. Well, from (7.18), we get

f ′(u)⟨P(∇u),∇u⟩ = 0,

Thus, the function u = |Φ|2 must be constant, either u = 0 or ∇u = 0. In the case

that |Φ|2 = 0, Mn must be totally umbilical. Otherwise, |Φ|2 is a positive constant and the

equality in (7.12) implies φa,b(|Φ|) = 0. Hence, |Φ|2 = α > 0 and the proof follows as in

Theorem 4.1.8.

In case n = 2, we have for a ≥ 0 that φa,b(x) > 0 for all x ≥ 0. Noting that R = K is the

Gaussian curvature of M2, we get the following consequence of Theorem 7.2.2.
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Corollary 7.2.3. Let M2 be a closed LW spacelike surface immersed in an Einstein manifold

E3
1 satisfying curvature conditions (4.3) and (4.4), such that K = aH + b where b ≤ R. In the

case where b = R, suppose that a > 0. Then, M2 must be totally umbilical.

Finally, from Theorem 7.2.2 we obtain

Corollary 7.2.4. Let Mn be a closed LW spacelike hypersurface immersed in the de Sitter space

Sn+1
1 , such that R = aH + b with b ≤ 1. In the case where b = 1, suppose that a > 0. Then∫

M

|Φ|q+2φa,b(|Φ|)dM ≤ 0, (7.19)

for every q ≥ 2, where the real function φa,b is given by

φa,b(x) =
n− 2

n− 1
x2 +

(
na− n(n− 2)√

n(n− 1)
x

)√
x2

n(n− 1)
+ 1 − b +

a2

4

+
n(n− 2)√
n(n− 1)

a

2
x− n

(
a2

2
− b

)
.

Moreover, assuming 0 < b < R < n−2
n

< 1, equality holds in (7.19) if and only if Mn is a totally

umbilical round sphere S(r) ↪→ Sn+1
1 , with r = 1

R
> 1.
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Chapter 8

LW submanifolds in Nn+p
q (c) with second

fundamental form locally timelike

This last chapter is devoted to state and prove our characterization results concerning com-

plete LW spacelike submanifolds immersed with parallel normalized mean curvature vector field

and second fundamental form locally timelike in a semi-Riemannian space form Nn+p
q (c). For

this, in the next lemma we quote a lower bound of the operator L acting on the square norm of

Φ, which is derived from [89, Inequality (26)].

Lemma 8.0.1. Let Mn be a LW spacelike submanifold immersed in a semi-Riemannian space

form Nn+p
q (c), such that R = aH + b with b ≤ c and a ≥ 0. Suppose that the second fundamental

form is locally timelike and the normalized mean curvature vector field is parallel in Nn+p
q (c).

Then,

L(|Φ|2) ≥ 2(n− 1)|Φ|2φa,b,c,q,n(|Φ|)

√
|Φ|2

n(n− 1)
+

a2

4
+ c− b,

where the real function φa,b,c,q,n is given by

φa,b,c,q,n(x) =
n− q − 1

q(n− 1)
x2 +

(
na− n(n− 2)√

n(n− 1)
x

)√
x2

n(n− 1)
+

a2

4
− b + c (8.1)

+
n(n− 2)√
n(n− 1)

a

2
x− n

(
a2

2
− b

)
.

As we did in the last chapters, we are going to use the lower bound of the operator L acting

on the squared norm of Φ to obtain the following sharp integral inequality involving the norm

of the umbilicity tensor of closed spacelike submanifolds of a semi-Riemannian space form.

Theorem 8.0.2. Let Mn be a closed LW spacelike submanifold immersed with parallel normal-

ized mean curvature vector field in a semi-Riemannian space form Nn+p
q (c), such that R = aH+b

with b ≤ c and a ≥ 0 (suppose a > 0 when b = c). If the second fundamental form of Mn is

locally timelike, then ∫
M

|Φ|t+2φa,b,c,q,n(|Φ|)dM ≤ 0, (8.2)
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for every real number t > 2, where the real function φa,b,c,q,n is defined in 8.1. Moreover, assuming

in addition that either 0 < b < c or −a2

4
< b ≤ c ≤ 0, the equality holds in (8.2) if, and only if,

Mn is a totally umbilical submanifold of Nn+p
q (c).

Proof. We begin making u = |Φ|2 in Lemma 8.0.1 for simplicity. Thus, we have

L(u) ≥ 2(n− 1)uφa,b,c,q,n(
√
u)

√
u

n(n− 1)
+

a2

4
+ c− b. (8.3)

Since u ≥ 0 and b ≤ c, with b = c only for a > 0, equation (8.3) becomes

u
t+2
2 φa,b,c,q,n(

√
u) ≤

√
n

n− 1

u
t
2√

4u + n(n− 1)(a2 + 4(c− b))
L(u), (8.4)

for every real number t. As Mn is closed, we can integrate both sides of (8.4) in order to obtain∫
M

u
t+2
2 φa,b,c,q,n(

√
u)dM ≤

√
n

n− 1

∫
M

u
t
2√

4u + n(n− 1)(a2 + 4(c− b))
L(u)dM. (8.5)

But, from (5.14) we have

f(u)L(u) = div(f(u)P(∇u)) − f ′(u)⟨P(∇u),∇u⟩, (8.6)

for every smooth function f ∈ C1(R). So, integrating both sides of (8.6) and using Stokes’

theorem it follows that ∫
M

f(u)L(u)dM = −
∫
M

f ′(u)⟨P(∇u),∇u⟩dM, (8.7)

for every smooth function f . In our case, substituting (8.7) into (8.5) we can estimate∫
M

u
t+2
2 φa,b,c,q,n(

√
u)dM ≤ −

√
n

n− 1

∫
M

f ′(u)⟨P(∇u),∇u⟩dM, (8.8)

where

f(u) =
ut/2√

4u + n(n− 1)(a2 + 4(1 − b))
,

with

f ′(u) =
4(r − 1)ut/2 + n(n− 1)(a2 + 4(c− b))tu

t−2
2

2 (4u + n(n− 1)(a2 + 4(c− b)))3/2
≥ 0, (8.9)

for every real number t > 2, occurring equality if and only if u = 0. Therefore, since [89, Lemma

1] assures that the operator P is positive semi-definite for b ≤ c, we conclude from (8.8) and

(8.9) that ∫
M

u
t+2
2 φa,b,c,q,n(

√
u)dM ≤ 0. (8.10)

This proves inequality (8.2).
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Now, we proceed supposing that the equality holds in (8.2). From (8.8) we get∫
M

f ′(u)⟨P(∇u),∇u⟩dM = 0. (8.11)

We can return to equation (8.9) and use the fact that P is positive definite when b < c to

obtain

f ′(u)⟨P(∇u),∇u⟩ = 0.

In the case that f ′(u) = 0, we have u = 0. In other words, |Φ| = 0. In the case that

⟨P(∇u),∇u⟩ = 0, since P is positive definite, we get that ∇u = 0 on Mn. Hence, the function

u = |Φ|2 must be constant.

If |Φ| = 0, we conclude that Mn is a totally umbilical submanifold. Otherwise, |Φ| is a

positive constant and so H and R by equation (5.10) and, consequently, the mean curvature

vector field h and en+p are parallel in T⊥(Mn). Therefore, reasoning as in the last part of the

proof of [89, Theorem 1], we can apply [88, Theorem 1] to obtain that Mn lies in a totally geodesic

submanifold Nn+1
1 (c) of Nn+p

q (c). Since we are assuming in addition that either 0 < b < c or

−a2

4
< b ≤ c ≤ 0, we conclude that Mn should be isometric to H1(c−ccoth2r)×Sn−1(c−ctanhr),

when c = 0, to H1(−coth2r) × Rn−1, when c > 0, and to H1(c + ccoth2r) × Hn−1(c + ctan2r),

when c < 0, for some radius r > 0. However, since we are supposing that Mn is closed, these

situations cannot occur. Therefore, Mn must be a totally umbilical submanifold of Nn+p
q (c).
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[8] Aĺıas, L. J., Caminha, A. and do Nascimento F.Y., A maximum principle at infinity with applications to

geometric vector fields, J. Math. Anal. Appl. 474 (2019), 242–247.
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[68] López, R., Area Monotonicity for spacelike surfaces with constant mean curvature, J. Geom. Phys. 52, (2004)

353-363.

[69] Mariano, M., On complete spacelike submanifolds with second fundamental form locally timelike in a semi-

Riemannian space form, J. Geom. Phys. 60 (2010), 720-728.

[70] Montiel, S. A characterization of hyperbolic cylinders in the de Sitter space, Tôhoku Math. J. 48 (1996),
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