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Resumo

Este trabalho esta dividido em duas partes. Na primeira parte, estamos interessados em obter
resultados de rigidez e de nao existéncia baseados em principios do méaximo relacionados a sub-
variedades Weingarten lineares imersas em variedades Riemannianas ou Lorentzianas. Usamos
fortemente a nocao de convergéncia para zero no infinito e de crescimento de volume polinomial.
A segunda parte é dedicada também ao estudo de subvariedades Weingarten lineares, dessa vez
fechadas, em variedades Riemannianas ou Lorentzianas imersas com curvatura média normal-
izada paralela. Precisamente, estabelecemos desigualdades integrais a partir de uma estimativa
inferior adequada do operador de Cheng-Yau agindo sobre a norma ao quadrada da segunda

forma fundamental sem traco e a usamos para caracterizar subvariedades totalmente umbilicas.
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Abstract

This work is divided into two parts. In the first part, we are interested to get rigidity and nonex-
istence results based on suitable maximum principles related to linear Weingarten submanifolds
immersed into Riemannian or Lorentzian manifolds. We strongly use the notion of convergence
to zero at infinity and of polynomial volume growth. The second part is dedicated also to study
linear Weingarten submanifolds into Riemannian or Lorentzian manifolds, but this time closed
and immersed with parallel normalized mean curvature. Precisely, we establish sharp integral
inequalities from a suitable lower estimate of the Cheng-Yau operator acting on the squared
norm of the traceless second fundamental form and we use it to characterize totally umbilical

submanifolds.
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Introduction

This thesis is divided into two main parts as follows:

Part [I: Rigidity and nonexistence results for complete sub-

manifolds.

The study of the rigidity of n-dimensional submanifolds immersed into a Riemannian or a
Lorentzian space constitutes an important thematic in Diferential Geometry and, in particular,
into the theory of isometric immersions. It is still profuse and many researchers have extensively
explored this area.

An analytical tool that has become fruitful for this research branch is a self-adjoint differential
operator acting on smooth functions defined on a Riemannian or on a Lorentzian manifold,
known as Cheng-Yau operator, which was introduced by Cheng and Yau in their remarkable
paper [31]. In this work, they used the square operator to classify n-dimensional compact
(without boundary) hypersurfaces with constant normalized scalar curvature R satisfying R > ¢
and nonnegative sectional curvature immersed in a space form Q”*!. Posteriorly, Li [62] extended
the results of Cheng and Yau in terms of the squared norm of the second fundamental form of
the hypersurface. Next, Li [61] studied the rigidity of compact hypersurfaces with nonnegative
sectional curvature immersed in a unit Euclidean sphere S"*! under the assumption that the
scalar and mean curvatures are proportional.

Over the past few decades, significant advancements have been made in the field described
above. In 2009, for instance, Li, Suh and Wei [63] extended the results of [31] and [61] by exam-
ining the concept of linear Weingarten (LW) hypersurfaces immersed in S"*! whose normalized
scalar curvature R and mean curvature H satisfy a linear relation of the type R = aH + b, for
some constants a,b € R. Subsequently, Shu [81] contributed to the field by presenting some
rigidity theorems concerning LW hypersurfaces with two distinct principal curvatures immersed
in Q"*. Also working in this context, de Lima, Veldsquez and Aquino [18] extended the re-
sults of [63] to complete LW hypersurfaces immersed in Q! resorting to a suitable Cheng-Yau
modified operator.

Regarding immersed submanifolds with (possibly) high codimension p > 1 and whose nor-
malized mean curvature vector field is parallel as a section of the normal bundle, we also have
in the current literature several works addressing characterization results. In this setting, we
can highlight the papers of Cheng [34] and Guo and Li [59]. In the first one, the author applied



the generalized maximum principle of Omori-Yau [74,87] to show that the totally umbilical
sphere S"(r), the totally geodesic Euclidean space R™ and the generalized cylinder R x S"~*(r)
are the only n-dimensional complete submanifolds with constant scalar curvature and parallel
normalized mean curvature vector in the Euclidean space R™*? satisfying a suitable constraint
on the norm of the second fundamental form. In the second one, the authors investigated the
problem of generalize the previous results of [62]. So, they proved that the only n-dimensional
compact (without boundary) submanifolds immersed in S"*? with constant scalar curvature,
parallel normalized mean curvature vector and such that the second fundamental form satis-
fies an appropriate boundedness are the totally umbilical spheres S"(r) and the Clifford torus
SY(v/1 —r2) x S"7(r), where r > 0 stands for the positive radius.

More recently, Araijo, de Lima, dos Santos and Veldsquez [25] obtained an Omori-type maxi-
mum principle for the Cheng-Yau operator and applied it to establish an extension of the results
of [34,59] for n-dimensional complete submanifolds immersed with parallel normalized mean
curvature vector field in Q" with constant normalized scalar curvature. Next, these same au-
thors [44] used the Hopf strong maximum principle and a maximum principle at infinity due to
Caminha [30] to obtain versions of the results of [2534}59] for the context of n-dimensional com-
plete LW submanifolds immersed with parallel normalized mean curvature vector field in Q7.
In 23], Veldsquez and Aratjo established a version of the classical Liebmann’s rigidity theorem
showing that a compact LW surface immersed with flat normal bundle and parallel normalized
mean curvature vector with nonnegative Gaussian curvature in Q*™ must be isometric to a
totally umbilical round sphere. They also obtained in [22| another version of this Liebmann’s
result assuming that the ambient is the hyperbolic space (for other characterizations concerning
complete LW submanifolds in the hyperbolic space we refer the reader to |16}20}21},42]).

In a higher codimension, Liu [67] showed that the totally umbilical round spheres are the only
n-dimensional compact (without boundary) spacelike LW submanifolds of S} 7 with nonnegative
sectional curvature and flat normal bundle. Later on, Yang and Hou [85] applied the Omori-
Yau’s generalized maximum principle to show that a spacelike LW submanifold in Szﬂ’, with
a > 0, b < 1, having parallel normalized mean curvature vector and such that the squared
norm of its second fundamental form satisfies a suitable boundedness, must be either totally
umbilical or isometric to a certain hyperbolic cylinder. Afterwards, Liu and Zhang [66] used the
classical strong maximum principle of Hopf to obtain other classifications for complete spacelike
LW submanifolds in S;*? having parallel normalized mean curvature.

In [24], ratjo, de Lima, dos Santos and Veldsquez obtained other characterization results
related to complete spacelike LW submanifolds with parallel normalized mean curvature vector
in Sg*p under suitable constraints on the values of the mean curvature and of the norm of the
traceless part of the second fundamental form, now through an extension of Hopf’s maximum
principle for complete Riemannian manifolds. Next, de Lima and Velasquez jointly with Barboza
and de Lima [26] studied the umbilicity of n-dimensional complete spacelike LW submanifolds
immersed with parallel normalized mean curvature vector field in S;“Lp , with index p > 1. They

applied a generalized maximum principle for a modified Cheng-Yau operator £ to show that
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such a spacelike LW submanifold must be either totally umbilical or isometric to a product
My x My x ... x My, where the factors M; are totally umbilical submanifolds of S;‘*p which
are mutually perpendicular along their intersections. More recently, imposing some restrictions
on the values of the mean curvature function H, Antonia and de Lima in [40] established a
parabolicity criterion related to the operator £ and used it to obtain sufficient conditions which
guarantee that a spacelike LW submanifold immersed in S7*7 must be either totally umbilical
or isometric to certain hyperbolic cylinders.

Lately, in [17], when the ambient space is a Lorentzian space form, de Lima jointly with
Aquino characterized constant mean curvature spacelike hypersurfaces, whose support functions
are linearly related. Continuing the study of the geometry of spacelike hypersurfaces, now with
da Silva, de Lima established in [39] a parabolicity criterion related to a suitable Cheng-Yau
modified operator £ and used it to obtain sufficient conditions which guarantee that spacelike
hypersurfaces immersed in a more general Lorentz space, a locally symmetric Einstein spacetime
(that is, a Lorentz space whose metric and Ricci tensors are homothetic) obeying standard
curvature constraints must be either totally umbilical or isometric to an isoparametric spacelike
hypersurface with two distinct principal curvatures, one of which is simple.

Motivated by this research history, in this part of the work, the main aim is to establish
new rigidity and nonexistence results concerning n-dimensional submanifolds immersed in a
variety of spaces via certain maximum principles. In Chapter [I} we will briefly introduce these
maximum principles. Among them, the suitable maximum principles due to Alias, Caminha
and do Nascimento [8,9], involving the concept of convergence to zero at infinity and polynomial
volume growth.

In Chapter [2| we are going to establish new rigidity theorems for n-dimensional spacelike
linear Weingarten submanifolds immersed with parallel normalized mean curvature vector field
in the (n + p)-dimensional de Sitter space Sg*p of index p. In one of them, we present a new
version of [85, Theorem 1.4] and of [66, Theorem 1.1].

Theorem 0.0.1 (Theorem [2.1.8). Let M™ be a complete noncompact spacelike LW submanifold
immersed with parallel normalized mean curvature vector in S;“rp, such that R = aH + b for
some a,b € R with b < 1. If |A]* < 2v/n —1 and |®| converges to zero at infinity, then M™ is

1sometric to either the Euclidean space R™ or the hyperbolic space H™.
We also are going to use the one-parameter family of real functions (see (2.43))) given by

_ onn=2) o
Piple) =~ T (2 —1)

to study it behavior based on a limitation of the mean curvature H, as we can see below:

Theorem 0.0.2 (Theorem [2.1.20). Let M™ be a complete spacelike LW submanifold immersed
with parallel normalized mean curvature vector field in S;““p, such that R = aH + b for some
a,be R withb <1 and H + § > B, for some positive constant € R. Suppose that sup,, |®| <
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J(n,p) and that

H? < 4(n—1)
Q)
where Q(p) = p(n — 2)? 4+ 4(n — 1), and Y(n,p) is the real root of Py ,. If M™ has polynomial
volume growth, then M™ is isometric to either the Fuclidean space R™ or the Euclidean sphere
S™(r), with radius r > 0.

The second section of this chapter is devoted to investigate the nonexistence and umbilicity
of n-dimensional (n > 3) spacelike submanifolds immersed with parallel mean curvature vector
field in the (n 4+ p)-dimensional de Sitter space S]*? of index 1 < ¢ < p. Also we prove
(see Theorem that the only n-dimensional stochastically complete spacelike submanifold
immersed in SZL“’ , which are maximal and having locally timelike second fundamental form, are
the totally geodesic ones.

In Chapter[3} we will study linear Weingarten submanifolds immersed in an (n+p)-dimensional
Riemannian space form Q"™ with constant sectional curvature ¢ € {—1,0,1}. Between the re-

sults obtained in this chapter, we can mention

Theorem 0.0.3 (Theorem. Let M™ be a complete LW submanifold immersed with parallel
normalized mean curvature vector field in a Riemannian space form QP with n > 4, such that
R=aH+bwitha>0andb> c. Suppose that (H — %) > B on M", for some positive constant
B, and that R > ”T’Q forc=1and R > 0 when ¢ = —1 or ¢ = 0. Assume in addition that |VP|
is bounded and such that sup,; |®| < v < a%, for some constant v and x}, defined in (3.16). If
M"™ has polynomial volume growth and i%f(QR(y)) > 0, then M™ is isometric to an Euclidean
sphere S™(r), with radius r > 0.

Concerning the hyperbolic space, we cite

Theorem 0.0.4 (Theorem. Let M™ be a complete noncompact LW submanifold immersed
with parallel normalized mean curvature vector field into the hyperbolic space H" P with n > 4,
such that R = aH + b with a > 0 and b > —1. Suppose that (H— %) > 0 on M™ and that
R > 0. Assume in addition that |®| < x3, for o defined in ([3.16). If |®| converges to zero at

infinity, then M™ is isometric to a horosphere of H" !,

Reaching Chapter [4 we will study the geometry of linear Weingarten spacelike hypersurfaces
immersed in an Finstein space obeying some standard curvature conditions. Considering the
hypersurface immersed in the Lorentz space L7, we are going to assume that there exist

constants ¢; and ¢, such that the sectional curvature K of 7! satisfies the two constraints (see

3] and [C)

for any u € TM and n € TM*, and



for any tangent vectors u,v € TM. By doing this, we can use the modified Cheng-Yau operator
L to obtain some results concerning complete LW spacelike hypersurfaces immersed with parallel

normalized mean curvature vector field in an Einstein spacetime &'

Theorem 0.0.5 (Theorem . Let M"™ be a complete LW spacelike hypersurface immersed
with parallel normalized mean curvature vector field in an Einstein spacetime E' satisfying
curvature conditions and , such that R = aH + b with b < R < b+ ¢, where ¢ =
2cy + %1 >0, and b < R. In the case where b = R, assume further that the mean curvature

function H does not change sign. Then

(i) either sup,, |®|?> =0 and M™ is a totally umbilical hypersurface,

(ii) or

sup |®|* > a(n,a,b,c, R) > 0,
M
where a(n, a,b,c, R) is a positive constante depending on n,a,b,c and R.

In particular, if b < R, the equality sup,, |®|*> = a(n,a,b,c,R) holds and this supremum is at-
tained at some point of M™, then M™ is an isoparametric hypersurface with two distinct principal

curvatures one of which is simple.

To the context of a hypersurface immersed in a Riemannian manifold WH, we will also

. . — 1 .
assume the existence constants ¢; and cs such that the sectional curvature K of M satisfies

the following two constraints (see and [4.71])

P Cl

K(U’vn) - Ev

for any tangent vector v € T'M and normal vector n € TM*; and

K(u,v) > ¢,

for any tangent vectors w,v € T'M. Involving these constraints and the concept of polynomial

volume growth, we state the following:

Theorem 0.0.6 (Theorem . Let M™ be a complete LW hypersurface immersed in an
Einstein manifold E" satisfying curvature constraints and with n > 3, such that
R = aH + b with b > R. Suppose that (H — %) > B on M™, for some positive constant [3, and
that R > R — %c fore>0and R >R — c for c < 0. Assume in addition that |V®| is bounded
and sup,; |®| < v <z}, for some constant v and x%, defined in . If M™ has polynomial
volume growth and i%f(QR(’y)) > 0, then M™ is a totally umbilical hypersurface.

In the results of Chapter [, we discuss about LW submanifolds in a semi-Riemannian space
form N7*7(c) with second fundamental form locally timelike. For example, revisiting [89, Theo-
rem 2|, we replace the assumption that the mean curvature function attains a global maximum

to arrive at:
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Theorem 0.0.7 (5.2.1). Let M™ be a complete LW spacelike submanifold immersed with parallel
normalized mean curvature vector in NZ“’(C), such that R = aH + b with b < c. Suppose that
the second fundamental form of M™ is locally timelike and that it has nonnegative sectional

curvature. If H is bounded and, for some reference point o € M™ and § > 0,

/+oo dt e
5 VOl(aBt) n ’

where By is the geodesic ball of radius t in M™ centered at the reference point o, then M™ is either
totally umbilical or a product My X My X - -+ X My, where the factors M;, mutually perpendicular

along their intersections, are totally umbilical submanifolds of N2+p(c).

Part [T: Sharp integral inequalities for closed submanifolds.

Let us first describe about the Riemannian context. In 1977, Cheng and Yau [31] studied
the rigidity problem for hypersurfaces M™ with constant scalar curvature in a space form Q!
of constant sectional curvature ¢, introducing a self-adjoint second order differential operator,
the so-called squared operator. By using Cheng-Yau’s technique, Li [62] studied the pinching
problem on the square norm of the second fundamental form for complete hypersurfaces with
constant scalar curvature. Afterwards, Li [61] also studied the rigidity of oriented and without
boundary compact hypersurfaces with nonnegative sectional curvature in a unit sphere S"*!
with scalar curvature proportional to the mean curvature.

Later on, Wei [84] investigated compact rotational hypersurfaces in S"*! obtaining suitable
integral formulas and applying them to characterize Clifford tori S'(v/1 —72) x "7 1(r), 0 <
r < 1, under the assumption that some higher order mean curvature vanishes identically. Next,
de Lima jointly with Aquino and Veldsquez [16}/19] established another characterization results
related to complete linear Weingarten hypersurfaces in Q"™!, under appropriated restriction on
the norm of the traceless part of the second fundamental form.

In [12], de Lima, dos Santos, Alias and Meléndez extended these results for the context of
complete linear Weingarten hypersurfaces in a locally symmetric Riemannian manifold obeying
some standard curvature conditions (in particular, in a Riemannian space with constant sectional
curvature). Under appropriated constrains on the scalar curvature function, they proved that
such a hypersurface must be either totally umbilical or isometric to an isoparametric hypersurface
with two distinct principal curvatures, one of them being simple.

More recently, Alias and Meléndez [5] studied the rigidity of compact hypersurfaces with
constant scalar curvature in S**!. In particular, they established a sharp Simons type integral
inequality for the behavior of the norm of the traceless second fundamental form, with the
equality characterizing the totally umbilical hypersurfaces and the Clifford tori S'(v/1 —r2) x
S (r).

Towards the context of the Lorentzian geometry, Aiyama [3] studied closed (compact without

boundary) spacelike submanifolds M™ in S} with parallel mean curvature vector field and

XV



proved that if the normal connection of M™ is flat, then M™ is totally umbilical. In the same
work [3], she proved that closed spacelike submanifolds in S}*? with parallel mean curvature
vector field and nonnegative sectional curvatures must be also totally umbilical. Meanwhile, Alias
and Romero [6] introduced a new method to study n-dimensional closed spacelike submanifolds
in de Sitter space Sg“’ of index ¢ (1 < ¢ < p) by means of certain integral formulas which have
a very clear geometric meaning. In particular, they got a uniqueness result for closed spacelike
surfaces in S;™” with parallel mean curvature vector field. Next, Li [61] showed that Montiel’s
result [70] still holds for higher codimensional spacelike submanifolds in S}*?.

Later on, Camargo, Chaves and Sousa [29] studied complete spacelike submanifolds with
parallel normalized mean curvature vector field and constant scalar curvature immersed in a
semi-Riemannian space form Q)7 (c) of constant sectional curvature ¢ and index p. In particular,
they obtained characterizations results concerning totaly umbilical spacelike submanifolds and
hyperbolic cylinders of S7*7, under certain constraints on both the squared norm of the second
fundamental form and on the mean curvature. Another outcome in this regard is attributed to
Lépez [68], who proved that compact spacelike surfaces with constant mean curvature in the
3-dimensional Lorentz-Minkowski spacetime R? with boundary on a plane can reach at most a
height of %, where A is the area of the region of the surface above the plane containing its
boundary. Later on, Montiel [72] obtained height estimates of compact spacelike graphs in the
steady state spacetime and he applied them to prove some existence and uniqueness theorems
for complete spacelike hypersurfaces in the de Sitter spacetime with constant mean curvature
H > 1 and prescribed asymptotic future boundary. Also, de Lima studied height estimates and
obtained a sharp estimate of compact spacelike hypersurfaces with some constant higher order
mean curvature in the Lorentz-Minkowski spacetime R}*! and with boundary contained into a
spacelike hyperplane (see [41]).

This part of the thesis is devoted to use the ideas and techniques of [5] to establish a sharp
integral inequality related to closed linear Weingarten submanifolds and apply it to get rigidity
results based on a suitable lower estimate of the Cheng-Yau operator acting on the square norm
of the traceless second fundamental form of such a spacelike submanifold.

To be more precisely, in Chapter [6] we establish a sharp integral inequality for n-dimensional
closed spacelike submanifolds with constant scalar curvature immersed with parallel normalized
mean curvature vector field in the de Sitter space SZ“’ of index p, and we use it to characterize

totally umbilical round spheres S"(r), with r > 1, of S}*' < S"*7. We set the following;

Theorem 0.0.8 (Theorem [6.0.3). Let M™ be a closed spacelike submanifold immersed in Sy*?
with parallel normalized mean curvature vector field and constant normalized scalar curvature
R <1. Then

/ B[T2Q (| B])M < 0,
M

for every real number q > 2, where the real function Qg p(T) is

Qronp() = (”_P#ﬁ —(n—2)z/22 +n(n—1)(1 — R) + n(n — 1R. (1)
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Moreover, assuming in addition that 0 < R < 1, the equality holds if, and only if, M™ is a totally

umbilical round sphere S"(r), with r = & > 1, immersed in S{*' — Sp+P.

Later on, in Chapter [7] we prove a sharp Simons type integral inequality for n-dimensional
closed linear Weingarten hypersurfaces immersed in an Einstein manifold £"*! and we use it to
characterize totally umbilical hypersurfaces and isoparametric hypersurfaces with two distinct

principal curvatures, one which is simple, in such an ambient space, as stated bellow:

Theorem 0.0.9 (Theorem [7.1.1)). Let M™ be a closed linear Weingarten hypersurface immersed
in an Einstein manifold E"' satisfying curvature conditions ([4.3) and (4.4), with R = aH + b
such that b > R. In the case where b = R, suppose that a > 0. If its totally umbilical tensor ®

satisfies (4.101)), for some 1 < p < "_2\%, then

AJ |q)|q+2Qa,b,n,p,ﬁ,co(|(I)|>dM S 07

Jor every q > 2, where the real function Q,; , 7. S defined in (4.116). Moreover, assuming
b > R, the equality holds if and only if

(i) either M™ is a totally umbilical hypersurface,

(i1) or
’(I)P = a(a,b,n,p,ﬁ, CO) > 0;
where a(a,b,n,p, R, co) is a positive constant depending only on a,b,n,p, R and cy, and
M™ is an isoparametric hypersurface with two distinct principal curvatures of multiplicities

p and n — p.

To close this part, in Chapter |8 we study complete LW spacelike submanifolds immersed
with parallel normalized mean curvature vector and second fundamental form locally timelike

in a semi-Riemannian space form N7*?(c). In other words, we will state the next theorem:

Theorem 0.0.10 (Theorem. Let M™ be a closed LW spacelike submanifold immersed with
parallel normalized mean curvature vector in a semi-Riemannian space form Ng“”(c), such that
R=aH 4+ b withb < c and a > 0 (suppose a > 0 when b = c). If the second fundamental form
of M is locally timelike, then

/ |q)|t+2§0a,b,c,q,n(|q)|)dM S O,
M

for every real number t > 2, where the real function ©gpcqn i defined in (8.1). Moreover,
assuming in addition that either 0 < b < ¢ or —% < b < e <0, the equality holds if, and only
if, M™ is a totally umbilical submanifold of N} (c).

We point out that, with the intention of all chapters being self-contained, we will place the
necessary preliminaries in each of them, seeking to avoid as much as possible the search for

results outside of them.

Xvil



Part 1

Rigidity and nonexistence results for

complete submanifolds



Chapter 1

A brief comment about some maximum

principles

For clarity, this chapter will present a number of important definitions and notations that will
be used consistently in the remainder of this thesis. For instance, we recall briefly a generalized
version of the Omori-Yau’s maximum principle for trace type differential operators proved in
[15] as well as the well known Omori-Yau’s maximum principle for the Laplacian operator.

Let M™ be a Riemannian manifold and let £ = tr(P ohess) be a semi-elliptic operator, where
P X(M) — X(M) is a positive semi-definite symmetric tensor. Following the terminology
introduced by Pigola et al. [77], we say that the Omori-Yau maximum principle holds on M™ for
the operator L if, for any function v € C*(M) with u* = supu < +o00, there exists a sequence

of points {p;} C M™ satisfying
. 1 1 1
u(p;) > u* — ;, |Vu(p;)| < 3 and  Lu(p;) < 3,

for every j € N.
In this sense, the classical result given by Omori and Yau in [74}87] states that the Omori-
Yau maximum principle holds for the Laplacian on every complete Riemannian manifold with

Ricci curvature bounded from below, that is:

Lemma 1.0.1. Let M™ be a complete Riemannian manifold whose Ricci curvature is bounded
from below and v € C*(M) satisfying u* < +oo. Then, there exists a sequence of points {p;} C
M™ such that

ulpy) > == [Vulpy)| <5 and Au(py) <

Conversely, as observed also by Pigola et al. |77, the validity of Omori-Yau’s maximum
principle on M"™ does not depend on curvatures bounds as much as one would expect. For
instance, the Omori-Yau maximum principle holds on every Riemannian manifolds which is
properly immersed into a Riemannian space form with controlled mean curvature (see |77,
Example 1.14). In particular, it holds for every constant mean curvature hypersurface properly

immersed into a Riemannian space form.



Following the terminology introduced in [77], the weak Omori-Yau maximum principle is
said, more broadly, to hold on a (not necessarily complete) n-dimensional Riemannian manifold
M™ if, for any smooth function u € C?(M) with u* < +oo there exists a sequence of points
{p;} € M™ with the properties

1 1
u(p;) > u* — 7 and  Au(p;) < i

Proceeding, we say that a (non necessarily complete) Riemannian manifold M™ is said to be
stochastically complete if, for some (and, hence, for any) (z,t) € M™ x (0,+00), the heat kernel

p(z,y,t) of the Laplace-Beltrami operator A satisfies the conservation property

/Mp(x,y,t)dﬂ(y) =1. (1.1)

From the probabilistic viewpoint, stochastic completeness is the property of a stochastic
process to have infinite life time. For the Brownian motion on a manifold, the conservation
property means that the total probability of the particle to be found in the state space is
constantly equal to one (see [56-58,82]).

On the other hand, Pigola, Rigoli and Setti showed that stochastic completeness turns out
to be equivalent to the validity of a weak form of the Omori-Yau maximum principle (see
[76, Theorem 1.1] and |77, Theorem 3.1}), as is expressed below.

Lemma 1.0.2. A Riemannian manifold M™ is stochastically complete if, and only if, for every

u € C%*(M) satisfying sup,,; u < +oc there exists a sequence of points {px} C M™ such that

lim u(pg) =supu and limsup Au(py) < 0.
k—ro0 M k—o0

We also note that stochastic completeness of Riemannian manifold M™ is equivalent (among
others conditions) to the fact that for every A > 0, the only nonnegative bounded smooth
solution u of Au > Au on M" is the constant u = 0. Moreover, it is a direct consequence of
Lemma jointly with the Omori-Yau maximum principle |74,]87] that complete Riemannian
manifolds having Ricci curvature bounded from below are stochastically complete.

Let us recall that a Riemannian manifold M™ is said to be parabolic if the constant functions
are the only subharmonic functions on M"™ which are bounded from above, that is, for a function
u € C*(M) with

Au>0 and uw<u" <+oo imply wu = constant.

We observe that every parabolic Riemannian manifold is stochastically complete. As a con-
sequence, the weak maximum principle holds on every parabolic Riemannian manifold (see
Corollary 6.4 of [57]). Obviously, every closed Riemannian manifold M™ is parabolic, where by
closed we mean compact and without boundary. Moreover, there are several interesting geo-
metric conditions which imply the parabolicity of a Riemannian manifold M". For instance,

in dimension n = 2 parabolicity is strongly related to the behavior of the Gaussian curvature;



for instance, from a classical result by Ahlfors [2] and Huber [60] it is well known that every
complete Riemannian surface with nonnegative Gaussian curvature is parabolic. More gener-
ally, every complete Riemannian surface with finite total curvature is parabolic (see Section 10
of [64]).

Recently, many authors have explored new variations of the Omori-Yau maximum principle
in order to extend the investigation to a wider array of differential operators containing the
Laplacian operator. For a thorough understanding of this subject, we refer to the interested
reader the comprehensive book [15] due to Alias, Mastrolia and Rigoli.

Now, let (M™,(,)) be a connected, oriented, complete Riemannian manifold. We denote by
B(p, t) the geodesic ball centered at p with radius t. Given a polynomial function o : (0, +00) —
(0, 4+00), we say that M™ has polynomial volume growth like o(t) if there exists p € M™ such
that

vol(B(p,1)) = O(a (1)),

as t — +00, where vol denotes the standard Riemannian volume. As it was already observed in
the beginning of Section 2 of [9], if p,q € M™ are at distance d from each other, we can verify
that

vol(B(p,t)) S vol(B(q,t —d)) o(t —d)
o(t) - o(t —d) o(t)
Consequently, the choice of p in the notion of volume growth is immaterial. For this reason, we
will just say that M"™ has polynomial volume growth.
Keeping in mind this previous digression and denoting by div.X the divergence of a smooth
vector field X € X(M) in the metric (, ), we quote the following key lemma which corresponds

to a particular case of a new maximum principle due to Alfas, Caminha and do Nascimento (see
[9, Theorem 2.1]).

Lemma 1.0.3. Let (M",(,)) be a connected, oriented, complete noncompact Riemannian man-
ifold and let X € X(M) be a bounded smooth vector field on M™. Assume that f € C®(M) is a
smooth function on M™ such that (Vf, X) > 0 and divX > «f, for some positive constant c.
If M™ has polynomial volume growth, then f <0 on M™.

To finish this section, let us see the notion of convergence to zero at infinity established
in [8, Section 2|: If M™ is a connected, complete noncompact Riemannian manifold, we let
d(-,0) : M — [0,400) stand for the Riemannian distance of M", measured from a fixed point
o € M". Thus, if f € C°(M) satisfies

lim f(x) =0,

d(z,0)—+00

we say that f converges to zero at infinity. In this context, we have the following maximum

principle which can be found in [8, Theorem 2.2(a)].

Lemma 1.0.4. Let (M",(,)) be a connected, oriented, complete noncompact Riemannian man-
ifold and let X € X(M) be a smooth vector field on M™. Assume that there exists a nonnegative,



non-identically vanishing function f € C°(M) which converges to zero at infinity and such that
(Vf,X)>0. IfdivX >0 on M", then (Vf,X)=0 on M".



Chapter 2

Submanifolds in the de Sitter space

n—+p
Sp

In this chapter we establish new rigidity and nonexistence theorems for n-dimensional space-
like submanifolds based on the maximum principles and due to Alias, Caminha and
do Nascimento [8,9] related to complete noncompact Riemannian manifolds. Here we present
the results of [50}51].

2.1 Spacelike LW submanifolds

The main intention of this section is to establish new rigidity theorems for n-dimensional
spacelike linear Weingarten (LW) submanifolds immersed with parallel normalized mean curva-
ture vector field in the (n + p)-dimensional de Sitter space Sg*p of index p.

The starting point is to prove that under suitable assumption that the norm of the total
umbilicity tensor converges to zero at infinity, a complete noncompact spacelike LW subman-
ifold of S;“Lp must be either isometric to the Euclidian space R"™ or the hyperbolic space H".
Afterwards, under the assumption that such a complete spacelike LW submanifold of S;”“p has
polynomial volume growth, we prove that it must be either isometric to the Euclidean space R"

or a Euclidean sphere S"(r) with radius r > 0.

2.1.1 Preliminaries

Let us consider the semi-Euclidean space Rg*p“, that is, the (n + p + 1)-dimensional real

vector space R""P! endowed with the inner product of index p given by

P n+p+1
(z,y) = — leyl + Z ZjYjs
i=1 j=p+1



where © = (21,2, ...,Tnipt1) is the natural coordinate of R***1. The (n + p)-dimensional de

Sitter space Sp*P is defined as being the following hyperquadric of R+
Sz+p - {(xlax% s 7xn+P+1) € R;L+p+1 : <x’x> - 1} '

It is not difficult to verify that the induced metric (,) makes S;*? a semi-Riemannian manifold
of index p with constant sectional curvature equal to 1.

We also recall that an n-dimensional submanifold M™ of S}*? is said to be spacelike if the
induced metric on M™ from that of the ambient space SZ“’ is positive definite. So, we choose
a local orthonormal frame ey, ..., e,y, in S;*P, such that, at each point of M™, ey,... e, are

tangent to M". Using the standard convention of indices
1<ABC,...<n+p, 1<ijk,...<n and n+1<a,08,7,...<n+p,

and taking the corresponding dual coframe wy, ..., w4y, the semi-Riemannian metric of S;““p is
given by ds* = 3, es4w3, where ¢, = 1 and ¢, = —1. So, denoting by {wap} the connection

forms of S)*7, we have that the structure equations of S}*P are given by

dwa = Z epwap Nwp, wap+wpa =0, (2.1)
B
and )
dwap = ZC: €cwac \Nwep — 3 Czl; ecepKapep we Nwp, (2.2)

where Kapep = €a€p(0acdpp — 64p0Bc).
Restricting these forms to M™, we note that w, = 0 and, hence, the Riemannian metric of

M™ is written as ds®> = > w?. Since E Wai Aw; = dw, = 0, from Cartan’s Lemma we can write

)

Wai = Z hf‘jwj, h% = h;lz (23)
J

This gives the second fundamental form of M", A = Z hiwiw;eq and its squared norm |Af* =
a7i7j
D i j(h%)2. Moreover, the mean curvature vector field and the mean curvature function on M"

are defined, respectively, by

2
1 1
h:=— he | eq d H:=|h|l=—- he | .
() neme (5]
From ([2.1)) and ({2.2)), the structure equations of M™ are given by

1
dwi = Zwij A Wy, Wij + Wy = 0 and dwij = Zwik A Wk — 5 Z Rijklwk VAN Wi, (24)
J k k,l



where R;;i; are the components of the curvature tensor of M". Hence, from ([2.4) we obtain the

Gauss equation
Rig = (G0t — Sudye) — > (hfih§ — hiihsh). (2.5)

o
The components of the Ricci curvature R;; and the normalized scalar curvature R of M™ are

given, respectively, by

1
Ryj=(n—1)0;— Y (zk: hgk> he+ Y hihy; and R = WD) Z Ry;. (2.6)

« a,k 7

From ([2.6) we obtain that
|A]? = n*H?* +n(n—1)(R - 1). (2.7)

We also have the structure equations of the normal bundle of M™ given by

1
dwy, = — Zwag ANwg, Wap+wpe =0 and dwyp = — Zwm N wyg — 3 Z Rogriwr N\ wi,
B Y k,l

where R,g;i, satisfies the Ricci equation

Ragis = 3 (Wgh, = hihy) (2.8)
l

From (12.3) we obtain the Codazzi equation
ik = Nk = P (2.9)

where A, are the components of the covariant derivative VA, which satisfy
Z higren = dhi; + Z hikwij + Z hSpwri — Z h’gwﬁa- (2.10)

Taking the exterior derivative in (2.10)) we obtain the following Ricci formula for the second

fundamental form

W — W = > ho R + > Wy Rt + > W Ragin. (2.11)
m m k,B

From equations ([2.9)) and (2.11)), we get

ARG = " hfyi+ Y hf Rk + > b Rige + Y hiy Ragji. (2.12)
k k.l k,l kB
Considering H > 0, we can choose a local orthonormal frame {ey, ..., en4p} of TS)™P such



that e, 1 = % Consequently, we get

1 1
H" = —tr(h"™) = H and H*:= —tr(h*) =0, a >n+2, (2.13)
n n

where h® denotes the matrix (hf;). From equations (2.5), (2.8), (2.12)) and (2.13) we obtain the

following Simons type formula

1
5A|A|2:Z S2 0 S RGHS +n(|AP - nH?) + Y (te(hoh?))?

a,i, g,k a,i,j a,B
—nH Z tr (R (h*)?) + ) N(h*h? — hPh®) (2.14)
a,B

where N(B) = tr(BB?"), for all matrix B = (b;;).
In what follows, we will also consider the symmetric tensor
o= Z PPwi ® wijeq, (2.15)
a,t,j

where ®f; = h; — H*0;;. Consequently, we have that

(PZ,J'_I = h%—‘rl — H(SZ] and q)a = h

177

forn+2<a<n+p. Solet |® =
difficult to check that ® is traceless with

Mj(q)a) be the square of the length of ®. It is not

D> = |A]* — nH>. (2.16)
In addition, from ([2.7]) we obtain
D> =n(n—1)H*+n(n—1)(R-1), (2.17)

We recall that a submanifold is linear Weingarten (LW) when its mean and normalized scalar

curvatures are linearly related, that is, when they satisfy the following relation
R=aH +, (2.18)

for constants a,b € R. We observe that when a = 0, (2.18) reduces to R constant. Moreover,
equation ([2.17) becomes

|®> = |A]> = nH?* =n(n — 1)H* + n(n — 1)aH +n(n — 1)(b—1). (2.19)

For a LW submanifold M™ satisfying (2.18]) we introduce the second-order linear differential



operator L : C*®°(M) — C>°(M) defined by

n—1

L=L+

al\, (2.20)

where A is the Laplacian operator on M™ and L : C*°(M) — C*°(M) denotes the Cheng-Yau’s
operator, which is given by
Lu = tr(P o Hess (u)), (2.21)

for every uw € C°°(M), where Hess is the self-adjoint linear tensor metrically equivalent to the
Hessian of v and P : X(M) — X(M) denotes the first Newton transformation of M™ which is

given by P =nHI — A. So, from (2.20)) and (2.21]), we have that

Lu = tr(P o Hess (u)), (2.22)

o

and it is verifies that £ can be rewritten in the following divergence form (see, for instance,

[78, Section 4])

with

_EOI—A, (2.23)

Lu = div(P(Vu)). (2.24)
Returnig to (2.14)), we are going to obtain the following equality, reasoning as [24]:

Remark 2.1.1. Taking u =nH, we get

L(nH) =nHA(nH) —n» Wi H;. (2.25)

]

Given this, from (2.7) and (2.25)), we have

1 -1
LmH)zﬁAmP—?ﬁ%—lAR—nﬂVHP—nEZMy%%. (2.26)

i,J
Since R =aH + b, from (2.14)) and ( -,

L(TLH) _ Z Z]k + nz hn+1Hn+1 nz hn—HH _ n2|VH|2

a,i, gk
+§vam h%ﬂ+nww nH2+n§:§:WH“

a>n+1 4,5
+§:@mhwﬁ»?-”;”aaogﬁ. (2.27)

In the theorems of this chapter, we will deal with spacelike submanifolds M™ having parallel
normalized mean curvature vector field. In this context, we are going to rewrite (2.27)). For this,

we choose a local orthonormal frame {e;} such that e, 1 = % Since e,y1 s parallel, denoting

10



by V* the normal connection of M™, it follows that
0= VLen_i_l = Zwan+1ea.

Thus,
Wans1 =0 forall a>n+1. (2.28)

On the other hand, taking into account equation (2.10), we have
Z hijewr = Z dhi; +2 Z hijwri — Z hiwsa. (2.29)
i,k % ik i,8

Considering o = n + 1, from (2.28)) and (2.29)), it follows that

> Hptlw, =dH. (2.30)
k

Besides that, given a smooth function f on M™, the first and second derivatives are given by
df = Z fiwi and Z fijwj = dfl + Z fjwji-
( J J

So, from ([2.30)), we get Hy = H}"™'. When a > n + 1, from ([2.28) and (2.29), we have that

Yo Hiwy = —Hwpi1o = 0 and, hence, H = 0. Making an analysis of the covariant derivative

Hg, from (2.28), we also have

ZH]?[HCUZ = de + Z lelk
l l

and we obtain Hy = H]™'. Moreover, in the case that o > n+1, from ([2.28)), we have Y, HAw;, =
—Hywyy10 = 0. Hence, H; = 0.
As a by-product of the previous digression, replacing Hy = HI?ZH and H; =0, fora >n+1

in (2.27)), we conclude that

LinH) = Y (b)) = n*|VH]? —=nH Y tr(h"(h*)*) + > N(h"h’ — hPh*)
a,i,j,k a a,B

n—1

+ 3 (tr(h*h?))? + n(|A]? — nH?) aA(nH). (2.31)
ap

We can now establish the following proposition that gives a sufficient criteria for the ellipticity
of the operator £, whose proof can be found in |85, Proposition 2.1] for a # 0 and [10, Lemma
1] for a = 0.

Proposition 2.1.2. Let M™ be a n-dimensional spacelike linear Weingarten submanifold in the
de Sitter space Sg“’ with R=aH +b. If b < 1, then L is elliptic.

Next, we introduce the following propositon, whose proof can be found in [85, Proposition

11



2.2], which gives us an inequality between the covariant derivative of the second fundamental

form and the gradient of the mean curvature.

Proposition 2.1.3. Let M™ be an n-dimensional spacelike linear Weingarten submanifold in
the de Sitter space Sp™ with R = aH +b. If (n — 1)a* 4 4n(1 — b) > 0, then

> (hg) = n?|VH|.

a,i,7,k
Moreover, suppose that the equality holds, then H is constant on M™.

Besides that, we will also need of the next key lemma, which is due to Barros et al. (see
[28, Lemma 1]).

Lemma 2.1.4. Let M™ be a Riemannian manifold isometrically immersed into a Riemannian

manifold N™P. Consider ¥ = Z\Df‘]w, ® wj ® eq a traceless symmetric tensor satisfying the
a7i7j

Codazzi equation. Then the following inequality holds

4
VPP < S e PP,

where |¥|? = Z(\If%)2 and |[VU|* = Z (U2)?. In particular, the conclusion holds for the
a,t,j a,t,j,k

tensor ® defined in (2.15)).

Lastly, we also need the next algebraic lemma presented in [79, Lemma 2.6).

Lemma 2.1.5. Let C, D : R" — R" be symmetric linear maps such that [C, D] = CD—DC =0
and trC = trD = 0. Then

n—2 n— 2

= (trC?)(trD?)% < trC?D <

n(n —1) n(n —1) (D)2,

and the equality holds on the right hand side if and only if n — 1 of the eigenvalues x; of C' and

the corresponding eigenvalues y; of D satisfy

T P U LI
(] n(n_l)’ 1) — Y y’L n(n_l)

2.1.2 Rigidity results for complete spacelike LW submanifolds with

parallel normalized mean curvature vector in S;““p
In this subsection we will establish our initial rigidity results. Here, it is the first one:

Theorem 2.1.6. Let M™ (n > 3) be a complete noncompact spacelike LW submanifold having
nonnegative sectional curvature and immersed with parallel normalized mean curvature vector in
Sg“’, such that R = aH + b for some a,b € R with b < 1. If |®| converges to zero at infinity,

then M™ is isometric to the Euclidean space R™.

12



Proof. Let us suppose that such a spacelike LW submanifold M™ is not a totally umbilical
submanifold, and we consider the smooth vector field X = P(V|®|?) and the smooth function
= |®|2. So, f is a non-identically vanishing function which converges to zero at infinity.

Moreover, Proposition [2.1.2] gives that P is positive definite for b < 1. Thus
(VI X) = (VO] P(V|®]*)) > 0. (2.32)

In order to apply Lemma |1.0.4] we claim that div.X > 0. Indeed, applying £ in (2.19)) we
have that

oy _ 1 2y, @

— HL(nH)+n(PVH,VH)+ gﬁ(nH). (2.33)
In particular, since P is positive definite, from ([2.33) we obtain

1
2(n—1)

From Ricci equation ([2.8]) we can verify that

L) > (H + g)an). (2.34)

1
« . - apB _ 1B«
; kh hY Ragin = 5 Eﬁ N(h*h” — h"h%). (2.35)
a,B,1,7, «,

Thus, since we are assuming that that the normalized mean curvature vector is parallel, from

(2.12), (2.20), (2.31) and (2.35)), we get

LnH) = > (h)? = n’IVH + > (B, Rnijk + hhn Rukji) (2.36)

a7i7j7k i7j7k7m

1 « «
+5 2 N0 hP = 1Pt
For each fixed a, considering a local orthonormal frame {e;} such that hf; = A{'d;;, we have

1
D MR+ D G Rk 2 5 Y (O = A5 Rijy. (2.37)
1,J

i,5,k,m i,3,k,m
Moreover, it is not difficult to verify that
N(h*h’ = hh*) = N(@*®° — &%) > 0. (2.38)
On the other hand, using once more that b < 1, from Proposition we obtain
VAP = (hgy)? > n’|VH[. (2.39)

a7i7j7k

13



Hence, taking into account that the sectional curvature of M™ is nonnegative, from ([2.36)), (2.37)),
(2.38) and ([2.39)) we reach at

1 (0% (0%
L(nH) > 5 D (A = X)?Ryji; > 0. (2.40)

.3
At this point, we observe that in [11] it was verified that (H + §) > 0. Thus, from (2.34)
and ([2.40)), we have

divX = div(P(V[®]2)) = £(|®[?) > 2(n — 1) <H + g) L(nH) > 0.

Hence, we can apply Lemma to get that
(V. X) = (VIo*, P(V|2]*)) = 0.

Therefore, since the operator P is positive definite, we have that V|®| = 0. Thus, f = |P|
is constant. But f converges to zero at infinity, so it must be identically zero, leading us to a

contradiction since we are supposing that M" is not a totally umbilical submanifold.
Now, taking into account (2.13]), we get

h* = (H,e,)I = H*I =0,
for all &« > n + 1. Thus, we have that the first normal subspace,
N, = {ea e XH(M™); b = O}l,

is parallel and it has dimension 1. Therefore, we can apply [38, Proposition 4.1] to reduce the
codimension of M™ to 1. Thus, from the characterizations of the totally umbilical spacelike
hypersurfaces of the de Sitter space (see, for instance, [71]), we conclude that M™ must be
isometric to R™, since M" is a complete noncompact submanifold with nonnegative sectional

curvature. 0
We obtain the following consequence of Theorem [2.1.6|

Corollary 2.1.7. Let M™ be a complete noncompact spacelike submanifold having nonnegative
sectional curvature and constant normalized scalar curvature R < 1, immersed with parallel
normalized mean curvature vector field in Szﬂ’. If |®| converges to zero at infinity, then M"™ is

1sometric to the Fuclidean space R™.

In the next theorem, we are going to establish a new version of [85, Theorem 1.4] and
of |66, Theorem 1.1].

Theorem 2.1.8. Let M"™ be a complete noncompact spacelike LW submanifold immersed with

parallel normalized mean curvature vector field in SZJ“Z’, such that R = aH + b for some a,b € R
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with b < 1. If |[A]? < 2v/n—1 and |®| converges to zero at infinity, then M™ is isometric to
either the Euclidean space R™ or the hyperbolic space H™.

Proof. From (2.34]) we have

m/j(@ﬁ) > (H + g)ﬁ(nH). (2.41)

On the other hand, from inequality (3.19) of [85] jointly with relation (2.16) we get

L(nH) > |®|? (n (2.42)

S L—T

2y/(n — 1) '
Since we are assuming |A|> < 2y/n — 1, from (2.42) we have that £(nH) > 0. Then, from (2.41))
we obtain, for X = P(V|®|?),

divX = div(P(V|®]2) = £(|®[?) > 2(n — 1) (H + g) L(nH) > 0.

At this point, we can reason as in the last part of the proof of Theorem to conclude
that M™ is a totally umbilical submanifold of SZ”’ and, reducing the codimension of M™ to 1,

we infer that M™ must be isometric to either the Euclidean space R™ or the hyperbolic space
H™. m

When the spacelike submanifold has constant normalized scalar curvature, Theorem [2.1.8

reads as follows.

Corollary 2.1.9. Let M™ be a complete noncompact spacelike submanifold with constant nor-
malized scalar curvature R < 1, immersed with parallel normalized mean curvature vector field
in PP If |AP < 2¢/n—1 and |®| converges to zero at infinity, then M™ is isometric to either
the Euclidean space R™ or the hyperbolic space H™.

Before presenting our next results, in the remark below we collect some properties related to

a suitable polynomial function, which will appear in their proofs.

Remark 2.1.10. Let it be the following one-parameter family of real functions given by

P, ,(x) = x;i - %tm —n(t*—1) (2.43)

where t € R corresponds to the real parameter, while n and p are real constants. When t? <
4(n—1)
Q(p)

, where
Qp) = p(n —2)* +4(n - 1), (2.44)

4(n—1)

o) We can write ¢ = 2l and P, (z)

\ Q(p)

we have P, ,(z) > 0 for all z € R. In the case t* =

has only one real root, namely

d(n,p) = —F—=—. (2.45)



In this case, P, ,(x) is strictly decreasing for all z < ¥(n,p) and

N RN VAN
Py p() (\/]3 70w ) >0,

for all z € R.

Assuming t? < 4(5(;)1 ) from (2.17) we also have that

OF o A1)

= Q)

+1>0. (2.46)

4(n—1)

2
When t* > )

, P;(x) has two distinct real roots, which are given by

0F(n,p,t) = 2\/% (p(n — 2)t +/pQ(p)t* — 4p(n — 1)) : (2.47)

We observe that 97 (n,p,t) is always positive and ¢~ (n, p, t) is positive if, and only if,

4n—1)  ,

Taking into account the discussion made in Remark [2.1.10] we will prove our next result.

Theorem 2.1.11. There does not exist a complete noncompact spacelike LW submanifold M™
with n > 3 immersed with parallel normalized mean curvature vector field in Sg*p, such that

R = aH + b for some a,b € R with b < 1, where |®| converges to zero at infinity and

4(n—1)

" Q(p)

IN

(2.48)

on M"™, where Q) s defined in (2.44)).

Proof. Let us assume by contradiction that there exists such a submanifold and let us consider
the smooth vector field X = P(V|®|?) and the smooth function f = |®|?>. Suppose that M" is
not a umbilical submanifold. So, f is non-identically vanishing function which converges to zero
at infinity. Moreover, we already know from that

(Vf,X) = (V[e]*, P(V|2[*)) > 0.

Taking into account the Ricci equation (2.8) we can verify that h®h"* = h" Lo for all a, that

is, h"*! commutes with all the matrices h*. Thus, since
et = prtt gt and @° =A% for all a>n+1,

we also have that ®"*! commutes with all the matrices ®*. Thus, taking into account that the

matrices ®* are symmetric and traceless, we can use Lemma for ®* and ®"*! in order to
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obtain
(@707 < — 2N (@) YN (2.49

On the other hand, using the Cauchy-Schwarz inequality we get that

pY [r(@ @)= p) [(@)P =p) [N@) > (Z N@“)) =|2*. (2.50)
a,fB o a a

Furthermore, from (2.31)), it follows that

LnH)="> (h})* =n’|VH[* =nH> tr (k"7 (h*)?) + Y N(h*h” — h°h*)  (2.51)
ayi,j.k a a,

+3° (tr(hh%))” + (AP — nH?).
a,B

Hence, since

N(@") = tr(®"1)* < |® and Y N(D°) =[P,

from ([2.20)), (2.49), (2.50) and (2.51)) we obtain

L(nH) > |2 Py,(|2]), (2.52)
. . . 2 4(72, B 1)
where Py ,(x) is defined in (2.43). Consequently, since H* < W, from (2.52)) and Re-
mark [2.1.10) we get that
L(nH) > |®* Py, (|®]) > 0. (2.53)

Since (H + §) > 0, using jointly with we conclude that
divX = div(P(V[®[2)) = £(|®[2) > 2(n — 1) (H + g) 2Py, (|®]) > 0.
Consequently, we can apply Lemma to get that
(Vf,X) = (P(V|2]), V[2]*) =0,

which implies V|®| = 0. Thus, f = |®| is constant and, since f converges to zero at infinity,
it must be identically zero, leading us to a contradiction and M"™ must be a totally umbilical
submanifold of S;*P.

Now, taking into account (2.13]), we get
h* = (H,ex)I = H*I =0,
for all & > n + 1. Thus, we have that the first normal subspace

Ny = {eq € X (M™);h* =0}

17



is parallel and it has dimension 1. Therefore, we can apply [38, Proposition 4.1] to reduce the
codimension of M" to 1. Thus, from the characterizations of the totally umbilical hypersurfaces

of the de Sitter space, M" is isometric to either the Euclidean space R™ with H = 1 or the

%<1f0rn23. O

hyperbolic space H" with H € (1, 00), what cannot occur since H? <

From Theorem [2.1.11 we obtain the following.

Corollary 2.1.12. There does not exist a complete noncompact spacelike submanifold M™ with
n > 3 and constant normalized scalar curvature R < 1, immersed with parallel normalized mean
curvature vector field in S;”p such that inequality holds and |®| converges to zero at
nfinity.

We can study the case n = 2 and proceed as the proof of the Theorem [2.1.11] to conclude
that the submanifold M? can be isometric to the Euclidean space and establish the following

theorem.

Theorem 2.1.13. Let M? be a complete noncompact spacelike LW submanifold immersed with
parallel normalized mean curvature vector field in Sg*p, such that R = aH + b for some a,b € R
with b < 1 and suppose that H*> < 1. If |®| converges to zero at infinity, then M? is isometric
to the Euclidean space R?.

We also get a version of Corollary 2.1.12] for n = 2.

Corollary 2.1.14. Let M? be a complete noncompact spacelike LW submanifold immersed with
constant normalized scalar curvature R < 1 in Szﬂ’, such that H?> < 1. If |®| converges to zero

at infinity, then M? is isometric to the Euclidean space R2.
Moving foward, we present the following non-existence result.

Theorem 2.1.15. There does not exist a complete noncompact spacelike LW submanifold M™
immersed with parallel normalized mean curvature vector field in S;”rp, such that R = aH + b

for some a,b € R with b < 1, where |®| converges to zero at infinity and

4(n —1)
Q(p)

in which ¥~ s the real root of Py given by (2.47)).

<H*<1 and |® <9 (n,p H), (2.54)

Proof. Let us assume for contradiction that there exists such a submanifold. As it was observed
in Remark , hypotheses guarantees that Py (z) defined in has two distinct
real roots, which are given by . Moreover, from our constraint on H, we also get that
V¥~ (n,p, H) is positive. Consequently, we conclude that Py (|®|) > 0 for |®| < 9~ (n,p, H). So,
using this fact jointly with and (2.52), and taking into account that (H + %) > 0, we
obtain

divX = div(P(VI®[%)) = £(|8[*) > 2(n — 1) (H + g) D> Py (|®]) > 0.

Therefore, we can reason as in the proof of Theorem to conclude that there does not exist
such manifolf M™ since H? < 1. O
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Considering the case of constant normalized scalar curvature, we get the following corollary
from Theorem R2.1.75

Corollary 2.1.16. There does not exist a complete noncompact spacelike submanifold M™ with
constant normalized scalar curvature R < 1, immersed with parallel normalized mean curvature
vector field in S}*P such that inequalities (2.54)) hold and |®| converges to zero at infinity.

Before we continue, let us look at the following:

Remark 2.1.17. For a linear Weingarten submanifold with R = aH + b for some a,b € R with
b < 1, we have from (2.19) that

nH(nH + (n —1)a) = |A]* + n(n — 1)(1 —b) > n(n — 1)(1 — b) > 0.
In particular, H is far away from 0 and so nH + (n — 1)a >0, if a > 0. Thus,
(H+3)> 8.
for a constant > 0. If a < 0, we have
-1 nH+ (n—1)a

H—|—2>H+n a = >0
2 n n

and we also obtain (H +§) > 3 > 0.
Now, we are in position to establish our next rigidity result.

Theorem 2.1.18. Let M™ be a complete spacelike LW submanifold immersed with parallel nor-
malized mean curvature vector field in SZ“’, such that R = aH +b for some a,b € R with b < 1.
Suppose that |V®| is bounded and that sup,, |A]> < 2v/n—1. If M™ has polynomial volume

growth, then M™ is isometric to the Euclidean sphere S™(r), with radius r > 0.

Proof. Taking the smooth vector field X = P(V|®[?) and the smooth function f = |®|?, we
claim that the required conditions to apply Lemma are satisfied. Indeed, since H and |A]
are bounded (see (2.19)), from definition (2.23)) we get

X[ = [P(VIQ]*)| < [PI[VI®F] < k[V|®[,

for some positive constant k. Besides that, the boundedness of H and |A| also assure the
boundedness of |®| by equation (2.19). So, since we are supposing that |V®| is bounded,
Lemma guarantees that V|®|? is also bounded and, consequently,

| X| < C < 400,

for some positive constant C'.
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On the other hand, from (2.32)) we have that the condition
(Vf,X) = (V|e[*, P(V]®[*)) > 0

is also verified.

Now, we must obtain divX > af on M", for some positive constant a € R. For this, from

inequality (3.19) of [85] jointly with relation ([2.19)) we get

L(nH) > |®|? (n - (2.55)

— 4P
2¢/(n — 1) '
Thus, using , from and - we have

divX = div(P(VH)) = L(|D[*) > 2(n — 1) (H + g) (n . \A|2> B2 (2.56)

2y/(n—1)

Since we are assuming sup(|A|*) < 2v/n —1 and, by Remark [2.1.17, (H + %) > 3, for some
positive constant § € R, from (2.56)) we obtain

div(X) > a|®|?,

where a = 2(n — 1) (n — 2\/h sup(\A|2)) > 0. Therefore, in case that M™ is a complete

noncompact submanifold, we are able to apply Lemma to obtain that |®|> < 0 and, hence,
|®|2 = 0 on M™, guaranteeing that M" is totally umbilical.
In the case that M" is a compact submanifold, we can integrate both sides of (2.55)) and use

Divergence Theorem to get that

/M |D|2 (n - liQ) dM < /ME(nH) dM = 0,

since the operator L is a divergence type as it was observed in (2.24)). Hence, as we are assuming
that sup(|A|?) < 2v/n — 1, we must have |®| =0 on M™.

In both cases, we conclude that M™ is a totally umbilical submanifold of S;}er. Taking into

account (2.13)), we get

h* = (H, e )] = H*I =0,

for all &« > n + 1. Thus, we have that the first normal subspace,
{ea c Xt (M™) = 0}

is parallel and it has dimension 1. Therefore, we can apply once more |38, Proposition 4.1] to
reduce the codimension of M™ to 1. Thus, from the characterizations of the totally umbilical

hypersurfaces of the de Sitter space, we conclude that M" is isometric to either the Euclidean
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space R", in the noncompact case, or the Euclidean sphere S"(r) with radius r > 0, in compact

case. [
The next corollary is derived from Theorem [2.1.18]

Corollary 2.1.19. Let M™ be a complete spacelike submanifold with constant normalized scalar
curvature R < 1, immersed with parallel normalized mean curvature vector field in ggﬂ? . Suppose
that |V ®| is bounded and that sup,, |A|?> < 2v/n — 1. If M™ has polynomial volume growth, then
M™ s isometric to either the Euclidean space R™ or the Euclidean sphere S"(r), with radius
r > 0.

Proceeding, we obtain the following rigidity result.

Theorem 2.1.20. Let M™ be a complete spacelike LW submanifold immersed with parallel nor-
malized mean curvature vector field in Sg“’, such that R = aH +b for some a,b € R with b < 1.

Suppose that sup,, |®| < ¥(n,p) and that

4(n —1)
Qlp) ~

where Q and Y(n,p) are defined in (2.44]) and (2.45)), respectively. If M™ has polynomial volume

growth, then M™ is isometric to the FEuclidean sphere S™(r) with radius r > 0 when n > 3, or

H2

IN

(2.57)

isometric to either the Euclidean space R? or the Euclidean sphere S*(r) with radius v > 0, when

n=2.

Proof. Reasoning as in the proof of Theorem [2.1.18 we take the smooth vector field X =
P(V|®|?) and the smooth function f = |®|?. So, we have that

X <C, (2.58)
for some positive constant C' € R, and
(Vf,X) = (V[e], P(V|2[*)) > 0. (2.59)
Moreover, from and we get
divX = div(P(VH)) = L(|®2) > 2(n — 1) (H + g) P (|®])|®)2 (2.60)
Now, let us take v := % As we are supposing , we have
Pu(z) = 3“;— %Hx—n (H?—1) > % - %ﬁx—n (y—1) = Py(z). (2.61)

Besides that, taking into account ({2.61]) and the behavior of Py ,(x) described in Remark[2.1.10}
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for sup,,(|®|) < ¥(n,p) we have that
Pu(|2]) = P(|2]) = Py(sup|®[) > P (i(n, p)) = 0. (2.62)

Hence, since H+5 > 3 > 0 from Remark|2.1.17], for some positive constant 3 € R, from ({2.60)
and ([2.62) we obtain

divX > 2(n — 1) (H + g) Pu(|®])| @ > af, (2.63)

where oo = 2(n — 1) B8P, (sup,,(|®])) > 0.
Supposing that M™ is a complete noncompact submanifold, since (2.58]), (2.59) and (2.63)

were verified and M™ has polynomial volume growth, we are able to apply Lemma|I.0.3|to obtain
that |®*> < 0 on M™. Then, |®| = 0 and M™ is totally umbilical submanifold. In case M™ is
a compact submanifold, we can apply once more Divergence Theorem to infer that M™ is also
totally umbilical submanifold.

Therefore, reasoning as in the last part of the proof of Theorem [2.1.18 we can reduce the
codimension of M™ to 1 and conclude that it must be isometric to the Euclidean sphere S™(r)
% < 1 for n > 3. Moreover, as we have M =1 for

Q(p)

n =2, we get H?> <1 and, in this case, M? is isometric to either the Euclidean space R? or the

with radius » > 0 since H? <

Euclidean sphere S?(r), with radius 7 > 0. O
Theorem [2.1.20] gives the following particular case.

Corollary 2.1.21. Let M™ be a complete spacelike submanifold with constant normalized scalar
curvature R < 1, immersed with parallel normalized mean curvature vector field in Sg*p, such
that H is bounded away from zero. Suppose that sup,,|®| < ¥(n,p), where ¥(n,p) is defined
m , and that inequality 1s satisfied. If M™ has polynomial volume growth, then M™
is isometric to the Euclidean sphere S™(r) with radius r > 0 when n > 3, or isometric to either

the Euclidean space R? or the Euclidean sphere S*(r), with radius r > 0 when n = 2.

In our last rigidity result of this section, we will present a new characterization of Theo-
rem [2.1.15] dealing with complete spacelike LW submanifolds immersed with parallel normalized

mean curvature vector field in Sg*p.

Theorem 2.1.22. Let M™ be a complete spacelike LW submanifold immersed with parallel nor-
malized mean curvature vector field in Szﬂ’, such that R = aH +b for some a,b € R with b < 1.

Suppose that
4(n—1)

Q(p)
where 9~ is the real root of Py given by (2.47). If M™ has polynomial volume growth, then M"

is isometric to the Euclidean sphere S"(r), with radius r > 0.

<H*<1 and sup(|®|) <9 (n,p, H), (2.64)

Proof. As in the proof of Theorem [2.1.20] we take the smooth vector field X = P(V|®|?) and
the smooth function f = |®|2. So, we have that |X| < C, for some positive constant C' € R,
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(Vf,X) = (VI®]*, P(V|®[*)) > 0 and
divX = div(P(V[®]2) = £(|®[?) > 2(n — 1) <H + g) P (|®])|®)2 (2.65)

From hypothesis (2.64)), we saw in Remark [2.1.10[that the polynomial Py (z) defined in (2.43)
has two distinct real roots, which are positive and given by (2.47). So, taking v := sup,,(H),

we have

T n(n — 2) ) 2 n(n-—2)
Py(z)=— - ———=Hzr—n(H —-1) > — — ——=/y7r—n(y—1) = P,(x
1 () » D) ( )_p n(n—l)ﬁ (v =1) = Py(z)
and, since sup,,(|®|) < ¥~ (n,p, H) and Pgp(x) is strictly decreasing for < 9~ (n,p, H), we
have that

Py (|®]) = Py(|2]) > P (sup |®[) > Py (9 (n,p,7)) = 0.

Using this fact jointly with (H + %) > 8 > 0, for some positive constant 3 € R, and (2.65]),

we conclude that
divX = div(P(VIB) = L(|8) > 201 — 1) (H + 5 ) Py(|®])|@> > o| B,

where a = 2(n — 1)5P,(sup,, |®|) > 0.
Therefore, proceeding as the proof of Theorem [2.1.20| we conclude that M™ is isometric to
the Euclidean sphere S"(r) with radius r > 0. O

2.2 Spacelike submanifolds with second fundamental form

locally timelike

The aim of this section is to investigate the nonexistence and umbilicity of n-dimensional
(n > 3) spacelike submanifolds immersed with parallel mean curvature vector field in the (n+p)-
dimensional de Sitter space S}*? of index 1 < ¢ < p.

In the first part of this section, we show that there does not exist an n-dimensional complete

spacelike submanifold M™ immersed with parallel mean curvature vector, whose the second

-1
fundamental form is locally timelike in S7*? and the mean curvature H satisfies M < H* <

Q(p)
1, where Q(z) = (n —2)?z + 4(n — 1), such that either |[V®| is bounded and M™ has polynomial

volume growth or M™ is noncompact and |®| converges to zero at infinity (see Theorem [2.2.2)).
4(n—1)

Q(p)

and such that |®| converges to zero at infinity, must be a totally umbilical submanifold (see
Theorem . Next, we suppose that the spacelike submanifold M" is stochastically complete
in order to show that if H* < 1, then either M™ is totally umbilical or sup,, |®| > 9};, where
¥}; is the positive root of the polynomial Py ,(z) defined in (2.43) (see Theorem . Finally,

we prove that the only n-dimensional stochastically complete spacelike submanifold immersed

Afterwards, we show that a complete noncompact submanifold of Sgﬂ’ with H? =
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in §;*?, which are maximal and having locally timelike second fundamental form, are the totally
geodesic ones (see Theorem [2.2.6). Our approach is based on a Simon’s type inequality involving

the norm of the total umbilicity tensor, obtained by Mariano in [69)].

2.2.1 Preliminaries

Let M™ be an n-dimensional (connected) spacelike submanifold isometrically immersed into
the de Sitter space Sg*p of index 1 < ¢ < p, meaning that the induced metric on M" via immer-
sion is a Riemannian metric. In this setting, we choose a local orthonormal frame {es, ..., €,4,}
in Sg*p, such that, at each point of M", ey,..., e, are tangent to M" and e, 1,...,€,4, are

normal to M™. We use the following convention of indices:
1<ABC,...<n+p, 1<ijk,...<n and n+1<a,b,7,...<n+p.

Let {wi,...,wnyp} be the dual frame of {ei,...,e,4,}, so that the semi-Riemannian metric of
SptP is given by ds® = ), eqwh, where e = 1,if 1 < A <n+4+p—gq, and ¢4 = —1, if
n+p—q+1<A<n+p Denoting by {wap} the connection 1-forms of Sg*p, we have that

the structure equations of S}*? are given by

de:—ZeBwAB/\wB, epwap + €awpa =0, forall 1 <A B<n+p, (2.66)
B
and .
dwap = — 2(:: €cwac Nwep — 3 CZ]; ecepKapcp we N wp, (2.67)

where Kapep = €a€p(0acdpp — 64p0Bc).
Restricting those forms to M™, we note that w, = 0 for n + 1 < a < n + p and, hence,

the Riemannian metric of M™ is written as ds* = >, w?. Since E Wai N\ w; = dw, = 0, from
i

Cartan’s Lemma we can write

Wai = Z hf‘jwj, h% = h;lz (268)
J

This gives the second fundamental form of M"™, A = Zeah%wiwjea and the square of its
a?i’j
. Moreover, we define the mean curvature vector field and the

length |42 = |32, e 32, ,(5)?
mean curvature function on M", respectively, by

2
h::%%:<zh%>ea and H::|h|:% za:ea<2hf;>

In particular, M" is called maximal when its mean curvature vector h vanishes identically.
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From ([2.66) and (2.67]), we get the structure equations of M™

1
dwi = — Zwi]’ AN w]', (JJij + wji = 0, and dwij = — Zwik AN wkj — 5 Z Rijklwk A\ Wi, (269)
J k k,l

where R;ji; are the components of the curvature tensor of M™. Therefore, from ([2.69)) we obtain

the Gauss equation
Rijir = (061 — 6adjn) + > €alhhs — hghS,).

The components of the Ricci curvature R;; and the normalized scalar curvature R of M™ are

given, respectively, by

Rij=(n—1)8;+ ) e { (Z hgk) i = b gﬂ}
a k a,k

and
R=n(n-1)+) e (Z ha> =D el

We also have the structure equations of the normal bundle of M™ given by

1
dwy, = — Zwag ANwg, Wap+wpe =0 and dwyp = — Zwm N wyg — 3 Z Rogriwr N\ wi,
B Y k,l

where the components R,g;i, satisfy the Ricci equation

Rapig = 3 (Wghiy — hih))

l

Moreover, from ([2.68]) we obtain the Codazzi equation

ik = hikg = gy (2.70)

where A, are the components of the covariant derivative VA, which satisfy
> hwr = dh — > " hfwg — Y B + Y escahliwpo. (2.71)
k k k 8

Taking the exterior derivative in (2.71)) we obtain the following Ricci formula for the second

fundamental form

g — W = — Y o Roniet — Y 1 R + Y €g€ahy Ragj- (2.72)
m m k,B
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The Laplacian Ahg; of the components A of second fundamental form is defined by

ARG = " hey,
k

Therefore, from equations (2.70) and (2.72) we get the following formula

_ B
ARG = " hi = > bR — > it Rugi + Y egali Ragjk.
k k.l k.l k.8

We will assume that the mean curvature vector field h is parallel as a section of the normal
bundle of M™, which means that Vth = 0, where V+ is the normal connection of M™. Con-
sidering H > 0, we can assume that the orthonormal frame {ei,...,e,,} in S}*? is such that

Crtp—qtl = % Consequently, we get

1 1
H"Pmatl = Zp(pmPTY = [ and H® = —tr(h®) =0, a #n+p—q+ 1,
n n

where h* denotes the matrix (hg;). Furthermore, we will also consider the total umbilicity tensor

= > Dhw ®wje, (2.73)

z,j,a2n+pfq+1

where ®7 = h¢: — H*9;;. We have that

n+p—q+1 __ 3 n+p—q+1 B a _ pa
<I>ij = hij — Hd;; and 7 = hyj,

for a # n+p—q+1. Since [®]> = 37 . (®)? is the square of the length of @, it is not difficult

to verify that ® is traceless with
B = |A]* —nH?.

Besides, we observe that |®| vanishes identically on M™ if and only if M™ is a totally umbilical
submanifold of S;*7.

To establish some results, we will need the following Simon’s type inequality involving the
norm of the total umbilicity tensor, which is deduced in [69, Lemma 3.2]. At this point, we draw
attention that in the proof of this inequality it is not necessary to assume the hypothesis of the

spacelike submanifold be complete.

Lemma 2.2.1. Let M™ be a spacelike submanifold immersed with parallel mean curvature vector
in Sg“’(c), 1 < q < p, and such that its second fundamental form is locally timelike. Then the
following inequality holds:

1

FAIRP = [0 Py y(|2]),

where Py ,(x) is the polynomial defined in (2.43)).
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2.2.2 Nonexistence results for complete spacelike submanifolds im-

mersed with parallel mean curvature vector in Szﬂ’

For the context of spacelike submanifolds immersed in the de Sitter space, we start this

section obtaining the following nonexistence result.

Theorem 2.2.2. There does not exist an n-dimensional (n > 3) complete noncompact spacelike
submanifold M™ immersed with parallel mean curvature vector in the (n + p)-dimensional de

Sitter space SZ“’ of index 1 < q < p, such that the second fundamental form is locally timelike,
4(n—1)

Q(q)

Proof. Let us suppose by contradiction the existence of such a submanifold M". So, we take the
smooth vector field X = V|®|? and the smooth function f = |®[>. Thus, we have that

< H? < 1, where Q(z) = (n — 2)?z + 4(n — 1), and |®| converges to zero at infinity.

(Vf,X)=|V|®*?>0 (2.74)

is verified.

Assuming that M™ is noncompact and |®| converges to zero at infinity, since Py ,(|®|) > 0

for |®| < ¥y from Remark 2.1.10] Lemma gives
divX = div(V|®[|?) = A|®|* > Py, (|®])|®]* > 0.
Consequently, we can apply Lemma [1.0.4] to get that
(Vf,X)=IVI|e[|* =0

and conclude that V|®| = 0. Thus, f = |®| is constant and, since f converges to zero at infinity,
it must be identically zero and M™ must be a totally umbilical submanifold of Sj*7.
However, from the proof of item (d) of [69, Theorem 1.1], our constraint on the value of the

mean curvature imply that 97 < sup,, |®| < ¥}, with 95 > 0, leading us to a contradiction. [

2.2.3 Rigidity of complete noncompact and stochastically complete

spacelike submanifolds in SZJFP

Proceeding, we obtain a characterization for totally umbilical spacelike submanifolds of SZ“’ .

Theorem 2.2.3. Let M" be an n-dimensional (n > 3) complete noncompact spacelike subman-
ifold immersed with parallel mean curvature vector field in the (n + p)-dimensional de Sitter
space Sy*P of inder 1 < q < p, such that the second fundamental form is locally timelike and
e 4(n—1)
Q(q)

is a totally umbilical submanifold of S}™P.

, where Q(z) = (n—2)?z+4(n—1). If |®| converges to zero at infinity, then M™
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Proof. Let us consider once more the smooth vector field X = V|®|? and the smooth function
f=12[% So,

(V£,X) = V0P > 0. (2.75)

Let us suppose that M™ is not a umbilical submanifold. So, we have that f is a non-identically
4(n—1

vanishing function which converges to zero at infinity. Moreover, since H? = M, we have

q
from Remark [2.1.10 that Py, > 0. Hence, we can apply Lemma to get that
(V. X) = |V[®]*]* =0,

which implies that V|®| = 0. Thus, f = |®| is constant and, since f converges to zero at
infinity, it must be identically zero, leading us to a contradiction. Therefore, M™ must be a

totally umbilical submanifold of Sg*p . n

Considering stochastically complete spacelike submanifolds with parallel mean curvature vec-

tor field, we obtain the following result.

Theorem 2.2.4. Let M™ be an n-dimensional (n > 3) stochastically complete spacelike sub-
manifold immersed with parallel mean curvature vector field in the (n+ p)-dimensional de Sitter
space Sy*P of index 1 < q < p, such that the second fundamental form is locally timelike. If
H? < 1, then either M™ is totally umbilical or sup,, |®| > 9.

4(n—1
Proof. From Remark [2.1.10, if H? < %, then Py, > 0. Also, 95 > 0 if, and only if
q
4(n —1
% < H? < 1. Hence, we have Py ,(|®]) > 0 for |®| < 9};. Thus, from Lemma [2.2.1 we
q

obtain

Al@[* > Py,(|@])|2* > 0, (2.76)
for H? < 1.

If sup,, |®|*> = +o0, then it is immediate that sup,, |®| > ¥};. So, let us suppose that
sup,; |®|? < 4+o00. Thus, Lemma [1.0.2] guarantees that there exists a sequence of points {pj,} C
M™ such that

dim |*(px) = sup|®[* and  limsup Aj@[*(py) < 0.

k—o00

Consequently, taking into account the continuity of the polynomial Py ,(z), from (2.76]) we

have

i _ :
0> 2 limsup A]®P(py) > limsup(|@*Prq(|2]))(pe) = lim (1@ Pry(|]))(px)

k—oo k—o0

— i |92 (ug) Prrg T [0](pr)) = sup |02 Py (s1p 1),
k—o0 k—o00 M M

Hence, we obtain
sup |®|* Py 4 (sup |@]) < 0. (2.77)
M M
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Thus, either sup,, |®| > 0 and then

P (sup [[) <0,
M

which implies that sup,, |®| > ¥4, or sup,, |®| = 0, which means that |®| = 0 and M™ must be
totally umbilical. O]

We recall that a Riemannian manifold without boundary M™ is said to be parabolic when
the only superharmonic functions on M™ bounded from below are the constant ones. Taking
into account that every parabolic Riemannian manifold is stochastically complete, we obtain the
following consequence of Theorem [2.2.4]

Corollary 2.2.5. Let M"™ be an n-dimensional (n > 3) parabolic spacelike submanifold immersed
with parallel mean curvature vector field in the (n+ p)-dimensional de Sitter space Sg‘*p of index
1 < q < p, such that the second fundamental form is locally timelike. If H?> < 1, then either M™

is a totally umbilical submanifold or sup,,; |®| > V.

We close this section extending the case ¢ > 0 in [69, Theorem 1.2] for the context of

stochastically complete spacelike submanifolds.

Theorem 2.2.6. The only n-dimensional (n > 3) stochastically complete spacelike submanifold
immersed in the (n+ p)-dimensional de Sitter space SZ“’ of index 1 < q < p, which are mazimal

and having locally timelike second fundamental form, are the totally geodesic ones.

Proof. Let M™ be such a spacelike submanifold of SZ“’. Since H is identically zero, we obtain

from (2.43)) that

(supy |[)

Py 4(sup |D]) = +n > 0.
M

Hence, inequality (2.77)) allows us to conclude that sup,, |®| = 0. Therefore, |®| = 0 and M"
must be totally geodesic. O]
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Chapter 3

LW submanifolds in Riemannian space
n+1
forms Q.

This chapter is dedicated to establish new rigidity results concerning n-dimensional linear
Weingarten (LW) submanifolds immersed in an (n+p)-dimensional Riemannian space form Q7*?
with constant sectional curvature ¢ € {—1,0,1}. Under the assumption that a complete LW
submanifold has polynomial volume growth, we prove that it must be isometric to an Euclidean
sphere S"(r), with radius » > 0. When the ambient space is the hyperbolic space H"™?, we
suppose that the norm of the total umbilicity tensor converges to zero at infinity in order to
show that a complete noncompact LW submanifold of H"™? must be isometric to a horosphere
of H"*!. In this chapter we include the results of [49).

3.1 Preliminaries

Let us denote by Q™ the standard model of an (n + p)-dimensional Riemannian space
form with constant sectional curvature ¢ € {0,1,—1}. Actually, Q?* denotes the Euclidean
(n 4+ p)-space R™™ when ¢ = 0, the (n + p)-dimensional Euclidean sphere S"*? when ¢ = 1
and the (n + p)-dimensional hyperbolic space H"*? when ¢ = —1. We also denote by (,) the
corresponding Riemannian metric induced on Q7P s R™PH1,

Let M™ be an n-dimensional connected submanifold immersed in Q2*?. We choose a local
orthonormal frame {ey,...,e,,} in QPP with dual coframe {wy,...,wny,} such that, at each
point of M", ey,...,e, are tangent to M" and e,,...,e,4, are normal to M". Moreover, let
{wpc} denote the connection 1-forms on Q?*?. In what follows, we will use the following

convention for the indices:
1<ABC,...<n+p, 1<ijk,...<n and n+1<a,pb,7,...<n+p.

The second fundamental form A, the curvature tensor R and the normal curvature tensor

R* of M™ are given by
Wia = »_Mwj, A= hiw ® wjeq,
J

17]7a
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1
dwij = Zwik N Wgj — 5 Z R,’jklwk A wr,
k

k.l

1
dwap = Z Way N Wyq — 3 Z Riﬁklwk A wy.
v k.l

«

It is not difficult to see that the components hf; wy of the covariant derivate VA satisty

D b = A+ b + Y hier + Y hw, (3.1)
k k k B
Moreover, the Gauss equation is given by
Rijra = c(0ixdjn — dudje) + ) (hihsy — hihs).
«

In particular, the components of the Ricci tensor R;; and the normalized scalar curvature R are

given, respectively, by
Ry = (n— 1)y +nY H W —> g, (3.2)
« 7j

and

= SR, (33)

n—1
From (3.2) and (3.3)), we get the following relation
nin — 1R =n(n—1)c+n*H? — |A]? (3.4)

where |[A]? =
is the mean curvature function related to the mean curvature vector field H = ) H%, =

7 a2k bk )ea of M.
Furthermore, the Codazzi equation is given by

a,i,j(h%)Z is the squared norm of the second fundamental form A and H = |H)|

%k = ?kj = yazk (3-5)
We will also consider the symmetric tensor

O = Z Pfw; ® wjeq, (3.6)

a,1,]

where ®f; = h; — H*0;;. Consequently, we have that

Pl = pitt — Ho;; and  ®F = b

YR

forn+2<a<n+np.
Let [®> = > . (®%)? be the squared norm of ®. It is not difficult to check that ® is

o,,j\ T 1]

31



traceless with
|®? = |A]* — nH>. (3.7)
In addition, from ({3.4)) we obtain
nin —1)R=n(n—1)(c+ H?) — | (3.8)

We recall once more that a submanifold is said to be linear Weingarten (LW) when its mean
and normalized scalar curvatures are linearly related, that is, when they satisfy the following
relation

R =aH + b, (3.9)

for constants a,b € R. We observe that when a = 0, (3.9)) reduces to R constant.
In this setting, equation (3.7)) becomes

|®> = |A]> = nH?> =n(n — 1)H* —n(n — 1)aH —n(n — 1)(b — ¢). (3.10)

For a LW submanifold M" satisfying (3.9) we consider again the second-order linear differ-
ential operator £ : C*°(M) — C*°(M) defined by

1
c=r-"

al, (3.11)

where A is the Laplacian operator on M"™ and L : C*°(M) — C*(M) denotes the Cheng-Yau
operator, which is given by
Lu = tr(P o Hess (u)), (3.12)

for every u € C°(M), where Hess is the self-adjoint linear tensor metrically equivalent to the
Hessian of v and P : X(M) — X(M) denotes the first Newton transformation of M™ which is

given by P =nHI — A. So, from (3.11)) and (3.12)), we have that
Lu = tr(P o Hess (u)),

with

P:(M¥—n;%01—A (3.13)

and we can rewrite £ in the following divergence form
Lu = div(P(Vu)). (3.14)

In order to establish our main results, we present the next auxiliary propositions, which can
be found in [44, Lemma 4.1, Lemma 4.4].

Proposition 3.1.1. Let M™ be a linear Weingarten submanifold immersed in a Riemannian
space form QP such that R = aH +b. If b > c (b > c), then L is elliptic (semi-elliptic).
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Proposition 3.1.2. Let M™ be a linear Weingarten submanifold immersed in a Riemannian
space form QP with R = aH + b for some a,b € R. Suppose that (n — 1)a® + 4n(b —c) > 0.
Then

IVA|? > n?|VH|?.

Moreover, the equality holds on M™ if, and only if, M™ is an isoparametric submanifold of Q2*P.

We close this subsection recalling a classic algebraic lemma due to Okumura in [73], which

was completed with the equality case by Alencar and do Carmo in [4].

Lemma 3.1.3. Let k1, ..., Kk, be real numbers such that Zlii =0 and Zﬁf = %, with 5 > 0.

Then,

_ (n—2) 3 < (3 < (n—=2) 4
\/n(n—l)ﬁ _; N n(n—l)ﬁj

and equality holds if and only if at least (n — 1) of the numbers k; are equals.

3.2 Rigidity results for LW hypersurfaces immersed in
Qn+1

Before to present our results, we need to collect some properties related to the following

one-parameter family of real functions

Qi(z) = —(n—2)2* — (n — 2)z/22 +n(n — 1)(t —¢) +n(n — 1t, (3.15)

where t € R corresponds to the real parameter, while n and ¢ are real constants. We note that
Alias, Garcia-Martinez and Rigoli introduced in [13] the definition of the function Qg(z) when
they were studying hypersurfaces with constant normalized scalar curvature R in an (n + 1)-
dimensional Riemannian space form of constant sectional curvature c.

For each nonnegative (positive) parameter ¢, we have that Q;(0) = n(n — 1)t is also nonnega-
tive (positive). When n > 3, each function @) is (strictly) decreasing for z > 0, with Q(x}) =0
only at

= t\/ (=2 (nt — (n—2))° (3.16)

Moreover, in the case n = 2, we have that Q;(x) = 2t.
Now, we are in position to present the next rigidity result concerning a complete LW hyper-

surface M™ immersed in Q"+

Theorem 3.2.1. Let M™ be a complete LW hypersurface immersed into a Riemannian space
form QY with n > 3, such that R = aH + b with b > c. Suppose that (H — %) > B on M™, for
some positive constant 3, and that R > anz forc=1and R >0 forc=0 orc=—1. Assume

in addition that |V®| is bounded and sup,, |®| < v < %, for some constant vy, and x%, defined
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in (3.16). If M™ has polynomial volume growth and i%f(QR(V)) > 0, then M™ is isometric to an
FEuclidean sphere S™(r), with radius r > 0.

Proof. Taking the smooth vector field X = P(V|®|?) and the smooth function f = |®|?, it will
fulfill the required conditions to apply Lemma [1.0.3] Indeed, by hypothesis we have that ||
is bounded on M™ and, by equation (3.10)), |A| is also bounded on M"™. Consequently, from

definition (3.13)), we get
[X| = [P(VI®P)] < [PI[VI®P] < K[V,

for some positive constant k. But, since we are supposing the boundedness of |®| and |V,
Lemma guarantees that V|®|? is also bounded. Thus, we have that

|X| < C < 400,

for some positive constant C'.
On the other hand, the condition

(Vf,X) = (V[o]*, P(V[2[*)) > 0

is also verified because Proposition [3.1.1] gives that P is positive semi-definite for b > c.
Now, we must obtain divX > af on M", for some positive constant «. For this, we will find
a suitable lower bound for £(|®|?). Applying £ in (3.10]), we get that

1 o 1 9 a
mﬁ(]@]) = éﬁ(nH)—ﬁﬁ(nH)

— HL(nH)+n(PVH,VH) — g[,(nH). (3.17)

In particular, since P is positive semi-definite, from (3.17)) we obtain

1 a
——L(|®*) > (H — =)L(nH). 3.18
s £ = (H = L) (3.15)
Let us choose a (local) orthonormal frame {ey,...,e,} on M™ such that h;; = \;d;;. Since

R = aH +0, from [19, Equation (2.19)] jointly with the definition of £ and with R,;;; = A\, +¢,
we get

L(nH) = |VAP = n?|VH + nc(|AP —nH?) = [A* + nH Y X, (3.19)

Moreover, we have ®; ; = 1;\;; and, with straightforward computation, we verify that

Z,ui:O, Zu?: |®> and Zu?:ZA?—3H|@|2—nH3. (3.20)
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Thus, using the Gauss equation jointly with (3.19)) and (3.20)), we get

L(nH) = |VA|*? —n?|VH|* + nHZ,u? + |®*(—|®* + nH? + nc). (3.21)

We can apply Proposition jointly with Lemma for n > 3, to obtain from (3.21)
that

-2
e > 0 (=0 — =2 g £ nH? e (3.22)
n(n—1)
Furthermore, from (3.8)) we obtain

= oy (r-0) (3.23)

n(n —1)

Thus, from (3.22) and (3.23)) we achieve in

1

L) > L joPQu(e)), (3.24)

where Qg is defined in (3.15). Hence, using (3.18) jointly with (3.24)), from (3.14) we conclude
that

divX = div(P(V|0[%) = £(|2f) = 2 (H - 5 ) Qu(|2])]| 2] (3.25)
Since we have (H — %) > 3 > 0 by hypothesis and, from the behavior of Qr(z) for 0 < |®] <
supy || < v < x%, we have that

Q(|®]) > Qn(7) > nf(Qr(7)) > 0. (3.26)

Then, from (3.25)) and ([3.26]) we obtain
divX > 2 <H - g) Qr(|®])|®? > o] @], (3.27)

and divX > af for a =20 i%f(QR(fy)) > 0.

Consequently, supposing that M™ is noncompact and with polynomial volume growth, we
are able to apply Lemma obtaining that |®|?> < 0 on M™. Then, |®| = 0, which means that
M™ is a totally umbilical hypersurface. But, from the characterizations of the totally umbilical
hypersurfaces of the Riemannian space forms, we conclude that M™ must be isometric to R",
which corresponds to a contradiction with the hypothesis that R > 0.

Thus, M™ must be compact. So, we can integrate both sides of and use Divergence

Theorem to get that
/ |®*dM = 0.
M

Therefore, we have that |®| = 0 and, hence, M" is a compact totally umbilical hypersurface of

Qn*1. So, M™ must be isometric to an Euclidean sphere S™(r), with radius r > 0. n

Revisiting the proof of Theorem we observe that if n = 2, then >, u¥ = 0. Conse-
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quently, from (3.21)) we get
L(nH) > |®|* (—|®]> +2H" +2¢)

and (3.22)) is still true in this case. Hence, it is not difficult to verify that we also have the
following rigidity result.

Theorem 3.2.2. Let M? be a complete LW surface immersed into a Riemannian space form

3 such that R = aH + b with b > c. Suppose that (H — %) > B on M?, for some positive
constant 3, and that infy R > 0. Assume in addition that |®| and |V®| are bounded. If M?>
has polynomial volume growth, then M? is isometric to an Euclidean sphere S*(r), with radius

r > 0.

Observing that, when R > 0 is constant, the hypothesis i%f(QR('y)) > (0 is automatically
satisfied, from Theorems [3.2.1] and [3.2.2] we obtain, respectively, the following consequences:

Corollary 3.2.3. Let M™ be a complete hypersurface immersed into a Riemannian space form
Q?“ with n > 3, with constant normalized scalar curvature R > 1 for c =1 and R > 0 when
c=—1o0rc=0. Suppose that H > 3 on M™, for some positive constant 3. Assume in addition
that |V®| is bounded and sup,; |®| < x%, for x} defined in (3.16). If M™ has polynomial volume

growth, then M™ is isometric to an FEuclidean sphere S™(r), with radius r > 0.

Corollary 3.2.4. Let M? be a complete surface immersed into a Riemannian space form Q3
with constant normalized scalar curvature R > 1 forc =1 and R > 0 when ¢ = —1 or ¢ = 0.
Suppose that H > 3 on M?, for some positive constant 3. Assume in addition that |®| and |V ®|
are bounded. If M? has polynomial volume growth, then M? is isometric to an Euclidean sphere
S?(r), with radius r > 0.

Proceeding, we will deal with LW submanifolds M"™ of Q?*? having parallel normalized
mean curvature vector field H, which means that the mean curvature function H is positive and
that the corresponding normalized mean curvature vector field % is parallel as a section of the
normal bundle. In this context, we can choose a local orthonormal frame {es,...,e,4,} such

that e,+1 = % Consequently, we have

1 1
H" = —tr(h"™)=H and H*= —tr(h*) =0, a>n+2. (3.28)
n n
Considering this previous context, we can state a version of Theorem for higher codi-

mension.

Theorem 3.2.5. Let M"™ be a complete LW submanifold immersed with parallel normalized
mean curvature vector field in a Riemannian space form QPP with n > 4, such that R = aH +b
with a > 0 and b > c¢. Suppose that (H — %) > B on M™, for some positive constant 3, and
that R > "=2 for ¢ = 1 and R > 0 when ¢ = —1 or ¢ = 0. Assume in addition that |V®| is

bounded and such that sup,, |®| < v < ¥, for some constant v and 73, defined in (3.16). If M™
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has polynomial volume growth and i%f(QR(v)) > 0, then M™ is isometric to an Euclidean sphere
S™(r), with radius r > 0.

Proof. Reasoning as in the proof of Theorem we take the smooth vector field X = P(V|®|?)

and the smooth function f = |®[%. So, we have that

X <C, (3.29)
for some positive constant C', and
(Vf,X) = (V|®]*,P(V|®]*) > 0. (3.30)
Moreover,
ﬁc(@ﬁ) > (H ~ 5)C(nH). (3.31)

On the other hand, following the same initial steps of the proof of [44, Theorem 5.1], we can
achieve in [44} Inequality (5.16)] which is given by

1 n—2 16
H) > ——|®*Qg(|® P — [O"))(—— — =2)|9D|.
L(nH) = ——|BQr(|]) + (@] - [0 (= — 2@
Thus, since we are also assuming that n > 4, we get
1
L(nH) > m|‘p|2QR(|‘I}|)' (3.32)
So, using (3.31) jointly with (3.32)), we conclude that

. . 2 2 a 2

divX = div(P(VI9P) = L(BP) > 2 (H - 5) Qr(@)|DP. (3.33)

But, since (H — %) > [ > 0, taking into account once more the behavior of Qr(x), for

0 < |®| < supy, |P] < v < z*, we have that

Qr(2]) = Qr(v) > inf(Qr(v)) > 0.

Hence, from (3.33)) we obtain
divX > 2 (H - g) Qr(|®])|®2 > af, (3.34)

where oo = 23 i%f(QR(’y)) > 0.

Supposing that M™ is a noncompact submanifold, since (3.29)), (3.30]) and (3.34)) were verified
and M™ has polynomial volume growth, we are able to apply Lemma to obtain that |®[> <0

on M™. Then, || = 0 and M™ is totally umbilical submanifold. Consequently, taking into

account (3.28)), we get
he = (H,e,)I = HT =0,
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for all &« > n + 1. Thus, we have that the first normal subspace,
Ny = {eq € XH(M™);h* =0}

is parallel and it has dimension 1. Therefore, we can apply [38, Proposition 4.1] to reduce the
codimension of M"™ to 1. So, since M™" is, in fact, a totally umbilical noncompact hypersurface
with polynomial volume growth, we infer that it is isometric to R", which corresponds to a
contradiction with the hypothesis & > 0.

At this point, we can reason as in the last part of the proof of Theorem to conclude, re-
ducing the codimension of M™ again, that M™ must be isometric to a totally umbilical Euclidean
sphere S"(r), with radius r > 0. O

In what follows we will apply Lemma to get further rigidity results concerning complete

noncompact LW submanifolds in the hyperbolic space. So, we state and prove our first one.

Theorem 3.2.6. Let M™ be a complete noncompact LW hypersurface immersed into the hyper-
bolic space H" ™ with n > 3, such that R = aH + b with b > —1. Suppose that R > 0 and that
|®| < x5, for a3, defined in (3.16). If |®| converges to zero at infinity, then M™ is isometric to

a horosphere of H" .

Proof. Let us consider the smooth vector field X = P(V|®|?) and the smooth function f = |®?
and let us suppose that M" is not a umbilical hypersurface. So, f is non-identically vanishing

function which converges to zero at infinity. Moreover, we have that
(V. X) = (V[2[*, P(V|2[*)) > 0.

We claim that divX > 0. Indeed, we already know that

1 a 1
——L(|®*) > (H — =)L(nH d L(nH)> ——|d? d 3.35
s SIB) = (H = L) and L(n) > —[0FQull0).  (335)
where Qg is the one-parameter family of real functions given by (3.15)). Thus, since (H — %) >0,

from jointly with the behavior of Qg(x) for 0 < |®| < x%,, we conclude that
divX = div(P(V|®[2) = £(|®?) > 2 (H - g) Qr(|®))|2 > 0.
Hence, we can apply Proposition to get that
(Vf,X) = (P(V|2["),V|e[) =0.

Consequently, since Lemma gives that P is positive definite, we have that V|®|? = 0.
Thus, f = |®|? is constant. But, since f converges to zero at infinity, it must be identically
zero, leading us to a contradiction. Therefore, M™ is a complete noncompact totally umbilical

hypersurface of H**! with R > 0, which means that M" is isometric to a horosphere of H*™!. [
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In the case n = 2, reasoning as in the proof of Theorem [3.2.6| we also obtain the following.

Theorem 3.2.7. Let M? be a complete noncompact LW surface immersed into the hyperbolic
space H?, such that R = aH + b with b > —1. Suppose that R > 0. If |®| converges to zero at

infinity, then M? is isometric to a horosphere of H?.
Applying again a codimension reduction process, we obtain our next rigidity result.

Theorem 3.2.8. Let M"™ be a complete noncompact LW submanifold immersed with parallel
normalized mean curvature vector field into the hyperbolic space H" P with n > 4, such that
R =aH +b witha >0 and b > —1. Suppose that R > 0 and that |®| < x%,, for x}, defined
m . If |®| converges to zero at infinity, then M™ is isometric to a horosphere of H" ™.

Proof. Tt is not difficult to verify that, using inequality (3.33)) and following similar steps of the
proof of Theorem [3.2.6, we can achieve in V|®|?> = 0. So, taking into account (3.28]), we get

h* = (H,e,)I = H*I =0,
for every a > m + 1. This implies that the first normal subspace,
Ny = {eq € X (M"™); 0 = 0}l,

is parallel and has dimension 1. Therefore, we are in position to apply once more |38, Propo-
sition 4.1], reducing the codimension of M™ to 1 and concluding that it is a totally umbilical
noncompact hypersurface of H"*! with R > 0. Consequently, M™ must be a horosphere of
H"+1, m

In our last rigidity result of this section, we will deal with complete noncompact LW sub-

manifolds having nonnegative sectional curvature, which are immersed with globally flat normal

bundle in H"?.

Theorem 3.2.9. Let M™ be a complete noncompact LW submanifold with nonnegative sectional
curvature immersed into the hyperbolic space H"P, n > 2 with globally flat normal bundle and
parallel normalized mean curvature vector field, such that R = aH + b with b > —1. If the total

umbilicity tensor of the immersion |®| converges to zero at infinity, then M™ is isometric to a
horosphere of H™ .

Proof. As before, we take the smooth vector field X = P(V|®|?) and the smooth function
f = |®|?. Supposing that M" is not a totally umbilical submanifold, reasoning as in the proof
of Theorem [3.2.6| we obtain that f is non-identically vanishing function which converges to zero
at infinity and such that (V f, X) > 0.

Now, let us verify that div.X > 0. Indeed, we have

1
5A|A|2 = hGARG 4 > (k) (3.36)

l7j7a i7j7k7a
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Using Codazzi equation ([3.5)) into (3.36)), we get

1
5A|Ay2 VAP + > hehgtp. (3.37)

i,5,k,

On the other hand, by exterior differentiation of (3.1) and assuming that M™ has globally
flat normal bundle (that is, R*- = 0), we obtain the following Ricci identity

zjkl zglk Z hmj Rmzkl + Z hlmijkl (338)

Thus, from (3.28)), (3.37) and (3.38]) we reach at

1 2 2 n+1gpn+1 ey Ne" oo
SAIAP = V4] +ZnHij+ W RS RS R+ Y hShi, R (3.39)

i,5,m,k,a i,7,k,m,a

Consequently, taking a (local) orthonormal frame {ey,...,e,} on M™ such that h; = A0, for
every «, from (3.39)) we obtain the following Simons-type formula
—A]A\Z VAP + Z)\”H (nH);; ZRW (A8 = A%)? (3.40)
i,J,0
Moreover, using the definition (3.12), we obtain
L(nH) = nHA(nH) - Z N (nH),
_ n(n—1) 2 2 2 nt1
= —5 AR+ §A\A| —n}VH|? - Z AP (R H ). (3.41)
Thus, inserting ((3.40) into (3.41]) we get
LnH) = " Y AR (VAR — 2 VHE + 257 Ry (00 — 402 3.42
(nH) = ———AR+ [VA]" —n’| |+§”Za i (A7 — AF)” (3.42)
Provided that R = aH + b, from (3.11]) and ( - we have
1
2 2 2 « a2
L(nH) = [VA] —n?[VH[* + 5 Z Ryjij (AF — A9)2. (3.43)

Hence, since M™ is supposed to have nonnegative sectional curvature and using Proposition
, from (3.43) we get L(nH) > 0. Thus, since (H — §) > 0, from (3.35)) we finally deduce
that

divX = div(P(V|D]?)) = L(|D[?) > 2(n — 1) (H - g) L(nH) > 0.

Now, applying Lemma |1.0.4| we obtain
(VF,X) = (P(V|2]*),V|o]*) = 0.
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So, since Proposition m guarantees that P is positive definite, we get that V|®|*> = 0. Thus,
as in the last part of the proof of Theorem we will have that f = |®|? is identically
zero, leading us to a contradiction. Therefore, M™ must be totally umbilical and, reducing the

codimension of M™ to 1, we conclude that M™ is isometric to a horosphere of H" !, O]
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Chapter 4
LW hypersurfaces in Einstein manifolds

In this chapter we study the geometry of linear Weingarten (LW) spacelike hypersurfaces
immersed in an Einstein space obeying some standard curvature conditions.The results that will
be present in this chapter make part of [36,47.|52}54]

4.1 Rigidity results for closed LW hypersurfaces in an

Einstein spacetime &'

4.1.1 Preliminaries

In this section, we will consider complete spacelike hypersurfaces M"™ immersed in a Lorentz

space L. We choose a local orthonormal frame ey, --- , e, in L' such that, at each point
of M", eq,..., e, are tangent to M" and e, is normal to M". Using the following convention
of indices

1<ABC,...<n+1 and 1<1,75,k,...<n,

and taking the corresponding dual coframe wy, . .., w, 1, the semi-Riemannian metric of LI is
given by ds* = Y, eaw?, where ¢, = 1 and €,11 = —1. So, denoting by {wap} the connection

forms of "™, we have that the structure equations of L*" are given by

de:—ZeBwAB/\wB, wap +wpa =0 (4.1)
B
and .
dwap = — zc: €cwac ANwep — 5 Cz; ecepRapop we Awp, (4.2)

where Rapcp denotes the components of the curvature tensor of ]L?H.
In this setting, denoting by Rcp and R the components of the Ricci tensor and the scalar

curvature of the Lorentz space L7, respectively, we also have

ECD - Z €BEBCDBa E = Z EAEAA-
B A
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We are going to assume that there exist constants ¢; and ¢y such that the sectional curvature

K of the Lorentz manifold "' satisfies the following two constraints

K(u,n) = —%, (4.3)

for any v € TM and n € TM+, and
K(u,v) > ¢y, (4.4)

for any tangent vectors u,v € TM. In particular, the Lorentzian space forms L}*!(c) of constant
sectional curvature c satisfy curvature conditions and for any spacelike hypersurface
M™ immersed in L{*'(c) and —2 = ¢, = c.

Moreover, there are several examples of Lorentz spaces which are not Lorentz space forms
and satisfy and (4.4). For instance, Lorentz product manifolds Hf(—ci/n) x N5 (cy),
where ¢; > 0, and RY x S"*1=* where we are considering the spacelike hypersurface M™ as being
a slice of the ambient space. In particular, R{ x S™ is a so-called Finstein Static Universe. Also
the so-called Robertson-Walker spacetime N(c, f) = I x; N*(c) is another general example of
Lorentz space, where I denotes an open interval of Ri, f is a positive smooth function defined
on the interval I and N3(c) is a 3-dimensional Riemannian manifold of constant curvature c.
N (e, f) also satisfies curvature conditions and for an appropriate choice of the function
fand M3 = {t,} x N3 for some to € I (for more details, see |35,83]).

We also observe that denoting by Rap the components of the Ricci tensor of a manifold

M satisfying curvature condition ({.3), the scalar curvature R of M s given by

n+1

Z 5ARAA - Z Rzgyz 2 Z R (n+1)ii(n+1) Z Ez’jji + 261- (45)

i,5=1 i,j=1

Consequently, if (€"! g) is an Einstein manifold, the components of its Ricci tensor satisfy
Rep = A\gop, for some constant A € R. In particular, the scalar curvature R is constant and,
from (4.5]), we conclude that ZZL - R;jjz- is also constant. So, for sake of simplicity, along this
chapter we will denote the constant ——— Zz J Rm] by R.

The components RABCD; g of the Covarlant derivative of the curvature tensor of L"™ are
defined by

E eeRapcp,pwr=dRapcp — E ¢g(Repcpwia + Rapcpwes + Rapepwee + Rapcewep) -
I3 B

Furthermore, restricting all the tensors to the spacelike hypersurface M", since w,; = 0 on

M", we get ZW(n+l)i A w; = dwpiq = 0. So, from Cartan’s Lemma we obtain

%

Wi = Y hijw;  and by = hy;. (4.6)

J
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This gives the second fundamental form of M", A = Zhijwiwjenﬂ, and its squared length
1,J

1
|A]? = Z hZ.. Beyond that, the mean curvature H of M™ is defined by H = — Z hi;.

From and . we deduce that the connection forms {w;;} of M™ are Characterlzed by

the followmg structure equations

1
dwi = — Zwij A Wy, Wij + Wj; = 0 and dwl-j = — Zwik N Wk — 5 ZRijklwk A\ Wi, (47)

j k k.l

where R;j; are the components of the curvature tensor of M™. Hence, from (4.7) we obtain the
Gauss equation
Rijia = Rijie — (harhj — hahj) -

The components R;; of the Ricci tensor and the normalized scalar curvature R of M™ are given,

respectively, by
Ri; = Z}_%kijk —nHh;; + Z hig
k k

and

|A? =n*H? +n(n — 1R ZRZM (4.8)
Moreover, the first covariant derivatives h;;j, of h;; satisfy

Z hijkwk = dhw — Z hikwkj — Z hjkwki. (49)
k k k

Then, by exterior differentiation of (4.6)) we obtain the Codazzi equation
hijk — hiry = Rnt1yiji- (4.10)

The second covariant derivatives h;;i; of h;; are given by
> i = dhige = > by — Y hagwyg — > hijiw.
! 1 1 1
Taking the exterior derivative in (4.9) we obtain the following Ricci formula
hijer = hijie = = him Ronjit = O jon Boi. (4.11)
m m
Restricting the covariant derivative }_%ABCD; g of Rapep on M™, we get

R(n—&-l)ijk;l = E(n—i—l)z’jkl + E(n—i—l)z’(n—i—l)khﬂ + E(n-ﬁ-l)ij(n—l—l)hkl + Zﬁmzjkhmla (4.12)

m
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where E(nﬂ)ljkl denotes the covariant derivative of R(nﬂmk as a tensor on M™ so that

Zﬁ(n—l—l)zjklwl = dﬁ(n—i—l)ijk - ZE(nJrl)ljkwli - Zﬁ(n—l—l)ilkwlj - Zﬁ(n—i-l)ijlwlk-
l l ! l

Since the Laplacian Ah;; of h;; is defined by Ah;; = Zhijkk‘ From (4.10), (4.11)) and
k

(4.12)), we obtain
Ahij = (nH)i; —nH Y haluj +APhi + > (Rinsvyigek + Rinsveir) (4.13)
l k

- Z(hkkf_?(nﬂ)ij(nﬂ) + hij Rint 1) k(nt 1)) — Z(Qhklﬁlijk + hji Rukire + hirRujie)-
P ol

Thus, since A|A]* = 2 (Z hi + Z hijAhij), from (4.13) we get

4,5,k 2,]

1
EA‘AP - |A| Zh1]k+z nH z]hz] +Z (n+1 z]kk+Rn+1 klkj) h

4,5,k 4,5,k

=D nHhiRsnyijen + AP Z Rt 1)kt ) (4.14)

i,

-2 Z hiihij Riijr + hahijRiggr) — nH Z hithyjh;.

i7j7k7l i7j7l

Again, we will work with the following symmetric tensor

P = Z @Z]wl & Wy, (415)
1]
where ®;; = h;; — Ho;;. Let |®]* = Z @7, be the square of the length of ®, we can check that

® is traceless and

|®* = |A|* — nH?. (4.16)
Moreover, considering that M™ is a linear Weingarten with R = aH + b, it holds for an Einstein
spacetime the following algebraic relations from equations | - ) and ({ -

D = |A]? —nH? =n(n— 1)H* +n(n — 1)aH +n(n —1)(b - R), (4.17)

where R = ﬁ > i Rijij- In the case that b < R, it follows from (4.17) that H(p) # 0 for
every p € M™. In this case, we choose on M" the orientation such that H > 0.
Following Cheng-Yau [31], we introduce the Cheng-Yau operator L : C°(M™) — C°(M")

associated to ¢ acting on any smooth function f by

Zﬁbwfm = Z nHoi; — hi;) fij- (4.18)

,J
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Hence, setting f = nH in (4.18)) and taking a (local) orthonormal frame {ey,...,e,} on M"
such that h;; = \;d;;, from equation (4.8) we obtain the following

L(nH) = %A(nH)Q - Z(nﬂ)f - Z Ni(nH )y (4.19)
_ %A|A|2 ~n?VHE = 3 M(nH);

1 —

In what follows, we will quote some key lemmas in order to prove the results of the next

section. The first one corresponds to |43, Lemma 3.2].

Lemma 4.1.1. Let M™ be a complete LW spacelike hypersurface immersed in an FEinstein
spacetime EM satisfying curvature conditions (&.3) and ([&.4), such that R = aH + b with

(n—1)a* —4n(b—R) > 0. (4.20)
Then,
IVH|* = b, > n®|VH|”. (4.21)
ik

Moreover, if the inequality (4.20)) is strict and equality occurs in (4.21)), then H is constant on
M™.

For a LW spacelike hypersurface M™, we can also introduce the second-order linear differential

operator £ : C°(M") — C*°(M™) defined by

~1
L=L+"

al\, (4.22)

where A is the Laplacian operator on M™ and L : C*(M") — C*°(M™) denotes the Cheng-Yau
operator defined in (4.18)), which is given by

Lu = tr(P o Hess (u)), (4.23)

for every u € C*°(M™), where Hess is the self-adjoint linear tensor metrically equivalent to the
Hessian of v and P : X(M") — X(M") denotes the first Newton transformation of M™ which is

given by P =nHI — A. So, from (4.22)) and (4.23)), we have that
Lu = tr(P o Hess (u)),

with

P:(m7+n_%OI—A. (4.24)



Thus, by using the standard notation (,) for the (induced) metric of M™, we get

Lu= Z(P(VaiVu),eﬁ,

i

where {e1,--- ,e,} is a (local) orthonormal frame on M™. Consequently, we obtain

div(P(Vu)) = Z<(v )(Vuw), +Z (Ve,Vu), e1)

= <d1VP Vu) + L(u). (4.25)

Since we are assuming that £ is an Einstein manifold, there exist a constant A such that
Ric = A(,), in which Ric denotes the Ricci tensor of &', Thus, from |7, Lemma 3.1]

(divP, Vu) = > (R(N, e;)e;, Vu) = —Ric(N, Vu) = —=A\(N, Vu) =0

i

where N stands for the Gauss mapping of M™. Hence, from equation (4.25]), we conclude that
Lu = div(P(Vu)). (4.26)

Thus, from (4.22)) and (4.26)), we can verify that £ can be rewritten in the following divergence
form

Lu = div(P(Vu)). (4.27)

In our next result, we establish a sufficient criteria of ellipticity for the operator L(see [43,
Lemma 3.3]).

Lemma 4.1.2. Let M™ be a LW spacelike hypersurface immersed in an Einstein spacetime £
satisfying curvature condition (4.3)), such that R = aH +b. Let pu_ and u, be, respectively, the

minimum and the maximum of the eigenvalues of the operator P defined in (4.24) at every point
pe M.
If b < R, then the operator L defined in (£.22)) is elliptic, with

p— >0 and py <2nH+ (n—1)a.

In the case where b = R, assume further that the mean curvature function H does not change

sign and b < R. Then the operator L is semi-elliptic, with
- >0 and py <2nH + (n—1)a,

unless M™ is totally geodesic. Moreover, in the case where b < R on M™, the above inequalities

are strict and the operator L is elliptic.

Remark 4.1.3. Regarding the ellipticity of £, observe that when M" is totally geodesic then
the operator £ reduces to £ = "T_laA, which is elliptic if and only if a > 0. For that reason,
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in order to keep the validity of Lemma when b = R even in the totally geodesic case we

choose a to be any positive constant.

The following lower boundedness for the operator £ acting on the squared length of the trace-
less operator @ of a LW spacelike hypersurface will be essential to establish our characterization

results.

Proposition 4.1.4. Let M™ (n > 3) be a complete LW spacelike hypersurface immersed with
parallel normalized mean curvature vector in an Einstein spacetime EM' satisfying curvature
conditions (4.3)) and ([4.4)), such that R = aH +b with b < R. In the case where b =R, assume

that the mean curvature function H does not change sign and b < R. Then,

L) > 2(n — 1)|®*pas(|P]) ﬁ—i—ﬁ—b—l—aj
- Spa,b n(n o 1) 4 9
where
n—2 , n(n — 2) z? — a?
a R b _
Pap(T) n_1$+ n(n_l)m)\/n(n—l)+ +4
n(n—2) a (— a2)
+ —r—n({R—-b—c+ — 4.28
nin—1)2 2 (4.28)
and ¢ = 2¢cy + ﬁ
n
Proof. Let us choose a local orthonormal frame {ey,...,e,} on M™ such that h;; = X\;6;; and

®;; = K;0;;. Taking into account equations (4.14)), (4.19)), we get from (4.22)) that

L(nH)=(]A]? —nHZA3 > b3, —n?|VH|?

0,7,k

—2 Z()\MkRknk + A7 Rigir) + Z Ni(Rins1yiinsn + Rint1ykini) (4.29)

ik ik
- (nHZ )\iﬁ(nJrl)ii(nJrl) + |14|2 Z}_%(nJrl)k(nJrl)k) .
) k

On the other hand, since (£, 7) is an Einstein spacetime, the components of its Ricci
tensor satisfy Rep = Ajop, for some constant A € R. Moreover, we can consider {e, ..., e,}
a local orthonormal frame on M™ such that h;; = A\;0;;. So, proceeding as in [65], from the

differential Bianchi identity and the fact that g,z =0 we get

Z NRivyiine = — Z Ai (Rikiks(ns1) + Rinatyins)
ik
= - Z /\z Rii;(n+1 E (n+1)3; z)
= - Z Ai ()@n';(nﬂ) - )‘g(nJrl)i;i) =0 (4.30)
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and

> ANRsvkiti = Y MiRanyii = Y NiXGpn i1y =0, (4.31)
where Eijkl;m are the covariant derivatives of }_'iijkl on &', Consequently, from (4.30)) and (4.31))
we obtain
Z (Rins1yijik + Binstyinij) hij = 0. (4.32)
ivjk

Still, since we are assuming that b < R, we have that the relation (#.20) holds, and hence
we can apply Lemma to guarantee that

> hiy —n’|VH? > 0. (4.33)

1,5,k

Thus, from (4.29)), (4.32) and (4.33)) we have

L(nH)>(|A]) —nHZA3—2Z (AN Riok + A Rigr)

ik

- (nH > ARy + AP R(n+1)k(n+1)k) : (4.34)
i k
Moreover, it is not difficult to verify the following algebraic relations

Zmizo, Z/{?: |®> and ZK?:ZA§—3H|®|2—nH3. (4.35)
Hence, from equations (4.17)) and - we have

(JA]?)? — nHZ A= (|02 + nH?)? - nHZ K3 — 3nH?|®)? — n*H*

=|®|* — nH?*®|)? — nHZZ: K.

At this point, we observe that, when n = 2, since @ is traceless, we have >, k7 = 0 and so,

(JA])? - 2HZ)\3 0|2 (| — 2H?) .
On the other hand, when n > 3, it follows from Lemma that

(JA]%) —nHZ)\3>|<I>|2<|<I>|2 %H\@ ) (4.36)

Consequently, inequality (4.36)) holds for all n > 2.
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By using the curvature conditions (4.3]) and (4.4)), after straightforward computations we get

- (Z nHXA R (ni1yiitns) + |AJ° Zf_?(nﬂ)k(nﬂ)k) = 1 (JAP —nH?) (4.37)
i K
and

-2 Z(Ai/\kﬁkiik + M Ripir) > Co Z()‘l )
ok ik
20 - ), a3

Therefore, inserting (4.36)), (4.37)) and (4.38) in (4.34]), we have

-2
L(nH)>|®* | |®] — MH@\ —nH? | + ¢1|®* + 2ncy| O
n(n —1)
-2
—fof? (o - 22 pig) —n(r2 — ¢) ] (439)
n(n —1)
where ¢ = % + 2¢5.
But from (4.17]), we obtain
1 —
m@\? =nH?+naH +n(b—TR). (4.40)

Since &' satisfies curvature condition (4.3), it follows that R is a constant. If M™ is totally
geodesic, then the operator £ reduces to £ = ”T_laA where a > 0 is any positive constant (see
Remark . In this case |®|?> = 0 and the inequality in Proposition holds trivially. On
the other hand, if M™ is not totally geodesic then Lemma |4.1.2] guarantees that the operator P
is positive definite if b < R, and P is positive semi-definite if b = R. In any case, from ([4.40)

we have

ﬁc(@y?) —2HL(nH) + 20(P(VH), VH) + aL(nH) (4.41)

>2(H + g) L(nH),

since ([4.22)) gives that £(u?) = 2uLl(u) + 2(P(Vu), Vu) for every u € C*(M).
Therefore, from (4.39) and (4.41) we get

1 a n(n —2)
—— L > (H+ =)@ |®? - —=H|®| —n(H*—¢) | . 4.42
sy C20) 2 (H o+ 5) 10 (19 - ZZ=sHIel —n(H* ~ ) (4.42)
Besides, from (4.23]) we have
1 _
H>= ——|®)*+R —aH —b. (4.43)

n(n—1)
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Consequently, taking into account that (H + §) > 0, we can write

a |2 — a?
H+-—=y/———+R-b+—. 4.44
* 2 \/n(n— 1) - i 4 (444)

From (4.39), after a straightforward computation, we have

-2
|(I)|2—|— n(n )

vn(n—1)
where ¢, () is the function defined in . Therefore, replacing (4.45]) and ( in -

we obtain the desired inequality.

H|®| —n(H? = ¢) = ¢a(]2]), (4.45)

n+1
51

4.1.2 Complete LW spacelike hypersurfaces immersed in satis-

fying standard curvature constraints

Having seen this, we are in position to establish our rigidity results using the two suitable
maximum principles due to [8,9] jointly with the modified Cheng-Yau’s operator £ concerning
complete LW spacelike hypersurfaces immersed with parallel normalized mean curvature vector

field in an Einstein spacetime &'

Theorem 4.1.5. Let M™ be a complete noncompact LW spacelike hypersurface immersed with
parallel normalized mean curvature vector field in an Einstein spacetime EM satisfying curvature
conditions (4.3) and , such that R = aH+b for some constants a,b € R withb < R. Suppose
that |A]> < 2v/n —1c with ¢ = & + 2¢y > 0. If |®| converges to zero at infinity, then M™ is a

totally umbilical hypersurface.

Proof. Let us suppose by contradiction that such a LW spacelike hypersurface M™ is not totally
umbilical. We consider the smooth vector field X = P(V|®|?) and the smooth function f = |®|?
and we claim that the required conditions to apply Lemma [1.0.4] are satisfied. Surely, f is non-
identically vanishing function which converges to zero at infinity. Moreover, we can obtain from
Lemma that P is positive definite for b < R and then

(Vf,X) = (V|®]*,P(V|®]*) > 0. (4.46)

We affirm that divX > 0. Indeed, we have from equation (4.41)) that

1
2(n—1)

Besides that, from (4.17)) we can verify that

L(n). (4.47)

L(1BP) = (H + 5

A2 —2nH? = 2\/_((\/71— +1) (@] — (Vn—1—1) VaH) (4.48)

n(n —2) n 5
n(n—l)H‘ - \/H‘A’
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Thus, from (4.39) and (4.48) we obtain

(4.49)

LnH) > | (ne— ————[A]?) >0
(nft) 2 fof? (ne = 5 jaP) 20,

from the assumption that |A]? < 2y/n — 1ec.
As (H+4%) >0, from [£.27), (4.47) and (£.49), we have

divX = div(P(VI®%)) = £(|®%) > 2(n — 1) (H + g) L(nH) > 0.
Hence, we can apply Lemma to get that
(Vf,X) = (V][ P(V|®[*)) = 0.

Therefore, since the operator P is positive definite, we conclude that V|®| = 0. Thus, f = |P|
is constant. But f converges to zero at infinity, so it must be identically zero, leading us to a

contradiction since we are supposing that M" is not a totally umbilical hypersurface. O]
The next result involves polynomial volume growth.

Theorem 4.1.6. Let M™ be a complete noncompact LW spacelike hypersurface immersed with
parallel normalized mean curvature vector field in an Einstein spacetime '™ satisfying curvature
conditions and , such that R = aH + b for some a,b € R with b < R. Suppose that
IVA| is bounded and sup,; |A|* < 2v/n — 1c with ¢ = < +2¢y > 0. If M™ has polynomial volume

growth, then M™ is is a totally umbilical hypersurface.

Proof. Let us take the smooth vector field X = P(V|®|?) and the smooth function f = |®|%
By hypothesis, we have that |A| is bounded on M™ and, consequently, from definition , we
get

[X| = [P(VI®P)] < [PI[VIDP] < K|V,

for some positive constant k. Besides that, by equation (4.17)), since |A| is bounded, |®| is also
bounded on M™ and as we are supposing the boundedness of |V A|, it follows the boundedness

of |[V®|. Thereby, Kato’s inequality guarantees that
1X| < K[V|D[2] = 2K[|| V||| < 2K|0]| VD] < C < +o0, (4.50)

for some positive constant C'.

Now, we must have divX > af on M", for some positive constant o € R. For this, we can

combine (4.27)) and (4.49) with (4.47) to obtain

divX = div(P(V|®[2)) = L(|®[2) > 2(n — 1) <H + g) <nc - ﬁym?) B2, (4.51)

Since we are assuming sup,,(|A|*) < 2v/n —1c and (H + §) > 3, for some positive constant
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B € R (see Remark [2.1.17)), from (4.51)) we get

div(X) > a|®]? (4.52)

2y/(n—1
noncompact hypersurface, conc(litio)ns , (4.50) and are verified and we are able to
apply Lemma to obtain that |®]* < 0. Hence, |®| = 0 on M", guaranteeing that M" is a
totally umbilical hypersurface.
In the case that M™ is a compact hypersurface, we can integrate both sides of and use
the Divergence Theorem to get that

/M D <nc — mw?) dM < /ME(nH) dM =0,

since the operator £ is a divergence type as it was observed in (4.27)). Consequently, as we are
assuming that sup,,(|]A4|?) < 2v/n — 1c¢, we must have |®| = 0 on M™ and M" is also a totally

umbilical hypersurface. O]

where v = 2(n— 1) (nc — —2—supy,(JA]?) | > 0. Therefore, in case that M™ is a complete

As an application of |14, Lemma 4.2] (see also [15, Theorem 6.13]), we establish the follow-
ing Omori-Yau maximum principle which will be our analytical key tool for the proof of our

characterization result of LW spacelike hypersurfaces in an Einstein spacetime &'

Proposition 4.1.7. Let M"™ be a complete noncompact LW spacelike hypersurface immersed with
parallel normalized mean curvature vector field in an Einstein spacetime E' satisfying curvature
conditions and , such that R = aH + b with b < R. In the case where b = R, assume
that the mean curvature function H does not change sign and b < R. If sup,, |®|*> < 400, then

the Omori-Yau maximum principle holds on M™ for the operator L defined in (4.22).

Proof. Since £ satisfies curvature condition (4.3)), we have that R is constant. Now, taking

into account (4.17)) we get
9 =n(n—1)(H*+aH) +n(n—1)(b—TR). (4.53)

Since we are assuming sup,, |®|?> < +oo, from (4.53) we conclude that sup,, H < +oo. Thus,

from (4.24) we have
—1
tr(P) =n(n—1)H + %a
and, hence,

sup tr(P) < +oo. (4.54)
M

On the other hand, from (4.17) and curvature condition (4.4)) we see that the sectional

curvatures of M" satisfy

—1\?
Rijij > c2 — (nH+ a 5 a) > —00. (4.55)
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Furthermore, Lemma guarantees that the operator L is semi-elliptic. Therefore, taking

into account (4.22), (4.54) and (4.55)), we can apply |14, Lemma 4.2] to reach the desired result.
[

Now, applying Proposition 4.1.4, we are able to prove the following result for LW spacelike

hypersurfaces immersed in an Einstein spacetime &'

Theorem 4.1.8. Let M" be a complete LW spacelike hypersurface immersed with parallel nor-
malized mean curvature vector field in an Einstein spacetime E satisfying curvature conditions
(4.3) and , such that R = aH + b with b < R < b+ ¢, wherec:202+% >0, and b < R.
In the case where b = R, assume further that the mean curvature function H does not change

sign. Then

(i) either sup,; |®|*> = 0 and M™ is a totally umbilical hypersurface,
(ii) or
sup |®|> > a(n,a,b,c, R) > 0,
M
where a(n, a,b,c,R) is a positive constante depending on n,a,b,c and R.

In particular, if b < R, the equality sup,; |®|*> = a(n,a,b,c,R) holds and this supremum is at-
tained at some point of M™, then M™ is an isoparametric hypersurface with two distinct principal

curvatures one of which is simple.

Proof. If sup,, |®|*> = 0, then M™ is totally umbilical and, hence, item (i) holds. If sup,, |®|*> =
+00, then (i7) is trivially satisfied. So, let us suppose that 0 < sup,, |®|* < +oo and let us take
u = |®|?. Then, from Proposition we get

L(u) = f(u), (4.56)

where

u —

f(u) =2(n— 1)us0a,b(\/ﬂ)\/— STR-b+ L

n(n —1) 4
and ¢, () is given by (4.28)).

If M™ is compact, there exists a point pg € M" such that u(pg) = u* = supu. Consequently,
Vu(pg) = 0 and Lu(py) < 0. Therefore, from (4.56) we get f(u*) < 0. Now, assume that M"
is complete and non-compact. Since u* < 400, Proposition guarantees that there exists a
sequence of points {px breny C M"™ satisfying

1 1
u(pr) > u* — % and  Lu(pg) < o (4.57)
for every k € N. Therefore from (4.56|) and (4.57), we get
1
7 > Lulpe) = f(ulpr))- (4.58)
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Taking into (4.58)) the limit when k — +o0, by continuity, we have

* 2

ﬂf)Zﬂn—wawh@ﬁ¢—Ji——+ﬁ—b+ﬁ-

< 0.
n(n—1) 4

Since u* > 0 and b < R, we obtain

Pap(Vur) < 0. (4.59)

Note that the hypotheses b < R < b+ ¢ and b < R guarantee us that

_ a2 a2 __
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On the other hand, it is not difficult to verify that the function ¢, () is strictly decreasing

for x > 0. Thus, by the continuity of ¢, ;(x), we may assume the equation ¢, ;(x) = 0 attains

its positive root at z9 = 1/a(n,a,b, ¢, R) > 0. Therefore, (4.59) implies
u* > 22 = a(n,a,b,c,R),

that is,
sup [B[2 > a(n,a,b, ¢, R).
M

This proves the inequality in (i7).
Moreover, equality sup,, |®|> = a(n, a, b, ¢, R) holds if and only if v/u* = . Thus @a,(v/u) >
0 on M™, which jointly with (4.56)) implies that

L(u)>0 on M".

Now, suppose that b < R. Hence, Lemma assures that the operator L is elliptic.
Therefore, if there exists a point py € M™ such that |®(pg)| = sup,, ||, from the maximum

principle the function u = |®|?> must be constant and, consequently, |®| = zy. Thus,

2 2
il +o-R+ L

0=L(2*) > 2(n—1)|¢|2wa,b(|®l)\/m 4

Hence, all the inequalities along the proof of Proposition must be equalities. In particular,
since L is elliptic if and only if P is positive defined, returning to (4.41)) we obtain that H is
constant. Moreover, it also occurs equality in (4.33)) or, equivalently,

VAP =) " hZy =n’|VH] =0.

i7j7k

So, it follows that \; is constant for every ¢ = 1,...,n, that is, M™ is an isoparametric hyper-
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surface. Finally, (4.59) must be also an equality, which guarantees that occurs the equality in
Lemma [3.1.3] This implies that the hypersurface has exactly two distinct principal curvatures

one of which is simple. O

Remark 4.1.9. Considering b = 0 in Theorem 4.1.8, we have the case when the mean and scalar
curvatures of the spacelike hypersurface are proportional to each other, that is, R = aH for a
nonzero constant a € R. So, Theorem [4.1.8| can be regarded as a sort of extension of similar
characterization results obtained by Li in [61] and Shu in [80] when the ambient space is the de

Sitter space S},

From Theorem [£.1.8] we use a classical result of congruence due to Abe, Koike and Yamaguchi
(cf. [1, Theorem 5.1]) to obtain the following

Corollary 4.1.10. Let M™ be a complete LW spacelike hypersurface immersed in de Sitter space
S"H, such that R = aH +b with 0 < b <1 and R > 1. In the case where b = 1, assume further

that the mean curvature function H does not change sign. Then

(i) either sup,; |®|> = 0 and M™ is a totally umbilical hypersurface,

(i1) or

sup®[? > a(n, a,b,1) > 0,
M

In particular, if b < 1, the equality sup,, |®|?> = a(n,a,b, 1) holds and this supremum is attained
at some point of M™, then M™ is isometric to a hyperbolic cylinder H'(r) x S"1(v/1 +12) of

radius r > 0.

Recall that a Riemannian manifold M" is said to be parabolic if the constant functions are
the only subharmonic functions on M™ which are bounded from above, that is, for a function
u e C*(M)

Au>0 and u<u" < +oo implies wu = constant.
So, considering the Cheng-Yau modified operator £, we say that M™ is L-parabolic if the only

solutions of the inequality £(u) > 0 which are bounded from above are the constant functions.

In this setting, and motivated by Theorem 3 in [14] we have the following result.

Theorem 4.1.11. Let M"™ be a complete LW spacelike hypersurface immersed with parallel nor-
malized mean curvature vector field in an Einstein spacetime £ satisfying curvature conditions
(4.3) and , such that R = aH +b with b < R < b+c, wherec:QCQ—l—% >0 and b < R.
In the case b = R, assume further that the mean curvature function H does not change sign.
Suppose that M™ is not totally umbilical. If M™ is L-parabolic, then

sup |®|? > a(n,a,b,c, R) > 0. (4.60)
M

Moreover, if the equality occurs in (4.60), then M™ is a isoparametric hypersurface with two

distinct principal curvatures one of which is simple.
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Proof. If sup,,; |®|> = +oco then there is nothing to prove. On the other hand, in the case that
0 < sup,, |®|? < +o0, reasoning as in the first part of the proof of Theorem , we guarantee
that sup,, |®|?> > a(n,a,b, c, R). Moreover, if equality holds in (4.60), then we have @, (]®[) > 0
and, consequently, £(|®|?) > 0 on M"™. Therefore, from the L-parabolicity of M™ we conclude
that the function u = |®|?> must be constant and equal to a(n,a, b, c, R). At this point, we can

reason as in the proof of the previous theorem. n

It is not difficult to verify that from Theorem {.1.11|jointly with [10, Corollary 2] we get

Corollary 4.1.12. Let M™ be a complete LW spacelike hypersurface immersed in de Sitter
space ST, such that R = aH +b with 0 < b <1 and R > 1. In the case where b = 1, assume
further that the mean curvature function H does not change sign. Suppose that M™ is not totally
umbilical. If M™ is L-parabolic, then

sup®[? > a(n, a,b,1) > 0,
M

with equality if and only if M™ is isometric to a hyperbolic cylinder H'(r) x S"1(v/1 +12) of

radius v > 0.
We are also in a position to establish the following L-parabolicity criterium.

Proposition 4.1.13. Let M™ be a complete LW spacelike hypersurface immersed with parallel
normalized mean curvature vector field in an Finstein spacetime 8{‘“ satisfying curvature con-
dition , such that R = aH +b and b < R. In the case b =R, assume further that the mean
curvature function H does not change sign and that b < R. If sup,, |®|*> < +oo and, for some

reference point o € M",

T dr
/0 W = +OO, (4.61)

then M™ is L-parabolic. Here B, denotes the geodesic ball of radius r in M™ centered at the

oTigIn 0.

Proof. We consider on M™ the symmetric (0,2) tensor field 7 given by
T(X,Y) = (PX,Y),

or, equivalently,
T (Vu, ) = P(Vu),

for every u € C*(M), where * : T*M — TM denotes the musical isomorphism. Thus, from

we obtain
L(u) = div (T (Vu,-)").

On the other hand, as sup,, |®|?> < +o0, from equation (4.53]), we have sup,; H < +oc. So,

we can define a positive continuous function &, on [0, +00), by

E(r)=2nsupH + (n — 1)a. (4.62)
0B,
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Thus, from (4.62]) we have

&4(r)=2nsupH + (n—1)a < 2nsup H + (n — 1)a < +o0. (4.63)
0B, M

Hence, from (4.61]) and (4.63)) we get

teo dr B
/o &+ (r)vol(9B,) -

Therefore, we can apply |75, Theorem 2.6] to conclude the proof. O

4.2 Rigidity results for closed LW hypersurfaces in an

Einstein manifold £"*!

Our purpose here is to study the umbilicity of LW hypersurfaces immersed in an Einstein
manifold satisfying standard curvature constraints which, in particular, are verified by a Rie-
mannian space with constant sectional curvature (see Remark [4.2.1]). Our approach is based on

the maximum principles established in [8}|9)].

4.2.1 Preliminaries

Along this section, we will consider an n-dimensional, orientable and connected hypersur-
face M™ immersed into a Riemannian manifold 7", We choose a local orthonormal frame
(e1,-++ ,€py1)in M with dual coframe (w1, ... ,wny1) such that, at each point of M™ eq, ... e,

are tangent to M™ and e, is normal to M™. So, we will use the following convention of indices
1<ABC,...<n+1 and 1<14,j,k,...<n.

In this setting, Rapcp, Rep and R denote respectively the Riemannian curvature tensor,

the Ricei tensor and the scalar curvature of WH. We have
RCD = ZRBCDB and R= ZRAA-
B A
Furthermore, restricting all these tensors to M", since w, 11 =0 on M", we get
- Z Wing1)i A wi = dwpyq = 0.
i

Thus, from Cartan’s Lemma we obtain

w(n—i—l)i = Z hijwj and hij = h” (464)

J
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This gives the second fundamental form of M", A = Zhijwiwjenﬂ, and its squared length
1,J

1
|A]? = Z hi;. Beyond that, the mean curvature H of M™ is defined by H = — Z hi;.
J 7
As it is well-known, the Gauss equation is given by

Rijii = Rijiy + (hikhji — hihjk) (4.65)

where R, are the components of the curvature tensor of M"™. Moreover, the first covariant

derivatives h;j of h;; satisfy
D hijwr = dhij — Y hiwrg — > hjgwi. (4.66)
k k k
By exterior differentiation of we obtain the Codazzi equation
hijk = hirj = —Rni1ijn-
The second covariant derivatives h;ji; of h;; are given by
Z hijklwl = dhijk - Z hljkwli - Z hilkwlj - Z hijzwm-
! l l l
Taking the exterior derivative in we obtain the following Ricci formula
hijki — hijix = Z P R il + Z Dy Rkl -

From (4.65)), the Ricci curvature R;; and the normalized scalar curvature R of M™ are given,
respectively, by

Rij =Y Rujx+nHhy— > hihy (4.67)
K K

and

Jr— > Ry (4.68)

n—1

Hence, from (4.67) and (4.68)), we get the following relation

AP = n’H? + n(n— )R =Y _ Rijy;. (4.69)
b5J

Returning to the context of a hypersurface immersed in a Riemannian manifold Mnﬂ, we will
assume the existence constants ¢; and ¢y such that the sectional curvature K of WH satisfies

the following two constraints

K(u,n) = % (4.70)
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for any tangent vector v € TM and normal vector n € TM*; and

K(u,v) > ¢, (4.71)

for any tangent vectors u,v € T'M.

Remark 4.2.1. We note that, when the ambient Riemannian manifold M has constant
sectional curvature c¢, it satisfies curvature constraints and for any hypersurface
M"™ immersed in MHH(C) with < = ¢y = ¢. But, we can also find examples of Einstein
manifolds which do not have constant sectional curvature. Indeed, inspired by [65, Example
1.1], the product space R x M", where M™ is a Ricci flat Riemannian manifold (which is not
flat; for instance, the Schwarszchild space), is an Einstein manifold. Moreover, supposing that
the sectional curvature Kj; of M™ is such that K (u,v) > ¢y for any u,v € TM and some
constant ¢y we can verify that the curvature constraint is satisfied. Besides, we see that
curvature constraint is verified for ¢; = 0.

We remember that a hypersurface is linear Weingarten (LW) when its mean and normalized

scalar curvatures are linearly related, that is, when they satisfy the following linear relation
R=aH +, (4.72)

for constants a,b € R. We observe that when a = 0, (4.72) reduces to R constant.
For a LW hypersurface 3" satisfying (4.72)) we introduce the second-order linear differential
operator L : C*(X) — C*(X) defined by

n—1

L=L-—

al\, (4.73)

where A is the Laplacian operator on X" and L : C*(X) — C*°(X) denotes the Cheng-Yau
operator, which is given by
Lu = tr(P o Hess (u)), (4.74)

for every u € C*(X), where Hess is the self-adjoint linear tensor metrically equivalent to the
Hessian of v and P : X(X) — X(X) denotes the first Newton transformation of 3" which is given
by P=nHI — A. So, from (4.73) and (4.74)), we have that

Lu = tr(P o Hess (u)),

with

P= <nH—n;1a)]—A. (4.75)

Thus, by using the standard notation (,) for the (induced) metric of ¥", we get

Lu= Z(P(VeiVu),eﬁ,

7

60



where {e1,--- ,e,} is a (local) orthonormal frame on ¥". Consequently, we obtain

div(P(Vu)) = Z((VeiP)(Vu),(z)—i—Z(P(VeiVu),eﬁ (4.76)

= (divP,Vu) + Lu.

Let us assume that M is an Einstein manifold, so that there exists a constant A satisfying

Ric = A(,), where Ric denotes the Ricci tensor of M. Thus, from |7, Lemma 3.1]

(divP, Vu) = > (R(N, e;)e;, Vu) = —Ric(N, Vu) = =A(N, Vu) =0,

%

where N stands for the Gauss mapping of ™. Hence, from equation (4.76)), we conclude that
Lu = div(P(Vu)). (4.77)

Thus, from (4.73)) and (4.77), we can verify that £ can be rewritten in the following divergence

form

Lu = div(P(Vu)). (4.78)

We can state the versions of Lemmas [4.2.2| and 4.2.3| for the context that we are working

supposing that the hypersurface is immersed in an Einstein manifold £"! (see [12, Lemma 3.2,
Lemma 3.4]).

Lemma 4.2.2. Let M"™ be a complete LW spacelike hypersurface immersed in an FEinstein
manifold E"Y satisfying curvature conditions ([4.70) and (4.71)), such that R = aH + b with

(n —1)a* +4n(b—R) > 0. (4.79)
Then,
VAP => h2y > n?|VHP. (4.80)
1,5,k

Moreover, if the inequality (4.79)) is strict and equality occurs in (4.80), then H is constant on
M™.

Lemma 4.2.3. Let M™ be a LW spacelike hypersurface immersed in an Einstein manifold £
satisfying curvature condition , such that R = aH +b. Let n_ and py be, respectively, the
minimum and the mazimum of the eigenvalues of the operator P defined in at every point
pe M™.

If b > R, then the operator L defined in is elliptic, with

p— >0 and py <2nH + (n—1)a.

In the case where b = R, assume further that the mean curvature function H does not change
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sign and b > R. Then the operator L is semi-elliptic, with
pu_ >0 and py <2nH + (n—1)a,

unless M™ is totally geodesic. Moreover, in the case where b > R on M™, the above inequalities

are strict and the operator L is elliptic.

In what follows, we will also work with the following symmetric tensor

b = Z éDUwz & Wy,
,J
where ®;; = h;; — HJ;j. Let |CI>|2 = Z @?j be the square of the length of ®, we can check that
4,J

® is traceless and
|®> = |A]> — nH>. (4.81)

Moreover, it holds for an Einstein manifold, from equations (4.69) and (4.81)), the following

algebraic relation :

D> = |A]> —nH? =n(n —1)H?* —n(n — 1)aH —n(n —1)(b — R), (4.82)

where ﬁ = n(nl—l) Zz,] Rz]l]

4.2.2 Complete LW hypersurfaces immersed in £"*! satisfying stan-

dard curvature constraints

Now, we are in position to use the modified Cheng-Yau’s operator £ jointly with the lemmas
quoted in the previous section to establish our umbilicity results concerning LW hypersurfaces

M™ immersed in an Einstein manifold £7*!.

Theorem 4.2.4. Let M™ be a complete LW hypersurface immersed in an Einstein manifold
E™L satisfying curvature constraints and with n > 3, such that R = aH + b with
b>TR. Suppose that (H — %) > B on M", for some positive constant [3, and that R > R — %c
forc>0 and R >R — c for c < 0. Assume in addition that |V®| is bounded and sup,, |®| <
v < &g, for some constant v and x, defined in . If M™ has polynomial volume growth and
i%f(QR(fy)) > 0, then M™ is a totally umbilical hypersurface.

Proof. Let us see that if we take the smooth vector field X = P(V|®|?) and the smooth function
f = |®[% it will fulfill the required conditions to apply Lemma . Indeed, by hypothe-
sis we have that |®| is bounded on ¥" and, by equation ([£.82)), |4 is also bounded on M".
Consequently, from definition (4.75)), we get

[ X] = [P(V|2])] < [PIIVI| < k|VIQ[,
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for some positive constant k. Besides that, as we are supposing the boundedness of |®| and of

V|, Kato’s inequality guarantees that
| X| < k|V|®]?| = 2k|®||V|®|| < 2k|®||[VP| < C < 400, (4.83)

for some positive constant C'.
Also the condition

(Vf,X) = (V[o[", P(V|2[*)) > 0 (4.84)

is verified because Lemma m gives that P is positive semi-definite for b > R.
Applying £ in (4.82)), we get that

1

oy _ 1 2y @
mﬁ(!@) = SLH") = SL(nH)

— HL(nH)+n(PVH,VH) — gﬁ(nH)

> (H— g)ﬁ(nH). (4.85)

On the other hand, since (£"*1,g) is an Einstein manifold, the components of its Ricci tensor
satisfy Rop = AGop, for some constant A € R. Moreover, we can consider a local orthonormal
frame {ej,...,e,} on X" such that h;; = X\;0;;. So, proceeding as in [65], from the differential
Bianchi identity and the fact that g 5.0 =0 we get

Z Aiﬁ(n—kl)iik;k = - Z /\ zkzk’ (n+1) + Rk (n+1)ik; z)
ik
= — Z /\ Rii.tnt1) R(n+1)i;i) (4.86)

- Z Ai ()@M?("‘H) - )\g(n-i-l)i;i) =0

and
Z )\iE(nJrl)kik;i = Z )\iﬁ(nJrl)i;i = Z AiAG (n41)ii = 0s (4.87)
where R;jx.m are the covariant derivatives of R;j; on €L, Consequently, from (4.86)) and (4.87)
we obtain
> (Rinrvigar + Risnyinisg) hij = 0. (4.88)
irjok
On the other hand, let us choose a (local) orthonormal frame {ey,...,e,} on M" such that

hij = Xid;j. Since R = aH + b, from [12, Equation (2.10)] jointly with (4.88) and the definition
of L, we get

= Y h—n’|VHP + nHZ AP — A (4.89)
1,5,k )
+2Rn+1 meni(MHN = JAP) + ) (N = \)*Rijis.

%,J
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Moreover, we have ®; ; = 1;\;; and, with straightforward computation, we verify that

Zui:o, Zu3:|<1>|2 and Zuf:Z)\?—SH@F—nH?’. (4.90)

Besides that, from curvature constraints (4.70)) and (4.71), we get

ZE(nJrl)l(nJrl)l(nH)\l — |A|2) = cl(nH2 — |A|2) = —Cl|(I>|2 (491)
and
Z()\Z — /\j)ZRijij Z Co Z(/\Z — )\j)Z (492)
i3 i3

= 2ncy(|A]* — nH?) = 2ncy| .

Since ¢ = 2¢c; — %, from the Gauss equation jointly with (4.89)), (4.90), (4.91) and (4.92), we

obtain

L(nH) = VAP = n?|VHP + nH Y i} + [®*(—|®” + nH? + ne). (4.93)

Thereafter, as Lemma is true as we are supposing b > R, we can use Lemma for
n > 3 to get from (4.93)) that

-2

L(nH) > |®]* | —|®* - Mmcm +nH?*+nc | . (4.94)

n(n —1)

Furthermore, from (4.17)) we get
H = — 1 jop 4 (R-T) (4.95)
n(n—1) ' ‘
Thus, from (4.94)) and (4.95) we achieve in
1

L(nH) > m|@|2QR(|¢|)a (4.96)

where Qg is defined in (3.15). Hence, using (4.85) jointly with (4.96)), from (4.78) we conclude

that
divX = div(P(V|®[?)) = L£(|D]?) > 2 (H - %) Qr(|®])| D (4.97)

Since we have (H — %) > [ > 0 by hypothesis and from the behavior of Qg(z) for 0 < |®| <
sup,, |®| <y < x%, we have that

Qr(|®]) > Qr(y) > i%f(QR(’Y)) > 0. (4.98)
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Then, from (4.97) and (4.98)) we obtain
dWXZQ(H—%)Qﬂ@M@FZa@P (4.99)

and divX > af for a =20 i%f(QR(fy)) > 0.

If M™ is a noncompact hypersurface with polynomial volume growth, we are able to apply
Lemma to obtain |[®*> < 0 on M™. Then, |®| = 0, which means that M™ is a totally
umbilical hypersurface.

If M™ is a compact hypersurface, we can integrate both sides of and use the Divergence

Theorem to get that
/\@Rﬂd:o
M

Therefore, we have |®| = 0 and hence, M"™ must also be a totally umbilical hypersurface. O

Revisiting the proof of Theorem we observe that if n = 2, then >, u? = 0. Conse-
quently, from (4.93) we get

L(2H) > |®|* (—|®|* + 2H* + 2¢)

and (4.94) is still true in this case. Hence, we also have the following umbilicity result.

Theorem 4.2.5. Let M? be a complete LW surface immersed into an FEinstein manifold &3
satisfying curvature constraints and , such that R = aH + b with b > R. Suppose
that (H — %) > B on M?, for some positive constant (3, that infy; R > 0 and that R > R — c.
Assume in addition that |®| and |V®| are bounded. If M? has polynomial volume growth, then

M? is a totally umbilical surface.

Noting that when R > 0 is constant, the hypothesis i%f (Qr(7y)) > 0is automatically satisfied,
from Theorems [4.2.4] and [£.2.5| we obtain, respectively, the following consequences:

Corollary 4.2.6. Let M™ be a complete hypersurface immersed in an Einstein manifold £
satisfying curvature constraints and with n > 3 and constant normalized scalar
curvature R > R for ¢ > 0 and R > R — ¢ for ¢ < 0. Suppose that H > B on M", for
some positive constant [ and assume in addition that |V®| is bounded and sup,,|P| < xF,
for x3, defined in . If M™ has polynomial volume growth, then M™ is a totally umbilical

hypersurface.

Corollary 4.2.7. Let M? be a complete surface immersed into an Einstein manifold £ satisfying
curvature constraints and , with constant normalized scalar curvature R > R for
c>0and R >R —c forc <0. Suppose that H > 3 on M?, for some positive constant f3.
Assume in addition that |®| and |V®| are bounded. If M? has polynomial volume growth, then

M? is a totally umbilical surface.

In what follows we will apply Lemma to get further umbilicity results concerning com-
plete noncompact LW hypersurface in an Einstein manifold. So, we state and prove the following

theorem.
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Theorem 4.2.8. Let M™ be a complete noncompact LW hypersurface immersed in an Einstein
manifold E" satisfying curvature constraints (£.70) and (4.71) withn > 3, such that R = aH+b
with b > R. Suppose that R > R — %c forc>0and R >R —c for c <0. Assume in addition
that |®| < a7, for a7y defined in (3.16). If |®| converges to zero at infinity, then M™ is a totally

umbilical hypersurface.

Proof. Let us consider the smooth vector field X = P(V|®|?) and the smooth function f = |®|?
and let us suppose that M" is not a umbilical hypersurface. So, f is non-identically vanishing

function which converges to zero at infinity. Moreover, we have that
(Vf,X) = (V|2], P(V|2[*)) > 0.

We claim that divX > 0. Indeed, we already know that

STy EIO) > (= DEMH) and L) > —10FQu(o). (@100

where Qg is the function given by (3.15)). Thus, since (H — %) > 0, from (4.100)) jointly with
the behavior of Qgr(z) for 0 < |®| < x7%,, we conclude that

divX = div(P(V|®[?)) = L£(|D]?) > 2 (H - g) Qr(|®])|®)* > 0.
Hence, we can apply Lemma to get
(V. X) = (P(V|2]*),V|D]*) = 0.

Consequently, since Lemma m gives that P is positive definite, we have that V|®|? = 0.
Thus, f = |®|? is constant. But, since f converges to zero at infinity, it must be identically
zero, leading us to a contradiction. Therefore, M™ is a complete noncompact totally umbilical

hypersurface of £"11, O

In the case n = 2, reasoning as in the proof of Theorem we also obtain the following

result.

Theorem 4.2.9. Let M? be a complete noncompact LW surface immersed into an Einstein

manifold E3 satisfying curvature constraints (4.70) and (4.71), such that R = aH + b with
b>TR. Suppose that R >R —c forc >0 and R > R — ¢ for ¢ < 0. If |®| converges to zero at

infinity, then M? is a totally umbilical surface.

Taking into account the setup described in the previous section, we obtain the following

rigidity result:

Theorem 4.2.10. Let M™ be a complete LW hypersurface immersed in an Einstein manifold
E™Y satisfying curvature constraints ([4.70) and (4.71) with R = aH + b such that a > 0 and
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b > max{R — co, R}. If its total umbilicity tensor ® satisfies

(@) > =2 g (4.101)
np(n — p)

for some 1 <p < %ﬁ, then

(i) either sup |®| =0 and M™ is a totally umbilical hypersurface,

(ii) or

sup |(I>| 2 a(a,b,n,p,ﬁ, CO) > 07
M

where afa,b,n,p, R, cy) is a positive constant depending only on a, b, n, p, R and c.
Moreover, if the equality sup,, |®| = a(a,b,p,n, R, co) holds and this supremum is attained
at some point of M™, then M™ is an isoparametric hypersurface with two distinct principal

curvatures of multiplicities p and n — p.

Proof. Initially we must obtain a suitable lower bound for the operator £ acting on the squared
norm of the total umbilicity tensor ® of M™. Since R is constant, we get from (4.82)) that

1

oy _ 1 2y @
2 DI = L) — 5L H)

— HL(nH)+n(PVH,VH) — gﬁ(nH). (4.102)

By using Lemma [4.2.3] we have that the operator P is positive definite. In particular, from

(4.102) we obtain
1

2(n—1)

Without loss of generality we can choose the orientation of M™ such that H > 0, occurring

L) > (H - %)E(nH). (4.103)

the strict inequality because of b > R. From this, we claim that H — 5 > 0. Indeed, it is enough
to see that we can rewrite equation (4.82)) as

nH(nH — (n —1)a) = |A> + n(n —1)(b —R) > 0. (4.104)

So, formula (4.89) and inequality (4.103)) jointly with Lemma m give

ﬁaw) > (H - 5)(VAP — w2 VHP + nHtx(4) - |A]")

a [ —
+(H = 3) (Z Rinsvyinrni(nHX N — [AP) + ) (A — )\j)sz‘jm)
i i,

v

(H - g)(nHtr(AS) —1A]Y (4.105)

. B _
+HH = 3) (Z Rinvitnni(nHX = [AP) + 3 (N — Aj)QRijij) |

/[:7j
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The curvatures constraint (4.70) and (4.71)) yield

> Ristyimsni(nHX; — |AP) = —¢| @ (4.106)

and
Z()\,L - )\j)QEiﬂj Z 2?102’(1)’2. (4107)

i,
Thus, plugging (4.106)) and (4.107)) into (4.105]), we obtain

1
2(n—1)

On the other hand, it is not difficult to see that

L(|®%) > (H — %)(nHtr(A3) — |A]* + nco| @[2). (4.108)

tr(A%) = tr(®?) + 3H|®|> + nH>. (4.109)

Putting (4.109) into (4.108]) we find

1
2(n—1)

Now, taking into account the Okumura type inequality (4.101)), from (4.110)) we get

E(‘(I)‘Z) > (H — g)(—|@’4 +nHtr(Q)3) +n(H2 +co)‘q>‘2). (4.110)
; 2 _E 2| 2 TL(?’L—Qp) n 9 .
2(n_1)5<|<1>| ) > (H = 5)l2] ( |D| —np(n_p)H|<I>|+ (H + 0)). (4.111)

Since H — § > 0, we observe that equation (4.82)) implies that the mean curvature can be

written as

2
H-2= L 1bv-R). (4.112)

5
————— /PP +n(n—1
Thus, substituting (4.112)) into (4.111]) we get

1 2 (n—1) 5 n(n—2p) 1 2 a_2 S LG

247! )Zﬁ@l { o np(n — p) (\/m\/@’ T =D H6=R)+ 2)
[ +n (\/7\/I¢I2+nn—1)(az2+b—ﬁ)+g) + ¢ }
'\/|‘D|2+n(n—1)(az2+b—ﬁ). (4.113)
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After some straightforward computations, inequality (4.113]) gives us the next one

2 1 2 s n(n—1)(n—2pla (n —1)(n —2p)
—L(|® — |} — (n — 1)|DP|"— d| — d| -
(12%) = rn_l)l I{ (n—1)[®| N D] \/(n_l)p(n_p)| |

B2+ n(n — 1)(%2 +b—TR) +n(n— 1)(“Z +b—TR) + D (4.114)

+ay/n(n — 1)\/|CI>|2 +n(n — 1)(%2 +b—TR)+n(n— 1)% +n(n — 1)00}.

So, inequality (4.114)) lead us to obtain the following estimate

1 a? _
Le(op) > —|¢|2Qa,b,n,p,n,co<|<1>|>¢ B2+ nn—1)(L +b-T),  (4115)
n(n—1) 4
where the function Q,;,, , %=, 1S given by
n(n—1)(n —2p)a
mo(r) = —(n—2)2*— T
Qa,b,n,p,R,Co( ) ( ) 9 p(n — p)

71— 2 _

—| (n—2p)——— i x—a\/nn—l \/x2—i—nn—1)(a—+b—7€)
p(n—p) 4

a2
+n(n—1)(5+b—ﬁ+co). (4.116)

Now, we are going to finish the proof by applying the Omori-Yau’s maximum principle to the
operator £ acting on the function |®|>. We note that if sup,, |®| = +oo, then the claim (ii) of
Theorem [£.2.10| trivially holds and there is nothing to prove. Otherwise, if sup,, |®| < +oo, then
the Omori-Yau maximum principle holds on M™ for the operator £ and there exists a sequence
of points {p;} in M™ such that

. 1
lim [®](p;) = sup|®] and L[ (py) < =

Hence, estimate (4.115)) implies that

L(2P)(p,) > ﬁ\@ij)@a,b,n,p,ﬂ,%<r<1>r<pj>>J B (py) + nin ~ (% +5- ),

and, taking the limit as j — +o00, we infer

2 2
a —
(509101} Qi |<1>|>\/ (sup [@])2 + n(n — (% +b-R) <0,
M M M

It follows that either sup,,|®| = 0, which means that |®#| = 0 and the hypersurface is
totally umbilical, or sup,, |®| > 0 and then Q,;,, 7., (Supy [®]) < 0. In the latter case, since
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b > max{R — cp, R}, we have that

[ 42 . 2 _
Qa,b,n,p,ﬁ,co(()) - n(n - 1)@ aZ + b— R + n(n - 1)(% + b— R + C()) > 0.

Moreover, since 1 < p < "72*/5, the function @

Hence, we guarantee the existence of a unique positive real number a(a,b,n,p, R,cy) > 0,

abmpR.c () 18 strictly decreasing for z > 0.

depending only on a,b,n,p, R and ¢y, such that QapnpR.ella, b,n,p,R,cy)) = 0. Therefore,
we must have

sSup |(D| > a(avbvn7paﬁv CO) > 07
M

concluding the proof of the first part of Theorem [4.2.10]
Finally, let us assume that equality sup,, |®| = a(a,b,n,p, R, cy) holds. In particular, we get

Qa,b,n,p,ﬁ,codq)b 2 0
on M™ and then ({.115) assures that |®|* is a L-subharmonic function on M", that is,
L(|®f*)>0 on M" (4.117)

Furthermore, since b > R, Lemma asserts that the operator L is elliptic. Thus, since M"
is complete and taking into account that we are assuming the existence of a point p € M" such
that |®(p)| = a(a,b,n,p, R, cy) = sup,, |®|, from [@{.117) we can apply Hopf’s strong maximum
principle for the elliptic operator £ acting on the function |®|? to conclude that it must be
constant, that is, |®| = a(a, b,n,p, R, o). Hence, it holds the equality in (4.115)), namely,

_
n(n —1)

Consequently, all the inequalities along the proof of (4.115)) must be, in fact, equalities. In par-

ticular, we obtain that equation (4.103) must be an equality, which jointly with the positiveness

1 a? —
§£(|‘1>|2) =0= |‘1>|2Qa,b,n,p,7z,co(|‘1’|)\/|‘1>|2 +n(n — 1)(Z +b—"TR).

of the operator P imply that the mean curvature H is constant. Moreover, it also occurs equality

in (4.105)), that is,
VA = n?|VH|* = 0.

Therefore, the principal curvatures of M™ must be constant and M" is an isoparametric hyper-
surface. Besides, equation (4.111)) is also an equality, which implies by Lemmathat M™ has
exactly two distinct constant principal curvatures, with multiplicities p and n — p. This finishes
the proof. n

Remark 4.2.11. When M""' = Q7*! is a Riemannian space form of constant sectional curva-
ture ¢, the constants R and ¢y in Theorem [4.2.10| just agree with ¢. For this reason, Theorem
4.2.10| can be regarded as a natural generalization of [53, Theorem 1].
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Chapter 5

LW submanifolds in a semi-Riemannian
space form N?;er (¢) with second

fundamental form locally timelike

We are going to present the results of [27].

5.1 Preliminaries

Let M™ be an n-dimensional complete spacelike submanifold immersed in the (n + p)-
dimensional semi-Riemannian space form N;*(c) of index 1 < ¢ < p and constant curvature c.
We choose a local orthonormal frame {ey, . . ., €,1,} in NJ*P(c), with dual coframe {w, ..., wnip},
such that, at each point of M™, eq, ..., e, are tangent to M™. We will use the following convention

for the indices:
1<ABC,...<n+p, 1<ijk,...<n and n+1<a,08,7,...<n+p.

In this setting, the metric of N?*P(c) is defined by ds* = 3 jeqw?, where e = 1,1 < A <
n+p—qandegs=—-1,n+p—qg+1<A<n+p. Denoting by {wap} the connection forms of

N?*7(c), we have that the structure equations of N{*?(c) are given by:

dwg = — ZEB wap ANwp, €pwap + €awpa =0, (5.1)
B
1
dwap = — EC: €cwac NWwep + 3 Cz[:) ecepKapcp we Awp, (5.2)

where Kapep = ceaep(0apdpc — 6acdBp).

Restricting all the tensors to M", we have

we =0, n+l<an+np.
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Thus, the Riemannian metric of M™ is written as ds* = Y, w?. Since Y, wai A w; = dw, = 0,

by Cartan’s Lemma we can write
Z hew;,  he = hS,.

This gives the second fundamental form of M™, A = ¢, ZM y hs: Wi ® wieq. Furthermore, we
define the mean curvature vector field h and the mean curvature function H of M™, respectively,

by

2
:%Z<th§>ea and H:|h|:% Z(Zha)

From ((5.1)) and (5.2)), we get the structure equations of M"

1
dwl- = — Zwij A Wi, Wiy + Wj; = O, and dwij = — Zwik A Wk — 5 Z Rijklwk AN Wi, (53)
k k,l

J

where R, ;i are the components of the curvature tensor of M™. Therefore, from ([5.3) we obtain

the Gauss equation
Rijir = c(0udjr — 0ubj1) + > ealhhSy — hGS).

The components of the Ricci curvature R;; and the normalized scalar curvature R of M™ are

given, respectively, by

Rij=(n—1)cd;+ Y € { <Z hgk> he = hg;chgj} (5.4)
o k ak
and
R=n(n—1)c+) e (Zh;?;.) ZZea he,)?. (5.5)
From and we obtain
A =n*H? + n(n—1)(R —¢), (5.6)

where |A[? = 37 . -ea(hg;)? is the square of the length of the second fundamental form A of M™.

We also have the structure equations of the normal bundle of M"

1
dwy, = — Zwag ANwg, Wap+wge =0 and dwyp = — wa A wyg — 5 Z Rogriwr N\ wi,
B ¥ k,l
where R,z;; satisfy Ricci equation
Rasij = > (h;?;hfj . h;‘lhﬁ) . (5.7)
!
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Furthermore, we will consider the symmetric tensor

b = Z @%wi ® Wjeq,

i,J,a2n+p—q+1

where @% = hf“j — H“);;. We have that

ntp—q+l _ pntp—gtl a _ pa
for @ #n+p—q+1. Since [®|* = 37, (®f)? is the square of the length of @, it is not difficult
to verify that ® is traceless and, using (/5.6]),

D> = |A]> = nH? =n(n — 1)H* +n(n — 1)(R — ¢). (5.8)

Besides, we observe that |®| vanishes identically on M™ if and only if M™ is a totally umbilical
submanifold of N}*?(c). For this reason, ® is usually called the total umbilicity tensor of M™.
Throughout this chapter, we will assume that the mean curvature vector field A is parallel
as a section of the normal bundle of M", which means that V+h = 0, where V* is the normal
connection of M"™. We will also consider that the second fundamental form is locally timelike.

Then, we have
n-+p

AP = Y Y gy

a=n+p—q+1 i,j
and h is timelike. So, considering H > 0, we can assume that the orthonormal frame {eq, ..., en4p}

in NI""7(¢) is such that e, q41 = 7-. Consequently, we get

1 1
H" .= Etr(h”“’*“l) =H and H®":= Etr(ha) =0, a#n+p—q+1,

where h® denotes the matrix (hg}).
We recall that a spacelike submanifold M™ is said to be linear Weingarten (LW) when its

mean curvature H and normalized scalar curvature R satisfy the following linear relation
R =aH +0, (5.9)

for some constants a,b € R. We observe that when a = 0, (5.9)) reduces to R constant. In this
context, equation (5.8]) yields to

|®> = |A]> = nH? =n(n — 1)H* + n(n — 1)aH +n(n — 1)(b—c). (5.10)

For a LW spacelike submanifold M™ satisfying (5.9)), we introduce the second-order linear
differential operator £ : C*°(M™) — C*(M") defined by

~1
L=L+"

al, (5.11)
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where A is the Laplacian operator on M™ and L : C*°(M) — C*°(M™) denotes the Cheng-Yau
operator, which is given by
Lu = tr(P o Hess (u)), (5.12)

for every u € C°°(M™). Here, Hess stands for the self-adjoint linear tensor metrically equivalent
to the Hessian of u and P : X(M"™) — X(M™) denotes the first Newton transformation of M"
which is given by P =nHI — A. So, from ({5.11)) and (5.12)), we have that

Lu = tr(P o Hess (u)),

with

P = (nH—i—n;la)]—A. (5.13)

We can verify that £ can be rewritten as

Lu = div(P(Vu)). (5.14)

5.2 Rigidity results for complete LW spacelike submani-
fold immersed with parallel normalized mean curva-

ture vector field in N|*(c)

In our next result, we revisit [89, Theorem 2] replacing the assumption that the mean curva-
ture function attains a global maximum by hypothesis (5.15]) that guarantees the £-parabolicity

of a complete LW spacelike submanifold.

Theorem 5.2.1. Let M™ be a complete LW spacelike submanifold immersed with parallel nor-
malized mean curvature vector field in NZ“’(C), such that R = aH + b with b < c¢. Suppose
that the second fundamental form of M™ is locally timelike and that it has nonnegative sectional

curvature. If H is bounded and, for some reference point o € M™ and § > 0,

/+Oo _@ (5.15)
s vol(0B) '

where By is the geodesic ball of radius t in M™ centered at the reference point o, then M™ is either
totally umbilical or a product My X My X - -+ X My, where the factors M;, mutually perpendicular

along their intersections, are totally umbilical submanifolds of NZ“”(C).

Proof. We can verify from Ricci equation (5.7)) that

1
> hhRasie = 5 ) N(h*h = hPh®) 20, (5.16)
o,B,1,5,k o,

since N(A) = tr(AA") for all matrix A = (a;;) and (AA"),; = >, airay; gives us N(A) =
tr(AAY) = sz iRy, = sz (a};z‘f > 0.
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On the other hand, for each fixed «, considering a local orthonormal frame {e;} such that

hg: = A{'di5, we have

1
SRR R+ Y W& Ry > §Z(Ag — X0 Ryji. (5.17)
1,7,k,m i,5,k,m 1,5

Moreover, since we are also supposing that b < ¢, from [86, Lemma 3.3] we have
VAP = (hgy)? = n’|VH[. (5.18)
a,i,jg,k

Hence, taking into account that the sectional curvature of M™ is nonnegative, as we are

assuming that the normalized mean curvature vector field is parallel, from [89, Equation 30],

(5.16), (©.17) and (5.18), we obtain

LnH) = > (h)* =0’ [VHP + > (hhg, Ruijr + o Rk (5.19)

a7i7j7k Z’7j7k7m

1 e e
+§ZN(h W — RPhe)

—Z (A = AR5 > 0.

Y]

Now, we consider on M™ the symmetric (0, 2)-tensor field £ given by
E(X,Y) = (PX,Y),
for all X,Y € T'M or, equivalently,

(V) =P(V),

where § : T*M — T'M denotes the musical isomorphism, for all smooth function f : M™ — R,
and P is defined in ((5.13)), in which P is positive semi-definite since b < ¢ and, from ([5.14)), is true
Lf = div (S(Vf, )ﬁ) Taking a local orthonormal frame {e;} on M™ such that h?j“ = NG,

we get
Z hn+1 < Z _ |A|2
i3

a,i,j

and thereafter from ([5.10)),
n*H? > ()\”“) —n(n—1)aH,

forall i = 1,---  n. Furthermore, whereas

—1\?
()\?+1)2 <n’H?*+n(n—1)aH < (nH + 2 5 )

I0)



and the normalized mean curvature vector field is parallel on M=, we have

—nH—n_lag)\?+1§nH+n_1a, i=1,---,n.
So, for all i € {1,--- ,n}, we obtain
0<3%; <2nH + (n—1)a,
n—1

where Y, ;== nH + a— /\?“ are the eigenvalues of the operator P. Thus, we can define a

positive continuous function &, on [0, +00) by

£4(t) :==2nsup H + (n — 1)a.
0By

From the boundedness of H, it follows that
£.(t) <2nsupH + (n— 1)a < +o0.
M

Hence, we reach at the following estimate

400 dt -1 400 dt
/5 s+<t>vol<aBt>Z<2”S}$FH+<”_”@) / wl(9B,)

Thus, from (5.15)) we achieve in

ee dt B
/5 E4(t)vol(B;) e

and we are in position to apply [75, Theorem 2.6] to conclude that M™ is L-parabolic. Conse-
quently, since H is bounded, from (5.19) we get that H is constant. Therefore, H attain the
maximum on M"™ and we apply [89, Theorem 2] to finish the proof. ]

The next auxiliary lemma corresponds to [30, Proposition 2.1]. In what follows, L!(M™)

stands for the space of Lebesgue integrable functions on M™.

Lemma 5.2.2. Let X be a smooth vector field on a complete oriented Riemannian manifold
M", such that divX does not change sign on M™. If |X| € LY(M), then divX = 0.

Returning to the context of complete LW spacelike submanifolds of a semi-Riemannian space

form, we apply the previous lemma to obtain the following result.

Theorem 5.2.3. Let M™ be a complete LW spacelike submanifold immersed with parallel nor-
malized mean curvature vector field in NZJFP(C), such that R = aH + b with b < c. Suppose
that the second fundamental form of M™ is locally timelike and that it has nonnegative sectional
curvature. If H is bounded and |VH| € LY(M), then M™ is either totally umbilical or a product
My X My X - -+ X My, where the factors M;, mutually perpendicular along their intersections, are
totally umbilical submanifolds of N7 (c).
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Proof. Since H is bounded on M", from equation ([5.10]) A is also bounded and so the operator P
by (5.13). That is, there exists C; > 0 such that |P| < C;. Since we are assuming |V H| € L*(M),
we have

|P(VH)| <|P||IVH| < C,|VH| € L'(M). (5.20)

1
Following the same steps of Theorem |5.2.1] we can prove that 5 D e N(h®h? — hPhe) >0
and then, from equation (5.19) and from [86, Lemma 3.3], we obtain

LnH) = Y (h)? = n?[VH + Y (hehg, Roniji + b by Ronkji) (5.21)

a7i7j7k i7j7k7m

1 e} e}
+§§;N(h h — hPhe)

v

1
> (hgy)? = 0’| VH| + ) D (8 = ARy > 0.

a,i,5,k 0,

Thus, from (5.14)), (5.20]) and (5.21)), we can apply Lemma for X = P(VH) to conclude
that £L(nH) = 0 on M™. Consequently, the inequality in (5.21)) is, in fact, an equality and it
follows that

> (hgy)? = n’|VH|. (5.22)

a’/[:7j7k
Using again |86, Lemma 3.3|, we obtain that H is constant on M™. Thus, H attain the maximum

on M"™ and we can apply [89, Theorem 2] to conclude the proof. O

We close the Part I with the following rigidity result.

Theorem 5.2.4. Let M™ be a complete noncompact LW spacelike submanifold immersed with
parallel normalized mean curvature vector field in N;*P(c), such that R = aH + b with b < c.
Suppose that the second fundamental form of M™ is locally timelike and that it has nonnegative

sectional curvature. If |®| converges to zero at infinity, then M™ is a totally umbilical submanifold
of NI *P(c).

Proof. Let us suppose by contradiction that such a LW spacelike submanifold M™ is not totally
umbilical. We consider the smooth vector field X = P(V|®|?) and the smooth function f = |®|?.

So, f is a nonnegative, non-identically vanishing function which converges to zero at infinity.
Moreover, we have that (V f, X) > 0 and that

ﬁc(@m > (H + 5)L(nH). (5.23)

Hence, taking into account that (H + §) > 0 and using equations ({5.19)) and ([5.23), we reach

at
divX = div(P(V|®]?)) = L£(|®[?) > 2(n — 1) <H + g) L(nH) > 0.

Then, we are in position to apply Lemma and get that
(V£,X) = (P(V|2]*),V|D) = 0.
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Therefore, since the operator P is positive definite, we have that V|®| = 0. Thus, f = |P|
is constant. But f converges to zero at infinity, so it must be identically zero, leading us to a

contradiction since we are supposing that M" is not a totally umbilical submanifold. O
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Part 11

Sharp integral inequalities for closed

submanifolds
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Chapter 6

LW submanifolds immersed in the de

Sitter space

In this chapter, we extend the techniques of [5,/10] in order to establish the results of |46}55],
a sharp integral inequality for a closed (compact without boundary) spacelike submanifold M™
with constant scalar curvature immersed with parallel normalized mean curvature vector field
in the de Sitter space Sgﬂ’, and we use it to characterize totally umbilical round spheres S™(r)
of SPHt Sy

We begin stating that a complete spacelike submanifold immersed in SZ“’ with parallel
normalized mean curvature vector and constant scalar curvature 0 < R < 1 must be either
totally umbilical or it holds a sharp estimate for the norm of its total umbilicity tensor |®|?,
with equality if and only if the submanifold is isometric to a hyperbolic cylinder of the ambient

space.

Proposition 6.0.1 (Proposition 1 of [10]). Let M™ be a complete spacelike submanifold immersed
m Sg*” with parallel normalized mean curvature vector field and constant scalar curvature 0 <
R <1. Then

1. either sup,, |®]* = 0 and M" is a totally umbilical submanifold,

2. or
2
sup [®[° > a(n, p, R) > 0,
M

where a(n,p, R) is a positive constant depending only on (n,p, R).

Moreover, the equality sup,, |®|* = «a(n,p, R) holds and this supremum is attained at some
point of M™ if and only if p =1, n > 3 and M™ is isometric to a hyperbolic cylinder H(r) x
S V/1 +r2) of radius r > 0.

In order to prove the main result of this chapter, we present a version of Proposition in
the next lemma, a suitable lower estimate for the operator £ acting on the square of the norm

of the total umbilicity tensor of a spacelike submanifold (see |10, Proposition 1]).
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Lemma 6.0.2. Let M™ be a spacelike submanifold in S;L“’, with parallel normalized mean cur-

vature vector field and constant scalar curvature R < 1. Then

1

vn(n—1)

where the real function Qgran () is defined by

%E(I‘W) 2 [ Qrnp (12N VIR +n(n — 1)(1 - R),

Qrnp(r) = (n_p#x? —(n— Q)I\/.IQ +n(n—1)(1—R)+n(n—1)R. (6.1)

Once this is established, we ca obtain a sharp integral inequality involving the total umbilicity

tensor ® apply it to characterize totally umbilical round spheres. More precisely,

Theorem 6.0.3. Let M™ be a closed spacelike submanifold immersed in S;”rp with parallel nor-

malized mean curvature vector field and constant normalized scalar curvature R < 1. Then

[ 10 Qu,(ahar <o, (©:2)
M

for every real number q > 2, where the real function Qpgnp(z) is defined in (6.1). Moreover,
assuming in addition that 0 < R < 1, the equality holds in (6.2)) if, and only if, M™ is a totally

umbilical round sphere S"(r), with r = & > 1, immersed in S — Sp+P.

Proof. From Lemma |6.0.2| we have that

2z
n(n —1)

L(|2*) > [P Qrnp(|PN) VIR + n(n — 1)(1 - R). (6.3)

Now, let us take u = |®|%. So, (6.3 can be rewritten as follows

Llu) > %UQRW(@ Vatnm -1 =R). (6.4)

n(n —1)

Taking into account that u > 0, R < 1 and observing that when R = 1 (2.19) guarantees that
u > 0, from (6.4]) we get

q+2 n(n — ]_) u%

UTQR,n,p<\/a) < 2 \/u +n(n—1)(1 - R)

L(u), (6.5)

for every real number gq. As M" is closed, we can integrate both sides of (6.5]) in order to obtain

at2 n(n—1) us
/M 05 Quup(Va)dnt < VU /M et 69

But, from ([2.24]) we have

f(w)L(u) = div(f(u)P(Vu)) = f'(u)(P(Vu), Vu), (6.7)
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for every smooth function f € C'(R). Integrating both sides of (6.7) and using the Divergence

Theorem, we deduce that

/Mf(u)ll(u)dM: —/Mf’(u)(P(Vu),Vu)dM, (6.8)

for every smooth function f. In our case, for every real number ¢ > 2, we choose

B 14/2
Vit nn—1)(1-R)

Hence, assuming R < 1 and that R =1 only for ¢ > 0, we get

f(t)

for t > 0.

o (g =Dt £ n(n—1)(1 - R)gt™>
) = 2(t+n(n—1)(1— R))*? =0, (6.9)

for every real number ¢ > 2. Using and into , we can estimate

g2 \/ -1
/ u%QRyn,p(\/ﬂ)dM < —%/ f'(w)(P(Vu), VuydM <0, (6.10)
M M
since we know that the operator P is positive semi-definite. Therefore, we conclude
/ u'T Qpp(vV)dM < 0. (6.11)
M

This proves inequality (6.2)).
Furthermore, if the equality holds in (6.2)), from (6.10)) we get

[;fKuX¢%VuLYthN[:(l (6.12)

But, since ¢ > 2 and assuming that R < 1, from (6.9) we have

(¢ — Du?/? +n(n — 1)(1 — R)qu's

) = et — (1= R

(6.13)

Observe that f/'(u) > 0 with equality if and only if ¢ > 2 and u = 0. Consequently, taking into

account |10, Lemma 1], (6.12) and (6.13]) imply
(P(Vu), Vu) = 0. (6.14)

Thus, since P is positive definite, from we get that Vu = 0 on M™. Hence, the function
u = |®|? must be constant.

In the case that |®| = 0, we can reason as in the last part of the proof of Theorem 1.3 of [59)
to conclude that M™ must be a totally umbilical round sphere S™(r), with r = % > 1, immersed

in a totally geodesic de Sitter space SI! — Sgﬂ’ . Indeed, let N; be the sub-bundle spanned
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by {€nt2, "+ ,€nip}. Then, from our assumption V+e, ; = 0 it follows that N; is parallel in
the normal bundle. Besides, from and we get that [®@%]> = 7 (®f)* = 0 for
each n + 2 < a < n + p, which means M" is totally geodesic with respect to N;. Hence, from
[88, Theorem 1] we obtain the desired conclusion.

Finally, let us consider the case that |®| is a positive constant. As in the last part of the proof
of [5, Theorem 1.2], we have that |®| = ug is such that Qg ,(up) = 0 because of the equality in
. Consequently, we can apply Proposition obtaining that p = 1, n > 3 and that M"
should be isometric to a hyperbolic cylinder H'(r) x S"~(v/1 4 r2) of radius 7 > 0. Therefore,
since we are assuming that M™ is closed, we conclude that this second case cannot occur.

O

Proceeding with this picture, we can obtain the same result for linear Weingarten hypersur-

faces through a similar process, starting from the following lemma(see |11, Proposition 6]):

Lemma 6.0.4. Let M™ be a linear Weingarten spacelike hypersurface immersed in ST, n > 2,
such that R = aH + b with b < 1. In the case where b = 1, assume that the mean curvature

function H does not change sign and R > 1. Then,

P2 a?
[ 2y > _ 2 |
(19%) = 2(n = 1)|®] S0“1’(|<I>|)\/n(n— 1) A +1-b,

where the real function @qp(x) is given by

an(w) = 202 ¢ (na—mx) \/n(”r—2+a£—b+1 (6.15)

Therefore, involving the total umbilicity tensor ® of closed linear Weingarten spacelike hyper-
surfaces immersed in the de Sitter space S7™!, we can apply it to obtain our next characterization

result.

Theorem 6.0.5. Let M™ be a closed linear Weingarten spacelike hypersurface isometrically
immersed in the de Sitter space SI™, n > 2, such that R = aH + b with b < 1. In the case
where b = 1, suppose that a > 0. Then

[ 1o anenan <o (.16
M

for every real number q > 2, where the real function v, () is defined in .

Moreover, assuming in addition thatn > 3 and 0 <b < R < ”7_2, the equality holds in (6.16))
if, and only if, M™ is a totally umbilical round sphere S™(r) < St with r = % > 1.

Taking into account that when n =2, a > 0 and 0 < b < 1 we have that ¢, (z) > 0 for all
x > 0, and noting that R = K is the Gaussian curvature of M2, it is not difficult to verify that
from the integral inequality we get the following consequence.
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Corollary 6.0.6. Let M? be a closed linear Weingarten spacelike surface isometrically immersed
in the de Sitter space S?, such that R = aH +b.

(i) If 0 < b < 1 and a > 0, then M? is a totally umbilical round sphere S*(r) — S3, with

_ 1
T_E>]'

(i) If b=1 and a > 0, then M? is a totally geodesic unit round sphere S* — S3.
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Chapter 7
LW hypersurfaces in Einstein manifolds

In this chapter, we prove a sharp Simons type integral inequality for n-dimensional closed
linear Weingarten hypersurfaces immersed in an Einstein manifold £"! and we use it to charac-
terize totally umbilical hypersurfaces and isoparametric hypersurfaces with two distinct principal
curvatures, one which is simple, in such an ambient space. Our approach is based on a suitable
lower estimate of a Cheng-Yau modified operator acting on the square norm of the traceless
second fundamental form of such a submanifold. The results presented in this chapter make
part of [4547,/4854]

7.1 A sharp Simons type integral inequality for closed

LW hypersurfaces in an Einstein manifold £""!

In this first section, we will establish a sharp integral inequality concerning closed linear

Weingarten hypersurface when the ambient space is an Einstein manifold.

Theorem 7.1.1. Let M™ be a closed linear Weingarten hypersurface immersed in an Einstein
manifold E"' satisfying curvature conditions (&.3) and (4.4), with R = aH +b such that b > R.
In the case where b = R, suppose that a > 0. If its totally umbilical tensor ® satisfies (4.101)),

for some 1 <p < n—;/ﬁ) then

[ 101G (DM <0 (1)
for every q > 2, where the real function Q. 7., S defined in (4.116). Moreover, assuming
b >R, the equality holds in (7.1) if and only if

(i) either M™ is a totally umbilical hypersurface,
(ii) or
|q)|2 = a(a,b,n,p,ﬁ, CO) > 07

where a(a,b,n,p, R,co) is a positive constant depending only on a,b,n,p, R and cy, and

M™ s an isoparametric hypersurface with two distinct principal curvatures of multiplicities
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p and n — p.

Proof. Taking u = |®|?, we can rewrite inequality (4.115]) as follows

L(u) > ﬁuQa,bm,p,R,Co(ﬁ) \/4u +n(n—1)(4(b— ﬁ) + a?).

Since > 0 and a > 0 when b = R, we obtain

q
q+2 U2

UTQa,b,n,p,ﬁ,CO(\/a) S n(n - 1) —
Viu+n(n — 1A - R) + a?)

L(u),

for every real number ¢q. Besides that, M™ being closed guarantees us that we can integrate both

sides of the previous equation getting

q+2
/ u 2 Qa,b,n,p,ﬁ,co(\/a>dM < V n(n_ 1
M

But, from (4.27]) we deduce that

fw)L(u) = div(f ()P (Vu)) = f'(u)(P(Vu), Vu),

for every smooth function f € C'(R). So, integrating both sides and using the Divergence

/M F(u)L(u / F(0)(P(Vu), Vu)dM

for every smooth function f. In our case, we choose

Theorem, we reach at

o

t

, for t>0. (7.3)
\/475 +n(n—1)(4(b —R) + a?)

ft) =

With this choice, we achieve in

(¢ — 145 +n(n — 1)(A0b —R) + a®)gt"z

>0, (7.4)
2(4t + n(n — 1)(4(b — R) + a2))

f'(t) =

(NI

for every real number ¢ > 2 and ¢t > 0. Putting ((7.3) and (| into . we obtain

/Muq;QQaybynpR WV AM < —\/n(n — 1) / Fu)(P(Vu), VuydM <0,  (7.5)

since P is positive semi-defined by Lemma 4.2.3] Therefore,

q+2
/j\/lu 2 Qa,b,n,p,ﬁ,co(\/a)dM S 07 (76)
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proving inequality ([7.1)).
For the second part of Theorem [7.1.1 assuming that the equality holds in ([7.1)), from ((7.5)

we obtain

/ I (u u), VuydM = 0. (7.7)
Consequently, we get from . that

—2

(¢ —1)4u? +n(n—1)(4(b—-R)+a )q“ >0,

) — R
fw) 2(4u+ n(n —1)(4(b—R) + a?))2 -

with equality if and only if u = 0 and ¢ > 2. Moreover, since b > R, we know from Lemmam
that

(P(Vu),Vu) >0

with equality if and only if Vu = 0. Thus, from ((7.7) we have
f'(W){P(Vu), Vu) =

Hence, the function v = |®|> must be constant, either v = 0 or Vu = 0. In the case that
|®]2 = 0, M™ must be totally umbilical. Otherwise, |®|? is a positive constant and the equality
in implies Q, 4, 7., (|®]) = 0. Therefore, we can reason as in the last part of the proof of
Theorem to conclude that M™ is an isoparametric hypersurface with two distinct principal
curvatures of multiplicities p and n — p. O]

Remark 7.1.2. With the same argumentation made in Remark [4.2.11} we conclude that The-
orem corresponds to an extension of |5, Theorem 4.1].

Here, reasoning as we did in Theorem [7.1.1], it is going to be natural make the study for closed
linear Weingarten submanifolds immersed in a space form. In this first theorem, the ambient

space is the unit Euclidean sphere.

Theorem 7.1.3. Let M™ be a closed linear Weingarten submanifold immersed with parallel
normalized mean curvature vector field into the unit Fuclidean sphere S*™P(n > 4), such that
R=aH +bwitha>0andb>1. Then

[ 1ot (el > o (78)
M

for every real number q > 2, where the real function pqp1 ts obtained making c =1 in

Spa,b,c(x) = Z : ix2 - (na - %I) \/ﬁ + az +b—c (79)

Moreover, the equality holds in (7.8) if, and only if,
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i. either M™ is a totally umbilical sphere S"(r), with 0 < r < 1,

1. or
@ = a(n,a,b) >0,

where a(n, a, b) is a positive constant depending on n,a,b and M™ is isometric to a Clifford

torus S'(v1 — 12) x S"(r) € S™, with r = 1/ “2 > 0.

Proceeding, we consider the case that the ambient space Q is either the hyperbolic space
(¢ = 1) or the Eclidean space (¢ = 0). We finish this section addressing the Euclidean and

hyperbolic cases.

Theorem 7.1.4. Let M™ be a closed linear Weingarten submanifold immersed with parallel
normalized mean curvature vector field in a Riemannian space form QP (c € —1,0 andn > 4),
such that R =aH +b witha >0 and b > c. Then

/ 1|92, 4.0(|®])dM > 0, (7.10)
M

for every real number ¢ > 2, where the real function @ap. is defined in (7.9). Moreover, the
equality holds in (7.10)) if, and only if, M™ is a totally umbilical sphere S™(r), with r > 0.

7.2 A sharp integral inequality for closed LW hypersur-

faces in an Einstein spacetime £

For the Lorentzian context, we establish a sharp integral inequality concerning closed LW
spacelike hypersurfaces immersed in an Einstein manifold £, which follows closely the ideas
and techniques of section [7.1. For that, let us enunciate the lower boundedness for the operator

L for this case.

Proposition 7.2.1. Let M™ be a LW spacelike hypersurface immersed in an Einstein manifold
EMY satisfying curvature conditions (&.3) and ([4.4), such that R = aH +b with b < R. In the
case where b = R, assume that the mean curvature function H does not change sign and b < R.
Then,

L|®*) > 2(n — 1)|®*pas(|P]) &—l—ﬁ—b—i—a—2
- Pab n(n—1) 4’
where
n—2, n(n — 2) z? — a?
ap(T) = x° 4+ +R—-b+ —
sp,b( ) n—1 n(n—l) )\/n(n—l) 4
nin—2) a (— a2)
+ —rx—n|{R—-b—c+ — 7.11
n(n—1)2 2 (7.11)

c
andc:QCQ—i——l.
n
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Now, we are in a position to establish our rigidity result.

Theorem 7.2.2. Let M™ be a closed LW spacelike hypersurface immersed in an Finstein man-

ifold EMY satisfying curvature conditions (&.3)) and (&.4)), such that R = aH +b with b < R. In
the case where b =R, suppose that a > 0. Then,

[ 1o eu(enar <o, (.12
M
for every q > 2, where the real function @,y is defined in (7.11)). Moreover, assuming b < R,
equality holds in (7.12)) if and only if
(i) either M™ is a totally umbilical hypersurface,
(ii) or
D> = a(n,a,b,c,R) >0,

where a(n, a,b, ¢, R) is a positive constant depending on n,a,b,c, R, and M™ is an isopara-

metric hypersurface with two distinct principal curvatures, one of which is simple.

Proof. Let u = |®|?. So, we can rewrite the equation from Proposition as

L(u) > 2(n — Vupgp(v/u) \/ﬁ +R—b+ azz'

Since v > 0 and a@ > 0 when b = R, we obtain

q
2

wF pup(Va) < [ - £(u),
! n_l\/4u+n(n—1)(4(ﬁ—b)+a2)

for every real number ¢. Besides that, the fact of M"™ be closed guarantees that we can integrate

both sides of the previous equation and get

/A4u‘132g0a7b(\/ﬂ)dM§ \ /n - 1/M \/4u R aZ)E(u)dM. (7.13)

But, from (4.27)), we gain

F(w)L(u) = div(f(u)P(Va)) — f (u){P(V), V)

for every smooth function f € C'(R). We can integrate both sides and use the Stokes’ Theorem,
yielding

/M fw)L(u)dM = — /M F W) (P(Vu), Vu)dM,
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for every smooth function f. In our case, we choose

N

t

f(t) = —
Vit +n(n — D)AR ~b) +a?)

, for t>0. (7.14)

For this reason, we achieve in

(¢ — D4t% +n(n — AR — b) + a®)gt'z

= = DUR - v+ @)}

>0, (7.15)

for every real number ¢ > 2 and t > 0. Putting ((7.14) and (7.15)) into ([7.13)), we can estimate

/M u P pu (V)M < — |- /M F ) (P(Vu), Vu)dM < 0, (7.16)

since P is positive semi-definite by Lemma 4.1.2] Therefore,

q+2

/Mu 2 ap(Vu)dM < 0. (7.17)

This proves inequality (7.12)). For the second part of our theorem, if the equality holds

in ((7.17)), from ([7.16|) we obtain
/ £ () (P(Vu), V) dM = 0. (7.18)
M
Consequently, we get from (7.15) that

(0= Ddut +n(n ~ DAR =) + a*)qu’s”

) = e  an — DR ) £ o))

with equality if and only if u = 0 and ¢ > 2. Besides that, since b < R, we know from
Lemma [£.1.2] that
(P(Vu),Vu) >0,

with equality if and only if Vu = 0. Well, from (|7.18]), we get
f')(P(Vu), Vu) =0,

Thus, the function u = |®|* must be constant, either u = 0 or Vu = 0. In the case
that [®*> = 0, M™ must be totally umbilical. Otherwise, |®|? is a positive constant and the
equality in implies ¢, (]®]) = 0. Hence, |®|*> = a > 0 and the proof follows as in
Theorem [4.1.8 O

In case n = 2, we have for @ > 0 that ¢,,(x) > 0 for all x > 0. Noting that R = K is the
Gaussian curvature of M?, we get the following consequence of Theorem [7.2.2]
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Corollary 7.2.3. Let M? be a closed LW spacelike surface immersed in an Einstein manifold
&} satisfying curvature conditions (&.3) and ([&4)), such that K = aH + b where b < R. In the
case where b =R, suppose that a > 0. Then, M? must be totally umbilical.

Finally, from Theorem [7.2.2| we obtain

Corollary 7.2.4. Let M™ be a closed LW spacelike hypersurface immersed in the de Sitter space
S"H such that R = aH + b with b < 1. In the case where b = 1, suppose that a > 0. Then

[ erenenay <o, (719
M

for every g > 2, where the real function ¢, 1s given by

n—2, n(n — 2) x? a?
a = e _ 1—-6+ —
'Y b(l‘) n—lx + (na n(n—l)x) \/n(n—l) + + 1

Moreover, assuming 0 < b < R < ”T_Z < 1, equality holds in ((7.19) if and only if M™ is a totally
umbilical round sphere S(r) < S{™, with r = £ > 1.
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Chapter 8

LW submanifolds in Ngﬂj (¢) with second

fundamental form locally timelike

This last chapter is devoted to state and prove our characterization results concerning com-
plete LW spacelike submanifolds immersed with parallel normalized mean curvature vector field
and second fundamental form locally timelike in a semi-Riemannian space form N;*?(c). For
this, in the next lemma we quote a lower bound of the operator £ acting on the square norm of
®, which is derived from [89, Inequality (26)].

Lemma 8.0.1. Let M"™ be a LW spacelike submanifold immersed in a semi-Riemannian space
form NZ*”(C), such that R = aH +b with b < ¢ and a > 0. Suppose that the second fundamental
form s locally timelike and the normalized mean curvature vector field is parallel in N;‘ﬂ’(c).
Then,

d|? a2
2 > - 2 | a” B
L(P%) = 2(n = 1)|®| eoa,b,c,q,n<|@|>\/—n(n_1)+ S et

where the real function Qg pcqn i given by

n—q—1, n(n — 2) x? a?
abeqn(®) = ———2° + | na - ——== ——+——b+c 8.1
Pa,b,c,g, ( ) q(n_1> < n(n—l) n(n—l) 4 ( )

-9 2
nin—1)2 2
As we did in the last chapters, we are going to use the lower bound of the operator £ acting

on the squared norm of ® to obtain the following sharp integral inequality involving the norm

of the umbilicity tensor of closed spacelike submanifolds of a semi-Riemannian space form.

Theorem 8.0.2. Let M™ be a closed LW spacelike submanifold immersed with parallel normal-
ized mean curvature vector field in a semi-Riemannian space form Ngﬂ’ (¢), such that R = aH +b
with b < ¢ and a > 0 (suppose a > 0 when b = c¢). If the second fundamental form of M™ is
locally timelike, then

| 18 0ncn@haM <0 2)
M

92



for every real numbert > 2, where the real function Qg p.cqn 1S defined m. Moreover, assuming
in addition that either 0 < b < c or —‘2—2 < b < ¢ <0, the equality holds in (8.2) if, and only if,
M™ is a totally umbilical submanifold of Nj*?(c).

Proof. We begin making v = |®|? in Lemma for simplicity. Thus, we have

L(u) > 2(n — 1>U@a,b,c,q,n(ﬁ)\/ﬁ + %2 +c—b. (8.3)

Since u > 0 and b < ¢, with b = ¢ only for a > 0, equation (8.3) becomes

t+2 n

U 2 a,b,c,qg,n Uu S 2
Puean (V) S| e o)

L(u), (8.4)

for every real number ¢. As M" is closed, we can integrate both sides of (8.4]) in order to obtain

/M U Papegn(Vi \/:/ Ve ) I b))c(u)dM. (8.5)

But, from ([5.14]) we have

fw)L(u) = div(f ()P (Vu)) = f'(u)(P(Vu), Vu), (8.6)

for every smooth function f € C!(R). So, integrating both sides of and using Stokes’

theorem it follows that
/ fu)L(u / f(u u), Vu)dM, (8.7)
M

for every smooth function f. In our case, substituting (8.7 into (8.5) we can estimate

/ 0 pupean(VE ./ / F(u)(P(Vu), VuydM, (8.8)
M n—1

t/2

where
U

) = = D@ =)

with s
4(r — Dut’? +n(n — 1)(a® +4(c — b))tu =z

2 (4u + n(n — 1)(a2 + 4(c — b)))*/?

for every real number ¢ > 2, occurring equality if and only if u = 0. Therefore, since [89, Lemma

f'(w) =

> 0, (8.9)

1] assures that the operator P is positive semi-definite for b < ¢, we conclude from ({8.8)) and

that
/ U Papeqn(v/u)dM < 0. (8.10)
M

This proves inequality (8.2)).

93



Now, we proceed supposing that the equality holds in (8.2). From (8.8)) we get
/ F/(w) (P(Va), Vi) dM = 0. (8.11)
M

We can return to equation and use the fact that P is positive definite when b < ¢ to

obtain

f'(w)(P(Vu), Vu) = 0.

In the case that f'(u) = 0, we have v = 0. In other words, |®| = 0. In the case that
(P(Vu),Vu) = 0, since P is positive definite, we get that Vu = 0 on M™. Hence, the function
u = |®|? must be constant.

If || = 0, we conclude that M"™ is a totally umbilical submanifold. Otherwise, |®| is a
positive constant and so H and R by equation (5.10) and, consequently, the mean curvature
vector field h and e, are parallel in T+ (M™). Therefore, reasoning as in the last part of the
proof of [89, Theorem 1], we can apply [88, Theorem 1] to obtain that M™ lies in a totally geodesic
submanifold N7**(c) of N7#P(c). Since we are assuming in addition that either 0 < b < ¢ or
—2 < b < ¢ <0, we conclude that M™ should be isometric to H!(c— ccoth?r) x S*~(c—ctanh"),
when ¢ = 0, to H'(—coth®r) x R*™! when ¢ > 0, and to H'(c + ccoth?r) x H" (¢ + ctan?r),
when ¢ < 0, for some radius r > 0. However, since we are supposing that M™ is closed, these

situations cannot occur. Therefore, M™ must be a totally umbilical submanifold of N;*7(c). [
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