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Resumo

Este trabalho trata de algumas caracteristicas da teoria da cohomologia local. Desen-
volvemos uma nova ferramenta chamada sequéncia espectral de Mayer-Vietoris que nos
permite estudar varios médulos de cohomologia local suportados em diferentes ideais,
0 que nos levou a generalizar ou recuperar resultados anteriores de varios autores e
também a produzir novos, especialmente no que diz respeito a anéis polinomiais multi-
graduados. Também lidamos com moédulos Cohen-Macaulay generalizados e modulos
de deficiéncia, fornecendo relagoes entre nimeros de Bass e Betti destes de modo a tanto
generalizar resultados classicos quanto a provar novos como um caso da a conjectura
de Auslander e Reiten. Finalmente, cohomologia local é vista como uma importante
ferramenta para o estudo da interacao entre a finitude de dimensoes homologicas e de

anulamento de moédulos Ext.

Palavras-chave: Cohomologia local; sequéncia espectral de Mayer-Vietoris; dimensao
cohomologica; regularidade de Castelnuovo-Mumford; caracteristica de Euler; modulos
de deficiéncia; médulo Cohen-Macaulay generalizado; conjectura de Auslander-Reiten;

cohomologia local generalizada; dimensao homologica.



Abstract

This work is about some features of local cohomology theory. We develop a new tool
called Mayer-Vietoris spectral sequence that allows us to study several local cohomol-
ogy modules supported in different ideals, which led us to generalize or retrieve previous
results of several authors and also produce new ones, especially in what concerns multi-
graded polynomial rings. We also deal with generalized Cohen-Macaulay modules and
deficiency modules, providing relations between their Bass and Betti numbers in order
to both generalize classical results and produce new ones as a case of the conjecture
of Auslander and Reiten in a particular case. Finally, local cohomology is viewed as
an important tool for the studying of the interplay between finiteness of homological

dimensions and the vanishing of Ext modules.

Keywords: Local cohomology; Mayer-Vietoris spectral sequence; cohomological di-
mension; Castelnuovo-Mumford regularity; Euler characteristics; deficiency modules;
generalized Cohen-Macaulay module; Auslander-Reiten conjecture; generalized local

cohomology; homological dimension.
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Introduction

Serre’s fundamental work (1955) [79] set up cohomology theory as an essential
tool in modern algebraic geometry. Serre observes that many statements about pro-
jective varieties can be understood as statements about graded or complete local rings
so that, after proved, they may be of use in obtaining global outcomes. For instance,
the duality theorem for projective varieties becomes a duality theorem for local coho-
mology modules. Thus, it suggested many themes which are largely studied in local
cohomology theory until nowadays, but only in Hartshorne’s book (1967) [45] (on a
Grothendieck’s 1961 seminar) the effectiveness of local cohomology is recognised in
local algebra. Despite Grothendieck and Hartshorne’s viewpoints were still geometric,
their notes have shown the indispensable benefit of local cohomology theory for the
study of commutative Noetherian rings.

In light of this, Broadmann-Sharp [17] provides an excellent algebraic introduction
to Grothendieck’s local cohomology theory with some geometric flavour (as the title
of the book suggests), which is the approach that we intend to follow up here. To be
more exact, we still rely on the geometric viewpoint since in this thesis local cohomology
modules — over a non-necessarily Noetherian ring — are defined via cohomology of
Cech complexes. Such a generality provides an algebro-geometric link that allows the
reader to approach the theory here developed through the better way it fits for their
purpose.

As the title of this thesis says, we work on different aspects of local cohomology
theory. We will explain them in general lines and next describe each one highlighting
those different features.

In this thesis, we make some progress regarding local cohomology theory, espe-



cially in a multigraded setting, on deficiency modules and the use of local cohomology
to approach problems on homological dimensions. Important tools of the general the-
ory are extended providing through the chapters new achievements — such as a duality,
Artinianess and more information about (numerical) homological invariants — and im-
provements of known results. On what concerns deficiency modules, which are, in a
sense (due to local duality), the Noetherian versions of local cohomology modules, we
develop some theory on generalized Cohen-Macaulay modules and then provide com-
parisons between Bass and Betti numbers of modules and their deficiencies. Finally,
the theory of generalized local cohomology turns out to be quite useful in the study of
the finiteness of homological dimensions.

Namely, we investigate a quasi-isomorphism between complexes so that the con-
struction of a spectral sequence, which we call it by Mayer-Vietoris spectral sequence,
since it generalizes the well-known Mayer-Vietoris long exact sequence, see [17], is
made possible. Although there are other generalizations of the Mayer-Vietoris long
exact sequence (see [II, [66, (78, [81]), ours still allow us to work on problems involving
more than two ideals. Note that the spectral sequence in [66] has the same spirit but
Noetherianess is required and its construction is different (though similar somehow) so
that it is useful in this work but not sufficient for our goals. Having such tools in hands,
in a multigraded setting, we provide bounds for cohomological dimension (sometimes
determining them), determine depth of some local cohomology modules, study the sup-
port (in the sense of Definition of multigraded local cohomology modules and
multigraded regularity. Yet in a multigraded setting, we study the interplay between
supports (the non-vanishing region) of Tor modules and local cohomology modules. Af-
ter that, we work with deficiency modules. We see that the relation between projective
and injective dimensions of a given module and its deficiency modules provides several
consequences such as a generalization of a Foxby result [38|, sufficient homological con-
ditions on deficiency modules for a local ring be Cohen-Macaulay, a characterization of
the complete intersection property in terms of Bass numbers of the residual field and
a case of the long-standing Auslander-Reiten conjecture [7]. In the last part, local co-
homology allows an investigation of the interplay between homological dimensions and
Ext vanishing in such a way that we are able to give positive answers under suitable

depth hypothesis to some questions that have appeared in the literature, as the one



raised by Jorgensen in [60] about fourteen years ago, and investigate the finiteness of
other homological dimensions such as Gorenstein (injective) dimension. We now will
give a more detailed description of these outcomes.

Chapter [1| describes a few general and known facts on local cohomology, sheaf
cohomology, Castelnuovo-Mumford regularity, deficiency modules, generalized local co-
homology and homological dimensions. It sets the way we will work on local cohomol-
ogy modules throughout the thesis. The first section deals with the definition
of local cohomology modules as the cohomologies of Cech complexes, see Subsection
[[.1.1] Although it is not the usual definition in the Noetherian case (see [I8, [17, 58]
for example) since they are defined as derived functors of torsion functors, it allows
us to work on a more general setting as [22] did and to establish the link between
local cohomology and sheaf cohomology, described in Subsection [I.1.2] The second
section [I.2) motivates the Castelnuovo-Mumford regularity in Subsection [I.2.1] towards
its multigraded version (in the sense of [I4]), presented on the last subsection [1.2.2]
Next, in a Noetherian setting, we introduce deficiency modules in Section [1.3| and gen-
eralized local cohomology modules in Section [I.4] We finish this preliminary chapter

presenting some homological dimensions in Section [1.5

Mayer-Vietoris spectral sequence

Chapter [2] is dedicated to the construction of one of the main tools in this work,
the so-called Mayer-Vietoris spectral sequence. The main reason for building up this
cohomological tool is that it allows us to work on a wider setting in the sense that we
can work with any finite number of ideals, as the Mayer-Vietoris long exact sequence
just works with two ideals. To be clearer, we show that given ideals I, I, ..., I, in a
(commutative with non-zero unity) ring R and an R-module M, there exists a spectral

sequence

E:f,q - @ Hq(UIi()Iil'--Iip7 ]TJ) =p Hp+q(UI1+I2+--.+In’ M) (001)

10<...<ip

Throughout the chapter, we provide two different constructions of such spectral
sequence and two ways — a geometric and a topological one — to get its second
page. The first construction is made in Section [2.1] see Theorem This construc-

tion is treated as a consequence of a quasi-isomorphism between the tensor product



of Cech complexes and the Cech complex of the product of the sequences involved,

see propositions [2.1.4] and 2.1.7] The two first natural questions about this spectral

sequence are “does it degenerate at the second page?” and “what its second page looks
like?”. The second question is what we answer in Section 2.2l Actually, we provide
two answers for that. Theorem [2.2.1] is our second construction of the Mayer-Vietoris
spectral sequence which also provides the second page, as we proved that such spectral
sequence is a particular case of a Cech spectral sequence and thus it has a geometric
view. At the end of Section [2.2] we display the second page in terms of general sheaf
theory and inverse limits under a certain topological space, but we postpone the argu-
ments to the Appendix [A] The last section deals with the first applications of the
Mayer-Vietoris spectral sequence [0.0.1 The first one is naturally the Mayer-Vietoris
long exact sequence, given in Theorem [2.3.1] and the others are about a version of
the Mayer-Vietoris long exact sequence for three ideals (see Theorem and some
general results on cohomological dimension, especially Corollary which regards
relations between the cohomological dimension with respect to the product of ideals
and cohomological dimensions with respect to each ideal. Further applications of the
Mayer-Vietoris spectral sequence (and its first applications) are provided in the next

chapter.

Multigraded local cohomology

In Chapter 3| we study local cohomology modules over a multigraded polynomial
ring. It was motivated by the research around Castelnuovo-Mumford regularity in
its multigraded version, firstly defined through geometrical terms by Hoffman-Wang
and Maclagan-Smith [53], 69], and then Botbol-Chardin [I4] defined such regularity in
an algebraic sense and even in a way more general setting, which is the context we
are working with here. But before dealing with multigraded regularity we will study
some relations of multigraded cohomology modules in particular cases, cohomological
dimensions and vanishing of multigraded pieces of Tor modules (Betti numbers) and
local cohomology modules, as we are going to describe now.

The first section [3.1] is divided into two parts. The first one, Subsection [3.1.1],

begins with a simple generalization of a result of Chardin and Nemati [23] for the



non-Noetherian case, see Proposition [3.1.1] It establishes the cohomological dimension
of a multigraded free module with respect to the irrelevant ideal (and therefore, an
upper bound for the cohomological dimension of any multigraded module with respect
to the irrelevant ideal), see Corollary . As consequence, for the Noetherian case,
in Corollary we conclude that cohomology modules of a multigraded free mod-
ule supported in ideals generated by variables of the same degree cannot be Artinian.
We finish the section by determining the cohomological dimension of such cohomology
modules supported in the priorly mentioned ideals, see Corollary [3.1.9] As for Subsec-
tion [3.1.2] we furnish a duality between the local cohomology modules of multigraded
modules supported in the ideals generated by variables of the same degree. Namely,
we prove the following.

Theorem (Theorem . Let k be a field and denote R = k[ Xy, ..., Xm, Y0, -, Yzl
the standard bigraded polynomial ring. Write By = (Xo, ..., X;n) and By = (Yo, ..., Yy).
If M is a finitely generated bigraded R-module then one has functorial graded isomor-

phism
Hp = (M) ~ *Extiy(M, Hp (wg))Y

foralli >0, where ¥ =* Homy(_,k) andwgr = R(—(m+1),—(n+1)) is the canonical
module of R.

We also notice that the roles of By and By in the theorem above are interchange-

ably (see Theorem (3.1.14]) and as first corollaries we conclude that
depthy H ™ (F) = cdp, HR T (F) =n+1
and
depthy HE (F) = cdp, HE ' (F) =m + 1,

where F' is a finitely generated bigraded free R-module, see Corollary [3.1.16] Further,
it should be noted that by taking B; = 0 in the duality above we recover graded local
duality and that together with a duality of Herzog and Rahimi [51] one has

ngl(R) ~ Hgfl(wR)v and Hg:l(R)v ~ Hg+1(w3).

Section begins with an application of Corollary for the multigraded
case in Proposition [3.2.1] There we bound the cohomological dimension of a module

with respect to the irrelevant ideal. This result allows us to provide a version of
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Proposition for three variables; it is shown in Proposition[3.2.2] As a consequence,
Corollary [3.2.3] generalizes Corollary [3.1.2] The last result of this section is Proposition
which characterizes local cohomology modules of a free module supported in the
irrelevant ideal in terms of local cohomology modules supported in ideals generated by
variables (that are much more treatable). It should be noticed that it is the first result
that we are using the Mayer-Vietoris spectral sequence [B.2.2] defined by Lyubeznik
[66].

Section is about support (as in Definition , Castelnuovo-Mumford regu-
larity and Euler characteristics. The subsection [3.3.1] contains results on the support of
local cohomology modules, some of them are applications of the duality above and oth-
ers are useful in Subsection We also investigate the relation between the support
of Tor modules and of local cohomology modules and find another spectral sequence,
see Corollary quite similar to that of Lyubeznik [B.2.2] In the next subsection,
we work on multigraded regularity. The Mayer-Vietoris spectral sequence plays a
crucial role. It is indeed the key in the proof of Proposition [3.3.29, Theorem [3.3.30| and
Proposition [3.3.31} All these results provide relations between multigraded regularity
with respect to arbitrary products and sums of a finite number of given ideals.

Section is the last section of Chapter [3] It deals with the Euler characteristic
of a multigraded module with respect to an ideal and an element of the grading group,
see Definition The main result of this section is Theorem [3.4.7} it shows that
the Euler characteristic of a module with respect to the product of ideals generated by
variables is the alternating sum of the Euler characteristics of the module with respect
to the arbitrary sum of such ideals. We then show that over a standard multigraded
polynomial ring with coefficients in a field, the Euler characteristic with respect to the
product of ideals generated by pure powers of the variables is written in terms of the
Euler characteristics with respect to the alternating sum of the ideals generated by the

arbitrary sum of such variables, see Corollary [3.4.8|

In the next two chapters, we explore the interplay between local cohomology
and homological dimensions. We seek first the classic ones, projective and injective
dimensions. Next, we also involve the complete intersection and Gorenstein (injective)

dimensions.



Deficiency modules

The content in Chapter [ is joint work with Thiago Fiel which contains three
sections and it is independent of chapters |2/ and |3l It has already been submitted for
publication, see [36]. The ring is supposed to be a factor of a Gorenstein local ring.

In Section [4.1] we find relations between a given generalized Cohen-Macaulay
module and its deficiency modules. With this in hands, we show that the canonical
module of a module, the most important deficiency module, is generalized Cohen-
Macaulay provided the given module is also generalized Cohen-Macaulay, see Corollary
4.1.5] Further, when in addition the module M has depth at least two, then M ~
K(K(M)), generalizing thus a Schenzel’s result [76], see Corollary Another
interesting consequence regards characterization of the Cohen-Macaulay property in
equidimensional terms, see Corollary [£.1.9]

The next section provides a bounding for the Bass number of a module in
terms of the Betti numbers of its deficiency modules, see Theorem [£.2.1] As main
consequences, Corollary [4.2.3] ensures that for a ring in our context to be Cohen-
Macaulay it is sufficient to admit a finitely generated module such that all its deficiency
modules have finite projective dimension, and Theorem relates Bass and Betti
numbers of modules and its canonical modules in a more general setting that of Foxby
[38, Corollary 3.6|, also improving [39, Corollary 3.3|. In the rest of the section, we try
to weaken the hypothesis in Theorem in order to get relations between Bass and
Betti numbers in a general setting.

We end the chapter with Section [£.3] Its main result, Theorem [£.3.1] contains
a corollary of a result of Schenzel |76, Theorem 3.2] and provides several relations
between the numbers involved when varying the dimension of the module, see for

example Corollary which gives the equality

Bo(M) = B1(M) = p*(K (M) — pu (K (M)
for an Artinian module. An application of this formula is a characterization of the
complete intersection property in terms of the first and second Bass numbers of the
residue field, see Corollary Another consequence is a case of the Auslander-

Reiten conjecture. Namely, we prove that the Auslander-Reiten conjecture holds true

for finitely generated modules having deficiency modules of finite injective dimension
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over Noetherian rings which are factors of Gorenstein local rings, see Corollary [4.3.10]

This generalizes the recent achievement in |39, Theorem 4.8|.

Generalized local cohomology

The content in the next chapter of this thesis is joint work with Cleto B. Miranda-
Neto and it is in preparation for submission for publication [54]. We see local coho-
mology as a fundamental tool in our study. Another aspect of local cohomology is its
usefulness to solve other problems in commutative algebra and algebraic geometry. In
Chapter [5] generalized local cohomology turns out to be one of the main tools required
to investigate the finiteness of some homological dimensions and the interplay with Ext
vanishing.

Our first goal is to address some problems from the existing literature on finite
projective dimension via Ext vanishing; this is done in Section [5.1] We begin by con-
sidering a couple of problems from [61], one of them regarding freeness of modules over
one-dimensional Gorenstein local rings (see Question , and then special attention
is paid to a question raised by D. Jorgensen in [59] on prescribed projective dimension
over complete intersection rings by means of the vanishing of a certain Ext module (see
Question , which in fact motivated the first part of this chapter. Our results,
the main one being Theorem are in the direction of detecting some additional
condition under which such questions turn out to admit an affirmative answer, whereas
on the other hand, we are able to relax some of the hypotheses. In the case of our
approach to Question , our result is Theorem (which in turn is related to the
notion of cohomological dimension), and for Jorgensen’s problem, we require that the
depth of certain Ext modules be sufficiently high in a sense that will be made precise,
while the ring is only assumed to be Gorenstein (see Corollary [5.1.11)). It is worth
observing that such a depth hypothesis plays a key role in this chapter, being present
in most of the results.

Still in Section [5.1], we use the class formed by the so-called “rigid” modules
(see Definition to establish sufficient conditions for a given module to have
finite projective dimension (see Theorem and its corollaries). We combine this

approach with some results from the previous part in order to estimate this invariant,



which in particular allows for characterizations of freeness.

In Section [5.2] we study connections between the vanishing of Ext modules and
the finiteness of the injective dimension, the Gorenstein injective dimension, and the
Gorenstein dimension of a module over a given Cohen-Macaulay local ring. The main
result is Theorem [5.2.2] and some of its byproducts, which put us again in the scenario
of finite projective dimension, are Corollary and Corollary (the latter, in par-
ticular, is crucially used in Section . Freeness criteria for modules over Gorenstein
local rings are also provided.

Our interest in Section [5.3] meets some of the preceding ones, but via different
methods. First, we employ the Burch property of ideals to study finite projective
dimension over a Gorenstein local ring by means, in particular, of the vanishing of
suitable Ext and Tor modules (see Corollary [5.3.3). Then we turn to another auxiliary
tool, namely, the notion of strongly rigid module, the main results, in this case, being
Corollary and Corollary [5.3.10l We also consider a special instance that arises
from ideals that are weakly full with respect to a suitable power of the maximal ideal,
e.g., integrally closed ideals (provided that the ring has positive depth). The main
result in this regard is Theorem [5.3.13] More freeness criteria follow readily in this last

section as well.

Chapter [0] gathers questions about the other chapters of this thesis.

There are two appendices. As already mentioned, Appendix [A] treats the devel-
opment of the second page of the Mayer-Vietoris spectral sequence [2.1.8in topological
terms. It is based on Jensen’s work [59] and either sheaf theory and inverse limits play
a fundamental role through this construction.

The Appendix [B]is devoted to spectral sequences. It contains a little information
on the general theory and several examples that are quite useful in this work. The
major reason for this appendix is the difficulty of this machinery at first view — at
second and third views too — that a student can easily find, just as this author did.
The more examples of spectral sequences are given the more students feel confident

and comfortable using this marvellous homological tool.



Chapter 1

Preliminaries

This chapter concerns fundamental known concepts and techniques that shall
be used throughout this work. Most of the content here can be found in standard

textbooks such as [I§|, [17] and [30].

1.1 Local cohomology and sheaf cohomology

In this section, we comment on the general setting of both local cohomology and
sheaf cohomology theories and their deep relation. The interested reader can find more
about these topics and their relations in [I7] and [58] which work only on Noetherian

rings and see [45] for a way more general setting.

1.1.1 Local cohomology and Cech complex

The Cech complex is a basic and important tool in commutative algebra and
algebraic geometry. Our goal here is to recall its definition and comment on its close
relation with local cohomology modules and sheaf cohomology groups. Although the
environment here is not necessarily Noetherian, the definition and some properties of
Cech complexes follow the same lines as those of some classic textbooks; see for example
[17], [18] and [58].

Let R be a ring. Let also a = aq,...,a, be a sequence of elements in R, I the

ideal in R generated by a and let M be an R-module.



Definition 1.1.1 (Cech complex). The Cech complex of M with respect to the se-
quence a is defined as the sequence of R-modules and R-homomorphisms
c:(M): 0—=CY(M)—=CHM)—...—~C"(M)—=0
where
(i) C3(M) = M;
(i) CP(M) = @¢1<...<z‘p M, . a, forp>1;
(iii) The homomorphism CP(M) — CPTY(M) is induced by the homomorphisms

— M,

fp : Mw Y% Ay @
11 p J1 Ip+1
x = fP(z)
with
(=D)kz . . . s o .
1 Zf {Zla -"77’p} - {jla ooy Jks "'7]p+1}a

0, else.

fr(a) =

It can easily be verified that C3(M) is indeed a chain complex. It can also be
proved that if another sequence b generates the same radical ideal that of I then
HY(C2(M)) ~ H'(Cg(M)) for all i. It brings us to the central object of this work.
Definition 1.1.2 (Local cohomology modules). Let M be an R-module. Given a
finitely generated ideal I of R and an integer i > 0, we define the i-th local cohomology
module of M with support in I as the cohomology module H' (C$(M)) where a is a

finite sequence of elements generating I and we will denote it by Hi(M).

The interested reader may see [I7] and [22] (in the non-Noetherian case) for an
in-depth study of such modules.
Notice that the isomorphism

HY(M) = ] 0:py I™ = lim Homp(R/I", M)

n>0
is functorial in M so that the i-th right derived functors of H? coincide with the functors
lim Ext’%(R/I™, ). It is isomorphic to Hi whenever R is Noetherian or I is generated
by a regular sequence. Furthermore, Botbol and Chardin have used the Mayer-Vietoris
sequence in [I4) Theorem 2.3] to prove that H} is also the i-th right derived functor
of HY in the case of R being a polynomial ring over an arbitrary ring and I being a

finitely generated monomial ideal.
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The next example is of great importance in the next chapters. It follows the same
lines as |17, Example 13.5.3]. Although [I7] requires Noetherianity, this hypothesis is

not needed in this construction.

Example 1.1.3. Let G be an abelian group, S be a G-graded commutative unitary ring
and R = S[X3, ..., X,,], the ring of polynomials over S, graded by G ® Z". (The degree
of the i-th variable X; is the i-th element e; of the canonical basis of Z".) By writing

...........

77777

Both Rx,...x, and cokerd™ ' are free S-modules in a such way that Hinxl-...-xn)(R) 18
also a free S-module with basis {X* - ... - Xi» : iy, ....i, < 0}. Meanwhile it has a

G @ Z"-graded R-module structure such that

X0 XXX L X

i moaf i < —1,
O, Zth = —1

XX e XY =

foriy,...;ip, <0 and 1 <t <n, and

deg(s, X" - oo - Xim) = (g, (i1, vy in))

for s, € S\0. This GBZ"-graded R-module is called the module of inverse polynomials
in Xy,..., X, over S, and we will denote it by S[Xy,..., X, ].

A similar argument allows us to extend this example for more variables of same
degree. Namely, by writing R = S[X11, ..., X1y oo, Xioty ooy Xiny] with deg(X; ;) =
e; € ZF for all i, j, m the ideal generated by the variables and d = ny + ... + ny, then

HE(R) ~ S[X 1y, X oo X s X ]

1ny1

and

deg (s, X1 - X+ X X0TE) = (90 (i oo g o Bt o F ).

kg
We finish this subsection by recording a useful lemma by Botbol.

Lemma 1.1.4. ([13, Lemma 6.4.7|) Let S be a ring and consider the standard Z*-graded
polynomial ring R = S[X11, ... Xinyy oo, Xkds ooy Xy |- Set By = (Xi1,..0, Xip,) and
B=By-...- Bx. Then, for anyl >0,
Mgy +. gy,
Hle(R) = @ HB,L-1+...+B1-p (R).
1<i1<...<ip<k

N4y +...+nip—(p—1):l

12



1.1.2 Local cohomology and sheaf cohomology

Now we introduce some concepts on sheaf cohomology in a general setting and
then explain a fundamental relation between local cohomology and sheaf cohomology.
See [45] for more information on this topic and [40] and [46] for general and basic
algebraic geometry notions.

Definition 1.1.5. Let (X, Ox) be a ringed space, F be an Ox-module, Z C X be a
closed subset and write U = X \ Z. We define the sections of F supported in Z as

HY(X,F) :=ker(H(X,F) = H(U,F)).

Once HY(X, ) is a left exact functor we shall write H (X, ) for its i-th right
derived functor and it will be called the i-th local cohomology of F with support in Z.
We are going to see that on an affine scheme X, for a quasi-coherent sheaf M and a
complement of a closed variety Z, the groups Hy (X, M ) coincide with the i-th local
cohomology modules H(M). Tt is therefore another way to define local cohomology
modules.

Consider (X, Ox) as a ringed space, F an Ox-module, Z C X a closed subset and
write U = X \ Z. Since the morphism HY(X,F) — H°(U, F) is surjective whenever

F is a flasque sheaf one has long exact sequence

0—~HYX,F)—=HX,F)—=H"U,F)—~H,X,F)—~HYX,F)—=H U, F) —---

See [46] for details. Now we make use of the well-known fact that quasi-coherent sheaves
on affine schemes have no higher cohomology, see for example [44, Théoréme 1.3.1]. In
other words, when X = Spec(R) is an affine scheme and F = M is a quasi-coherent
sheaf on X, we must have H'(X, M ) =0 for all ¢ > 0 so that the sequence
0— HY(X,M)— H(X, M)— H(U,M) — HL(X, M) —=0
is exact and, for all 7 > 0,
Hy (X, M) ~ H'(U,M),

where Z =V ([)and U = X \ Z.

13



We also have a geometric notion of the Cech complex. Namely, let X be a
topological space and consider U as an open subset of X, i/ an open cover of U and F

a sheaf on X. Thus the complex C*(U, F), where

cru,F)= [ FU,n..00,)
i0< . <ip
and which differentials being induced by the restriction morphisms, is called the Cech
complex of the open covering U with coefficients in the sheaf F. Its cohomology groups
are denoted by H*(U, F). Coming back to the case where X = Spec(R), F = M,7 =
V(I) and U; = X \ Z, with I being generated by a sequence a = ay, ..., a,, of elements
in R, the basic open subsets defined by the a.s clearly cover the open subset Ur; denote

such open covering by U,. By [45, Theorem D| one has
Hi Uy, M) ~ H'(U;, M)

for all i, that is, the Cech cohomology of quasi-coherent sheaves computes the sheaf
cohomology of the open subset corresponding to the open cover. Moreover, it may be

showed that CP*1(M) = C?(U,, M ) for all p and that there exists exact sequence
0— C*(Us, M)|—1] = C*(M) =~ M —0

where M denotes the complex centered in the R-module M at degree 0. Therefore

there exists exact sequence

0— HY(M) - M — H(U;, M) — H}(M) =0

and, for all ¢ > 0,

HIY (M) ~ H'(Ur, M).

All that discussion allows us to conclude that, for a finitely generated ideal I in
R and an R-module M,
H}(M) =~ Hy(X, M)
for all ¢ > 0, where X = Spec(R) and Z = V(I).
We also need the “sheafified” version of the Cech complex, see [19, Section 4.3]
or [46, Chapter III]. Let X be a topological space and consider & an open cover of X.

14



Let Jig..i, : Uiy, N ... N U;, — X be the canonical inclusion of a non-void intersection

Ui, N...NU;, of elements of U. Given an sheaf F on X, for every p > 0 define the sheaf

CPUF) = ] Gioin)oFlogn.ou,

10<...<ip

where (ji,..i,)« is the direct image functor. More explicitly, given an open subset
UCX,
U, FU)= [] FUNU,N..AU).

10<...<ip
The usual Cech differentials induces sheaf morphisms C*(U, F) — CPHY (U, F).
The next proposition follows from definition and [46, Chapter III, Proposition 4.3].

Proposition 1.1.6. The following statements hold true.

(i) There are isomorphisms

D(X,CP(U,F)) ~CP(U, F);

(i) If F is flasque, then HP(U, F) =0 for all p > 0.

1.2 Castelnuovo-Mumford regularity

The Castelnuovo-Mumford regularity is an invariant of fundamental importance
in both commutative algebra and algebraic geometry. It measures the complexity of
a module or a sheaf, so to speak, for the regularity of a module bounds the largest
degree of its minimal generators, and the regularity of a sheaf estimates the smallest
twist for which it is generated by the global sections. The two textbooks [17] and [30],
and [21] are excellent references for this topic. Besides that, Chardin, Jouanolu and
Rahimi [22] work on the regularity without assuming Noetherianity.

We start this section by recalling Castelnuovo-Mumford regularity in its classical
case to motivate its multigraded notion, which was first studied in [69] and [53], and

then generalized in [14].

1.2.1 The classical case

First we will see a motivation to define regularity. Suppose R = k[Xj, ..., X,,] with

k being a field and write m = (X7, ..., X,,). Let M be a finitely generated R-module.

15



Grothendieck’s vanishing theorem asserts that H.(M) = 0 for all i > dim(M) or
i < depthp(M), as well as the non-vanishing of these modules for i = dim(M) and
i = depthyz (M), see [17] or [58]. Also, Serre’s vanishing theorem implies the vanishing
of the sheaf cohomology groups H'(Proj(R), M (n)) for all 4 > 0 and p big enough, see
[46]. A similar argument as that of Subsection shows that there exists a graded
isomorphism
Hi (M) ~ €D H'" (Proj(R), M (1))
p
for all ¢ > 0 so that Serre’s vanishing theorem can be stated in terms of the graded

pieces of local cohomology modules. The Castelnuovo-Mumford regularity is a measure
of this vanishing degree.

If HL (M) # 0, we set

a;(M) = sup{p : H.(M), # 0},

and if H. (M) =0, set a;(M) := —oo. The Castelnuovo-Mumford regularity is defined
as
reg(M) := sup{a;(M) + i}.

On the other hand, Eisenbud and Goto in [3I] have proved that the Castelnuovo-
Mumford regularity can also be obtained from minimal free resolutions. In other words,
this invariant can be defined in terms of graded Betti numbers. Let F, be a minimal
free resolution of M with F; = @;R(—j)%. Thus B;; = dimy(Tor/ (M, k);) for all 4, ;.
If Torf (M, k) # 0, set

bi(M) := sup{p : Torf(M,k), # 0},

else, b;(M) := —oo. Therefore b;(M) is the maximal degree of a minimal generator of
F;, and so of the module of the i-th syzygies of M. As an immediate consequence of

[21, Corollary 1.2.2] one has
reg(M) = max{b;(M) — i}.

The next lemma shall be useful in this work.

Lemma 1.2.1. (|22, Lemma 2.1]) Let S be a ring and consider the standard Z-graded
polynomial ring R = S[Xy,...,X,]. Let also M be a graded R-module. Consider the

following properties:

16



(i) M, =0 for allv>>0;
(“) M = H(OX1 ..... Xn)(M)7
(iii) Hi,

Then (i) = (ii) = (idi), (it) = (i) if M s finitely generated or reg(M) < oo, and
(1i) = (ii) if M, =0 for v < 0.

x) (M) =0 foralli>0.

77777

1.2.2 Multigraded regularity

One of the motivations for a multigraded version of the Castelnuovo-Mumford
regularity comes from toric geometry. Cox in [25] defines the coordinate ring of a
simplicial toric variety X as being a polynomial ring graded by the divisor class group
G of X. The dictionary linking the geometry of X with the theory of G-graded modules
leads to geometric interpretations and applications for multigraded regularity. Basic
notions of multigraded commutative algebra can be found in [I5] 17, 41], [42].

The multigraded Castelnuovo-Mumford regularity concept has first appeared in
the work of Hoffman and Wang [53], where they work on a bigraded setting motivated
by the geometry of P! x P'. Then, also motivated by toric geometry, Maclagan and
Smith in [69] work on a more general setting of multigraded regularity. Later, Bot-
bol and Chardin in [I4] introduce a further generalization of regularity, by working
over any commutative ring and by considering local cohomology modules supported in
any finitely generated graded ideal. That is the way we shall work with multigraded
regularity in this thesis.

Here notations and concepts follow [14] and [23].

Let S be a commutative ring, G be an abelian group and write R := S[X7, ..., X,,],
with deg(X;) = v € G and deg(s) = 0 for s € S. Let B C (X}, ..., X,,) be a finitely
generated G-graded ideal of R and denote by C the monoid generated by {71, ..., v}

Definition 1.2.2. The support of a G-graded R-module M 1is
Suppg(M) :={y € G: M, # 0}.

Given an R-module M, for u € G we set the R-module M(—pu) with grading
defined by M(—p), := M,,_,.

Lemma 1.2.3. Let M be a graded R-module, then Suppg(M(—p)) = Suppg(M) + w.

17



Proof. Indeed v € Suppg(M(—u)) if and only if v — u € Supps(M), equivalently
v € Supps(M) + p. |

Notation 1.2.4. Let M be a graded R-module. For a graded ideal I we set
Ci(M) = Suppg(Hi(M)) and C;(M) := U;»qChH(M).
Example 1.2.5. By considering the Z*-graded ring

R = S[Xl,la EaS) Xl,np ) Xk,la ) Xk,nk]

as in Example one has
k
Cm<R) = Cgl(R) = Supka (Hﬁ(R» = HZSfm'
i=1

Furthermore, writing By = (Xj1, ..., Xjn,) and d;, s, = 1, + ... + 4, one has

diy..i
HBl-11+.Z.7.+Bip (R) =

SXi i =1upandl=1,...n)[ X5, 0 jFir .0 and l; =1, n.

7lj :

Thus L
Cs, +~~-+B¢p(R) = Suppgzx (HB?l'J:f.+BiP<F)) -
in— i—i1— k—ip
745" x Loc—p,, X LG b Doy X oo X Do, X L3557

The following example illustrates some supports.

Example 1.2.6. By taking k = 2 in Example we have the following regions
Cu(R) = Zcn, X Licny = (—n1,—n2) + Z<o, Cp,(R) = Zc—n, X Lxo = (—n1,0) +
ZSO X ZZO and 032 (R) = Zzo X ngng = (0, —n2) + ZZO X Zgo.

Suppy(Hp, (R))

(0, —no)

Suppy(Hy(R)) Suppy:(Hp,(R))

The following lemma shows the close relation between some Tor modules and

degree shifts in free resolutions of a module.
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Lemma 1.2.7. (|14, Lemma 3.12]) Let M be a graded module with Suppy(M) C
1+ ZE, for some € Z*. Then,

(i) there exists a graded free R-resolution Fy of M such that

Fy= @D R(—yi) with v, € | Suppg(Tor/(M, S)), Vj;

JjEB; 0<i<i

(it) if further M is finitely generated and S is Noetherian, each F; could be chosen
finitely generated;

(111) if S =k is a field, M is finitely generated and F, is minimal, then

F’j — Z R(_M>dikaorf(M,k)M.

HEZF
We now introduce two families of sets that play important roles in regularity.

Definition 1.2.8. Set & = {0},& = {vi, + ... + 7, : 1 < ... < 4} for all 1 > 0,
E ==& and & =0 for alll < —1.
Foralli >0, Fi:={vj, + ...+, 51 < ... <Ji} and F; = &; for all i <O0.

Observe that & C F; for all ¢ and if v; = ~ for all 4, then & = {lvy} when & # ()
and F; = {lv} when F; # (.

Definition 1.2.9 (Multigraded regularity). Given v € G and | € Z>o, a G-graded
R-module M is weakly (B,~)-regular at level [ if

v ¢ | JCh(M) + Fior.

i>1

M is weakly (B,~y)-reqular if it is weakly (B,y)-reqular at level 0.

If further M is weakly (B,~')-reqular (respectively, weakly (B,~')-reqular at level
1) for any ~' € v+ C, then M s said to be (B,~)-regular (respectively, (B,~y)-regular
at level 1). One writes regg(M) := reg% (M) with

regy (M) == {y € G : M is (B,~)-regular at level I}.

It immediately follows from the definition that regh (M) is the maximal set S
of elements in G such that S +C = § — that is, § is C-stable — and M is weakly
(B, 7)-regular at level [ for any v € S.

Example 1.2.10. Consider k =2 and ny = ny = 2 in Example[1.2.5. Thus

U Ca(R) + Fioy = Cu(R) + Fs.

i>0
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Once Cn(R) = Z2_, and F5 = {(3,0),(2,1),(1,2),(0,3)}, we must have

| JCiL(R) + Fiot = By X T UZco X Zeoy ULy X Lo U g X Ly

1>0

and since the complement of the set above is Zéo-stable we conclude that

regm(R) = Z§,1 X Z22 U Z2,1 X Zzl U ZQZO U Zzl X szl U ZZQ X ngl'

2227227 reg,,(R)

(0,0)

1.3 Deficiency modules

In this section, we introduce deficiency modules and the notion of canonical mod-
ule of a module.

Let (R,m) be a Noetherian local ring which is factor of a Gorenstein local ring
(S,n) of dimension s, that is, there exists a surjective local homomorphism S — R.
Denote by v the Matlis dual. The local duality theorem (see for example [18, Theorem

11.2.6]) assures that for all finitely generated R-module M there exists isomorphism
HI (M) ~ Exty’ (M, S)"

for all j > 0. See [17, [18] [58] for all these concepts not defined here.

Schenzel [76] generalized the notion of canonical module in the following sense.

Definition 1.3.1. Given a finitely generated R-module M, the j-th deficiency module

of M is defined as
K7 (M) = Ext% (M, S)

for all j = 0,...,dimg M. Particularly, K(M) := K% =M()) is called the canonical
module of M.
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Local duality assures that these modules are well-defined (i.e., they do not depend

on the Gorenstein ring S). In a certain sense, since
H} (M) ~ K7 (M)

for all j =0, ...,dimg M, the deficiency modules of M measure the extent of the failure
of M to be Cohen-Macaulay.
We say that a finitely generated R-module M satisfies Serre’s condition Sy, for

k being a non-negative integer, provided
depthp, M, > min{k, dimp, M,}

for all p € Supp M.

Lemma 1.3.2. (|76, Lemma 1.9]) Let M be a finitely generated R-module of dimension
t. The modules K’ (M) satisfy the following properties.

(i) dimg K7(M) < j for all integer j and dimp K (M) =t;

(11) Suppose that M is equidimensional. Then M satisfies Serre’s condition Sy, if and
only if dimg KI(M) < j—k for all0 < j <t.

1.4 Generalized local cohomology

In this section R denotes a Noetherian local ring with maximal ideal m. Also,
denote by v the Matlis dual and by ~ the completion with respect to m. Further,
wr denotes the canonical module of R whenever it exists. See [17, [I8, 58] for all those
basic notions.

The theory of generalized local cohomology, initiated by Herzog [49] in his ha-
bilitationss, and further developed by Suzuki [80], Bijan-Zadeh [12], Yassemi [84] and
Herzog and Zamani [52]. It also has attracted the attention of many other authors, see
for example [2], 29, 48, [67].

Definition 1.4.1. ([49]) Let R be a ring and M, N be finitely generated R-modules.

Given an ideal I of R and an integer ¢ > 0, the ith generalized local cohomology module
of M and N with respect to I is defined as

Hi{(M,N) = @Extg(M/J”M, N).
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Notice that by taking M = R we retrieve the ordinary local cohomology module
Hi(N) of N. A systematic approach of this notion has been done first by Suzuki [80],
whose next lemmas and spectral sequences in Appendix [B.2.5 are fundamental in some
of the main results in Chapter [5
Lemma 1.4.2. (|80, Theorem 2.3|) Let (R,m) be a local ring and M, N be finitely

generated R-modules. Sett = depthy N. Then, H. (M, N) # 0 and HI (M, N) =0 for
all 7 < t.

Suzuki also provides a local duality theorem for generalized local cohomology
modules.
Lemma 1.4.3. (|80, Theorem 3.5|) Let (R,m) be a Cohen-Macaulay local ring of

dimension d, and let M, N be a pair of finitely generated R-modules. If pdp M < oo
then, for each j > 0, there is an isomorphism

—~

‘ N dei)
H) (M, N)V = EXtE J(N,M@ﬁ wﬁ).

Now we recall the local duality version for finite injective dimension.

Lemma 1.4.4. (|52 Theorem 2.1(b)|) Let R be a Cohen-Macaulay local ring of di-
mension d with canonical module wg, and let M, N be finitely generated R-modules. If

idg N < oo then, for each j > 0, there is an isomorphism

~_

HJ(M,N)" = Ext (Homg(wg, N), M).

1.5 Homological dimensions

In this section, we assume all rings are Noetherian.

1.5.1 Complete intersection dimension

Needless to say, the projective dimension pdp M of a finitely generated module
M over alocal ring (R, m) is a fundamental classical invariant. One of its refinements is
the so-called complete intersection dimension of M. The theory about this homological
dimension was introduced in [9] by Avramov, Gasharov and Peeva, and it features many
interesting properties as well.

Definition 1.5.1. [9] First, a quasi-deformation (of codimension c) of a local ring R

is a diagram of local homomorphisms R — R’ < S, the first being flat and the second
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surjective with kernel generated by an S-regular sequence (of length c¢). Now, if M is a

finitely generated R-module, then the complete intersection dimension of M over R is
defined as

Cl-dimg M := inf{pdg M ®xr R’ — pdg R': R — R’ + S is a quasi-deformation}.

Recall that a Noetherian local ring (R, m) is a complete intersection if its com-
pletion in the m-adic topology is isomorphic to the quotient of a regular local ring
by an ideal generated by a regular sequence. We note some interesting properties
of Cl-dimg M. For instance, Cl-dimgr M < oo for every finitely generated R-module
M if (and only if) R is a complete intersection ring. Another remarkable property
is that Cl-dimp M < pdp M for every finitely generated R-module M, with equality
whenever pdy, M < oo. More precisely, if Cl-dimr M is finite then it satisfies the
Auslander-Buchsbaum type formula CI-dimz M = depth R — depth M. Therefore, the
class consisting of the modules of finite projective dimension is (strictly) contained in
the class of modules having finite complete intersection dimension. See details in [9].

The next lemma turns out to be useful in our approach in Chapter
Lemma 1.5.2. (|8, Theorem 4.2|) Let R be a local ring and M be a finitely generated

R-module such that CI-dimg M < oo (e.g., R is a complete intersection ring). Then,
pdy M < oo if and only if ExtG(M, M) =0 for some even integer e > 2.

1.5.2 Gorenstein dimension

We invoke yet another homological dimension. Let R be a ring. An R-module
M is said to be totally reflexive if M is reflexive and Ext’ (M, R) = Exty,(M*, R) = 0
for all ¢ > 0, with M* = Hompg(M, R) being the algebraic dual of M.

Definition 1.5.3. [6] A non-zero R-module M is said to have Gorenstein dimension

of M at most t if there exists an exact sequence
0—X, =Xy 11— —=Xo—=M—=0

where X; is a finitely generated totally reflexive R-module for each j = 0,...,t. We
denote this by G-dimg M < t. In this case, we in particular write G-dimg M < o0;
otherwise, G-dimp M = oco. If G-dimr M < co we define

G-dimp M := inf{t : G-dimp M < t}.
Clearly, G-dimg M = 0 if and only if M s totally reflexive.
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We briefly note some properties of G-dimj,; and report a lemma. If R is Gorenstein
then G-dimg N < oo for any R-module N. As is also well-known, the basic relation
between Gorenstein, complete intersection and projective dimensions can be expressed
as

G-dimg N < Cl-dimgp N < pdp N
, which are all equalities whenever pdy N < co. See [9] for details.

Lemma 1.5.4. |55, Theorem 2.2| If M is an R-module with idg M < oo, then
G-dimp M = pdp M.

1.5.3 Gorenstein injective dimension

Definition 1.5.5. [33] A complete injective resolution is an exact sequence of injective
R-modules

I: - - —-=1"—-=">]*—...

such that Homg(E, 1) is exact for every injective R-module E. An R-module M is
said to be Gorenstein injective if there exists a complete injective resolution 1 with
M = ker(I° — I'). Now, given a non-negative integer v, we say that a non-zero
R-module M 1is of Gorenstein injective dimension at most r, which is denoted by

Gidr M <, if there exists an exact sequence
0-M-—-G —-=G'—-... =G —=0

such that each G’ is Gorenstein injective. We then define the Gorenstein injective
dimension of M as
Gidg M :=inf{r : Gidg M < r}.

For the trivial module M = 0, we set Gidg 0 = oo.

The Gorenstein injective dimension of an R-module M generalizes the usual in-
jective dimension in the sense that Gidg M < idg M, with equality if idg M < oo,
according to |24, Proposition 3.10]. Another useful property is that, if R is Gorenstein,
then Gidg M < oo for every R-module M; this follows from [34, Theorem 3.2]. The
next lemma is a version of the well-known Ischebeck’s formula (see, e.g., [18, Exercise
3.1.24]) in the context of the Gorenstein injective dimension.

Lemma 1.5.6. (|75, Theorem 2.10]) Let M be a finitely generated R-module with

idg M < oo and let N be a finitely generated R-module with Gidg N < oco. Then,
er(M, N) = depth R — depthy M.
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Chapter 2

Mayer-Vietoris spectral sequence

In this chapter, we provide a generalization for the Mayer-Vietoris long exact
sequence, see [I7] or [58]. We construct a spectral sequence, which will be called
Mayer-Vietoris spectral sequence, that depends on the number of ideals one is working
with in such a way that it degenerates to the well-known Mayer-Vietoris long exact
sequence when one takes just two ideals. Such a spectral sequence is a distinct gen-
eralization of the Mayer-Vietoris long exact sequence, but somehow similar to [I] and
[66], which has been quite useful in this work. Besides the possibility of working with
more than two ideals, our construction does not require Noetherianness, and from these
generalizations, a quite amount of results will follow. We should notice that the non-
Noetherianness in the Mayer-Vietoris long exact sequence is a well-known result, which
may be seen, built through different paths, for instance, in |78 and [81].

We provide two ways to construct the Mayer-Vietoris spectral sequence. One
of them is an application of the Cech spectral sequence which is studied in [19, 140,
43] and the other one is a direct construction of filtrations of complexes that builds
such a spectral sequence up. Each one has its own advantage. Although the second
construction is direct, the Cech spectral sequence alternative gives immediately the
second page of the spectral sequence (in geometrical terms). We also calculate the
second page in terms of sheaf cohomology groups and inverse limits.

The textbooks [70] and [74] are nice introductory references for the reader not

acquainted with spectral sequences. Besides we devote Appendix [B] for spectral se-



quences and Section especially treats the Cech spectral sequence. As already
mentioned, |19 40}, 43] discuss extensively the Cech spectral sequence.

The construction of the Mayer-Vietoris spectral sequence by filtrations may be
seen as an application of the studying of relations between Cech complexes of finite
sequences and the Cech complex defined by the product of these sequences. To
make it easier to read, we shall fix and modify some notations.

Let R be a ring and M be an R-module. Consider a sequence of elements a =
ai,...,a, of R and let I be the ideal of R generated by a. One may consider the Cech
complex C*(U,, M) where U, is the open covering of U, = Spec(R) \ V(a) given by the
basic open subsets defined by the as, see Section Write

Eo (M) = C*(Us, M) ~T(X,C*(Us, M)).

a

With this notation, what we have from Section [1.1.2]is an exact sequence
0— H}(M)— M — H%(%3(M)) — Hj (M) —0

and isomorphisms

H} (M) ~ H' (63 (M)

for all ¢ > 0.

We should also notice that, as already seen in Section [I.1.1] in the case of R
being Noetherian, H:( ) coincides with the i-th right derived functor of the I-torsion
functor lim Hompg(R/I™, ). But even more, H'(%?(_)) coincides with the i-th right
derived functor of the ideal transform functor D;(_ ). [I7] shows many properties of

ideal transform functors as well as their geometrical significance.

2.1 Construction

Given an R-module M and aq,...,a, sequences of elements of R, it is well-
known that the tensor product of Cech complexes Ce(R)®g...0rCs (R) @ M is
quasi-isomorphic (i.e., they have isomorphic cohomology modules) to the Cech complex
Cs.U..ua, (M). We wonder if there is a similar relation considering the complexes % (M)

instead. That is what we investigate in the first subsection.
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2.1.1 A quasi-isomorphism

The following preliminary results were obtained in this thesis.

Lemma 2.1.1. If a = {ay,...,a.} and b = {by,...,bs} are two finite sequences of
elements in R, ab = {a;b; :i=1,...,rand j = 1,...,s} is their product and M is an

R-module then there exists isomorphism
H° (€ (M) =~ H*(€3(R) ®r 63 (R) ®r M)

and this isomorphism is functorial in M.
In case of R is Noetherian and of both I and J are the ideals generated by a and

b respectively, we have a functorial isomorphism
Dyy(Z) = Di(Dy(_))-

Proof. Note that (%)

@b, ; € H(€3(M)) if and only if there is r = r(4, j, k, ) such
that

3

$kl(aibj)skl (aibjakbl)s”” = xij (akbl)sij (aibjakbl)s’“”.

After some identifications we can give H*(6*(R) ®r €2 (R) ®r M) a similar charac-
terization. Indeed, (L> € HY(62(R) ®r 65 (R) ®r M) if and only if there are
j

(aib]' )i i,

u=u(i,j,1),v=v(i,k,1),w=w(i,jk) and z = z(j, k,[) such that

Sij Sil+u S; Siitu
xijbl g (aibjbl) i - xilbj l(aibjbl) R

si1+v Skp1+v
)

xa (a;apb) = xya;," (a;aib)

Sijtw Sijtw

Trja; (a;axb;) = xi5a,” (a;a1b;)

and
Skj Sp1+z __ Skl Skitz
ajkjbl ](akb]’bl) kil = xklbj (@kbjbl) kiTz,

Fix (4, 7) and (k,1) with (¢, 5) < (k,l). The image of (—(a,i’:;si» through the differential
v Z7j
composed with the projection onto M4, 18

Lijay Lijay,

(aiakbj)skf (aiakbj)sii ’

We may see the three other equations by looking at the image of (dﬁ) through
“a 2%
the differential composed with the projections onto Mg,q,4,, Mapn, and M, pp,-
By taking ¢ = k in the first equation of the proof we have

C3Si (3 3 \Sijtr  Satsigtr g8 gog sy Sijtsijtr
Ty bj (a;bjb)* " a; = x;;b;"7 (a;b;0,)*" " a, )
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Since a; is invertible in M, we have the first of the last four equations above.

Similarly one can find the three others and this proves that
H(€5(M)) € HY (€3 (R) @k € (R) @r M).

Now if the four equations that characterize H(6*(R) ®r €2 (R) @ M) hold true then

Sijt+situ

by multiplying the first one of them by a; (a;bjarb,)***" we have
xij(akbj)sij(aibjakbl)skl+(sil+u+v) - xijazil(aiakbl)skl+v(az‘bjak;bl)Sij+ub§il+skl+v.
From the second equation we conclude that
15 (arb;)* (aibjagby) =St = g (b)) (agbjagby) ¥t atutv),

This proves the other inclusion. The functoriality stems from the functoriality of the
identifications involved.

Finally, the tensor product of the complexes € (R) and %y (R) ®r M yields a
spectral sequence converging to H*(%6(R) ®r 6y (R) ®r M) and in particular

H(%;(R) @r G5 (R) @ M) ~ H'(%; (H" (€3 (M)))).
The lemma now follows from [I7, Proposition 5.1.23]. |

We want to extend Lemma [2.1.1| in the sense that the complexes involved are
quasi-isomorphic. For that, we need to use some geometric tools.

Consider finite sequences a and b of elements of R and write X = Spec(R).
If jo: Uy —» X and j, : Uy — X are the canonical inclusions, then we denote by

D*(F) = C*(Uy, Ox) ®o, C*(Us, Ox) Rp, F the total complex

(Ja)«C*(Us, Ox|v,) @0y (J6)+C*(Us, Ox|u,) @ox F

where F is an Ox-module.

Lemma 2.1.2. If a and b are finite sequences of elements of R, then the sequence of
functors {HP(I'(X, D*(_)))} is a universal d-functor in the category of quasi-coherent

sheaves.

Proof. First, once C*(U,, Ox) @ C*(Us, Ox) is composed by flat R-modules, D*(_)

preserves exact sequences of sheaves so that { HP(T'(X, D*(_)))} defines a d-functor.
Now, a result of Gabber [32] Corollary 3.5| assures that the category of quasi-

coherent sheaves on X has enough injective objects, and thus flasque sheaves, see [40),

Lemma 2.4]. Then let M be a quasi-coherent flasque sheaf on X and M an R-module
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such that M ~ M. By applying the global sections functor to D®*(M) we obtain the

total complex given by the double complex
DX, D* (M) = C7(Uy, Ox) @5 C*(Us, Ox) ® M = €2(R) 1 G2(R) @r M.

Such a double complex gives rise to a spectral sequence E converging to H*(T'(X, D*(M)))

whose first terms are
EVT = CY(R) @r HY (65 (M)) =~ 65 (H %y (M))).

(See Appendix [B| for spectral sequences.) Once M is flasque, Proposition assures
that C*(Uy, M) is a flasque resolution of M and thus E? = 0 for all ¢ > 0. It follows
by convergence of E that

HP(T(X, D*(M))) = E5" = HY(%; (H°(67 (M)))).

Finally, since again M is flasque, it should be noticed that HO(¢y(M)) = HO(Uy, M)
is flasque as well. Therefore
HP(T(X, D*(M))) = 0
for all p > 0. |

Proposition 2.1.3. If a and b are two finite sequences of elements of R, then given

an R-module M, for all p > 0 there exists functorial isomorphism
HP (%5, (M) ~ H? (43 (R) ©r 65 (R) @r M).
Proof. By Lemma [2.1.2] we have that
{H? (47 (R) ©r 6 (R) ®r _)} ~{H"(I'(X, D*(_)))}

is a universal J-functor in the category of quasi-coherent sheaves. On the other hand,

{HP(€5(_)} is also a universal d-functor in the same category. The result follows by
Lemma 2.1.1] |

Proposition allows us to construct a filtration to the complex €, (M) with
the cohomology of the complexes involved in the filtration being known. Indeed, con-
sider the tensor product of the Cech complexes D* := C*(R)®C¢(R)®M , see Definition
. Switching DY by 0 and applying a shift in such a way that D! is centered at level
0 one gets a complex isomorphic to €, (M). Moreover, by considering the complex F®

such that

o 0, p=0

@i—‘,—j:p—‘,—] Oé(R) ® Cg (R)®@ M, p#0
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with differentials induced by that ones of C5(R) ® C¢(R) ® M, it may be seen that
F* ~ €2 (R) @ 6g(R) ® M[—1] that, by Proposition 2.1.3] has as cohomology modules
those of €5 (M)[—1].

We would like to extend this construction to more than two ideals. What we get
from such a construction is a filtered complex which cohomology can be approximated
by sheaf cohomology groups of the sort H*(Uy, M ), see Section m This can be
done because from a filtered complex a spectral sequence arises. (The reader may see
this construction, for example, in [70] or [83]). It may be noticed, for instance, that
from the filtered complex given above, a spectral sequence with only two columns arise
and which abutment is H*(Up, j, M ), where I and J are, respectively, the ideals of R
generated by a and b. From this case, in particular, the spectral sequence degenerates
in a long exact sequence, which is the well-known Mayer-Vietoris long exact sequence.
We shall prove this in the next section. Therefore, summing up, we are seeking a
construction that generalizes that of the Mayer-Vietoris long exact sequence.

Induction on the number of sequences provides a generalization to Proposition
2. 1.5l
Proposition 2.1.4. If M is an R-module, ai, as, ..., a, are finite sequences of elements

in R and a is the sequence defined by all distinct products of n elements, where only

one element belongs to a sequence a; fort1=1,...,n, then

HY (€ (M)) ~ HY (€, (R) ®r €5 (R) @R ... ®r G5, (R) ®r M), for all p > 0.

Proof. The tensor product of the complex €, (R) ®g €y, (R) ®r ... g €y (R) by the
complex €y (M) gives rise to a spectral sequence £ which abutment assures functorial

isomorphism
H* (€3 (R)®r%e(R)®R...QrEy, (R)@rM) = H (€5 (R)®n.. @R, _ (R)(H"(€; (M))))
so that, by induction hypothesis,
HY(%5, (R) ®r €5, (R) @R ... ©r G5, (R) ©r M) ~ HY(E7, ,, ,(R)(H"(€; (M))))
~ HO(%: (M),
Further, given an R-module N such that Nis flasque (such N exists by a Gabber’s

result [32, Corollary 3.5|), by induction hypothesis, the second page of this spectral

sequence is such that

EPY ~ HP(6°

a1az...0n—1

(H(%2)(V))) = 0
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for all p > 0 or ¢ > 0 so that {H?(%; (R) ®r €5 (R) @R ... ®r €. (R) ®r _)}p is a
universal d-functor, whence the result. |

Now we shall provide a more direct proof for Proposition [2.1.4]
Let ay,...,a, be sequences of elements in R and M be an R-module. We denote
the total complex (¢ (R) ®r Cp(R) ®r ... ®r Gy, (R) @ M)[-1] by €, (M) and

the (augmented) complex

0—>M—%, . (M)—~% . (M) —
by Cq, . (M). We set Hél ..... o, (M) = Hi(CCT1 77777 o (M) for all ¢« > 0. Further, by
defining

...........

0—>%r

where M also denotes the complex centered in the R-module M at degree 0, as we did

in Section Thus there is an exact sequence

0— HY

as the first one at the beginning of this chapter, and isomorphisms
H'(C3,... 0, (M)) = Hy, o, (M)

for all 7 > 1.

From now on, let a be the sequence defined by all distinct products of n elements,

where only one element belongs to a sequence a; for: = 1,...,n. Let I be the ideal gen-
erated by a. It should be noticed that the sequence 0 —=C9 (M) ——=C, (M)

Lemma 2.1.5. Assume that M = H}(M), then Ci(M) = C. . (M) =0 for any
i > 0.

Proof. For i > 0, the summands of C(M) or C?,

w is a multiple of an element of the form a4 -...-a,, for some product with a; € a;. W

77777 o, (M) are localizations M,,, where
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For an ideal J generated by a sequence of elements b in R, we set D;(M) :=
HO(€2(M)) (even though the ring is not Noetherian). Moreover, as Chardin, Jouanolou
and Rahimi have shown in [22], any element of H%(M) is annihilated by a power of the
ideal J. This extends to sums of localizations C?H%(M) and hence to the quotients

H}(HY(M)) and submodules D;(HY(M)).

Lemma 2.1.6. For any i >0, H.

.....

Proof. First, notice that if Fy =, H is a spectral sequence such that H?(EY?) = ED?
for all p,q then HY(H') = H* for all i > 0. Thus, the result will follow by considering
the spectral sequence arising from the double complex € (R)®r...®rC,, (R)@rM =

(62 (R)®r...®r%e_(R)) ®rEr (R) @ M:

By = HU(63(R) @ .. ©n G, (Y (43, (F) ©r M)

that abuts to H* (€2 (R)®g. .. @r%6s, (R) QM) = HH (€2 . (M)), and showing
that £y’ = HY(E5’). We shall proceed by induction in n. We commented the case
n = 1 before this lemma. Suppose n > 1 and that the result holds true for any module

and n — 1 sequences.

If j > 0, then H' (62 ®r M) = H{(M) so that

H (€3 @p M) = H}(H' (€7, @r M)
and thus Ey/ = HY(E47). Suppose j = 0. If i > 0, then

Ey" = H"\(E;, (Do) (M) = Hof" o, (Dia, (M)

Alyeeey an—1 A1yeeey an—1

so By® = HY(EL"). Once H(@S, . (M) = Hi, .
that Hg,

Now, suppose ¢ = 7 = 0 in the spectral sequence and consider the exact sequence
2.1.1, Given a; € ay,...,a, € a, and x € Dq,, o, (M) = Dq,,. 0, (D@, (M)), by
induction hypothesis there exists N such that (a; - ... a,—1)Y2 € D(,,)(M) and then
(a1 -...-a,)Nz € M for N> 0. In other words, I"z =0in H! . (M). |

(M) for all i > 1, we conclude

The next proposition is another proof for Proposition

Proposition 2.1.7. If M is an R-module, a, as, ..., a, are finite sequences of elements
m R, a is the sequence defined by all distinct products of n elements, where only one

element belongs to a sequence a; fori =1,...,n, and I is the ideal generated by a, then

----- an<M) a’nd H}(M> = Hcill,,..,

for alli > 0.
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Proof. First, Lemma assures that it suffices to prove the proposition when HY (M) =
0. Thus, from the exact sequences

0—M —D;(M)—~H}M)—~0 and 0—>M —D,, . (M)—H., _ (M)—0

-----

and from lemmas [2.1.5| and [2.1.6| we obtain isomorphism of complexes €,

G0 (D1(M)) and €3 (M) ~ 63 (Ds,,...a, (M)). In particular,
(1) Day,.an(M) = Dy, . a,(D1(M)) and Dy(M) =~ D(Dy,...qa,(M));
(ii) Hél _____ o, (M) ~ Hél ..... o, (Dr(M)) and Hi{(M) ~ Hi(D,,... q,(M)) for all i > 2.

gives rise to two spectral sequences that collapses at second page in such a way that

an(M)) 2= Dqy o, (Dr(M)) and Hj(Dy,

..........

for all ¢ > 2. The result follows from (i) and (ii). |

2.1.2 The spectral sequence

We are now ready to construct the promised Mayer-Vietoris spectral sequence.
The reader not familiarized with the construction of a spectral sequence has [70, [74]
and [83] as pretty good references.
Theorem 2.1.8 (Mayer-Vietoris Spectral Sequence). Let M be an R-module. Given
1,1, ..., I, finitely generated ideals of R such that [ = Iy + ... + I,,, then there exists

spectral sequence

E?q - @ Hq(UIiOIil...Iiw M) =p Hp+q(UI’ M)

10<...<ip

Proof. Given p > 1 and m integers define
X" i=A{(i1, . in) € N" 14y + ... + i, = m and at most n — p — 1 of the 4}s are zero}.

Let ay, as, ..., a, be finite sequences of elements of R such that I; is generated by a; for
all i =1,...,n. Thus [ is generated by a =a; Uay U ... Ua, and consider
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Fr= P  CHR) @rC2R)®r ... 05 Cit(R) @ M

p
(11,8250 0s0n ) EX I

where the C3 (R) are the Cech complexes . Consider also morphisms

m m+1
Fp — Fp

as the restriction of the differential CJ"(R) ®p M — CJ"*'(R) ®r M to FJ".

Now, by considering the complex %€.* (M) from the beginning of the section, notice
that it can be obtained from C®(M)[1] by replacing C?(M) to 0, as we have already
seen in Section [[.I.2] By writing in the same way the complexes F, after the same
shift, the family {F,}, turns out to be a limited (descending) filtration of € (M) and
therefore it yields a spectral sequence F converging to

H*(€*(M)) ~ H*(U;, M).

a

Moreover, it may be seen that

F/Fpn=| @ G (R)@r%y (R) ®r...©0r Gy (R)@r M | [-p]

10<...<ip

for all p > 0 so that, by Proposition [2.1.4] (or [2.1.7)),

Ep R Hp+q(F / ) @ Hq ((gﬂzo Qip Qi (M)) = @ Hq(UIiOI'Ll "'Iip’ M)

10<...<ip i0<...<ip

for all p > 0 and ¢ > 0, and

HYEH(M)/F)) = @H" Up,

for all ¢ > 0. [

2.2 Second page

A natural question that has arisen is what the second page of the Mayer-Vietoris
spectral sequence looks like. We suggest two alternatives to respond to that. The first
one was already mentioned, it is another way to construct a Mayer-Vietoris spectral
sequence. Indeed our spectral sequence may be seen as a particular case of the Cech
spectral sequence (see Appendix so that its second page is given in terms of

objects having a geometrical meaning. Another great advantage of this construction
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is that the ring does not need to be Noetherian. The second alternative has ended
up having a more topological aspect as the finite sequences ay, ..., a, form a basis of
a certain topological space. This way gives the second page in terms of right derived
functors of inverse limit functors.

Theorem 2.2.1 (Mayer-Vietoris Spectral Sequence). Let aj,qs,...,a, be finite se-
quences of elements of R and M an R-module. If a = a; Uay U ... Ua, and I s

the ideal of R generated by a then there exists a spectral sequence

— —

EYY = HP(Uy, HY(M)) =, HP (U, M)

where U, is the family (Uy,), i = 1,...,n, with Uy, being the complement in Spec(R) of
the variety defined by the ideal generated by the sequence a;. Moreover,

B = @ HU, 1,0, M)

10<...<ip

and the first page coincides with the Mayer-Vietoris spectral sequence’s[2.1.8.

Proof. The existence of the desired spectral sequence follows directly from [40, Théoréme
5.4.1]. The first page is obtained by noticing that, for every p, Uy, NU,, N..0Up, =
Ul g, o1, - |

w0 iy iy
The second alternative demands some work on general sheaf theory and inverse
limits. Its too long and technical arguments on basic issues of these two subjects do not
seem to show us much relevance in what concerns the Mayer-Vietoris spectral sequence
performance. Hence we attach this discussion in Appendix [A] and here we only display
what the second page of the Mayer-Vietoris spectral sequence looks like.
Let ay, as, ..., a, be finite sequences of elements of R and [y, Is, ..., I, be the ideal

generated by them respectively. The set

S={Liy Ly L, :p=0,...n—1and iy < i, < ..<ip}

P

endowed with the inclusion order turns out to be a topological space with basis being
composed by the subsets (—oo,I] := {J € ¥ : J C I}. The second page of the

Mayer-Vietoris spectral sequence is given by

BP9 = m @) gy, M)
Iex
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2.3 The long exact sequence and further applications

In this section, we provide some general applications to the Mayer-Vietoris spec-
tral sequence. The first one is naturally the Mayer-Vietoris long exact sequence. The
major advantage of this construction is the no need for Noetherianity. It allows us to
generalize many results proved in the Noetherian case that we naturally shall prove
some soon. We should remember that the Mayer-Vietoris long exact sequence in the
non-Noetherian case is a well-known tool. For instance, it is constructed (by different
ways) in [78, Theorem 9.4.3] and in [81].

Theorem 2.3.1 (Mayer-Vietoris Long Exact Sequence). If I and J are finitely gener-

ated ideals of R and M is an R-module then there exists long exact sequence

0— HY, (M) — H} (M) & Hj(M) — H},(M)
Hj, (M) = H}(M) & H}(M) — Hj,(M)

HI2+J(M)

Proof. By the relation between local and sheaf cohomology that we have already seen
in Section [1.1.2] the Mayer-Vietoris Spectral Sequence with respect to I and J
has as first page

0——=H}(M)® H3(M)

H}y (M) —=0

0—— H2(M) @& H2(M)

12, (M) —0

0—>HO(U[,M)EBHO(UJ,M)%HO(U[J,M)%O

Since this spectral sequence converges to H*(Uy, s, M ) it degenerates in the fol-

lowing long exact sequence.

0— HO(Upy s, M) — HO(U;, M) @ H(Uy, M) — H(Up;, M) — HZ,_;(M) — - -
The exactness of the sequence

—~

0—> H%(M)—> M — H'(Uy, M) — HL(M) -0

for any ideal K (see again Section [1.1.2]) assures us the exactness of the rows in the
following double complex
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0 0 0
| b !
0_>H?+J(M) HO(UHJaM) HII+J(M)_>O

0
|
M
o l o b
0—H}(M)® HY(M)—-M &M —H(U,M)® H(U;,M)—~H}(M)® Hj(M)—0
8 Ve |v
00— H% (M) J\l4 HO(Upy, M)
J | |
0 0

0

0

(The first and fourth columns are induced by the second and third ones. The second
column is the canonical exact sequence z — (x,z) and (z,y) — z — y.)

This double complex provides two spectral sequences. One of them (taking hor-
izontal homology first) is composed of zeros so that the other spectral sequence F
(obtained by taking vertical homology) converges to zero. Since the second column is

an exact complex and the third one has homology only in H°(U;;, M), the first page
of F is given by

ker o 0 0 . ker

—
—
—

kera/imps 0 //2/0/ kere/im~y

—
—

coker 3 "0 coker ¢ — coker 1)

where the dotted homomorphism is the only one on the third page. The convergence

gives us the exact sequence

0—Hp, ,(M)— H}(M) & Hj(M) N—>H?J(M) ————coker 8

MW H}, (M)

and isomorphism coker ¢ ~ coker 1. This isomorphism, in turn, induces another double

complex

0—imp— HO(U;;, M) — H2, ;(M) — H2(M) & H2(M) — . ..

l J || ||

0 im o —> H}, (M) — H}, (M) — H}(M) & H}(M) — ---

and a similar discussion as above completes the proof. [ |

The first applications of the Mayer-Vietoris long exact sequence is a generalization

of a result of Dibaei and Vahidi on cohomological dimension [28, Corollary 2.2|. It is a
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homological invariant that plays an important role in both commutative algebra and

algebraic geometry, see [17), 22] for interesting properties and applications.

Definition 2.3.2. If I is a finitely generated ideal of R and M is an R-module, the

cohomological dimension of M with respect to the ideal I is defined as being
cd(M) :=sup{p € NU{—o0} : H}(M) # 0}.

Corollary 2.3.3. If I and J are two finitely generated ideals of R and M is an R-
module then

cdry(M) < cdj(R/anng(M)) + cdj(M).
In case of M being finitely generated we have
cdry(M) < cdf(M) + cd;(M).
Proof. The Mayer-Vietoris long exact sequence gives us exact sequence
Hy(M) & Hy(M) — Hj (M) —= Hj5(M)

for all 4. The result follows from [22, Proposition 4.1 b), Proposition 4.1 c), Corollary
4.2]. n

Corollary 2.3.4. Let M be a finitely generated R-module and let I be a finitely
generated ideal of R. Given finitely generated ideals qy,...,q, of R such that I =
q1 N qo N...N qn, then

cd;(M) < icdqi(M).
i=1
Definition 2.3.5. If I is a finitely generated R-ideal and M an R-module, we set
depth; (M) := maz{p € NU {+oc} : Hi{(M) =0, for all i < p}.
When R is local and I is its mazimal ideal, depthp (M) stands for depth;(M).

The next result is a version of the Mayer-Vietoris long exact sequence for

three ideals.

Theorem 2.3.6. Let I,J and K be three ideals of R generated, respectively, by the
finite sequences a,b and ¢. If M is an R-module such that g = depth;, ;, (M) > 2

then there exists long exact sequence
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— — —~ —~

0 H(Urygix, M) H (U, M) ® H(Uy, M) ® H*(Ug, M)

JE—

—~ —~ —~ —~

H(Upy, M) & HY(Urge, M) @& H°(Ujxc, M) H(Upyr, M)

H} (M) & Hj(M) & Hi (M) Hi, (M) & Hie(M) & Hj i (M)

—

oY (M) & Hi (M) @ HY (M)

J——

H Unypye, HO2(M)) 0.

H, (M)

Proof. From the construction of the Mayer-Vietoris Spectral Sequence E one sees
that it has three columns and the only possibly nonzero differentials at the second page
are B9 — Ey%'. Since Ey9 ~ E% = 0 forall ¢ < g — 1, Ey? ~ EY = 0 for all
g <g—2and Eg’q ~ FE%1 = ( for all ¢ < g — 3. Therefore all nonzero differentials

Eg IR E’22 =1 gre isomorphisms for ¢ < g — 2 and all sequences
0,9 L 2,q
B — By — B

are exact for ¢ < g — 2 so that one obtains a long exact sequence from the sequence

1
b\
0— FE3' = E)? ...

|

0

The result follows from definition of depth and from the second page characterization

221 u

The remaining results of this section are attempts to get general information

about sheaf cohomology modules from the Mayer-Vietoris spectral sequence.
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Proposition 2.3.7. Let I, I, ..., I,, be finite generated ideals of R, I = I1+1s+...+ 1,
M an R-module and

m = sup{cdy, .1, .1, (M) | i < iy < ... <idp, p=0,...,n—1}.

ip

Consider the Mayer-Vietoris spectral sequence E defined by finite generators
sets of the I;’s. If m <1 then

HP(U;, M) ~ HP(U;, M)
for all p > 0. In particular cd;(M) <n. If m > 1 then
cd;(M)<n+m-—1,

H"=2(Uy, M) ~ Cokelr(E?*Zm*1 — E?il’mfl)

and there exists exact sequence
0— H" (U, me—Q(M» o Hm+n—3(U7M) — H" (U, Hm—l(ﬂ)) 0.
Proof. Since the Mayer-Vietoris spectral sequence is such that

EPY = @ Hq(UIiO.Iil-...-IiP;M) &~ @ H}]—HI g, (M)

10<...<lp 10<...<lp

for ¢ > 0, we have E7"? = 0 for all ¢ > 0 provided m < 1.

In case of m > 1, it is enough to prove when m is finite. From the corner

0 0 0

. E?—Z,m—l E{’L—l,m—l 0

. EIL—Q,m—Q E?_l’m_2 0

and by convergence,

Hj(M) = H" (U, M) =0

whenever ¢ > n+m — 1,
H" ™2y, M) ~ Eg_l’m_l ~ coker(E'?_Zm_1 — E?_l’m_l)
and there is exact sequence
n—1,m—2 m4n—3 T n—1,m—1
0—E; —H (U, M) — E, — 0.
The result follows by the geometric characterization [2.2.1] |
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The next definition is a generalization of the invariant a;(M) defined in the Section

21

Definition 2.3.8. If R = @,
graded ideal of R and M is a graded R-module then we set, for each i € N,

R, is a positively graded ring, I is a finitely generated

ab(M) :=sup{p: Hy(M), # 0}
if Hi(M) # 0 and ab(M) := —oo else.

Proposition 2.3.9. Suppose R = @, . R» is a positively graded ring, M is a graded
R-module, let I, I, ..., I, be finitely generated homogeneous ideals of R and I = I +
I+ ...+1, If j > 1 then

a}(M) < max{u | Ip < j, H Uy, 1,,.1,, M), # 0}.

Proof. Let E be the Mayer-Vietoris spectral sequence [2.2.1] associated to the n se-
quences defined by the finite generators of the I;’s. Given p such that H }(M Ju # 0

we cannot have (EP77?), = 0 for all p because of convergence of E. Therefore
Hj_p(UIiOIil,_.Iip,M)ﬂ # 0 for some p < j. It proves that {u | H}(M)u # 0} C
{p|3p <j, HP(Uy1,..1,,, M), # 0} whence the result. |
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Chapter 3

Local cohomology over multigraded

polynomial rings

Most of the results in this chapter concern relations, in a polynomial ring, between
local cohomology modules supported in the irrelevant ideal and on ideals generated by
variables. Our main is to bring information about local cohomology modules supported
on these ideals. For instance, a duality-like theorem and Artinianness are proved in
the bigraded case and information about invariants such as cohomological dimension
are settled in general.

We need to set some notation to use throughout this section.

Notation 3.0.1. Let S be a commutative unitary ring. Let k > 1 be an integer and
consider the ZF-graded polynomial ring R = SIX1.0s s Ximgs ooes Xb0s ooy Xpony, | With
deg(X; ;) = e; for all j = 0,...,n;, where e; denotes the i-th element of the canonical
basis of Z*. By a graded R-module we just mean a Z*-graded R-module. Write B; =
(Xi,Oa 7Xz,n1) forz' = 1, ceey k?, B= BlﬂﬂBk, Bio...ip = BmﬂﬂB,p fOTp = 07 ceny k—2
and m = By + ... + B,,.

3.1 The bigraded case

In this section, we consider £k = 2 in Notation To simplify even more the
notation, we write n; = m, ny = n and R = S[Xo, ..., X;n, Yo, ..., Y,,]. Since here we
work on the bigraded case, it is natural to ask whether the results in this section hold

true for k£ > 3. We, indeed, generalize some of these results later.



3.1.1 Cohomological dimension and artinianness

This section presents some information about the cohomological dimension of
local cohomology modules and its Artinianness. We first show a proposition that
generalizes Chardin and Nemati |23 Proposition 3.4] though its proof essentially follows

the same lines.

Proposition 3.1.1. Let F be a graded free R-module. One has
HIm L (F) o H2(F),

Furthermore, if m = n then

. Hpt Y (Fye HEY(F), i=m+1
Hy(F) ~ ! 2
0, else

and if m # n then
HEH (F), i=m+1
Hp(F) ~ q Hgt'(F), i=n+1

0, else.

Proof. Once Hy (F) = 0if i #m+1, Hy (F) = 0if j # n+ 1 and H,(F) = 0 if
[ #m + n+ 2, the result follows from the Mayer-Vietoris long exact sequence [2.3.1

+- == Hy(F) = Hp, (F) & Hp, (F) = Hp(F) = HH (F) — - -
|

The first consequence of the Proposition has to do with cohomological di-
mension, see Definition [2.3.2]

Corollary 3.1.2. If F' is a graded free R-module, then
cdp(F)=m+n+ 1.
In particular, cdg(M) < m +n+ 1 for any graded R-module M.

Proof. The first part follows immediately from Proposition[3.1.1] The inequality follows

from the spectral sequence
Tor, (M, Hy(R)) =, H " (M).

(The not acquainted reader might see Appendix for the construction of this

spectral sequence.) [ |
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The next result is similar to [28, Corollary 2.6] but here we work with intersection

instead of sum.
Proposition 3.1.3. If F' is a graded finitely generated free R-module then
Hy " (Hp ' (F)) = Hg ™ (F).

In particular, the following statements hold true.

(i) cdp, (Hp, ' (F)) =m+1,

(i) cdp,(HET (F)) =n+ 1.
Proof. Proposition [2.1.3] induces spectral sequence

E3Y = HP (65, (H(%5,(I))) =p H™(C5(F)).

By [22, Proposition 4.7] one has EY? = 0 for p > m + 1 or ¢ > n + 1 so that the
isomorphism desired follows directly. Corollary assures the others statements. W

In the Noetherian case, Proposition helps us to set the non-Artinianness of
the local cohomology modules we are working on. Note that Dibaei and Vahidi have
also proved Corollary in |28, Proposition 4.1] following a different path but here

we suggest a more general method for proving this result.

Corollary 3.1.4. If S is Noetherian and F' is a graded finitely generated free R-module
then
dim(HZ ' (F)) > n+1

and
dim(HE ™ (F)) > m+ 1.

In particular, both local cohomology modules are not Artinian.

Proof. By the Grothendieck’s Vanishing Theorem (see [I8, [I7] or [58]) one has
dim(HE ' (F)) > cdp,(HE T (F)) = na + 1.

The proof of the other inequality is alike. [ |

Next lemma removes the Noetherianity in [10, Lemma 2.8].

Lemma 3.1.5. Let I be a proper ideal of R and M a finitely presented R-module. If
cd; (M) =t > 1 then H{(M) = ITHYM). In particular, if R is local then HY(M)

cannot be finitely generated.
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Proof. Note that M is also finitely generated as R/ann(M )-module so that there is

exact sequence of R/ann(M )-modules
0—K—(R/ann(M))" — M —0
for some positive integer n. It yields an exact sequence
H{(R/ann(M))" = Hj(M) — H (K).

Since Supp(K) C Supp(R/ann(M)) = Supp(M) by [22] Proposition 4.7| one has
cd;(K) < edf(M) = t so that ¢ is a surjection. We have thus that in order to
check the equality Hi(M) = ITHY(M) it suffices to prove that Hi(R/ann(M)) =
ITHY(R/ann(M)). Moreover, once Supp(R/ann(M)) = Supp(M) we have

__1R/ann
- CdIJrann

R/ann(M)) = cd;(R/ann(M)),

hence we may suppose M = R and cd;(R) =t > 1.

For an arbitrary R-module N the spectral sequence
Torf{(N, HI(R)) =, HI"(N)
(see Appendix [B.2.6|) assures the existence of a functorial isomorphism

HY(N)~ N ®r Hi{(R).

From this,
HUR)/THYR) ~ R/I ®4 H{(R) ~ HY{(R/I) =0
since t > 1.
The last part follows directly from Nakayama’s lemma. [ |

As immediate consequence of Corollary and Lemma we have the next

relation.

Corollary 3.1.6. If F' is a finitely generated graded free R-module, then
H L (F) = BH(F).

The two following results have also been proved in the Noetherian case in [28§].

Lemma 3.1.7. If I and J are two ideals of R generated by the finite sequences a and

b respectively, M is an R-module and s,t are two non-negative integers such that

(i) HP'""(H,(M)) =0 for all i € {0,...,s +t}\ {t},
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(i) HiT"="HHY(M)) =0 for all i € {0,....,t — 1}, and
(i) Hi ™Y (HY(M)) =0 for alli € {t +1,....s +t}
then we have isomorphism Hj(HY(M)) ~ Hy ' (M).

Proof. Consider the Cech complexes Cy(R) and Cy(M) (see Definition [1.1.1)). The
double complex C,y(R) ®pr Cy(M) induces a spectral sequence

EYY = H(Hj(M)) =, Hy[5(M).

(The interested reader may see Appendix for the construction of this spectral
sequence.) The hypothesis (i) says that EY? = 0 whenever p 4+ ¢ = s+t and ¢ # t.
Meanwhile (#i) and (ii7) implies E5"*~1 = (0 and BT = 0 for r > 2. By

convergence we have E3' ~ H;t, (M) and the differentials

s—rt+r—1 s,t s+rt—r+1

are all zero for r > 2 so that E5' ~ E5?. |

Corollary 3.1.8. If I and J are two finitely generated ideals of R and M is a finitely

presented R-module, then
Hy MO0 (v o g OO (VD ().
Moreover, the following statements are equivalent.
(i) cdryy(M) = cd;(M) + cds(M).
(ii) (M) = edy (H5 0 (0))
(iii) cdy (M) = ed, (H ™ (M),

Proof. The isomorphism follows directly from [22, Proposition 4.7] and Lemma m
If (i) holds then H¢V ™ (H M (A1)) £ 0 so that

cd; (M) < ed;(HSY M (M),

[22, Proposition 4.7| assures equality. Conversely, if (i) holds true then by the isomor-
phism we have H;i’ J(M)JerJ (M)(M ) # 0 which implies

Cd[(M) + CdJ(M) S Cd[+J(M).

We have equality by [22, Proposition 4.2|. Similarly, one proves the equivalence between
(1) and (7). |
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The next result is an immediate consequence of Proposition [3.1.3| and Corollary
3.1.8, It provides another proof (independent of the Mayer-Vietoris long exact sequence
2.3.1)) for the first isomorphism in Proposition [3.1.1} Notice that Corollary also

proves again what concerns cohomological dimension in Proposition [3.1.3]

Corollary 3.1.9. If F' is a finitely generated graded free R-module, then
Hyg " H(F) = Hy " (F),

cdp, (Hp'(F)) =m+1 and cdp,(HE (F)) =n+ 1.

3.1.2 Duality

In this section, we present an interesting duality involving local cohomology mod-
ules supported in the ideals B; and By which is quite similar to local duality; see, for
instance, [17] and [58§].

Here, throughout this section, we suppose that S = k is a field and denote
V' = *Homy( ,k). By [17, Example 14.5.17] and Example we have that the

canonical module wg of R is

wr=R(—(m+1),—(n+1)).
Proposition 3.1.10. There exists graded isomorphism of R-modules
ngl(R) o~ Hg;“(wR)V.
Proof. First we shall use the k-vector space structure of both
HPP(R) = K[X3 Y, oo, X [Ye, ooy Vo]

and
H () = KXo, o X[V L Vi

to define an isomorphism between k-vector spaces; see Example [1.1.3]
Given (a,b) € Z?, once

*Homy (HE ' (R), K)(a,) = Homu(Hp ™ (R) (—a,—5), k)

we define

Olap) - Homk‘(Hg—H(R)?k)(a,b) — HE;H(R)‘(a—(m+'1),b—(n+1))
(Xl / X&) * — X&—l /Xl"‘l
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where the underlines denote the sequences X* = X(°-.... Xim X1 = xlo=t. . Xim—1
and so on.

Since this mapping sends basis to basis we only need to prove that it is well-
defined and surjective. Indeed, an element (Y?/X z)* having degree (a,b) means that
Yomot = a and Y- 5 = —b which implies that > ;" 4 —1 = a — (m + 1) and
Siodi+1==b+ (n+1)and thus X* 1/YZ*! has degree (a — (m +1),b— (n + 1)),
SO Q(ap) is well-defined. Furthermore, given X2y in HE (R (0 (mt1)p—(ns1)), by
writing 4, = i; + 1 and j; = j; — 1 for all I one has ¢, ) ((Xl/il)*) = Xﬁ/xi.

Therefore we have constructed a k-vector space isomorphism
¢ : *Homy (HF ™ (R), k) = HH' (R)(—=(m +1),—(n+1)).

The result will follow by proving that ¢ is indeed an R-homomorphism. For this,
it suffices to prove its R-linearity on monomials X*Y*.
First, notice that

[(X7Y®) (YI/XH7] (YE/X9) = (YI/XP)" (Yete/XoT)

Lifj=s+pandi=gq-—r,

0, else

Lifp=j—sand g=i+r,

0, else.

That is,
[(Xmye) (Yi/x9)] = (vims/xo)”

and thus

o ((X7Y2) (YI/XT)7) = XMty st = Xy (XY = Xoyep ((Y2/XT)7).
n

Remark 3.1.11. Herzog and Rahimi in [51, Lemma 1.2] proved that there exists iso-
morphism of bigraded R-modules

H (R)” = HE ().
Hence by Proposition we conclude that
Hip P (R) ~ HE Y (wr)” and HE'(R)Y ~ HE (wp).
We are now ready to state the duality-type theorem.
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Theorem 3.1.12. If M 1is a finitely generated graded R-module then one has functorial

graded isomorphism
HEH = (M) ~ * Extp(M, H (wg))Y
for all i > 0.

Proof. We consider the graded version of Lemma and Theorem [B.4] By taking

N = H}Z“(R) and P = k in these two results we have two spectral sequences
*Exti (" Exth,(M, HF ' (R)), k) =, H?

and
Torf(M, FExti(HE(R), k) =, HPO.

Both spectral sequences collapses at their second pages so that
* Homy (* Ext(M, HEM(R)), k) ~ H' ~ Tor}" (M, Homk(Hp "' (R), k)
for all ¢« > 0. Now Proposition [3.1.10] implies that
Tor;" (M, * Homw(Hp " (R), k)) ~ Tor]* (M, Hy ' (R)) (—(m + 1), —(n+1))

for all 7 > 0. Since B, is generated by a R-regular sequence, the Cech complex of R

with respect to B, is a flat resolution of H};"'(R), thus
Tor* (M, HE ' (R)) ~ HpH (M)
for all 7 > 0, whence the result. [ |

By taking By = (0) in Theorem [3.1.12) we recover the graded local duality in the

standard case.

Corollary 3.1.13. One has
“Exty(k, H3 T (R)) =0
foralli #n+1, and
*Homy (* Extly™ (k, HF T (R)), k) ~ k(—(m + 1), —(n + 1)).
Particularly, depthy HE'(R) = n + 1.

Proof. 1t is an immediate consequence of Theorem [3.1.12/and from the fact that M =k
has finite length. [ ]
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It should be noticed that the roles of Hj:™'(R) and Hj!'(R) are interchangeable
in the demonstrations of Proposition [3.1.10] and Theorem [3.1.12] For this reason we

just enunciate such similar duality and its corollary.

Theorem 3.1.14. If M is a finitely generated graded R-module then one has functorial

graded isomorphism
H M1 (M) = Extip(M, Hy ™ (wr))”
for all i > 0.
Corollary 3.1.15. One has
* Extip(k, H (R)) = 0
foralli#m+1, and
*Homy (" Extii ™ (k, H5 ' (R)), k) ~ k(—(m + 1), —(n + 1)).
Particularly, depthy HE ™ (R) = m + 1.

As immediate consequence of corollaries [3.1.9] [3.1.13| and [3.1.15| we get the fol-

lowing.
Corollary 3.1.16. If F is a finitely generated graded free R-module, then
depth,(HE ™ (F)) = cdp,(HE (F)) =n+1

and
depthp(Hp, ' (F)) = cdp, (Hp (F)) = m + 1.

3.2 The general case

Remember that we are considering the notation in The first Proposition
of this section provides a bound for the cohomological dimension of graded R-modules

with respect to the ideals B;, ;.

Proposition 3.2.1. Let M be a graded R-module. For all p € {0,....k — 1} the

following inequality holds true
p
cdp, (M) <> ny+(p+1).
=0

In particular, cdg(M) < Z?Zl n; + k.
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Proof. Let F be a graded free R-module. Since every ideal B; is generated by an
R-regular sequence of length n; + 1, from Corollary [2.3.3] we have

CdB¢O4..¢p (F> < ZCdBij (F> = Z(nlj + 1) = an] + (p+ 1)'

<

I
o

I
o

The result follows from the spectral sequence

(F)) =p Hg,)" . (M).

ig.-ip

Tor, (M, Hf,

ip

(See Appendix [B.2.6]) |

The next result is an attempt to extent Proposition to k = 3. But first we

need a lemma.
Proposition 3.2.2. Suppose k = 3. If F is a graded free R-module, then
Hgl+n2+n3+1(F) ~ H"1+"2+n3+3(F).

Moreover, if ny # ny then

Hp Y (F), i=mn+1,

HZB12(F) = Hgi—’_l(F)? 1= U + 17

0, else.

And if ny = ny then

i HE Y (FY@HEF), i=mn+1
HBH(F) ~
0, else.

There are also similar isomorphisms by comparing either ny and ns or ny and ns.

Proof. We shall prove first the isomorphisms concerning Hj  (F'). Consider the ring

T =S[X10,s X101 X20, -y X2.m,]. From the canonical morphisms
T T[X30, ..., Xsns] — R

one has isomorphism
HzBlg (F) = HzBlgf-‘lT(T) ®T F

which implies the claim about Hj (F') because of Proposition [3.1.1]

A completely analogous argument assures isomorphisms involving Hglg (F) and
Hp (F).
Now consider the Mayer-Vietoris spectral sequence

Equ = @ Hq(Uio-..z'pa ﬁ) =p HZH'Q(Urm ﬁ)

10<...<ip
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and write d = ny + ny + n3 + 3. Since d — 3 > 0 and, by Proposition [3.2.1, d — 2 >
max{cdp, (I), cdp, (F)}, one has EY? = gy = P = EY7 = 0 5o that

HE(F) = B2 ~ HEY(U,,, F) ~ HA(F).
u

Proposition [3.2.2]and induction allow us to generalize Corollary[3.1.2] It improves
the bound obtained in Proposition [3.2.1] (by taking p =k — 1).

Corollary 3.2.3. For any graded free R-module F' there exists isomorphism
HglJr...JrnkJrl(F) ~ Hn1+...+nk+k(F)
- m

and cdg(F) =ni+...+ng+ 1. In particular cdg(M) < ny+...+ni+1 for any graded
R-module M.

Proof. By Propositions [3.1.1| and [3.2.2| and induction one can suppose

Hy (F)=0

ig...ip

for p <k —2and ¢ > max{n;, +1,n; +1,...,n;, +1}. The convergence of the Mayer-
Vietoris Spectral Sequence 2.1.8 gives us the desired isomorphism and the vanishing of
HEL(F) for i > ny + ... + ng, + 1. The last result follows from the convergence of the

spectral sequence
Tor (M, H}(R)) = Hy (M),
[ |
Corollary and Lemma [3.1.5| imply immediately a result similar to Corollary
B.1.6

Corollary 3.2.4. If F' is a graded free R-module, then

Hg1+...+nk+1 (F) — BH;1+"'+nk+1 (F)

The spectral sequence defined in [66] (which he also calls Mayer-Vietoris spectral
sequence) allows us to obtain the local cohomology module of a free module supported
on the irrelevant ideal in terms of the local cohomologies of such free module supported
on ideals generated by the variables. To some extent, these last local cohomology

modules are easier to work with. For ease of consultation we put that spectral sequence
in Appendix [B.2.2]
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Proposition 3.2.5. Assume R Noetherian. Suppose n = n; = ny = ... = ny, and let
F be a graded free R-module. If | > 0 then there exists a unique pair (p,q) such that
q—p=1and

Hy(F)= @ HY ., o (F).

10<...<ip
Proof. Consider the spectral sequence in Appendix

E;pg = @ HJ(13¢0+...+Bip (F) =p Hg%ip(F)-

i0<...<ip

Since By, + ...+ B;, is generated by a R-regular sequence of length (p+ 1)(n +1)
one has E; 77 =0 for ¢ # (p+1)(n+1). Moreover, if p > 1 and p’ < p then the system

of equations

' =-p+r
P +n+l)=pE+n+1)+1—r
is equivalent to —rn = 1 which has no solution whenever r > 1. It means that there is

no homomorphism El_p’(p+1)(n+1) — El_p/’(plﬂ)(nﬂ) from which follows that F; = E

and the result. [}

3.3 Vanishing

The vanishing of local cohomology modules in the multigraded case is determined
by the support of these modules. Indeed, the support is the region of the “lattice”
group G (that graduates the ring) on which the module lies. Thus we present interesting
relations involving supports of local cohomology modules. Afterwards, we work on
multigraded regularity and finally we provide conditions for when the graded

pieces of local cohomology modules have finite length.

3.3.1 Support

The first proposition allows us to determine the support of local cohomology
modules of free modules supported in the irrelevant ideal in terms of the support
of local cohomology modules of such free module supported in ideals generated by
variables, which are well known when, for instance, the graded free module is a direct
sum of the same shifts R(—v) where v € ZF.

In this section, we consider again Notation [3.0.1]
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Proposition 3.3.1. Assume R Noetherian. If F = R\ is a graded free R-module
then
CJZB(F> = U U C%io-;-...-;-Bip (F)
q—p=l10<...<ip

for all 1 > 0 and this union is disjoint.
Proof. Note that
C%i0+..-+B¢p (F) = C%i0+...+B¢p (R) = @
if ¢ # (ni, +1) 4 ... + (n;, + 1) and writing d := (ns, + 1) + ... + (n;, + 1), by Example
one has

H%i0+...+Bip <R) =

S[XZ.;J : j=0,..,pand [ =0,...,n;|[Xj1, : j#io,...,17p and [; = 0, ..., n]

7l]

and
CBig .t By, (R) = Suppge (HE, o 4p, (F)) = |
Zzzoal X ZS—(MO-H) X Zgaloil X ZS(MI-H) X ... X ZZ(MP-H) X Z];_OZP.
Given {ig, ..., ip }, {Jo, --» Jg} € {1, ..., k} with {do, ..., %3, } # {Jo, ..., Jo} the intersec-
tion

(nig+1)+4(ni, +1) (njo+1)+-+(nj,+1)
Supka(HBiOO+...+Bip "TUE)) N Supka(HBjZO%.%qu TR

must be empty because if [ € {jo,...,J,} \ {%0,...,%p} then the I-th coordinate of an
element in this intersection should has positive and negative sign, an absurd. It proves

that the union in the statement is disjoint.
Now, consider the spectral sequence defined in Appendix

B = @ HY o (F) =, H5P(F).

10<...<ip

For all
Y€ U U CJqBZ-O-;-__.-f-Bip (F>

q—p=lip<...<ip

there exists a unique (—p, ¢) such that v € Suppy (H]qg,OJr +p, (F)) and thus
[ ip

—p',q' [ %1 +...+B; ( )]'77 (pIJ q/) (p; q)
[El :I’y ~ 0 D
0, else.

By convergence,
[Hy(F)]y ~ [Hp, 4y, (F)]5 #0,
that is, v € CL(F). The result follows from the convergence of the spectral sequence

and by noticing that

Supka (E;p’q> = U U C%io-‘r...—‘rBip (F)

qg—p=lipo<...<ip
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It should be noticed that Lemma has been already characterized the local
cohomology modules of the ring supported in B in terms of the local cohomology mod-
ules supported in the ideals generated by the variables. Proposition characterizes
completely the cohomology module H5(F) because its y-th graded piece is isomorphic
to exactly one of the pieces [Hf A B (F')],- Note also that this proposition holds if
we consider the same torsion in each component of F, that is, F' = R(—~)®) satisfies
Proposition [3.3.1] as well.

Corollary 3.3.2. Assume R Noetherian and let M be a finitely generated graded R-
module. Let I be an ideal in R generated by homogeneous elements of the same degree
that form a M-reqular sequence. If Ko denotes the Koszul complex of such a sequence
then for all 1 > 0 one has

cpmimnc | U U Chvoin, (K

q—p=l u—v=q 1p<...<iy

Proof. The double complex K, ® Cy(R) (Appendix |B.2.3) defines a spectral sequence
EP = HL(K,) =, HEP(M/IM)

so that
Suppye (H(M/IM)) € | ) Suppze(HE(K,)).
q—p=l
The result follows from Proposition [3.3.1 [ |
The next two results are consequences of the duality [3.1.12}

Proposition 3.3.3. If S =k is a field and k = 2, then
Suppg: (* Extiy (k, Hg='(R))) = (m + 1,0+ 1)

and
Suppy: (" Extp ' (k, HE ' (R)) = (m+ 1,n + 1).
Proof. Tt follows immediately from corollaries [3.1.13| and [3.1.15] [

Definition 3.3.4. Given a graded R-module M, define

T;O 7777 ip( M) = SUpka(TOT (M, R/(B; -+ B;,)) and T (M) = UjTji0 """ ZT’(M)
and set
. p .
Tv;o ..... Zp(M) :T:;o ..... lp(M> Z(nil+1)elz and T zp(M) :UJT;O ..... ZP(M)

=0
For simplicity,
T;(M) == T (M) = Suppy (Torf(M, S)) and T(M) := U,T;(M),

J

and similarly for T;(M) and T(M).
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Proposition 3.3.5. If S = k is a field, k = 2 and M s a finitely generated graded
R-module, then
€5, (M) € Ciy(R) + Toyay(M)

and

C, (M) € Cp,(R) + Thng1-p(M).
for all p > 0.
Proof. We shall prove the first inclusion. Given p > 0, by the duality [3.1.12]
C, (M) = Suppgz (" Homy (" Ext?™ P (M, HEY(R)), k) — (m+1,n+1)
C — Suppg. (" Extpt ' P(M, HEH(R))) — (m+ Ln + 1).

Let F, be the minimal graded free R-resolution of M. By [14, Lemma 3.12 (1)]
one has
Supps: (* Hom (. H (R)) = i, (R) = Ti(M)

for all 4 > 0. The result follows the fact that
Suppgs (* Exty ™ P(M, HE™ (R))) C Suppg(* Homp(Frs1—p, HE ™ (R)))

and
Cg,(R)+(m+1,n+1)= —ngl(M)

by Proposition (3.1.10
The second part follows from the same argument applied to the second version
of the duality, see Theorem [3.1.14] ]

The next corollary follows immediately from last proposition and from the Mayer-

Vietoris long exact sequence [2.3.1]

Corollary 3.3.6. If S = k s a field, k = 2 and M 1is a finitely generated R-module,
then for all 1 > 0 one has

Cp(M) € (Cp,(R) + Trny1-:(M)) U (C, (R) + Tia—s(M)) U CLH (M),

In the next proposition we do not require Z* as being the group for which the
ring R is graded; it does hold for any abelian group G. Hence we consider the same
ring R = S[X1,0, ..y X115 oo Xk 05 oo, Xkimy ] but with deg(X; ;) = € G for all i and
J, and m is the ideal generated by the variables Xj ;.

Proposition 3.3.7. Suppose S Noetherian and let M be a graded R-module. If x is a

homogeneous M -regular element of degree n in a graded ideal n then
CLH (M) + 1 € CL(M/xM)
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for all 1 > 0.
If in addition M is Cohen-Macaulay of dimension d and x € m then

Ca(M) +n=CEH(M/zM).
More generally, if X = x1,...,xq is a maximal M-regular sequence in n where x;

15 homogeneous of degree n; then

CZ-H + ZTII C C M/(xlw“a Z)M)

7j=1

and in case of M being Cohen-Macaulay and x C m one has

+Zm Co (M (w1, ey 20) M)

foralll € {1,...,d}.

Proof. From the exact sequence 0— M (—n)“= M — M/xM — 0 one has long exact
sequence

< HY(M M) = HE (M (=) = (M) == -

Hence if 6 ¢ Ci(M/xM) then the multiplication by x
[Hy (Mg, = [HH (M),

is injective. Since every element of H:™(M) is annihilated by a power of n and z € n
we must have [Ht'(M)],_, =0, that is, 0 ¢ C;*' (M) + 7.
In case of M being Cohen-Macaulay of dimension d one has exact sequence
0— Hg~'(M/xM) — Hg(M(—n))* Hg (M) —0
so that
Co (M /M) € Cg(M(=n)) = CR(M) + 1

by Lemma [1.2.3]
The rest of the proposition follows by induction. [

Supports of Tor and of local cohomology

In this subsection, we assume Notation [3.0.1] unless mentioned otherwise.

Definition 3.3.8. A graded R-module M is bounded if there exists p and v in ZF such
that

Suppzr(M) C p+ 75, and Cp(M)N (v +ZE,) = 0.
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The following result shows that many interesting modules are bounded.

Theorem 3.3.9. Let M be a finitely generated graded module over R. If S is Noethe-

rian, then M is bounded.

Proof. Since M is finitely generated, there must exists y € Z* such that Suppg. (M) C
1+ ZE,. (Note that S does not need to be Noetherian.) Now, due to [I4, Theorem
4.14], there exists v € regg(M). Thus Cx(M) N (v + Z5,) = 0. |

We first show a close connection between the support of local cohomology and

the one of Tor modules. For its proof, we need the following result.

Theorem 3.3.10. Let G be an abelian group, R be a G-graded polynomial ring in n
variables over a ring, I a graded ideal generated by a regular sequence of length r and
M a G-graded R-module.
If Fy is a G-graded free R-resolution of M, then there exists a degree zero graded
isomorphism
Hy(M) ~ H,_,(H(F,))

for all p > 0.

Proof. Let C* be the Cech complex of R with respect to a regular sequence of length

r generating I and consider the first quadrant double complex C*® ®r Fy:

T

0—>CO®RFS—>01 ®RFS—>"'—>CT®RFS—>O
\ \ i

i P
0-C'@rF—=C'@pF} - —=C"®@r F; =0

| | |

0_>CO®RF()_>01 Qrly—--—=C"®r Fy—0

| | |

0 0 e 0
This double complex gives rise to two spectral sequences converging to a graded module
H. The first one E, by taking first homologies in the vertical, is such that 2 = H?(M)
and E5? = 0 for ¢ # 0. Thus HY(M) ~ H~? for all p > 0. On the other hand, if 'E
denotes the spectral sequence by taking first cohomologies in the horizontal, is such
that 'ES" = H,(Hj(F,)) and 'ES? = 0 if ¢ # r so that H,(H}(F,)) ~ H?™" for all
p > 0. Therefore

HY (M)~ HP?=H"P"~H._ (Hj(F,)).
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As consequence of Theorem [3.3.10] and Lemma [1.1.4] we obtain the following

spectral sequence.

Corollary 3.3.11. Let M be a graded R-module. There exists a spectral sequence of

graded modules,

D  HyY s, (M) = HY(M),

1<io<-<ip<k

Proof. Let F, be a minimal free resolution of M, C*® be the Cech complex of R with
respect to a sequence of elements generating B and consider the third quadrant double

complex F, ®p C*:

T

= F,QpC% = = F@r C"— Fy @ CY'—0

| | |

--—>Fm®RCl—>---—>F1®RCl—>F0®R(Jl—>0
¥ \ ¥

L

e F@p O = F @ O" — Fy @ C" — 0
Y ] Y

Such a double complex yields two spectral sequences that converges to the same graded
module H. Also, by taking homologies in the horizontal first we get a spectral sequence
'E such that 'Ey™ = HL(M) and 'E; "™ = 0 whenever i # 0; hence H% (M) ~ H7 for
all 7 > 0. On the other hand, by Lemma [I.1.4] the other spectral sequence E is such
that

—i—j _ 71 Mg+ tni, +(p+1) ~ P+(j—0)
E2 - H'L @ HB¢O+...+Bip (F.) - HB¢0+...+BZ‘p (M)
1<ip<..<ip<k 1<ip<..<ip<k
ni0+...+nip:j—l

and Ey "7 =, H=7 ~ Hj;7 (M), whence the result. |
It is worth mentioning that the spectral sequence above is a graded version of
Lyubeznik’s one [B.2.2] although ours does not require Noetherianity. In particular, we

can remove such a hypothesis from Proposition and its corollary once the main

tool there is the Lyubeznik spectral sequence.

Lemma 3.3.12. Let E C ZF. The smallest set containing E such that its complement
is stable under the addition of Z is E + ZL,.
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Proof. Let E* := E + Zl%o- Ife¢ E*, e+ nisnotin E* for all n € Z’;O as otherwise
e+n=¢e—n'withe € Fandn' € Z’;O, the equality e = ¢/ —n —n’ then contradicting
the fact that e ¢ E*. Now E* is minimal as if £ C E’ C E*, with the complement of
E’ stable, if e € E* \ E’, then e+ n € E C E’ for some n € Zgo, but also e +n ¢ E’
due to the stability of the complement of E’, thus a contradiction. |

From now on, we denote by E* the set £ + Z’;O as in the proof above.

Theorem 3.3.13. Let M be a graded module with Suppys(M) C u + Zgo for some
p € ZF. Then
Co(M)* = T(M) 4 Cu(R) = T(M)*.

Proof. Recall that Cy(R) = a + Z%, with a :== —(ny +1,...,n; +1). Thus T(M) +
Cu(R) = T(M) + ZE, = T(M)*,
Let F, be a graded free R-resolution of M as in Lemma i). Then,

Hy\ (M) ~ Hy_i(Hy(F)),

for all ¢ > 0 by Theorem [3.3.10] where d := (n; + 1) + -+ + (ng + 1) is the number
of variables of R. This shows that Cy,(M) C U,<4_; T,(M) + Cu(R), hence Cy(M) C
T(M)+ Cu(R) and so Cy(M)* C T(M) + Cu(R).

To show the inverse inclusion, notice that for all u & Cwn(M)*, (n + Z5,) N
Cu(M) = (. Write X = {X;} and consider the first quadrant double complex Cg (R)®r
Ko(X; M). Tt gives rise to a spectral sequence with first terms K;(X; Hi (M)) that
abuts to Torf‘_j(M, S). Once all shifts in K;(X; H(M)) have all p-th coordinates at
most n, for any p = 1, ..., k, in degree p1—a all terms are zero because K;(X; HL(M)),—q
is a sum of copies of Hj (M) sitting in degrees p + 6 for § € Z%,. Tt follows that
p—a¢ T(M), as claimed. |

Lemma 3.3.14. Let M be a graded R-module and i, ...,1, be distinct elements in
{1,...,k}. Ifv e ZF-+D)\ > o€, L, then the following statements hold.

i) HéioJr,.AJrBip(M)*,V ~ £i0+“'+Bip(M*7y) as graded T-modules, for all j > 0;
ii) Torf(M/R/BiO—i—- B )y Tor]T(M*J,, S) as graded T'-modules, for all j > 0.

Proof. Tt follows by noticing that both Cech and Koszul complexes Chiytot B, (M) and
K.(X Xy, M), with X, = {Xj 0, ...,Xij,mj}, are such that CZ?i0+~.+B¢p(M)*:V ~

209 " ip)
Céz'o-i-...—kBip (M*,l/) and K'(Xim T 7Xip; )*,V = K’<Xi07 T 7Xip; M*”’>' u
Let 5;0 """ " 7%, be the shifts in K;(X;,, ..., X;,; R).
In the next theorem, we provide a precise relation between support of Tor modules
(or multigraded Betti numbers, when over a field) and support of local cohomology

modules.
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Theorem 3.3.15. Let M be a graded R-module with Suppg.(M) C u+ Z5 Lo for some
w € Zk, and i, . .., i, be distinct elements in {1,...,k}. Then

P
T ip(M) - CBi0+"'+Bip (M) + Z ¢i; Lo

and

As a consequence,

Ciyyi, (M) = Tiorin (M)".

Proof. Write X;, = {Xj,0, ...,Xij,nl.j}. By analysing the spectral sequences arising
from the double complex %~ x. (R) ®r Ko(Xiq, ..., X;,; M) we obtain the a spectral

.....

sequence whose terms in the second are K;(Xj,, ..., X, ; H fg 4B, (M)) and converges
to Tor]" (M, R/B;, + - -+ + B;,). It follows that

rern e U Gy, () €37
s<O07_o(ng +1)—j

for all 7 > 0. Note that any element of Sfo """ " can be written as a sum of the form
Yoio(ny, + ey, + 37 ae;, with a; € Z<g for all I. Hence

p
Tig ..... Zp(M) g OBi0+"'+Bip (M) + Z 6ijZ§0
=0

and in particular 7% (M)* C CBig -t B, (M)

Now, consider T’ = S[X,,,...,X;,], fix v € Z¥-P+D\ > g€, Z and n = (n;, +
)+ 4 (ng, +1).

Let F? be a graded free T-resolution of M, , as in Lemma i). By Theorem
there exists isomorphism

Hjjéi0+~--+Bip (M*,V) ~ H,_ ](HB ot +Biy (FY))
for all 7 > 0 so that, by Lemma |3.3.14] 1),

SuppZP+1(Héio+~~+Bip (M).,) = Cj Biy++Bi, = U Ti(M.») + CBZOJr “+Bi, (T).
I<n—j
Once Tj(M.,) = Suppges: (Tor['(M, R/B;y, + -+ + Bi,)+,) by Lemma [3.3.14 ii), and
also Cp, y.vn, (T) = — 2] o(niy, + D)ey, + 31 € Lo € ZPT we have

p
O]Bzo+ +B1p (M) g U 7}20 ..... /LP(M) - Z(n’bl + 1 ell _|_ Z eZlZ<0
1<n—j 1=0 1=0
p
= |J (M) + ) enZ<o
I<n—j =0
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and so

Therefore Cp, 1..y5, (M)* C Tior=in (M )* |

Proposition 3.3.16. Let M be a graded R-module and 1, . . ., 1, be distinct elements in

{1,...,k}. Then, for any finitely generated graded ideal I C \/BZ-0 + -+ B;, +anng(M),

7-;0 ..... Zp(M) g U C}»( ) + g‘;?":’-’:-vzp _ Z(nzs + 1)€is

r<3io(ni+1)—j 5=0

for all j > 0.

Proof. Let C* be the Cech complex of R with respect to a finite generating set of I
and consider the double complex C*® ®p K (X X;,; M). Such double complex
gives rise to a spectral sequence with first terms K;(Xi,, ..., X, ; H}(M)) that abuts

to Tor]" (M, R/By, + -+ + B;,) since I € \/B;, + -+ B;, + anng(M).

TRREE

Now,
rreran e U cion+gtt = ) o+ g
l_T:j rSZf:o(nil""l)_j
whence the result. [ ]

Corollary 3.3.17. Let M be a finitely generated graded module and i, . . . , i, be distinct
elements in {1,...,k}.
Then, for any finitely generated graded ideal I C \/Bio +---+ B;, + anng(M),

CBi0+“'+Bi ( ) C C] + ZZez Z<0

In particular, if p > 1,

OB¢O+---+B¢p (M)* c CBiO+"'+Bip (M)*

—1

Proof. By taking union over j in Proposition [3.3.16| we obtain
Trios- ( ) CCr (M) + Z ei;Z<o.

The result follows from Theorem [3.3.15] [ |

The next corollary says that, by taking star, all local cohomology modules with
respect to the product of the B;’s vanish if and only if all local cohomology modules

with respect to each B; vanish. Note that it is not true if we do not take stars, see

Example [I.2.6]
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Corollary 3.3.18. Let M be a finitely generated graded R-module. Then,

JCaaty = | Coyrosn, (M) = CalM)"

Proof. First by Corollary |3.3.17],

UCBi(M)* = U Coyin, (M) C Cp(M)".

On the other hand, Cg(M) C |, (M) by [14, Lemma 2.1]. [

05--+5lp ig T T Pip

Proposition 3.3.19. Let M be a graded R-module. Then,

T?O ----- 1p;J05e-+ Jaq (M) g UTZO_VZ”LP(M) + gl]() ----- Ja

J

for all j > 0.

Proof. From the first quadrant double complex

Ko(Xjo, o X Ko (X, oo, X s M) ~ Ko(Xyg, -0, X5, X, oo, X3 M)
yields a spectral sequence with first terms
Ko(Xjo, .., X, Tord(M,R/By, + ...+ By;))
that abuts to a filtration of Tor['(M, R/B;y + ...+ B, + Bj, + ...+ B;,). |

Corollary 3.3.20. Let M be a graded R-module Then,

Definition 3.3.21. For a graded R-module M and distinct elements iy, ..., 1, in the set
{1,....k}, we define

C] (M) =4 (M) + &,

Big+-+Bi, Biy++Bi,
Cp (M) = JC} (M) and C(M) = JCs, (M).
j i
Remark 3.3.22. Notice that, with this definition,
(U (—oo,regp, (M.,)) x {v})" = Cp, (M).

Vezk—l

Indeed, if r < regp (M,,) then there are a > 0 and j > 0 such that r € C’fgl(M*,V) —
a+j, e, (rv) e C’él(M) + 25, + &} C Cp,(M). On the other hand, given j > 0, for
all (r,v) € ijgl(M) + &}, with v e Z"', we have Hél(M*,l,)T,j # 0 and in particular
r < regp (M.,). But this inequality must be strict once r € C’f‘gl(M*ﬂl,) +7.
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Lemma 3.3.23. Suppose that S[Xy, ..., X,] is a standard Z-graded polynomial ring.
Let N be a finitely generated graded S[Xy, ..., X,] module and t an integer. If Nz,

and m denote, respectively, the truncation of N in t and the irrelevant ideal, then
(i) Ca(Neszoo) = Cu(N) N (E+ Zzo);
(i1) Cq(Niszo,) = Cr(N) U {Suppy (N/Hg(N)) N (t + Zco) };

(111) C%(Nt+zzo) = CI(N) for all j > 2.

In particular we have
Ca(Niyzoy) € Cu(N) U (t+ Zo)
and

Cua(Nirzoy) € Cu(N) U (t + Z<o).

Proof. First, it is clear that C(Niyz.,) € C(N) N (t 4 Zxo). Take C := N/Nyyz.,.
By Lemma we have exact sequence

m

0~ Hy(Nevz,,) = Hy(N) = C — Hy(Niyz,,) = Hy (N) =0

and isomorphisms H},(Niz.,) ~ H}(N) for all j > 2 whence immediately follow
Can(N) € Cy(Niyz,,) and item (éii). It is also immediate that from the exact sequence
we must have Co(N) N (t + Zzo) € Co(Nigz,,). Now, given v € t + Z.y we have
HY (Nitz.0)y = (Niyz, )y = 0 so we have exact sequence

0— (N/Hy(N)), = Hy(Nitz0)y = Hy(N), =0

and thus C(N) U {Suppy(N/HJ(N)) N (t + Z<o)} € Cp(Nigzs,). On the other
hand, since C(Nijz,,) = Co(N) U X with X = Suppy(coker(Hy(N) — C)) C
Supp;(C) C t + Z~g, we have again the exact sequence above with v € X and then
X C Suppy(N/Hy(N)) N (t + Zco).- u

Proposition 3.3.24. Let M be a graded R-module, pn = (py, ') € Zx ZF1. []”MNJFZ;;0
is the truncation of M in u, then )

O, (Myyze,) C (Cp, (M) N (1 + Z5)) U (111 + Zco) % (1 + Z25")

and
C,(Myzx,) € (Co, (M) NZ x (4 + ZEM) U (11 + Zco) x 25

In particular, (p1+1) x 251 NCp, (M) = 0 implies regp, (M, .y1zx,) & 1 +Zso,
with regp, (N) 1= sup, cze-1{regp, (Niy)} for any graded R-module N. :
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Proof. First note that for any graded R-module N and j > 0,

Ch(N) = | Ch(Ney) x {7}

WGZ’“ 1

so that, by Lemma [3.3.23]

Ch (M) N (ptZ8) = | (O, (M) x {4} 0 (4 25y))

5 regk—1
= |J O (Mapio) 0 (11 + Zo) x {1 + 6}
ezt
= U Oy (Mo 0)py220) N (1 + Zizo) x {1 + 6}

oezt !

= U (Ch((Maprsa)nszg) x 1+ 0} 0 (e + Z5,))

k—1
eeZZO

=| U Oh((Muaze )eporo) x i/ +6} [ 0 (n+2ZE,)

S/

=| U Oh((Muaz )er) x {3} | 0 (0 +25))

1% EZk 1

= Cﬁ%( ,LL+Zk ) (N + Zéo)

for all 5 > 0. Therefore

CB1 (M) N (:u + Z];O) CBI( ,u+Zk ) (M + Z];O)

Now, since

CBI( ,u+Zk ) = (CBI (M;HrZ’%O) N (:u + ZI;O)) (CB1< ,LL+Zk ) \ (,U + Z;O))
= (Cp, (M) 0 (1 + Z80)) U (Cy (M2 ) \ (1 + Z5))

and Cg, (M, e ) =U;s0 UVGM,+Z;§61 C’fgl((M*ﬁl,)#ﬁZzo) x {v}, we have

Oy (Myyze,) © (Cp, (M) N (1 + Z5)) U (pn + Zco) x (0 + Z55").

Finally, note that for any graded R-module N and j > 0,

Ch(N)=CL (N +& = | ¢, x (v + 2
WGZk 1
and
Co,(N) = | Cs/(N.y) x (v +Z55").
yEZE-1
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By Lemma [3.3.23| again,

Cor(Myuze )= |J Ch(Mazn )en) x (7 + Z55")
’YEZk 1
- U Ch, (( *V)u1+Z>o) X (v +Z];_01)
vey +ZZO
< U Co(My) x (v +ZE5N) | N2 x (1 + Z55") | U (1 + Zo) x 2!
'YEZk 1

= (Co (M)NZ x (4 +ZEM)) U (1 + Z<o) x ZF

The particular case follows from Remark [3.3.22] [ |

It should be noticed that we can fix any other entry of = (p, ..., pg) instead of
(1 in Proposition [3.3.24]and obtain a similar result. The next corollary is a consequence
of this fact.

Corollary 3.3.25. Let M be a graded R-module with Suppy: (M) C pu+ Zgo for some
w € ZF. Then

i—1 k *
M,z )" C ()| ( ( N+ ZE)) U1+ Zso x (i +Zeo) x [ 1+ Zzt)) -

>0 J=1 g=it+l

Proof. The result follows by applying Theorem [3.3.15| Corollary [3.3.20|and Proposition
0.9.24]

H+Z C(}TZ “_,’_Zk ﬂCB H_,’_Zk

>0 1>0
i—1 *
gm((CBi(M)m(M+Z UHM3+Z>OX(MZ+Z<O X H NJ+Z>O> .
>0 J=1 j=i+1

3.3.2 Castelnuovo-Mumford regularity

In this section we consider the same notation and definitions as those of Section

[1.2.9. We begin this section by applying Proposition [3.3.7] to regularity. We consider
again R being graded by an arbitrary abelian group G.

Proposition 3.3.26. Suppose S is Noetherian, let M be a graded R-module and x =
X1, ..., g & maximal M-reqular sequence contained in a graded ideal n where x; is a

homogeneous element of degree «y; for some j. The following assertions hold true.
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(i) If v =y for alli=1,....k then
regy(M/(x1, ... 21) M) C reg, (M)
foralll=1,....d.
(i1) If M is Cohen-Macaulay and z is contained in m then
reg, (M) Creg, (M/(xy,...,x;) M).
foralll =1,...,d. The equality holds in case of v =; for alli=1,... k.

Proof. (i) Since F; = {i} for all i and F;_y = Iy + F;_y_1 for all I = 1,...,d (see
Definition [1.2.8)), then

| Supp (Hi(M)) + Fioy = | Suppg (Hi (M) + Iy + Fiy

i>l i>0

- U Suppa(HLU(M/ (21, ..., 5)M)) + Fi_y.

i>0
(ii) The inclusion follows from

!
SuppG(Hﬁ’l(]\/[/(:cl, e @)M)) + Faoyo1 = SUPPG(Hi(M)) + Z Vi + Fa—i—1

=1

C Suppg (Hn(M)) + Fa-

meanwhile the equality follows by noticing that F; 1 = F; + F4_;_1 for all [ =
1,....d.
[ |

Example 3.3.27. By taking m = n =1 in Proposition we have
Hg(R) ~ Hy(R)

and
Hi(R) ~ Hg (R) ® Hp, (R).

Hence

JCB(R) + Fiot = (Cp, (R) + F1) U(C,(R) + Fi) U (Cul(R)) + Fa)

and by Example we obtain

U CZB(R) + .F;',l = (Z§,1 X Zzo U ZS,Q X Zzl) U (Zzl X ZS,Q U Zzo X ngl)

>0

U (ZSO X ZS_Q U ZQS_I U ZS_Q X Zgo).

67



The complement of the union above is exactly Zzzo which s trivially stable under itself
and therefore

regs(R) = Z220'

3 (=2,0) (-1,0)

(0,-1)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Remark 3.3.28. In the same way as with reg, (R) (see Example 1.2.1(}), the regu-
larity regg(R) is not determined by a single element in general. For instance, in the

Hirzebruch surface Fy its coordinate ring R is such that
regB(R) = ((17 0) + ZZzo) U ((07 1) + Zzzo)-

(See [69, Example 1.2] for details.)

In examples [1.2.10] and [3.3.27 we note that

regp(f7) C regy(R).
It inspires us to look for relations between regularity concerning different finitely gen-
erated graded ideals.

Proposition 3.3.29. Given integer ! > 0, if a,b C m are two finitely generated graded
ideals of R then

regg (M) Nrege (M) Nregy (M) C regyq(M).
Proof. Tt follows directly from the Mayer-Vietoris long exact sequence [2.3.1
oo Hoo (M) — Hy(M) & Hy(M) — Hyo(M) — H Lo (M) — ...

From now on, consider By, ..., By C m finitely generated graded ideals and write

ﬂ:Bl+...+Bk andB:Blﬂ...ﬂBk.
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Theorem 3.3.30. For every l > 1 one has

regi(M)N [ () [ regh, . (M) | Creghh(M).

p<k—210<...<ip

Proof. Consider the Mayer-Vietoris spectral sequence [2.2.7]

B = P HUUs, ,.M)=, H*(U, M).

10<...<ip

Fix v € regh (M) N (ﬂpgk_Q Nig<..<i, regls (M)) Given 7/ € v+ C one has

ig.--ip

[E{m_l}v’—n: @ [Hgiomip(M)]/ =0

i0<..<ip 7
for all > [ and n € F;_;. Moreover,
i o [ mk—1,i-1 k=1l [ rpith— B
[HB<M)]'Y'*77 o [El ]7’77 n [EOO 1 1}7'*71 - [H“Jr 1(M)L/’fn =0
fori>1and n € F;_4. [ |

Proposition 3.3.31. Consider k = 3 and let | > cdg(M). The following statements
hold true.

(i) Assuming also that R is Noetherian, one has
regh (M) 1 (ﬂ rengj<M>) C (M regh, 1, (M).
J Jo<j1
(it) If 1 > 1 then
w000 (s 1) € () sy, 00
J Jo<j1
Proof. For (i) consider the spectral sequence [B.2.2)

Byt = @ H%i0+...+B¢p (M) =p qua_p(M)

10<...<ip

defined in [66]. This spectral degenerates at Fy. The hypothesis implies the exactness

of the sequences

HY(M) —~ €D Hiy o, (M) —~ D Hi (1)

Jo<j1

for 7 > 1.
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In (i7) we consider the Mayer-Vietoris spectral sequence

B = P HYUg, ., M)=, H (U, M)

10<...<ip

which first page has the following shape

0— @Hgl(M) @Hg;;n 0
00— EBHZBJ <M) @HZBJ'OH 0

0—@H"2(Up,, M) —®H'"2(Ug, ., M)—~ H'"*(Ug, M) =0

JjoJ1’?

The hypothesis assures that

@j HJIBJ- (M) — ®j0<jl Hlej (M)

071

is a surjection and that

@j H?J_I(M) - ®j0<j1 H?l (M)

J0J1
is an isomorphism in the suitable degrees for i > [. |
Theorem [3.3.30| and Proposition [3.3.31 74) immediately imply the next corollary.
Corollary 3.3.32. If | > max{1,cdg(M)} then

reg, (M) N (ﬂ rengj(M)> C regly(M).

3.4 Euler characteristic

Let k > 1 an integer, G = Z* and consider the G-graded polynomial ring R =
S[X 105 ees Xings oos Xb0y ooy Xpop) With deg(X; ;) = e; for all j = 0,...,n;, where ¢;
denotes the i-th element of the canonical basis of G and S is a commutative unitary
ring.

Denote by £5(N) the length of the S-module N.

Definition 3.4.1. Let M be a G-graded R-module and I a homogeneous ideal of R
such that the graded pieces [H}(M)]y have finite length as S-modules for all 7 > 0 and
for all v € GG. The Euler characteristic of M with respect to I and v € G is defined as

X(M> I, 7) = Z(_l)JES([H}(M)]’Y)

J20
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Lemma 3.4.2. [35, Proposition A.2.2| Let E P9 =, H7P be a spectral sequence of
S-modules. If there exists r > 1 such that E P9 has finite length for all p,q, then every
H has finite length and

D (—1Yts(H) =) (—1) ( > %(E;p’%)

JEZ JEL q—p=J
for all s > r.
Proposition 3.4.3. Let M be a G-graded R-module and let By, ..., B, be homogeneous
ideals of R and write B = By N ..NB,. If [HéiOerJrBip (M)], has finite length as
S-modules for all j > 0 and for all ig < ... < i, with p =0,....,r — 1, then [HL(M)],
has also finite length for all j > 0 and for all v € G, and

r—1
X(MaBaf}/) :Z(_l)p Z X(M7BZO++BZP7,}/)
p=0 10<...<lp

for all v € G.

Proof. Let v € G. By considering the 7-th strand of the spectral sequence
B, = @D [Hy, ovn (M), = [HE (M,
10<...<ip

Lemma assures that [H}(M)], has finite length for all j > 0 and

XM By = (=17 [ D | > ts(Hp s im, (M)

JEL q—p=j \10<...<ip

Now we organize this sum.

X(M,B,~) =
= (=17 D ts((HE (M)],) + > (] H]—;l-&-le (M)],) + ... + Cs([HE L 5 (M)]5)
JEZ 7 10<?1
=D D (W s((Hp (M)]) = > Y (=1 ([, (M)])+
i JEZL i0<i1 JEZ

) D CWs(HE gy v, M) + o+ (F1)77H Y (1) s ((HE L (M)])

10<t1<i2 jEZ JEZ

= ZX(Ma Bz,’}/) - Z X(M, Bio + Biu’y) + Tt (_1)T_1X(M7 Bl + ...+ BT?’Y)

i 10<i1

(_l)p Z (M Bl()+B + .. +sz>7)'

p=0 10 <...<ip
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From now on suppose that S is Noetherian.

Proposition 3.4.4. Let M be a graded finitely generated R-module. If B is the graded
ideal of R generated by the variables X;,, ..., X;, and A is the polynomial ring in the
variables Xi_ll, s X;l and X; for all | # iy, ...,1, with coefficients in S then Hfé(M) is

a finitely generated A-module for all j > 0.

Proof. By considering the spectral sequence
Tor (M, HY(R)) =, HE (M),
once B is generated by variables this spectral sequence must collapses so that
Hp(M) ~ Tor; (M, Hy(R))

for all 5 > 0. On the other hand, Tor]*(M, H(R)) can be computed by tensoring a free
resolution of M by Hp(R), hence it is a subquotient of finitely many copies of Hj(R).
Therefore, the result will follow by showing that Hp(R) is finitely generated over A.
But the R-module H(R) = S[X;l] (X, : X # 11, ..., 4, has a natural structure of ideal
over A. Since S is Noetherian, we must have that Hj(R) is a finitely generated ideal
over A. [

Lemma 3.4.5. Let M be a G-graded finitely generated R-module. If each graded piece
M, has finite length then

(1) Suppg(M) € Max(5);
(i1) Suppg(M) is finite.

Proof. From the decomposition M = &__, M., one has

veG

Suppg(M) C | Suppg(M,).

veG
Since each M, has finite length, Suppg(M,) must be contained in Max(.S), whence
item (7).
Once M is finitely generated, there exists a finite set H C G such that M =
ZWGH R ®g M,. Hence for all n € G one has M, = Z%H R,_, ®s M, and there is a

natural surjection
D cn iy @5 My —> M,

Since R, is a free S-module, it follows that Suppg(M,) C U,y Suppg(M,). There-
fore Suppg(M) € U,y Suppg(M,) must be finite. |
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From now on we assume S is also local.

Proposition 3.4.6. Let M be a finitely generated graded R-module and let B be the
graded ideal of R generated by the variables X;,, ..., X;. . If each graded component of

M has finite length, then, for all v € G, the S—module [Hé(M)]V has finite length for
all 7 > 0.

Proof. By Proposition , for all j > 0, the A-module Hfé(M ) is finitely generated.
One should be noticed that the graded structure of H é(M ) over R is also a graduation
of H%(M) over A, so that each of its components [H%(M)],, are finitely generated over
S. Moreover, if Cfé(M ) denotes the j-th Cech module of M supported in B then

Supps([HE(M)),) € Supps(Hp(M)) S Suppg(C3(M)) S Suppg(M).

Lemma assures us that the component [H%(M)], has dimension zero over S. Tt
proves the result. [ |

Theorem 3.4.7. Let M be a finitely generated graded R-module and let By, ..., B, be
ideals of R generated by variables. Write B = B1 N ...N B,. If each graded component
of M has finite length, then, for all v € G, the S-module [Hy(M)], has finite length
for all j >0 and

r—1
X(M,B,’Y): (_1)17 Z X(M7Bzo++Blp77)
p=0 10<...<ip
Proof. 1t follows directly from Propositions [3.4.3] and [3.4.6] [

Next Corollary follows immediately from last theorem and [50, Theorem 1.3.1].

Corollary 3.4.8. Suppose S is a field. Give a finitely generated graded R-module M
and B a monomial ideal of R, then, for all v € G, the S-module [Hy(M)], has finite
length for all j > 0. Moreover, if B = Q1N ...NQ, where each Q; is generated by pure
powers of the variables, that is, Q; is of the form (X', ..., X['*), then

11 0

r—1
MBa’V :Z Z X(MaBio+"'+Bip77)>
p=0

10<...<ip

for all v € G, where B; = +/Q; foralli=1,...,7
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Chapter 4

On deficiency modules

In this chapter we shall look for relations between Bass and Betti numbers of a
given module and of its deficiency modules. As Foxby [38] provided the relations above
for Cohen-Macaulay modules over a Gorenstein local ring, we furnish the same relations
for generalized Cohen-Macaulay canonically Cohen-Macaulay modules of depth at least

two over a local ring which is factor of a Gorenstein local ring, see Theorem [4.2.4]

Furthermore, theorems [4.2.6| and [4.3.11] shows the same relations for arbitrary finitely

generated R-modules when certain homological conditions over its deficiency modules
are imposed.
Besides such generalizations, we exhibit bounds for the Bass numbers (Betti num-

bers) of a module in terms of the Betti numbers (Bass numbers) of its deficiency mod-

ules, see theorems |4.2.1| and [4.3.1} They provide several applications that are worked

out through this chapter. Three examples of such applications are Corollary [£.2.3] pro-
viding the Cohen-Macaulay property of a local ring in terms of homological conditions
over deficiency modules, Corollary furnishing a characterization of the complete
intersection property in terms of the first and second Bass numbers of the residue field,
and Corollary that states that the Auslander-Reiten conjecture holds for mod-
ules such that its deficiency modules have finite injective dimensions, generalizing then
a similar application given quite recently in [39].

Throughout this chapter, we will follow the notation in Section Namely, R

will always denote a commutative Noetherian local ring with non-zero unity, maximal



ideal m and residue class field k. Also, R is supposed to be factor of a Gorenstein local
ring S of dimension s, i.e., there exists a surjective ring homomorphism S — R. We
denote by MY the Matlis dual of a finitely generated R-module.

For an R-module M, pdy M and idg M denote, respectively, the projective di-
mension and injective dimension of M. Further, 8;(M) = dimy, Tor’(k, M) is the i-th
Betti number of M, u'(M) = dimy, Exti(k, M) is the i-th Bass number of M and

r(M) = dimy EXtC};pthRM(k, M) is its type.

4.1 Generalized Cohen-Macaulay modules

Our main tool in this section is the Foxby spectral sequences [B.2.4] It provides
interesting relations between generalized Cohen-Macaulay modules and their deficiency

modules.

Definition 4.1.1. A finitely generated R-module M 1is said to be generalized Cohen-
Macaulay if H2 (M) is of finite length for all j < dimpg M.

It should be noticed, due to Matlis duality, that it is equivalent to say that K7(M)
is of finite length for all 7 < dimp M.

Theorem 4.1.2. Let M be a generalized Cohen-Macaulay R-module of dimension t.

The following statements hold true.

(i) There exists isomorphism

K%K (M)) ~ Tor® (M, S);

(i1) There exists a five-term type exact sequence

Tor®, (M, §) —> K2(K(M)) — K°(K'(M))

/
Tor®,, (M, S) —= KY(K(M)) —=0
(111) There exists an exact sequence
0— KO(K*(M)) = M — K (K (M)) — K%(K (M)) —0;
() If t > 3, then there exist isomorphisms
K'"™(K(M)) ~ K (K7 (M)
forall1 <j<t-—2.
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Proof. Consider the Foxby spectral sequences by considering M as S-module and
N=P=S5S

EY? = Extb(Ext{(M, S),S) =, HI™?

and
"B} = TorS (M, Ext(S, 5)) =, H'™.

Since 'EY? = 0 for all g # 0, we have
H7 ~='E}° = Tor? (M, S)
for all > 0, and
ED? = Extl(Ext§(M, ), S) =, Torb_ (M, S).
Once Hi (M) being of finite length so is K7(M) for all j < ¢ and by local duality
Extl(Exti(M,S),S) = Exto(K*~4(M),S) =0

for all ¢ > s —t and for all p # s. Also, Lemma (1) assures that dimg K (M) = t.
Thus FEs has the following shape.

0 0 0 - 0 0
0 0 0 o Exty(E%N),S) 0
0 0 g o Bxty(KTYM),S) 0
0 K(KOMDY Exty “U(EM),S) - Exty(K(M),S) 0
0"~ 0 0 0 0 0

By convergence, there are isomorphisms
KK (M)) = Exty(K(M),S) ~ B3~ ~ Tor®,(M, 9),

Kl(K(M)) = ExtSS_I(K(M)7S) ~ Ego—l,s—t

and
KY(K°(M)) = Exti(K°(M), S) ~ E%°.

Thus we get item (i) and by applying Matlis dual one has isomorphisms
Hnl.l(K(M)) ~ (Ego—l,s—t)\/ and Hg(KO(M)) ~ (ng)v
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Convergence again gives us short exact sequences
0— B39 —Tor® (M, §) — B 7" 0 (4.1.1)

for all 7 > 0. Further, as we move through the pages of F, differentials between the
vertical and horizontal lines in the diagram above come out. In other words, there is

an exact sequence

0— B s Bxt (K (M), S) — Ext (K7 (M), S) — B0t ¢
(4.1.2)
forall 0 < j <t-—2.
Item (i7) is exactly the five-term exact sequence of E. For item (iii), by taking

j = 0 in both exact sequences above we have the following exact sequences
0 —Exty(K°(M),S) =M — B4~ =0

and
0— Bt -~ K(K(M)) — Ext{(K'(M),S) = ES*~1 —0.

The result follows by splicing these sequences and noticing that £%°~! C Tor®, (M, S) =
0.
The exact sequence assures that Ea "™ = Fss=i = ( for all j > 0 so

that, by the exact sequence [4.1.2]
KK (M)) = Exty ™ (K(M), S) = Ext3(K7 (M), §) = K° (K7 (M)
forall1 <j<t-—2. [ |

The concept of canonically Cohen-Macaulay module was introduced by Schenzel

7.

Definition 4.1.3. A finitely generated R-module M is canonically Cohen-Macaulay if
its canonical module K (M) is Cohen-Macaulay.

Corollary 4.1.4. Let M be a generalized Cohen-Macaulay R-module of dimension t.
The following statements hold true.

(i) If t > j with j € {0,1}, then depthy K(M) > j;

(1)) If t =1, then M is canonically Cohen-Macaulay and there exists the short exact
sequence
0— K°(K°(M)) - M — K(K(M)) —0;

(111) If t = 2, then M is canonically Cohen-Macaulay;
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(iv) Ift > 3, then K(M) is generalized Cohen-Macaulay.

Proof. Ttem (i) follows immediately from Theorem (7) and (i7). For item (i),
item (i) assures that K (M) is Cohen-Macaulay and Theorem [4.1.2] (ii4) is the desired
exact sequence. As to item (¢ii), item (i) again assures that K (M) is Cohen-Macaulay.
Item (iv) follows directly from item (i) and Theorem [4.1.2] (iv). |

Corollary 4.1.5. If M is generalized Cohen-Macaulay, then so is K(M).
As Corollary assures that generalized Cohen-Macaulay of dimension at most

two are canonically Cohen-Macaulay, Theorem m (1v) recovers a characterization

[16] for the case where the dimension is at least three.

Corollary 4.1.6. (|16, Corollary 2.7]) Let M be a generalized Cohen-Macaulay R-

module of dimension t > 3. Then the following statements are equivalent
(i) M is canonically Cohen-Macaulay;
(ii) HI (M) =0 for all j =2,...,t — 1;

(1ii) The m-transform functor Dy (M) is a Cohen-Macaulay R-module.

Proposition 4.1.7. Let M be a finitely generated R-module of dimension t. The

following statements hold true.

(i) If M is generalized Cohen-Macaulay R-module with depth at least two, then M ~
K(K(M)).

(11) Suppose M is equidimensional. If M satisfies Serre’s condition Syy1 for some

positive integer k, then
KI(K(M)) ~ Tor®,, (M, S)
forallt —k+1<75<t.

Proof. Item (i) follows immediately from Theorem [4.1.2] (iii) and from the fact that
K°(M) = K'(M) = 0 whenever depth, M > 2.
For item (i7), consider the Foxby spectral sequence given in Theorem m

ED? = Extl(Ext%(M, S), S) =, Tory_ (M, S).
By Lemma [1.3.2] (4¢) and local duality, we have in
By " = Exty {(KY(M),S) =0

for all 0 < j < k and ¢ < 0. In other words, all modules E¥? such that ¢ # s —t above

the dotted line in the diagram below must be zero.
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0 Exty 2 (KY(M),S) - : 0
Exty “FU(K(M),S)  Bxty UM (K(M),S) - Exty(K(M),S) 0
0 e 0 0
The result follows from convergence. [ |

Our results also retrieve the well-known fact that every Cohen-Macaulay module

is canonically Cohen-Macaulay, see |76, Theorem 1.14].

Corollary 4.1.8. If M is Cohen-Macaulay of dimension t, then so is K(M) and
K(K(M)) ~ M.

Proof. There are two immediate ways of proving the desired result. Indeed the result
follows directly from Theorem as well as from Proposition [4.1.7) (i7) too. |

Proposition [4.1.7] provides a characterization for the Cohen-Macaulay property.

Corollary 4.1.9. If M is a finitely generated R-module, then M is Cohen-Macaulay
if and only if M 1s equidimensional canonically Cohen-Macaulay satisfying Serre’s

condition Skgy1 for some positive integer k.

Proof. 1t is well-known that a Cohen-Macaulay module is equidimensional and satisfies
Serre’s condition Sy for any k. Corollary assures that such a module is also
canonically Cohen-Macaulay. Conversely, by taking j = ¢ in Proposition [4.1.7] (i),
we have the isomorphism K (K (M)) ~ M. Since K (M) is Cohen-Macaulay, Corollary
again assures that M ~ K(K(M)) is Cohen-Macaulay. [

The next corollary is a extended version of Corollary for generalized Cohen-

Macaulay modules.

Corollary 4.1.10. If M is a generalized Cohen-Macaulay module with depth at least
two, then so is K(M) and M ~ K(K(M)).

Proof. 1t follows directly from Theorem [4.1.2] Corollary and Proposition
(2). n
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4.2 Bounding Bass numbers

The Foxby spectral sequences are again fundamental tools here. They
provide the main result of this section.

Theorem 4.2.1. If M s a finitely generated R-module of depth g and dimension t,
then the following inequality holds true for all 7 > 0.

W (M) < Zﬁj-l—i(Ki(M))'
Moreover, v(M) = Bo(K9(M)) and
o2 (M) = p (M) < Bo(K9 (M) — Bu(E(M) — Bo(KH(M)).

Proof. Consider the Foxby spectral sequences by taking S = R, X =k Y =M
and Z =95

EY? = Extl(Exth(k, M), S) =, H"?
and
'ES? = Torl!(k, Ext%(M, S)) =, H" ™.
Since Ext%(k, M) is of finite length we must have E5? = 0 for all p # s so that
HI ~ B3 = Exty(Ext) ™ (k, M), S)
for all integer j. Once K5 (M) = Ext% (M, S) for all ¢ > 0, we conclude that
'EST = Torl(k, K*~U(M)) =, Ext(Extl; 7" (k, M), S). (4.2.1)
Now, since Ext§(k, )Y ~ k, where " denotes the Matlis dual of R, we have
Exty(Ext?,(k, M), S) ~ Ext(k, §)* M) ~ ' (M)
as k-vector spaces. Therefore, by the convergence of 'E,
t
M) <Y B(EPTU(M)) = Bia(K' (M)
Jj=p—aq+ts i=g
for all j > 0.
Now, since K'(M) = Ext§ (M, S) = 0 for all i < g, then 'E, has the following

corner

Tord (k, KItY(M))  Tork(k, K9(M)) 0
Torf (k, K9t (M))~"Tor(k, K9(M)) 0
kop KITH(M) k®p K9(M) 0
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Therefore
k@p K9(M) ="Ey* ™9 ~ H9* ~ Ext§(Ext%(k, M), S)

so that r(M) = Bo(K9(M)) and there exists a five-term-type exact sequence

Eth(EXt?Dj’QU{’ M), S) e TOI'?(]{], K!](M)) E— Qg Kg+1(M)

/

Exts(Ext% ™ (k, M), S) — Tor®(k, K9(M)) —0
whence the desired formula. [ |

Corollary 4.2.2. Let M be a finitely generated R-module of depth g and dimension t.
If pdp KY(M) < oo for alli = g,...,t, then idg M < cc.

Proof. The hypothesis means that 8,(K?(M)) = 0 for all I > 0 and by Theorem [4.2.1]
one has

t
(M) <7 B (M) =0
=g
for 7 >0, ie.,idg M < . [ |
Bass’ conjecture [11] was first proved by Peskine-Szpiro in [72] and after in a
more general situation by Roberts [73]. It states that a local ring admitting a non-
zero module of finite injective dimension must be Cohen-Macaulay. The next corollary

provides sufficient conditions in terms of projective dimension for a local ring to be

Cohen-Macaulay.

Corollary 4.2.3. Let M be a finitely generated R-module of depth g and dimension t.
If pdy K{(M) < oo for alli = g,...,t, then R is Cohen-Macaulay.

Proof. Corollary assures that idg M < oo and thus the result follows from Bass’

conjecture. [ |

Theorem 4.2.4. If M is a generalized Cohen-Macaulay canonically Cohen-Macaulay

R-module of dimension t and depth at least two, then
Bi(M) = (K (M)  and 1 (M) = (K (M))

forall 7 > 0. In particular, pdg M < oo if and only if idg K(M) < 0o and idg M < oo
if and only if pdp K(M) < oo.

Proof. By Lemma (i), K (M) is Cohen-Macaulay of dimension ¢ and by Proposi-
tion [4.1.7] (¢), K (K (M)) ~ M, that is, K*(K(M)) = 0 for all i # t and K*(K(M)) ~
M. The spectral sequence

"ERY = Torf(k, K*~9(K (M))) =, Ext(Extly " (k, K (M)), S)
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degenerates so that
Torf (k, M) ~ Torf(k, K(K(M))) = "E}*" ~ Ext}(Ext} " (k, K (M)), S)

for all 5 > 0. Therefore

B;(M) = dimy, Tor!(k, M) = dimy, Ext§(Ext}, ™ (k, K(M)), S) = 1/ (K (M))
for all j > 0. The other equality follows from the fact K(K(M)) ~ M. |

Theorem generalizes [38, Corollary 3.6] and improves [39, Corollary 3.3].
We record this in the next corollary.
Corollary 4.2.5. If M is Cohen-Macaulay R-module of dimension t, then

B(M) = WH(K(M)) and 2 (M) = B (K (M)

forall 7 > 0. In particular, pdg M < oo if and only if idg K(M) < 0o and idg M < oo
if and only if pdp K(M) < o0.

Proof. 1f t > 2 then the result follows from Theorem 4.2.4] Otherwise, Corollary
and the spectral sequence argument given in the proof of Theorem [£.2.4] asserts the
result. |

Next theorem is an attempt to extent part of Theorem to arbitrary modules.
In the next section we work on the other part.

Theorem 4.2.6. Let M be a finitely generated R-module of depth g and dimension t.
If pdg K{(M) < oo for all g <i < t, then

W (M) = Bj-o(K (M)
for all j > depth R+ t. In particular, idg M < oo if and only if pdy K(M) < cc.

Proof. The spectral sequence is such that 'EY? = 0 for all p > depth R and
g < g <tso that

Torf(k, K(M)) ='E}*™" ~ Extl(Exty " (k, M), S),
whence the result. [ |

We derive other consequences of Theorem [4.2.1, In particular, we say exactly

when the type of a finite module is one in terms of its deficiency modules.

Corollary 4.2.7. Let M be a finitely generated R-module of depth g and dimension t.
The following statements hold true.
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(i) If M is Cohen-Macaulay of dimension t, then
PHHE (M) = p UK (M) = B2(M) = Bi(M).
In particular, if pdy M < oo then Bu(M) > By(M).
(ii) If idr M < oo, then
Bo(KTHH(M)) = Bo(K(M)) — Bi(K?(M)).
In particular, if M is also Cohen-Macaulay, then By (K (M)) > By(K(M)).
(iii) v(M) = 1 if and only if K9(M) is cyclic.

Proof. Ttem (iii) follows directly from Theorem Item (i) follows from Corollary

4.1.8, Theorem and Corollary [4.2.5] and item (i) follows from [I8, Theorem 3.7/,
corollaries |4.1.8{ and [4.2.5| and item (7). [

The spectral sequence [4.2.1| provides more information when the module involved
has only two (possibly) non-zero deficiency modules.

Proposition 4.2.8. Let M be a finitely generated R-module of depth g and dimension t.
Suppose K'(M) =0 for alli # g,t. Ifidg M < oo then Bj(K9(M)) = Bjig—1—1(K(M))
for all 7 > depth R — g + 1.

Proof. Write t = g 4+ r. The spectral sequence has only two vertical lines as the

following diagram shows.

0 Torf (k,K(M)) 0 - 0 Torf,(k,K9(M)) 0

0  Torf(k, K(M)) Torl(k, K9(M)) 0

0  Torf(k, K(M) 0  Torf(k,K9(M)) 0

0 k®3K<M) 0 0 k@RKg(M) 0
From convergence we obtain an exact sequence

Exty(Exty ¥ (k, M), S) — Tor! (k, K9(M)) — Tor,_, (k, K (M)) — Ext%(Ext}; " (k, M), S)

p—r—1
for all j > 0. Thus, since idg M = depth R (see [18, Theorem 3.7.1]) we conclude that

Torf(k, K9(M)) ~ Torl" ,_,(k, K(M))

j—r—1

for all 7 > depth R — g + 1, whence the result. [ |
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4.3 Bounding Betti numbers

In last section we bounded the Bass numbers of a module in terms of the Betti

numbers of the deficiency modules. In this section we get a dual version of Theorem

in the following sense.

Theorem 4.3.1. For a finitely generated R-module M of depth g and dimension t, the
following inequality holds true for all 3 > 0.
t

Bi(M) <Y @K (M)

Moreover, i°(K(M)) = B_y(M) and
Bra(M) — By (M) > 2K (M)) — u (K (M)) — g (K (M),

Proof. By taking M = k, N = M and P = S in the spectral sequence we have
the following.
ER? = Exth,(k, ExtL(M, S)) =, H"*I

and
'ES = Bxtl(Tor (k, M), S) =, H".

Since Torf (k, M) is of finite length for all ¢ > 0, due to local duality we must have
'EY? =0 for all p # s so that

H7 ~'E577° = Exty(Torf  (k, M), S)
for all j > 0. Once K* (M) = Exth,(M, S) for all ¢ > 0, one has spectral sequence

EPY = Exthy(k, K*~4(M)) =, Ext(Tor"

p+q—s

(k, M), S). (4.3.1)
Once f;(M) = dimy Ext‘fg(Torngs)_s(k, M), S), by convergence we conclude that

Bi(M) < Y dimkExt%(k,KS*q(M)):ZM“(K"(M)).

pHq=j+s
Now, since K*(M) = 0 for all i < g or ¢ > ¢, then EY? = 0 for all ¢ < s —t or

q > s — ¢g. In particular F5 has a corner as follows.

Hompg(k, K=Y M)) wfng(k, K=Y(M))

Homp(k, K(M)) Exty, (k, K(M)) Ext? (k, K(M))

0 0 0
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Therefore, there exist isomorphism
Homp(k, K(M)) = Ey*™" ~ Ext(Tor®,(k, M), S)
and a five-term-type exact sequence

0 — Extp(k, K(M)) — Ext(Tor”,. | (k, M), S) —= Homg(k, K'~1(M))

P

Exct (k. K (M) ——> Exty(Tor™, ,(k, M), 5)
whence the result. [ |

Remark 4.3.2. [t should be noticed that the estimate 5;(M) < ZE:Q WK (M)) is
already known, see [76, Theorem 3.2].

Corollary 4.3.3. The following statements hold true.
(i) If t = 0, then Bo(M) = p*(K(M)) and
Ba(M) — Br(M) = p*(K (M) — ' (K (M)).
Otherwise depthy, K (M) > 0;
(ii) If t =1, then B1(M) — Bo(M) = p*(K(M)) — p (K(M)) — p°(K°(M));
(iii) If t =2, then Bo(M) > p?(K(M)) — p' (K(M)) — p®(K*(M));
(iv) If t > 2, then p°(K'=H(M)) > p*(K(M)) — p' (K (M)).
Proof. Tt follows directly from Theorem [.3.1} |
Corollary 4.3.4. If M is a finitely generated Artinian R-module, then
Ba(M) = B1(M) = p*(K (M) — ' (K (M)).
Proof. By corollaries [4.2.7] (i) and [4.3.3] (),
PHE(M)) = @ (K (M)) > Bo(M) = pi(M) > p*(K(M)) — p' (K(M)).
m

Lemma 4.3.5. ([47, Proposition 2.8.4]) Suppose R is d-dimensional with embedding

dimension e. Then B1(R/m) = e and the following statements are equivalent.

(i) Bo(R/m) = (5) +e—d;

(i) R is a complete intersection.

85



Corollary 4.3.6. If R is d-dimensional of embedding dimension e, then
2 1y _ (€
20 - i) = () - d
if and only if R is a complete intersection.

Proof. Tt follows directly from Corollary and Lemma [1.3.5 [

Corollary 4.3.7. Let M be a finitely generated R-module of depth g and dimension t.
Ifidp KY(M) < oo for alli =g, ...,t, then pdy M < cc.

Proof. By hypothesis we have u!(K*(M)) = 0 for all [ > 0 and by Theorem one
has

t
Bi(M) <y @M (K (M) =0
i=g
for all j > 0, whence p/(M) = 0 for all j > 0, that is, pdy M < oo. |

The Auslander-Reiten conjecture [7| states the following. Given a finitely gener-
ated R-module M, if
Exth,(M, M ® R) =0

for all 7 > 0 then M is free. This long-standing conjecture has been largely studied
and several positive answers are already known, see for instance [3, 4, 8, 26] 39, 50,
63, 65, [71]. Corollary provides another positive answer for the Auslander-Reiten

conjecture for a class of modules. But first we need a lemma.

Lemma 4.3.8. ([68, Lemma 1 (iii)]) Let R be a local ring and let M and N be finite
R-modules. If pdy M < co and N # 0 then

pdy M = sup{j : Exth(M, N) #0}.

Theorem 4.3.9. Let M be a finitely generated R-module of depth g and dimension t.
If n < d s a positive integer, then pdp M < n provided the following statements hold

true.
(1) idg K'(M) < oo for alli =g, ..., t;
(ii) There exists an R-module N such that Extl(M, N) =0 for all j = n, ..., d.

Proof. Tt follows directly from Corollary [4.3.7] and Lemma [1.3.§] [

The next corollary is proves the Auslander-Reiten conjecture for a certain class

of modules. It generalizes the case of the conjecture obtained in [39).
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Corollary 4.3.10. The Auslander-Reiten conjecture holds true for finitely generated
modules having deficiency modules of finite injective dimension over local rings which

are factor of Gorenstein local rings.

Proof. 1t follows immediately from Theorem by taking n = 1. |

In the next theorem, such as Theorem [4.2.6], we furnish another attempt to remove

the generalized Cohen-Macaulayness hypothesis from Theorem [4.2.4]

Theorem 4.3.11. Let M be a finitely generated R-module of depth g and dimension
t. If idg K" (M) < oo for all g <i <t, then

Bi(M) = p (K (M)
for all j > s+depth R—t—g. In particular, pdz M < oo if and only if idg K(M) < oo.
Proof. Consider the spectral sequence

EPY = Exth(k, K¥~4(M)) =, Ext(Tor"

p+q—s

(k,M),S).

The hypothesis and [I8, Theorem 3.7.1] assures that EY? = 0 for all p > depth R and
for all s —t < ¢ > s — g. Therefore, the convergence of E/ implies that

Ext,(k, K (M)) ~ Ext(Torf,(k, M), S)
for all j > s — depth R — g, whence the result. [ |

The next proposition is an attempt to understand the converse of Corollary [£.3.7]

Proposition 4.3.12. Assume K'(M) = 0 for all i # g,t. If pdg M < oo, then
W (K9(M)) = /=9 YK (M)) for all j > pdy M + 1.

Proof. The spectral sequence has only two lines as follows.

Hompg(k, K9(M))  Bxth(k, K9(M)) --- BExtt"(k, K9(M))

Hompg(k, K(M))  Bxth(k, K(M)) ---  Ext%"'(k, K(M))
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Such a shape and convergence yields an exact sequence
Ext(Tor  (k, M), S) — Exthy(k, K9(M)) — Ext" ! (k, K(M)) — Ext(Tor ., (k, M), S)
for all j > 0. Thus if j > pdy M + 1 then

Ext’(k, K9(M)) ~ Ext’™ ™ (k, K(M))

and, in particular, g/ (K9(M)) = @/ (K(M)). |
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Chapter 5

Finiteness of homological dimensions

In this chapter, we appreciate local cohomology as nice a tool for solving problems
in commutative algebra. Here we will notice its relevance in the study of the finiteness
of homological dimensions via a cohomology vanishing approach.

In essence, this chapter deals with the interplay between the finiteness of some
of the main homological dimensions (see Section and the vanishing of cohomology
— more precisely, the vanishing of suitable Ext modules. Among such dimensions, we
consider the projective dimension, the injective dimension, the Gorenstein injective
dimension, and the Gorenstein dimension of (finitely generated) modules over a given
(Noetherian, commutative) Cohen-Macaulay local ring having a canonical module.

Our first goal in this chapter is to address some problems concerning the finiteness
of projective dimension via the vanishing of Ext modules that have appeared in the
literature, the main one being a question raised by D. Jorgensen in [60] about fourteen
years ago, see Question[5.1.10] We describe suitable additional conditions under which
such questions admit an affirmative answer, see theorems and Corollary
Second, we obtain similar results involving other homological dimensions, such
as the injective and the Gorenstein injective dimensions, as for instance Theorem [5.2.2]
Along the way, we derive several criteria for the freeness of modules. The main tools
used in this chapter are generalized local cohomology (see Section , Suzuki spectral
sequences in Appendix [B.2.5, Burch ideals, and strongly rigid modules.

Throughout this chapter, we will follow the notation in sections and [L.5



Namely, R will always denote a commutative Noetherian local ring with non-zero unity,
maximal ideal m. We denote by MV the Matlis dual of a finitely generated R-module
M.

5.1 Finiteness of projective dimension

5.1.1 Three questions about projective dimension and Ext van-
ishing

In this part, we are concerned with three problems involving the finiteness of
pdp M by means of Ext vanishing. The first one, recalled below and raised in [61]
Question 4.4], targets projective dimension zero over certain one-dimensional local
rings.
Question 5.1.1. Let R be a Gorenstein local ring of dimension one which is not a
complete intersection, and let M be a finitely generated R-module with CI-dimg M <
0o. If Extp(M, M) =0, must M be free?

It is worth mentioning that this actually fails for one-dimensional complete inter-

section rings, as the next example shows.

Example 5.1.2. ([61, Example 4.3]) Consider R = k[z,y]/(zy), where k is a field.

By splicing the short exact sequences
0—=2zR—-R—-R/xR—0,

0—-yR—-R—">2R—0

and
0—=2R—-R-%yR—0

we obtain a minimal R-free resolution of R/xR:
+—>RE=RLR5R%LR%R—R/tR—0.
Thus pdp R/xR = oo and
Exth(R/zR, R/zR) = ker(R % R)/im(R % R) = tR/zR = 0.
Our first objective in this subsection is to give equivalent conditions for the free-
ness of a Cohen-Macaulay module in the setting of Question [5.1.1] To this end, some

auxiliary concepts and results are in order. The first notion is that of generalized local

cohomology [1.4.1], which plays an important role in this chapter.
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Definition 5.1.3. Let (R, m) be a local ring and let M, N be a pair of finitely generated

R-modules. The cohomological dimension of M, N with respect to m is defined as

cdn (M, N) :=sup{i >0 | HL(M,N) # 0}.

Note that by taking M = R in the definition above we recover Definition 2.3.2]
for I = m.

Moreover, as a matter of notation, we put
er(M,N) :=sup{j > 0 | Ext},(M,N) # 0}.

Now we are ready to present our approach to Question[5.1.1} Here, the R-module
M is assumed to be Cohen-Macaulay, whereas R is taken Cohen-Macaulay but not

required to be Gorenstein.

Theorem 5.1.4. Let R be a Cohen-Macaulay local ring of dimension one, and let M
be a Cohen-Macaulay R-module of dimension d (hence d is either 0 or 1). Consider

the following assertions:
(i) M is free;
(ii) er(M, Hi(M)) < oo
(111) cdpw(M, M) < 0.

Then (i) = (ii) < (iii). Moreover, if Cl-dimgp M < oo and Exty(M, M) = 0, then the

three assertions are equivalent.

Proof. Clearly, (i) implies (ii). In order to prove the equivalence between (ii) and (iii),
we notice that, by taking N = M in the spectral sequence given in Lemma [B.7] it

collapses at its second page in such a way that
Ext? (M, HL(M)) = HE (M, M).

Therefore,
er(M, HL(M)) = cdn(M, M) — d,

which in particular gives (ii)<(iii).
Now assume that CI-dimg M < oo, Ext,(M, M) = 0, and that (iii) holds. Let us

prove (i). Consider the spectral sequence

E3Y = Hy (Exth(M, M)) =, Hy™(M, M)
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given in Lemma [B.6] Because dim R = 1, we must have E5? = 0 for p > 1, so that
E¥? = EP% and hence there are only two columns; by convergence, it follows a short

exact sequence
0— HL(Bxtl (M, M)) — Hi (M, M) — H(Ext},(M, M)) —0
for each 7 > 1. By hypothesis, HZ (M, M) = 0 for all j > 0, which yields
HY (Extly(M, M)) = HL(Exth(M,M)) =0 for all ¢> 0.

Therefore, since dim R = 1, we necessarily have Ext’% (M, M) = 0 for all t > 0
and then Lemma [1.5.2] ensures that pdp M < oo, i.e., pdg M < 1, which gives in
fact Extl (M, M) = 0 for all t+ > 2. Since Extp(M, M) = 0 by hypothesis, we get
er(M, M) = 0. It follows by Lemma that

pdy M =er(M, M) =0,

as needed. [ |

By virtue of a result of Vasconcelos, [82] Theorem 3.1|, one more item can be

added to Theorem [5.1.4] in the Gorenstein case.

Corollary 5.1.5. Let R be a Gorenstein local ring of dimension one, and let M be
a Cohen-Macaulay R-module of dimension d (hence d is either 0 or 1). Consider the

following assertions:
(i) M is free;
(11) Hompg(M, M) is free;
(iii) er(M, HE(M)) < oo;
() cdn(M, M) < co.
Then (i) < (ii) = (iii) & (iv). Moreover, if Cl-dimgp M < oo and Extp(M, M) = 0,

then the four assertions are equivalent.

For a finitely generated module M over a local ring, it is usual to denote its
module of (first-order) minimal syzygies by QM. The following is another question
from [61], which is quite connected to — and in fact generalizes the statement of — the
third problem to be dealt with later on (see Question [5.1.10)).

Question 5.1.6. (|61, Question 4.5]) Let R be a Cohen-Macaulay local ring with
canonical module wg and positive (co)dimension. For positive integers n < s, let

M be a finitely generated R-module with pdy M < oo satisfying Extiz(]\/[, M) =
EthR—H(M, M ®pr Quwg) =0 for all j =n,...,s. Isit true that pdy M < n?
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We shall give a positive answer to this question as long as the depth of the
(possibly trivial) module Ext% (M, M) is sufficiently high for ¢ in a suitable range.

First we invoke some helpful lemmas.

Lemma 5.1.7. (|85, Lemma 2.2|) Let R be a local ring and M, N be finitely generated
R-modules with pdp M < oo and N mazximal Cohen-Macaulay. Then, Torf(M, N)=0
forall j > 1.

Here is our attempt to tackle Question [5.1.6, which indeed solves it in the case
s > d := dim R. It turns out to be the main result of this section, and moreover it
generalizes [61, Theorem 3.1| (which corresponds to the case s = d). As usual, we set

the depth of the zero module to be 4o00.

Theorem 5.1.8. Let R be a Cohen-Macaulay local ring of dimension d with canonical
module wg. For positive integers n < s, let M be a finitely generated R-module with

pdp M < oo satisfying
Ext’ (M, M) = Ext’ (M, M @ Qwg) =0 for all j=mn,...,s.
In the case of s < d suppose in addition
depthp Exth(M, M) >d—s—q for all ¢=0,...,d—s.
Then, pdp M < n.

Proof. By Lemma we have pdy M = er(M, M), so eg(M, M) < d. If we first
consider the case d < s, then we must have eg(M, M) < n. Therefore, we may suppose
n<s<d.

Since pdp M < oo, Lemma forces Torf'(M,wr) = 0 and so there is a short

exact sequence
0—>M®RQwR—>M®RF—>M®RwR—>O

for some finite free R-module F'. Hence, for each 7 > 0, we get an exact sequence
Extl (M, M ®@g F) — Exth (M, M ®r wg) — Exti (M, M @g Qug) .
By the hypothesis on the Ext modules, it follows that
Extg%(M,M@RwR) =0 foral j=mn,...,s.

Now, it should be noticed that taking m-adic completion (where m is the maximal ideal
of R) does not affect the conditions present in the statement, i.e., we may suppose that

R is complete. Thus, as pdy M < oo, there are isomorphisms
HI(M, M) = ExtS7 (M, M @pwg)’ =0 forall j=d—s,...,d—n
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by generalized local duality (see Lemma [1.4.3)). On the other hand, considering the
spectral sequence given in Lemma [B.6]

E3* = HE(Exth(M, M)) =, Hy™ (M, M),
the depth hypothesis implies that EY? =0 for all p < d — s — ¢, that is, p+ ¢ < d — s.
By convergence we conclude that HI (M, M) = 0 for all j < d — s. Therefore,
HI(M,M)=0 forall j<d-n
and, by Lemma [[.4.2] depthp M > d — n, so that pd M = d — depthp M < n. [ |

In the sequel we will derive some immediate consequences of Theorem by
taking particular values of n or s. First, we consider the case n = 1, i.e., a characteri-

zation of freeness.

Corollary 5.1.9. Let R be a Cohen-Macaulay local ring of dimension d with canonical
module wg. For a positive integer s, let M be a finitely generated R-module with
pdp M < oo satisfying
Extl, (M, M) = Ext’™ (M, M @ Qwg) =0 for all j=1,...,s.

In the case of s < d suppose in addition depthp ExthL(M, M) > d — s — q for all
q=0,...,d—s. Then, M is free.

Before presenting other special cases of Theorem we state the third problem
we want to tackle in this subsection, which was suggested by Jorgensen in [60]. We
point out that Question [5.1.6|in fact recovers the statement of Jorgensen’s problem by

taking n = s and R a complete intersection.

Question 5.1.10. ([60, Question 1.7|) Let R be a complete intersection local ring R
of positive codimension, and let M be a finitely generated R-module with pdy M < oo.
Does the condition Ext'y(M, M) =0 imply pdg M < n?

Note Theorem detects an additional (depth) condition under which Question
5.1.10 admits a positive answer. On the other hand, we do not require the ring to be a
complete intersection. Let us consider the situation where R is Gorenstein. We point
out that the Gorenstein case of Theorem [5.1.8 will be recovered later by Corollary

[5.2.7 we can put n = s and M = N therein in order to record the following result.
Corollary 5.1.11. Let R be a Gorenstein local ring of dimension d. Let M be a finitely
generated R-module with pdp M < oo satisfying Exty(M, M) = 0 for some positive
integer n < d and in addition depthy Exth,(M, M) >d—n—q forallq=0,...,d—n.
Then, pdp M < n.
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Over complete intersections we obtain a particularly interesting result (apply
Corollary [5.1.11] together with Lemma [1.5.2]).

Corollary 5.1.12. Let R be a complete intersection local ring of dimension d. Let
M be a finitely generated R-module satisfying Extiz (M, M) = 0 for some positive even
integer n < d and in addition depthy Exth(M, M) >d—n—q forallq=0,...,d—n.
Then, pdr M < n.

Finally, taking s = d — 1 in Theorem we notice that the depth hypothesis
is reduced simply to

depth, Homg (M, M) > 0.

Note this occurs whenever depth M > 0 (e.g., depth R > 0 and M is contained in a free
R-module), on account of the general bound depthy Homg(M, N) > min{2, depth, N}
for all finitely generated R-modules M, N (see [18, Exercise 1.4.19]). As a consequence,
with the aid of the Auslander-Buchsbaum formula we see that depth, Hompg(M, M) >
0 if, for instance, pdp M < d. We thus immediately get the following corollary.

Corollary 5.1.13. Let R be a Cohen-Macaulay local ring of dimension d with canonical

module wg. For a positive integer n < d — 1, let M be a finitely generated R-module
with pdp M < d satisfying

Ext/y (M, M) = Extly(M, M ®5 Qug) =0 for all j=mn,...,d—1.
Then, pdr M < n.

Note the Gorenstein case of Corollary [5.1.13| is an immediate consequence of
Ischebeck’s theorem; see [18, Exercise 3.1.24] or [57, 2.6].

5.1.2 Finite projective dimension via rigid modules

In this part, we make use of the theory of “rigid” modules to establish sufficient
conditions for a given module to have finite projective dimension. We shall combine
this approach with some of our previous results in order to estimate this invariant and,
consequently, provide freeness criteria.

The following concepts, recalled here for the reader’s convenience, are collected

in [86l, p. 3] (some of them have their roots in [5]).

Definition 5.1.14. Let M be a finitely generated R-module.
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(a) M is said to be a test module if Tor(M, N) # 0 for infinitely many integers i,
whenever N is a finitely generated R-module with pdp N = oc;

(b) M is Tor-rigid provided that Torf(M, N) = 0 for all 7 > i, whenever N is a
finitely generated R-module with Tor®(M, N) = 0 for some i > 1;

(¢) M is a rigid-test module if M is both test and Tor-rigid;
(d) M is said to be strongly rigid if pdy N < oo whenever N is a finitely generated

R-module with Torf'(M, N) = 0 for some j > 1.

Some of the main relations and questions involving these definitions are given
in [86, p.4]. For instance, rigid-test implies strongly rigid (the converse is an open
problem) and Tor-rigid as well (the converse fails), while strongly rigid implies test

(the converse is false).

Lemma 5.1.15. (|86, Corollary 6.1|) Let R be a local ring and let M, N be non-zero

finitely generated R-modules. Suppose any one of the following conditions:
(i) N is strongly rigid and Ext'y(M, N) = 0 for some i > depth R;
(i) N is rigid-test and Ext'y(M, N) = 0 for some i > depthy N.
Then, pdp M = er(M,N) < i.
Our next result combines Theorem with the classes of modules described

in Definition [5.1.14] Note that, in the particular case s = d, parts (ii) and (iii) below

recover [62, Theorem 2.7].

Theorem 5.1.16. Let R be a Cohen-Macaulay local ring of dimension d with canon-
ical module wgr. For positive integers n < s, let M be a finitely generated R-module

satisfying
Ext’ (M, M) = Exti ™ (M, M @ Qwg) =0 for all j=mn,...,s.
In the case of s < d, suppose in addition
depthp Exth(M, M) >d—s—q for all ¢=0,...,d—s.

Assume moreover that there exists a non-zero finitely generated R-module N satisfying

any one of the following conditions:
(i) N is strongly rigid and Ext'y(M, N) = 0 for some i > d;
(i) N is rigid-test and Extly(M, N) = 0 for some i > depthy N;
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(iii) N is Tor-rigid, depthr N > 1, and Tor? (mN, M) = 0 for some i > 2.
Then, pdgy M < min{n,i}.

Proof. In the cases of (i) and (ii), we readily get pdp; M < i by Lemma [5.1.15 If (iii)
holds then the proof of [62, Theorem 2.7| applies to give pdy M < i as well. Now,
being pdy M finite, Theorem yields pdp M < n, whence the result. [ |

We derive a couple of immediate corollaries in the Gorenstein case.

Corollary 5.1.17. Let R be a Gorenstein local ring of dimension d. For positive
integers n < s, let M be a finitely generated R-module satisfying Ethq(M, M) =0
for all j =n,...,s. In the case of s < d, suppose in addition depthy Exth (M, M) >
d—s—q forallg=0,...,d—s. Assume moreover that there exists a non-zero finitely

generated R-module N satisfying any one of the conditions (i), (ii), (iii) described in
Theorem |5.1.16, Then, pdp M < min{n,i}.

Corollary 5.1.18. Let R be a Gorenstein local ring of dimension d. For a positive
integer n < d—1, let M be a finitely generated R-module satisfying EXt%(M, M)=0
forall j =n,...,d —1 and depthy Homg(M, M) > 0. Assume moreover that there

exists a mon-zero finitely generated R-module N satisfying any one of the conditions
(i), (i), (iil) described in Theorem|5.1.16] Then, pdy M < min{n,i}.

Finally, we observe that taking n = 1 in Theorem [5.1.16| (or any of its corollaries)

leads us to a characterization of the freeness of M.

5.2 Finiteness of other homological dimensions

So far in this chapter we have dealt solely with modules of finite projective dimen-
sion. In the present section, we add further homological dimensions into our investiga-
tion and focus on the interplay between the vanishing of Ext modules and the finiteness
of the injective dimension, the Gorenstein injective dimension, and the Gorenstein di-
mension of a finitely generated module. Applications to prescribed bound on projective
dimension and freeness criteria will be given. We maintain the previous notations.

The auxiliary results below will be useful to the main theorem of this section.
Lemma 5.2.1. (|62, Lemma 4.4]) Let R be a local ring. If M is a maximal Cohen-

Macaulay R-module and N is a finitely generated R-module with idg N < oo, then
eR(M, N) =0.
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The theorem below is the main result of this section. Notice that the case s = d

immediately retrieves [62, Theorem 4.6].

Theorem 5.2.2. Let R be a Cohen-Macaulay local ring of dimension d with canonical
module wr. For positive integers n < s < d, let M, N be finitely generated R-modules,
with idg N < 00, satisfying

Ext’(N, M) = Ext}; (Homp(Quwg, N), M) =0 for all j=mn,...,s, and
depthp Exth(M,N)>d—s—q for all ¢=0,...,d—s.
Then, depthy N > d —n. If in addition Gidg M < oo, then eg(N, M) < n.
Proof. By Lemma we have Ext}%(w r, V) = 0, hence there is a short exact sequence
0 — Hompg(wg, N) = Hompg(F, N) — Hompg(Qwr, N) =0
for some finite free R-module F. This yields, for each 7 > 0, an exact sequence
Extl(Homp(F, N), M) — Ext’(Homp(wg, N), M) — Ext’'y ' (Homg(Quwg, N), M).

Using the hypotheses, we get Ext’(Homg(wg, N), M) =0 for all i =n,...,s. Now it
should be noticed that R can be assumed to be complete, and therefore Lemma [1.4.4

ensures that
HI(M,N)=0 for all j=d—s,...,d—n.

On the other hand, the spectral sequence given in Lemma
Ep" = Hy(Extf(M, N)) =, Hy™(M,N)

is such that E5? = 0 for all p < d—s—gq. By convergence, it follows that H? (M, N) = 0

for all j < d —s. Summing up, we have
HI(M,N)=0 for all j<d—n.

Thus, Lemma gives depthp N > d — n. Finally, if Gidg M < oo then, by Lemma
1.5.6, we conclude that egr(N, M) = d — depthy N < n. [

Remark 5.2.3. By the proof of Theorem [5.2.2it is clear that the condition
Ext?,(Hompg(wg, N), M) =0 for all j=n,...,s
suffices to ensure the same conclusions.

As an application we obtain the following criterion for prescribed bound on projec-
tive dimension for certain modules of finite injective dimension. It should be compared

with Corollary to be given shortly.
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Corollary 5.2.4. Let R be a Cohen-Macaulay local ring of dimension d with canonical
module wgr. For positive integers n < s < d, let M, N be finitely generated R-modules,
with idg N < 0o and idg Hompg(wg, N) < 0o, satisfying

Extg%(N,M) =0 foral j=mn,...,s

and, in addition, depthp Exth(M,N) > d — s —q for all ¢ = 0,...,d —s. Then,
pdp N < n.

Proof. As idrwpr < oo, we have Gidrwgr < co. Since in addition idg N < 0o, we can
apply [75, Corollary 2.13| to get

de HomR(wR, N) = €R(N, CL)R).

On the other hand, Lemmal[L.5.6]yields eg(N,wr) < oo. Therefore pd; Hompg(wg, N) <
00, and since by hypothesis idg Homg(wg, N) < 0o, we obtain that R must be Goren-
stein by a classical fact (see [37], Corollary 4.4]). Now we have Qwg = 0 and GidgM <
oo, so that Theorem yields depthp N > d — n. Finally, because R is Goren-
stein and idg N < oo, we have pdy N < oo (see [18, Exercise 3.1.25|) and then the
Auslander-Buchsbaum formula gives pdpz N < n. [ |

The result below is a variant (in terms of Gorenstein dimension) of Corollary

b.2.4

Corollary 5.2.5. Let R be a Cohen-Macaulay local ring of dimension d with canonical
module wgr. Consider positive integers n < s < d. Let M, N be finitely generated
R-modules, with idg N < 0o and G-dimg N < oo, satisfying

Extg%(N,M) =0 foral j=mn,...,s

and, in addition, depthp ExtZ(M,N) > d — s —q for all ¢ = 0,...,d —s. Then,
pdp N < n.

Proof. First, since idg N < 0o, we must have G-dimg N = pdp N by Lemma [1.5.4] It
follows that pdy N < oo, hence R is Gorenstein by [37, Corollary 4.4]. Now the proof

of Corollary applies. [

A criterion for freeness follows immediately.

Corollary 5.2.6. Let R be a Cohen-Macaulay local ring of dimension d with canonical
module wgr. Consider a positive integer s < d. Let M, N be finitely generated R-
modules, with idg N < oo and G-dimg N < oo, satisfying Extg%(N, M) = 0 for all
j=1,...,s and depthz Ext},(M,N) > d —s—q for allq=0,...,d —s. Then, N is

free.
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Now we record the Gorenstein case of Corollary [5.2.5 which also recovers the
Gorenstein version of Theorem by taking N = M.
Corollary 5.2.7. Let R be a Gorenstein local ring of dimension d and consider positive
integers n < s < d. Let M,N be finitely generated R-modules with pdr N < oo
satisfying EXt%(N, M) =0 forall j=mn,...,s and, in addition, depthp Exth(M, N) >
d—s—q forallq=0,...,d—s. Then, pdg N <n.

From Corollary we derive immediately two more criteria for the freeness of
N, in the situation where R is Gorenstein. The first one is the case n = 1, and in the
second we take in addition s = d — 1 (provided that d > 2), which thus softens the
depth hypothesis by reducing it to the positivity of depth, Homg(M, N) — while, on
the other hand, more Ext modules are required to vanish.
Corollary 5.2.8. Let R be a Gorenstein local ring of dimension d and consider a
positive integer s < d. Let M, N be finitely generated R-modules with pdy N < 0o

satisfying Extg%(N, M) =0 forallj=1,...,s and, in addition, depthy Ext%,(M, N) >
d—s—qforallq=0,...,d—s. Then, N is free.

Corollary 5.2.9. Let R be a Gorenstein local ring of dimension d > 2. Let M, N
be finitely generated R-modules with pdr N < oo satisfying Extg%(N, M) =0 for all
j=1,...,d—1 and, in addition, depthy Homg(M, N) > 0. Then, N is free.

In the next section we will still be interested in finite projective dimension, but

making use of other auxiliary concepts.

5.3 Finite projective dimension via Burch ideals and

strongly rigid modules

In this part we establish consequences of Theorem m (more precisely, of Corol-
lary which deal with finiteness of projective dimension via the existence of either
a Burch ideal or a strongly rigid module satisfying suitable hypotheses. We also con-
sider a particular case of the latter that arises from the class of weakly m-full ideals.

5.3.1 Finite projective dimension via Burch ideals

The following notion was introduced in [27] and further studied in [20].
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Definition 5.3.1. (|20, Definition 3.1]) Let R be a local ring and let I be an ideal of
R. Then [ is called Burch provided that

I :gm=z#ml:gpm.

It is worth mentioning that if I is a Burch ideal of the local ring R then depth R/I =
0. On the other hand, if an ideal I is such that depth R/I = 0 and I is weakly m-full
(see Definition [5.3.11] below), then I is Burch. We refer to [27), Section 2].
Lemma 5.3.2. (|20, Theorem 3.3|) Let R be a local ring and let I be a Burch ideal of

R. Suppose Tor]'(N, R/I) = Torf (N, R/I) =0 for some finitely generated R-module
N and some integer t > 1. Then, pdr N < t.

Corollary 5.3.3. Let R be a Gorenstein local ring of dimension d. Consider positive
integersn < s < d. Let M, N be finitely generated R-modules such that Ext%(N, M) =
0 for all j =n,...,s and depthy Ext},(M,N) > d—s—q forall¢q=0,...,d —s. If
there exists a Burch ideal I of R such that

Torf (N, R/I) = Torf (N, R/I) =0
for some t > 1, then pdy N < min{t + 1,n}.

Proof. 1t follows directly from Lemma [5.3.2] and Corollary [5.2.7] [

Two criteria for the freeness of N are in order.

Corollary 5.3.4. Let R be a Gorenstein local ring of dimension d. Consider a positive
integer s < d. Let M, N be finitely generated R-modules such that Extg%(N, M) =0 for
all j =1,...,s and depthy Exth(M,N) >d—s—q forallq=0,...,d — s. If there
evists a Burch ideal I of R such that Tor]'(N, R/I) = Torf (N, R/I) = 0 for some
t > 1, then N s free.

Corollary 5.3.5. Let R be a Gorenstein local ring of dimension d > 2. Let M, N be
finitely generated R-modules such that Extg%(N, M)=0 forallj=1,...,d -1 and,
in addition, depthy Homg(M, N) > 0. If there exists a Burch ideal I of R such that
Tor; (N, R/I) = Tor;"; (N, R/I) = 0 for some t > 1, then N is free.

5.3.2 Finite projective dimension via strongly rigid modules

In this subsection, we are interested in using strongly rigid modules (see Definition
5.1.14(d)) to detect finite projective dimension. We will also consider a particular case

related to the notion of weakly m-full ideal (see Definition [5.3.11] below).
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General strongly rigid modules

Let us invoke a couple of preparatory lemmas. First recall that, for a local ring
(R, m), a finitely generated R-module M is said to be of finite projective dimension on
the punctured spectrum of R if pdp M, < oo for every p € Spec R\ {m}. Moreover, R

is said to have an isolated singularity if the ring R, is regular for every p € Spec R\ {m}.

Lemma 5.3.6. (|86, Proposition 3.6]) Let R be a Cohen-Macaulay local ring of di-
mension d with canonical module, and let N be a finitely generated R-module. Suppose

there exists a non-zero strongly rigid R-module M satisfying the following properties:

(i) M 1is of finite projective dimension on the punctured spectrum of R (e.g., R has

an isolated singularity);
(ii) Ext(M,N) =0 for some i > d+ 1.
Then, idg N < 0.

Lemma 5.3.7. (|86, Theorem 7.3|) Let R be a Cohen-Macaulay local ring. If Gidg M <

oo for some non-zero strongly rigid R-module M, then R is Gorenstein.

Corollary 5.3.8. Let R be a Cohen-Macaulay local ring of dimension d with canoni-
cal module wgr. Let M, N be finitely generated R-modules, with M strongly rigid and
Gidg M < oo, satisfying the following properties:

(i) M 1is of finite projective dimension on the punctured spectrum of R (e.g., R has

an isolated singularity);
(ii) Extiy(M, N) =0 for some i > d+ 1;

(11i) There ezist positive integers n < s < d such that Extg%(N, M) =0 forall j =
n,...,s, and in addition depthp ExtG,(M,N) > d—s—q forall¢g=0,...,d—s.
Then, pdr N < n.

Proof. By Lemma [5.3.6] items (i) and (ii) yield that idg N < co, whereas Lemma
ensures that R is Gorenstein. Thus, pdp N < oo, and by Corollary we conclude
that pdp N < n. |

Next we record the freeness criterion that follows readily by the case n = 1 of

Corollary Note it also follows from a combination of Lemma [5.3.6], Lemma [5.3.
and Corollary [5.2.8]

Corollary 5.3.9. Let R be a Cohen-Macaulay local ring of dimension d with canoni-
cal module wg. Let M, N be finitely generated R-modules, with M strongly rigid and
Gidgr M < oo, satisfying the following properties:
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(i) M 1is of finite projective dimension on the punctured spectrum of R (e.g., R has

an isolated singularity);
(ii) Ext'y(M,N) =0 for some i > d+ 1;

(iii) There exists a positive integer s < d such that Exth(N, M) = 0 for all j =
1,...,s, and in addition depthy Exth(M,N) > d—s—q for allg=0,...,d—s.

Then, N 1is free.

Over Gorenstein local rings we also have the following fact.

Corollary 5.3.10. Let R be a Gorenstein local ring of dimension d and let M, N be
finitely generated R-modules, with M strongly rigid, satisfying the following properties:

(i) Exty(N, M) =0 for some i > d;

(i1) There exist positive integers n < s < d such that Extz%(N, M) =0 forall j =
n,...,s, and in addition depthy Exth,(M,N) > d—s—q forallg=0,...,d—s.

Then, pdr N < n.

Proof. Lemma [5.1.15(1i) gives pdy N < 0o. The result now follows by Corollary 5.2.7]
|

Clearly, the case n = 1 of Corollary provides yet another freeness criterion.

Weakly m-full ideals

To conclude the chapter, we consider separately a special class of strongly rigid
modules over a Gorenstein local ring (R, m). It arises from the notion of weakly m-full

ideal, defined as follows.

Definition 5.3.11. (|20, Definition 2.1]) Let (R, m) be a local ring and let I,.J be
ideals of R. We say that [ is weakly m-full with respect to J provided that

]:RJ:m] :RmJ.
In case J = R, i.e. if I =ml :p m, then [ is simply said to be weakly m-full.

For example, if depth R > 0 then all integrally closed ideals of R are weakly m-full

with respect to m® for each s > 0 (see |20, Proposition 2.4|).
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Lemma 5.3.12. (|20, Corollary 2.14|) Let (R,m) be a non-reqular local ring with
depth R > 0, and let I be an m-primary ideal of R such that I is weakly m-full with
respect to m” and I C m*™L for some v > 0 (note the case v = 0 means that I is
weakly m-full). In addition, let N be a finitely generated R-module and t > 1 be an
integer. If Tor®(R/I,N) =0, then pdy N < t.

Note Lemma [5.3.12 implies that R/ is a strongly rigid R-module. This will be

used in the result below.

Theorem 5.3.13. Let (R, m) be a Gorenstein non-regular local ring of dimension d,
and let I be an m-primary ideal of R such that I is weakly m-full with respect to m”
and I C m"*t, for some v > 0. Consider positive integers n < s < d, and let N
be a finitely generated R-module such that Ext}'%(N, R/I) =0 forallj =mn,...,s and
depthy ExtL(R/I,N) > d—s—q forallq=0,...,d—s. Suppose in addition any one

of the following conditions:

(i) Tor®(R/I, N) =0 for some t > 1;

(ii) Extw(R/I, N) =0 for some i > d+ 1;
(iii) Ext'y(N, R/I) =0 for some i > d.
Then, pdp N < n.

Proof. In the case that (i) takes place, Lemmalp.3.12]yields pdz N < ¢ < oo, and hence
pdr N < n by Corollary [5.2.7] So it remains to prove the result in the other two cases.
As already pointed out, R/I is strongly rigid as an R-module. Note Gidg R/I <
oo because R is Gorenstein. Moreover, since in particular I is m-primary, we have
(R/I), = 0 for all prime ideals p # m and hence, trivially, R/ has finite projective

dimension on the punctured spectrum of R. Now if (ii) (resp. (iii)) holds then we get

pdp N < n by Corollary (resp. Corollary [5.3.10)). [ |

Clearly, criteria for the freeness of NV can be readily seen by taking n = 1 in the

above theorem. We close the chapter with a few more comments.

Remark 5.3.14. (a) In the case that (i) holds, the result (together with Lemma|5.3.12))
in fact yields pdz N < min{t,n}.

(b) In order to make Theorem feasible, an obstruction on the shape of N
must be taken into account. Precisely, N cannot be of the form m*N’, where N’ is
any non-zero finitely generated R-module and k£ > 1 is any integer. Indeed, suppose
by way of contradiction that the module m* N’ fits into the hypotheses of the theorem.
Then we would get

pdpm* N’ < n < oo
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which by [64, Theorem 1.1] is equivalent to R being regular; this violates our choice of
R.

(c) The case n = s = d of Theorem [5.3.13| gives that if Ext% (N, R/I) = 0 then m

contains an N-regular element.
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Chapter 6

Questions

In this chapter we gathered some remarks and issues that came up along the

development of the work.

6.1 On Chapter

We observe that in some sense there is a duality between two spectral sequences
in this work. Our Mayer-Vietoris spectral sequence has its components sheaf
cohomologies in partial products of ideals and abuts to the sheaf cohomology in the
sum of the ideals, meanwhile the Lyubeznik spectral sequence (also called Mayer-
Vietoris spectral sequence) has as components local cohomologies supported in partial
sums of ideals and abuts to the local cohomology supported in the product of the given

ideals. So we are motivated to ask the following.

Question 6.1.1. Is there some relation between the spectral sequences[2.1.8 and[B.2.2?

Lyubeznik has raised a question in [66] on the degeneration of his spectral se-
quence B.2.2] We ask the same about ours.

Question 6.1.2. Does the spectral sequence degenerate at second page?

6.2 On Chapter

The Mayer-Vietoris spectral sequence provides in propositions|3.1.1]and [3.2.2| and

Corollary relations between local cohomology modules supported in the irrelevant



ideal, in the ideals generated by products of variables and the *maximal ideal. We thus

ask the following.

Question 6.2.1. Does the Mayer-Vietoris spectral sequence |2.2.1) provide relations

such as those of propositions|3.1.1 and|3.2.4 for an arbitrary k?

6.3 On Chapter

Corollary inspire us to ask the following.

Question 6.3.1. Given a finitely generated R-module M, when is K(M) generalized
Cohen-Macaulay?

Based on sections [£.2] and [4.3] we finish this section by asking the following.

Question 6.3.2. Let M be a finitely generated R-module of depth g and dimension t.
Is it true that
idg M < 00 & pdp K'(M) < 00,Vi =g, ...,

or
pdr M < oo & idg K'(M) < 00,Yi = g,...,t?

6.4 On Chapter

As a matter of interest, we reinforce the Miranda-Neto and Jorge-Pérez’ questions

b.1.1] and Jorgensen’s question [5.1.10
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Appendix A

Second alternative to the second page

The construction given in this appendix is based on [59].

Let (2, <) be a ordered set and for each a € ¥ define
(o0, a] ={BeX: B <al

One may be seen that {(—oo,a] : @ € £} is a basis for a topology of ¥. In particular,
if ay,as,...,a, are finite sequences of R and Iy, I, ..., I, are, respectively, the ideals

generated by them, then the set
Z:{[Z L, Izp pE{O,,n—l} andi0<i1 < .. <Zp}

endowed with the inclusion order turns out to be a topological space. In this way, if
R-mod denotes the category of R-modules then one may consider two other categories:
the category of the inverse systems on R-mod with > as the index set, which is denoted

by R-mod”, and the category of sheaves of R-modules on ¥, denoted by S h(%).
Proposition A.1. Sh(X) is equivalent to R-mod™.

Proof. Let F be a sheaf on X. If I, J and K are elements of ¥ such that I C J C K
then (—oo, I] C (=00, J] C (—o00, K] is a chain of open subsets of ¥ and the diagram

F((—00, KJ) F((=00,J])

\/

F((=o0,1])



commutes, where the morphisms are the corresponding restriction morphisms. More-
over, if F LN G is a morphism of sheaves on 3, since # commutes with the corresponding
restrictions, then it induces a morphism between the inverse systems {F((—o0, I])}sex

and {G((—o0, I])}1ex. Therefore we have constructed a mapping

¢: Sh(¥) — R-mod*
F = {F((=o0, I])}rex
and one may be checked that ((6 0 0) = ((0) o ((0) and ((17) = {1r((—oo,n) }1ex, that

is, ¢ is a functor. Now let P : ¥ — R-mod be an inverse system. We have to construct

a sheaf on ¥ from P. Given an open subset U of > one may define

P(U) = lim P(I).

IeU

By the universal property of the inverse limit, if V' and U are open subsets of %

such that V' C U then there exists a unique morphism py; such that

PU) P(V)

~N

P(I)

for all I € V', where the diagonal maps in the diagram are the canonical maps involved.
Again, by the universal property of the inverse limit, we conclude that P is a presheaf
on X.

Now, let {U,}aca be an open cover of the open subset U of ¥. Suppose that
s € P(U) satisfies 5, = 0 for all « € A. Given I € U there exists 7 € A such
that I € U,. Since {(—o0, J]}jex is a basis for the topology of ¥ we have that
I € (—o0,J] C U, for some J € ¥. It implies the commutativity of the diagram

P(U) P(U,)
|~
P(1) < P((~00, 7))

Once S|, = 0 we conclude that the image of s by the projection P(U) — P(I) equals
zero. As it holds for every I € U we must have s = 0.

Let (sq) be an element in [ [, P(U,) such that Sy = Puanss forall a, 8 € A.
Given I € U, if there are o, f € A such that I € U, N Ug then (—o0, ] C U, N Uz and

Seq = (sa‘UaﬁUB)R,OOJ] = (%,Uam%)k,ooﬂ =5,

which implies that the images of s, and sz through the morphisms
P(Us) —= P((=00,I]) —= P(I) and P(Us) —= P((—00, I]) —= P(I)
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respectively, coincide. Let s; be such image and consider s = (s7)7ep. Notice that, for
any I and J in U such that I C J, we have J € U, for some € A and (—o0, I] C
(—o0,J] € U,. Hence s; and s; can be chosen as the images of s, through the
morphisms P(U,) — P(I) and P(U,) — P(J), respectively, which implies that s, is
the image of s; through P(I) — P(J). We thus conclude that s € P(U) and s|, = sq.
It proves that P is a sheaf.

Let P 2 @ be a morphism between inverse systems. If U is an open subset of ¥

then there exists a unique morphism 7y such that the diagram

commutes.

Given V and U two open subsets of ¥ such that V' C U, due to the diagram
above and the fact that n is a morphism of inverse systems, we have commutativity in
the following diagram

PU) L~ Q(lU)

nv
where the vertical morphisms are the respective restriction morphisms. Again we have
constructed a mapping
£: R-mod” — Sh(X)
P = P
and one may also be checked that £(no ) = &(n) o &(n) and £({1p(r)}rex) = 1p, that

is, & is a functor.

Claim A.2. If 1gxx) and L ods 0Te the identity functors of Sh(X) and R-mod™,

respectively, then (o& =1, x and {o (= lgyy).

Indeed, given a morphism of inverse systems P — Q, since the set {I} is a cofinal

subset of (—oo, I] for every I € X, we have

P((—o0,I]) = m P(J) ~ P(I)

Je(—00,I]
for every I € 3. It implies that the diagram

N(—o0,J]

P((=00, J]) —= Q((=00, J])



is isomorphic to the diagram
P(J)—"~Q(J)
P(I) —=Q(I)
for all I, J € 3 such that I C J. It means that ¢ o {(n) ~ 7.

On the other hand, let F LN G be a morphism of sheaves on Y. Given an open

subset U C ¥ there exists a unique morphism ¢ such that

F(U) ——lim F((—o0, 1])
\ /IeU
F((=00,1])
commutes for all I € U. Since p(x) = (z)___ ) for all x € F(U), {(—00, I]}1cv is an

open cover of U and F is a sheaf we conclude that ¢ is an isomorphism. It turns out

to be a functorial isomorphism, that is, the diagram

F(U) s G(U)
¢ ¢
i&nf((_ooul]) (£0C(0)1r @g((—m,]])
eU IeU
commutes for every open subset U C 3. Therefore £ o ((0) ~ 6. |

An immediate consequence is the following result.

Corollary A.3. The global sections functor I'(X, ) on Sh(X) is isomorphic to the

mverse limat functor lim on R-mod”.
Iex

Let F be a sheaf of R-modules on ¥, consider the open cover U = {(—o0, I} ex
of ¥ and denote by H?(U, F) the p-th Cech cohomology of U with coefficients in F.
[45, Lemma 4.1 chapter III| and Corollary give a functorial isomorphism
HU, F) = lim F((~o00,1]).

Iex
Lemma A.4. [}6] The Cech cohomologies { H?(U, )},>0 form a d-functor.

Proof. Firstly note that for a given element I € 3 the set {(—o0, I]} is cofinal in the

set of neighborhoods of I with the reverse order given by inclusion. This implies that
if F is a sheaf on ¥ then

Fy = lim F(U) =~ F((~c0, 1)

IeU



for any I € 3. Therefore an exact sequence of sheaves on X
0=>F =-F—=>F =0
induces exact sequences of R-modules
0— F'((—o0,1I]) = F((—o00,1]) = F'((—00,1]) = 0

for all I € ¥. By taking suitable direct products one has exact sequence of Cech
complexes

0= CU,F)—=CU,F)—CU,F") —0.

One sees that a morphism of short exact sequences of sheaves on ¥ induces a morphism

of short exact sequences of the Cech complexes involved. This give us the result. W

[74], Propositions 6.72 and 6.73] says that every sheaf on ¥ can be embedded in a

flasque sheaf. [45, Proposition 4.3 chapter I1I| says that flasque sheaves are @—acyclic
Iex

and [45, Proposition 1.2A chapter III] says that the derived functors of M can be
Iex

computed by the Cech cohomology of . In other words, { H?(U, )},>¢ is a universal

O-functor and

HP (U, F) = lim P F((~o0, 1]).

Iex

Let ¢ > 0. We may see sheaf cohomology groups as R-modules of the form F(U)
where F is an object in Sh(X) and U is an open subset of ¥. Indeed, let M be an
R-module and, if I and J are two ideals in ¥ such that I C J, then the canonical
inclusion I < J induces a morphism H4(Uy, M )— H(Uy, M ). It is immediate to
see that it defines an object H(U,, M) in R-mod”. Furthermore, since {I} is cofinal
in the set (—oo, I], if H%(U,, M) is the sheaf in Sh(X) associated to H?(UL, ]\7) then

HI(Us, M)((—o00, 1)) = lim  H(U,, M) ~ H*(U;, M)
Je(—o00,1]

for all I € 3.

It follows that

HP (U, H9(U,, M)) ~ lim P HI(U;, M
Iex

for all integer p.

The horizontal lines of the first page of the Mayer-Vietoris spectral sequence [2.1.8

define complexes
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HIM)® : 0 —=HI(M)0 —=HI(M)! — - .

where

WOLY = @ H Ui, 1)

i0<...<ip

One may see that the complex H¢(M)® is isomorphic to the Cech complex of U

with coefficients in H?(U,, M), and from the last isomorphisms, we conclude that, for
every p > 0,
HP(HI(M)®) ~ lim ") H (U}, M).

1ex

Therefore, the second page of the Mayer-Vietoris spectral sequence [2.1.8|is

BP9 = Jim w) o (U, M)
Iex
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Appendix B

Spectral sequences

We devote this appendix to describe some important generalities on spectral
sequences and some examples which are vastly used through the literature, and, in
particular, in this thesis. The reader not familiarized with the general theory of spectral
sequences can found |70}, [74], 83] as nice introductory textbooks to get acquainted with

this important homological tool.

B.1 Spectral sequences arising from double complexes
In this section, we follow the textbook [83].

Let A be an abelian category.

Definition B.1. [83, Definition 5.2.1] A spectral sequence in A consists of the follow-
ing data:

i) A family {EP} of objects of A defined for all integers p,q and r > 0;
i) Maps dP? . EP? — EPTTa="tL that are differentials in the sense that dd = 0;
i) Isomorphisms between EYY, and the cohomology of E, at the spot EP4:
EPd, ~ ker(dP9) / im(dP~ "0,

If for each p and ¢ there exists ro such that EP? = EPY, for all r > r( then we

write P4 for this stable value of EP4.



Let C be a double complex in A

i (Pt Oopetl ___ optletl L
dl

e o (rla opa— 4 _ovtla ..

e (P Ll ope-l ___ optle-l L

Definition B.2. [83, Definition 1.2.6] The total complex Tot(C) of C is defined as

with differential Tot™(C) — Tot" ™ (C) defined by d'P9 + (—1)PdP.

Tot(C) is indeed a complex and we may naturally define two filtrations for this

complex. First, we define the filtration by columns.

Definition B.3. [83, Definition 5.6.1] For each p the sequence FPTot(C) defined as
FPTot"(C) = EHcrm
p=n

is a subcomplex of Tot(C).

{FPTot(C)}, defines a filtration of T'0t(C) so that it induces a spectral sequence
E (see [83, page 141]). The first and second pages are well known. The first page is
given by
EYT = HI(CP*).

Since passing cohomology is a functorial operation, E7 is a complex and the objects
in the second page of F coincides exactly with these homologies, so we use a suggestive

notation:

EPY = HPHI(C).

The second filtration of Tot(C) is given by its rows.
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Definition B.4. [83, Definition 5.6.2] For each q the sequence 'F9Tot(C) defined as

FiTorn(€) = @) ¢

q>n

is a subcomplex of Tot(C).

In a similar way, {"F9Tot(C)}, defines a filtration of Tot(C) and so we have

another spectral sequence 'E. Its first and second pages are given by
"BV = H(C*P) and 'EY? = HIH?(C).

Definition B.5. [83, 5.2.11] A spectral sequence E converges to a graded object H,
denoted by
EY? =, H",

iof for each n there exists a decreasing filtration
0=F"""H*C F*"H"C..C F'H" C F°H" = H"

such that, for p+q = n,
EPt~ FPH™/FPYIHT

Theorem B.6. [83, Theorem 5.51] If C is a first quadrant double complex then the
filtrations {FP}, and {'F?}, of Tot(C) are both bounded and

EY =, HP(Tot(C))
and

"EDT = HP(Tot(C)).

B.2 Examples

B.2.1 Cech spectral sequence

In this section, we follow [19).
Let F be a sheaf of abelian groups on X and let & be an open cover of X. Pick

up an injective resolution Z*® of F, and form the double complex C*(U,Z°*):
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T T T
0—COU,I™) = CY U, I™) — -+ — C™U,T™) —> - - -
A A A

! b
0—C°U,T") —C' U, T") — - — C"(U, L") — -

f f !

0— COU,I°) — CY U, T°) — - - — C"(U,T°) — - - -

} ! |
0 0 0

It induces two spectral sequences. Let E be the spectral sequence associated with the
filtration by columns. Its first page is
EY = HY(C"U.I*) = ] H'Ui..,. F).
10<...<ip

We can compute the second page of E as follows. For each ¢ > 0 consider the presheaf
HI(F)(U) == HY (U, F)

where U is an open subset of X. Thus the first page can be rewritten as EP? =
CP(U, H(F)) so that EP? is the Cech complex of the open cover U with coefficients
in H?(F). Therefore

EYY ~ HP(U, HI(F)).

Let 'E be the spectral sequence associated with the filtration by rows. Its first
page is
B = HY(CUULT)) = HYU,T7).
Since the sheaves Z?P are flasque (see [19, Lemma 4.20]), we have 'E}"? = 0 for ¢ > 0
and 'EP° = I'(X,Z7). Hence 'EY? = 0 for ¢ > 0 and

HP(X,F) ="'Ep9 ~'EPA.

Theorem B.1 (Cech Spectral Sequence). [I9, Theorem 5.32] Let U be an open cover
of a topological space X, and let F be a sheaf of abelian groups on X. There is a

spectral sequence E whose first and second pages are given by

B = ] H'Wi.i,, F) and ES* = H' (U, H(F))

10<...<ip

and converges to the sheaf cohomology H® (X, F).
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B.2.2 Another type of the Mayer-Vietoris spectral sequence

The principal tool in [66] is another spectral sequence, which they call by Mayer-
Vietoris spectral sequence as well. It is a generalization of the spectral sequence that
appears first in [I]. Here we give a sketch of the construction of this spectral sequence.
For the details see [66].

Recall that for an ideal J of a Noetherian ring R, I";(M) denotes the submodule
of the finitely generated R-module M consisting of the elements of M annihilated by
some power of J, see for example [I7, B8|. If J' C J, we let v : ['y(M) — T'p(M)

be the natural inclusion. Hence, given ideals Iy, ..., I,, C R, the sequence

T*(M):  0——=TD-" (N pre2(f 2 T ——0
where T2(M) = @, .. -, Tiy .41, (M) and d2(z) = (=1}, (x)); for every cle-
ment xr € F](M) g F_p<M), Where J = [io + ...+ [ip and J] = [7;0 + ...+ [j—l =+ Ij+1 +
o+ I,

It may be seen that I'*( ) defines a functor from the category of R-modules to
the category of complexes of R-modules. Moreover, if M is injective, then

HP(T*(M)) = Craonn (M), ifp=0

0, else.

Hence, if M — E* is a injective resolution of M, then the third quadrant double
complex I'*(E*®) yields a spectral sequence collapsing at its second page, with the
modules H7 , ; (M) at the spot (0,q). Meanwhile, since homology commutes with
direct sums, the other spectral sequence is given by £y = B, _ _,; quiOJr‘_.Hip(M).

Convergence asserts the following result.

Theorem B.2. [66, Theorem 2.1] Suppose R Noetherian and let I, ..., I, C R be ideals

and let M be an R-module. There exists a spectral sequence

El_p’q: @ H?i0+...+IiP(M) Hll_n NI, (M>

10<...<ip

As [66] says, if n = 2, i.e., there are just two ideals, this spectral sequence
becomes the standard Mayer-Vietoris long exact sequence. Furthermore, if n < 3, then

the Mayer-Vietoris spectral sequence degenerates at Ej.
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B.2.3 Koszul-Cech spectral sequence

Assume R Noetherian. Let a = aq,...,a,, be a finite sequence of R and let [
be the ideal generated by a. Let x = xq,...,z, also be a sequence of elements of R.
Consider the Cech complex of R associated to a, see Definition , C3(R), and the
Koszul complex of R associated to x, K(x), see [I8]. Let M be an R-module. We
may consider the first quadrant double complex C5(R) ®p Ko(x) @r M:

0 0
| |
Kn(x) QR M—>~O&(R) QR Kn(X) QrM —--- _>.Cm(R) QR
i \l i

| | | |

0—>CS(R) KR Kl(X> ®RM—>C§(R) KRR Kl(X) ®RM—>—>CT(R) KR K1<X) ®RM—>O
| | |

O%CB(R) ®R K()(X) ®RM—>O(}(R) ®R Ko(X) ®RM—>—>C§L<R> ®R K()(X) ®RM—>O

| | |
0 0 0

0
|
0—CR)®pg K, (x) @r M —0

It induces two spectral sequences that converge to the same module. Let E
be the spectral sequence induced by passing cohomology on horizontal and let 'E
be the spectral sequence considering vertical homology. Since both Koszul and Cech

complexes considered are composed by free R-modules, one has
VY = HY(M) @5 K,(x) and B} = H,(x; HI(M))

and

'EV? = C¥(R) @ Hy(x; M) and 'E5? = H}(Hy(x; M))

where H,(x; ) denotes the g-th Koszul homology of the sequence x. Both spectral

sequences converge to a graded module H in such a way that
EY" = Hy(x; Hf (M)) =, H"™

and

'ED? = HP(H,(x; M)) =, H?.

These spectral sequence are called Koszul-Cech spectral sequence. Interesting

recent applications for them can be found in [14] and [35].
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Now we consider two cases for these spectral sequences that come out to be useful
in this thesis. First, let M be a finitely generated R-module and suppose that x forms
a M-regular sequence. Hence 'EY? = HY(H,(x; M)) = 0 for all ¢ > 0 so that

HY(M/xM) ="E?° ~'EP0 ~ [P
for all p > 0. Therefore there is spectral sequence
ERt = Hy(x; H{(M)) =, Hi P(M/xM).

For the second case, suppose that R is a Z*-graded *local ring, a is a sequence
of homogeneous ideal of positive degree and x is an R-regular sequence generating the
*local maximal ideal. It follows that H,(x; M) is annihilated by the *local maximal

ideal meanwhile every homogeneous element a; acts as an invertible element of 'E?"

for all p > 0 so that "EY"? = C?(R) ®g H,(x; M) = 0 for all p > 0 and
Torf (M, R/(x)) = Hy(x; M) ="E}" = 'E ~ HY
for all ¢ > 0. Therefore there is a spectral sequence
B3 = Hy(x; HY(M)) =, ot (M, R/ (x).

Notice that one may suppose R local, x a generating set of the maximal ideal and [ a

proper ideal of R. An alike argument applies to this case.

B.2.4 Foxby spectral sequences

Foxby spectral sequences make up a quite useful homological tool. They were
named after their first use in Foxby’s work [38]. They have several applications; for
example, they can be used to prove the local duality theorem (see [I7, Theorem 12.1.20]
or [58, Theorem 11.44|) or to get relations between Bass numbers and the minimal
number of generators of certain modules, Bass numbers and Betti numbers, injective
dimension and depth (Ischebeck’s formula). See for instance [18, Exercises 3.1.24,
3.1.25, 3.3.26, Proposition 3.3.11]. It should be noticed that all the discussion in this
section can be used in the graded case.

Let R and S be Noetherian rings and consider R — S a ring homomorphism.
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Lemma B.3. If M is a finitely generated R-module, N a S-module and E an injective

S-module, then there exists isomorphism
M ®g Homg(N, FE) ~ Homg(Homg (M, N), E)
which is functorial in M.

Proof. The functor Homg(Hompg( , N), E) is a right exact functor that commutes with
finite direct sums defined from the category of finitely generated R-modules into the

category of abelian groups. Therefore
Homg(HomR(_, N), E) >~ Xnr HOIIls(HOHlR(R, N), E) ~ Xnr Homs(N, E)
|

Theorem B.4. If M is a finitely generated R-module, and N and P are S-modules,

then there are two first quadrant spectral sequences
EDT = Extl(Ext},(M, N), P) and 'E}" = Tor) (M, Ext%(N, P)).

Furthermore, they converge to the same limit H whenever either M has finite projective

dimension or P has finite injective dimension (as S-module):
EY?® = Ext(Exth,(M, N), P) =, HI™?

and
'ES = Torl (M, ExtL(N, P)) =, H"™4.

Proof. Let F, be a free resolution of M and let E* be a injective resolution of P (as

S-module). By Lemma one has isomorphism of first quadrant double complexes
F, ®g Homg(N, E*) ~ Homg(Homg(F,, N), E®).

By using the exactness of the functors F; ®z  and Homg(_, E7), the right hand side
gives rise to the spectral sequence E whereas the left hand side gives rise to the spectral

sequence 'E as follows.

EP? = Homg(Ext} (M, N), E¥) and Ey? = Extg(Exth(M, N), P),

and
"BV = F, ® ExtL(N, P) and E}? = Tor(M,Ext}(N, P)).
The convergence follows from Theorem [B.6] [
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As already mentioned, local duality is an immediate consequence of the conver-
gence of the two spectral sequences above. Indeed, suppose (R, m) is Cohen-Macaulay
local of dimension d with canonical module wg, let E be the injective hull of the residue
field of R and denote v = Hompg(_, E). By taking R = S,N = wg and P = F in
Theorem [B.4] both spectral sequences degenerate so that

HE (M) ~ TorP(M, w)) ~'Ei° ~ H' ~ EY ~ Extly(M,wp)"

for all 7 > 0.

B.2.5 Suzuki spectral sequences

The spectral sequences in this section were first used by Suzuki in [80]. They are
quite useful in the study of generalized cohomology modules, see for example [29] 48]

80]. Here we suppose that R is a Noetherian local ring with maximal ideal m.

Lemma B.5. [80, Theorem 1.4] Let M and N be finitely generated R-modules, x =
T1,..., Ty in m generating a m-primary ideal, and for each m > 0, K,(x™; R) denotes
the Koszul complex of R with respect to ™™ = 7', ...,z

M. If C™ denotes the total complex associated to the double complex Ko(2™; R) ®r F.,
then Hy (M, N) ~lim H'(Homp(C™, N)).

and F, be a free resolution of

Lemma B.6. ([80, Proposition 1.8]) Let R be a local ring. If M, N are finitely gener-

ated R-modules then there exists a first quadrant spectral sequence
HE (Exth (M, N)) =, H?*4(M, N).

Proof. First let F, be a free resolution of M and notice that, for each m > 0, from the

hom-tensor adjunction, there is an isomorphism of double complexes
Hompg(K.(z™; R) ®g Fo, N) ~ Hompg(K.(2™; R), Homg(F,, N))

and by the lemma above the total complex associated to this double complex is iso-

morphic to Homg(C™, N). It assures the existence of a spectral sequence
HP(Hompg(K,.(z™; R), Ext4 (M, N)) =, H?"(Homg(C™, N)).

It consists of a direct system of spectral sequences and thus the result follows by
applying lilgm to it. [ |
Lemma B.7. ([80, Proposition 1.7]) Let R be a local ring. If M, N are finitely gener-

ated R-modules then there exists a first quadrant spectral sequence
Exth, (M, HL(N)) =, HEYY(M, N).
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Proof. The construction of the desired spectral sequence is completely analogous to
that of Lemma [B.7] by considering the other spectral sequence arising from the double

complex
Hompg(K4(z™; R) ®g Fy, N) ~ Hompg(F,, Homg(K.(z™; R), N)).
instead. n

It should be observed that both spectral sequences above can be constructed for
any ideal I. Indeed, it can be proved that for two finitely generated M and N over a

(non-necessarily local) ring R there exist two Grothendieck spectral sequences

HY (Ext},(M, N)) =, H?™(M, N)

and

Exth(M, H}(N)) =, H?*9(M, N).

See [74] for Grothendieck spectral sequences.

B.2.6 Cohomological dimension estimate

Theorem B.8. Let a = aq, ..., a, be a finite sequence of elements of R, and let M and
N be two R-modules. If I is the ideal generated by a then there exist a graded R-module

H and two spectral sequences
Ey 71 = Tor} (M, H}(N)) =, HI™?

and
'EPTI = Hf(Toqu(M, N)) =, H"™7

Proof. Let F, be a free resolution of M and consider the second quadrant double
complex Fy ®r C3(R) @ N:
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>
. >0
>

—>F2®RCSL(R)®RN—>F1®RCS<R>®RN—>'F0®RO;?(R)®RN—>O
A A

|
(
(

>

!

R)®r N — F, @z CY(R) @z N — Fy @ C?
|

0 0 0

By passing homology on horizontal one gets spectral sequence whose first and

second pages are
'EP 1 = Torl (M, N) @ CE(R) and 'E5 ™1 = HY(Tor} (M, N)).
Since F, is a resolution, the other spectral sequence FE is such that
E;" = F,®p H{(N) and E, ™" = Tor}'(M, H}(N)).

The convergence follows from Theorem [B.6] |

This spectral sequence is useful for estimating cohomological dimension of any
module in terms of the cohomological dimension of the ring. Precisely, by considering
the hypothesis of the theorem above, cd;(M) < cd;(R). Indeed, write cd;(R) =t and
suppose N = S is a faithfully flat ring extension of R. Thus H{(M®gS) ~ H:(M)®rS
for all integer i and, from the theorem above, the spectral sequence 'E is such that
'EST? =0 for all ¢ > 0 so that H? ~ HY(M) ®g S for all integer p. Therefore, there
exists spectral sequence

Ey 7 = Tort(M, H}(S)) =, Hf "(M) ®g S.
Since Hi(S) ~ Hi(R) ®g S for all integer 4, one has E,;™? = 0 for all ¢ > ¢. By
convergence we conclude that
M ®@g Hi(S) ~ Hi (M) ®p S
and that
H}(M)®r S~ M @ Hi(S)=0
for all j > t. Since S is faithfully flat one has H}(M) = 0, that is, cd; (M) < t.
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B.2.7 Local cohomology modules supported in /I, J and [ + J

The spectral sequence in this section has also been used in [22] and [28].

Theorem B.9. Let a = aq,...,a, and b = by, ..., by be two finite sequences of R and let
M be an R-module. If I and J are the ideals generated by a and b, respectively, then

there exists spectral sequence
Byt = HY(H(M)) =, H{[5(M).

Proof. Consider the first quadrant double complex C3(R) ®@r C3(R) ®@r M:

0 0 0
! ! !
0—Ci(R)®rCYR)®r M —Ci(R) p CH(R) @g M — -+ —C§(R) @z C2(R) @ M —0
A A A
0—Ci(R)®rCYR)®@r M —CH(R)®r Ca(R)®r M — -+ —C{(R) ®r C2(R) @ M —0
4 i }
0—CP(R)®r CY(R) @r M - CY(R) ®r Ca(R) g M — -+ = CP(R) ®r C2(R) ® g M —0
} i }
0 0 0

By passing homology on horizontal one gets spectral sequence F whose second
page is given by
Ey" = Hi (H3(M)).

The result follows by noticing that C3(R) ®@r Cg(R) @r M ~ Cg(R) ®r M. (It can
be proved, for instance, using the characterization of Cech complexes as direct limit of
Koszul complexes, see [22].) |

B.2.8 Tensor-Hom adjunction

Let S — R be a rings homomorphism.

Theorem B.10. Given M and N R-modules and P a S-module, there exist graded

R-module and spectral sequences
EN? = Exth (M, Exty(N, P)) =, H"*

and
'E? = Extl(Torl (M, N), P) =, H"*™.
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Proof. By taking a free resolution F, of M (as R-module) and an injective resolution
E* of P, the Tensor-Hom adjunction gives us isomorphism of first quadrant double

complexes
Hompg(F,, Homg (N, E*)) ~ Homg(F, ®r N, E*).

This isomorphism gives rise to two spectral sequences E and 'E converging to HP™¢
and such that

EP* = Homp(F,, Ext%(N, P)) and EP? = Ext?, (M, Ext%(N, P))

and
'EP! = Homg(Tor) (M, N), E?) and 'E}? = Extl(Tor) (M, N), P)

whence the result. [ |
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