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Resumo

Este trabalho trata de algumas características da teoria da cohomologia local. Desen-

volvemos uma nova ferramenta chamada sequência espectral de Mayer-Vietoris que nos

permite estudar vários módulos de cohomologia local suportados em diferentes ideais,

o que nos levou a generalizar ou recuperar resultados anteriores de vários autores e

também a produzir novos, especialmente no que diz respeito a anéis polinomiais multi-

graduados. Também lidamos com módulos Cohen-Macaulay generalizados e módulos

de deficiência, fornecendo relações entre números de Bass e Betti destes de modo a tanto

generalizar resultados clássicos quanto a provar novos como um caso da a conjectura

de Auslander e Reiten. Finalmente, cohomologia local é vista como uma importante

ferramenta para o estudo da interação entre a finitude de dimensões homológicas e de

anulamento de módulos Ext.

Palavras-chave: Cohomologia local; sequência espectral de Mayer-Vietoris; dimensão

cohomológica; regularidade de Castelnuovo-Mumford; característica de Euler; módulos

de deficiência; módulo Cohen-Macaulay generalizado; conjectura de Auslander-Reiten;

cohomologia local generalizada; dimensão homológica.
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Abstract

This work is about some features of local cohomology theory. We develop a new tool

called Mayer-Vietoris spectral sequence that allows us to study several local cohomol-

ogy modules supported in different ideals, which led us to generalize or retrieve previous

results of several authors and also produce new ones, especially in what concerns multi-

graded polynomial rings. We also deal with generalized Cohen-Macaulay modules and

deficiency modules, providing relations between their Bass and Betti numbers in order

to both generalize classical results and produce new ones as a case of the conjecture

of Auslander and Reiten in a particular case. Finally, local cohomology is viewed as

an important tool for the studying of the interplay between finiteness of homological

dimensions and the vanishing of Ext modules.

Keywords: Local cohomology; Mayer-Vietoris spectral sequence; cohomological di-

mension; Castelnuovo-Mumford regularity; Euler characteristics; deficiency modules;

generalized Cohen-Macaulay module; Auslander-Reiten conjecture; generalized local

cohomology; homological dimension.
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Introduction

Serre’s fundamental work (1955) [79] set up cohomology theory as an essential

tool in modern algebraic geometry. Serre observes that many statements about pro-

jective varieties can be understood as statements about graded or complete local rings

so that, after proved, they may be of use in obtaining global outcomes. For instance,

the duality theorem for projective varieties becomes a duality theorem for local coho-

mology modules. Thus, it suggested many themes which are largely studied in local

cohomology theory until nowadays, but only in Hartshorne’s book (1967) [45] (on a

Grothendieck’s 1961 seminar) the effectiveness of local cohomology is recognised in

local algebra. Despite Grothendieck and Hartshorne’s viewpoints were still geometric,

their notes have shown the indispensable benefit of local cohomology theory for the

study of commutative Noetherian rings.

In light of this, Broadmann-Sharp [17] provides an excellent algebraic introduction

to Grothendieck’s local cohomology theory with some geometric flavour (as the title

of the book suggests), which is the approach that we intend to follow up here. To be

more exact, we still rely on the geometric viewpoint since in this thesis local cohomology

modules — over a non-necessarily Noetherian ring — are defined via cohomology of

Čech complexes. Such a generality provides an algebro-geometric link that allows the

reader to approach the theory here developed through the better way it fits for their

purpose.

As the title of this thesis says, we work on different aspects of local cohomology

theory. We will explain them in general lines and next describe each one highlighting

those different features.

In this thesis, we make some progress regarding local cohomology theory, espe-



cially in a multigraded setting, on deficiency modules and the use of local cohomology

to approach problems on homological dimensions. Important tools of the general the-

ory are extended providing through the chapters new achievements — such as a duality,

Artinianess and more information about (numerical) homological invariants — and im-

provements of known results. On what concerns deficiency modules, which are, in a

sense (due to local duality), the Noetherian versions of local cohomology modules, we

develop some theory on generalized Cohen-Macaulay modules and then provide com-

parisons between Bass and Betti numbers of modules and their deficiencies. Finally,

the theory of generalized local cohomology turns out to be quite useful in the study of

the finiteness of homological dimensions.

Namely, we investigate a quasi-isomorphism between complexes so that the con-

struction of a spectral sequence, which we call it by Mayer-Vietoris spectral sequence,

since it generalizes the well-known Mayer-Vietoris long exact sequence, see [17], is

made possible. Although there are other generalizations of the Mayer-Vietoris long

exact sequence (see [1, 66, 78, 81]), ours still allow us to work on problems involving

more than two ideals. Note that the spectral sequence in [66] has the same spirit but

Noetherianess is required and its construction is different (though similar somehow) so

that it is useful in this work but not sufficient for our goals. Having such tools in hands,

in a multigraded setting, we provide bounds for cohomological dimension (sometimes

determining them), determine depth of some local cohomology modules, study the sup-

port (in the sense of Definition 1.2.2) of multigraded local cohomology modules and

multigraded regularity. Yet in a multigraded setting, we study the interplay between

supports (the non-vanishing region) of Tor modules and local cohomology modules. Af-

ter that, we work with deficiency modules. We see that the relation between projective

and injective dimensions of a given module and its deficiency modules provides several

consequences such as a generalization of a Foxby result [38], sufficient homological con-

ditions on deficiency modules for a local ring be Cohen-Macaulay, a characterization of

the complete intersection property in terms of Bass numbers of the residual field and

a case of the long-standing Auslander-Reiten conjecture [7]. In the last part, local co-

homology allows an investigation of the interplay between homological dimensions and

Ext vanishing in such a way that we are able to give positive answers under suitable

depth hypothesis to some questions that have appeared in the literature, as the one
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raised by Jorgensen in [60] about fourteen years ago, and investigate the finiteness of

other homological dimensions such as Gorenstein (injective) dimension. We now will

give a more detailed description of these outcomes.

Chapter 1 describes a few general and known facts on local cohomology, sheaf

cohomology, Castelnuovo-Mumford regularity, deficiency modules, generalized local co-

homology and homological dimensions. It sets the way we will work on local cohomol-

ogy modules throughout the thesis. The first section 1.1 deals with the definition

of local cohomology modules as the cohomologies of Čech complexes, see Subsection

1.1.1. Although it is not the usual definition in the Noetherian case (see [18, 17, 58]

for example) since they are defined as derived functors of torsion functors, it allows

us to work on a more general setting as [22] did and to establish the link between

local cohomology and sheaf cohomology, described in Subsection 1.1.2. The second

section 1.2 motivates the Castelnuovo-Mumford regularity in Subsection 1.2.1 towards

its multigraded version (in the sense of [14]), presented on the last subsection 1.2.2.

Next, in a Noetherian setting, we introduce deficiency modules in Section 1.3 and gen-

eralized local cohomology modules in Section 1.4. We finish this preliminary chapter

presenting some homological dimensions in Section 1.5.

Mayer-Vietoris spectral sequence

Chapter 2 is dedicated to the construction of one of the main tools in this work,

the so-called Mayer-Vietoris spectral sequence. The main reason for building up this

cohomological tool is that it allows us to work on a wider setting in the sense that we

can work with any finite number of ideals, as the Mayer-Vietoris long exact sequence

just works with two ideals. To be clearer, we show that given ideals I1, I2, ..., In in a

(commutative with non-zero unity) ring R and an R-module M , there exists a spectral

sequence

Ep,q
1 =

⊕
i0<...<ip

Hq(UIi0Ii1 ...Iip , M̃)⇒p H
p+q(UI1+I2+...+In , M̃). (0.0.1)

Throughout the chapter, we provide two different constructions of such spectral

sequence and two ways — a geometric and a topological one — to get its second

page. The first construction is made in Section 2.1, see Theorem 2.1.8. This construc-

tion is treated as a consequence of a quasi-isomorphism between the tensor product

3



of Čech complexes and the Čech complex of the product of the sequences involved,

see propositions 2.1.4 and 2.1.7. The two first natural questions about this spectral

sequence are “does it degenerate at the second page? ” and “what its second page looks

like? ”. The second question is what we answer in Section 2.2. Actually, we provide

two answers for that. Theorem 2.2.1 is our second construction of the Mayer-Vietoris

spectral sequence which also provides the second page, as we proved that such spectral

sequence is a particular case of a Čech spectral sequence and thus it has a geometric

view. At the end of Section 2.2 we display the second page in terms of general sheaf

theory and inverse limits under a certain topological space, but we postpone the argu-

ments to the Appendix A. The last section 2.3 deals with the first applications of the

Mayer-Vietoris spectral sequence 0.0.1. The first one is naturally the Mayer-Vietoris

long exact sequence, given in Theorem 2.3.1, and the others are about a version of

the Mayer-Vietoris long exact sequence for three ideals (see Theorem 2.3.6) and some

general results on cohomological dimension, especially Corollary 2.3.3 which regards

relations between the cohomological dimension with respect to the product of ideals

and cohomological dimensions with respect to each ideal. Further applications of the

Mayer-Vietoris spectral sequence (and its first applications) are provided in the next

chapter.

Multigraded local cohomology

In Chapter 3 we study local cohomology modules over a multigraded polynomial

ring. It was motivated by the research around Castelnuovo-Mumford regularity in

its multigraded version, firstly defined through geometrical terms by Hoffman-Wang

and Maclagan-Smith [53, 69], and then Botbol-Chardin [14] defined such regularity in

an algebraic sense and even in a way more general setting, which is the context we

are working with here. But before dealing with multigraded regularity we will study

some relations of multigraded cohomology modules in particular cases, cohomological

dimensions and vanishing of multigraded pieces of Tor modules (Betti numbers) and

local cohomology modules, as we are going to describe now.

The first section 3.1 is divided into two parts. The first one, Subsection 3.1.1,

begins with a simple generalization of a result of Chardin and Nemati [23] for the

4



non-Noetherian case, see Proposition 3.1.1. It establishes the cohomological dimension

of a multigraded free module with respect to the irrelevant ideal (and therefore, an

upper bound for the cohomological dimension of any multigraded module with respect

to the irrelevant ideal), see Corollary 3.1.2. As consequence, for the Noetherian case,

in Corollary 3.1.4 we conclude that cohomology modules of a multigraded free mod-

ule supported in ideals generated by variables of the same degree cannot be Artinian.

We finish the section by determining the cohomological dimension of such cohomology

modules supported in the priorly mentioned ideals, see Corollary 3.1.9. As for Subsec-

tion 3.1.2, we furnish a duality between the local cohomology modules of multigraded

modules supported in the ideals generated by variables of the same degree. Namely,

we prove the following.

Theorem (Theorem 3.1.12). Let k be a field and denote R = k[X0, ..., Xm, Y0, ..., Yn]

the standard bigraded polynomial ring. Write B1 = (X0, ..., Xm) and B2 = (Y0, ..., Yn).
If M is a finitely generated bigraded R-module then one has functorial graded isomor-
phism

Hn+1−i
B2

(M) ' ∗ ExtiR(M,Hm+1
B1

(ωR))∨

for all i ≥ 0, where _∨ =∗ Homk(_,k) and ωR = R(−(m+1),−(n+1)) is the canonical
module of R.

We also notice that the roles of B1 and B2 in the theorem above are interchange-

ably (see Theorem 3.1.14) and as first corollaries we conclude that

depthRH
m+1
B1

(F ) = cdB2 H
m+1
B1

(F ) = n+ 1

and

depthRH
n+1
B2

(F ) = cdB1 H
n+1
B2

(F ) = m+ 1,

where F is a finitely generated bigraded free R-module, see Corollary 3.1.16. Further,

it should be noted that by taking B1 = 0 in the duality above we recover graded local

duality and that together with a duality of Herzog and Rahimi [51] one has

Hn+1
B2

(R) ' Hm+1
B1

(ωR)∨ and Hn+1
B2

(R)∨ ' Hm+1
B1

(ωR).

Section 3.2 begins with an application of Corollary 2.3.3 for the multigraded

case in Proposition 3.2.1. There we bound the cohomological dimension of a module

with respect to the irrelevant ideal. This result allows us to provide a version of

5



Proposition 3.1.1 for three variables; it is shown in Proposition 3.2.2. As a consequence,

Corollary 3.2.3 generalizes Corollary 3.1.2. The last result of this section is Proposition

3.2.5 which characterizes local cohomology modules of a free module supported in the

irrelevant ideal in terms of local cohomology modules supported in ideals generated by

variables (that are much more treatable). It should be noticed that it is the first result

that we are using the Mayer-Vietoris spectral sequence B.2.2 defined by Lyubeznik

[66].

Section 3.3 is about support (as in Definition 1.2.2), Castelnuovo-Mumford regu-

larity and Euler characteristics. The subsection 3.3.1 contains results on the support of

local cohomology modules, some of them are applications of the duality above and oth-

ers are useful in Subsection 3.3.2. We also investigate the relation between the support

of Tor modules and of local cohomology modules and find another spectral sequence,

see Corollary 3.3.11, quite similar to that of Lyubeznik B.2.2. In the next subsection,

we work on multigraded regularity. The Mayer-Vietoris spectral sequence 0.0.1 plays a

crucial role. It is indeed the key in the proof of Proposition 3.3.29, Theorem 3.3.30 and

Proposition 3.3.31. All these results provide relations between multigraded regularity

with respect to arbitrary products and sums of a finite number of given ideals.

Section 3.4 is the last section of Chapter 3. It deals with the Euler characteristic

of a multigraded module with respect to an ideal and an element of the grading group,

see Definition 3.4.1. The main result of this section is Theorem 3.4.7; it shows that

the Euler characteristic of a module with respect to the product of ideals generated by

variables is the alternating sum of the Euler characteristics of the module with respect

to the arbitrary sum of such ideals. We then show that over a standard multigraded

polynomial ring with coefficients in a field, the Euler characteristic with respect to the

product of ideals generated by pure powers of the variables is written in terms of the

Euler characteristics with respect to the alternating sum of the ideals generated by the

arbitrary sum of such variables, see Corollary 3.4.8.

In the next two chapters, we explore the interplay between local cohomology

and homological dimensions. We seek first the classic ones, projective and injective

dimensions. Next, we also involve the complete intersection and Gorenstein (injective)

dimensions.

6



Deficiency modules

The content in Chapter 4 is joint work with Thiago Fiel which contains three

sections and it is independent of chapters 2 and 3. It has already been submitted for

publication, see [36]. The ring is supposed to be a factor of a Gorenstein local ring.

In Section 4.1 we find relations between a given generalized Cohen-Macaulay

module and its deficiency modules. With this in hands, we show that the canonical

module of a module, the most important deficiency module, is generalized Cohen-

Macaulay provided the given module is also generalized Cohen-Macaulay, see Corollary

4.1.5. Further, when in addition the module M has depth at least two, then M '

K(K(M)), generalizing thus a Schenzel’s result [76], see Corollary 4.1.10. Another

interesting consequence regards characterization of the Cohen-Macaulay property in

equidimensional terms, see Corollary 4.1.9.

The next section 4.2 provides a bounding for the Bass number of a module in

terms of the Betti numbers of its deficiency modules, see Theorem 4.2.1. As main

consequences, Corollary 4.2.3 ensures that for a ring in our context to be Cohen-

Macaulay it is sufficient to admit a finitely generated module such that all its deficiency

modules have finite projective dimension, and Theorem 4.2.4 relates Bass and Betti

numbers of modules and its canonical modules in a more general setting that of Foxby

[38, Corollary 3.6], also improving [39, Corollary 3.3]. In the rest of the section, we try

to weaken the hypothesis in Theorem 4.2.4 in order to get relations between Bass and

Betti numbers in a general setting.

We end the chapter with Section 4.3. Its main result, Theorem 4.3.1, contains

a corollary of a result of Schenzel [76, Theorem 3.2] and provides several relations

between the numbers involved when varying the dimension of the module, see for

example Corollary 4.3.4 which gives the equality

β2(M)− β1(M) = µ2(K(M))− µ1(K(M))

for an Artinian module. An application of this formula is a characterization of the

complete intersection property in terms of the first and second Bass numbers of the

residue field, see Corollary 4.3.6. Another consequence is a case of the Auslander-

Reiten conjecture. Namely, we prove that the Auslander-Reiten conjecture holds true

for finitely generated modules having deficiency modules of finite injective dimension

7



over Noetherian rings which are factors of Gorenstein local rings, see Corollary 4.3.10.

This generalizes the recent achievement in [39, Theorem 4.8].

Generalized local cohomology

The content in the next chapter of this thesis is joint work with Cleto B. Miranda-

Neto and it is in preparation for submission for publication [54]. We see local coho-

mology as a fundamental tool in our study. Another aspect of local cohomology is its

usefulness to solve other problems in commutative algebra and algebraic geometry. In

Chapter 5, generalized local cohomology turns out to be one of the main tools required

to investigate the finiteness of some homological dimensions and the interplay with Ext

vanishing.

Our first goal is to address some problems from the existing literature on finite

projective dimension via Ext vanishing; this is done in Section 5.1. We begin by con-

sidering a couple of problems from [61], one of them regarding freeness of modules over

one-dimensional Gorenstein local rings (see Question 5.1.1), and then special attention

is paid to a question raised by D. Jorgensen in [59] on prescribed projective dimension

over complete intersection rings by means of the vanishing of a certain Ext module (see

Question 5.1.10), which in fact motivated the first part of this chapter. Our results,

the main one being Theorem 5.1.8, are in the direction of detecting some additional

condition under which such questions turn out to admit an affirmative answer, whereas

on the other hand, we are able to relax some of the hypotheses. In the case of our

approach to Question 5.1.1, our result is Theorem 5.1.4 (which in turn is related to the

notion of cohomological dimension), and for Jorgensen’s problem, we require that the

depth of certain Ext modules be sufficiently high in a sense that will be made precise,

while the ring is only assumed to be Gorenstein (see Corollary 5.1.11). It is worth

observing that such a depth hypothesis plays a key role in this chapter, being present

in most of the results.

Still in Section 5.1, we use the class formed by the so-called “rigid” modules

(see Definition 5.1.14) to establish sufficient conditions for a given module to have

finite projective dimension (see Theorem 5.1.16 and its corollaries). We combine this

approach with some results from the previous part in order to estimate this invariant,

8



which in particular allows for characterizations of freeness.

In Section 5.2, we study connections between the vanishing of Ext modules and

the finiteness of the injective dimension, the Gorenstein injective dimension, and the

Gorenstein dimension of a module over a given Cohen-Macaulay local ring. The main

result is Theorem 5.2.2, and some of its byproducts, which put us again in the scenario

of finite projective dimension, are Corollary 5.2.4 and Corollary 5.2.7 (the latter, in par-

ticular, is crucially used in Section 5.3). Freeness criteria for modules over Gorenstein

local rings are also provided.

Our interest in Section 5.3 meets some of the preceding ones, but via different

methods. First, we employ the Burch property of ideals to study finite projective

dimension over a Gorenstein local ring by means, in particular, of the vanishing of

suitable Ext and Tor modules (see Corollary 5.3.3). Then we turn to another auxiliary

tool, namely, the notion of strongly rigid module, the main results, in this case, being

Corollary 5.3.8 and Corollary 5.3.10. We also consider a special instance that arises

from ideals that are weakly full with respect to a suitable power of the maximal ideal,

e.g., integrally closed ideals (provided that the ring has positive depth). The main

result in this regard is Theorem 5.3.13. More freeness criteria follow readily in this last

section as well.

Chapter 6 gathers questions about the other chapters of this thesis.

There are two appendices. As already mentioned, Appendix A treats the devel-

opment of the second page of the Mayer-Vietoris spectral sequence 2.1.8 in topological

terms. It is based on Jensen’s work [59] and either sheaf theory and inverse limits play

a fundamental role through this construction.

The Appendix B is devoted to spectral sequences. It contains a little information

on the general theory and several examples that are quite useful in this work. The

major reason for this appendix is the difficulty of this machinery at first view — at

second and third views too — that a student can easily find, just as this author did.

The more examples of spectral sequences are given the more students feel confident

and comfortable using this marvellous homological tool.
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Chapter 1

Preliminaries

This chapter concerns fundamental known concepts and techniques that shall

be used throughout this work. Most of the content here can be found in standard

textbooks such as [18], [17] and [30].

1.1 Local cohomology and sheaf cohomology

In this section, we comment on the general setting of both local cohomology and

sheaf cohomology theories and their deep relation. The interested reader can find more

about these topics and their relations in [17] and [58] which work only on Noetherian

rings and see [45] for a way more general setting.

1.1.1 Local cohomology and Čech complex

The Čech complex is a basic and important tool in commutative algebra and

algebraic geometry. Our goal here is to recall its definition and comment on its close

relation with local cohomology modules and sheaf cohomology groups. Although the

environment here is not necessarily Noetherian, the definition and some properties of

Čech complexes follow the same lines as those of some classic textbooks; see for example

[17], [18] and [58].

Let R be a ring. Let also a = a1, ..., an be a sequence of elements in R, I the

ideal in R generated by a and let M be an R-module.



Definition 1.1.1 (Čech complex). The Čech complex of M with respect to the se-
quence a is defined as the sequence of R-modules and R-homomorphisms

C•a (M) : 0 // C0
a (M) // C1

a (M) // . . . // Cn
a (M) // 0

where

(i) C0
a (M) = M ;

(ii) Cp
a (M) =

⊕
i1<...<ip

Mai1 ·...·aip for p ≥ 1;

(iii) The homomorphism Cp
a (M)→ Cp+1

a (M) is induced by the homomorphisms

fp : Mai1 ·...·aip → Maj1 ·...·ajp+1

x 7→ fp(x)

with

fp(x) =


(−1)kx

1
, if {i1, ..., ip} = {j1, ..., ĵk, ..., jp+1},

0, else.

It can easily be verified that C•a (M) is indeed a chain complex. It can also be

proved that if another sequence b generates the same radical ideal that of I then

H i(C•a (M)) ' H i(C•b (M)) for all i. It brings us to the central object of this work.

Definition 1.1.2 (Local cohomology modules). Let M be an R-module. Given a
finitely generated ideal I of R and an integer i ≥ 0, we define the i-th local cohomology
module of M with support in I as the cohomology module H i(C•a (M)) where a is a
finite sequence of elements generating I and we will denote it by H i

I(M).

The interested reader may see [17] and [22] (in the non-Noetherian case) for an

in-depth study of such modules.

Notice that the isomorphism

H0
I (M) '

⋃
n≥0

0 :M Im ' lim−→
n

HomR(R/In,M)

is functorial inM so that the i-th right derived functors ofH0
I coincide with the functors

lim−→n
ExtiR(R/In,_). It is isomorphic to H i

I whenever R is Noetherian or I is generated

by a regular sequence. Furthermore, Botbol and Chardin have used the Mayer-Vietoris

sequence in [14, Theorem 2.3] to prove that H i
I is also the i-th right derived functor

of H0
I in the case of R being a polynomial ring over an arbitrary ring and I being a

finitely generated monomial ideal.

11



The next example is of great importance in the next chapters. It follows the same

lines as [17, Example 13.5.3]. Although [17] requires Noetherianity, this hypothesis is

not needed in this construction.

Example 1.1.3. Let G be an abelian group, S be a G-graded commutative unitary ring
and R = S[X1, ..., Xn], the ring of polynomials over S, graded by G⊕ Zn. (The degree
of the i-th variable Xi is the i-th element ei of the canonical basis of Zn.) By writing
dn−1 for the differential Cn−1

(X1,...,Xn)(R)→ Cn
(X1,...,Xn)(R), one has

Hn
(X1,...,Xn)(R) ' RX1·...·Xn/ coker dn−1.

Both RX1·...·Xn and coker dn−1 are free S-modules in a such way that Hn
(X1·...·Xn)(R) is

also a free S-module with basis {X i1
1 · ... · X in

n : i1, ..., in < 0}. Meanwhile it has a
G⊕ Zn-graded R-module structure such that

Xt(X
i1
1 · ... ·X in

n ) =

X i1
1 · ... ·X

it−1

t−1 X
it+1
t X

it+1

it+1
· ... ·X in

n , if it < −1,

0, if it = −1

for i1, ..., in < 0 and 1 ≤ t ≤ n, and

deg(sgX
i1
1 · ... ·X in

n ) = (g, (i1, ..., in))

for sg ∈ Sg\0. This G⊕Zn-graded R-module is called the module of inverse polynomials
in X1, ..., Xn over S, and we will denote it by S[X−1 , ..., X

−
n ].

A similar argument allows us to extend this example for more variables of same
degree. Namely, by writing R = S[X1,1, ..., X1,n1 , ..., Xk,1, ..., Xk,nk ] with deg(Xi,j) =

ei ∈ Zk for all i, j, m the ideal generated by the variables and d = n1 + ...+ nk, then

Hd
m(R) ' S[X−1,1, ..., X

−
1,n1

, ..., X−k,1, ..., X
−
k,nk

]

and

deg(sgX
i1,1
1,1 · ... ·X

i1,n1
1,n1
· ... ·X ik,1

k,1 · ... ·X
ik,nk
k,nk

) = (g, (i1,1 + ...+ i1,n1 , ..., ik,1 + ...+ ik,nk)).

We finish this subsection by recording a useful lemma by Botbol.

Lemma 1.1.4. ([13, Lemma 6.4.7]) Let S be a ring and consider the standard Zk-graded
polynomial ring R = S[X1,1, ..., X1,n1 , ..., Xk,1, ..., Xk,nk ]. Set Bi = (Xi,1, ..., Xi,ni) and
B = B1 · ... ·Bk. Then, for any l ≥ 0,

H l
B(R) '

⊕
1≤i1<...<ip≤k

ni1+...+nip−(p−1)=l

H
ni1+...+nip
Bi1+...+Bip

(R).

12



1.1.2 Local cohomology and sheaf cohomology

Now we introduce some concepts on sheaf cohomology in a general setting and

then explain a fundamental relation between local cohomology and sheaf cohomology.

See [45] for more information on this topic and [40] and [46] for general and basic

algebraic geometry notions.

Definition 1.1.5. Let (X,OX) be a ringed space, F be an OX-module, Z ⊆ X be a
closed subset and write U = X \ Z. We define the sections of F supported in Z as

H0
Z(X,F) := ker(H0(X,F)→ H0(U,F)).

Once H0
Z(X,_) is a left exact functor we shall write H i

Z(X,_) for its i-th right

derived functor and it will be called the i-th local cohomology of F with support in Z.

We are going to see that on an affine scheme X, for a quasi-coherent sheaf M̃ and a

complement of a closed variety Z, the groups H i
Z(X, M̃) coincide with the i-th local

cohomology modules H i
I(M). It is therefore another way to define local cohomology

modules.

Consider (X,OX) as a ringed space, F an OX-module, Z ⊆ X a closed subset and

write U = X \ Z. Since the morphism H0(X,F) → H0(U,F) is surjective whenever

F is a flasque sheaf one has long exact sequence

0 // H0
Z(X,F) // H0(X,F) // H0(U,F) // H1

Z(X,F) // H1(X,F) // H1(U,F) // · · ·

See [46] for details. Now we make use of the well-known fact that quasi-coherent sheaves

on affine schemes have no higher cohomology, see for example [44, Théorème 1.3.1]. In

other words, when X = Spec(R) is an affine scheme and F = M̃ is a quasi-coherent

sheaf on X, we must have H i(X, M̃) = 0 for all i > 0 so that the sequence

0 // H0
Z(X, M̃) // H0(X, M̃) // H0(U, M̃) // H1

Z(X, M̃) // 0

is exact and, for all i > 0,

H i+1
Z (X, M̃) ' H i(U, M̃),

where Z = V (I) and U = X \ Z.

13



We also have a geometric notion of the Čech complex. Namely, let X be a

topological space and consider U as an open subset of X, U an open cover of U and F

a sheaf on X. Thus the complex C•(U ,F), where

Cp(U ,F) =
∏

i0<...<ip

F(Ui0 ∩ ... ∩ Uip)

and which differentials being induced by the restriction morphisms, is called the Čech

complex of the open covering U with coefficients in the sheaf F . Its cohomology groups

are denoted by Ȟ i(U ,F). Coming back to the case where X = Spec(R),F = M̃, Z =

V(I) and UI = X \ Z, with I being generated by a sequence a = a1, ..., an of elements

in R, the basic open subsets defined by the a′is clearly cover the open subset UI ; denote

such open covering by Ua. By [45, Theorem D] one has

Ȟ i(Ua, M̃) ' H i(UI , M̃)

for all i, that is, the Čech cohomology of quasi-coherent sheaves computes the sheaf

cohomology of the open subset corresponding to the open cover. Moreover, it may be

showed that Cp+1
a (M) = Cp(Ua, M̃) for all p and that there exists exact sequence

0 // C•(Ua, M̃)[−1] // C•a (M) //M // 0

where M denotes the complex centered in the R-module M at degree 0. Therefore

there exists exact sequence

0 // H0
I (M) //M // H0(UI , M̃) // H1

I (M) // 0

and, for all i > 0,

H i+1
I (M) ' H i(UI , M̃).

All that discussion allows us to conclude that, for a finitely generated ideal I in

R and an R-module M ,

H i
I(M) ' H i

Z(X, M̃)

for all i ≥ 0, where X = Spec(R) and Z = V(I).

We also need the “sheafified” version of the Čech complex, see [19, Section 4.3]

or [46, Chapter III]. Let X be a topological space and consider U an open cover of X.

14



Let ji0...ip : Ui0 ∩ ... ∩ Uip → X be the canonical inclusion of a non-void intersection

Ui0 ∩ ...∩Uip of elements of U . Given an sheaf F on X, for every p ≥ 0 define the sheaf

Čp(U ,F) =
∏

i0<...<ip

(ji0...ip)∗F|Ui0∩...∩Uip

where (ji0...ip)∗ is the direct image functor. More explicitly, given an open subset

U ⊆ X,

Čp(U ,F)(U) =
∏

i0<...<ip

F(U ∩ Ui0 ∩ ... ∩ Uip).

The usual Čech differentials induces sheaf morphisms Čp(U ,F) → Čp+1(U ,F).

The next proposition follows from definition and [46, Chapter III, Proposition 4.3].

Proposition 1.1.6. The following statements hold true.

(i) There are isomorphisms

Γ(X, Čp(U ,F)) ' Cp(U ,F);

(ii) If F is flasque, then Ȟp(U ,F) = 0 for all p > 0.

1.2 Castelnuovo-Mumford regularity

The Castelnuovo-Mumford regularity is an invariant of fundamental importance

in both commutative algebra and algebraic geometry. It measures the complexity of

a module or a sheaf, so to speak, for the regularity of a module bounds the largest

degree of its minimal generators, and the regularity of a sheaf estimates the smallest

twist for which it is generated by the global sections. The two textbooks [17] and [30],

and [21] are excellent references for this topic. Besides that, Chardin, Jouanolu and

Rahimi [22] work on the regularity without assuming Noetherianity.

We start this section by recalling Castelnuovo-Mumford regularity in its classical

case to motivate its multigraded notion, which was first studied in [69] and [53], and

then generalized in [14].

1.2.1 The classical case

First we will see a motivation to define regularity. Suppose R = k[X1, ..., Xn] with

k being a field and write m = (X1, ..., Xn). Let M be a finitely generated R-module.
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Grothendieck’s vanishing theorem asserts that H i
m(M) = 0 for all i > dim(M) or

i < depthR(M), as well as the non-vanishing of these modules for i = dim(M) and

i = depthR(M), see [17] or [58]. Also, Serre’s vanishing theorem implies the vanishing

of the sheaf cohomology groups H i(Proj(R), M̃(µ)) for all i > 0 and µ big enough, see

[46]. A similar argument as that of Subsection 1.1.2 shows that there exists a graded

isomorphism

H i
m(M) '

⊕
µ

H i+1(Proj(R), M̃(µ))

for all i > 0 so that Serre’s vanishing theorem can be stated in terms of the graded

pieces of local cohomology modules. The Castelnuovo-Mumford regularity is a measure

of this vanishing degree.

If H i
m(M) 6= 0, we set

ai(M) := sup{µ : H i
m(M)µ 6= 0},

and if H i
m(M) = 0, set ai(M) := −∞. The Castelnuovo-Mumford regularity is defined

as

reg(M) := sup
i
{ai(M) + i}.

On the other hand, Eisenbud and Goto in [31] have proved that the Castelnuovo-

Mumford regularity can also be obtained from minimal free resolutions. In other words,

this invariant can be defined in terms of graded Betti numbers. Let F• be a minimal

free resolution of M with Fi = ⊕jR(−j)βij . Thus βij = dimk(TorRi (M,k)j) for all i, j.

If TorRi (M,k) 6= 0, set

bi(M) := sup{µ : TorRi (M,k)µ 6= 0},

else, bi(M) := −∞. Therefore bi(M) is the maximal degree of a minimal generator of

Fi, and so of the module of the i-th syzygies of M . As an immediate consequence of

[21, Corollary 1.2.2] one has

reg(M) = max
i
{bi(M)− i}.

The next lemma shall be useful in this work.

Lemma 1.2.1. ([22, Lemma 2.1]) Let S be a ring and consider the standard Z-graded
polynomial ring R = S[X1, . . . , Xn]. Let also M be a graded R-module. Consider the
following properties:
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(i) Mν = 0 for all ν � 0;

(ii) M = H0
(X1,...,Xn)(M);

(iii) H i
(X1,...,Xn)(M) = 0 for all i > 0.

Then (i) ⇒ (ii) ⇒ (iii), (ii) ⇒ (i) if M is finitely generated or reg(M) < ∞, and
(iii)⇒ (ii) if Mν = 0 for ν � 0.

1.2.2 Multigraded regularity

One of the motivations for a multigraded version of the Castelnuovo-Mumford

regularity comes from toric geometry. Cox in [25] defines the coordinate ring of a

simplicial toric variety X as being a polynomial ring graded by the divisor class group

G of X. The dictionary linking the geometry of X with the theory of G-graded modules

leads to geometric interpretations and applications for multigraded regularity. Basic

notions of multigraded commutative algebra can be found in [15, 17, 41, 42].

The multigraded Castelnuovo-Mumford regularity concept has first appeared in

the work of Hoffman and Wang [53], where they work on a bigraded setting motivated

by the geometry of P1 × P1. Then, also motivated by toric geometry, Maclagan and

Smith in [69] work on a more general setting of multigraded regularity. Later, Bot-

bol and Chardin in [14] introduce a further generalization of regularity, by working

over any commutative ring and by considering local cohomology modules supported in

any finitely generated graded ideal. That is the way we shall work with multigraded

regularity in this thesis.

Here notations and concepts follow [14] and [23].

Let S be a commutative ring, G be an abelian group and write R := S[X1, ..., Xn],

with deg(Xi) = γi ∈ G and deg(s) = 0 for s ∈ S. Let B ⊆ (X1, ..., Xn) be a finitely

generated G-graded ideal of R and denote by C the monoid generated by {γ1, ..., γn}.

Definition 1.2.2. The support of a G-graded R-module M is

SuppG(M) := {γ ∈ G : Mγ 6= 0}.

Given an R-module M , for µ ∈ G we set the R-module M(−µ) with grading

defined by M(−µ)ν := Mµ−ν .

Lemma 1.2.3. Let M be a graded R-module, then SuppG(M(−µ)) = SuppG(M) + µ.
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Proof. Indeed ν ∈ SuppG(M(−µ)) if and only if ν − µ ∈ SuppG(M), equivalently
ν ∈ SuppG(M) + µ. �

Notation 1.2.4. Let M be a graded R-module. For a graded ideal I we set

Ci
I(M) := SuppG(H i

I(M)) and CI(M) := ∪i≥0C
i
I(M).

Example 1.2.5. By considering the Zk-graded ring

R = S[X1,1, ..., X1,n1 , ..., Xk,1, ..., Xk,nk ]

as in Example 1.1.3 one has

Cm(R) = Cd
m(R) = SuppZk(H

d
m(R)) =

k∏
i=1

Z≤−ni .

Furthermore, writing Bj = (Xj,1, ..., Xj,nj) and di1...ip = ni1 + ...+ nip one has

H
di1...ip
Bi1+...+Bip

(R) =

S[X−ij ,l : j = 1, ..., p and l = 1, ..., nij ][Xj,lj : j 6= i1, ..., ip and lj = 1, ..., nj].

Thus
CBi1+...+Bip

(R) = SuppZk(H
di1...ip
Bi1+...+Bip

(F )) =

Zi1−1
≥0 × Z≤−ni1 × Zi2−i1−1

≥0 × Z≤−ni2 × ...× Z≤−nip × Zk−ip≥0 .

The following example illustrates some supports.

Example 1.2.6. By taking k = 2 in Example 1.2.5, we have the following regions
Cm(R) = Z≤−n1 × Z≤−n2 = (−n1,−n2) + Z≤0, CB1(R) = Z≤−n1 × Z≥0 = (−n1, 0) +

Z≤0 × Z≥0 and CB2(R) = Z≥0 × Z≤−n2 = (0,−n2) + Z≥0 × Z≤0.

The following lemma shows the close relation between some Tor modules and

degree shifts in free resolutions of a module.
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Lemma 1.2.7. ([14, Lemma 3.12]) Let M be a graded module with SuppZk(M) ⊆
µ+ Zk≥0 for some µ ∈ Zk. Then,

(i) there exists a graded free R-resolution F• of M such that

Fi =
⊕
j∈Ei

R(−γij) with γij ∈
⋃

0≤l≤i

SuppZk(TorRl (M,S)), ∀j;

(ii) if further M is finitely generated and S is Noetherian, each Fj could be chosen
finitely generated;

(iii) if S = k is a field, M is finitely generated and F• is minimal, then

Fj =
∑
µ∈Zk

R(−µ)dimk TorRj (M,k)µ .

We now introduce two families of sets that play important roles in regularity.

Definition 1.2.8. Set E0 := {0}, El := {γi1 + ... + γil : i1 < ... < il} for all l > 0,
E−1 := −E1 and El = ∅ for all l < −1.

For all i > 0, Fi := {γj1 + ...+ γji : j1 ≤ ... ≤ ji} and Fi = Ei for all i ≤ 0.

Observe that Ei ⊂ Fi for all i and if γi = γ for all i, then El = {lγ} when El 6= ∅

and Fl = {lγ} when Fl 6= ∅.

Definition 1.2.9 (Multigraded regularity). Given γ ∈ G and l ∈ Z≥0, a G-graded
R-module M is weakly (B, γ)-regular at level l if

γ /∈
⋃
i≥l

Ci
B(M) + Fi−1.

M is weakly (B, γ)-regular if it is weakly (B, γ)-regular at level 0.
If further M is weakly (B, γ′)-regular (respectively, weakly (B, γ′)-regular at level

l) for any γ′ ∈ γ + C, then M is said to be (B, γ)-regular (respectively, (B, γ)-regular
at level l). One writes regB(M) := reg0

B(M) with

reglB(M) := {γ ∈ G : M is (B, γ)-regular at level l}.

It immediately follows from the definition that reglB(M) is the maximal set S

of elements in G such that S + C = S — that is, S is C-stable — and M is weakly

(B, γ)-regular at level l for any γ ∈ S.

Example 1.2.10. Consider k = 2 and n1 = n2 = 2 in Example 1.2.5. Thus⋃
i≥0

Ci
m(R) + Fi−1 = Cm(R) + F3.
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Once Cm(R) = Z2
≤−2 and F3 = {(3, 0), (2, 1), (1, 2), (0, 3)}, we must have⋃

i≥0

Ci
m(R) + Fi−1 = Z≤1 × Z≤−2 ∪ Z≤0 × Z≤−1 ∪ Z≤−1 × Z≤0 ∪ Z≤−2 × Z≤1

and since the complement of the set above is Z2
≥0-stable we conclude that

regm(R) = Z≤−1 × Z≥2 ∪ Z≥−1 × Z≥1 ∪ Z2
≥0 ∪ Z≥1 × Z≥−1 ∪ Z≥2 × Z≤−1.

1.3 Deficiency modules

In this section, we introduce deficiency modules and the notion of canonical mod-

ule of a module.

Let (R,m) be a Noetherian local ring which is factor of a Gorenstein local ring

(S, n) of dimension s, that is, there exists a surjective local homomorphism S → R.

Denote by _∨ the Matlis dual. The local duality theorem (see for example [18, Theorem

11.2.6]) assures that for all finitely generated R-module M there exists isomorphism

Hj
m(M) ' Exts−jS (M,S)∨

for all j ≥ 0. See [17, 18, 58] for all these concepts not defined here.

Schenzel [76] generalized the notion of canonical module in the following sense.

Definition 1.3.1. Given a finitely generated R-module M , the j-th deficiency module
of M is defined as

Kj(M) := Exts−jS (M,S)

for all j = 0, ..., dimRM . Particularly, K(M) := KdimRM(M) is called the canonical
module of M .

20



Local duality assures that these modules are well-defined (i.e., they do not depend

on the Gorenstein ring S). In a certain sense, since

Hj
m(M) ' Kj(M)∨

for all j = 0, ..., dimRM , the deficiency modules ofM measure the extent of the failure

of M to be Cohen-Macaulay.

We say that a finitely generated R-module M satisfies Serre’s condition Sk, for

k being a non-negative integer, provided

depthRp
Mp ≥ min{k, dimRp Mp}

for all p ∈ SuppM .

Lemma 1.3.2. ([76, Lemma 1.9]) LetM be a finitely generated R-module of dimension
t. The modules Kj(M) satisfy the following properties.

(i) dimRK
j(M) ≤ j for all integer j and dimRK(M) = t;

(ii) Suppose that M is equidimensional. Then M satisfies Serre’s condition Sk if and
only if dimRK

j(M) ≤ j − k for all 0 ≤ j < t.

1.4 Generalized local cohomology

In this section R denotes a Noetherian local ring with maximal ideal m. Also,

denote by _∨ the Matlis dual and by _̂ the completion with respect to m. Further,

ωR denotes the canonical module of R whenever it exists. See [17, 18, 58] for all those

basic notions.

The theory of generalized local cohomology, initiated by Herzog [49] in his ha-

bilitationss, and further developed by Suzuki [80], Bijan-Zadeh [12], Yassemi [84] and

Herzog and Zamani [52]. It also has attracted the attention of many other authors, see

for example [2, 29, 48, 67].

Definition 1.4.1. ([49]) Let R be a ring and M,N be finitely generated R-modules.
Given an ideal I of R and an integer i ≥ 0, the ith generalized local cohomology module
of M and N with respect to I is defined as

H i
I(M,N) = lim−→

n

ExtiR(M/InM,N).
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Notice that by taking M = R we retrieve the ordinary local cohomology module

H i
I(N) of N . A systematic approach of this notion has been done first by Suzuki [80],

whose next lemmas and spectral sequences in Appendix B.2.5 are fundamental in some

of the main results in Chapter 5.

Lemma 1.4.2. ([80, Theorem 2.3]) Let (R,m) be a local ring and M,N be finitely
generated R-modules. Set t = depthRN . Then, H t

m(M,N) 6= 0 and Hj
m(M,N) = 0 for

all j < t.

Suzuki also provides a local duality theorem for generalized local cohomology

modules.

Lemma 1.4.3. ([80, Theorem 3.5]) Let (R,m) be a Cohen-Macaulay local ring of
dimension d, and let M,N be a pair of finitely generated R-modules. If pdRM < ∞
then, for each j ≥ 0, there is an isomorphism

Hj
m(M,N)∨ ∼= Extd−j

R̂
(N̂ , M̂ ⊗R̂ ωR̂).

Now we recall the local duality version for finite injective dimension.

Lemma 1.4.4. ([52, Theorem 2.1(b)]) Let R be a Cohen-Macaulay local ring of di-
mension d with canonical module ωR, and let M,N be finitely generated R-modules. If
idRN <∞ then, for each j ≥ 0, there is an isomorphism

Hj
m(M,N)∨ ∼= Extd−j

R̂
(HomR̂(ωR̂, N̂), M̂).

1.5 Homological dimensions

In this section, we assume all rings are Noetherian.

1.5.1 Complete intersection dimension

Needless to say, the projective dimension pdRM of a finitely generated module

M over a local ring (R,m) is a fundamental classical invariant. One of its refinements is

the so-called complete intersection dimension ofM . The theory about this homological

dimension was introduced in [9] by Avramov, Gasharov and Peeva, and it features many

interesting properties as well.

Definition 1.5.1. [9] First, a quasi-deformation (of codimension c) of a local ring R
is a diagram of local homomorphisms R→ R′ ← S, the first being flat and the second
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surjective with kernel generated by an S-regular sequence (of length c). Now, if M is a
finitely generated R-module, then the complete intersection dimension of M over R is
defined as

CI-dimRM := inf{pdSM ⊗R R′ − pdS R
′ : R→ R′ ← S is a quasi-deformation}.

Recall that a Noetherian local ring (R,m) is a complete intersection if its com-

pletion in the m-adic topology is isomorphic to the quotient of a regular local ring

by an ideal generated by a regular sequence. We note some interesting properties

of CI-dimRM . For instance, CI-dimRM < ∞ for every finitely generated R-module

M if (and only if) R is a complete intersection ring. Another remarkable property

is that CI-dimRM ≤ pdRM for every finitely generated R-module M , with equality

whenever pdRM < ∞. More precisely, if CI-dimRM is finite then it satisfies the

Auslander-Buchsbaum type formula CI-dimRM = depthR− depthM . Therefore, the

class consisting of the modules of finite projective dimension is (strictly) contained in

the class of modules having finite complete intersection dimension. See details in [9].

The next lemma turns out to be useful in our approach in Chapter 5.

Lemma 1.5.2. ([8, Theorem 4.2]) Let R be a local ring and M be a finitely generated
R-module such that CI-dimRM < ∞ (e.g., R is a complete intersection ring). Then,
pdRM <∞ if and only if ExteR(M,M) = 0 for some even integer e ≥ 2.

1.5.2 Gorenstein dimension

We invoke yet another homological dimension. Let R be a ring. An R-module

M is said to be totally reflexive if M is reflexive and ExtiR(M,R) = ExtiR(M∗, R) = 0

for all i > 0, with M∗ = HomR(M,R) being the algebraic dual of M .

Definition 1.5.3. [6] A non-zero R-module M is said to have Gorenstein dimension
of M at most t if there exists an exact sequence

0 // Xt
// Xt−1

// · · · // X0
//M // 0

where Xj is a finitely generated totally reflexive R-module for each j = 0, ..., t. We
denote this by G-dimRM ≤ t. In this case, we in particular write G-dimRM < ∞;
otherwise, G-dimRM =∞. If G-dimRM <∞ we define

G-dimRM := inf{t : G-dimRM ≤ t}.

Clearly, G-dimRM = 0 if and only if M is totally reflexive.
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We briefly note some properties of G-dimM and report a lemma. IfR is Gorenstein

then G-dimRN < ∞ for any R-module N . As is also well-known, the basic relation

between Gorenstein, complete intersection and projective dimensions can be expressed

as

G-dimRN ≤ CI-dimRN ≤ pdRN

, which are all equalities whenever pdRN <∞. See [9] for details.

Lemma 1.5.4. [55, Theorem 2.2] If M is an R-module with idRM < ∞, then
G-dimRM = pdRM .

1.5.3 Gorenstein injective dimension

Definition 1.5.5. [33] A complete injective resolution is an exact sequence of injective
R-modules

I : · · · // I1
// I0 // I1 // I2 // · · ·

such that HomR(E, I) is exact for every injective R-module E. An R-module M is
said to be Gorenstein injective if there exists a complete injective resolution I with
M = ker(I0 → I1). Now, given a non-negative integer r, we say that a non-zero
R-module M is of Gorenstein injective dimension at most r, which is denoted by
GidRM ≤ r, if there exists an exact sequence

0 //M // G0 // G1 // · · · // Gr // 0

such that each Gj is Gorenstein injective. We then define the Gorenstein injective
dimension of M as

GidRM := inf{r : GidRM ≤ r}.

For the trivial module M = 0, we set GidR 0 =∞.

The Gorenstein injective dimension of an R-module M generalizes the usual in-

jective dimension in the sense that GidRM ≤ idRM , with equality if idRM < ∞,

according to [24, Proposition 3.10]. Another useful property is that, if R is Gorenstein,

then GidRM < ∞ for every R-module M ; this follows from [34, Theorem 3.2]. The

next lemma is a version of the well-known Ischebeck’s formula (see, e.g., [18, Exercise

3.1.24]) in the context of the Gorenstein injective dimension.

Lemma 1.5.6. ([75, Theorem 2.10]) Let M be a finitely generated R-module with
idRM < ∞ and let N be a finitely generated R-module with GidRN < ∞. Then,
eR(M,N) = depthR− depthRM .
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Chapter 2

Mayer-Vietoris spectral sequence

In this chapter, we provide a generalization for the Mayer-Vietoris long exact

sequence, see [17] or [58]. We construct a spectral sequence, which will be called

Mayer-Vietoris spectral sequence, that depends on the number of ideals one is working

with in such a way that it degenerates to the well-known Mayer-Vietoris long exact

sequence when one takes just two ideals. Such a spectral sequence is a distinct gen-

eralization of the Mayer-Vietoris long exact sequence, but somehow similar to [1] and

[66], which has been quite useful in this work. Besides the possibility of working with

more than two ideals, our construction does not require Noetherianness, and from these

generalizations, a quite amount of results will follow. We should notice that the non-

Noetherianness in the Mayer-Vietoris long exact sequence is a well-known result, which

may be seen, built through different paths, for instance, in [78] and [81].

We provide two ways to construct the Mayer-Vietoris spectral sequence. One

of them is an application of the Čech spectral sequence which is studied in [19, 40,

43] and the other one is a direct construction of filtrations of complexes that builds

such a spectral sequence up. Each one has its own advantage. Although the second

construction is direct, the Čech spectral sequence alternative gives immediately the

second page of the spectral sequence (in geometrical terms). We also calculate the

second page in terms of sheaf cohomology groups and inverse limits.

The textbooks [70] and [74] are nice introductory references for the reader not

acquainted with spectral sequences. Besides we devote Appendix B for spectral se-



quences and Section B.2.1 especially treats the Čech spectral sequence. As already

mentioned, [19, 40, 43] discuss extensively the Čech spectral sequence.

The construction of the Mayer-Vietoris spectral sequence by filtrations may be

seen as an application of the studying of relations between Čech complexes of finite

sequences 1.1.1 and the Čech complex defined by the product of these sequences. To

make it easier to read, we shall fix and modify some notations.

Let R be a ring and M be an R-module. Consider a sequence of elements a =

a1, ..., an of R and let I be the ideal of R generated by a. One may consider the Čech

complex C•(Ua, M̃) where Ua is the open covering of Ua = Spec(R) \V(a) given by the

basic open subsets defined by the a′is, see Section 1.1.2. Write

C •a (M) := C•(Ua, M̃) ' Γ(X, Č•(Ua, M̃)).

With this notation, what we have from Section 1.1.2 is an exact sequence

0 // H0
I (M) //M // H0(C •a (M)) // H1

I (M) // 0

and isomorphisms

H i+1
I (M) ' H i(C •a (M))

for all i > 0.

We should also notice that, as already seen in Section 1.1.1, in the case of R

being Noetherian, H i
I(_) coincides with the i-th right derived functor of the I-torsion

functor lim−→n
HomR(R/In,_). But even more, H i(C •a (_)) coincides with the i-th right

derived functor of the ideal transform functor DI(_). [17] shows many properties of

ideal transform functors as well as their geometrical significance.

2.1 Construction

Given an R-module M and a1, . . . , an sequences of elements of R, it is well-

known that the tensor product of Čech complexes C•a1
(R) ⊗R . . . ⊗R C•an(R) ⊗R M is

quasi-isomorphic (i.e., they have isomorphic cohomology modules) to the Čech complex

C•a1∪...∪an(M). We wonder if there is a similar relation considering the complexes C •a (M)

instead. That is what we investigate in the first subsection.
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2.1.1 A quasi-isomorphism

The following preliminary results were obtained in this thesis.

Lemma 2.1.1. If a = {a1, . . . , ar} and b = {b1, . . . , bs} are two finite sequences of
elements in R, ab = {aibj : i = 1, . . . , r and j = 1, . . . , s} is their product and M is an
R-module then there exists isomorphism

H0(C •ab(M)) ' H0(C •a (R)⊗R C •b (R)⊗RM)

and this isomorphism is functorial in M .
In case of R is Noetherian and of both I and J are the ideals generated by a and

b respectively, we have a functorial isomorphism

DIJ(_) ' DI(DJ(_)).

Proof. Note that
(

xij
(aibj)

sij

)
i,j
∈ H0(C •ab(M)) if and only if there is r = r(i, j, k, l) such

that
xkl(aibj)

skl(aibjakbl)
sij+r = xij(akbl)

sij(aibjakbl)
skl+r.

After some identifications we can give H0(C •a (R) ⊗R C •b (R) ⊗R M) a similar charac-
terization. Indeed,

(
xij

(aibj)
sij

)
i,j
∈ H0(C •a (R)⊗R C •b (R)⊗R M) if and only if there are

u = u(i, j, l), v = v(i, k, l), w = w(i, j, k) and z = z(j, k, l) such that

xijb
sij
l (aibjbl)

sil+u = xilb
sil
j (aibjbl)

sij+u,

xkla
skl
i (aiakbl)

sil+v = xila
sil
k (aiakbl)

skl+v,

xkja
skj
i (aiakbj)

sij+w = xija
sij
k (aiakbj)

sij+w

and
xkjb

skj
l (akbjbl)

skl+z = xklb
skl
j (akbjbl)

skj+z.

Fix (i, j) and (k, l) with (i, j) ≤ (k, l). The image of
(

xij
(aibj)

sij

)
i,j

through the differential

composed with the projection onto Maiakbj is

xkja
skj
i

(aiakbj)skj
− xija

sij
k

(aiakbj)sij
.

We may see the three other equations by looking at the image of
(

xij
(aibj)

sij

)
i,j

through

the differential composed with the projections onto Maiakbl ,Maibjbl and Makbjbl .
By taking i = k in the first equation of the proof we have

xilb
sil
j (aibjbl)

sij+ra
sil+sij+r
i = xijb

sij
l (aibjbl)

sil+ra
sij+sij+r
i .
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Since ai is invertible in Maibjbl we have the first of the last four equations above.
Similarly one can find the three others and this proves that

H0(C •ab(M)) ⊆ H0(C •a (R)⊗R C •b (R)⊗RM).

Now if the four equations that characterize H0(C •a (R)⊗RC •b (R)⊗RM) hold true then
by multiplying the first one of them by asij+sil+uk (aibjakbl)

skl+v we have

xij(akbj)
sij(aibjakbl)

skl+(sil+u+v) = xija
sil
k (aiakbl)

skl+v(aibjakbl)
sij+ubsil+skl+vj .

From the second equation we conclude that

xij(akbj)
sij(aibjakbl)

skl+(sil+u+v) = xkl(aibj)
skl(aibjakbl)

sij+(sil+u+v).

This proves the other inclusion. The functoriality stems from the functoriality of the
identifications involved.

Finally, the tensor product of the complexes C •a (R) and C •b (R) ⊗R M yields a
spectral sequence converging to H•(C •a (R)⊗R C •b (R)⊗RM) and in particular

H0(C •a (R)⊗R C •b (R)⊗RM) ' H0(C •a (H0(C •b (M)))).

The lemma now follows from [17, Proposition 5.1.23]. �

We want to extend Lemma 2.1.1 in the sense that the complexes involved are

quasi-isomorphic. For that, we need to use some geometric tools.

Consider finite sequences a and b of elements of R and write X = Spec(R).

If ja : Ua → X and jb : Ub → X are the canonical inclusions, then we denote by

D•(F) = Č•(Ua,OX)⊗OX Č•(Ub,OX)⊗OX F the total complex

(ja)∗Č
•(Ua,OX |Ua)⊗OX (jb)∗Č

•(Ub,OX |Ub
)⊗OX F

where F is an OX-module.

Lemma 2.1.2. If a and b are finite sequences of elements of R, then the sequence of
functors {Hp(Γ(X,D•(_)))} is a universal δ-functor in the category of quasi-coherent
sheaves.

Proof. First, once C•(Ua,OX) ⊗R C•(Ub,OX) is composed by flat R-modules, D•(_)

preserves exact sequences of sheaves so that {Hp(Γ(X,D•(_)))} defines a δ-functor.
Now, a result of Gabber [32, Corollary 3.5] assures that the category of quasi-

coherent sheaves on X has enough injective objects, and thus flasque sheaves, see [46,
Lemma 2.4]. Then letM be a quasi-coherent flasque sheaf on X and M an R-module
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such thatM ' M̃ . By applying the global sections functor to D•(M) we obtain the
total complex given by the double complex

Γ(X,D•(M))p,q = Cp(Ua,OX)⊗R Cq(Ub,OX)⊗RM = C p
a (R)⊗R C q

b (R)⊗RM.

Such a double complex gives rise to a spectral sequenceE converging toH•(Γ(X,D•(M)))

whose first terms are

Ep,q
1 = C p

a (R)⊗R Hq(C •b (M)) ' C •a (Hq(C •b (M))).

(See Appendix B for spectral sequences.) OnceM is flasque, Proposition 1.1.6 assures
that Č•(Ub,M) is a flasque resolution ofM and thus Ep,q

1 = 0 for all q > 0. It follows
by convergence of E that

Hp(Γ(X,D•(M))) ' Ep,0
2 = Hp(C •a (H0(C •b (M)))).

Finally, since againM is flasque, it should be noticed that ˜H0(C •b (M)) = ˜H0(Ub,M)

is flasque as well. Therefore

Hp(Γ(X,D•(M))) = 0

for all p > 0. �

Proposition 2.1.3. If a and b are two finite sequences of elements of R, then given
an R-module M , for all p ≥ 0 there exists functorial isomorphism

Hp(C •ab(M)) ' Hp(C •a (R)⊗R C •b (R)⊗RM).

Proof. By Lemma 2.1.2 we have that

{Hp(C •a (R)⊗R C •b (R)⊗R _)} ' {Hp(Γ(X,D•(_)))}

is a universal δ-functor in the category of quasi-coherent sheaves. On the other hand,
{Hp(C •ab(_)} is also a universal δ-functor in the same category. The result follows by
Lemma 2.1.1. �

Proposition 2.1.3 allows us to construct a filtration to the complex C •a,b(M) with

the cohomology of the complexes involved in the filtration being known. Indeed, con-

sider the tensor product of the Čech complexesD• := C•a (R)⊗C•b (R)⊗M , see Definition

1.1.1. Switching D0 by 0 and applying a shift in such a way that D1 is centered at level

0 one gets a complex isomorphic to C •a,b(M). Moreover, by considering the complex F •

such that

F p =

0, p = 0⊕
i+j=p+1 C

i
a(R)⊗ Cj

b(R)⊗M, p 6= 0
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with differentials induced by that ones of C•a (R) ⊗ C•b (R) ⊗M , it may be seen that

F • ' C •a (R)⊗C •b (R)⊗M [−1] that, by Proposition 2.1.3, has as cohomology modules

those of C •ab(M)[−1].

We would like to extend this construction to more than two ideals. What we get

from such a construction is a filtered complex which cohomology can be approximated

by sheaf cohomology groups of the sort H•(UI , M̃), see Section 1.1.2. This can be

done because from a filtered complex a spectral sequence arises. (The reader may see

this construction, for example, in [70] or [83]). It may be noticed, for instance, that

from the filtered complex given above, a spectral sequence with only two columns arise

and which abutment is H•(UI+J , M̃), where I and J are, respectively, the ideals of R

generated by a and b. From this case, in particular, the spectral sequence degenerates

in a long exact sequence, which is the well-known Mayer-Vietoris long exact sequence.

We shall prove this in the next section. Therefore, summing up, we are seeking a

construction that generalizes that of the Mayer-Vietoris long exact sequence.

Induction on the number of sequences provides a generalization to Proposition

2.1.3.

Proposition 2.1.4. If M is an R-module, a1, a2, ..., an are finite sequences of elements
in R and a is the sequence defined by all distinct products of n elements, where only
one element belongs to a sequence ai for i = 1, ..., n, then

Hp(C •a (M)) ' Hp(C •a1
(R)⊗R C •a2

(R)⊗R ...⊗R C •an(R)⊗RM), for all p ≥ 0.

Proof. The tensor product of the complex C •a1
(R)⊗R C •a2

(R)⊗R ...⊗R C •an−1
(R) by the

complex C •an(M) gives rise to a spectral sequence E which abutment assures functorial
isomorphism

H0(C •a1
(R)⊗RC •a2

(R)⊗R...⊗RC •an(R)⊗RM) ' H0(C •a1
(R)⊗R...⊗RC •an−1

(R)(H0(C •an(M))))

so that, by induction hypothesis,

H0(C •a1
(R)⊗R C •a2

(R)⊗R ...⊗R C •an(R)⊗RM) ' H0(C •a1...an−1
(R)(H0(C •an(M))))

' H0(C •a (M)).

Further, given an R-moduleN such that Ñ is flasque (suchN exists by a Gabber’s
result [32, Corollary 3.5]), by induction hypothesis, the second page of this spectral
sequence is such that

Ep,q
2 ' Hp(C •a1a2...an−1

(Hq(C •an)(N))) = 0
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for all p > 0 or q > 0 so that {Hp(C •a1
(R) ⊗R C •a2

(R) ⊗R ... ⊗R C •an(R) ⊗R _)}p is a
universal δ-functor, whence the result. �

Now we shall provide a more direct proof for Proposition 2.1.4.

Let a1, . . . , an be sequences of elements in R and M be an R-module. We denote

the total complex (C •a1
(R)⊗R C •a2

(R)⊗R . . .⊗R C •an(R)⊗RM)[−1] by C •a1,...,an
(M) and

the (augmented) complex

0 //M // C 1
a1,...,an

(M) // C 2
a1,...,an

(M) // · · ·

by C•a1,...,an
(M). We set H i

a1,...,an
(M) := H i(C•a1,...,an

(M)) for all i ≥ 0. Further, by

defining

Da1,...,an(M) := H1(C •a1,...,an
(M)) = H0(C •a1

(R)⊗R C •a2
(R)⊗R . . .⊗R C •an(R)⊗RM),

the exact sequence of complexes

0 // C •a1,...,an
(M) // C•a1,...,an

(M) //M // 0

where M also denotes the complex centered in the R-module M at degree 0, as we did

in Section 1.1.2. Thus there is an exact sequence

0 // H0
a1,...,an

(M) //M // Da1,...,an(M) // H1
a1,...,an

(M) // 0 (2.1.1)

as the first one at the beginning of this chapter, and isomorphisms

H i(C •a1,...,an
(M)) ' H i

a1,...,an
(M)

for all i > 1.

From now on, let a be the sequence defined by all distinct products of n elements,

where only one element belongs to a sequence ai for i = 1, . . . , n. Let I be the ideal gen-

erated by a. It should be noticed that the sequence 0 // C0
a1,...,an

(M) // C1
a1,...,an

(M)

is identical to 0 // C0
a (M) // C1

a (M) ; in particular, H0
I (M) = H0

a1,...,an
(M).

Lemma 2.1.5. Assume that M = H0
I (M), then Ci

a(M) = Ci
a1,...,an

(M) = 0 for any
i > 0.

Proof. For i > 0, the summands of Ci
a(M) or Ci

a1,...,an
(M) are localizations Mw, where

w is a multiple of an element of the form a1 · . . . ·an, for some product with ai ∈ ai. �
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For an ideal J generated by a sequence of elements b in R, we set DJ(M) :=

H0(C •b (M)) (even though the ring is not Noetherian). Moreover, as Chardin, Jouanolou

and Rahimi have shown in [22], any element of Hq
J(M) is annihilated by a power of the

ideal J . This extends to sums of localizations Cp
aH

q
J(M) and hence to the quotients

Hp
I (Hq

J(M)) and submodules DI(H
q
J(M)).

Lemma 2.1.6. For any i ≥ 0, H i
a1,...,an

(M) = H0
I (H i

a1,...,an
(M)).

Proof. First, notice that if E2 ⇒p H is a spectral sequence such that H0
I (Ep,q

2 ) = Ep,q
2

for all p, q then H0
I (H i) = H i for all i ≥ 0. Thus, the result will follow by considering

the spectral sequence arising from the double complex C •a1
(R)⊗R . . .⊗RC •an(R)⊗RM =

(C •a1
(R)⊗R . . .⊗R C •an−1

(R))⊗R C •an(R)⊗RM :

Ei,j
2 = H i(C •a1

(R)⊗R . . .⊗R C •an−1
(Hj(C •an(R)⊗RM)))

that abuts toH i+j(C •a1
(R)⊗R . . .⊗RC •an(R)⊗RM) = H i+j+1(C •a1,...,an

(M)), and showing
that Ei,j

2 = H0
I (Ei,j

2 ). We shall proceed by induction in n. We commented the case
n = 1 before this lemma. Suppose n > 1 and that the result holds true for any module
and n− 1 sequences.

If j > 0, then Hj(C •an ⊗RM) = Hj+1
(an)(M) so that

Hj(C •an ⊗RM) = H0
I (Hj(C •an ⊗RM))

and thus Ei,j
2 = H0

I (Ei,j
2 ). Suppose j = 0. If i > 0, then

Ei,0
2 = H i+1(C •a1,...,an−1

(D(an)(M)) = H i+1
a1,...,an−1

(D(an)(M))

so Ei,0
2 = H0

I (Ei,0
2 ). Once H i(C •a1,...,an

(M)) = H i
a1,...an

(M) for all i > 1, we conclude
that H i

a1,...,an
(M) = H0

I (H i
a1,...,an

(M)) for all i > 1.
Now, suppose i = j = 0 in the spectral sequence and consider the exact sequence

2.1.1. Given a1 ∈ a1, . . . , an ∈ an and x ∈ Da1,...,an(M) = Da1,...,an−1(D(an)(M)), by
induction hypothesis there exists N such that (a1 · . . . · an−1)Nx ∈ D(an)(M) and then
(a1 · . . . · an)Nx ∈M for N � 0. In other words, Inx = 0 in H1

a1,...,an
(M). �

The next proposition is another proof for Proposition 2.1.4.

Proposition 2.1.7. If M is an R-module, a1, a2, ..., an are finite sequences of elements
in R, a is the sequence defined by all distinct products of n elements, where only one
element belongs to a sequence ai for i = 1, ..., n, and I is the ideal generated by a, then

DI(M) ' Da1,...,an(M) and H i
I(M) ' H i

a1,...,an
(M)

for all i ≥ 0.
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Proof. First, Lemma 2.1.5 assures that it suffices to prove the proposition whenH0
I (M) =

0. Thus, from the exact sequences

0 //M // DI(M) // H1
I (M) // 0 and 0 //M // Da1,...,an(M) // H1

a1,...,an
(M) // 0

and from lemmas 2.1.5 and 2.1.6 we obtain isomorphism of complexes C •a1,...,an
(M) '

C •a1,...,an
(DI(M)) and C •a (M) ' C •a (Da1,...,an(M)). In particular,

(i) Da1,...,an(M) ' Da1,...,an(DI(M)) and DI(M) ' DI(Da1,...,an(M));

(ii) H i
a1,...,an

(M) ' H i
a1,...,an

(DI(M)) and H i
I(M) ' H i

I(Da1,...,an(M)) for all i ≥ 2.

Now, the double complex

...
...

0 // C 0
a (R)⊗R C 1

a1,...,an
(R)⊗RM //

OO

C 1
a (R)⊗R C 1

a1,...,an
(R)⊗RM //

OO

· · ·

0 // C 0
a (R)⊗R C 0

a1,...,an
(R)⊗RM //

OO

C 1
a (R)⊗R C 0

a1,...,an
(R)⊗RM //

OO

· · ·

0

OO

0

OO

gives rise to two spectral sequences that collapses at second page in such a way that

DI(Da1,...,an(M)) ' Da1,...,an(DI(M)) and H i
I(Da1,...,an(M)) ' H i

a1,...,an
(DI(M))

for all i ≥ 2. The result follows from (i) and (ii). �

2.1.2 The spectral sequence

We are now ready to construct the promised Mayer-Vietoris spectral sequence.

The reader not familiarized with the construction of a spectral sequence has [70, 74]

and [83] as pretty good references.

Theorem 2.1.8 (Mayer-Vietoris Spectral Sequence). Let M be an R-module. Given
I, I1, ..., In finitely generated ideals of R such that I = I1 + ... + In, then there exists
spectral sequence

Ep,q
1 =

⊕
i0<...<ip

Hq(UIi0Ii1 ...Iip , M̃)⇒p H
p+q(UI , M̃).

Proof. Given p ≥ 1 and m integers define

Xm
p := {(i1, ..., in) ∈ Nn : i1 + ...+ in = m and at most n− p− 1 of the i′js are zero}.

Let a1, a2, ..., an be finite sequences of elements of R such that Ii is generated by ai for
all i = 1, ..., n. Thus I is generated by a = a1 ∪ a2 ∪ ... ∪ an and consider
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Fm
p :=

⊕
(i1,i2,...,in)∈Xm

p

Ci1
a1

(R)⊗R Ci2
a2

(R)⊗R ...⊗R Cin
an(R)⊗RM

where the C•ai(R) are the Čech complexes 1.1.1. Consider also morphisms

Fm
p

// Fm+1
p

as the restriction of the differential Cm
a (R)⊗RM // Cm+1

a (R)⊗RM to Fm
p .

Now, by considering the complex C •a (M) from the beginning of the section, notice
that it can be obtained from C•a (M)[1] by replacing C0

a (M) to 0, as we have already
seen in Section 1.1.2. By writing in the same way the complexes Fp after the same
shift, the family {Fp}p turns out to be a limited (descending) filtration of C •a (M) and
therefore it yields a spectral sequence E converging to

H•(C •a (M)) ' H•(UI , M̃).

Moreover, it may be seen that

Fp/Fp+1 '

 ⊕
i0<...<ip

C •ai0 (R)⊗R C •ai1 (R)⊗R ...⊗R C •aip (R)⊗RM

 [−p]

for all p > 0 so that, by Proposition 2.1.4 (or 2.1.7),

Ep,q
1 = Hp+q(Fp/Fp+1) '

⊕
i0<...<ip

Hq(C •ai0ai1 ...aip (M)) '
⊕

i0<...<ip

Hq(UIi0Ii1 ...Iip , M̃)

for all p > 0 and q ≥ 0, and

Hq(C •a (M)/F1) =
⊕
j

Hq(UIj , M̃)

for all q ≥ 0. �

2.2 Second page

A natural question that has arisen is what the second page of the Mayer-Vietoris

spectral sequence looks like. We suggest two alternatives to respond to that. The first

one was already mentioned, it is another way to construct a Mayer-Vietoris spectral

sequence. Indeed our spectral sequence may be seen as a particular case of the Čech

spectral sequence (see Appendix B.2.1) so that its second page is given in terms of

objects having a geometrical meaning. Another great advantage of this construction
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is that the ring does not need to be Noetherian. The second alternative has ended

up having a more topological aspect as the finite sequences a1, ..., an form a basis of

a certain topological space. This way gives the second page in terms of right derived

functors of inverse limit functors.

Theorem 2.2.1 (Mayer-Vietoris Spectral Sequence). Let a1, a2, ..., an be finite se-
quences of elements of R and M an R-module. If a = a1 ∪ a2 ∪ . . . ∪ an and I is
the ideal of R generated by a then there exists a spectral sequence

Ep,q
2 = Hp(Ua,Hq(M̃))⇒p H

p+q(UI , M̃)

where Ua is the family (UIi), i = 1, ..., n, with UIi being the complement in Spec(R) of
the variety defined by the ideal generated by the sequence ai. Moreover,

Ep,q
1 =

⊕
i0<...<ip

Hq(UIi0 ·Ii1 ·...·Iip , M̃)

and the first page coincides with the Mayer-Vietoris spectral sequence’s 2.1.8.

Proof. The existence of the desired spectral sequence follows directly from [40, Théorème
5.4.1]. The first page is obtained by noticing that, for every p, UIi0 ∩UIi1 ∩ ...∩UIip =

UIi0 ·Ii1 ·...·Iip . �

The second alternative demands some work on general sheaf theory and inverse

limits. Its too long and technical arguments on basic issues of these two subjects do not

seem to show us much relevance in what concerns the Mayer-Vietoris spectral sequence

performance. Hence we attach this discussion in Appendix A and here we only display

what the second page of the Mayer-Vietoris spectral sequence looks like.

Let a1, a2, ..., an be finite sequences of elements of R and I1, I2, ..., In be the ideal

generated by them respectively. The set

Σ = {Ii0 · Ii1 · ... · Iip : p = 0, ..., n− 1 and i0 < i1 < ... < ip}

endowed with the inclusion order turns out to be a topological space with basis being

composed by the subsets (−∞, I] := {J ∈ Σ : J ⊆ I}. The second page of the

Mayer-Vietoris spectral sequence is given by

Ep,q
2 = lim←−

I∈Σ

(p)Hq(UI , M̃).
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2.3 The long exact sequence and further applications

In this section, we provide some general applications to the Mayer-Vietoris spec-

tral sequence. The first one is naturally the Mayer-Vietoris long exact sequence. The

major advantage of this construction is the no need for Noetherianity. It allows us to

generalize many results proved in the Noetherian case that we naturally shall prove

some soon. We should remember that the Mayer-Vietoris long exact sequence in the

non-Noetherian case is a well-known tool. For instance, it is constructed (by different

ways) in [78, Theorem 9.4.3] and in [81].

Theorem 2.3.1 (Mayer-Vietoris Long Exact Sequence). If I and J are finitely gener-
ated ideals of R and M is an R-module then there exists long exact sequence

0 // H0
I+J(M) // H0

I (M)⊕H0
J(M) // H0

IJ(M)

rr
H1
I+J(M) // H1

I (M)⊕H1
J(M) // H1

IJ(M)

rr
H2
I+J(M) // · · ·

Proof. By the relation between local and sheaf cohomology that we have already seen
in Section 1.1.2, the Mayer-Vietoris Spectral Sequence with respect to I and J 2.2.1
has as first page

...
...

0 // H3
I (M)⊕H3

J(M) // H3
IJ(M) // 0

0 // H2
I (M)⊕H2

J(M) // H2
IJ(M) // 0

0 // H0(UI , M̃)⊕H0(UJ , M̃) // H0(UIJ , M̃) // 0

Since this spectral sequence converges to H•(UI+J , M̃) it degenerates in the fol-
lowing long exact sequence.

0 // H0(UI+J , M̃) // H0(UI , M̃)⊕H0(UJ , M̃) // H0(UIJ , M̃) // H2
I+J(M) // · · ·

The exactness of the sequence

0 // H0
K(M) //M // H0(UK , M̃) // H1

K(M) // 0

for any ideal K (see again Section 1.1.2) assures us the exactness of the rows in the
following double complex
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0

��

0

��

0
��

0

��
0 // H0

I+J(M) //

α ��

M //

��

H0(UI+J , M̃) //

��

H1
I+J(M) //

γ
��

0

0 // H0
I (M)⊕H0

J(M) //

β ��

M ⊕M //

��

H0(UI , M̃)⊕H0(UJ , M̃) //

ϕ��

H1
I (M)⊕H1

J(M) //

ψ��

0

0 // H0
IJ(M) //

��

M //

��

H0(UIJ , M̃) //

��

H1
IJ(M) //

��

0

0 0 0 0

(The first and fourth columns are induced by the second and third ones. The second
column is the canonical exact sequence x 7→ (x, x) and (x, y) 7→ x− y.)

This double complex provides two spectral sequences. One of them (taking hor-
izontal homology first) is composed of zeros so that the other spectral sequence E
(obtained by taking vertical homology) converges to zero. Since the second column is
an exact complex and the third one has homology only in H0(UIJ , M̃), the first page
of E is given by

kerα 0 0 ker γ

kerα/ im β 0 0 kerψ/ im γ

coker β

'

55

0 cokerϕ ' // cokerψ

where the dotted homomorphism is the only one on the third page. The convergence
gives us the exact sequence

0 // H0
I+J(M) // H0

I (M)⊕H0
J(M) // H0

IJ(M) // coker β
'

qqker γ // H1
I+J(M) // H1

I (M)⊕H1
J(M) // H1

IJ(M)

and isomorphism cokerϕ ' cokerψ. This isomorphism, in turn, induces another double
complex

0 // imϕ //

��

H0(UIJ , M̃) //

��

H2
I+J(M) // H2

I (M)⊕H2
J(M) // . . .

0 // imψ // H1
IJ(M) // H2

I+J(M) // H2
I (M)⊕H2

J(M) // · · ·

and a similar discussion as above completes the proof. �

The first applications of the Mayer-Vietoris long exact sequence is a generalization

of a result of Dibaei and Vahidi on cohomological dimension [28, Corollary 2.2]. It is a
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homological invariant that plays an important role in both commutative algebra and

algebraic geometry, see [17, 22] for interesting properties and applications.

Definition 2.3.2. If I is a finitely generated ideal of R and M is an R-module, the
cohomological dimension of M with respect to the ideal I is defined as being

cdI(M) := sup{p ∈ N ∪ {−∞} : Hp
I (M) 6= 0}.

Corollary 2.3.3. If I and J are two finitely generated ideals of R and M is an R-
module then

cdIJ(M) ≤ cdI(R/annR(M)) + cdJ(M).

In case of M being finitely generated we have

cdIJ(M) ≤ cdI(M) + cdJ(M).

Proof. The Mayer-Vietoris long exact sequence 2.3.1 gives us exact sequence

H i
I(M)⊕H i

J(M) // H i
IJ(M) // H i+1

I+J(M)

for all i. The result follows from [22, Proposition 4.1 b), Proposition 4.1 c), Corollary
4.2]. �

Corollary 2.3.4. Let M be a finitely generated R-module and let I be a finitely
generated ideal of R. Given finitely generated ideals q1, ..., qn of R such that I =

q1 ∩ q2 ∩ ... ∩ qn, then

cdI(M) ≤
n∑
i=1

cdqi(M).

Definition 2.3.5. If I is a finitely generated R-ideal and M an R-module, we set

depthI(M) := max{p ∈ N ∪ {+∞} : H i
I(M) = 0, for all i < p}.

When R is local and I is its maximal ideal, depthR(M) stands for depthI(M).

The next result is a version of the Mayer-Vietoris long exact sequence 2.3.1 for

three ideals.

Theorem 2.3.6. Let I, J and K be three ideals of R generated, respectively, by the
finite sequences a, b and c. If M is an R-module such that g = depthI+J+K(M) > 2

then there exists long exact sequence
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0 // H0(UI+J+K , M̃) // H0(UI , M̃)⊕H0(UJ , M̃)⊕H0(UK , M̃)

qq

H0(UIJ , M̃)⊕H0(UIK , M̃)⊕H0(UJK , M̃) // H0(UIJK , M̃)

qq
H2
I (M)⊕H2

J(M)⊕H2
K(M) // H2

IJ(M)⊕H2
IK(M)⊕H2

JK(M)

qq
H2
IJK(M) // · · ·

· · · // Hg−1
IJ (M)⊕Hg−1

IK (M)⊕Hg−1
JK (M)

qq
H1(Ua+b+c,Hg−2(M̃)) // 0.

Proof. From the construction of the Mayer-Vietoris Spectral Sequence E 2.2.1 one sees
that it has three columns and the only possibly nonzero differentials at the second page
are E0,q

2 → E2,q−1
2 . Since E0,q

3 ' E0,q
∞ = 0 for all q < g − 1, E1,q

2 ' E1,q
∞ = 0 for all

q < g − 2 and E2,q
3 ' E2,q

∞ = 0 for all q < g − 3. Therefore all nonzero differentials
E0,q

2 → E2,q−1
2 are isomorphisms for q < g − 2 and all sequences

E0,q
1 → E1,q

1 → E2,q
1

are exact for q < g − 2 so that one obtains a long exact sequence from the sequence

0
��

0 // E0,0
2

// E0,0
1

// E1,0
1

// E2,0
1

//

""

E2,0
2

//

��

0

E0,1
1

��

E1,1
1

��

E2,1
1

�� ""

0 // E2,1
2

��

// E0,2
1

// · · ·

0

The result follows from definition of depth and from the second page characterization
2.2.1. �

The remaining results of this section are attempts to get general information

about sheaf cohomology modules from the Mayer-Vietoris spectral sequence.
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Proposition 2.3.7. Let I1, I2, ..., In be finite generated ideals of R, I = I1 +I2 +...+In,
M an R-module and

m = sup{cdIi0 ·Ii1 ·...·Iip (M) | i0 < i1 < ... < ip, p = 0, . . . , n− 1}.

Consider the Mayer-Vietoris spectral sequence E 2.2.1 defined by finite generators
sets of the Ii’s. If m ≤ 1 then

Hp(UI , M̃) ' Hp(UI , M̃)

for all p ≥ 0. In particular cdI(M) ≤ n. If m > 1 then

cdI(M) ≤ n+m− 1,

Hn+m−2(UI , M̃) ' coker(En−2,m−1
1 → En−1,m−1

1 )

and there exists exact sequence

0 // Hn−1(UI ,Hm−2(M̃)) // Hm+n−3(U,M̃) // Hn−2(UI ,Hm−1(M̃)) // 0.

Proof. Since the Mayer-Vietoris spectral sequence 2.2.1 is such that

Ep,q
1 =

⊕
i0<...<ip

Hq(UIi0 ·Ii1 ·...·Iip , M̃) '
⊕

i0<...<ip

Hq+1
Ii0 ·Ii1 ·...·Iin

(M)

for q > 0, we have Ep,q
1 = 0 for all q > 0 provided m ≤ 1.

In case of m > 1, it is enough to prove when m is finite. From the corner

· · · 0 0 0

· · · // En−2,m−1
1

// En−1,m−1
1

// 0

· · · // En−2,m−2
1

// En−1,m−2
1

// 0

and by convergence,
Hq
I (M) = Hq−1(UI , M̃) = 0

whenever q > n+m− 1,

Hn+m−2(UI , M̃) ' En−1,m−1
2 ' coker(En−2,m−1

1 → En−1,m−1
1 )

and there is exact sequence

0 // En−1,m−2
2

// Hm+n−3(UI , M̃) // En−1,m−1
2

// 0.

The result follows by the geometric characterization 2.2.1. �
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The next definition is a generalization of the invariant ai(M) defined in the Section

1.2.1.

Definition 2.3.8. If R =
⊕

n∈NRn is a positively graded ring, I is a finitely generated
graded ideal of R and M is a graded R-module then we set, for each i ∈ N,

aiI(M) := sup{µ : H i
I(M)µ 6= 0}

if H i
I(M) 6= 0 and aiI(M) := −∞ else.

Proposition 2.3.9. Suppose R =
⊕

n∈NRn is a positively graded ring, M is a graded
R-module, let I1, I2, ..., In be finitely generated homogeneous ideals of R and I = I1 +

I2 + ...+ In. If j > 1 then

ajI(M) ≤ max{µ | ∃p ≤ j, Hj−p(UIi0Ii1 ...Iip , M̃)µ 6= 0}.

Proof. Let E be the Mayer-Vietoris spectral sequence 2.2.1 associated to the n se-
quences defined by the finite generators of the Ii’s. Given µ such that Hj

I (M)µ 6= 0

we cannot have (Ep,j−p
1 )µ = 0 for all p because of convergence of E. Therefore

Hj−p(UIi0Ii1 ...Iip , M̃)µ 6= 0 for some p ≤ j. It proves that {µ | Hj
I (M)µ 6= 0} ⊆

{µ | ∃p ≤ j, Hj−p(UIi0Ii1 ...Iip , M̃)µ 6= 0} whence the result. �
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Chapter 3

Local cohomology over multigraded
polynomial rings

Most of the results in this chapter concern relations, in a polynomial ring, between

local cohomology modules supported in the irrelevant ideal and on ideals generated by

variables. Our main is to bring information about local cohomology modules supported

on these ideals. For instance, a duality-like theorem and Artinianness are proved in

the bigraded case and information about invariants such as cohomological dimension

are settled in general.

We need to set some notation to use throughout this section.

Notation 3.0.1. Let S be a commutative unitary ring. Let k ≥ 1 be an integer and
consider the Zk-graded polynomial ring R = S[X1,0, ..., X1,n1 , ..., Xk,0, ..., Xk,nk ] with
deg(Xi,j) = ei for all j = 0, ..., ni, where ei denotes the i-th element of the canonical
basis of Zk. By a graded R-module we just mean a Zk-graded R-module. Write Bi =

(Xi,0, ..., Xi,ni) for i = 1, ..., k, B = B1∩...∩Bk, Bi0...ip = Bi0∩...∩Bip for p = 0, ..., k−2

and m = B1 + ...+Bk.

3.1 The bigraded case

In this section, we consider k = 2 in Notation 3.0.1. To simplify even more the

notation, we write n1 = m, n2 = n and R = S[X0, ..., Xm, Y0, ..., Yn]. Since here we

work on the bigraded case, it is natural to ask whether the results in this section hold

true for k ≥ 3. We, indeed, generalize some of these results later.



3.1.1 Cohomological dimension and artinianness

This section presents some information about the cohomological dimension of

local cohomology modules and its Artinianness. We first show a proposition that

generalizes Chardin and Nemati [23, Proposition 3.4] though its proof essentially follows

the same lines.

Proposition 3.1.1. Let F be a graded free R-module. One has

Hm+n+1
B (F ) ' Hm+n+2

m (F ).

Furthermore, if m = n then

H i
B(F ) '

Hm+1
B1

(F )⊕Hm+1
B2

(F ), i = m+ 1

0, else

and if m 6= n then

H i
B(F ) '


Hm+1
B1

(F ), i = m+ 1

Hn+1
B2

(F ), i = n+ 1

0, else.

Proof. Once H i
B1

(F ) = 0 if i 6= m + 1, Hj
B2

(F ) = 0 if j 6= n + 1 and H l
m(F ) = 0 if

l 6= m+ n+ 2, the result follows from the Mayer-Vietoris long exact sequence 2.3.1

· · · // H i
m(F ) // H i

B1
(F )⊕H i

B2
(F ) // H i

B(F ) // H i+1
m (F ) // · · ·

�

The first consequence of the Proposition 3.1.1 has to do with cohomological di-

mension, see Definition 2.3.2.

Corollary 3.1.2. If F is a graded free R-module, then

cdB(F ) = m+ n+ 1.

In particular, cdB(M) ≤ m+ n+ 1 for any graded R-module M .

Proof. The first part follows immediately from Proposition 3.1.1. The inequality follows
from the spectral sequence

TorRp (M,Hq
B(R))⇒p H

q−p
B (M).

(The not acquainted reader might see Appendix B.2.6 for the construction of this
spectral sequence.) �
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The next result is similar to [28, Corollary 2.6] but here we work with intersection

instead of sum.

Proposition 3.1.3. If F is a graded finitely generated free R-module then

Hm+1
B1

(Hn+1
B2

(F )) ' Hm+n+1
B (F ).

In particular, the following statements hold true.

(i) cdB1(Hn+1
B2

(F )) = m+ 1,

(ii) cdB2(Hm+1
B1

(F )) = n+ 1.

Proof. Proposition 2.1.3 induces spectral sequence

Ep,q
2 = Hp(C •B1

(Hq(C •B2
(F ))))⇒p H

p+q(C •B(F )).

By [22, Proposition 4.7] one has Ep,q
2 = 0 for p > m + 1 or q > n + 1 so that the

isomorphism desired follows directly. Corollary 3.1.2 assures the others statements. �

In the Noetherian case, Proposition 3.1.3 helps us to set the non-Artinianness of

the local cohomology modules we are working on. Note that Dibaei and Vahidi have

also proved Corollary 3.1.4 in [28, Proposition 4.1] following a different path but here

we suggest a more general method for proving this result.

Corollary 3.1.4. If S is Noetherian and F is a graded finitely generated free R-module
then

dim(Hm+1
B1

(F )) ≥ n+ 1

and
dim(Hn+1

B2
(F )) ≥ m+ 1.

In particular, both local cohomology modules are not Artinian.

Proof. By the Grothendieck’s Vanishing Theorem (see [18, 17] or [58]) one has

dim(Hn1+1
B1

(F )) ≥ cdB2(Hn1+1
B1

(F )) = n2 + 1.

The proof of the other inequality is alike. �

Next lemma removes the Noetherianity in [10, Lemma 2.8].

Lemma 3.1.5. Let I be a proper ideal of R and M a finitely presented R-module. If
cdI(M) = t ≥ 1 then H t

I(M) = IH t
I(M). In particular, if R is local then H t

I(M)

cannot be finitely generated.

44



Proof. Note that M is also finitely generated as R/ann(M)-module so that there is
exact sequence of R/ann(M)-modules

0 // K // (R/ann(M))n //M // 0

for some positive integer n. It yields an exact sequence

H t
I(R/ann(M))n

ϕ // H t
I(M) // H t+1

I (K).

Since Supp(K) ⊆ Supp(R/ann(M)) = Supp(M) by [22, Proposition 4.7] one has
cdI(K) ≤ cdI(M) = t so that ϕ is a surjection. We have thus that in order to
check the equality H t

I(M) = IH t
I(M) it suffices to prove that H t

I(R/ann(M)) =

IH t
I(R/ann(M)). Moreover, once Supp(R/ann(M)) = Supp(M) we have

t = cdRI (M) = cd
R/ann(M)
I+ann(M)/ann(M)(M)

= cd
R/ann(M)
I+ann(M)/ann(M)(R/ann(M)) = cdI(R/ann(M)),

hence we may suppose M = R and cdI(R) = t ≥ 1.
For an arbitrary R-module N the spectral sequence

TorRp (N,Hq
I (R))⇒p H

q−p
I (N)

(see Appendix B.2.6) assures the existence of a functorial isomorphism

H t
I(N) ' N ⊗R H t

I(R).

From this,
H t
I(R)/IH t

I(R) ' R/I ⊗A H t
I(R) ' H t

I(R/I) = 0

since t ≥ 1.
The last part follows directly from Nakayama’s lemma. �

As immediate consequence of Corollary 3.1.2 and Lemma 3.1.5 we have the next

relation.

Corollary 3.1.6. If F is a finitely generated graded free R-module, then

Hm+n+1
B (F ) = BHm+n+1

B (F ).

The two following results have also been proved in the Noetherian case in [28].

Lemma 3.1.7. If I and J are two ideals of R generated by the finite sequences a and
b respectively, M is an R-module and s, t are two non-negative integers such that

(i) Hs+t−i
I (H i

J(M)) = 0 for all i ∈ {0, ..., s+ t} \ {t},
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(ii) Hs+t−i+1
I (H i

J(M)) = 0 for all i ∈ {0, ..., t− 1}, and

(iii) Hs+t−i−1
I (H i

J(M)) = 0 for all i ∈ {t+ 1, ..., s+ t}

then we have isomorphism Hs
I (H

t
J(M)) ' Hs+t

I+J(M).

Proof. Consider the Čech complexes Ca(R) and Cb(M) (see Definition 1.1.1). The
double complex Ca(R)⊗R Cb(M) induces a spectral sequence

Ep,q
2 = Hp

I (Hq
J(M))⇒p H

p+q
I+J(M).

(The interested reader may see Appendix B.2.7 for the construction of this spectral
sequence.) The hypothesis (i) says that Ep,q

2 = 0 whenever p + q = s + t and q 6= t.
Meanwhile (ii) and (iii) implies Es−r,t+r−1

r = 0 and Es+r,t−r+1
r = 0 for r ≥ 2. By

convergence we have Es,t
∞ ' Hs+t

I+J(M) and the differentials

Es−r,t+r−1
r

// Es,t
r

// Es+r,t−r+1
r

are all zero for r ≥ 2 so that Es,t
2 ' Es,t

∞ . �

Corollary 3.1.8. If I and J are two finitely generated ideals of R and M is a finitely
presented R-module, then

H
cdI(M)+cdJ (M)
I+J (M) ' H

cdI(M)
I (H

cdJ (M)
J (M)).

Moreover, the following statements are equivalent.

(i) cdI+J(M) = cdI(M) + cdJ(M).

(ii) cdI(M) = cdI(H
cdJ (M)
J (M))

(iii) cdJ(M) = cdJ(H
cdI(M)
I (M)).

Proof. The isomorphism follows directly from [22, Proposition 4.7] and Lemma 3.1.7.
If (i) holds then HcdI(M)

I (H
cdJ (M)
J (M)) 6= 0 so that

cdI(M) ≤ cdI(H
cdJ (M)
J (M)).

[22, Proposition 4.7] assures equality. Conversely, if (ii) holds true then by the isomor-
phism we have HcdI(M)+cdJ (M)

I+J (M) 6= 0 which implies

cdI(M) + cdJ(M) ≤ cdI+J(M).

We have equality by [22, Proposition 4.2]. Similarly, one proves the equivalence between
(i) and (iii). �
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The next result is an immediate consequence of Proposition 3.1.3 and Corollary

3.1.8. It provides another proof (independent of the Mayer-Vietoris long exact sequence

2.3.1) for the first isomorphism in Proposition 3.1.1. Notice that Corollary 3.1.8 also

proves again what concerns cohomological dimension in Proposition 3.1.3.

Corollary 3.1.9. If F is a finitely generated graded free R-module, then

Hm+n+1
B (F ) ' Hm+n+2

m (F ),

cdB1(Hn+1
B2

(F )) = m+ 1 and cdB2(Hm+1
B1

(F )) = n+ 1.

3.1.2 Duality

In this section, we present an interesting duality involving local cohomology mod-

ules supported in the ideals B1 and B2 which is quite similar to local duality; see, for

instance, [17] and [58].

Here, throughout this section, we suppose that S = k is a field and denote

_∨ = ∗Homk(_,k). By [17, Example 14.5.17] and Example 1.2.5 we have that the

canonical module ωR of R is

ωR = R(−(m+ 1),−(n+ 1)).

Proposition 3.1.10. There exists graded isomorphism of R-modules

Hn+1
B2

(R) ' Hm+1
B1

(ωR)∨.

Proof. First we shall use the k-vector space structure of both

Hm+1
B1

(R) = k[X−1
0 , ..., X−1

m ][Y0, ..., Yn]

and
Hn+1
B2

(R) = k[X0, ..., Xm][Y −1
0 , ..., Y −1

n ]

to define an isomorphism between k-vector spaces; see Example 1.1.3.
Given (a, b) ∈ Z2, once

∗Homk(Hm+1
B1

(R),k)(a,b) = Homk(Hm+1
B1

(R)(−a,−b),k)

we define

ϕ(a,b) : ∗Homk(Hm+1
B1

(R),k)(a,b) → Hn+1
B2

(R)(a−(m+1),b−(n+1))(
Y j/X i

)∗ 7→ X i−1/Y j+1
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where the underlines denote the sequences X i = X i0
0 · ... ·X im

m , X i−1 = X i0−1
0 · ... ·X im−1

m

and so on.
Since this mapping sends basis to basis we only need to prove that it is well-

defined and surjective. Indeed, an element
(
Y j/X i

)∗ having degree (a, b) means that∑m
l=0 il = a and

∑n
l=0 jl = −b which implies that

∑m
l=0 il − 1 = a − (m + 1) and∑n

l=0 jl + 1 = −b+ (n+ 1) and thus X i−1/Y j+1 has degree (a− (m+ 1), b− (n+ 1)),
so ϕ(a,b) is well-defined. Furthermore, given X i′/Y j′ in Hn+1

B2
(R)(a−(m+1),b−(n+1)), by

writing il = i′l + 1 and jl = j′l − 1 for all l one has ϕ(a,b)

((
Y j/X i

)∗)
= X i′/Y j′ .

Therefore we have constructed a k-vector space isomorphism

ϕ : ∗Homk(Hm+1
B1

(R),k)→ Hn+1
B2

(R)(−(m+ 1),−(n+ 1)).

The result will follow by proving that ϕ is indeed an R-homomorphism. For this,
it suffices to prove its R-linearity on monomials XrY s.

First, notice that

[
(XrY s)

(
Y j/X i

)∗]
(Y p/Xq) =

(
Y j/X i

)∗ (
Y s+p/Xq−r)

=

1, if j = s+ p and i = q − r,

0, else

=

1, if p = j − s and q = i+ r,

0, else.

That is, [
(XrY s)

(
Y j/X i

)∗]
=
(
Y j−s/X i+r

)∗
and thus

ϕ
(
(XrY s)

(
Y j/X i

)∗)
= X i+r−1/Y j−s+1 = XrY s

(
X i−1/Y j+1

)
= XrY sϕ

((
Y j/X i

)∗)
.

�

Remark 3.1.11. Herzog and Rahimi in [51, Lemma 1.2] proved that there exists iso-
morphism of bigraded R-modules

Hn+1
B2

(R)∨ ' Hm+1
B1

(ωR).

Hence by Proposition 3.1.10 we conclude that

Hn+1
B2

(R) ' Hm+1
B1

(ωR)∨ and Hn+1
B2

(R)∨ ' Hm+1
B1

(ωR).

We are now ready to state the duality-type theorem.
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Theorem 3.1.12. IfM is a finitely generated graded R-module then one has functorial
graded isomorphism

Hn+1−i
B2

(M) ' ∗ ExtiR(M,Hm+1
B1

(ωR))∨

for all i ≥ 0.

Proof. We consider the graded version of Lemma B.3 and Theorem B.4. By taking
N = Hm+1

B1
(R) and P = k in these two results we have two spectral sequences

∗ Extpk(∗ ExtqR(M,Hm+1
B1

(R)),k)⇒p H
q−p

and
TorRp (M, ∗ Extqk(Hm+1

B1
(R),k))⇒p H

p−q.

Both spectral sequences collapses at their second pages so that

∗Homk

(∗ ExtiR(M,Hm+1
B1

(R)),k
)
' H i ' TorRi

(
M, ∗Homk(Hm+1

B1
(R),k)

)
for all i ≥ 0. Now Proposition 3.1.10 implies that

TorRi
(
M, ∗Homk(Hm+1

B1
(R),k)

)
' TorRi

(
M,Hn+1

B2
(R)
)

(−(m+ 1),−(n+ 1))

for all i ≥ 0. Since B2 is generated by a R-regular sequence, the Čech complex of R
with respect to B2 is a flat resolution of Hn+1

B2
(R), thus

TorRi
(
M,Hn+1

B2
(R)
)
' Hn+1−i

B2
(M)

for all i ≥ 0, whence the result. �

By taking B1 = (0) in Theorem 3.1.12 we recover the graded local duality in the

standard case.

Corollary 3.1.13. One has

∗ ExtiR(k, Hm+1
B1

(R)) = 0

for all i 6= n+ 1, and

∗Homk(∗ Extn+1
R (k, Hm+1

B1
(R)),k) ' k(−(m+ 1),−(n+ 1)).

Particularly, depthRH
m+1
B1

(R) = n+ 1.

Proof. It is an immediate consequence of Theorem 3.1.12 and from the fact thatM = k

has finite length. �
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It should be noticed that the roles of Hm+1
B1

(R) and Hn+1
B2

(R) are interchangeable

in the demonstrations of Proposition 3.1.10 and Theorem 3.1.12. For this reason we

just enunciate such similar duality and its corollary.

Theorem 3.1.14. IfM is a finitely generated graded R-module then one has functorial
graded isomorphism

Hm+1−i
B1

(M) ' ∗ ExtiR(M,Hn+1
B2

(ωR))∨

for all i ≥ 0.

Corollary 3.1.15. One has

∗ ExtiR(k, Hn+1
B2

(R)) = 0

for all i 6= m+ 1, and

∗Homk(∗ Extm+1
R (k, Hn+1

B2
(R)),k) ' k(−(m+ 1),−(n+ 1)).

Particularly, depthRH
n+1
B2

(R) = m+ 1.

As immediate consequence of corollaries 3.1.9, 3.1.13 and 3.1.15 we get the fol-

lowing.

Corollary 3.1.16. If F is a finitely generated graded free R-module, then

depthR(Hm+1
B1

(F )) = cdB2(Hm+1
B1

(F )) = n+ 1

and
depthR(Hn+1

B2
(F )) = cdB1(Hn+1

B2
(F )) = m+ 1.

3.2 The general case

Remember that we are considering the notation in 3.0.1. The first Proposition

of this section provides a bound for the cohomological dimension of graded R-modules

with respect to the ideals Bi0...ip .

Proposition 3.2.1. Let M be a graded R-module. For all p ∈ {0, ..., k − 1} the
following inequality holds true

cdBi0...ip (M) ≤
p∑
j=0

nij + (p+ 1).

In particular, cdB(M) ≤
∑k

j=1 nj + k.
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Proof. Let F be a graded free R-module. Since every ideal Bi is generated by an
R-regular sequence of length ni + 1, from Corollary 2.3.3 we have

cdBi0...ip (F ) ≤
p∑
j=0

cdBij (F ) =

p∑
j=0

(nij + 1) =

p∑
j=0

nij + (p+ 1).

The result follows from the spectral sequence

TorRp (M,Hq
Bi0...ip

(F ))⇒p H
q−p
Bi0...ip

(M).

(See Appendix B.2.6.) �

The next result is an attempt to extent Proposition 3.1.1 to k = 3. But first we

need a lemma.

Proposition 3.2.2. Suppose k = 3. If F is a graded free R-module, then

Hn1+n2+n3+1
B (F ) ' Hn1+n2+n3+3

m (F ).

Moreover, if n1 6= n2 then

H i
B12

(F ) '


Hn1+1
B1

(F ), i = n1 + 1,

Hn2+1
B2

(F ), i = n2 + 1,

0, else.

And if n1 = n2 then

H i
B12

(F ) '

Hn1+1
B1

(F )
⊕

Hn1+1
B2

(F ), i = n1 + 1

0, else.

There are also similar isomorphisms by comparing either n1 and n3 or n2 and n3.

Proof. We shall prove first the isomorphisms concerning H i
B12

(F ). Consider the ring
T = S[X1,0, ..., X1,n1 , X2,0, ..., X2,n2 ]. From the canonical morphisms

T ↪→ T [X3,0, ..., X3,n3 ]
'−→ R

one has isomorphism
H i
B12

(F ) ' H i
B12∩T (T )⊗T F

which implies the claim about H i
B12

(F ) because of Proposition 3.1.1.
A completely analogous argument assures isomorphisms involving H i

B13
(F ) and

H i
B23

(F ).
Now consider the Mayer-Vietoris spectral sequence 2.2.1

Ep,q
1 =

⊕
i0<...<ip

Hq(Ui0...ip , F̃ )⇒p H
p+q(Um, F̃ )
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and write d = n1 + n2 + n3 + 3. Since d − 3 > 0 and, by Proposition 3.2.1, d − 2 >

max{cdBj(F ), cdBil(F )}, one has E0,d−2
1 = E1,d−3

1 = E1,d−2
1 = E0,d−1

1 = 0 so that

Hd−2
B (F ) = E2,d−3

1 ' Hd−1(Um, F̃ ) ' Hd
m(F ).

�

Proposition 3.2.2 and induction allow us to generalize Corollary 3.1.2. It improves

the bound obtained in Proposition 3.2.1 (by taking p = k − 1).

Corollary 3.2.3. For any graded free R-module F there exists isomorphism

Hn1+...+nk+1
B (F ) ' Hn1+...+nk+k

m (F )

and cdB(F ) = n1 + ...+nk + 1. In particular cdB(M) ≤ n1 + ...+nk + 1 for any graded
R-module M .

Proof. By Propositions 3.1.1 and 3.2.2 and induction one can suppose

H i
Bi0...ip

(F ) = 0

for p ≤ k− 2 and i > max{ni0 + 1, ni1 + 1, ..., nip + 1}. The convergence of the Mayer-
Vietoris Spectral Sequence 2.1.8 gives us the desired isomorphism and the vanishing of
H i
B(F ) for i > n1 + ... + nk + 1. The last result follows from the convergence of the

spectral sequence B.2.6

TorRp (M,Hq
B(R))⇒p H

q−p
B (M).

�

Corollary 3.2.3 and Lemma 3.1.5 imply immediately a result similar to Corollary

3.1.6.

Corollary 3.2.4. If F is a graded free R-module, then

Hn1+...+nk+1
B (F ) = BHn1+...+nk+1

B (F ).

The spectral sequence defined in [66] (which he also calls Mayer-Vietoris spectral

sequence) allows us to obtain the local cohomology module of a free module supported

on the irrelevant ideal in terms of the local cohomologies of such free module supported

on ideals generated by the variables. To some extent, these last local cohomology

modules are easier to work with. For ease of consultation we put that spectral sequence

in Appendix B.2.2.
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Proposition 3.2.5. Assume R Noetherian. Suppose n = n1 = n2 = ... = nk and let
F be a graded free R-module. If l ≥ 0 then there exists a unique pair (p, q) such that
q − p = l and

H l
B(F ) '

⊕
i0<...<ip

Hq
Bi0+...+Bip

(F ).

Proof. Consider the spectral sequence in Appendix B.2.2

E−p,q1 =
⊕

i0<...<ip

Hq
Bi0+...+Bip

(F )⇒p H
q−p
B (F ).

Since Bi0 + ...+Bip is generated by a R-regular sequence of length (p+ 1)(n+ 1)

one has E−p,q1 = 0 for q 6= (p+1)(n+1). Moreover, if p ≥ 1 and p′ < p then the system
of equations

−p′ = −p+ r

(p′ + 1)(n+ 1) = (p+ 1)(n+ 1) + 1− r

is equivalent to −rn = 1 which has no solution whenever r ≥ 1. It means that there is
no homomorphism E

−p,(p+1)(n+1)
1 → E

−p′,(p′+1)(n+1)
1 from which follows that E1 = E∞

and the result. �

3.3 Vanishing

The vanishing of local cohomology modules in the multigraded case is determined

by the support 1.2.2 of these modules. Indeed, the support is the region of the “lattice”

groupG (that graduates the ring) on which the module lies. Thus we present interesting

relations involving supports of local cohomology modules. Afterwards, we work on

multigraded regularity 1.2.9 and finally we provide conditions for when the graded

pieces of local cohomology modules have finite length.

3.3.1 Support

The first proposition allows us to determine the support of local cohomology

modules of free modules supported in the irrelevant ideal in terms of the support

of local cohomology modules of such free module supported in ideals generated by

variables, which are well known when, for instance, the graded free module is a direct

sum of the same shifts R(−γ) where γ ∈ Zk.

In this section, we consider again Notation 3.0.1.
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Proposition 3.3.1. Assume R Noetherian. If F = R(L) is a graded free R-module
then

C l
B(F ) =

⋃
q−p=l

⋃
i0<...<ip

Cq
Bi0+...+Bip

(F )

for all l ≥ 0 and this union is disjoint.

Proof. Note that
Cq
Bi0+...+Bip

(F ) = Cq
Bi0+...+Bip

(R) = ∅

if q 6= (ni0 + 1) + ...+ (nip + 1) and writing d := (ni0 + 1) + ...+ (nip + 1), by Example
1.2.5 one has

Hd
Bi0+...+Bip

(R) =

S[X−ij ,l : j = 0, ..., p and l = 0, ..., nij ][Xj,lj : j 6= i0, ..., ip and lj = 0, ..., nj]

and

CBi0+...+Bip
(R) = SuppZk(H

d
Bi0+...+Bip

(F )) =

Zi0−1
≥0 × Z≤−(ni0+1) × Zi1−i0−1

≥0 × Z≤(ni1+1) × ...× Z≥(nip+1) × Zk−ip≥0 .

Given {i0, ..., ip}, {j0, ..., jq} ⊆ {1, ..., k} with {i0, ..., ip} 6= {j0, ..., jq} the intersec-
tion

SuppZk(H
(ni0+1)+...+(nip+1)

Bi0+...+Bip
(F )) ∩ SuppZk(H

(nj0+1)+...+(njq+1)

Bj0+...+Bjq
(F ))

must be empty because if l ∈ {j0, ..., jq} \ {i0, ..., ip} then the l-th coordinate of an
element in this intersection should has positive and negative sign, an absurd. It proves
that the union in the statement is disjoint.

Now, consider the spectral sequence defined in Appendix B.2.2

E−p,q1 =
⊕

i0<...<ip

Hq
Bi0+...+Bip

(F )⇒p H
q−p
B (F ).

For all
γ ∈

⋃
q−p=l

⋃
i0<...<ip

Cq
Bi0+...+Bip

(F )

there exists a unique (−p, q) such that γ ∈ SuppZk(H
q
Bi0+...+Bip

(F )) and thus

[E−p
′,q′

1 ]γ '

[Hq
Bi0+...+Bip

(F )]γ, (p′, q′) = (p, q)

0, else.

By convergence,
[H l

B(F )]γ ' [Hq
Bi0+...+Bip

(F )]γ 6= 0,

that is, γ ∈ C l
B(F ). The result follows from the convergence of the spectral sequence

and by noticing that

SuppZk(E
−p,q
1 ) =

⋃
q−p=l

⋃
i0<...<ip

Cq
Bi0+...+Bip

(F )

�
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It should be noticed that Lemma 1.1.4 has been already characterized the local

cohomology modules of the ring supported in B in terms of the local cohomology mod-

ules supported in the ideals generated by the variables. Proposition 3.3.1 characterizes

completely the cohomology module H l
B(F ) because its γ-th graded piece is isomorphic

to exactly one of the pieces [Hq
Bi0+...+Bip

(F )]γ. Note also that this proposition holds if

we consider the same torsion in each component of F , that is, F = R(−γ)(L) satisfies

Proposition 3.3.1 as well.

Corollary 3.3.2. Assume R Noetherian and let M be a finitely generated graded R-
module. Let I be an ideal in R generated by homogeneous elements of the same degree
that form a M-regular sequence. If K• denotes the Koszul complex of such a sequence
then for all l ≥ 0 one has

C l
B(M/IM) ⊆

⋃
q−p=l

⋃
u−v=q

⋃
i0<...<iv

Cu
Bi0+...+Biv

(Kp).

Proof. The double complex K• ⊗C•B(R) (Appendix B.2.3) defines a spectral sequence

Ep,q
1 = Hq

B(Kp)⇒p H
q−p
B (M/IM)

so that
SuppZk(H

l
B(M/IM)) ⊆

⋃
q−p=l

SuppZk(H
q
B(Kp)).

The result follows from Proposition 3.3.1. �

The next two results are consequences of the duality 3.1.12.

Proposition 3.3.3. If S = k is a field and k = 2, then

SuppZ2(∗ Extn+1
R (k, Hm+1

B1
(R))) = (m+ 1, n+ 1)

and
SuppZ2(∗ Extm+1

R (k, Hn+1
B2

(R)) = (m+ 1, n+ 1).

Proof. It follows immediately from corollaries 3.1.13 and 3.1.15. �

Definition 3.3.4. Given a graded R-module M , define

T
i0,...,ip
j (M) := SuppZk(TorRj (M,R/(Bi0 + · · ·+Bip)) and T i0,...,ip(M) := ∪jT i0,...,ipj (M)

and set

T̂
i0,...,ip
j (M) := T

i0,...,ip
j (M)−

p∑
l=0

(nil + 1)eil and T̂ i0,...,ip(M) := ∪jT̂ i0,...,ipj (M).

For simplicity,

Tj(M) := T 1,...,k
j (M) = SuppZk(TorRi (M,S)) and T (M) := ∪iTi(M),

and similarly for T̂j(M) and T̂ (M).
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Proposition 3.3.5. If S = k is a field, k = 2 and M is a finitely generated graded
R-module, then

Cp
B2

(M) ⊆ CB2(R) + Tn+1−p(M)

and
Cp
B1

(M) ⊆ CB1(R) + Tm+1−p(M).

for all p ≥ 0.

Proof. We shall prove the first inclusion. Given p ≥ 0, by the duality 3.1.12,

Cp
B2

(M) = SuppZ2(∗Homk(∗ Extn+1−p
R (M,Hm+1

B1
(R)),k))− (m+ 1, n+ 1)

⊆ − SuppZ2(∗ Extn+1−p
R (M,Hm+1

B1
(R)))− (m+ 1, n+ 1).

Let F• be the minimal graded free R-resolution of M . By [14, Lemma 3.12 (1)]
one has

SuppZ2(∗HomR(Fi, H
m+1
B1

(R))) = CB1(R)− Ti(M)

for all i ≥ 0. The result follows the fact that

SuppZ2(∗ Extn+1−p
R (M,Hm+1

B1
(R))) ⊆ SuppZ2(∗HomR(Fn+1−p, H

m+1
B1

(R)))

and
CB1(R) + (m+ 1, n+ 1) = −Cn+1

B2
(M)

by Proposition 3.1.10.
The second part follows from the same argument applied to the second version

of the duality, see Theorem 3.1.14. �

The next corollary follows immediately from last proposition and from the Mayer-

Vietoris long exact sequence 2.3.1.

Corollary 3.3.6. If S = k is a field, k = 2 and M is a finitely generated R-module,
then for all i ≥ 0 one has

Ci
B(M) ⊆ (CB1(R) + Tm+1−i(M)) ∪ (CB2(R) + Tn+1−i(M)) ∪ Ci+1

m (M).

In the next proposition we do not require Zk as being the group for which the

ring R is graded; it does hold for any abelian group G. Hence we consider the same

ring R = S[X1,0, ..., X1,n1 , ..., Xk,0, ..., Xk,nk ] but with deg(Xi,j) = γi ∈ G for all i and

j, and m is the ideal generated by the variables Xi,j.

Proposition 3.3.7. Suppose S Noetherian and let M be a graded R-module. If x is a
homogeneous M-regular element of degree η in a graded ideal n then

Ci+1
n (M) + η ⊆ Ci

n(M/xM)
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for all i ≥ 0.
If in addition M is Cohen-Macaulay of dimension d and x ∈ m then

Cd
m(M) + η = Cd−1

m (M/xM).

More generally, if x = x1, ..., xd is a maximal M-regular sequence in n where xi
is homogeneous of degree ηi then

Ci+l
n (M) +

l∑
j=1

ηi ⊆ Ci
n(M/(x1, ..., xl)M)

and in case of M being Cohen-Macaulay and x ⊆ m one has

Cd
m(M) +

l∑
i=1

ηi = Cd−l
m (M/(x1, ..., xl)M)

for all l ∈ {1, ..., d}.

Proof. From the exact sequence 0 //M(−η)x //M //M/xM // 0 one has long exact
sequence

· · · // H i
n(M/xM) // H i+1

n (M(−η))x // H i+1
n (M) // · · ·

Hence if θ /∈ Ci
n(M/xM) then the multiplication by x

[H i+1
n (M)]θ−η

x // [H i+1
n (M)]θ

is injective. Since every element of H i+1
n (M) is annihilated by a power of n and x ∈ n

we must have [H i+1
n (M)]θ−η = 0, that is, θ /∈ Ci+1

n (M) + η.
In case of M being Cohen-Macaulay of dimension d one has exact sequence

0 // Hd−1
m (M/xM) // Hd

m(M(−η))x // Hd
m(M) // 0

so that
Cd−1

m (M/xM) ⊆ Cd
m(M(−η)) = Cd

m(M) + η

by Lemma 1.2.3.
The rest of the proposition follows by induction. �

Supports of Tor and of local cohomology

In this subsection, we assume Notation 3.0.1 unless mentioned otherwise.

Definition 3.3.8. A graded R-module M is bounded if there exists µ and ν in Zk such
that

SuppZk(M) ⊆ µ+ Zk≥0 and CB(M) ∩ (ν + Zk≥0) = ∅.
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The following result shows that many interesting modules are bounded.

Theorem 3.3.9. Let M be a finitely generated graded module over R. If S is Noethe-
rian, then M is bounded.

Proof. Since M is finitely generated, there must exists µ ∈ Zk such that SuppZk(M) ⊆
µ + Zk≥0. (Note that S does not need to be Noetherian.) Now, due to [14, Theorem
4.14], there exists ν ∈ regB(M). Thus CB(M) ∩ (ν + Zk≥0) = ∅. �

We first show a close connection between the support of local cohomology and

the one of Tor modules. For its proof, we need the following result.

Theorem 3.3.10. Let G be an abelian group, R be a G-graded polynomial ring in n

variables over a ring, I a graded ideal generated by a regular sequence of length r and
M a G-graded R-module.

If F• is a G-graded free R-resolution of M , then there exists a degree zero graded
isomorphism

Hp
I (M) ' Hr−p(H

r
I (F•))

for all p ≥ 0.

Proof. Let C• be the Čech complex of R with respect to a regular sequence of length
r generating I and consider the first quadrant double complex C• ⊗R F•:

...

��

...

��

· · ·
...

��
0 // C0 ⊗R Fs //

��
C1 ⊗R Fs //

��
· · · // Cr ⊗R Fs //

��
0

...

��

...

��

. . .
...

��
0 // C0 ⊗R F1

//

��

C1 ⊗R F1
//

��

· · · // Cr ⊗R F1
//

��

0

0 // C0 ⊗R F0
//

��

C1 ⊗R F0
//

��

· · · // Cr ⊗R F0
//

��

0

0 0 · · · 0

This double complex gives rise to two spectral sequences converging to a graded module
H. The first one E, by taking first homologies in the vertical, is such that Ep,0

2 = Hp
I (M)

and Ep,q
2 = 0 for q 6= 0. Thus Hp

I (M) ' H−p for all p ≥ 0. On the other hand, if ′E
denotes the spectral sequence by taking first cohomologies in the horizontal, is such
that ′Ep,r

2 = Hp(H
r
I (F•)) and ′Ep,q

2 = 0 if q 6= r so that Hp(H
r
I (F•)) ' Hp−r for all

p ≥ 0. Therefore

Hp
I (M) ' H−p = H(r−p)−r ' Hr−p(H

r
I (F•)).

�
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As consequence of Theorem 3.3.10 and Lemma 1.1.4 we obtain the following

spectral sequence.

Corollary 3.3.11. Let M be a graded R-module. There exists a spectral sequence of
graded modules, ⊕

1≤i0<···<ip≤k

Hp−q
Bi0+···+Bip

(M)⇒ Hq
B(M).

Proof. Let F• be a minimal free resolution of M , C• be the Čech complex of R with
respect to a sequence of elements generating B and consider the third quadrant double
complex F• ⊗R C•:

...

��

· · ·
...

��

...

��
· · · // Fm ⊗R C0 //

��

· · · // F1 ⊗R C0 //

��

F0 ⊗R C0 //

��

0

· · · // Fm ⊗R C1 //

��
· · · // F1 ⊗R C1 //

��
F0 ⊗R C1 //

��
0

...

��

. . .
...

��

...

��
· · · // Fm ⊗R Cn //

��
· · · // F1 ⊗R Cn //

��
F0 ⊗R Cn //

��
0

... · · ·
...

...

Such a double complex yields two spectral sequences that converges to the same graded
module H. Also, by taking homologies in the horizontal first we get a spectral sequence
′E such that ′E0,−j

2 = Hj
B(M) and ′E−i,−j2 = 0 whenever i 6= 0; hence Hj

B(M) ' Hj for
all j ≥ 0. On the other hand, by Lemma 1.1.4, the other spectral sequence E is such
that

E−i,−j2 = Hi

 ⊕
1≤i0<...<ip≤k
ni0+...+nip=j−1

H
ni0+...+nip+(p+1)

Bi0+...+Bip
(F•)

 ' ⊕
1≤i0<...<ip≤k

H
p+(j−i)
Bi0+...+Bip

(M)

and E−i,−j2 ⇒i H
i−j ' H i−j

B (M), whence the result. �

It is worth mentioning that the spectral sequence above is a graded version of

Lyubeznik’s one B.2.2 although ours does not require Noetherianity. In particular, we

can remove such a hypothesis from Proposition 3.3.1 and its corollary once the main

tool there is the Lyubeznik spectral sequence.

Lemma 3.3.12. Let E ⊂ Zk. The smallest set containing E such that its complement
is stable under the addition of Zk≥0 is E + Zk≤0.
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Proof. Let E∗ := E + Zk≤0. If e 6∈ E∗, e + n is not in E∗ for all n ∈ Zk≥0 as otherwise
e+n = e′−n′ with e′ ∈ E and n′ ∈ Zk≥0, the equality e = e′−n−n′ then contradicting
the fact that e 6∈ E∗. Now E∗ is minimal as if E ⊆ E ′ ⊆ E∗, with the complement of
E ′ stable, if e ∈ E∗ \ E ′, then e + n ∈ E ⊆ E ′ for some n ∈ Zk≥0, but also e + n /∈ E ′

due to the stability of the complement of E ′, thus a contradiction. �

From now on, we denote by E∗ the set E + Zk≤0 as in the proof above.

Theorem 3.3.13. Let M be a graded module with SuppZk(M) ⊆ µ + Zk≥0 for some
µ ∈ Zk. Then

Cm(M)∗ = T (M) + Cm(R) = T̂ (M)∗.

Proof. Recall that Cm(R) = a + Zk≤0 with a := −(n1 + 1, . . . , nk + 1). Thus T (M) +

Cm(R) = T̂ (M) + Zk≤0 = T̂ (M)∗.
Let F• be a graded free R-resolution of M as in Lemma 1.2.7 i). Then,

H i
m(M) ' Hd−i(H

d
m(F•)),

for all i ≥ 0 by Theorem 3.3.10, where d := (n1 + 1) + · · · + (nk + 1) is the number
of variables of R. This shows that Ci

m(M) ⊆
⋃
p≤d−i Tp(M) + Cm(R), hence Cm(M) ⊆

T (M) + Cm(R) and so Cm(M)∗ ⊆ T (M) + Cm(R).
To show the inverse inclusion, notice that for all µ 6∈ Cm(M)∗, (µ + Zk≥0) ∩

Cm(M) = ∅. WriteX = {Xi} and consider the first quadrant double complex C•X(R)⊗R
K•(X;M). It gives rise to a spectral sequence with first terms Ki(X;Hj

m(M)) that
abuts to TorRi−j(M,S). Once all shifts in Ki(X;Hj

m(M)) have all p-th coordinates at
most np for any p = 1, ..., k, in degree µ−a all terms are zero becauseKi(X;Hj

m(M))µ−a

is a sum of copies of Hj
m(M) sitting in degrees µ + δ for δ ∈ Zk≥0. It follows that

µ− a 6∈ T (M), as claimed. �

Lemma 3.3.14. Let M be a graded R-module and i0, . . . , ip be distinct elements in
{1, . . . , k}. If ν ∈ Zk−(p+1) \

∑p
j=0 eijZ, then the following statements hold.

i) Hj
Bi0+···+Bip

(M)∗,ν ' Hj
Bi0+···+Bip

(M∗,ν) as graded T -modules, for all j ≥ 0;

ii) TorRj (M/R/Bi0 +· · ·+Bip)∗,ν ' TorTj (M∗,ν , S) as graded T -modules, for all j ≥ 0.

Proof. It follows by noticing that both Čech and Koszul complexes C•Bi0+...+Bip
(M) and

K•(Xi0 , . . . ,Xip ;M), with Xij = {Xij ,0, ..., Xij ,nij
}, are such that C•Bi0+...+Bip

(M)∗,ν '
C•Bi0+...+Bip

(M∗,ν) and K•(Xi0 , . . . ,Xip ;M)∗,ν ' K•(Xi0 , . . . ,Xip ;M∗,ν). �

Let E i0,...,ipj ⊂ Zk≥0 be the shifts in Kj(Xi0 , . . . ,Xip ;R).

In the next theorem, we provide a precise relation between support of Tor modules

(or multigraded Betti numbers, when over a field) and support of local cohomology

modules.
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Theorem 3.3.15. Let M be a graded R-module with SuppZk(M) ⊆ µ+ Zk≥0 for some
µ ∈ Zk, and i0, . . . , ip be distinct elements in {1, . . . , k}. Then

T̂ i0,...,ip(M) ⊆ CBi0+···+Bip (M) +

p∑
j=0

eijZ≤0

and

CBi0+···+Bip (M) ⊆ T̂ i0,...,ip(M) +

p∑
j=0

eijZ≤0.

As a consequence,
CBi0+···+Bip (M)∗ = T̂ i0,...,ip(M)∗.

Proof. Write Xij = {Xij ,0, ..., Xij ,nij
}. By analysing the spectral sequences arising

from the double complex C•Xi0
,...,Xip

(R)⊗RK•(Xi0 , ...,Xip ;M) we obtain the a spectral
sequence whose terms in the second are Ki(Xi0 , ...,Xip ;H

j
Bi0+···+Bip

(M)) and converges
to TorRi−j(M,R/Bi0 + · · ·+Bip). It follows that

T
i0,...,ip
j (M) ⊆

⋃
s≤

∑p
l=0(nil+1)−j

Cs
Bi0+...+Bip

(M) + E i0,...,ips+j

for all j ≥ 0. Note that any element of E i0,...,ipt can be written as a sum of the form∑p
l=0(nil + 1)eil +

∑p
l=0 aleil with al ∈ Z≤0 for all l. Hence

T̂ i0,...,ip(M) ⊆ CBi0+···+Bip (M) +

p∑
j=0

eijZ≤0

and in particular T̂ i0,...,ip(M)∗ ⊆ CBi0+···+Bip (M)∗.
Now, consider T = S[Xi0 , . . . ,Xip ], fix ν ∈ Zk−(p+1) \

∑p
j=0 eijZ and n = (ni0 +

1) + · · ·+ (nip + 1).
Let F ν

• be a graded free T -resolution of M∗,ν as in Lemma 1.2.7 i). By Theorem
3.3.10 there exists isomorphism

Hj
Bi0+···+Bip

(M∗,ν) ' Hn−j(H
n
Bi0+···+Bip (F ν

• ))

for all j ≥ 0 so that, by Lemma 3.3.14 i),

SuppZp+1(Hj
Bi0+···+Bip

(M)∗,ν) = Cj
Bi0+···+Bip

(M∗,ν) ⊆
⋃

l≤n−j

Tl(M∗,ν) + CBi0+···+Bip (T ).

Once Tl(M∗,ν) = SuppZp+1(TorRl (M,R/Bi0 + · · · + Bip)∗,ν) by Lemma 3.3.14 ii), and
also CBi0+···+Bip (T ) = −

∑p
l=0(nil + 1)eil +

∑p
l=0 eilZ≤0 ⊆ Zp+1 we have

Cj
Bi0+···+Bip

(M) ⊆
⋃

l≤n−j

T
i0,...,ip
l (M)−

p∑
l=0

(nil + 1)eil +

p∑
l=0

eilZ≤0

=
⋃

l≤n−j

T̂
i0,...,ip
l (M) +

p∑
l=0

eilZ≤0
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and so

CBi0+···+Bip (M) ⊆ T̂ i0,...,ip(M) +

p∑
j=0

eijZ≤0.

Therefore CBi0+···+Bip (M)∗ ⊆ T̂ i0,...,ip(M)∗ �

Proposition 3.3.16. LetM be a graded R-module and i0, . . . , ip be distinct elements in
{1, . . . , k}. Then, for any finitely generated graded ideal I ⊆

√
Bi0 + · · ·+Bip + annR(M),

T̂
i0,...,ip
j (M) ⊆

⋃
r≤

∑p
l=0(nil+1)−j

Cr
I (M) + E i0,...,ipj+r −

p∑
s=0

(nis + 1)eis

for all j ≥ 0.

Proof. Let C• be the Čech complex of R with respect to a finite generating set of I
and consider the double complex C• ⊗R K•(Xi0 , . . . ,Xip ;M). Such double complex
gives rise to a spectral sequence with first terms Ki(Xi0 , . . . ,Xip ;H

j
I (M)) that abuts

to TorRi−j(M,R/Bi0 + · · ·+Bip) since I ⊆
√
Bi1 + · · ·+Bis + annR(M).

Now,

T
i0,...,ip
j (M) ⊆

⋃
l−r=j

Cr
I (M) + E i0,...,ipl =

⋃
r≤

∑p
l=0(nil+1)−j

Cr
I (M) + E i0,...,ipj+r

whence the result. �

Corollary 3.3.17. LetM be a finitely generated graded module and i0, . . . , ip be distinct
elements in {1, . . . , k}.

Then, for any finitely generated graded ideal I ⊆
√
Bi0 + · · ·+Bip + annR(M),

CBi0+···+Bip (M) ⊆ CI(M) + 2

p∑
j=0

eijZ≤0.

In particular, if p ≥ 1,

CBi0+···+Bip (M)∗ ⊆ CBi0+···+Bip−1
(M)∗.

Proof. By taking union over j in Proposition 3.3.16 we obtain

T̂ i0,...,ip(M) ⊆ CI(M) +

p∑
j=0

eijZ≤0.

The result follows from Theorem 3.3.15. �

The next corollary says that, by taking star, all local cohomology modules with

respect to the product of the Bi’s vanish if and only if all local cohomology modules

with respect to each Bi vanish. Note that it is not true if we do not take stars, see

Example 1.2.6.
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Corollary 3.3.18. Let M be a finitely generated graded R-module. Then,⋃
i

CBi(M)∗ =
⋃

i0,...,ip

CBi0+···+Bip (M)∗ = CB(M)∗.

Proof. First by Corollary 3.3.17,⋃
i

CBi(M)∗ =
⋃

i0,...,ip

CBi0+···+Bip (M)∗ ⊆ CB(M)∗.

On the other hand, CB(M) ⊆
⋃
i0,...,ip

CBi0+···+Bip (M) by [14, Lemma 2.1]. �

Proposition 3.3.19. Let M be a graded R-module. Then,

T
i0,...,ip,j0,...,jq
j (M) ⊆

⋃
l≤j

T
i0,...,ip
j−l (M) + E j0,...,jql

for all j ≥ 0.

Proof. From the first quadrant double complex

K•(Xj0 , . . . ,Xjq ;K•(Xi0 , . . . ,Xip ;M)) ' K•(Xi0 , . . . ,Xip ,Xj0 , . . . ,Xjq ;M)

yields a spectral sequence with first terms

K•(Xj0 , . . . ,Xjq ; TorR• (M,R/Bi0 + . . .+Bip))

that abuts to a filtration of TorR• (M,R/Bi0 + . . .+Bip +Bj0 + . . .+Bjq). �

Corollary 3.3.20. Let M be a graded R-module Then,

T̂ i0,...,ip,j0,...,jq(M)∗ ⊆ T̂ i0,...,ip(M)∗.

Definition 3.3.21. For a graded R-module M and distinct elements i0, ..., ip in the set
{1, ..., k}, we define

CjBi0+···+Bip
(M) = Cj

Bi0+···+Bip
(M)∗ + E i0,...,ipj ,

CBi(M) :=
⋃
j

CjBi(M) and C(M) :=
⋃

i

CBi
(M).

Remark 3.3.22. Notice that, with this definition,

(
⋃

ν∈Zk−1

(−∞, regB1
(M∗,ν))× {ν})∗ = CB1(M).

Indeed, if r < regB1
(M∗,ν) then there are a > 0 and j ≥ 0 such that r ∈ Cj

B1
(M∗,ν) −

a+ j, i.e., (r, ν) ∈ Cj
B1

(M) +Zk<0 + E1
j ⊆ CB1(M). On the other hand, given j ≥ 0, for

all (r, ν) ∈ Cj
B1

(M) + E1
j , with ν ∈ Zk−1, we have Hj

B1
(M∗,ν)r−j 6= 0 and in particular

r ≤ regB1
(M∗,ν). But this inequality must be strict once r ∈ Cj

B1
(M∗,ν) + j.
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Lemma 3.3.23. Suppose that S[X1, . . . , Xn] is a standard Z-graded polynomial ring.
Let N be a finitely generated graded S[X1, . . . , Xn] module and t an integer. If Nt+Z≥0

and m denote, respectively, the truncation of N in t and the irrelevant ideal, then

(i) C0
m(Nt+Z≥0

) = C0
m(N) ∩ (t+ Z≥0);

(ii) C1
m(Nt+Z≥0

) = C1
m(N) ∪ {SuppZ(N/H0

m(N)) ∩ (t+ Z<0)};

(iii) Cj
m(Nt+Z≥0

) = Cj
m(N) for all j ≥ 2.

In particular we have
Cm(Nt+Z≥0

) ⊆ Cm(N) ∪ (t+ Z<0)

and
Cm(Nt+Z≥0

) ⊆ Cm(N) ∪ (t+ Z≤0).

Proof. First, it is clear that C0
m(Nt+Z≥0

) ⊆ C0
m(N) ∩ (t + Z≥0). Take C := N/Nt+Z≥0

.
By Lemma 1.2.1 we have exact sequence

0 // H0
m(Nt+Z≥0

) // H0
m(N) // C // H1

m(Nt+Z≥0
) // H1

m(N) // 0

and isomorphisms Hj
m(Nt+Z≥0

) ' Hj
m(N) for all j ≥ 2 whence immediately follow

C1
m(N) ⊆ C1

m(Nt+Z≥0
) and item (iii). It is also immediate that from the exact sequence

we must have C0
m(N) ∩ (t + Z≥0) ⊆ C0

m(Nt+Z≥0
). Now, given γ ∈ t + Z<0 we have

H0
m(Nt+Z≥0

)γ = (Nt+Z≥)γ = 0 so we have exact sequence

0 // (N/H0
m(N))γ

// H1
m(Nt+Z≥0

)γ // H1
m(N)γ // 0

and thus C1
m(N) ∪ {SuppZ(N/H0

m(N)) ∩ (t + Z<0)} ⊆ C1
m(Nt+Z≥0

). On the other
hand, since C1

m(Nt+Z≥0
) = C1

m(N) ∪ X with X = SuppZ(coker(H0
m(N) → C)) ⊆

SuppZ(C) ⊆ t + Z<0, we have again the exact sequence above with γ ∈ X and then
X ⊆ SuppZ(N/H0

m(N)) ∩ (t+ Z<0). �

Proposition 3.3.24. LetM be a graded R-module, µ = (µ1, µ
′) ∈ Z×Zk−1. IfMµ+Zk≥0

is the truncation of M in µ, then

CB1(Mµ+Zk≥0
) ⊆ (CB1(M) ∩ (µ+ Zk≥0)) ∪ (µ1 + Z<0)× (µ′ + Zk−1

≥0 )

and
CB1(Mµ+Zk≥0

) ⊆ (CB1(M) ∩ Z× (µ′ + Zk−1
≥0 )) ∪ (µ1 + Z≤0)× Zk−1.

In particular, (µ1 +1)×Zk−1∩CB1(M) = ∅ implies regB1
(M(µ1,∗)+Zk≥0

) 6∈ µ1 +Z>0,
with regB1

(N) := supγ∈Zk−1{regB1
(N∗,γ)} for any graded R-module N .
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Proof. First note that for any graded R-module N and j ≥ 0,

Cj
B1

(N) =
⋃

γ′∈Zk−1

Cj
B1

(N∗,γ′)× {γ′}

so that, by Lemma 3.3.23,

Cj
B1

(M) ∩ (µ+ Zk≥0) =
⋃

γ′∈Zk−1

(
Cj
B1

(M∗,γ′)× {γ′} ∩ (µ+ Zk≥0)
)

=
⋃

θ∈Zk−1
≥0

Cj
B1

(M∗,µ′+θ) ∩ (µ1 + Z≥0)× {µ′ + θ}

=
⋃

θ∈Zk−1
≥0

Cj
B1

((M∗,µ′+θ)µ1+Z≥0
) ∩ (µ1 + Z≥0)× {µ′ + θ}

=
⋃

θ∈Zk−1
≥0

(
Cj
B1

((M∗,µ′+θ)µ1+Z≥0
)× {µ′ + θ} ∩ (µ+ Zk≥0)

)

=

 ⋃
θ∈Zk−1

≥0

Cj
B1

((Mµ+Zk≥0
)∗,µ′+θ)× {µ′ + θ}

 ∩ (µ+ Zk≥0)

=

 ⋃
γ′∈Zk−1

Cj
B1

((Mµ+Zk≥0
)∗,γ′)× {γ′}

 ∩ (µ+ Zk≥0)

= Cj
B1

(Mµ+Zk≥0
) ∩ (µ+ Zk≥0)

for all j ≥ 0. Therefore

CB1(M) ∩ (µ+ Zk≥0) = CB1(Mµ+Zk≥0
) ∩ (µ+ Zk≥0).

Now, since

CB1(Mµ+Zk≥0
) = (CB1(Mµ+Zk≥0

) ∩ (µ+ Zk≥0)) ∪ (CB1(Mµ+Zk≥0
) \ (µ+ Zk≥0))

= (CB1(M) ∩ (µ+ Zk≥0)) ∪ (CB1(Mµ+Zk≥0
) \ (µ+ Zk≥0))

and CB1(Mµ+Zk≥0
) =

⋃
j≥0

⋃
ν∈µ′+Zk−1

≥0
Cj
B1

((M∗,ν)µ1+Z≥0
)× {ν}, we have

CB1(Mµ+Zk≥0
) ⊆ (CB1(M) ∩ (µ+ Zk≥0)) ∪ (µ1 + Z<0)× (µ′ + Zk−1

≥0 ).

Finally, note that for any graded R-module N and j ≥ 0,

CjB1
(N) = Cj

B1
(N)∗ + E1

j =
⋃

γ∈Zk−1

CjB1
(N∗,γ)× (γ + Zk−1

≤0 )

and
CB1(N) =

⋃
γ∈Zk−1

CB1(N∗,γ)× (γ + Zk−1
≤0 ).
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By Lemma 3.3.23 again,

CB1(Mµ+Zk≥0
) =

⋃
γ∈Zk−1

CjB1
((Mµ+Zk≥0

)∗,γ)× (γ + Zk−1
≤0 )

=
⋃

ν∈µ′+Zk−1
≥0

CB1((M∗,ν)µ1+Z≥0
)× (ν + Zk−1

≤0 )

⊆

 ⋃
γ∈Zk−1

CB1(M∗,γ)× (γ + Zk−1
≤0 )

 ∩ Z× (µ′ + Zk−1
≥0 )

 ∪ (µ1 + Z≤0)× Zk−1

= (CB1(M) ∩ Z× (µ′ + Zk−1
≥0 )) ∪ (µ1 + Z≤0)× Zk−1.

The particular case follows from Remark 3.3.22. �

It should be noticed that we can fix any other entry of µ = (µ1, . . . , µk) instead of

µ1 in Proposition 3.3.24 and obtain a similar result. The next corollary is a consequence

of this fact.

Corollary 3.3.25. Let M be a graded R-module with SuppZk(M) ⊆ µ+Zk≥0 for some
µ ∈ Zk. Then

T̂ (Mµ+Zk≥0
)∗ ⊆

⋂
i≥0

(
(CBi(M) ∩ (µ+ Zk≥0)) ∪

i−1∏
j=1

µj + Z≥0 × (µi + Z<0)×
k∏

j=i+1

µj + Z≥0

)∗
.

Proof. The result follows by applying Theorem 3.3.15, Corollary 3.3.20 and Proposition
3.3.24:

T̂ (Mµ+Zk≥0
)∗ ⊆

⋂
i≥0

T̂ i(Mµ+Zk≥0
)∗ =

⋂
i≥0

CBi(Mµ+Zk≥0
)∗

⊆
⋂
i≥0

(
(CBi(M) ∩ (µ+ Zk≥0)) ∪

i−1∏
j=1

µj + Z≥0 × (µi + Z<0)×
k∏

j=i+1

µj + Z≥0

)∗
.

�

3.3.2 Castelnuovo-Mumford regularity

In this section we consider the same notation and definitions as those of Section

1.2.9. We begin this section by applying Proposition 3.3.7 to regularity. We consider

again R being graded by an arbitrary abelian group G.

Proposition 3.3.26. Suppose S is Noetherian, let M be a graded R-module and x =

x1, ..., xd a maximal M-regular sequence contained in a graded ideal n where xi is a
homogeneous element of degree γj for some j. The following assertions hold true.
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(i) If γ = γi for all i = 1, ..., k then

regn(M/(x1, ..., xl)M) ⊆ regln(M)

for all l = 1, ..., d.

(ii) If M is Cohen-Macaulay and x is contained in m then

regm(M) ⊆ regm(M/(x1, ..., xl)M).

for all l = 1, ..., d. The equality holds in case of γ = γi for all i = 1, ..., k.

Proof. (i) Since Fi = {iγ} for all i and Fi−1 = lγ + Fi−l−1 for all l = 1, ..., d (see
Definition 1.2.8), then⋃

i≥l

SuppG(H i
n(M)) + Fi−1 =

⋃
i≥0

SuppG(H i+l
n (M)) + lγ + Fi−1

⊆
⋃
i≥0

SuppG(H i
n(M/(x1, ..., xl)M)) + Fi−1.

(ii) The inclusion follows from

SuppG(Hd−l
m (M/(x1, ..., xl)M)) + Fd−l−1 = SuppG(Hd

m(M)) +
l∑

i=1

γi + Fd−l−1

⊆ SuppG(Hd
m(M)) + Fd−1

meanwhile the equality follows by noticing that Fd−1 = Fl + Fd−l−1 for all l =

1, ..., d.
�

Example 3.3.27. By taking m = n = 1 in Proposition 3.1.1 we have

H3
B(R) ' H4

m(R)

and
H2
B(R) ' H2

B1
(R)⊕H2

B2
(R).

Hence ⋃
i≥0

Ci
B(R) + Fi−1 = (CB1(R) + F1) ∪ (CB2(R) + F1) ∪ (Cm(R)) + F2)

and by Example 1.2.6 we obtain⋃
i≥0

Ci
B(R) + Fi−1 = (Z≤−1 × Z≥0 ∪ Z≤−2 × Z≥1) ∪ (Z≥1 × Z≤−2 ∪ Z≥0 × Z≤−1)

∪ (Z≤0 × Z≤−2 ∪ Z2
≤−1 ∪ Z≤−2 × Z≤0).
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The complement of the union above is exactly Z2
≥0 which is trivially stable under itself

and therefore
regB(R) = Z2

≥0.

Remark 3.3.28. In the same way as with regm(R) (see Example 1.2.10), the regu-
larity regB(R) is not determined by a single element in general. For instance, in the
Hirzebruch surface F2 its coordinate ring R is such that

regB(R) = ((1, 0) + Z2
≥0) ∪ ((0, 1) + Z2

≥0).

(See [69, Example 1.2] for details.)

In examples 1.2.10 and 3.3.27 we note that

regB(R) ⊆ regm(R).

It inspires us to look for relations between regularity concerning different finitely gen-

erated graded ideals.

Proposition 3.3.29. Given integer l ≥ 0, if a, b ⊆ m are two finitely generated graded
ideals of R then

regla+b(M) ∩ regla(M) ∩ reglb(M) ⊆ regla∩b(M).

Proof. It follows directly from the Mayer-Vietoris long exact sequence 2.3.1

. . . // H i
a+b(M) // H i

a(M)⊕H i
b(M) // H i

a∩b(M) // H i+1
a+b(M) // . . .

�

From now on, consider B1, ..., Bk ⊆ m finitely generated graded ideals and write

n = B1 + ...+Bk and B = B1 ∩ ... ∩Bk.
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Theorem 3.3.30. For every l > 1 one has

regln(M) ∩

 ⋂
p≤k−2

⋂
i0<...<ip

reglBi0...ip (M)

 ⊆ reglB(M).

Proof. Consider the Mayer-Vietoris spectral sequence 2.2.1

Ep,q
1 =

⊕
i0<...<ip

Hq(UBi0...ip , M̃)⇒p H
p+q(Un, M̃).

Fix γ ∈ regln(M) ∩
(⋂

p≤k−2

⋂
i0<...<ip

reglBi0...ip
(M)

)
. Given γ′ ∈ γ + C one has

[
Ep,i−1

1

]
γ′−η '

⊕
i0<...<ip

[
H i
Bi0...ip

(M)
]
γ′−η

= 0

for all i ≥ l and η ∈ Fi−1. Moreover,[
H i
B(M)

]
γ′−η '

[
Ek−1,i−1

1

]
γ′−η
'
[
Ek−1,i−1
∞

]
γ′−η '

[
H i+k−1

n (M)
]
γ′−η = 0

for i ≥ l and η ∈ Fi−1. �

Proposition 3.3.31. Consider k = 3 and let l > cdB(M). The following statements
hold true.

(i) Assuming also that R is Noetherian, one has

regln(M) ∩

(⋂
j

reglBj(M)

)
⊆
⋂
j0<j1

reglBj0+Bj1
(M).

(ii) If l > 1 then

regln(M) ∩

(⋂
j

reglBj(M)

)
⊆
⋂
j0<j1

reglBj0j1 (M).

Proof. For (i) consider the spectral sequence B.2.2

E−p,q1 =
⊕

i0<...<ip

Hq
Bi0+...+Bip

(M)⇒p H
q−p
B (M)

defined in [66]. This spectral degenerates at E2. The hypothesis implies the exactness
of the sequences

H i
n(M) //

⊕
j0<j1

H i
Bj0+Bj1

(M) //
⊕
j

H i
Bj

(M)

for i ≥ l.
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In (ii) we consider the Mayer-Vietoris spectral sequence 2.2.1

Ep,q
1 =

⊕
i0<...<ip

Hq(UBi0...ip , M̃)⇒p H
p+q(Un, M̃)

which first page has the following shape

...
...

...

0 // ⊕H l+1
Bj

(M) // ⊕H l+1
Bj0j1

// 0

0 // ⊕H l
Bj

(M) // ⊕H l
Bj0j1

// 0

0 // ⊕H l−2(UBj , M̃) // ⊕H l−2(UBj0j1 , M̃) // H l−2(UB, M̃) // 0

The hypothesis assures that⊕
j H

l
Bj

(M) //
⊕

j0<j1
H l
Bj0j1

(M)

is a surjection and that ⊕
j H

i+1
Bj

(M) //
⊕

j0<j1
H i+1
Bj0j1

(M)

is an isomorphism in the suitable degrees for i ≥ l. �

Theorem 3.3.30 and Proposition 3.3.31 ii) immediately imply the next corollary.

Corollary 3.3.32. If l > max{1, cdB(M)} then

regln(M) ∩

(⋂
j

reglBj(M)

)
⊆ reglB(M).

3.4 Euler characteristic

Let k ≥ 1 an integer, G = Zk and consider the G-graded polynomial ring R =

S[X1,0, ..., X1,n1 , ..., Xk,0, ..., Xk,nk ] with deg(Xi,j) = ei for all j = 0, ..., ni, where ei

denotes the i-th element of the canonical basis of G and S is a commutative unitary

ring.

Denote by `S(N) the length of the S-module N .

Definition 3.4.1. Let M be a G-graded R-module and I a homogeneous ideal of R
such that the graded pieces [Hj

I (M)]γ have finite length as S-modules for all j ≥ 0 and
for all γ ∈ G. The Euler characteristic of M with respect to I and γ ∈ G is defined as

χ(M, I, γ) =
∑
j≥0

(−1)j`S([Hj
I (M)]γ).
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Lemma 3.4.2. [35, Proposition A.2.2] Let E−p,qr ⇒p H
q−p be a spectral sequence of

S-modules. If there exists r ≥ 1 such that E−p,qr has finite length for all p, q, then every
Hj has finite length and∑

j∈Z

(−1)j`S(Hj) =
∑
j∈Z

(−1)j

( ∑
q−p=j

`S(E−p,qs )

)
for all s ≥ r.

Proposition 3.4.3. Let M be a G-graded R-module and let B1, ..., Br be homogeneous
ideals of R and write B = B1 ∩ ... ∩ Br. If [Hj

Bi0+...+Bip
(M)]γ has finite length as

S-modules for all j ≥ 0 and for all i0 < ... < ip with p = 0, ..., r − 1, then [Hj
B(M)]γ

has also finite length for all j ≥ 0 and for all γ ∈ G, and

χ(M,B, γ) =
r−1∑
p=0

(−1)p
∑

i0<...<ip

χ(M,Bi0 + ...+Bip , γ)

for all γ ∈ G.

Proof. Let γ ∈ G. By considering the γ-th strand of the spectral sequence B.2.2

[E−p,q1 ]γ =
⊕

i0<...<ip

[Hq
Bi0+...+Bip

(M)]γ ⇒p [Hq−p
B (M)]γ,

Lemma 3.4.2 assures that [Hj
B(M)]γ has finite length for all j ≥ 0 and

χ(M,B, γ) =
∑
j∈Z

(−1)j

∑
q−p=j

 ∑
i0<...<ip

`S([Hq
Bi0+...+Bip

(M)]γ)

 .

Now we organize this sum.

χ(M,B, γ) =

=
∑
j∈Z

(−1)j

[∑
i

`S([Hj
Bi

(M)]γ) +
∑
i0<i1

`S([Hj+1
Bi0+Bi1

(M)]γ) + ...+ `S([Hj+r−1
B1+...+Br

(M)]γ)

]

=
∑
i

∑
j∈Z

(−1)j`S([Hj
Bi

(M)]γ)−
∑
i0<i1

∑
j∈Z

(−1)j+1`S([Hj+1
Bi0+Bi1

(M)]γ)+

+
∑

i0<i1<i2

∑
j∈Z

(−1)j`S([Hj+2
Bi0+Bi1+Bi2

(M)]γ) + ...+ (−1)r−1
∑
j∈Z

(−1)j+r−1`S([Hj+r−1
B1+...+Br

(M)]γ)

=
∑
i

χ(M,Bi, γ)−
∑
i0<i1

χ(M,Bi0 +Bi1 , γ) + ...+ (−1)r−1χ(M,B1 + ...+Br, γ)

=
r−1∑
p=0

(−1)p
∑

i0<...<ip

χ(M,Bi0 +Bi1 + ...+Bip , γ).
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From now on suppose that S is Noetherian.

Proposition 3.4.4. Let M be a graded finitely generated R-module. If B is the graded
ideal of R generated by the variables Xi1 , ..., Xir and A is the polynomial ring in the
variables X−1

i1
, ..., X−1

ir
and Xl for all l 6= i1, ..., ir with coefficients in S then Hj

B(M) is
a finitely generated A-module for all j ≥ 0.

Proof. By considering the spectral sequence B.2.6

TorRp (M,Hq
B(R))⇒p H

q−p
B (M),

once B is generated by variables this spectral sequence must collapses so that

Hj
B(M) ' TorRr−j(M,Hr

B(R))

for all j ≥ 0. On the other hand, TorRl (M,Hr
B(R)) can be computed by tensoring a free

resolution of M by Hr
B(R), hence it is a subquotient of finitely many copies of Hr

B(R).
Therefore, the result will follow by showing that Hr

B(R) is finitely generated over A.
But the R-module Hr

B(R) = S[X−1
ij

][Xl : Xl 6= i1, ..., ir] has a natural structure of ideal
over A. Since S is Noetherian, we must have that Hr

B(R) is a finitely generated ideal
over A. �

Lemma 3.4.5. Let M be a G-graded finitely generated R-module. If each graded piece
Mγ has finite length then

(i) SuppS(M) ⊆ Max(S);

(ii) SuppS(M) is finite.

Proof. From the decomposition M =
⊕

γ∈GMγ one has

SuppS(M) ⊆
⋃
γ∈G

SuppS(Mγ).

Since each Mγ has finite length, SuppS(Mγ) must be contained in Max(S), whence
item (i).

Once M is finitely generated, there exists a finite set H ⊆ G such that M =∑
γ∈H R ⊗S Mγ. Hence for all η ∈ G one has Mη =

∑
γ∈H Rη−γ ⊗S Mγ and there is a

natural surjection ⊕
γ∈H Rη−γ ⊗S Mγ

// //Mη.

Since Rη−γ is a free S-module, it follows that SuppS(Mη) ⊆
⋃
γ∈H SuppS(Mγ). There-

fore SuppS(M) ⊆
⋃
γ∈H SuppS(Mγ) must be finite. �
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From now on we assume S is also local.

Proposition 3.4.6. Let M be a finitely generated graded R-module and let B be the
graded ideal of R generated by the variables Xi1 , ..., Xir . If each graded component of
M has finite length, then, for all γ ∈ G, the S-module [Hj

B(M)]γ has finite length for
all j ≥ 0.

Proof. By Proposition 3.4.4, for all j ≥ 0, the A-module Hj
B(M) is finitely generated.

One should be noticed that the graded structure of Hj
B(M) over R is also a graduation

of Hj
B(M) over A, so that each of its components [Hj

B(M)]γ are finitely generated over
S. Moreover, if Cj

B(M) denotes the j-th Čech module of M supported in B then

SuppS([Hj
B(M)]γ) ⊆ SuppS(Hj

B(M)) ⊆ SuppS(Cj
B(M)) ⊆ SuppS(M).

Lemma 3.4.5 assures us that the component [Hj
B(M)]γ has dimension zero over S. It

proves the result. �

Theorem 3.4.7. Let M be a finitely generated graded R-module and let B1, ..., Br be
ideals of R generated by variables. Write B = B1 ∩ ... ∩Br. If each graded component
of M has finite length, then, for all γ ∈ G, the S-module [Hj

B(M)]γ has finite length
for all j ≥ 0 and

χ(M,B, γ) =
r−1∑
p=0

(−1)p
∑

i0<...<ip

χ(M,Bi0 + ...+Bip , γ).

Proof. It follows directly from Propositions 3.4.3 and 3.4.6. �

Next Corollary follows immediately from last theorem and [50, Theorem 1.3.1].

Corollary 3.4.8. Suppose S is a field. Give a finitely generated graded R-module M
and B a monomial ideal of R, then, for all γ ∈ G, the S-module [Hj

B(M)]γ has finite
length for all j ≥ 0. Moreover, if B = Q1 ∩ ...∩Qr where each Qi is generated by pure
powers of the variables, that is, Qi is of the form (Xa1

i1
, ..., Xak

ik
), then

χ(M,B, γ) =
r−1∑
p=0

(−1)p
∑

i0<...<ip

χ(M,Bi0 + ...+Bip , γ),

for all γ ∈ G, where Bi =
√
Qi for all i = 1, ..., r.
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Chapter 4

On deficiency modules

In this chapter we shall look for relations between Bass and Betti numbers of a

given module and of its deficiency modules. As Foxby [38] provided the relations above

for Cohen-Macaulay modules over a Gorenstein local ring, we furnish the same relations

for generalized Cohen-Macaulay canonically Cohen-Macaulay modules of depth at least

two over a local ring which is factor of a Gorenstein local ring, see Theorem 4.2.4.

Furthermore, theorems 4.2.6 and 4.3.11 shows the same relations for arbitrary finitely

generated R-modules when certain homological conditions over its deficiency modules

are imposed.

Besides such generalizations, we exhibit bounds for the Bass numbers (Betti num-

bers) of a module in terms of the Betti numbers (Bass numbers) of its deficiency mod-

ules, see theorems 4.2.1 and 4.3.1. They provide several applications that are worked

out through this chapter. Three examples of such applications are Corollary 4.2.3, pro-

viding the Cohen-Macaulay property of a local ring in terms of homological conditions

over deficiency modules, Corollary 4.3.6 furnishing a characterization of the complete

intersection property in terms of the first and second Bass numbers of the residue field,

and Corollary 4.3.10 that states that the Auslander-Reiten conjecture holds for mod-

ules such that its deficiency modules have finite injective dimensions, generalizing then

a similar application given quite recently in [39].

Throughout this chapter, we will follow the notation in Section 1.3. Namely, R

will always denote a commutative Noetherian local ring with non-zero unity, maximal



ideal m and residue class field k. Also, R is supposed to be factor of a Gorenstein local

ring S of dimension s, i.e., there exists a surjective ring homomorphism S → R. We

denote by M∨ the Matlis dual of a finitely generated R-module.

For an R-module M , pdRM and idRM denote, respectively, the projective di-

mension and injective dimension of M . Further, βi(M) = dimk TorRi (k,M) is the i-th

Betti number of M , µi(M) = dimk ExtiR(k,M) is the i-th Bass number of M and

r(M) = dimk Ext
depthRM
R (k,M) is its type.

4.1 Generalized Cohen-Macaulay modules

Our main tool in this section is the Foxby spectral sequences B.2.4. It provides

interesting relations between generalized Cohen-Macaulay modules and their deficiency

modules.

Definition 4.1.1. A finitely generated R-module M is said to be generalized Cohen-
Macaulay if Hj

m(M) is of finite length for all j < dimRM .

It should be noticed, due to Matlis duality, that it is equivalent to say thatKj(M)

is of finite length for all j < dimRM.

Theorem 4.1.2. Let M be a generalized Cohen-Macaulay R-module of dimension t.
The following statements hold true.

(i) There exists isomorphism

K0(K(M)) ' TorS−t(M,S);

(ii) There exists a five-term type exact sequence

TorS−t+2(M,S) // K2(K(M)) // K0(Kt−1(M))

uu
TorS−t+1(M,S) // K1(K(M)) // 0

(iii) There exists an exact sequence

0 // K0(K0(M)) //M // K(K(M)) // K0(K1(M)) // 0;

(iv) If t ≥ 3, then there exist isomorphisms

Kt−j(K(M)) ' K0(Kj+1(M))

for all 1 ≤ j ≤ t− 2.
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Proof. Consider the Foxby spectral sequences B.2.4 by consideringM as S-module and
N = P = S

Ep,q
2 = ExtpS(ExtqS(M,S), S)⇒p H

q−p

and
′Ep,q

2 = TorSp (M,ExtqS(S, S))⇒p H
p−q.

Since ′Ep,q
2 = 0 for all q 6= 0, we have

Hj ' ′Ej,0
2 = TorSj (M,S)

for all j ≥ 0, and

Ep,q
2 = ExtpS(ExtqS(M,S), S)⇒p TorSq−p(M,S).

Once Hj
m(M) being of finite length so is Kj(M) for all j < t and by local duality

ExtpS(ExtqS(M,S), S) = ExtpS(Ks−q(M), S) = 0

for all q > s− t and for all p 6= s. Also, Lemma 1.3.2 (i) assures that dimRK(M) = t.
Thus E2 has the following shape.

0 0 0 · · · 0 0

0 0 0 · · · ExtsS(K0(M), S) 0

...
...

... . .
. ...

...

0 0 0 · · · ExtsS(Kt−1(M), S) 0

0 K(K(M)) Ext
s−(t−1)
S (K(M), S) · · · ExtsS(K(M), S) 0

0 0 0 0 0 0

By convergence, there are isomorphisms

K0(K(M)) = ExtsS(K(M), S) ' Es,s−t
∞ ' TorS−t(M,S),

K1(K(M)) = Exts−1
S (K(M), S) ' Es−1,s−t

∞

and
K0(K0(M)) = ExtsS(K0(M), S) ' Es,s

∞ .

Thus we get item (i) and by applying Matlis dual one has isomorphisms

H1
m(K(M)) ' (Es−1,s−t

∞ )∨ and H0
m(K0(M)) ' (Es,s

∞ )∨.
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Convergence again gives us short exact sequences

0 // Es,s−j
∞

// TorS−j(M,S) // E
s−(t−j),s−t
∞ // 0 (4.1.1)

for all j ≥ 0. Further, as we move through the pages of E, differentials between the
vertical and horizontal lines in the diagram above come out. In other words, there is
an exact sequence

0 // E
s−(t−j),s−t
∞ // Ext

s−(t−j)
S (K(M), S) // ExtsS(Kj+1(M), S) // E

s,s−(j+1)
∞ // 0

(4.1.2)
for all 0 ≤ j ≤ t− 2.

Item (ii) is exactly the five-term exact sequence of E. For item (iii), by taking
j = 0 in both exact sequences above we have the following exact sequences

0 // ExtsS(K0(M), S) //M // Es−t,s−t
∞

// 0

and
0 // Es−t,s−t

∞
// K(K(M)) // ExtsS(K1(M), S) // Es,s−1

∞
// 0.

The result follows by splicing these sequences and noticing that Es,s−1
∞ ⊆ TorS−1(M,S) =

0.
The exact sequence 4.1.1 assures that Es−(t−j),s−t

∞ = Es,s−j
∞ = 0 for all j > 0 so

that, by the exact sequence 4.1.2,

Kt−j(K(M)) = Ext
s−(t−j)
S (K(M), S) ' ExtsS(Kj+1(M), S) = K0(Kj+1(M))

for all 1 ≤ j ≤ t− 2. �

The concept of canonically Cohen-Macaulay module was introduced by Schenzel

[77].

Definition 4.1.3. A finitely generated R-module M is canonically Cohen-Macaulay if
its canonical module K(M) is Cohen-Macaulay.

Corollary 4.1.4. Let M be a generalized Cohen-Macaulay R-module of dimension t.
The following statements hold true.

(i) If t > j with j ∈ {0, 1}, then depthRK(M) > j;

(ii) If t = 1, then M is canonically Cohen-Macaulay and there exists the short exact
sequence

0 // K0(K0(M)) //M // K(K(M)) // 0;

(iii) If t = 2, then M is canonically Cohen-Macaulay;
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(iv) If t ≥ 3, then K(M) is generalized Cohen-Macaulay.

Proof. Item (i) follows immediately from Theorem 4.1.2 (i) and (ii). For item (ii),
item (i) assures that K(M) is Cohen-Macaulay and Theorem 4.1.2 (iii) is the desired
exact sequence. As to item (iii), item (i) again assures that K(M) is Cohen-Macaulay.
Item (iv) follows directly from item (i) and Theorem 4.1.2 (iv). �

Corollary 4.1.5. If M is generalized Cohen-Macaulay, then so is K(M).

As Corollary 4.1.4 assures that generalized Cohen-Macaulay of dimension at most

two are canonically Cohen-Macaulay, Theorem 4.1.2 (iv) recovers a characterization

[16] for the case where the dimension is at least three.

Corollary 4.1.6. ([16, Corollary 2.7]) Let M be a generalized Cohen-Macaulay R-
module of dimension t ≥ 3. Then the following statements are equivalent

(i) M is canonically Cohen-Macaulay;

(ii) Hj
m(M) = 0 for all j = 2, ..., t− 1;

(iii) The m-transform functor Dm(M) is a Cohen-Macaulay R-module.

Proposition 4.1.7. Let M be a finitely generated R-module of dimension t. The
following statements hold true.

(i) If M is generalized Cohen-Macaulay R-module with depth at least two, then M '
K(K(M)).

(ii) Suppose M is equidimensional. If M satisfies Serre’s condition Sk+1 for some
positive integer k, then

Kj(K(M)) ' TorS−t+j(M,S)

for all t− k + 1 ≤ j ≤ t.

Proof. Item (i) follows immediately from Theorem 4.1.2 (iii) and from the fact that
K0(M) = K1(M) = 0 whenever depthRM ≥ 2.

For item (ii), consider the Foxby spectral sequence given in Theorem 4.1.2

Ep,q
2 = ExtpS(ExtqS(M,S), S)⇒p TorSq−p(M,S).

By Lemma 1.3.2 (ii) and local duality, we have in

Es−i,s−j
2 = Exts−iS (Kj(M), S) = 0

for all 0 ≤ j ≤ k and i ≤ 0. In other words, all modules Ep,q
2 such that q 6= s− t above

the dotted line in the diagram below must be zero.
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0 0 · · · 0 0

...
... . .

.
ExtsS(Kk+1(M), S) 0

0 Ext
s−(t−k−2)
S (Kt−1(M), S) · · ·

... 0

Ext
s−(t−k−1)
S (K(M), S) Ext

s−(t−k−2)
S (K(M), S) · · · ExtsS(K(M), S) 0

0 · · · 0 0 0

The result follows from convergence. �

Our results also retrieve the well-known fact that every Cohen-Macaulay module

is canonically Cohen-Macaulay, see [76, Theorem 1.14].

Corollary 4.1.8. If M is Cohen-Macaulay of dimension t, then so is K(M) and
K(K(M)) 'M .

Proof. There are two immediate ways of proving the desired result. Indeed the result
follows directly from Theorem 4.1.2 as well as from Proposition 4.1.7 (ii) too. �

Proposition 4.1.7 provides a characterization for the Cohen-Macaulay property.

Corollary 4.1.9. If M is a finitely generated R-module, then M is Cohen-Macaulay
if and only if M is equidimensional canonically Cohen-Macaulay satisfying Serre’s
condition Sk+1 for some positive integer k.

Proof. It is well-known that a Cohen-Macaulay module is equidimensional and satisfies
Serre’s condition Sk for any k. Corollary 4.1.8 assures that such a module is also
canonically Cohen-Macaulay. Conversely, by taking j = t in Proposition 4.1.7 (ii),
we have the isomorphism K(K(M)) 'M . Since K(M) is Cohen-Macaulay, Corollary
4.1.8 again assures that M ' K(K(M)) is Cohen-Macaulay. �

The next corollary is a extended version of Corollary 4.1.8 for generalized Cohen-

Macaulay modules.

Corollary 4.1.10. If M is a generalized Cohen-Macaulay module with depth at least
two, then so is K(M) and M ' K(K(M)).

Proof. It follows directly from Theorem 4.1.2, Corollary 4.1.5 and Proposition 4.1.7
(i). �
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4.2 Bounding Bass numbers

The Foxby spectral sequences B.2.4 are again fundamental tools here. They

provide the main result of this section.

Theorem 4.2.1. If M is a finitely generated R-module of depth g and dimension t,
then the following inequality holds true for all j ≥ 0.

µj(M) ≤
t∑
i=g

βj+i(K
i(M)).

Moreover, r(M) = β0(Kg(M)) and

µg+2(M)− µg+1(M) ≤ β2(Kg(M))− β1(Kg(M))− β0(Kg+1(M)).

Proof. Consider the Foxby spectral sequences B.2.4 by taking S = R,X = k, Y = M

and Z = S

Ep,q
2 = ExtpS(ExtqR(k,M), S)⇒p H

q−p

and
′Ep,q

2 = TorRp (k,ExtqS(M,S))⇒p H
p−q.

Since ExtqR(k,M) is of finite length we must have Ep,q
2 = 0 for all p 6= s so that

Hj ' Es,j+s
2 = ExtsS(Extj+sR (k,M), S)

for all integer j. Once Ks−q(M) = ExtqS(M,S) for all q ≥ 0, we conclude that
′Ep,q

2 = TorRp (k,Ks−q(M))⇒p ExtsS(Extp−q+sR (k,M), S). (4.2.1)

Now, since ExtsS(k, S)∨ ' k, where _∨ denotes the Matlis dual of R, we have

ExtsS(ExtjR(k,M), S) ' ExtsS(k, S)µ
j(M) ' kµ

j(M)

as k-vector spaces. Therefore, by the convergence of ′E,

µj(M) ≤
∑

j=p−q+s

βp(K
s−q(M)) =

t∑
i=g

βj+i(K
i(M))

for all j ≥ 0.
Now, since Ki(M) = Exts−iS (M,S) = 0 for all i < g, then ′E2 has the following

corner
...

...
...

· · · TorR2 (k,Kg+1(M)) TorR2 (k,Kg(M))

xx

0 · · ·

· · · TorR1 (k,Kg+1(M)) TorR1 (k,Kg(M)) 0 · · ·

· · · k ⊗R Kg+1(M) k ⊗R Kg(M) 0 · · ·
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Therefore
k ⊗R Kg(M) = ′E0,s−g

2 ' Hg−s ' ExtsS(ExtgR(k,M), S)

so that r(M) = β0(Kg(M)) and there exists a five-term-type exact sequence

ExtsS(Extg+2
R (k,M), S) // TorR2 (k,Kg(M)) // k ⊗R Kg+1(M)

ss

ExtsS(Extg+1
R (k,M), S) // TorR1 (k,Kg(M)) // 0

whence the desired formula. �

Corollary 4.2.2. Let M be a finitely generated R-module of depth g and dimension t.
If pdRK

i(M) <∞ for all i = g, ..., t, then idRM <∞.

Proof. The hypothesis means that βl(Ki(M)) = 0 for all l � 0 and by Theorem 4.2.1
one has

µj(M) ≤
t∑
i=g

βj+i(K
i(M)) = 0

for j � 0, i.e., idRM <∞. �

Bass’ conjecture [11] was first proved by Peskine-Szpiro in [72] and after in a

more general situation by Roberts [73]. It states that a local ring admitting a non-

zero module of finite injective dimension must be Cohen-Macaulay. The next corollary

provides sufficient conditions in terms of projective dimension for a local ring to be

Cohen-Macaulay.

Corollary 4.2.3. Let M be a finitely generated R-module of depth g and dimension t.
If pdRK

i(M) <∞ for all i = g, ..., t, then R is Cohen-Macaulay.

Proof. Corollary 4.2.2 assures that idRM <∞ and thus the result follows from Bass’
conjecture. �

Theorem 4.2.4. If M is a generalized Cohen-Macaulay canonically Cohen-Macaulay
R-module of dimension t and depth at least two, then

βj(M) = µj+t(K(M)) and µj(M) = βj−t(K(M))

for all j ≥ 0. In particular, pdRM <∞ if and only if idRK(M) <∞ and idRM <∞
if and only if pdRK(M) <∞.

Proof. By Lemma 1.3.2 (i), K(M) is Cohen-Macaulay of dimension t and by Proposi-
tion 4.1.7 (i), K(K(M)) ' M , that is, Ki(K(M)) = 0 for all i 6= t and Kt(K(M)) '
M . The spectral sequence 4.2.1

′Ep,q
2 = TorRp (k,Ks−q(K(M)))⇒p ExtsS(Extp−q+sR (k,K(M)), S)
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degenerates so that

TorRj (k,M) ' TorRj (k,K(K(M))) = ′Ej,s−t
2 ' ExtsS(Extj+tR (k,K(M)), S)

for all j ≥ 0. Therefore

βj(M) = dimk TorRj (k,M) = dimk ExtsS(Extj+tR (k,K(M)), S) = µj+t(K(M))

for all j ≥ 0. The other equality follows from the fact K(K(M)) 'M . �

Theorem 4.2.4 generalizes [38, Corollary 3.6] and improves [39, Corollary 3.3].

We record this in the next corollary.

Corollary 4.2.5. If M is Cohen-Macaulay R-module of dimension t, then

βj(M) = µj+t(K(M)) and µj(M) = βj−t(K(M))

for all j ≥ 0. In particular, pdRM <∞ if and only if idRK(M) <∞ and idRM <∞
if and only if pdRK(M) <∞.

Proof. If t ≥ 2 then the result follows from Theorem 4.2.4. Otherwise, Corollary 4.1.8
and the spectral sequence argument given in the proof of Theorem 4.2.4 asserts the
result. �

Next theorem is an attempt to extent part of Theorem 4.2.4 to arbitrary modules.

In the next section we work on the other part.

Theorem 4.2.6. Let M be a finitely generated R-module of depth g and dimension t.
If pdRK

i(M) <∞ for all g ≤ i < t, then

µj(M) = βj−t(K(M))

for all j > depthR + t. In particular, idRM <∞ if and only if pdRK(M) <∞.

Proof. The spectral sequence 4.2.1 is such that ′Ep,q
2 = 0 for all p > depthR and

g ≤ q < t so that

TorRj (k,K(M)) = ′Ej,s−t
2 ' ExtsS(Extj+tR (k,M), S),

whence the result. �

We derive other consequences of Theorem 4.2.1. In particular, we say exactly

when the type of a finite module is one in terms of its deficiency modules.

Corollary 4.2.7. Let M be a finitely generated R-module of depth g and dimension t.
The following statements hold true.
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(i) If M is Cohen-Macaulay of dimension t, then

µt+2(K(M))− µt+1(K(M)) ≥ β2(M)− β1(M).

In particular, if pdRM <∞ then β1(M) ≥ β2(M).

(ii) If idRM <∞, then

β0(Kg+1(M)) ≥ β2(Kg(M))− β1(Kg(M)).

In particular, if M is also Cohen-Macaulay, then β1(K(M)) ≥ β2(K(M)).

(iii) r(M) = 1 if and only if Kg(M) is cyclic.

Proof. Item (iii) follows directly from Theorem 4.2.1. Item (i) follows from Corollary
4.1.8, Theorem 4.2.1 and Corollary 4.2.5, and item (ii) follows from [18, Theorem 3.7],
corollaries 4.1.8 and 4.2.5 and item (i). �

The spectral sequence 4.2.1 provides more information when the module involved

has only two (possibly) non-zero deficiency modules.

Proposition 4.2.8. LetM be a finitely generated R-module of depth g and dimension t.
Suppose Ki(M) = 0 for all i 6= g, t. If idRM <∞ then βj(Kg(M)) = βj+g−t−1(K(M))

for all j > depthR− g + 1.

Proof. Write t = g + r. The spectral sequence 4.2.1 has only two vertical lines as the
following diagram shows.

...
...

...
...

· · · 0 TorRr+1(k,K(M)) 0 · · · 0 TorRr+1(k,Kg(M))

zz

0 · · ·

... . .
. ...

· · · 0 TorR2 (k,K(M)) 0 · · · 0 TorR2 (k,Kg(M)) 0 · · ·

· · · 0 TorR1 (k,K(M)) 0 · · · 0 TorR1 (k,Kg(M)) 0 · · ·

· · · 0 k ⊗R K(M) 0 · · · 0 k ⊗R Kg(M) 0 · · ·

From convergence we obtain an exact sequence

ExtsS(Extj+gR (k,M), S) // TorRj (k,Kg(M)) // TorRp−r−1(k,K(M)) // ExtsS(Extj+g−1
R (k,M), S)

for all j ≥ 0. Thus, since idRM = depthR (see [18, Theorem 3.7.1]) we conclude that

TorRj (k,Kg(M)) ' TorRj−r−1(k,K(M))

for all j > depthR− g + 1, whence the result. �
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4.3 Bounding Betti numbers

In last section we bounded the Bass numbers of a module in terms of the Betti

numbers of the deficiency modules. In this section we get a dual version of Theorem

4.2.1 in the following sense.

Theorem 4.3.1. For a finitely generated R-module M of depth g and dimension t, the
following inequality holds true for all j ≥ 0.

βj(M) ≤
t∑
i=g

µj+i(Ki(M)).

Moreover, µ0(K(M)) = β−t(M) and

β−t+2(M)− β−t+1(M) ≥ µ2(K(M))− µ1(K(M))− µ0(Kt−1(M)).

Proof. By taking M = k,N = M and P = S in the spectral sequence B.2.8 we have
the following.

Ep,q
2 = ExtpR(k,ExtqS(M,S))⇒p H

p+q

and
′Ep,q

2 = ExtpS(TorRq (k,M), S)⇒p H
p+q.

Since TorRq (k,M) is of finite length for all q ≥ 0, due to local duality we must have
′Ep,q

2 = 0 for all p 6= s so that

Hj ' ′Es,j−s
2 = ExtsS(TorRj−s(k,M), S)

for all j ≥ 0. Once Ks−q(M) = ExtqR(M,S) for all q ≥ 0, one has spectral sequence

Ep,q
2 = ExtpR(k,Ks−q(M))⇒p ExtsS(TorRp+q−s(k,M), S). (4.3.1)

Once βj(M) = dimk ExtsS(TorR(j+s)−s(k,M), S), by convergence we conclude that

βj(M) ≤
∑

p+q=j+s

dimk ExtpR(k,Ks−q(M)) =
t∑
i=g

µi+j(Ki(M)).

Now, since Ki(M) = 0 for all i < g or i > t, then Ep,q
2 = 0 for all q < s − t or

q > s− g. In particular E2 has a corner as follows.

...
...

...

HomR(k,Kt−1(M))

--

Ext1
R(k,Kt−1(M)) Ext2

R(k,Kt−1(M)) · · ·

HomR(k,K(M)) Ext1
R(k,K(M)) Ext2

R(k,K(M)) · · ·

0 0 0 · · ·

...
...

...
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Therefore, there exist isomorphism

HomR(k,K(M)) = E0,s−t
2 ' ExtsS(TorR−t(k,M), S)

and a five-term-type exact sequence

0 // Ext1
R(k,K(M)) // ExtsS(TorR−t+1(k,M), S) // HomR(k,Kt−1(M))

ss
Ext2

R(k,K(M)) // ExtsS(TorR−t+2(k,M), S)

whence the result. �

Remark 4.3.2. It should be noticed that the estimate βj(M) ≤
∑t

i=g µ
j+i(Ki(M)) is

already known, see [76, Theorem 3.2].

Corollary 4.3.3. The following statements hold true.

(i) If t = 0, then β0(M) = µ0(K(M)) and

β2(M)− β1(M) ≥ µ2(K(M))− µ1(K(M)).

Otherwise depthRK(M) > 0;

(ii) If t = 1, then β1(M)− β0(M) ≥ µ2(K(M))− µ1(K(M))− µ0(K0(M));

(iii) If t = 2, then β0(M) ≥ µ2(K(M))− µ1(K(M))− µ0(K1(M));

(iv) If t > 2, then µ0(Kt−1(M)) ≥ µ2(K(M))− µ1(K(M)).

Proof. It follows directly from Theorem 4.3.1. �

Corollary 4.3.4. If M is a finitely generated Artinian R-module, then

β2(M)− β1(M) = µ2(K(M))− µ1(K(M)).

Proof. By corollaries 4.2.7 (i) and 4.3.3 (i),

µ2(K(M))− µ1(K(M)) ≥ β2(M)− β1(M) ≥ µ2(K(M))− µ1(K(M)).

�

Lemma 4.3.5. ([47, Proposition 2.8.4]) Suppose R is d-dimensional with embedding
dimension e. Then β1(R/m) = e and the following statements are equivalent.

(i) β2(R/m) =
(
e
2

)
+ e− d;

(ii) R is a complete intersection.
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Corollary 4.3.6. If R is d-dimensional of embedding dimension e, then

µ2(k)− µ1(k) =

(
e

2

)
− d

if and only if R is a complete intersection.

Proof. It follows directly from Corollary 4.3.4 and Lemma 4.3.5. �

Corollary 4.3.7. Let M be a finitely generated R-module of depth g and dimension t.
If idRK

i(M) <∞ for all i = g, ..., t, then pdRM <∞.

Proof. By hypothesis we have µl(Ki(M)) = 0 for all l � 0 and by Theorem 4.3.1 one
has

βj(M) ≤
t∑
i=g

µj+i(Ki(M)) = 0

for all j � 0, whence µj(M) = 0 for all j � 0, that is, pdRM <∞. �

The Auslander-Reiten conjecture [7] states the following. Given a finitely gener-

ated R-module M , if

ExtjR(M,M ⊕R) = 0

for all j > 0 then M is free. This long-standing conjecture has been largely studied

and several positive answers are already known, see for instance [3, 4, 8, 26, 39, 56,

63, 65, 71]. Corollary 4.3.7 provides another positive answer for the Auslander-Reiten

conjecture for a class of modules. But first we need a lemma.

Lemma 4.3.8. ([68, Lemma 1 (iii)]) Let R be a local ring and let M and N be finite
R-modules. If pdRM <∞ and N 6= 0 then

pdRM = sup{j : ExtjR(M,N) 6= 0}.

Theorem 4.3.9. Let M be a finitely generated R-module of depth g and dimension t.
If n ≤ d is a positive integer, then pdRM < n provided the following statements hold
true.

(i) idRK
i(M) <∞ for all i = g, ..., t;

(ii) There exists an R-module N such that ExtjR(M,N) = 0 for all j = n, ..., d.

Proof. It follows directly from Corollary 4.3.7 and Lemma 4.3.8. �

The next corollary is proves the Auslander-Reiten conjecture for a certain class

of modules. It generalizes the case of the conjecture obtained in [39].
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Corollary 4.3.10. The Auslander-Reiten conjecture holds true for finitely generated
modules having deficiency modules of finite injective dimension over local rings which
are factor of Gorenstein local rings.

Proof. It follows immediately from Theorem 4.3.9 by taking n = 1. �

In the next theorem, such as Theorem 4.2.6, we furnish another attempt to remove

the generalized Cohen-Macaulayness hypothesis from Theorem 4.2.4.

Theorem 4.3.11. Let M be a finitely generated R-module of depth g and dimension
t. If idRK

i(M) <∞ for all g ≤ i < t, then

βj(M) = µj+t(K(M))

for all j > s+depthR−t−g. In particular, pdRM <∞ if and only if idRK(M) <∞.

Proof. Consider the spectral sequence 4.3.1

Ep,q
2 = ExtpR(k,Ks−q(M))⇒p ExtsS(TorRp+q−s(k,M), S).

The hypothesis and [18, Theorem 3.7.1] assures that Ep,q
2 = 0 for all p > depthR and

for all s− t < q ≥ s− g. Therefore, the convergence of E implies that

ExtjR(k,K(M)) ' ExtsS(TorRj−t(k,M), S)

for all j > s− depthR− g, whence the result. �

The next proposition is an attempt to understand the converse of Corollary 4.3.7.

Proposition 4.3.12. Assume Ki(M) = 0 for all i 6= g, t. If pdRM < ∞, then
µj(Kg(M)) = µj−g+t+1(K(M)) for all j > pdRM + 1.

Proof. The spectral sequence 4.3.1 has only two lines as follows.

0 0 · · · 0 · · ·

...
...

...

HomR(k,Kg(M))

++

Ext1
R(k,Kg(M)) · · · Extp+r+1

R (k,Kg(M)) · · ·

...
...

. . .
...

HomR(k,K(M)) Ext1
R(k,K(M)) · · · Extp+r+1

R (k,K(M)) · · ·

0 0 · · · 0 · · ·

...
...

...
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Such a shape and convergence yields an exact sequence

ExtsS(TorRj−g(k,M), S) // ExtjR(k,Kg(M)) // Extj+r+1
R (k,K(M)) // ExtsS(TorRj−g+1(k,M), S)

for all j ≥ 0. Thus if j > pdRM + 1 then

ExtjR(k,Kg(M)) ' Extj+r+1(k,K(M))

and, in particular, µj(Kg(M)) = µj+r+1(K(M)). �
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Chapter 5

Finiteness of homological dimensions

In this chapter, we appreciate local cohomology as nice a tool for solving problems

in commutative algebra. Here we will notice its relevance in the study of the finiteness

of homological dimensions via a cohomology vanishing approach.

In essence, this chapter deals with the interplay between the finiteness of some

of the main homological dimensions (see Section 1.5) and the vanishing of cohomology

– more precisely, the vanishing of suitable Ext modules. Among such dimensions, we

consider the projective dimension, the injective dimension, the Gorenstein injective

dimension, and the Gorenstein dimension of (finitely generated) modules over a given

(Noetherian, commutative) Cohen-Macaulay local ring having a canonical module.

Our first goal in this chapter is to address some problems concerning the finiteness

of projective dimension via the vanishing of Ext modules that have appeared in the

literature, the main one being a question raised by D. Jorgensen in [60] about fourteen

years ago, see Question 5.1.10. We describe suitable additional conditions under which

such questions admit an affirmative answer, see theorems 5.1.4, 5.1.8 and Corollary

5.1.11. Second, we obtain similar results involving other homological dimensions, such

as the injective and the Gorenstein injective dimensions, as for instance Theorem 5.2.2.

Along the way, we derive several criteria for the freeness of modules. The main tools

used in this chapter are generalized local cohomology (see Section 1.4), Suzuki spectral

sequences in Appendix B.2.5, Burch ideals, and strongly rigid modules.

Throughout this chapter, we will follow the notation in sections 1.4 and 1.5.



Namely, R will always denote a commutative Noetherian local ring with non-zero unity,

maximal ideal m. We denote by M∨ the Matlis dual of a finitely generated R-module

M .

5.1 Finiteness of projective dimension

5.1.1 Three questions about projective dimension and Ext van-
ishing

In this part, we are concerned with three problems involving the finiteness of

pdRM by means of Ext vanishing. The first one, recalled below and raised in [61,

Question 4.4], targets projective dimension zero over certain one-dimensional local

rings.

Question 5.1.1. Let R be a Gorenstein local ring of dimension one which is not a
complete intersection, and let M be a finitely generated R-module with CI-dimRM <

∞. If Ext1
R(M,M) = 0, must M be free?

It is worth mentioning that this actually fails for one-dimensional complete inter-

section rings, as the next example shows.

Example 5.1.2. ([61, Example 4.3]) Consider R = k[[x, y]]/(xy), where k is a field.
By splicing the short exact sequences

0 // xR // R // R/xR // 0,

0 // yR // R
x // xR // 0

and
0 // xR // R

y // yR // 0

we obtain a minimal R-free resolution of R/xR:

· · · // R x // R
y // R x // R

y // R x // R // R/xR // 0.

Thus pdRR/xR =∞ and

Ext1
R(R/xR,R/xR) = ker(R

y−→ R)/ im(R
x−→ R) = xR/xR = 0.

Our first objective in this subsection is to give equivalent conditions for the free-

ness of a Cohen-Macaulay module in the setting of Question 5.1.1. To this end, some

auxiliary concepts and results are in order. The first notion is that of generalized local

cohomology 1.4.1, which plays an important role in this chapter.
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Definition 5.1.3. Let (R,m) be a local ring and letM,N be a pair of finitely generated
R-modules. The cohomological dimension of M,N with respect to m is defined as

cdm(M,N) := sup{i ≥ 0 | H i
m(M,N) 6= 0}.

Note that by taking M = R in the definition above we recover Definition 2.3.2

for I = m.

Moreover, as a matter of notation, we put

eR(M,N) := sup{j ≥ 0 | ExtjR(M,N) 6= 0}.

Now we are ready to present our approach to Question 5.1.1. Here, the R-module

M is assumed to be Cohen-Macaulay, whereas R is taken Cohen-Macaulay but not

required to be Gorenstein.

Theorem 5.1.4. Let R be a Cohen-Macaulay local ring of dimension one, and let M
be a Cohen-Macaulay R-module of dimension d (hence d is either 0 or 1). Consider
the following assertions:

(i) M is free;

(ii) eR(M,Hd
m(M)) <∞;

(iii) cdm(M,M) <∞.

Then (i)⇒ (ii)⇔ (iii). Moreover, if CI-dimRM <∞ and Ext1
R(M,M) = 0, then the

three assertions are equivalent.

Proof. Clearly, (i) implies (ii). In order to prove the equivalence between (ii) and (iii),
we notice that, by taking N = M in the spectral sequence given in Lemma B.7, it
collapses at its second page in such a way that

ExtpR(M,Hd
m(M)) ∼= Hp+d

m (M,M).

Therefore,
eR(M,Hd

m(M)) = cdm(M,M)− d,

which in particular gives (ii)⇔(iii).
Now assume that CI-dimRM <∞,Ext1

R(M,M) = 0, and that (iii) holds. Let us
prove (i). Consider the spectral sequence

Ep,q
2 = Hp

m(ExtqR(M,M))⇒p H
p+q
m (M,M)
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given in Lemma B.6. Because dimR = 1, we must have Ep,q
2 = 0 for p > 1, so that

Ep,q
2 = Ep,q

∞ and hence there are only two columns; by convergence, it follows a short
exact sequence

0 // H1
m(Extj−1

R (M,M)) // Hj
m(M,M) // H0

m(ExtjR(M,M)) // 0

for each j ≥ 1. By hypothesis, Hj
m(M,M) = 0 for all j � 0, which yields

H0
m(ExttR(M,M)) = H1

m(ExttR(M,M)) = 0 for all t� 0.

Therefore, since dimR = 1, we necessarily have ExttR(M,M) = 0 for all t � 0

and then Lemma 1.5.2 ensures that pdRM < ∞, i.e., pdRM ≤ 1, which gives in
fact ExttR(M,M) = 0 for all t ≥ 2. Since Ext1

R(M,M) = 0 by hypothesis, we get
eR(M,M) = 0. It follows by Lemma 4.3.8 that

pdRM = eR(M,M) = 0,

as needed. �

By virtue of a result of Vasconcelos, [82, Theorem 3.1], one more item can be

added to Theorem 5.1.4 in the Gorenstein case.

Corollary 5.1.5. Let R be a Gorenstein local ring of dimension one, and let M be
a Cohen-Macaulay R-module of dimension d (hence d is either 0 or 1). Consider the
following assertions:

(i) M is free;

(ii) HomR(M,M) is free;

(iii) eR(M,Hd
m(M)) <∞;

(iv) cdm(M,M) <∞.

Then (i) ⇔ (ii) ⇒ (iii) ⇔ (iv). Moreover, if CI-dimRM < ∞ and Ext1
R(M,M) = 0,

then the four assertions are equivalent.

For a finitely generated module M over a local ring, it is usual to denote its

module of (first-order) minimal syzygies by ΩM . The following is another question

from [61], which is quite connected to – and in fact generalizes the statement of – the

third problem to be dealt with later on (see Question 5.1.10).

Question 5.1.6. ([61, Question 4.5]) Let R be a Cohen-Macaulay local ring with
canonical module ωR and positive (co)dimension. For positive integers n ≤ s, let
M be a finitely generated R-module with pdRM < ∞ satisfying ExtjR(M,M) =

Extj+1
R (M,M ⊗R ΩωR) = 0 for all j = n, . . . , s. Is it true that pdRM < n?
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We shall give a positive answer to this question as long as the depth of the

(possibly trivial) module ExtqR(M,M) is sufficiently high for q in a suitable range.

First we invoke some helpful lemmas.

Lemma 5.1.7. ([85, Lemma 2.2]) Let R be a local ring and M,N be finitely generated
R-modules with pdRM <∞ and N maximal Cohen-Macaulay. Then, TorRj (M,N) = 0

for all j ≥ 1.

Here is our attempt to tackle Question 5.1.6, which indeed solves it in the case

s ≥ d := dimR. It turns out to be the main result of this section, and moreover it

generalizes [61, Theorem 3.1] (which corresponds to the case s = d). As usual, we set

the depth of the zero module to be +∞.

Theorem 5.1.8. Let R be a Cohen-Macaulay local ring of dimension d with canonical
module ωR. For positive integers n ≤ s, let M be a finitely generated R-module with
pdRM <∞ satisfying

ExtjR(M,M) = Extj+1
R (M,M ⊗R ΩωR) = 0 for all j = n, . . . , s.

In the case of s < d suppose in addition

depthR ExtqR(M,M) ≥ d− s− q for all q = 0, . . . , d− s.

Then, pdRM < n.

Proof. By Lemma 4.3.8 we have pdRM = eR(M,M), so eR(M,M) ≤ d. If we first
consider the case d ≤ s, then we must have eR(M,M) < n. Therefore, we may suppose
n ≤ s < d.

Since pdRM <∞, Lemma 5.1.7 forces TorR1 (M,ωR) = 0 and so there is a short
exact sequence

0 //M ⊗R ΩωR //M ⊗R F //M ⊗R ωR // 0

for some finite free R-module F . Hence, for each j ≥ 0, we get an exact sequence

ExtjR(M,M ⊗R F ) // ExtjR(M,M ⊗R ωR) // Extj+1
R (M,M ⊗R ΩωR) .

By the hypothesis on the Ext modules, it follows that

ExtjR(M,M ⊗R ωR) = 0 for all j = n, . . . , s.

Now, it should be noticed that taking m-adic completion (where m is the maximal ideal
of R) does not affect the conditions present in the statement, i.e., we may suppose that
R is complete. Thus, as pdRM <∞, there are isomorphisms

Hj
m(M,M) ∼= Extd−jR (M,M ⊗R ωR)∨ = 0 for all j = d− s, . . . , d− n
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by generalized local duality (see Lemma 1.4.3). On the other hand, considering the
spectral sequence given in Lemma B.6,

Ep,q
2 = Hp

m(ExtqR(M,M))⇒p H
p+q
m (M,M),

the depth hypothesis implies that Ep,q
2 = 0 for all p < d− s− q, that is, p+ q < d− s.

By convergence we conclude that Hj
m(M,M) = 0 for all j < d− s. Therefore,

Hj
m(M,M) = 0 for all j ≤ d− n

and, by Lemma 1.4.2, depthRM > d− n, so that pdRM = d− depthRM < n. �

In the sequel we will derive some immediate consequences of Theorem 5.1.8 by

taking particular values of n or s. First, we consider the case n = 1, i.e., a characteri-

zation of freeness.

Corollary 5.1.9. Let R be a Cohen-Macaulay local ring of dimension d with canonical
module ωR. For a positive integer s, let M be a finitely generated R-module with
pdRM <∞ satisfying

ExtjR(M,M) = Extj+1
R (M,M ⊗R ΩωR) = 0 for all j = 1, . . . , s.

In the case of s < d suppose in addition depthR ExtqR(M,M) ≥ d − s − q for all
q = 0, . . . , d− s. Then, M is free.

Before presenting other special cases of Theorem 5.1.8, we state the third problem

we want to tackle in this subsection, which was suggested by Jorgensen in [60]. We

point out that Question 5.1.6 in fact recovers the statement of Jorgensen’s problem by

taking n = s and R a complete intersection.

Question 5.1.10. ([60, Question 1.7]) Let R be a complete intersection local ring R
of positive codimension, and let M be a finitely generated R-module with pdRM <∞.
Does the condition ExtnR(M,M) = 0 imply pdRM < n?

Note Theorem 5.1.8 detects an additional (depth) condition under which Question

5.1.10 admits a positive answer. On the other hand, we do not require the ring to be a

complete intersection. Let us consider the situation where R is Gorenstein. We point

out that the Gorenstein case of Theorem 5.1.8 will be recovered later by Corollary

5.2.7; we can put n = s and M = N therein in order to record the following result.

Corollary 5.1.11. Let R be a Gorenstein local ring of dimension d. LetM be a finitely
generated R-module with pdRM < ∞ satisfying ExtnR(M,M) = 0 for some positive
integer n ≤ d and in addition depthR ExtqR(M,M) ≥ d−n− q for all q = 0, . . . , d−n.
Then, pdRM < n.
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Over complete intersections we obtain a particularly interesting result (apply

Corollary 5.1.11 together with Lemma 1.5.2).

Corollary 5.1.12. Let R be a complete intersection local ring of dimension d. Let
M be a finitely generated R-module satisfying ExtnR(M,M) = 0 for some positive even
integer n ≤ d and in addition depthR ExtqR(M,M) ≥ d−n− q for all q = 0, . . . , d−n.
Then, pdRM < n.

Finally, taking s = d − 1 in Theorem 5.1.8 we notice that the depth hypothesis

is reduced simply to

depthR HomR(M,M) > 0.

Note this occurs whenever depthM > 0 (e.g., depthR > 0 andM is contained in a free

R-module), on account of the general bound depthR HomR(M,N) ≥ min{2, depthRN}

for all finitely generated R-modulesM,N (see [18, Exercise 1.4.19]). As a consequence,

with the aid of the Auslander-Buchsbaum formula we see that depthR HomR(M,M) >

0 if, for instance, pdRM < d. We thus immediately get the following corollary.

Corollary 5.1.13. Let R be a Cohen-Macaulay local ring of dimension d with canonical
module ωR. For a positive integer n ≤ d − 1, let M be a finitely generated R-module
with pdRM < d satisfying

ExtjR(M,M) = ExtjR(M,M ⊗R ΩωR) = 0 for all j = n, . . . , d− 1.

Then, pdRM < n.

Note the Gorenstein case of Corollary 5.1.13 is an immediate consequence of

Ischebeck’s theorem; see [18, Exercise 3.1.24] or [57, 2.6].

5.1.2 Finite projective dimension via rigid modules

In this part, we make use of the theory of “rigid” modules to establish sufficient

conditions for a given module to have finite projective dimension. We shall combine

this approach with some of our previous results in order to estimate this invariant and,

consequently, provide freeness criteria.

The following concepts, recalled here for the reader’s convenience, are collected

in [86, p. 3] (some of them have their roots in [5]).

Definition 5.1.14. Let M be a finitely generated R-module.
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(a) M is said to be a test module if TorRi (M,N) 6= 0 for infinitely many integers i,
whenever N is a finitely generated R-module with pdRN =∞;

(b) M is Tor-rigid provided that TorRj (M,N) = 0 for all j ≥ i, whenever N is a
finitely generated R-module with TorRi (M,N) = 0 for some i ≥ 1;

(c) M is a rigid-test module if M is both test and Tor-rigid;

(d) M is said to be strongly rigid if pdRN < ∞ whenever N is a finitely generated
R-module with TorRj (M,N) = 0 for some j ≥ 1.

Some of the main relations and questions involving these definitions are given

in [86, p. 4]. For instance, rigid-test implies strongly rigid (the converse is an open

problem) and Tor-rigid as well (the converse fails), while strongly rigid implies test

(the converse is false).

Lemma 5.1.15. ([86, Corollary 6.1]) Let R be a local ring and let M,N be non-zero
finitely generated R-modules. Suppose any one of the following conditions:

(i) N is strongly rigid and ExtiR(M,N) = 0 for some i ≥ depthR;

(ii) N is rigid-test and ExtiR(M,N) = 0 for some i ≥ depthRN .

Then, pdRM = eR(M,N) < i.

Our next result combines Theorem 5.1.8 with the classes of modules described

in Definition 5.1.14. Note that, in the particular case s = d, parts (ii) and (iii) below

recover [62, Theorem 2.7].

Theorem 5.1.16. Let R be a Cohen-Macaulay local ring of dimension d with canon-
ical module ωR. For positive integers n ≤ s, let M be a finitely generated R-module
satisfying

ExtjR(M,M) = Extj+1
R (M,M ⊗R ΩωR) = 0 for all j = n, . . . , s.

In the case of s < d, suppose in addition

depthR ExtqR(M,M) ≥ d− s− q for all q = 0, . . . , d− s.

Assume moreover that there exists a non-zero finitely generated R-module N satisfying
any one of the following conditions:

(i) N is strongly rigid and ExtiR(M,N) = 0 for some i ≥ d;

(ii) N is rigid-test and ExtiR(M,N) = 0 for some i ≥ depthRN ;
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(iii) N is Tor-rigid, depthRN ≥ 1, and TorRi−1(mN,M) = 0 for some i ≥ 2.

Then, pdRM < min{n, i}.

Proof. In the cases of (i) and (ii), we readily get pdRM < i by Lemma 5.1.15. If (iii)
holds then the proof of [62, Theorem 2.7] applies to give pdRM < i as well. Now,
being pdRM finite, Theorem 5.1.8 yields pdRM < n, whence the result. �

We derive a couple of immediate corollaries in the Gorenstein case.

Corollary 5.1.17. Let R be a Gorenstein local ring of dimension d. For positive
integers n ≤ s, let M be a finitely generated R-module satisfying ExtjR(M,M) = 0

for all j = n, . . . , s. In the case of s < d, suppose in addition depthR ExtqR(M,M) ≥
d− s− q for all q = 0, . . . , d− s. Assume moreover that there exists a non-zero finitely
generated R-module N satisfying any one of the conditions (i), (ii), (iii) described in
Theorem 5.1.16. Then, pdRM < min{n, i}.

Corollary 5.1.18. Let R be a Gorenstein local ring of dimension d. For a positive
integer n ≤ d − 1, let M be a finitely generated R-module satisfying ExtjR(M,M) = 0

for all j = n, . . . , d − 1 and depthR HomR(M,M) > 0. Assume moreover that there
exists a non-zero finitely generated R-module N satisfying any one of the conditions
(i), (ii), (iii) described in Theorem 5.1.16. Then, pdRM < min{n, i}.

Finally, we observe that taking n = 1 in Theorem 5.1.16 (or any of its corollaries)

leads us to a characterization of the freeness of M .

5.2 Finiteness of other homological dimensions

So far in this chapter we have dealt solely with modules of finite projective dimen-

sion. In the present section, we add further homological dimensions into our investiga-

tion and focus on the interplay between the vanishing of Ext modules and the finiteness

of the injective dimension, the Gorenstein injective dimension, and the Gorenstein di-

mension of a finitely generated module. Applications to prescribed bound on projective

dimension and freeness criteria will be given. We maintain the previous notations.

The auxiliary results below will be useful to the main theorem of this section.

Lemma 5.2.1. ([62, Lemma 4.4]) Let R be a local ring. If M is a maximal Cohen-
Macaulay R-module and N is a finitely generated R-module with idRN < ∞, then
eR(M,N) = 0.
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The theorem below is the main result of this section. Notice that the case s = d

immediately retrieves [62, Theorem 4.6].

Theorem 5.2.2. Let R be a Cohen-Macaulay local ring of dimension d with canonical
module ωR. For positive integers n ≤ s ≤ d, let M,N be finitely generated R-modules,
with idRN <∞, satisfying

ExtjR(N,M) = Extj+1
R (HomR(ΩωR, N),M) = 0 for all j = n, . . . , s, and

depthR ExtqR(M,N) ≥ d− s− q for all q = 0, . . . , d− s.

Then, depthRN > d− n. If in addition GidRM <∞, then eR(N,M) < n.

Proof. By Lemma 5.2.1 we have Ext1
R(ωR, N) = 0, hence there is a short exact sequence

0 // HomR(ωR, N) // HomR(F,N) // HomR(ΩωR, N) // 0

for some finite free R-module F . This yields, for each i ≥ 0, an exact sequence

ExtiR(HomR(F,N),M) // ExtiR(HomR(ωR, N),M) // Exti+1
R (HomR(ΩωR, N),M).

Using the hypotheses, we get ExtiR(HomR(ωR, N),M) = 0 for all i = n, . . . , s. Now it
should be noticed that R can be assumed to be complete, and therefore Lemma 1.4.4
ensures that

Hj
m(M,N) = 0 for all j = d− s, . . . , d− n.

On the other hand, the spectral sequence given in Lemma B.6

Ep,q
2 = Hp

m(ExtqR(M,N))⇒p H
p+q
m (M,N)

is such that Ep,q
2 = 0 for all p < d−s−q. By convergence, it follows that Hj

m(M,N) = 0

for all j < d− s. Summing up, we have

Hj
m(M,N) = 0 for all j < d− n.

Thus, Lemma 1.4.2 gives depthRN > d− n. Finally, if GidRM <∞ then, by Lemma
1.5.6, we conclude that eR(N,M) = d− depthRN < n. �

Remark 5.2.3. By the proof of Theorem 5.2.2 it is clear that the condition

ExtjR(HomR(ωR, N),M) = 0 for all j = n, . . . , s

suffices to ensure the same conclusions.

As an application we obtain the following criterion for prescribed bound on projec-

tive dimension for certain modules of finite injective dimension. It should be compared

with Corollary 5.2.5, to be given shortly.
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Corollary 5.2.4. Let R be a Cohen-Macaulay local ring of dimension d with canonical
module ωR. For positive integers n ≤ s ≤ d, let M,N be finitely generated R-modules,
with idRN <∞ and idR HomR(ωR, N) <∞, satisfying

ExtjR(N,M) = 0 for all j = n, . . . , s

and, in addition, depthR ExtqR(M,N) ≥ d − s − q for all q = 0, . . . , d − s. Then,
pdRN < n.

Proof. As idR ωR < ∞, we have GidRωR < ∞. Since in addition idRN < ∞, we can
apply [75, Corollary 2.13] to get

pdR HomR(ωR, N) = eR(N,ωR).

On the other hand, Lemma 1.5.6 yields eR(N,ωR) <∞. Therefore pdR HomR(ωR, N) <

∞, and since by hypothesis idR HomR(ωR, N) <∞, we obtain that R must be Goren-
stein by a classical fact (see [37, Corollary 4.4]). Now we have ΩωR = 0 and GidRM <

∞, so that Theorem 5.2.2 yields depthRN > d − n. Finally, because R is Goren-
stein and idRN < ∞, we have pdRN < ∞ (see [18, Exercise 3.1.25]) and then the
Auslander-Buchsbaum formula gives pdRN < n. �

The result below is a variant (in terms of Gorenstein dimension) of Corollary

5.2.4.

Corollary 5.2.5. Let R be a Cohen-Macaulay local ring of dimension d with canonical
module ωR. Consider positive integers n ≤ s ≤ d. Let M,N be finitely generated
R-modules, with idRN <∞ and G-dimRN <∞, satisfying

ExtjR(N,M) = 0 for all j = n, . . . , s

and, in addition, depthR ExtqR(M,N) ≥ d − s − q for all q = 0, . . . , d − s. Then,
pdRN < n.

Proof. First, since idRN <∞, we must have G-dimRN = pdRN by Lemma 1.5.4. It
follows that pdRN <∞, hence R is Gorenstein by [37, Corollary 4.4]. Now the proof
of Corollary 5.2.4 applies. �

A criterion for freeness follows immediately.

Corollary 5.2.6. Let R be a Cohen-Macaulay local ring of dimension d with canonical
module ωR. Consider a positive integer s ≤ d. Let M,N be finitely generated R-
modules, with idRN < ∞ and G-dimRN < ∞, satisfying ExtjR(N,M) = 0 for all
j = 1, . . . , s and depthR ExtqR(M,N) ≥ d − s − q for all q = 0, . . . , d − s. Then, N is
free.
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Now we record the Gorenstein case of Corollary 5.2.5, which also recovers the

Gorenstein version of Theorem 5.1.8 by taking N = M .

Corollary 5.2.7. Let R be a Gorenstein local ring of dimension d and consider positive
integers n ≤ s ≤ d. Let M,N be finitely generated R-modules with pdRN < ∞
satisfying ExtjR(N,M) = 0 for all j = n, . . . , s and, in addition, depthR ExtqR(M,N) ≥
d− s− q for all q = 0, . . . , d− s. Then, pdRN < n.

From Corollary 5.2.7 we derive immediately two more criteria for the freeness of

N , in the situation where R is Gorenstein. The first one is the case n = 1, and in the

second we take in addition s = d − 1 (provided that d ≥ 2), which thus softens the

depth hypothesis by reducing it to the positivity of depthR HomR(M,N) – while, on

the other hand, more Ext modules are required to vanish.

Corollary 5.2.8. Let R be a Gorenstein local ring of dimension d and consider a
positive integer s ≤ d. Let M,N be finitely generated R-modules with pdRN < ∞
satisfying ExtjR(N,M) = 0 for all j = 1, . . . , s and, in addition, depthR ExtqR(M,N) ≥
d− s− q for all q = 0, . . . , d− s. Then, N is free.

Corollary 5.2.9. Let R be a Gorenstein local ring of dimension d ≥ 2. Let M,N

be finitely generated R-modules with pdRN < ∞ satisfying ExtjR(N,M) = 0 for all
j = 1, . . . , d− 1 and, in addition, depthR HomR(M,N) > 0. Then, N is free.

In the next section we will still be interested in finite projective dimension, but

making use of other auxiliary concepts.

5.3 Finite projective dimension via Burch ideals and
strongly rigid modules

In this part we establish consequences of Theorem 5.2.2 (more precisely, of Corol-

lary 5.2.7) which deal with finiteness of projective dimension via the existence of either

a Burch ideal or a strongly rigid module satisfying suitable hypotheses. We also con-

sider a particular case of the latter that arises from the class of weakly m-full ideals.

5.3.1 Finite projective dimension via Burch ideals

The following notion was introduced in [27] and further studied in [20].
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Definition 5.3.1. ([20, Definition 3.1]) Let R be a local ring and let I be an ideal of
R. Then I is called Burch provided that

I :R m 6= mI :R m.

It is worth mentioning that if I is a Burch ideal of the local ringR then depthR/I =

0. On the other hand, if an ideal I is such that depthR/I = 0 and I is weakly m-full

(see Definition 5.3.11 below), then I is Burch. We refer to [27, Section 2].

Lemma 5.3.2. ([20, Theorem 3.3]) Let R be a local ring and let I be a Burch ideal of
R. Suppose TorRt (N,R/I) = TorRt+1(N,R/I) = 0 for some finitely generated R-module
N and some integer t ≥ 1. Then, pdRN ≤ t.

Corollary 5.3.3. Let R be a Gorenstein local ring of dimension d. Consider positive
integers n ≤ s ≤ d. Let M,N be finitely generated R-modules such that ExtjR(N,M) =

0 for all j = n, . . . , s and depthR ExtqR(M,N) ≥ d − s − q for all q = 0, . . . , d − s. If
there exists a Burch ideal I of R such that

TorRt (N,R/I) = TorRt+1(N,R/I) = 0

for some t ≥ 1, then pdRN < min{t+ 1, n}.

Proof. It follows directly from Lemma 5.3.2 and Corollary 5.2.7. �

Two criteria for the freeness of N are in order.

Corollary 5.3.4. Let R be a Gorenstein local ring of dimension d. Consider a positive
integer s ≤ d. Let M,N be finitely generated R-modules such that ExtjR(N,M) = 0 for
all j = 1, . . . , s and depthR ExtqR(M,N) ≥ d − s − q for all q = 0, . . . , d − s. If there
exists a Burch ideal I of R such that TorRt (N,R/I) = TorRt+1(N,R/I) = 0 for some
t ≥ 1, then N is free.

Corollary 5.3.5. Let R be a Gorenstein local ring of dimension d ≥ 2. Let M,N be
finitely generated R-modules such that ExtjR(N,M) = 0 for all j = 1, . . . , d − 1 and,
in addition, depthR HomR(M,N) > 0. If there exists a Burch ideal I of R such that
TorRt (N,R/I) = TorRt+1(N,R/I) = 0 for some t ≥ 1, then N is free.

5.3.2 Finite projective dimension via strongly rigid modules

In this subsection, we are interested in using strongly rigid modules (see Definition

5.1.14(d)) to detect finite projective dimension. We will also consider a particular case

related to the notion of weakly m-full ideal (see Definition 5.3.11 below).
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General strongly rigid modules

Let us invoke a couple of preparatory lemmas. First recall that, for a local ring

(R,m), a finitely generated R-module M is said to be of finite projective dimension on

the punctured spectrum of R if pdRp
Mp <∞ for every p ∈ SpecR \ {m}. Moreover, R

is said to have an isolated singularity if the ring Rp is regular for every p ∈ SpecR\{m}.

Lemma 5.3.6. ([86, Proposition 3.6]) Let R be a Cohen-Macaulay local ring of di-
mension d with canonical module, and let N be a finitely generated R-module. Suppose
there exists a non-zero strongly rigid R-module M satisfying the following properties:

(i) M is of finite projective dimension on the punctured spectrum of R (e.g., R has
an isolated singularity);

(ii) ExtiR(M,N) = 0 for some i ≥ d+ 1.

Then, idRN <∞.

Lemma 5.3.7. ([86, Theorem 7.3]) Let R be a Cohen-Macaulay local ring. If GidRM <

∞ for some non-zero strongly rigid R-module M , then R is Gorenstein.

Corollary 5.3.8. Let R be a Cohen-Macaulay local ring of dimension d with canoni-
cal module ωR. Let M,N be finitely generated R-modules, with M strongly rigid and
GidRM <∞, satisfying the following properties:

(i) M is of finite projective dimension on the punctured spectrum of R (e.g., R has
an isolated singularity);

(ii) ExtiR(M,N) = 0 for some i ≥ d+ 1;

(iii) There exist positive integers n ≤ s ≤ d such that ExtjR(N,M) = 0 for all j =

n, . . . , s, and in addition depthR ExtqR(M,N) ≥ d− s− q for all q = 0, . . . , d− s.

Then, pdRN < n.

Proof. By Lemma 5.3.6, items (i) and (ii) yield that idRN <∞, whereas Lemma 5.3.7
ensures that R is Gorenstein. Thus, pdRN < ∞, and by Corollary 5.2.7 we conclude
that pdRN < n. �

Next we record the freeness criterion that follows readily by the case n = 1 of

Corollary 5.3.8. Note it also follows from a combination of Lemma 5.3.6, Lemma 5.3.7

and Corollary 5.2.8.

Corollary 5.3.9. Let R be a Cohen-Macaulay local ring of dimension d with canoni-
cal module ωR. Let M,N be finitely generated R-modules, with M strongly rigid and
GidRM <∞, satisfying the following properties:
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(i) M is of finite projective dimension on the punctured spectrum of R (e.g., R has
an isolated singularity);

(ii) ExtiR(M,N) = 0 for some i ≥ d+ 1;

(iii) There exists a positive integer s ≤ d such that ExtjR(N,M) = 0 for all j =

1, . . . , s, and in addition depthR ExtqR(M,N) ≥ d− s− q for all q = 0, . . . , d− s.

Then, N is free.

Over Gorenstein local rings we also have the following fact.

Corollary 5.3.10. Let R be a Gorenstein local ring of dimension d and let M,N be
finitely generated R-modules, with M strongly rigid, satisfying the following properties:

(i) ExtiR(N,M) = 0 for some i ≥ d;

(ii) There exist positive integers n ≤ s ≤ d such that ExtjR(N,M) = 0 for all j =

n, . . . , s, and in addition depthR ExtqR(M,N) ≥ d− s− q for all q = 0, . . . , d− s.

Then, pdRN < n.

Proof. Lemma 5.1.15(i) gives pdRN < ∞. The result now follows by Corollary 5.2.7.
�

Clearly, the case n = 1 of Corollary 5.3.10 provides yet another freeness criterion.

Weakly m-full ideals

To conclude the chapter, we consider separately a special class of strongly rigid

modules over a Gorenstein local ring (R,m). It arises from the notion of weakly m-full

ideal, defined as follows.

Definition 5.3.11. ([20, Definition 2.1]) Let (R,m) be a local ring and let I, J be
ideals of R. We say that I is weakly m-full with respect to J provided that

I :R J = mI :R mJ.

In case J = R, i.e. if I = mI :R m, then I is simply said to be weakly m-full.

For example, if depthR > 0 then all integrally closed ideals of R are weakly m-full

with respect to ms for each s ≥ 0 (see [20, Proposition 2.4]).
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Lemma 5.3.12. ([20, Corollary 2.14]) Let (R,m) be a non-regular local ring with
depthR > 0, and let I be an m-primary ideal of R such that I is weakly m-full with
respect to mν and I ⊂ mν+1, for some ν ≥ 0 (note the case ν = 0 means that I is
weakly m-full). In addition, let N be a finitely generated R-module and t ≥ 1 be an
integer. If TorRt (R/I,N) = 0, then pdRN < t.

Note Lemma 5.3.12 implies that R/I is a strongly rigid R-module. This will be

used in the result below.

Theorem 5.3.13. Let (R,m) be a Gorenstein non-regular local ring of dimension d,
and let I be an m-primary ideal of R such that I is weakly m-full with respect to mν

and I ⊂ mν+1, for some ν ≥ 0. Consider positive integers n ≤ s ≤ d, and let N
be a finitely generated R-module such that ExtjR(N,R/I) = 0 for all j = n, . . . , s and
depthR ExtqR(R/I,N) ≥ d− s− q for all q = 0, . . . , d− s. Suppose in addition any one
of the following conditions:

(i) TorRt (R/I,N) = 0 for some t ≥ 1;

(ii) ExtiR(R/I,N) = 0 for some i ≥ d+ 1;

(iii) ExtiR(N,R/I) = 0 for some i ≥ d.

Then, pdRN < n.

Proof. In the case that (i) takes place, Lemma 5.3.12 yields pdRN < t <∞, and hence
pdRN < n by Corollary 5.2.7. So it remains to prove the result in the other two cases.
As already pointed out, R/I is strongly rigid as an R-module. Note GidRR/I <

∞ because R is Gorenstein. Moreover, since in particular I is m-primary, we have
(R/I)p = 0 for all prime ideals p 6= m and hence, trivially, R/I has finite projective
dimension on the punctured spectrum of R. Now if (ii) (resp. (iii)) holds then we get
pdRN < n by Corollary 5.3.8 (resp. Corollary 5.3.10). �

Clearly, criteria for the freeness of N can be readily seen by taking n = 1 in the

above theorem. We close the chapter with a few more comments.

Remark 5.3.14. (a) In the case that (i) holds, the result (together with Lemma 5.3.12)
in fact yields pdRN < min{t, n}.

(b) In order to make Theorem 5.3.13 feasible, an obstruction on the shape of N
must be taken into account. Precisely, N cannot be of the form mkN ′, where N ′ is
any non-zero finitely generated R-module and k ≥ 1 is any integer. Indeed, suppose
by way of contradiction that the module mkN ′ fits into the hypotheses of the theorem.
Then we would get

pdRmkN ′ < n <∞
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which by [64, Theorem 1.1] is equivalent to R being regular; this violates our choice of
R.

(c) The case n = s = d of Theorem 5.3.13 gives that if ExtdR(N,R/I) = 0 then m

contains an N -regular element.
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Chapter 6

Questions

In this chapter we gathered some remarks and issues that came up along the

development of the work.

6.1 On Chapter 2

We observe that in some sense there is a duality between two spectral sequences

in this work. Our Mayer-Vietoris spectral sequence 2.1.8 has its components sheaf

cohomologies in partial products of ideals and abuts to the sheaf cohomology in the

sum of the ideals, meanwhile the Lyubeznik spectral sequence B.2.2 (also called Mayer-

Vietoris spectral sequence) has as components local cohomologies supported in partial

sums of ideals and abuts to the local cohomology supported in the product of the given

ideals. So we are motivated to ask the following.

Question 6.1.1. Is there some relation between the spectral sequences 2.1.8 and B.2.2?

Lyubeznik has raised a question in [66] on the degeneration of his spectral se-

quence B.2.2. We ask the same about ours.

Question 6.1.2. Does the spectral sequence 2.1.8 degenerate at second page?

6.2 On Chapter 3

The Mayer-Vietoris spectral sequence provides in propositions 3.1.1 and 3.2.2 and

Corollary 3.2.3 relations between local cohomology modules supported in the irrelevant



ideal, in the ideals generated by products of variables and the *maximal ideal. We thus

ask the following.

Question 6.2.1. Does the Mayer-Vietoris spectral sequence 2.2.1 provide relations
such as those of propositions 3.1.1 and 3.2.2 for an arbitrary k?

6.3 On Chapter 4

Corollary 4.1.5 inspire us to ask the following.

Question 6.3.1. Given a finitely generated R-module M , when is K(M) generalized
Cohen-Macaulay?

Based on sections 4.2 and 4.3, we finish this section by asking the following.

Question 6.3.2. Let M be a finitely generated R-module of depth g and dimension t.
Is it true that

idRM <∞⇔ pdRK
i(M) <∞,∀i = g, ..., t

or
pdRM <∞⇔ idRK

i(M) <∞,∀i = g, ..., t?

6.4 On Chapter 5

As a matter of interest, we reinforce the Miranda-Neto and Jorge-Pérez’ questions

5.1.1, 5.1.6 and Jorgensen’s question 5.1.10.
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Appendix A

Second alternative to the second page

The construction given in this appendix is based on [59].

Let (Σ,≤) be a ordered set and for each α ∈ Σ define

(−∞, α] = {β ∈ Σ : β ≤ α}.

One may be seen that {(−∞, α] : α ∈ Σ} is a basis for a topology of Σ. In particular,

if a1, a2, ..., an are finite sequences of R and I1, I2, ..., In are, respectively, the ideals

generated by them, then the set

Σ = {Ii0 · Ii1 · ... · Iip : p ∈ {0, ..., n− 1} and i0 < i1 < ... < ip}

endowed with the inclusion order turns out to be a topological space. In this way, if

R-mod denotes the category of R-modules then one may consider two other categories:

the category of the inverse systems on R-mod with Σ as the index set, which is denoted

by R-modΣ, and the category of sheaves of R-modules on Σ, denoted by Sh(Σ).

Proposition A.1. Sh(Σ) is equivalent to R-modΣ.

Proof. Let F be a sheaf on Σ. If I, J and K are elements of Σ such that I ⊆ J ⊆ K

then (−∞, I] ⊆ (−∞, J ] ⊆ (−∞, K] is a chain of open subsets of Σ and the diagram

F((−∞, K]) //

((

F((−∞, J ])

vv
F((−∞, I])



commutes, where the morphisms are the corresponding restriction morphisms. More-
over, if F θ−→ G is a morphism of sheaves on Σ, since θ commutes with the corresponding
restrictions, then it induces a morphism between the inverse systems {F((−∞, I])}I∈Σ

and {G((−∞, I])}I∈Σ. Therefore we have constructed a mapping

ζ : Sh(Σ) → R-modΣ

F 7→ {F((−∞, I])}I∈Σ

and one may be checked that ζ(δ ◦ θ) = ζ(δ) ◦ ζ(θ) and ζ(1F) = {1F((−∞,I])}I∈Σ, that
is, ζ is a functor. Now let P : Σ→ R-mod be an inverse system. We have to construct
a sheaf on Σ from P . Given an open subset U of Σ one may define

P(U) = lim←−
I∈U

P (I).

By the universal property of the inverse limit, if V and U are open subsets of Σ

such that V ⊆ U then there exists a unique morphism ρV U such that

P(U)
ρV U //

##

P(V )

{{
P (I)

for all I ∈ V , where the diagonal maps in the diagram are the canonical maps involved.
Again, by the universal property of the inverse limit, we conclude that P is a presheaf
on Σ.

Now, let {Uα}α∈Λ be an open cover of the open subset U of Σ. Suppose that
s ∈ P(U) satisfies s|Uα = 0 for all α ∈ Λ. Given I ∈ U there exists γ ∈ Λ such
that I ∈ Uγ. Since {(−∞, J ]}J∈Σ is a basis for the topology of Σ we have that
I ∈ (−∞, J ] ⊆ Uγ for some J ∈ Σ. It implies the commutativity of the diagram

P(U)

��

//

&&

P(Uγ)

xx
P (I) P((−∞, J ])oo

Once s|Uγ = 0 we conclude that the image of s by the projection P(U)→ P (I) equals
zero. As it holds for every I ∈ U we must have s = 0.

Let (sα) be an element in
∏

αP(Uα) such that sα|Uα∩Uβ
= sβ|Uα∩Uβ

for all α, β ∈ Λ.
Given I ∈ U , if there are α, β ∈ Λ such that I ∈ Uα ∩ Uβ then (−∞, I] ⊆ Uα ∩ Uβ and

sα|(−∞,I] = (sα|Uα∩Uβ
)|(−∞,I] = (sβ|Uα∩Uβ

)|(−∞,I] = sβ|(−∞,I]

which implies that the images of sα and sβ through the morphisms

P(Uα) // P((−∞, I]) // P (I) and P(Uβ) // P((−∞, I]) // P (I)
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respectively, coincide. Let sI be such image and consider s = (sI)I∈U . Notice that, for
any I and J in U such that I ⊆ J , we have J ∈ Uα for some α ∈ Λ and (−∞, I] ⊆
(−∞, J ] ⊆ Uα. Hence sI and sJ can be chosen as the images of sα through the
morphisms P(Uα) → P (I) and P(Uα) → P (J), respectively, which implies that sJ is
the image of sI through P (I)→ P (J). We thus conclude that s ∈ P(U) and s|Uα = sα.
It proves that P is a sheaf.

Let P η−→ Q be a morphism between inverse systems. If U is an open subset of Σ

then there exists a unique morphism ηU such that the diagram

P(U)
ηU //

��

Q(U)

��
P (I) ηI

// Q(I)

commutes.
Given V and U two open subsets of Σ such that V ⊆ U , due to the diagram

above and the fact that η is a morphism of inverse systems, we have commutativity in
the following diagram

P(U)

��

ηU // Q(U)

��
P(V ) ηV

// Q(V )

where the vertical morphisms are the respective restriction morphisms. Again we have
constructed a mapping

ξ : R-modΣ → Sh(Σ)

P 7→ P

and one may also be checked that ξ(η ◦ µ) = ξ(η) ◦ ξ(µ) and ξ({1P (I))}I∈X) = 1P , that
is, ξ is a functor.

Claim A.2. If 1Sh(Σ) and 1
R-modΣ are the identity functors of Sh(Σ) and R-modΣ,

respectively, then ζ ◦ ξ ' 1
R-modΣ and ξ ◦ ζ ' 1Sh(Σ).

Indeed, given a morphism of inverse systems P η−→ Q, since the set {I} is a cofinal
subset of (−∞, I] for every I ∈ Σ, we have

P((−∞, I]) = lim←−
J∈(−∞,I]

P (J) ' P (I)

for every I ∈ Σ. It implies that the diagram

P((−∞, J ])
η(−∞,J]//

��

Q((−∞, J ])

��
P((−∞, I]))η(−∞,I]

// Q((−∞, I])
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is isomorphic to the diagram
P (J)

ηJ //

��

Q(J)

��
P (I)

ηI // Q(I)

for all I, J ∈ Σ such that I ⊆ J . It means that ζ ◦ ξ(η) ' η.

On the other hand, let F θ−→ G be a morphism of sheaves on Σ. Given an open
subset U ⊆ Σ there exists a unique morphism ϕ such that

F(U)
ϕ //

��

lim←−
I∈U
F((−∞, I])

ww
F((−∞, I])

commutes for all I ∈ U . Since ϕ(x) = (x|(−∞,I]) for all x ∈ F(U), {(−∞, I]}I∈U is an
open cover of U and F is a sheaf we conclude that ϕ is an isomorphism. It turns out
to be a functorial isomorphism, that is, the diagram

F(U)
θU //

ϕ

��

G(U)

ϕ

��
lim←−
I∈U
F((−∞, I])

(ξ◦ζ(θ))U
// lim←−
I∈U
G((−∞, I])

commutes for every open subset U ⊆ Σ. Therefore ξ ◦ ζ(θ) ' θ. �

An immediate consequence is the following result.

Corollary A.3. The global sections functor Γ(Σ,_) on Sh(Σ) is isomorphic to the
inverse limit functor lim←−

I∈Σ

on R-modΣ.

Let F be a sheaf of R-modules on Σ, consider the open cover U = {(−∞, I]}I∈Σ

of Σ and denote by Ȟp(U ,F) the p-th Čech cohomology of U with coefficients in F .

[45, Lemma 4.1 chapter III] and Corollary A.3 give a functorial isomorphism

Ȟ0(U ,F) ' lim←−
I∈Σ

F((−∞, I]).

Lemma A.4. [46] The Čech cohomologies {Ȟp(U ,_)}p≥0 form a δ-functor.

Proof. Firstly note that for a given element I ∈ Σ the set {(−∞, I]} is cofinal in the
set of neighborhoods of I with the reverse order given by inclusion. This implies that
if F is a sheaf on Σ then

FI = lim−→
I∈U
F(U) ' F((−∞, I])
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for any I ∈ Σ. Therefore an exact sequence of sheaves on Σ

0→ F ′ → F → F ′′ → 0

induces exact sequences of R-modules

0→ F ′((−∞, I])→ F((−∞, I])→ F ′′((−∞, I])→ 0

for all I ∈ Σ. By taking suitable direct products one has exact sequence of Čech
complexes

0→ Č(U ,F ′)→ Č(U ,F)→ Č(U ,F ′′)→ 0.

One sees that a morphism of short exact sequences of sheaves on Σ induces a morphism
of short exact sequences of the Čech complexes involved. This give us the result. �

[74, Propositions 6.72 and 6.73] says that every sheaf on Σ can be embedded in a

flasque sheaf. [45, Proposition 4.3 chapter III] says that flasque sheaves are lim←−
I∈Σ

-acyclic

and [45, Proposition 1.2A chapter III] says that the derived functors of lim←−
I∈Σ

can be

computed by the Čech cohomology of U . In other words, {Ȟp(U ,_)}p≥0 is a universal

δ-functor and

Ȟp(U ,F) ' lim←−
I∈Σ

(p)F((−∞, I]).

Let q ≥ 0. We may see sheaf cohomology groups as R-modules of the form F(U)

where F is an object in Sh(Σ) and U is an open subset of Σ. Indeed, let M be an

R-module and, if I and J are two ideals in Σ such that I ⊆ J , then the canonical

inclusion I ↪→ J induces a morphism Hq(UJ , M̃) // Hq(UI , M̃) . It is immediate to

see that it defines an object Hq(U•, M̃) in R-modΣ. Furthermore, since {I} is cofinal

in the set (−∞, I], if Hq(U•, M̃) is the sheaf in Sh(Σ) associated to Hq(U•, M̃) then

Hq(U•, M̃)((−∞, I]) = lim←−
J∈(−∞,I]

Hq(UJ , M̃) ' Hq(UI , M̃)

for all I ∈ Σ.

It follows that

Ȟp(U ,Hq(U•, M̃)) ' lim←−
I∈Σ

(p)Hq(UI , M̃)

for all integer p.

The horizontal lines of the first page of the Mayer-Vietoris spectral sequence 2.1.8

define complexes
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Hq(M)• : 0 //Hq(M)0 //Hq(M)1 // · · ·

where

Hq(M)p =
⊕

i0<...<ip

Hq(UIi0 ...Iip , M̃).

One may see that the complex Hq(M)• is isomorphic to the Čech complex of U

with coefficients in Hq(U•, M̃), and from the last isomorphisms, we conclude that, for

every p ≥ 0,

Hp(Hq(M)•) ' lim←−
I∈Σ

(p)Hq(UI , M̃).

Therefore, the second page of the Mayer-Vietoris spectral sequence 2.1.8 is

Ep,q
2 = lim←−

I∈Σ

(p)Hq(UI , M̃).
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Appendix B

Spectral sequences

We devote this appendix to describe some important generalities on spectral

sequences and some examples which are vastly used through the literature, and, in

particular, in this thesis. The reader not familiarized with the general theory of spectral

sequences can found [70, 74, 83] as nice introductory textbooks to get acquainted with

this important homological tool.

B.1 Spectral sequences arising from double complexes

In this section, we follow the textbook [83].

Let A be an abelian category.

Definition B.1. [83, Definition 5.2.1] A spectral sequence in A consists of the follow-
ing data:

i) A family {Ep,q
r } of objects of A defined for all integers p, q and r ≥ 0;

ii) Maps dp,qr : Ep,q
r → Ep+r,q−r+1

r that are differentials in the sense that dd = 0;

iii) Isomorphisms between Ep,q
r+1 and the cohomology of Er at the spot Ep,q

r :

Ep,q
r+1 ' ker(dp,qr )/ im(dp−r,q+r−1

r ).

If for each p and q there exists r0 such that Ep,q
r = Ep,q

r+1 for all r ≥ r0 then we

write Ep,q
∞ for this stable value of Ep,q

r .



Let C be a double complex in A

...
...

...

· · · // Cp−1,q+1 //

OO

Cp,q+1 //

OO

Cp+1,q+1 //

OO

· · ·

· · · // Cp−1,q //

OO

Cp,q d //

d′

OO

Cp+1,q //

OO

· · ·

· · · // Cp−1,q−1 //

OO

Cp,q−1 //

OO

Cp+1,q−1 //

OO

· · ·

...

OO

...

OO

...

OO

Definition B.2. [83, Definition 1.2.6] The total complex Tot(C) of C is defined as

Totn(C) =
⊕
p+q=n

Cp,q

with differential Totn(C)→ Totn+1(C) defined by d′p,q + (−1)pdp,q.

Tot(C) is indeed a complex and we may naturally define two filtrations for this

complex. First, we define the filtration by columns.

Definition B.3. [83, Definition 5.6.1] For each p the sequence F pTot(C) defined as

F pTotn(C) =
⊕
p≥n

Cp,n−p

is a subcomplex of Tot(C).

{F pTot(C)}p defines a filtration of Tot(C) so that it induces a spectral sequence

E (see [83, page 141]). The first and second pages are well known. The first page is

given by

Ep,q
1 = Hq(Cp,•).

Since passing cohomology is a functorial operation, E•,q1 is a complex and the objects

in the second page of E coincides exactly with these homologies, so we use a suggestive

notation:

Ep,q
2 = HpHq(C).

The second filtration of Tot(C) is given by its rows.
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Definition B.4. [83, Definition 5.6.2] For each q the sequence ′F qTot(C) defined as

′F qTotn(C) =
⊕
q≥n

Cn−q,q

is a subcomplex of Tot(C).

In a similar way, {′F qTot(C)}q defines a filtration of Tot(C) and so we have

another spectral sequence ′E. Its first and second pages are given by

′Ep,q
1 = Hq(C•,p) and ′Ep,q

2 = HqHp(C).

Definition B.5. [83, 5.2.11] A spectral sequence E converges to a graded object H,
denoted by

Ep,q
2 ⇒p H

n,

if for each n there exists a decreasing filtration

0 = F n+1Hn ⊂ F nHn ⊂ ... ⊂ F 1Hn ⊂ F 0Hn = Hn

such that, for p+ q = n,
Ep,q
∞ ' F pHn/F p+1Hn.

Theorem B.6. [83, Theorem 5.51] If C is a first quadrant double complex then the
filtrations {F p}p and {′F p}p of Tot(C) are both bounded and

Ep,q
2 ⇒p H

p+q(Tot(C))

and
′Ep,q

2 ⇒p H
p+q(Tot(C)).

B.2 Examples

B.2.1 Čech spectral sequence

In this section, we follow [19].

Let F be a sheaf of abelian groups on X and let U be an open cover of X. Pick

up an injective resolution I• of F , and form the double complex C•(U , I•):
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...
...

...

0 // C0(U , Im) //

OO

C1(U , Im) //

OO

· · · // Cn(U , Im) //

OO

· · ·

...

OO

...

OO

. .
. ...

OO

0 // C0(U , I1) //

OO

C1(U , I1) //

OO

· · · // Cn(U , I1) //

OO

· · ·

0 // C0(U , I0) //

OO

C1(U , I0) //

OO

· · · // Cn(U , I0) //

OO

· · ·

0

OO

0

OO

0

OO

It induces two spectral sequences. Let E be the spectral sequence associated with the

filtration by columns. Its first page is

Ep,q
1 = Hq(Cp(U , I•)) =

∏
i0<...<ip

Hq(Ui0...ip ,F).

We can compute the second page of E as follows. For each q ≥ 0 consider the presheaf

Hq(F)(U) := Hq(U,F)

where U is an open subset of X. Thus the first page can be rewritten as Ep,q
1 =

Cp(U ,Hq(F)) so that E•,q1 is the Čech complex of the open cover U with coefficients

in Hq(F). Therefore

Ep,q
2 ' Hp(U ,Hq(F)).

Let ′E be the spectral sequence associated with the filtration by rows. Its first

page is
′Ep,q

1 = Hq(C•(U , Ip)) = Hq(U , Ip).

Since the sheaves Ip are flasque (see [19, Lemma 4.20]), we have ′Ep,q
1 = 0 for q > 0

and ′Ep,0
1 = Γ(X, Ip). Hence ′Ep,q

2 = 0 for q > 0 and

Hp(X,F) = ′Ep,q
2 ' ′Ep,q

∞ .

Theorem B.1 (Čech Spectral Sequence). [19, Theorem 5.32] Let U be an open cover
of a topological space X, and let F be a sheaf of abelian groups on X. There is a
spectral sequence E whose first and second pages are given by

Ep,q
1 =

∏
i0<...<ip

Hq(Ui0...ip ,F) and Ep,q
2 = Hp(U ,Hq(F))

and converges to the sheaf cohomology H•(X,F).
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B.2.2 Another type of the Mayer-Vietoris spectral sequence

The principal tool in [66] is another spectral sequence, which they call by Mayer-

Vietoris spectral sequence as well. It is a generalization of the spectral sequence that

appears first in [1]. Here we give a sketch of the construction of this spectral sequence.

For the details see [66].

Recall that for an ideal J of a Noetherian ring R, ΓJ(M) denotes the submodule

of the finitely generated R-module M consisting of the elements of M annihilated by

some power of J , see for example [17, 58]. If J ′ ⊆ J , we let γJ,J ′ : ΓJ(M) ↪→ ΓJ ′(M)

be the natural inclusion. Hence, given ideals I1, ..., In ⊆ R, the sequence

Γ•(M) : 0 // Γ−n+1(M) d
−n+1
// Γ−n+2(M)d

−n+2
// · · · d−1

// Γ0(M) // 0

where Γ−p(M) =
⊕

i0<...<ip
ΓIi0+...+Iip

(M) and d−p(x) = ((−1)jγJ,Jj(x))j for every ele-

ment x ∈ ΓJ(M) ⊆ Γ−p(M), where J = Ii0 + ...+ Iip and Jj = Ii0 + ...+ Ij−1 + Ij+1 +

...+ Iip .

It may be seen that Γ•(_) defines a functor from the category of R-modules to

the category of complexes of R-modules. Moreover, if M is injective, then

Hp(Γ•(M)) =

ΓI1∩...∩In(M), if p = 0

0, else.

Hence, if M → E• is a injective resolution of M , then the third quadrant double

complex Γ•(E•) yields a spectral sequence collapsing at its second page, with the

modules Hq
I1∩...∩In(M) at the spot (0, q). Meanwhile, since homology commutes with

direct sums, the other spectral sequence is given by E−p,q1 =
⊕

i0<...<ip
Hq
Ii0+...+Iip

(M).

Convergence asserts the following result.

Theorem B.2. [66, Theorem 2.1] Suppose R Noetherian and let I1, ..., In ⊂ R be ideals
and let M be an R-module. There exists a spectral sequence

E−p,q1 =
⊕

i0<...<ip

Hq
Ii0+...+Iip

(M)⇒p H
q−p
I1∩...∩In(M).

As [66] says, if n = 2, i.e., there are just two ideals, this spectral sequence

becomes the standard Mayer-Vietoris long exact sequence. Furthermore, if n ≤ 3, then

the Mayer-Vietoris spectral sequence degenerates at E2.
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B.2.3 Koszul-Čech spectral sequence

Assume R Noetherian. Let a = a1, ..., am be a finite sequence of R and let I

be the ideal generated by a. Let x = x1, ..., xn also be a sequence of elements of R.

Consider the Čech complex of R associated to a, see Definition 1.1.1, C•a (R), and the

Koszul complex of R associated to x, K•(x), see [18]. Let M be an R-module. We

may consider the first quadrant double complex C•a (R)⊗R K•(x)⊗RM :

0

��

0

��

0

��
0 // C0

a (R)⊗R Kn(x)⊗RM //

��
C1

a (R)⊗R Kn(x)⊗RM //

��
· · · // Cm

a (R)⊗R Kn(x)⊗RM //

��
0

...

��

...

��

. . .
...

��
0 // C0

a (R)⊗R K1(x)⊗RM //

��

C1
a (R)⊗R K1(x)⊗RM //

��

· · · // Cm
a (R)⊗R K1(x)⊗RM //

��

0

0 // C0
a (R)⊗R K0(x)⊗RM //

��

C1
a (R)⊗R K0(x)⊗RM //

��

· · · // Cm
a (R)⊗R K0(x)⊗RM //

��

0

0 0 0

It induces two spectral sequences that converge to the same module. Let E

be the spectral sequence induced by passing cohomology on horizontal and let ′E

be the spectral sequence considering vertical homology. Since both Koszul and Čech

complexes considered are composed by free R-modules, one has

Ep,q
1 = Hq

I (M)⊗R Kp(x) and Ep,q
2 = Hp(x;Hq

I (M))

and
′Ep,q

1 = Cp
a (R)⊗R Hq(x;M) and ′Ep,q

2 = Hp
I (Hq(x;M))

where Hq(x;_) denotes the q-th Koszul homology of the sequence x. Both spectral

sequences converge to a graded module H in such a way that

Ep,q
2 = Hp(x;Hq

I (M))⇒p H
p−q

and
′Ep,q

2 = Hp
I (Hq(x;M))⇒p H

q−p.

These spectral sequence are called Koszul-Čech spectral sequence. Interesting

recent applications for them can be found in [14] and [35].
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Now we consider two cases for these spectral sequences that come out to be useful

in this thesis. First, let M be a finitely generated R-module and suppose that x forms

a M -regular sequence. Hence ′Ep,q
2 = Hp

I (Hq(x;M)) = 0 for all q > 0 so that

Hp
I (M/xM) = ′Ep,0

2 ' ′Ep,0
∞ ' H−p

for all p ≥ 0. Therefore there is spectral sequence

Ep,q
2 = Hp(x;Hq

I (M))⇒p H
q−p
I (M/xM).

For the second case, suppose that R is a Zk-graded ∗local ring, a is a sequence

of homogeneous ideal of positive degree and x is an R-regular sequence generating the
∗local maximal ideal. It follows that Hq(x;M) is annihilated by the ∗local maximal

ideal meanwhile every homogeneous element ai acts as an invertible element of ′Ep,q
1

for all p > 0 so that ′Ep,q
1 = Cp

a (R)⊗R Hq(x;M) = 0 for all p > 0 and

TorRq (M,R/(x)) ' Hq(x;M) = ′E0,q
1 = ′E0,q

∞ ' Hq

for all q ≥ 0. Therefore there is a spectral sequence

Ep,q
2 = Hp(x;Hq

I (M))⇒p TorRp−q(M,R/(x)).

Notice that one may suppose R local, x a generating set of the maximal ideal and I a

proper ideal of R. An alike argument applies to this case.

B.2.4 Foxby spectral sequences

Foxby spectral sequences make up a quite useful homological tool. They were

named after their first use in Foxby’s work [38]. They have several applications; for

example, they can be used to prove the local duality theorem (see [17, Theorem 12.1.20]

or [58, Theorem 11.44]) or to get relations between Bass numbers and the minimal

number of generators of certain modules, Bass numbers and Betti numbers, injective

dimension and depth (Ischebeck’s formula). See for instance [18, Exercises 3.1.24,

3.1.25, 3.3.26, Proposition 3.3.11]. It should be noticed that all the discussion in this

section can be used in the graded case.

Let R and S be Noetherian rings and consider R→ S a ring homomorphism.
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Lemma B.3. If M is a finitely generated R-module, N a S-module and E an injective
S-module, then there exists isomorphism

M ⊗R HomS(N,E) ' HomS(HomR(M,N), E)

which is functorial in M .

Proof. The functor HomS(HomR(_, N), E) is a right exact functor that commutes with
finite direct sums defined from the category of finitely generated R-modules into the
category of abelian groups. Therefore

HomS(HomR(_, N), E) ' _⊗R HomS(HomR(R,N), E) ' _⊗R HomS(N,E).

�

Theorem B.4. If M is a finitely generated R-module, and N and P are S-modules,
then there are two first quadrant spectral sequences

Ep,q
2 = ExtpS(ExtqR(M,N), P ) and ′Ep,q

2 = TorRp (M,ExtqS(N,P )).

Furthermore, they converge to the same limit H whenever eitherM has finite projective
dimension or P has finite injective dimension (as S-module):

Ep,q
2 = ExtpS(ExtqR(M,N), P )⇒p H

q−p

and
′Ep,q

2 = TorRp (M,ExtqS(N,P ))⇒p H
p−q.

Proof. Let F• be a free resolution of M and let E• be a injective resolution of P (as
S-module). By Lemma B.3 one has isomorphism of first quadrant double complexes

F• ⊗R HomS(N,E•) ' HomS(HomR(F•, N), E•).

By using the exactness of the functors Fi ⊗R _ and HomS(_, Ej), the right hand side
gives rise to the spectral sequence E whereas the left hand side gives rise to the spectral
sequence ′E as follows.

Ep,q
1 = HomS(ExtqR(M,N), Ep) and Ep,q

2 = ExtpS(ExtqR(M,N), P ),

and
′Ep,q

1 = Fp ⊗R ExtqS(N,P ) and Ep,q
2 = TorRp (M,ExtqS(N,P )).

The convergence follows from Theorem B.6. �
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As already mentioned, local duality is an immediate consequence of the conver-

gence of the two spectral sequences above. Indeed, suppose (R,m) is Cohen-Macaulay

local of dimension d with canonical module ωR, let E be the injective hull of the residue

field of R and denote _∨ = HomR(_, E). By taking R = S,N = ωR and P = E in

Theorem B.4, both spectral sequences degenerate so that

Hd−i
m (M) ' TorRi (M,ω∨R) ' ′Ei,0

2 ' H i ' E0,i
2 ' ExtiR(M,ωR)∨

for all i ≥ 0.

B.2.5 Suzuki spectral sequences

The spectral sequences in this section were first used by Suzuki in [80]. They are

quite useful in the study of generalized cohomology modules, see for example [29, 48,

80]. Here we suppose that R is a Noetherian local ring with maximal ideal m.

Lemma B.5. [80, Theorem 1.4] Let M and N be finitely generated R-modules, x =

x1, ..., xn in m generating a m-primary ideal, and for each m ≥ 0, K•(xm;R) denotes
the Koszul complex of R with respect to xm = xm1 , ..., x

m
n and F• be a free resolution of

M . If Cm denotes the total complex associated to the double complex K•(xm;R)⊗RF•,
then H i

m(M,N) ' lim−→m
H i(HomR(Cm, N)).

Lemma B.6. ([80, Proposition 1.8]) Let R be a local ring. If M,N are finitely gener-
ated R-modules then there exists a first quadrant spectral sequence

Hp
m(ExtqR(M,N))⇒p H

p+q
m (M,N).

Proof. First let F• be a free resolution of M and notice that, for each m ≥ 0, from the
hom-tensor adjunction, there is an isomorphism of double complexes

HomR(K•(x
m;R)⊗R F•, N) ' HomR(K•(x

m;R),HomR(F•, N))

and by the lemma above the total complex associated to this double complex is iso-
morphic to HomR(Cm, N). It assures the existence of a spectral sequence

Hp(HomR(K•(x
m;R),ExtqR(M,N))⇒p H

p+q(HomR(Cm, N)).

It consists of a direct system of spectral sequences and thus the result follows by
applying lim−→m

to it. �

Lemma B.7. ([80, Proposition 1.7]) Let R be a local ring. If M,N are finitely gener-
ated R-modules then there exists a first quadrant spectral sequence

ExtpR(M,Hq
m(N))⇒p H

p+q
m (M,N).
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Proof. The construction of the desired spectral sequence is completely analogous to
that of Lemma B.7 by considering the other spectral sequence arising from the double
complex

HomR(K•(x
m;R)⊗R F•, N) ' HomR(F•,HomR(K•(x

m;R), N)).

instead. �

It should be observed that both spectral sequences above can be constructed for

any ideal I. Indeed, it can be proved that for two finitely generated M and N over a

(non-necessarily local) ring R there exist two Grothendieck spectral sequences

Hp
I (ExtqR(M,N))⇒p H

p+q
I (M,N)

and

ExtpR(M,Hq
I (N))⇒p H

p+q
I (M,N).

See [74] for Grothendieck spectral sequences.

B.2.6 Cohomological dimension estimate

Theorem B.8. Let a = a1, ..., an be a finite sequence of elements of R, and let M and
N be two R-modules. If I is the ideal generated by a then there exist a graded R-module
H and two spectral sequences

E−p,q2 = TorRp (M,Hq
I (N))⇒p H

q−p

and
′Ep,−q

2 = Hp
I (TorRq (M,N))⇒p H

p−q.

Proof. Let F• be a free resolution of M and consider the second quadrant double
complex F• ⊗R C•a (R)⊗R N :
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0 0 0

...

OO

...

OO

...

OO

· · · // F2 ⊗R Cn
a (R)⊗R N //

OO

F1 ⊗R Cn
a (R)⊗R N //

OO

F0 ⊗R Cn
a (R)⊗R N //

OO

0

...

OO

...

OO

...

OO

· · · // F2 ⊗R C1
a (R)⊗R N //

OO

F1 ⊗R C1
a (R)⊗R N //

OO

F0 ⊗R C1
a (R)⊗R N //

OO

0

· · · // F2 ⊗R C0
a (R)⊗R N //

OO

F1 ⊗R C0
a (R)⊗R N //

OO

F0 ⊗R C0
a (R)⊗R N //

OO

0

0

OO

0

OO

0

OO

By passing homology on horizontal one gets spectral sequence whose first and
second pages are

′Ep,−q
1 = TorRq (M,N)⊗R Cp

a (R) and ′Ep,−q
2 = Hp

I (TorRq (M,N)).

Since F• is a resolution, the other spectral sequence E is such that

E−p,q1 = Fp ⊗R Hq
I (N) and E−p,q2 = TorRp (M,Hq

I (N)).

The convergence follows from Theorem B.6. �

This spectral sequence is useful for estimating cohomological dimension of any

module in terms of the cohomological dimension of the ring. Precisely, by considering

the hypothesis of the theorem above, cdI(M) ≤ cdI(R). Indeed, write cdI(R) = t and

suppose N = S is a faithfully flat ring extension of R. ThusH i
I(M⊗RS) ' H i

I(M)⊗RS

for all integer i and, from the theorem above, the spectral sequence ′E is such that
′Ep,−q

2 = 0 for all q > 0 so that Hp ' Hp
I (M) ⊗R S for all integer p. Therefore, there

exists spectral sequence

E−p,q2 = TorRp (M,Hq
I (S))⇒p H

q−p
I (M)⊗R S.

Since H i
I(S) ' H i

I(R) ⊗R S for all integer i, one has E−p,q2 = 0 for all q > t. By

convergence we conclude that

M ⊗R H t
I(S) ' H t

I(M)⊗R S

and that

Hj
I (M)⊗R S 'M ⊗R Hj

I (S) = 0

for all j > t. Since S is faithfully flat one has Hj
I (M) = 0, that is, cdI(M) ≤ t.
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B.2.7 Local cohomology modules supported in I, J and I + J

The spectral sequence in this section has also been used in [22] and [28].

Theorem B.9. Let a = a1, ..., ar and b = b1, ..., bs be two finite sequences of R and let
M be an R-module. If I and J are the ideals generated by a and b, respectively, then
there exists spectral sequence

Ep,q
2 = Hp

I (Hq
J(M))⇒p H

p+q
I+J(M).

Proof. Consider the first quadrant double complex C•a (R)⊗R C•b (R)⊗RM :

0 0 0

0 // Cs
b(R)⊗R C0

a (R)⊗RM //

OO

Cs
b(R)⊗R C1

a (R)⊗RM //

OO

· · · // Cs
b(R)⊗R Cr

a (R)⊗RM //

OO

0

...

OO

...

OO

. .
. ...

OO

0 // C1
b (R)⊗R C0

a (R)⊗RM //

OO

C1
b (R)⊗R C1

a (R)⊗RM //

OO

· · · // C1
b (R)⊗R Cr

a (R)⊗RM //

OO

0

0 // C0
b (R)⊗R C0

a (R)⊗RM //

OO

C0
b (R)⊗R C1

a (R)⊗RM //

OO

· · · // C0
b (R)⊗R Cr

a (R)⊗RM //

OO

0

0

OO

0

OO

0

OO

By passing homology on horizontal one gets spectral sequence E whose second
page is given by

Ep,q
2 = Hp

I (Hq
J(M)).

The result follows by noticing that C•a (R) ⊗R C•b (R) ⊗R M ' C•a,b(R) ⊗R M . (It can
be proved, for instance, using the characterization of Čech complexes as direct limit of
Koszul complexes, see [22].) �

B.2.8 Tensor-Hom adjunction

Let S → R be a rings homomorphism.

Theorem B.10. Given M and N R-modules and P a S-module, there exist graded
R-module and spectral sequences

Ep,q
2 = ExtpR(M,ExtqS(N,P ))⇒p H

p+q

and
′Ep,q

2 = ExtpS(TorRq (M,N), P )⇒p H
p+q.
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Proof. By taking a free resolution F• of M (as R-module) and an injective resolution
E• of P , the Tensor-Hom adjunction gives us isomorphism of first quadrant double
complexes

HomR(F•,HomS(N,E•)) ' HomS(F• ⊗R N,E•).

This isomorphism gives rise to two spectral sequences E and ′E converging to Hp+q

and such that

Ep,q
1 = HomR(Fp,ExtqS(N,P )) and Ep,q

2 = ExtpR(M,ExtqS(N,P ))

and
′Ep,q

1 = HomS(TorRq (M,N), Ep) and ′Ep,q
2 = ExtpS(TorRq (M,N), P )

whence the result. �
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