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Resumo

Neste trabalho apresentamos um estudo sobre a conhecida família de complexos de

Buchsbaum-Eisenbud via a abordagem de sequência espectral de Koszul-Cech dada

por Bouça e Hassanzadeh. Primeiro, construímos essa família de complexos usando a

estrutura advinda da sequência espetral de Koszul-Čech e damos novas demonstrações

para fatos básicos como aciclicidade e suporte das homologias. Segundo, usando a

convergência de espectrais, damos uma formula para multiplicidade de Buchsbaum-Rim

como o gênero aritmético (característica de Euler-Poincaré) de feixes de homologias de

Koszul em um espaço projetivo sobre um esquema base Noetheriano arbitrário. Essa

fórmula é uma generalização de Serre, a fórmula da multiplicidade de Hilbert-Samuel

de um sistema de parâmetros para o caso da multiplicidade de Buchsbaum-Rim. Com

o proposito de obter essa formula, introduzimos uma noção de função de Hilbert de

um anel graduado sobre um anel de base Noetheriano arbitrário.

Palavras-chave: Sequência espectral Koszu-Cech; Complexos de Buchsbaum-Eisenbud;

Multiplicidade de Buchsbaum-Rim.
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Abstract

In this work we present an study of the known family of Buchsbaum-Eisenbud com-

plexes via the approach of Koszul-Čech spectral sequences given by Bouça and Hassan-

zadeh. We first construct this family of complexes using the Koszul-Čech structure and

give new proofs for the basic facts as acyclicity and support of the homologies. Sec-

ond, via convergence of spectral sequences, we give a formula of the Buchsbaum-Rim

multiplicity as the arithmetic genus (Euler-Poincaré characteristic) of Koszul homology

sheaves on a projective space over an arbitrary Noetherian base scheme. This formula

is a generalization of Serre, the formula for the Hilbert-Samuel multiplicity of a sys-

tem of parameters to the case of Buchsbaum-Rim multiplicity. In order to obtain this

formula, we introduce a notion of Hilbert function of a graded ring over an arbitrary

Noetherian base ring.

Keywords: Koszul-Cech spectral sequences; Buchsbaum-Eisenbud complexes; Buchsbaum-

Rim multiplicity.

v



Agradecimentos

Agradeço a Deus, à minha família, à minha comunidade de fé e aos meus amigos.

Agradeço aos professores envolvidos na produção e na avaliação deste trabalho de tese,

em especial aos professores Hamid e Vinícius.

Agradeço a todos do Departamento de Matemática da UFPB. Aos professores Naéliton,

Ricardo, Mírian, Ugo e Napóleon, pelos cursos; aos professores Cleto, Manassés, Flank,

Ricardo e Damião, pelo apoio e pelo suporte nas questões burocráticas. Ao professor

Roberto (in memoriam). Ao secretário Júnior. Aos alunos que se tornaram amigos,

em especial Rafael.

Entre outros, agradeço a Mylena, aos amigos do Departamento de Matemática da

UFPE e aos amigos da UPE.

vi



“Se o Senhor não edificar a casa, em vão trabalham os

que edificam; se o Senhor não guardar a cidade, em vão

vigia a sentinela.”

Salmos 127:1

vii



Dedicatória

À minha família, à minha comunidade

de fé e aos meus amigos.

viii



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Preliminaries 5

1.1 The Koszul complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Definition and some properties . . . . . . . . . . . . . . . . . . . 5

1.1.2 Graded Koszul complex . . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Multiplicity and Euler-Poincaré characteristic . . . . . . . . . . 8

1.2 Local cohomology review . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 I-torsion functor and local cohomology modules . . . . . . . . . 9

1.2.2 Direct limits of Ext modules and Ideal transform . . . . . . . . 9

1.2.3 Čech complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Sheaf cohomology on projective scheme . . . . . . . . . . . . . . . . . . 13

1.3.1 Some definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Sheaf cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.3 Čech cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Spectral sequence of a double complex . . . . . . . . . . . . . . . . . . 16

1.4.1 Spectral sequences . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.2 Double complex . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Buchsbaum-Eisenbud complexes 20

2.1 Koszul-Čech spectral construction . . . . . . . . . . . . . . . . . . . . . 20

2.2 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Depth and acyclicity properties . . . . . . . . . . . . . . . . . . . . . . 31



3 The Euler-Poincaré characteristic of B(Φ) 35

3.1 Buchsbaum-Rim multiplicity . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Hilbert function over an Noetherian base ring . . . . . . . . . . . . . . 39

3.3 A genus formula for the Buchsbaum-Rim multiplicity . . . . . . . . . . 42

3.4 Comments and questions . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Appendix

A Some results 51

A.1 A natural duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.2 Spectral sequence in finite length . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 54

x



Introduction

Let R be a Noetherian local ring with maximal ideal m and dimension d > 0.

If I is a ideal of definition of a finitely generated R-module L, then we can define

e(I, L) the Hilbert-Samuel multiplicity of I on L as being the positive integer d!·(the

coefficient of the term of degree d in the Hilbert-Samuel polynomial of I on L), where

this polynomial is obtained from the function ν 7→ `R(L/IνL), and `R denotes the

length over R. In their work [BR64], Buchsbaum and Rim introduced and studied a

multiplicity associated to N a submodule of finite colength in a finite free R-module

G = Rg, that is, `R(G/N) < ∞. This multiplicity generalizes the Hilbert-Samuel

multiplicity, and nowadays is called the Buchsbaum-Rim multiplicity. In more detail,

the function

λN(ν) = `R

(
Sν(G)

Rν(N)

)
is eventually a polynomial PN(ν) of degree d + g − 1 [BR64, Theorems 3.1 and 3.4],

where S(G) denotes the symmetric algebra of G and R(N) is the image of the induced

map from S(N) to S(G). So, the Buchsbaum-Rim multiplicity of N on G, denoted by

br(N), is the positive integer (d+ g−1)!·(the coefficient of the term of degree d+ g−1

in the polynomial PN(ν)).

Though not surprising, it is not trivial that the Buchsbaum-Rim multiplicity has

explanations in regard to the Hilbert-Samuel multiplicity. Several properties of the

Hilbert-Samuel multiplicity are extended to the Buchsbaum-Rim multiplicity, for ex-

ample characterization of reduction [KT96] and [SUV01]; relation between multiplicity

and reduction number [BUV01]; Lech’s inequality [NW20]. The interesting graphical

computations by Jones write the Buschsbaum-Rim multiplicity in terms of Hilbert-



Samuel multiplicty [J01], which motivated the work [CLU08] using linkage theory.

While the Hilbert-Samuel multiplicity is a classical numerical invariant to study

isolated singularities, the Buchsbaum-Rim multiplicity is a modern algebraic tool to

study singularities of higher codimensions. The importance and geometric significance

of the Buchsbaum-Rim multiplicity are due to seminal works of Gaffney [G90] [G93]

in the study of Whitney equisingularities. Kleiman has also investigated the geometric

meaning of Buchsbaum-Rim multiplicity and developed many aspects of the theory,

e.g. [KT96], see too the projection formula and the associative formula [K17].

A well-known construct is the Koszul complexK•(c, L) of a sequence c = c1, . . . , cf

of elements of a commutative ring R with coefficients in an R-module L. The prop-

erties concerning to the ideal generated by c and the R-module L that we can obtain

from the Koszul complex make it an indispensable tool. In 1962, Eagon and Northcott

generalized the Koszul complex of a sequence to one of a g × f matrix

Φ =


c11 c12 · · · c1f

c21 c22 · · · c2f

...
... . . . ...

cg1 cg2 · · · cgf


with g ≤ f , see [EN62]. Two years after, Buchsbaum and Rim defined a family of

complexes associated to the matrix Φ, see [BR64]. The complex of Eagon and Northcott

and the family of complexes of Buchsbaum and Rim are obtained by different way, while

the first complex tries to solve the quotient of R by the ideal of the maximal minors

of Φ the second considers exterior powers of the cokernel of the map defined by Φ,

including M = Coker(Φ). Both admit a version with coefficients in an R-module L. In

1973, Buchsbaum and Eisenbud introduced a family of complexes Cν• associated to the

matrix Φ for each integer ν, which bears their names [BE73], see also [E95], and in this

same year Kirby simultaneously constructed this same family, denoted by K•(Φ, L, ν),

in a different way, which he called generalized Koszul complex [Kir73]. This new family

satisfies the folowing properties:

(i) K•(Φ, L, 0) is the Eagon-Northcott complex;

(ii) K•(Φ, L, 1) is one of the Buchsbaum-Rim complexes;

2



(iii) when g = 1, K•(Φ, L, ν) is the Koszul complex of the sequence c1, . . . , cf , for all

ν;

(iv) There is a duality, i.e., K•(Φ, L, ν) ' K•(Φ, f − g − ν).

Back to Buchsbaum and Rim’s work [BR64], one of the most difficult results was

to show that the difference function of the polynomial PN(ν) is indeed the Euler-

Poincaré characteristic of its family of complexes [BR64, Theorem 4.2], and thus, they

could show that the Euler-Poincaré characteristic of the Buchsbaum-Rim complex is

the Buchsbaum-Rim multiplicity, if N = im(Φ) with Φ a parameter matrix, that

is, `R(Coker Φ) < ∞ and f − g + 1 = d. In 1985, Kirby shows that the Euler-

Poincaré characteristic of his generalized Koszul complex B(Φ) is the Buchsbaum-Rim

multiplicity br(N), see [Kir85, Theorem 4].

In this thesis, which was contemplated in [BFHN21], we use the Bouça and Has-

sanzadeh construction of the Buchsbaum-Eisenbud complexes, which uses the Koszul-

Čech spectral sequence [BHa19, Section 3], to give new proof to basic properties of

these complexes. The Koszul-Čech construction is a powerful algebraic tool to prove

these basic properties. Using the convergence of spectral sequences, we describe the

Buchsbaum-Rim multiplicity as the Euler-Poincaré characteristic (arithmetic genus)

of special sheaves on a projective space over an arbitrary Noetherian base scheme.

Yet another geometric nature of this multiplicity. This is another extension of Serre’s

formula of Hilbert-Samuel multiplicity in which the multiplicity is described as the

Euler-Poincaré characteristic of the Koszul homology, c.f. [Ser65] and [BH98, Theorem

4.7.6 and notes on page 203].

We begin this thesis with some preliminaries, in Chapther 1. There are a lot of

objects which will be used in the text, for example: Koszul complexes, Čech complexes,

local cohomology, sheaf cohomology, spectral sequences, etc. We will give a brief

description of these objects and some results about them, to support the beginner

reader.

In Chapter 2, Section 2.1 recaps the result of [BHa19] on the Koszul-Čech spectral

sequence. We let B•(Φ, L, ν) denote the complexes derived from this spectral sequence.

These are the same as the generalized Koszul complex of Kirby, K•(Φ, L, ν); and the

Buchsbaum-Eisenbud complex Cν• . In Section 2.2, we present basic properties, some of

3



which (re)proved using the Koszul-Čech spectral as the natural exact sequence 2.2.3 and

the useful property about the support of the homologies of B•(Φ, L, ν) 2.2.4. Section

2.3 ends this chapter with the depth and acyclicity properties of B•(Φ, L, ν). Lemma

2.3.1, which we (re)prove, and the support property yield the grade sensitivity 2.3.2.

In Chapter 3, we first present the definition of the Buchsbaum-Rim multiplicity

and of all objects involved, the Kirby’s result which relates this multiplicity with the

Euler-Poincaré characeristic of the homologies of B•(Φ, L, ν) and a dicussion about

parameter module using the theory of reduction of modules. Section 3.2 introduces

a formal notion of the Hilbert function in the case of graded rings over an arbitrary

Noetherian base ring, whereas the classical theory of Hilbert function is over an Ar-

tinian base ring. Finally, in Section 3.3, Theorem 3.3.4 determines the relation between

the Euler-Poincaré characteristic of B•(Φ, L, ν), which is the Buchsbaum-Rim multi-

plicity br(im(Φ), L), and the Hilbert polynomials of Koszul homologies of a symmetric

algebra. This Theorem is a generalization of Serre’s theorem on the relation between

the Hilbert-Samuel multiplicity and the length of Koszul homologies, see [Ser65] and

[BH98, Theorem 4.7.5 and 4.7.4]. More explicitly:
Theorem. Let R be a Noetherian local ring, N = im(Φ) is a finite colength

submodule and Hj := Hj(γ) is the j-th Koszul homology module. Then for any integer
ν

PH0(ν)− PH1(ν) + · · ·+ (−1)fPHf (ν) =

{
br(N) , if Φ is a parameter matrix,

0 , otherwise;

where PHj(ν) is the Hilbert polynomial of Hj and γ is the ideal of S(Rg) such that

S(Rg)/ γ ' S(Coker(Φ)). Clearly, God is in the details! To establish this theorem,

one needs a generalization of the concept due to Serre (which relates the difference

between Hilbert function and Hilbert polynomial with local cohomology modules, see

[BH98, Theorem 4.4.3] and Definition 3.2.1) for projective space over any affine scheme

instead of projective space over a closed point. We give an example using Macaulay2 of

this theorem, which was motivated by the computation of Jones [J01]. Corollary 3.3.8

is a genus explanation of the Buchsbaum-Rim multiplicity, which justifies the title of

[BFHN21]. We finish this thesis work with some questions, in Section 3.4.

The appendix contains two results used to prove Lemma 2.3.1 and Theorem 3.3.2.

The first is a duality given by Jouanolou [Jou09] and the second is a fact about "Euler-

Poincaré characteristic" of pages of a spectral sequence with finite length terms.
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Chapter 1

Preliminaries

1.1 The Koszul complexes

The goal of this section is to recall the definition and results used in this work,

for support the reader to understand the details of the tools and proofs in all text. We

will present and comment the results, but quote all them.

In the first subsection we recall the Koszul complex. We will give some properties:

self-duality, the grade sensitivity and a property that uses the concept of tensor product

of exterior algebras to put the Koszul as an certain invariant. In the second subsection,

we present the graded Koszul complex. In the third subsection we recall the concept of

multiplicity and its relation with the Euler-Poicaré characteristic of homology modules

of Koszul complex, due to Serre [Ser65]. We recommend to the reader the Section 1.6

and Section 4.7 of the Part I in [BH98], for more details of the Koszul complex and its

structural properties as exterior algebra and the concept of multiplicity, respectively.

1.1.1 Definition and some properties

Let R be a commutative ring, and a = a1, . . . , af ∈ R be a sequence of elements.

We define the Koszul complex of the sequence a, denoted by K•(a), as the complex

0→ Kf (a)→ · · · → Kj(a)
∂j→ Kj−1(a)→ · · · → K1(a)

∂1→ K0(a)→ 0



where Kj(a) = R(fj) and the differentials

∂j(ei1 ∧ · · · ∧ eij) 7→
j∑

k=1

(−1)kaikei1 ∧ · · · ∧ êik ∧ · · · ∧ eij

with 1 ≤ i1 < · · · < ij ≤ f and in the right side êik means to omit eik . For an R-module

M , then

K•(a,M) := K•(a)⊗RM

is the Koszul complex with coefficients in M . We will denote Hi(a,M) for the i-th

homology module of the Koszul complex K•(a,M), and denote H i(a,M) for the i-th

cohomology module of the dual K•(a,M) := HomR(K•(a),M), i.e.,

Hi(a,M) = Hi(K•(a,M));

H i(a,M) = H i(HomR(K•(a),M)).

Proposition 1.1.1 (Self-duality). Let R be a commutative ring, a = a1, . . . , af ∈ R
be a sequence of elements and M be an R-module. Then

K•(a,M) ' K•(a,M).

In particular, Hi(a,M) ' Hf−i(a,M) for all i.

Proof. [BH98, Proposition 1.6.10]

Theorem 1.1.2 (Grade sensitive). Let R be a Noetherian ring, a = (a) = (a1, . . . , af )

be an ideal of R and M be an R-module. If M 6= IM , then

grade(I,M) = max{i ∈ N;Hf−i(a,M) 6= 0}.

Proof. [BH98, Theorem 1.6.7]

Let M be an R-module and M⊗i be the i-th tensor product of M for i ≥ 1 and

M⊗0 = R. We define the tensor algebra of M by⊗
M =

⊕
i≥0

M⊗i,

and the exterior algebra of M by∧
M = (

⊗
M)/I,

6



where I is the two-sided ideal generated by the elements x ⊗ x, with x ∈ M . The

multiplication in
∧
M is denoted by x ∧ y and the components is denoted by

∧iM ,

called the i-th exterior power of M

∧
M =

⊕
i

i∧
M.

Proposition 1.1.3. Let R be a commutative ring, a = a1, . . . , af be a sequence of
elements and a′ = a1, . . . , ag with g ≤ f . Then

K•(a) = K•(a
′)⊗

•∧
Rf−g,

here
∧•Rf−g means a complex with zero differentials. In particular, for an R-module

M , we have

H•(a,M) = H•(a
′,M)⊗

•∧
Rf−g,

that is,

Hi(a,M) =
∑
k+j=i

Hk(a
′,M)⊗

j∧
Rf−g.

Proof. [BH98, Proposition 1.6.21]

1.1.2 Graded Koszul complex

Let S =
⊕

ν≥0 S[ν] be a graded ring, and γ = γ1, . . . , γf ∈ S be a sequence of

homogeneous elements, with deg(γj) = αj ≥ 0. We define the graded Koszul complex

of the sequence γ, denoted by K•(γ), as the complex

0→ Kf (γ)→ · · · → Kj(γ)
∂j→ Kj−1(γ)→ · · · → K1(γ)

∂0−→ K0(γ)→ 0

with the terms

Kj(γ) =
⊕
|I|=j

S(−∑j
k=1αik)

where I = (i1, . . . , ij), with 1 ≤ i1 < · · · < ij ≤ f ; and the differentials

∂j(ei1 ∧ · · · ∧ eij) 7→
j∑

k=1

(−1)kγikei1 ∧ · · · ∧ êik ∧ · · · ∧ eij

where êik means to omit eik . Due to the torsion on the terms in K•(γ), the differentials

are homogeneous maps, and thus, the homology modules H•(γ) are graded S-modules.

7



The component K•(γ)[ν] is a complex of S0-modules and it is called the strand of the

graded complex K•(γ) on degree ν. So, for an S-module N , we have

Hi(γ,N ) =
⊕
ν∈Z

Hi(K•(γ,N )[ν])

that is, Hi(γ,N )[ν] = Hi(K•(γ,N )[ν]).

1.1.3 Multiplicity and Euler-Poincaré characteristic

Let (R,m) be a Noetherian local ring of dimension d and M 6= 0 a finitely

generated R-module. A proper ideal I ⊂ R is called an ideal of definition of M if

`R(M/IM) < ∞, where `R denotes the length over R. We define the Hilbert-Samuel

function by the assignment

n 7→ `R(M/In+1M)

and it is a polynomial function of degree dim(M) for large n. So, there is a polynomial

function

PI(n,M) =
d∑
i=0

(−1)iei

(
n+ d− i− 1

d− i

)
for integers ei, such that PI(n,M) = `R(M/In+1M) for n >> 0. This polynomial

fucntion is called the Hilbert-Samuel polynomial of M with respect to I. We define the

multiplicity of I on M , denoted by e(I,M), being the coefficient e0 in PI(n,M).

A sequence of elements a = a1, . . . , an is called a multiplicity system for an finitely

generated R- module M if `R(M/aM) <∞, where a is the ideal generated by a, i.e., a

is a multiplicity system if a is an ideal of definition of M . It follows that the homology

modules of the Koszul complex K•(a,M) have finite length, i.e., `R(H i(a,M)) < ∞

for all i, and we define the Euler-Poincaré characteristic of the Koszul homologies by

χ(a,M) =
∑
i

(−1)i`R(Hi(a,M))

Theorem 1.1.4 (Serre). Let R be a Noetherian local ring, M a finitely generated
R-module, a = a1, . . . , an be a multiplicity system of M with a = (a). Then

χ(a,M) =

{
e(a) , if a is a system of parameter,

0 , otherwise.

Proof. [BH98, Theorem 4.7.6]

8



1.2 Local cohomology review

In this section, we will give a brief description of the objects and results on Local

cohomology, which will be used in the next Chapter. The concept of local cohomology

modules, torsion functor, ideal transform, algebraic Čech complex, etc. We recommend

to the reader the book [BS13], for more details.

1.2.1 I-torsion functor and local cohomology modules

Let R be a Noetherian ring, I ⊂ be an ideal and M be an R-module. We define

the I-torsion functor ΓI : Mod(R)→Mod(R), where Mod(R) denotes the category of

R-modules, by the assignment

ΓI(M) =
⋃
n≥1

(0 :M In),

that is, ΓI(M) is the submodule of M whose elements are anihilated by some power of

the ideal I.

Fact 1. ΓI is a covariant functor left exact.

The category of R-modules Mod(R) is an Abelian category and it has enough

injectives. The i-th right derived functor of Γ denoted byH i
I is the i-th local cohomology

functor with respect to I. For an R-module M , we consider E• an injective resolution

of M

0→ E0 → E1 → · · ·

(H0(E•) = M and H i(E•) = 0), and thus, we apply the I-torsion functor to E• and

obtain

H i
I(M) = H i(ΓI(E

•))

which is called the i-th local cohomology module of M with respect to I. Notice that

ΓI(M) = H0
I (M).

1.2.2 Direct limits of Ext modules and Ideal transform

The I-torsion functor ΓI can be related with a functor defined in terms of direct

limits of ’Hom’ modules. For an R-module M , the isomorphisms of R-modules

HomR(R/In,M) ' (0 :M In)

9



yield an isomorphism of functors

ΓI(•) ' lim−→
n∈N

HomR(R/In, •),

and since that the exactness of taking direct limits, the i-th local cohomology functor

can be defined as

H i
I(•) ' lim−→

n∈N
ExtiR(R/In, •).

Due to above isomorphism, using Ext modules [BH98, Theorem 1.2.5], we have the

next theorem about grade.

Theorem 1.2.1. Let R be a Noetheiran ring, I an ideal of R and M be a finitely
generated R module such that M 6= IM . Then

grade(I,M) = min{i ∈ N;H i
I(M) 6= 0}

Proof. [BS13, Theorem 6.2.7]

This new point of view of the local cohomology functors leads us to define the I-

transform functor as follow. For positive integers n ≥ m, we consider the commutative

diagram with exact rows

0 // In

��

// R // R/In

��

// 0

0 // Im // R // R/Im // 0.

Using the Horseshoe lemma [W94, Lemma 2.2.8], we obtain a commutative dia-

gram of projective resolutions with exact rows

0 // Ln•

��

// Kn
•

��

// P n
•

��

// 0

0 // Lm• // Km
•

// Pm
•

// 0.

Applying the contravariant functor HomR(•,M), where M is an R-module, we obtain

a commutative diagram of complexes with exact rows

0 // HomR(P n
• ,M)

��

// HomR(Ln• ,M)

��

// HomR(Kn
• ,M)

��

// 0

0 // HomR(P n
• ,M) // HomR(Ln• ,M) // HomR(Kn

• ,M) // 0.

10



and it yields a commutative diagram of R-modules with exact rows

0 // HomR(R/In,M)

��

//M

��

// HomR(In,M)

��

// Ext1
R(R/In,M)

��

// 0

0 // HomR(R/Im,M) //M // HomR(Im,M) // Ext1
R(R/Im,M) // 0.

So, the last induces an exact sequence of direct systems, and taking the direct limit,

we obtain the exact sequence of R-modules

0→ H0
I (M)→M → lim−→

n∈N
HomR(In,M)→ H1

I (M)→ 0,

and we define the I-transform functor by

DI(•) = lim−→
n∈N

HomR(In, •),

and DI(M) is called the ideal transform of M with respect to I.

Theorem 1.2.2. Let R be a Noetherian ring, I an ideal of R and M an R-module.
Then

(i) There is an exact sequence

0→ ΓI(M)→M → DI(M)→ H1
I (M)→ 0;

(ii) For i ≥ 1, there are isomorphisms

RiDI(M) ' H i+1
I (M)

where the left is the i-th right derived functor of DI(•).

Proof. See [BS13, Theorem 2.22.6].

1.2.3 Čech complexes

Let R be a commutative ring, a = a1, . . . , an ∈ R be a sequence of elements and

M an R-module. We define the (algebraic) Čech complex of M with respect to a,

denoted by C•a(M), ass follow:

0→ C0
a(M)

∂̌0→ C1
a(M)

∂̌1→ C2
a(M)→ · · · → Cn

a (M)→ 0

with

Ck
a(M) =

⊕
1≤i1<···<ik≤g

Mai1 ···aik ,
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where Mai1 ···aik is the localization of M on the multiplicative set {(ai1 · · · aik)l; l ≥ 0} ,

and thus,

0→M
∂̌0→
⊕
i

Mai
∂̌1→
⊕
i<j

Maiaj → · · · →Ma1···an → 0

and the diferential ∂̌k−1 : Ck−1
t → Ck

t is defined in the summands by

α

ai1 · · · âil · · · aik
∈Mai1 ···âil ···aik 7→ (−1)l−1 ailα

ai1 · · · aik
∈Mai1 ···aik .

Notice that H0(C•a(M)) = Γa(M), where a = (a) is the ideal of R generated by the

elements a = a1, . . . , an. Furthermore,

H i(C•a(M)) ' H i
a(M),

that is, the homologies of the Čech complex are the local cohomologies, see [BS13,

Theorem 5.1.20].

The Čech complex comes from a direct limit of homology modules of Koszul

complexes, i.e.,

{n}C•a(M) ' lim−→
l∈N

K•(a
l,M),

where al = al1, . . . , a
l
n and ({n}C•a(M))i = C−i+na (M) is a shift, for more details see

[BS13, Theorem 5.2.5].

Example 1.2.3. Let S = R[T1, . . . , Tn] be the polynomial ring in the indeterminates
T1, . . . , Tn. We will describe Hn

t (S) the n-th local cohomology module of S with respect
to the ideal t.

Consider C•t (S) the Čech complex of S with respect to the sequence T1, . . . , Tn,
more especifically, the last not zero differential⊕n

i=1 ST1···T̂i···Tn
∂̌→ ST1···Tn → 0

α

(T1···T̂i···Tn)l
7→ (−1)i

T liα

(T1···Tn)l
.

So, Hn
t (S) = ST1···Tn/ Im ∂̌ an R-algebra. Firt, notice that Hn

t (S) is generated by{
T l11 · · ·T lnn
(T1 · · ·Tn)l

+ Im ∂̌; l ≥ 1 and li < l, for all i
}

as R-module. In fact, if l = 0, then

T l11 · · ·T lnn = ∂̌(T l11 · · ·T lnn ),

and if l ≥ 1 and li ≥ l for some i, then

T l11 · · ·T lnn
(T1 · · ·Tn)l

= ∂̌

(
(−1)i

T l11 · · ·T
li−l
i · · ·T lnn

(T1 · · · T̂i · · ·Tn)l

)
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in both cases, it is zero in Hn
t (S). So, these generators form a basis to Hn

t (S), futher-
more, it is generated by {

T1 · · · T̂i · · ·Tn
T1 · · ·Tn

+ Im ∂̌

}n

i=1

as an R-algebra, and thus, we have the isomorphism

Hn
t (S) → R[T−1

1 , . . . , T−1
n ]

T1···T̂i···Tn
T1···Tn + Im ∂̌ 7→ T−1

i

where R[T−1
1 , . . . , T−1

n ] is the S-module of inverse polynomials in T1, . . . , Tn over S, and
the S-structure is defined by

Ti(T
l1
1 · · ·T lnn ) =

{
T l11 · · ·T

li+1
i · · ·T lnn li < −1

0 li = 1.

1.3 Sheaf cohomology on projective scheme

The main result of this section (see Theorem 1.3.2) is to relate the sheaf coho-

mology with local cohomology in the projective case. We recommend to the reader the

sections 1, 2, 3 and 4 of the chapter III in [Har77], and see too [ILLMMSW, Lecture

13]

1.3.1 Some definitions

Let S = ⊕i≥0Si be a graded ring with S+ = ⊕i≥1Si the irrelevant graded ideal.

We define the set

Proj(S) = {P ∈ Spec(S);P is graded and P 6⊃ S+}.

The subsets of the form V (I) = {P ∈ Proj(S);P ⊃ I}, with I being a graded ideal,

define the closed subsets on Proj(S) in the Zariski topology. For an homogeneous

element f ∈ S, the open subset D+(f) = Proj(S)\V (f) is called a basic open subset

of Proj(S). The below facts follow by a straightforward verification.

Fact 2. D+(f) ' Spec([Sf ]0)

Fact 3. D+(f) ∩D+(g) ' Spec([Sfg]0)

Fact 4. {D+(f); f ∈ S homogeneous} is an open covering for X.

Fact 5. {D+(fi)}ri=1 is an open covering for X if, and only if,
√

(f1, . . . , fr) = S+.
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The sheaf structure of X = Proj(S), denoted by OX , is defined on the open

covering {D+(f)}, with f ∈ S being an homogeneous element, and the assignment:

Γ(D+(f),OX) = [Sf ]0,

where, [Sf ]0 denotes the zero-th component of the graded localization Sf . For a graded

S-module M , we define the sheafification of M , denoted by M̃ , as the sheaf of OX-

modules with assignment:

Γ(D+(f), M̃) = [Mf ]0,

for a homogeneous element f ∈ S. A sheaf of OX-modules which is a sheafification of a

module is called a quasi-coherent sheaf, when M is finitely generated, we call coherent

sheaf.

The shefification of S(a), denoted by OX(a), is called twisted sheaf, where a ∈ Z

and S(a)i = Sa+i are the components of the graded S-module S(a). We set F(a) =

F ⊗OX OX(a), for all sheaf of OX-modules F . We define the functor from the category

of quasi-coherent sheaves on X to the category of graded S-modules: For each sheaf

F of OX-modules on X, set

Γ∗(F) =
⊕
a∈Z

Γ(X,F(a)).

Fact 6. Γ∗(OX) is a graded ring and Γ∗(F) is a graded Γ∗(OX)-module. Furthermore,
Γ∗(F) is a graded S-module.

1.3.2 Sheaf cohomology

Let (X,OX) be a ringed space and

Γ(X, •) : Mod(X)→ Ab

be the global section functor from the category of sheaves of OX-modules to the cate-

gory of abelian groups.

Fact 7. Mod(X) is an abelian category with enough injectives. [Har77, III.1 and III.2]

Let F be a sheaf of OX-modules and I• an injective resolution to F . Applying

Γ(X, •), we have the complex Γ(X, I•) in Ab, and its cohomology groups, denoted by

H i(X,F), are called the cohomology groups of F .

14



1.3.3 Čech cohomology

Let (X,OX) be a ringed space and U = {Ui}i=Λ be an open covering for X. For

a sheaf F of OX-modules, we define C•(U ,F) the Čech complex of F with respect to

U to be

Ck(U ,F) =
⊕
|I|=k+1

Γ(UI ,F)

where I = (i1, . . . , ik+1) with i1 < · · · ik+1 and UI = D+(xi1) ∩ · · · ∩ D+(xik+1
); and

dk−1 : Ck−1(U ,F)→Ck(U ,F) is induced on summands by

σ ∈ Γ(UI\{il},F) 7→ (−1)lσ|UI ∈ Γ(UI ,F)

where I = (i1, . . . , il, . . . , ik+1). The cohomology groups of C•(U ,F), denoted by

Ȟk(U ,F), are called the Čech cohomology groups of F with respect to U .

Example 1.3.1. Let S = R[x, y] be the polynomial ring, M be a graded S-module and
U = {D+(x), D+(y)} be an open covering for X = Proj(S). Then, C•(U , M̃) is

0→ Γ(D+(x), M̃)⊕ Γ(D+(y), M̃)→ Γ(D+(x) ∩D+(y), M̃)→ 0,

that is,
0 → [Mx]0 ⊕ [My]0 → [Mxy]0 → 0(

α
xi
, β
yj

)
7→ xjβ

(xy)j
− yiα

(xy)i
.

Notice that C•(U , M̃)[−1] is a subcomplex of C•(x, y;M) (Algebraic Čech complex).

Fact 8. Let S = ⊕i≥0Si be a graded ring, X = Proj(S) be a scheme and F a quasi-
coherent sheaf. Suppose that S0 is a Noetherian ring and S = S0[S1] with S1 generated
by x0, . . . , xn as S0-module. Consider U = {D+(x0), . . . , D+(xn)} an open covering for
X. Then, for all i ≥ 0

Ȟ i(U ,F) = H i(X,F).

Proof. Although X is not separated (S0 is not a field), U is a affine open covering such
that the intersections are affine, by Facts 2, 3 and 5. Therefore, we proceed in the same
way as [Har77, III Theorem 4.5].

Theorem 1.3.2. Let S = ⊕i≥0Si be a graded ring such that S0 is a Noetherian ring
and S = S0[S1] with S1 generated by x0, . . . , xn as S0-module. For each graded S-module
M , we have an exact sequence

0→ H0
S+

(M)→M → Γ∗(X, M̃)→ H1
S+

(M)→ 0,
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and for i ≥ 1, the isomorphisms⊕
a∈Z

H i(X, M̃(a)) ' H i+1
S+

(M),

where H i
S+

(M) denotes the i-th local cohomology modules of M with respect to the ideal
S+.

Proof. From the exact sequence of complexes (see Example 1.3.1)

0→
⊕
a∈Z

C•(U , M̃(a))[−1]→ C•(x,M)→M → 0,

we obtain a long exact sequence on homologies. Using the Fact 8, the result follows.

1.4 Spectral sequence of a double complex

The main result of this thesis is given by the convergence of spectral sequences

which comes from a double complex. The goal of this section is recall this concepts.

We recommend to the reader the chapter 5 in [W94], for more details.

1.4.1 Spectral sequences

Let R be a commutative ring with identity. A spectral sequence is a family of

R-modules and R-linear maps

•E•• = {rEp,q, rdp,q : rEp,q → rEp−r,q−r−1}r∈N;p,q∈Z

where for each r ∈ N, rE•• = {rEp,q, rdp,q}p,q∈Z is a family of complexes (called r-th

page of E) such that
r+1Ep,q =

ker(rdp,q)

Im(rdp+r,q+r+1)
,

i.e., the terms of the next page in obtained by taking the homology modules of the

complexes the current page. If there is an r ∈ N such that sE = rE for all s ≥ r,

then we write ∞E := rE and this page is called the infinite page of E. The family

{rfp,q : rEp,q → rE ′p,q}r∈N;p,q∈Z is a map of spectral sequences if r+1f is the induced

map of rf on homologies of the complexes in r-th page.

A spectral sequence E is bounded if there are only finitely many terms different to

zero on the first page. We say that a bounded spectral sequence E converges to family
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of R-modules H• = {Hn}n∈Z (rE ⇒r H), if for each n ∈ Z there exists a decreasing

filtration

0 = FsHn ⊆ · · · ⊆ Fp+1Hn ⊆ FpHn ⊆ Fp−1Hn ⊆ · · · ⊆ FtHn = Hn

such that
∞Ep,q ' FpHq−p

Fp+1Hq−p

with q − p = n.

Let E and E ′ be spectral sequences converging to H and H ′, respectively. We say

that f : E → E ′ is compatible with h : H → H ′ if h(FpHn) ⊆ FpH
′
n and the diagram

∞Ep,q '//

∞fp,q

��

FpHn/Fp+1Hn

h̄
��

∞E ′p,q '
// FpH

′
n/Fp+1H

′
n.

is commutative.

1.4.2 Double complex

Let R be a commutative ring with identity. A double complex is a family of

R-modules M•• = {Mp,q}p,q∈Z with two family of R-linear maps {dp,qh : Mp,q →

Mp−1,q}p,q∈Z and {dp,qv : Mp,q → Mp,q+1}p,q∈Z such that dh ◦ dh = 0, dv ◦ dv = 0

and dv ◦ dh = dh ◦ dv

...

��

...

��

...

��
· · · //Mp+1,q−1 //

��

Mp,q−1 //

��

Mp−1,q−1 //

��

· · ·

· · · //Mp+1,q //

��

Mp,q
dp,qh //

dp,qv
��

Mp−1,q //

��

· · ·

· · · //Mp+1,q+1 //

��

Mp,q+1 //

��

Mp−1,q+1 //

��

· · ·

...
...

... .

We define the total complex of K••, denoted by Tot•(M), as follow:

Totn(M) =
⊕
q−p=n

Mp,q
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and dTn : Totn(M)→ Totn+1(M) is defined on summands by

x ∈Mp,q 7→ dp,qh (x) + (−1)pdp,qv (x) ∈Mp−1,q ⊕Mp,q+1.

We define the first filtration of Tot•(M), denoted by IFTot(M) = {IF i
•Tot(M)}i∈Z,

being the decreasing chain of inclusions of complexes

· · · ⊂ IF i+1
•Tot(M) ⊂ IF i

•Tot(M) ⊂ IF i−1
•Tot(M) ⊂ · · ·

where IF i
•Tot(M) is the complex given by

IF i
nTot(M) =

⊕
q−p=n
p≤i

Mp,q

and the differentials induced by dT , and it commutes with the inclusions. In the same

way, we define the second filtration of Tot•(M), denoted by IIFTot(M) = {IF i
•Tot(M)}i∈Z,

being the increasing chain of inclusions of complexes

· · · ⊂ IIF j−1
•Tot(M) ⊂ IIF j

•Tot(M) ⊂ IIF j+1
•Tot(M) ⊂ · · ·

where IIF j
•Tot(M) is the complex given by

IIF j
nTot(M) =

⊕
q−p=n
q≥j

Mp,q

and the differentials induced by dT , and it commutes with the inclusions.

The first filtration of Tot•(E) yields a spectral sequence rEhor, called horizontal

spectral sequence of M , where the first page of rEhor is

...

��

...

��

...

��
· · · Hp+1(M•,q−1)

��

Hp(M
•,q−1)

��

Hp−1(M•,q−1)

��

· · ·

· · · Hp+1(M•,q)

��

Hp(M
•,q)

d̄p,qv
��

Hp−1(M•,q)

��

· · ·

· · · Hp+1(M•,q+1)

��

Hp(M
•,q+1)

��

Hp−1(M•,q+1)

��

· · ·

...
...

... .
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i.e., we taking the homologies in the horizontal complexes and consider the induced

maps in the vertical differentials. The terms on second page is

Hq(Hp(M
••).

Analogously, we have the spectral sequence rEver from the second spectral sequence,

where the first page is given by taking the homologies in the vertical complexes with

the induced maps in the horizontal differentials, and the terms on second page is

Hp(Hq(M
••).

Theorem 1.4.1 (Convergence). If M is bounded, i.e., there are only finitely many
terms different to zero, then

rEhor ⇒ H•(Tot(M))

and
rEver ⇒ H•(Tot(M)).

Example 1.4.2. Let M and N be R-modules and P• and G• be projective resolutions
of M and N , respectively. By taking tensor product we have the double complex P•⊗R
G•. From the convergence of spectral sequences of a double complex, we obtain the
isomorphism

TorRn (M,N) ' torRn (M,N)

where TorRn (M,N) := Hn(P• ⊗R N) and torRn (M,N) := Hn(M ⊗R Q•).
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Chapter 2

Buchsbaum-Eisenbud complexes

2.1 Koszul-Čech spectral construction

In this first section, we will give a new construction of the Buchsbaum-Eisenbud

complexes by using the Koszul-Čech spectral sequence. This construction was given by

Bouça and Hassanzadeh in [BHa19] and it is similar to the construction of the residual

approximation complexes, which gives the disguised residual intersection defined in

[Has12], see too [HaN16]. The classical constructions are obtained by a different way

[E95, Appendix 2.6][Kir73], we hope that this new aproach, using Koszul-Čech spectral

sequence, gives to us new properties of the Buchsbaum-Eisenbud complexes.

Let R be a commutative ring with identity, L be an R-module and Φ = (cij) be

a g× f -matrix over R with f ≥ g ≥ 1. The matrix Φ can be considered as an R-linear

map ϕ : Rf → Rg, that is, if {e1, . . . , ef} is a basis for Rf and {x1, . . . , xg} is a basis

for Rg, then we can write ϕ(ej) =
∑g

i=1 cijxi, for all j ∈ {1, . . . , f}. We will denote

M := Coker(ϕ). let S = R[T1, . . . , Tg] be the polynomial ring in the indeterminates

t = T1, . . . , Tg over R with standard graduation (deg Ti = 1, for all i), i.e., S ' S(Rg)

is the symmetric algebra of Rg.

First, let K•(γ) be the graded Koszul complex of the sequence γ = γ1, . . . , γf

where γj =
∑g

i=1 cijTi, that is, the Koszul complex of the generators of the presentation

ideal of the symmetric algebra of M = Cokerϕ. Since deg(γj) = 1 for all j, then



Kj(γ) = S(fj)(−j), and the complex K•(γ) is

0→ S(ff)(−f)→ · · · → S(f1)(−1)
∂0→ S(f0) → 0

for more details see Subsection 1.1.2 in the first chapter. In the construction of de

Buchsbaum-Eisenbud complexes, we will consider

K•(γ, S ⊗R L) = K•(γ)⊗S (S ⊗R L)

the graded Koszul complex of γ with coefficients in the graded S-module S ⊗R L.

Second, let C•t be the (algebraic) Čech complex of the sequence t = T1, . . . , Tg

over S as in the subsection 1.2.3 of the first chapter. The homology modules of this

Čech complex, denoted by H i
t(S), are called the i-th local cohomology module of S

with respect to the ideal generated by t (See below remark), that is, the irrelevant

ideal.

Remark 2.1.1. In the text, the bold symbols will denote a sequence of elements, and
sometimes, it will denote the ideal generate by this sequence, for example, t is a sequence
of elements, but in H i

t(H), t is the ideal generated by this sequence. The same happens
with γ.

Therefore, we define the double complex E−•,−• = C•t (K•(γ, S ⊗R L))

C0
t (Kf (γ, S ⊗R L)) //

��

· · · // C0
t (K1(γ, S ⊗R L)) //

��

C0
t (K0(γ, S ⊗R L))

��
C1

t (Kf (γ, S ⊗R L)) //

��

· · · // C1
t (K1(γ, S ⊗R L)) //

��

C1
t (K0(γ, S ⊗R L))

��
...

��

...

��

...

��

Cg−1
t (Kf (γ, S ⊗R L)) //

��

· · · // Cg−1
t (K1(γ, S ⊗R L)) //

��

Cg−1
t (K0(γ, S ⊗R L))

��
Cg

t (Kf (γ, S ⊗R L)) // · · · // Cg
t (K1(γ, S ⊗R L)) // Cg

t (K0(γ, S ⊗R L)).

The sign in E−•,−• says that this double complex is better viewed in third quadrant

on the Cartesian plane. The differentials of E is the product tensor of the Koszul

differential with the Čech differential, and the squares of E are commutative, in the

natural way. The total complex of E, denoted by Tot•(E), is the complex with

Totn(E) =
⊕
j−i=n

E−i,−j =
⊕
j−i=n

Cj
t (Ki(γ, S ⊗R L))

21



and the differential ∂Totn : Totn(E)→ Totn(E) is defined in the summands by

α⊗ β ∈ E−i,−j 7→ α⊗ ∂i(β) + (−1)i∂̌j(α)⊗ β ∈ E−i+1,−j ⊕ E−i,−j−1,

with E−i,−j = Cj
t ⊗S Ki(γ, S ⊗R L).

For more details in the next paragraphs, we recommend to the reader [W94, Sec-

tion 5.6], i.e., we will talk about spectral sequences of a double complex. There are

two filtrations of the total complex, denoted by IFTot(E) and IIFTot(E). The filtra-

tion IIFTot(E) gives rise to a spectral sequence {rE−p,−qhor }, called horizontal spectral

sequence of E. The first page of the horizontal spectral sequence of E is

C0
t (Hf (γ, S ⊗R L))

��

· · · C0
t (H1(γ, S ⊗R L))

��

C0
t (H0(γ, S ⊗R L))

��
C1

t (Hf (γ, S ⊗R L))

��

· · · C1
t (H1(γ, S ⊗R L))

��

C1
t (H0(γ, S ⊗R L))

��
...

��

...

��

...

��

Cg−1
t (Hf (γ, S ⊗R L))

��

· · · Cg−1
t (H1(γ, S ⊗R L))

��

Cg−1
t (H0(γ, S ⊗R L))

��
Cg

t (Hf (γ, S ⊗R L)) · · · Cg
t (H1(γ, S ⊗R L)) Cg

t (H0(γ, S ⊗R L)),

that is, we take the homologies in the horizontal complexes and consider the induced

map in the vertical complexes. The terms of the second page of the horizontal spectral

sequence of E, obtained by taking the homologies in the first page, is

2E−p,−qhor = Hq
t (Hp(γ, S ⊗R L)),

for all 0 ≤ p ≤ f and 0 ≤ q ≤ g.

The filtration IFTot(E) gives rise to a spectral sequence {rE−p,−qver }, called vertical

spectral sequence of E. The first page of the vertical spectral sequence of E, taking

the homologies in the vertical complexes and considering the induced maps in the

horizontal complexes, is

1E−•,−qver =

 0 , q 6= g

0→ Hg
t (Kf (γ, S ⊗R L))→ · · · → Hg

t (K0(γ, S ⊗R L))→ 0 , q = g
,
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since that T1, . . . , Tg is an S ⊗R L-sequence, see Theorem 1.2.1. So, it follows that
2Ever = ∞Ever the infinity page, because the spectral sequence rEver colapses, that is,

there is only one line different to zero and in the next pages the differentials are zero.

Since Hg
t (•) ∼= • ⊗S Hg

t (S), we have

1E−•,−qver = Hg
t (K•(γ, S ⊗R L))

' K•(γ, S ⊗R L)⊗S Hg
t (S)

' K•(γ, H
g
t (S ⊗R L)),

that is, the Koszul complex of γ1, . . . , γf with coefficients in Hg
t (S ⊗R L), hence

2E−p,−qver = H−p+q+g(γ, H
g
t (S ⊗R L)) ' H−p+q(Tot•(E)),

for all n, and further, the convergence of spectral sequences says

2E−p,−qhor ⇒ H−p+q(Totn(E)).

Notice that the double complex E is in the category of graded S-modules, that

is, the two spectral sequences are in this category, and we can look to these spectral

sequence in the degrees. We have that Hg
t (S) ∼= R[T−1

1 , . . . , T−1
g ] is the S-module of

inverse polynomials [BS13, Example 13.5.3], and thus,

end(Hg
t (S)) = −g,

where end(H) = max{ν ∈ Z;H[ν] 6= 0}, for all graded S-module H. It follows that

(1Ever)[ν] is given by

0→ Kf (γ, H
g
t (S⊗RL))[ν] → · · · → Kg+ν+1(γ, Hg

t (S⊗RL))[ν]
δν→ Kg+ν(γ, H

g
t (S⊗RL))[ν] → 0

for −g ≤ ν ≤ f − g, where

Hg+ν(γ, H
g
t (S ⊗R L))[ν] = cokerδ[ν].

Notice that for ν ≤ −g, all the terms of the Koszul complex on degree ν are zero and

(1Ever)[ν] = 0 for ν > f − g.

Now, looking to the graded Koszul complex and the torsions in the terms, we

have

indeg(Kν(γ, S ⊗R L)) = ν,
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where indeg(H) = min{ν ∈ Z;H[ν] 6= 0}, for all graded S-module H. The strand of

K•(γ, S ⊗R L) in degree ν is

0→ Kν(γ, S ⊗R L)[ν]

(∂ν)[ν]→ Kν−1(γ, S ⊗R L)[ν] → · · · → K0(γ, S ⊗R L)[ν] → 0,

and thus, Hν(γ, S ⊗R L)[ν] = ker(∂ν)[ν].

In degree ν, the convergence of spectral sequences says that there exists a filtration

of Tot•(E)[ν] such that

· · · ⊂ F1 ⊂ F0 = (TotνE)[ν] = (∞E−g−ν,−gver )[ν] = coker(δν)

and
coker(δν)

F1

∼= (∞E−ν,0hor )[ν]. (2.1.1)

So, we define the map τν : Kg+ν(γ, H
g
t (S ⊗R L))[ν] → Kν(γ, S ⊗R L)[ν] by the

composition

Kg+ν(γ, H
g
t (S ⊗R L))[ν]

// // coker(δν)
F1

∼= // (∞E−ν,0hor )[ν]
fF

sshhhhh
hhhh

hhhh
hhhh

hhhh
hhhh

hhhh
hhhh

hhhh
hhhh

hh

(2E−ν,0hor )[ν] = H0
t (Hν(γ, S ⊗R L))[ν]

� � // Hν(γ, S ⊗R L)[ν]
� � // Kν(γ, S ⊗R L)[ν]

(2.1.2)

where the epimorphisms and monomorphisms are canonical. Notice that ∞E−ν,0hor ⊂
2E−ν,0hor , because all differentials which arrive in rE−ν,0hor is zero, that is, r+1E−ν,0hor is a

kernel for all r ≥ 1 and all ν (E is on the third quadrant).

Definition 2.1.2. We define the family of complexes B(Φ, L) = {B•(Φ, L, ν); ν ∈
Z}, where for each ν, the complex B•(Φ, L, ν) is obtained by splicing the complexes
K•(γ, H

g
t (S ⊗R L))[ν] and K•(γ, S ⊗R L)[ν] via τν, the map defined above by the con-

vergence of spectral sequences. So, {Bi(Φ, L, ν), di} is a complex with

Bi(Φ, L, ν) =

{
Ki(γ, S ⊗R L)[ν] , i ≤ ν;

Ki+g−1(γ, Hg
t (S ⊗R L))[ν] , i ≥ ν,

and di is the Koszul differential maps for i 6= ν + 1, and dν+1 = τν

Bν+1(Φ, L, ν) = Kg+ν(γ, H
g
t (S ⊗R L))[ν]

τν // Kν(γ, S ⊗R L)[ν] = Bν+1(Φ, L, ν).
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Remark 2.1.3. The only cases where the splice occurs are the cases where 0 ≤ ν ≤
f − g, that is, the map τν is not zero. For ν ≤ −1 or ν ≥ f − g+ 1, the map τν is zero,
and we have

B•(Φ, L, ν) :=

{
K•(γ, S ⊗R L)[ν] , ν > f − g

K•(γ, H
g
t (S ⊗R L))[ν] , ν < 0.

,

that is, the complex B•(Φ, L, ν) is just a strand of a Koszul complex. It justifies the
hypothesis 1 ≤ g ≤ f , otherwise there is not splice, only strand of Koszul complexes.

Remark 2.1.4. In all this work we will use the complexes B•(Φ, L, ν) in this form,
tensoring by an arbritary R-module L in the beginning. But we could give a con-
struction tensoring by L in the end and we would obtain the same complexes, that is,
B•(Φ, L, ν) = B•(Φ, R, ν)⊗R L.

Notation 2.1.5. The complexes B•(Φ, L, ν) generalize the Koszul complex to a matrix
Φ with coefficients in an R-module L, see Proposition 2.2.1. In this sense, we will
denote

Hi(Φ, L, ν) := Hi(B•(Φ, L, ν)),

for the i-th homology module of the complex B•(Φ, L, ν).

Due to Bouça and Hassanzadeh [BHa19, Section 3.2], the family of complexes

B(Φ) = B(Φ, R), where L = R, is the family of the Buchsbaum-Eisenbud complexes

[E95, Appendix 2.6], and for an arbitrary R-module L, we are in the Kirby approach

of these complexes [Kir73].

Writing M := cokerϕ, we can consider the ideal Fitt0M of R generated by the

maximal minors of Φ. Notice that the complex B•(Φ, 0) is the Eagon-Northcott com-

plex of the matrix Φ [EN62], that is,

0→ Bf−g+1(Φ, 0)→ · · · → B1(Φ, 0)
τ0→ B0(Φ, 0)→ 0 (2.1.3)

with imτ0 = Fitt0M andH0(Φ, 0) = R/Fitt0M , whereM = Coker(Φ); and the complex

B0(Φ, 1) is a complex from the family of Buchsbaum-Rim complexes of the map ϕ

[BR64], that is,

0→ Bf−g+1(Φ, 1)→ · · · → B2(Φ, 0)
τ1→ B1(Φ, 1)

ϕ→ B0(Φ, 1)→ 0 (2.1.4)

with kerϕ = imτ1 andH0(Φ, 1) = M . In same sense, we have that the complexB•(Φ, ν)

is an approximate free resolution for the module

H0(Φ, ν) = (S/ γ)[ν] = Symν
RM,

when ν ≥ 1, and for the cyclic module R/Fitt0M , when ν = 0.
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2.2 Basic properties

The Koszul complex is defined over an R-linear map ϕ : Rf → R and we can

take coefficients tensoring by an R-module. The complexes B•(Φ, L, ν) generalize the

Koszul complex for a general R-linear map of free modules ϕ : Rf → Rg, with g ≤ f .

Proposition 2.2.1. If g = 1, then the complex B•(Φ, L, ν) is the Koszul complex of
ϕ with coefficients in the R-module L, for all ν.

Proof. It is enough to show for L = R. In the case g = 1, Φ = [cj]1×f is a matrix of ϕ.
Furthermore, S = R[T ] is the polynomial ring in one indeterminate with coefficients
in R and H1

t (S) = R[T−1] is the inverse polynomial ring in one indeterminate with
coefficients in R. Since γ = c1T, . . . , cfT , then for all ν{

Ki(γ, S)[ν] = Ki(c, R) · T ν−i , 0 ≤ i ≤ ν

Ki(γ, H
1
t (S))[ν] = Ki(c, R) · T ν−i , ν + 1 ≤ i ≤ f

and from a straightforward verification, we have (∂i)[ν] = ∂ci , where ∂c is the differential
of the Koszul complex of c. Since that Bi(Φ, ν) is obtained by splicing the complexes
K•(γ, S)[ν] and K•(γ, H1

t (S))[ν] via the map τν , it is enough to show that τν = ∂cν+1,
and it follows from [BHa19, Theorem 3.6].

The Koszul complex is self-dual (Proposition 1.6.10, [BH98]). There is a self-

duality on the complexes B•(Φ, L, ν) (Appendix A2.6, [E95]). For all R-module L, we

set

B•(Φ, L, ν) := HomR(B•(Φ, ν), L)

and if L = R, we will write B•(Φ, ν).

Proposition 2.2.2. The complexes B•(Φ, ν) and B•(Φ, f − g − ν) are isomorphic,
that is, the complex B•(Φ, ν) is dual to B•(Φ, f − g − ν), for all ν. Moreover, for all
R-module L there is an isomorphism of complexes B•(Φ, L, ν) ∼= B•(Φ, L, f − g − ν),
for all ν.

Proof. The multiplication S[ν]⊗RHg
t (S)[−ν−g] → Hg

t (S)[−g] ∼= R defines a perfect pair-
ing, and if we take the tensor by an R-module L, then S[ν] ⊗R Hg

t (S ⊗R L)[−ν−g] → L

and (S⊗RL)[ν]⊗RHg
t (S)[−ν−g] → L are perfect pairings too, and it yields isomorphisms

Hg
t (S ⊗R L)[−ν−g] ∼= HomR(S[ν], L)

and
(S ⊗R L)[ν]

∼= HomR(Hg
t (S)[−ν−g], L),
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for all ν ∈ Z.
Notice that from the perfect pairing and known canonical isomorphisms, we ob-

tain

HomR(K•(γ)[ν], L) = HomR((∧•Sf (−•))[ν], L)
∼= HomR((∧•Rf ⊗R S(−•))[ν], L)

= HomR(∧•Rf ⊗R S[ν−•], L)
∼= HomR(∧•Rf ,HomR(S[ν−•], L))
∼= HomR(∧•Rf , Hg

t (S ⊗R L)[−ν+•−g])
∼= ∧f−•Rf ⊗R Hg

t (S ⊗R L)[−ν+•−g]
∼= (∧f−•Sf (−f + •)⊗S Hg

t (S ⊗R L))[f−g−ν]

= Kf−•(γ, H
g
t (S ⊗R L))[f−g−ν],

(2.2.1)

and similarly, HomR(K•+g(γ, H
g
t (S))[ν], L) ∼= Kf−g−•(γ, L)[f−g−ν]. Since B•(Φ, ν) is

obtained by splicing the complexes K•(γ)[ν] and K•(γ, Hg
t (S))[ν], it is enough to show

that the next diagram is commutative

HomR(Kν(γ)[ν], L)
HomR(τ[ν],1L)

//

��

HomR(Kν+g(γ, H
g
t (S))[ν], L)

��
Kf−ν(γ, H

g
t (S ⊗R L))[f−g−ν]

τ[f−g−ν]⊗R1L // Kf−g−ν(γ, L)[f−g−ν].

And this diagram is commutative due to the definition of τ (see [BHa19, Theorem 3.6])
and the canonical isomorphisms in 2.2.1.

The Koszul complex can be constructed inductively, i.e., if γ = γ1, . . . , γf is a

sequence of elements in S, then we have K•(γ, N) = K•(γ
′, N)⊗SK•(γ1, N) for all S-

module N , where γ′ = γ2, . . . , γf , and this inductive construction yields the canonical

exact sequence of Koszul complexes

0→ K•(γ
′, N)→ K•(γ, N)→ K•(γ

′, N)[−1]→ 0,

where [−1] means the complex is moved one place left, which is split exact on the

terms. For more details, consider 0 ≤ n ≤ f , we have

0→ Kn(γ′, N)→ Kn(γ, N)→ Kn−1(γ′, N)→ 0,

where the left is the inclusion map and if ei1 ∧· · ·∧ ein ∈ Kn(γ, N), then the right map

is given by

ei1 ∧ · · · ∧ ein 7→

 (−1)nei2 ∧ · · · ∧ ein , if i1 = 1;

0 , if i1 6= 1.
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In [Kir85], Kirby used this property to obtain the main result about Buchsbaum-

Rim multiplicity the Theorem 3.1.3 in next chapter. Now, we will give a new proof

for the existence of this canonical exact sequence of the complexes B•(Φ, L, ν), which

is split exact on terms, and we will see that it is due to the convergence of spectral

sequence in our approach.

Proposition 2.2.3. Let L be an R-module and ν be an integer. Then, there is an exact
sequence of complexes Eν : 0 → B•(Φ

′, L, ν) → B•(Φ, L, ν) → B•(Φ
′, L, ν − 1) → 0,

which is split exact on terms.

Proof. For ν < 0 and ν > f−g, Eν is the canonical exact sequence of Koszul complexes.
Supposing f ≥ g, we must to show for 0 ≤ ν ≤ f − g, and hence, the exact sequences
of complexes

0→ K•(γ
′, S ⊗R L)[ν] → K•(γ, S ⊗R L)[ν] → K•(γ

′, S ⊗R L)[ν−1][−1]→ 0

and

0→ K•(γ
′, Hg

t (S⊗RL))[ν] → K•(γ, H
g
t (S⊗RL))[ν] → K•(γ

′, Hg
t (S⊗RL))[ν−1][−1]→ 0

can be splicing by the maps τ ′[ν], τ[ν] and τ ′[ν−1] defined in previous section 2.1.2, re-
spectively. Notice that the homogeneous component in the right is different to others
because this exact sequence comes from the mapping cone of the multiplication by γ1.
Thus, we will show that

0→ B•(Φ
′, L, ν)→ B•(Φ, L, ν)→ B•(Φ

′, L, ν − 1)→ 0

is an exact sequence of complexes, for this, it’s enough to show the commutativity of
the diagram

0 //Bν+1(Φ′, L, ν) //

τ ′
[ν]

��

Bν+1(Φ, L, ν) //

τ[ν]

��

Bν(Φ
′, L, ν − 1) //

τ ′
[ν−1]

��

0

0 //Bν(Φ
′, L, ν) //Bν(Φ, L, ν) //Bν−1(Φ′, L, ν − 1) // 0.

If we denote E ′•• = K•(γ
′, S ⊗R L) ⊗S C•t (S) and E ′••[−1] = K•(γ

′, S ⊗R L)[−1] ⊗S
C•t (S), then there is the exact sequence of double complexes

0→ E ′•• → E•• → E ′••[−1]→ 0.

This exact sequence induces exact sequence on total complexes

0→ Tot•E
′ → Tot•E → Tot•E

′[−1]→ 0, (2.2.2)
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and these maps are compatible with vertical and horizontal filtrations. Notice that
these maps of total complexes induce maps on homologies, where the homologies of
the complexes Tot•E

′, Tot•E and Tot•E
′[−1] are the homologies of the complexes

K•(γ
′, Hg

t (S⊗R L)), K•(γ, Hg
t (S⊗R L)) and K•(γ′, Hg

t (S⊗R L))[−1], respectively, by
the convergence of the Koszul-Čech spectral sequence. So, in degree ν, the diagram
below is commutative with exact rows

0 //Bν+1(Φ′, L, ν) //

��

Bν+1(Φ, L, ν) //

��

Bν(Φ
′, L, ν − 1) //

��

0

cokerδ′[ν]
// cokerδ[ν]

// cokerδ′[ν−1]
// 0,

where the maps δ is the same in previous section, that is, a differential of Koszul
strands, and the maps on the second row are induced by the maps on the first row.
Furthermore, the sequence 2.2.2 induces maps of spectral sequences compatible with
the induced maps of homologies of the total complexes, that is, in degree ν

0 // cokerδ′[ν]/F
′
1

//

∼=
��

cokerδ[ν]/F1
//

∼=
��

cokerδ′[ν−1]/F
′
1[−1]

∼=
��

0 // (∞E ′−ν,0hor )[ν]
// (∞E−ν,0hor )[ν]

// (∞E ′−ν+1,0
hor )[ν−1] .

is a commutative diagram with exact lines, where F ′1, F1 and F ′1[−1] is given by the
convergence of rE ′hor, rEhor and rE ′hor[−1] in same sense of 2.1.1, and it has exact line
due to the modules rE ′−ν,0hor , rE−ν,0hor and rE ′−ν,0hor [−1] be kernel with induced maps for all
r. Joining the diagrams above, we obtain the commutative diagram

0 //Bν+1(Φ′, L, ν) //

��

Bν+1(Φ, L, ν) //

��

Bν(Φ
′, L, ν − 1) //

��

0

cokerδ′[ν]
//

��

cokerδ[ν]
//

��

cokerδ′[ν−1]
//

��

0

0 // cokerδ′[ν]/F
′
1

//

∼=
��

cokerδ[ν]/F1
//

∼=
��

cokerδ′[ν−1]/F
′
1[−1]

∼=
��

0 // (∞E ′−ν,0hor )[ν]
//

��

(∞E−ν,0hor )[ν]
//

��

(∞E ′−ν+1,0
hor )[ν−1]

��
0 //Bν(Φ

′, L, ν) //Bν(Φ, L, ν) //Bν−1(Φ′, L, ν − 1) // 0.

Finally, by the definition of the maps τ ’s in 2.1.2, the result follows.

The next property is about the support of the homologies of B•(Φ, L, ν). We will

give a new proof of this fact using the Koszul-Čech spectral sequence, for the classical

proof see [Kir73, Theorem 1].
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Proposition 2.2.4. Let L be a finitely generated R-module and ν ∈ Z and M =

Coker(Φ). Then, for all n we have SuppRHn(B•(Φ, L, ν)) ⊂ SuppR(M ⊗R L). In
particular, there is an integer s ≥ 1 such that (Fitt0M)sHn(B•(Φ, L, ν)) = 0, for all
n.

Proof. If P /∈ SuppR L, then obviously Hi(B•(Φ, L, ν))P = 0. If P /∈ SuppRM , that
is, P 6∈ V (Fitt0M), then(

S

γ

)
P

∼= (SymRM)P ∼= SymRP
MP = RP,

since MP = 0. Thus, γP = tP and H•(γP, SP ⊗RP
LP) ∼= H•(tP, SP ⊗RP

LP) ⊗SP

∧•Sf−gP , by [BH98, Proposition 1.6.21]. As (T1, ..., Tg) is an S ⊗R L−sequence, then
K•(tP, SP ⊗RP

LP) is acyclic and H0(tP, SP ⊗RP
LP) = LP. Therefore,

Hi(γ, S ⊗R L)P ∼= Hi(γP, SP ⊗RP
LP)

∼=
∑i

j=0Hj(tP, SP ⊗RP
LP)⊗SP

∧i−jSf−gP

= LP ⊗SP
S

(f−gi )
P (−i)

∼= L
(f−gi )
P (−i),

(2.2.3)

and thus, Hi(γ, S ⊗R L)P is t-torsion all 0 ≤ i ≤ f − g, since there is only one graded
component different to zero, and Hi(γ, S ⊗R L)P = 0 for i ≥ f − g + 1 or i ≤ −1.
So, it follows that 2(EP)hor = ∞(EP)hor, that is, 2(EP)−i,0hor = H0

t (Hi(γ, S ⊗R L)P) for
0 ≤ i ≤ f − g, and the other terms are zero. Hence, by the convergence of spectral
sequences, the vertical and horizontal spectral sequence can be related, and

Hi(γ, H
g
t (S ⊗R L))P ∼= Hi(γP, H

g
tP

(SP ⊗RP
LP))

∼= H0
tP

(Hi−g(γP, SP ⊗RP
LP))

= Hi−g(γP, SP ⊗RP
LP)

= Hi−g(γ, S ⊗R L)P,

(2.2.4)

for all i. If ν ≥ f−g+1, then Hi(B•(Φ, L, ν)P) = (Hi(γ, S⊗RL)P)ν , and by 2.2.3, it is
zero. Similarly, for ν ≤ −1, we have Hi(B•(Φ, L, ν)P) = (Hi+g−1(γ, Hg

t (S⊗RL))P)ν =

0, by 2.2.3 and 2.2.4.
Now, we consider B•(Φ, L, ν) with 0 ≤ ν ≤ f − g. So

Hi(B•(Φ, L, ν)P) =

{
(Hi(γ, S ⊗R L)P)[ν] , 0 ≤ i ≤ ν − 1;

(Hi−1+g(γ, H
g
t (S ⊗R L))P)[ν] , ν + 2 ≤ i ≤ f − g + 1.

(2.2.5)
By (2.2.3), (2.2.4) and (2.2.5), it follows Hi(B•(Φ, L, ν)P) = 0, for i 6= ν, ν + 1.

In the same way of the construction of the complexes Bν+1(Φ, L, ν) in 2.1.2, we
can consider the double complex EP = E ⊗R RP, which is obtained by localization in
the prime P, and we take the map (τν)P and the module FLP

1 , which is given by the
convergence of the spectral sequence in degree ν.

30



There is a module FLP

1 ∈ Bν+1(Φ, L, ν)P such that FLP

1 = F
LP

1 /im(τν)P, and thus
ker(τν)P = F

LP

1 . It follows that Hν+1(B•(Φ, L, ν)P) = F
LP

1 . Notice that (2.2.4) implies
F
LP

1 = 0, since coker(δν)P = (Hν+g(γ, H
g
t (S ⊗R L))P)[ν]

∼= (Hν(γ, S ⊗R L)P)[ν], and
therefore, ker(τν)P = im(δν)P and Hν+1(B•(Φ, L, ν)P) = 0. Finally,

im(τν)P = coker(δν)P
∼= (Hν(γ, S ⊗R L)P)[ν]

= ker((∂ν)P)[ν],

and Hν(B•(Φ, L, ν)P) = 0.

Remark 2.2.5. Kirby in [Kir73, Theorem 1] shows that the power s in the above
proposition is equal to one, that is, the ideal Fitt0M annihilates the homologies of
B•(Φ, L, ν), for all integer ν. In this work, the last proposition is sufficient, see 3.3.1.

2.3 Depth and acyclicity properties

An important property of the Koszul complex, in our case for g=1 (see the Propo-

sition 2.2.1), is the fact that the homologies measure the grade of a finitely generated

R-module in the ideal I = imϕ, when R is a Noetherian ring, and this grade can deter-

mines how close the Koszul complex is to being acyclic, see [BH98, Theorem 1.6.17].

In this sense, the complexes B•(Φ, L, ν) measure the grade of a finitely generated R-

module relative to the ideal Fitt0M , which Kirby called of grade sensitive, and this

grade calculate the acyclicity of these complexes, see Theorem A2.10 [E95] and [Kir73,

Corollary 2].

Eagon and Northcott show that the fact that Fitt0M does not contain an L-

regular element is equivalent to the homology Hf−g+1(B•(Φ, L, 0)) is not zero [EN62,

Proposition 1], and Buchsbaum and Rim show that the complex B•(Φ, L, 1) has the

same property in [BR64, Proposition 2.3]. Finally in [Kir73, Theorem 2], Kirby shows

that this property holds for all ν ≤ f −g. Using the Koszul-Čech spectral construction

of the complexes B•(Φ, L, ν), we will give a new proof of this fact.

Lemma 2.3.1. Let R be a Noetherian ring, L be a finitely generated R-module and
ν ≤ f − g. Then Hf−g+1(Φ, L, ν) 6= 0 if, and only if, HomR(R/Fitt0M,L) 6= 0.

Proof. Note that for ν ≤ f−g−1, we haveHf−g+1(Φ, L, ν) = Hf (γ, H
g
t (S⊗RL))[ν], i.e.,

the ν-th component of Koszul homology of γ1, . . . , γf with coefficients in Hg
t (S ⊗R L),

and by Kuszul duality, it follows

Hf−g+1(Φ, L, ν) = HomS(S/γ, Hg
t (S ⊗R L))(−f)[ν].
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From the perfect pairing given by the multiplication S[i]⊗RHg
t (S ⊗R L)[−i−g] → L, we

obtain the duality HomS(S/γ, Hg
t (S ⊗R L))(−f)[ν]

∼= HomR((S/γ)[f−g−ν], L) [Jou09].
Applying the functor SymR(•) to Rf ϕ→ Rg →M → 0, we obtain the exact sequence

0→ imϕ · SymRR
g → SymRR

g → SymRM → 0

where S ∼= SymRR
g, and so, S/γ ∼= SymRM . Note that, SuppR(M) = SuppR(Symi

RM),
for i ≥ 1. Therefore, by [BH98, Exercise 1.2.27] and [E95, Proposition 20.7], we have
for ν ≤ f − g − 1

AssR(HomR((S/γ)[f−g−ν], L)) = AssR(HomR(Symf−g−ν
R M,L))

= SuppR(Symf−g−ν
R M) ∩ AssRL

= SuppRM ∩ AssRL

= V (R/AnnM) ∩ AssRL

= V (R/Fitt0M) ∩ AssRL

= AssR(HomR(R/Fitt0M,L)),

and from this, follows the result for ν ≤ f − g − 1. By the Proposition 2.2.2, the
complex B•(Φ, ν) is dual to complex B•(Φ, f − g− ν), and thus Hf−g+1(Φ, L, f − g) ∼=
HomR(H0(Φ, 0), L), where H0(Φ, 0) = R/Fitt0M .

With the previous lemma, we can proof the grade sensitive of the complexes in

the family B•(Φ) which have non-zero splice, see Remark 2.1.3.

Theorem 2.3.2. Suppose that R is a Noetherian ring, M ⊗R L 6= 0, with M =

Coker(Φ), and let ν ≤ f − g. Then

gradeR(Fitt0M,L) = min{i;Hf−g+1−i(Φ, L, ν) 6= 0}.

Moreover, for m = gradeR(Fitt0M,L),

Hf−g+1−m(Φ, L, ν) ' ExtmR (H0(Φ, f − g − ν), L).

Proof. We prove by using induction on m := min{i;Hf−g+1−i(Φ, L, ν) 6= 0}.
Let m = 0. As we see in the course of the proof of Lemma 2.3.1, for ν < f − g

Hf−g+1(Φ, L, ν) = HomS(S/ γ,Hg
t (S ⊗R L))(−f)ν

∼= HomR((S/ γ)[f−g−ν], L)

= HomR(H0(Φ, f − g − ν), L),

and for ν = f − g,

Hf−g+1(Φ, L, f − g) = HomR(R/Fitt0M,L) = HomR(H0(Φ, 0), L).

According to [BH98, Proposition 1.2.3], gradeR(Fitt0M,L) = 0 implies HomR(R/Fitt0M,L) 6=
0, and by Lemma 2.3.1, Hf−g+1(Φ, L, ν) 6= 0 too.
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Now, suppose that m > 0. According to Lemma 2.3.1, gradeR(Fitt0M,L) > 0.

By Proposition 2.2.4, there exist an integer s and an L-regular element x ∈ Fitt0M

such that xsH•(Φ, L, ν) = xsM = 0. Hence, the exact sequence

0→ L
xs→ L→ L/xsL→ 0,

yields the following short exact sequences for any i,

0→ Hf−g+1−i(Φ, L, ν)→ Hf−g+1−i(Φ, L/x
sL, ν)→ Hf−g−i(Φ, L, ν)→ 0.

Considering the values i < m the equality about grade follows. For the second assertion,
we set i = m and apply the induction hypothesis. We have

Hf−g+1−m(Φ, L, ν) ∼= Hf−g−m(Φ, L/xsL, ν)
∼= Extm−1

R (H0(Φ, f − g − ν), L/xsL)
∼= ExtmR (H0(Φ, f − g − ν), L).

Remark 2.3.3. We mention some points:

• The last isomorphism in the proof is the well-known Rees formula, see [BH98,
Lemma 1.2.4];

• This theorem above proves the Eagon’s classical result that

grade(Fitt0M,L) ≤ f − g + 1.

Corollary 2.3.4. Let R be a Noetherian ring. If gradeR(Fitt0M,R) ≥ f − g+ 1, then
B•(Φ, ν) is a free resolution of R/Fitt0M for ν = 0, and of Symν

RM for 1 ≤ ν ≤ f−g.
Furthermore, f − g + 1 is the projective dimension of R/Fitt0M and Symν

RM for
1 ≤ ν ≤ f − g.

Proof. Consider 0 ≤ ν ≤ f − g. The complex B•(Φ, ν) is acyclic, by the Theorem
2.3.2. Then the projective dimension of H0(Φ, ν) is at most f − g + 1. If p is a prime
belonging to H0(Φ, ν), then gradeR(p, R) ≥ f − g + 1. So,

f − g + 1 ≥ projdimRH0(Φ, ν) ≥ gradeR(p, R) ≥ f − g + 1,

where the second inequality is given by a theorem due to Rees [Ree57, theorem 1.2].

To conclude this section, we will discuss an interesting example which is known as

generic case. Suppose R is local with maximal idealm and letX = (Xij) be the generic

matrix of the size g×f , i.e., with Xij be indeterminates over R. Let A = R[X](m,X) be

the localization of the polynomial ring with indeterminates Xij (the terms of X) over
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R by the prime ideal generated by m and Xij, for all i, j. In [Nor63], Northcott show

that grade(Fitt0(X), A) = f − g + 1. By the previous corollary, BA
• (X, ν) is acyclic

for all ν ∈ {0, . . . , f −g} (The index A indicates that this complex is obtained over the

ring A).

Consider the ring map
A → R

Xij 7→ cij

where cij’s are the entries of the matrix Φ, we have the isomorphism BA
• (X, ν) ⊗A

R ' BR
• (Φ, ν), since this construction commutes with base change, see Section 2.1.

Hence, the homologies of BR
• (Φ, ν) can be interpreted as Tor modules, i.e., Hi(Φ, ν) '

TorAn (H0(X, ν), R), for all n. Hayasaka and Hyry, in the proof of positivity of the

partial Euler-Poincaré characteristic of H•(Φ, ν) [HH11], used the ideas of Buchsbaum

and Rim [BR65] to show that the Buchsbaum-Eisenbud homologies can be viewed

as a Koszul homology, and thus, they obtained the rigidity of these complexes for

0 ≤ ν ≤ f − g, since the Koszul complex is rigid.

34



Chapter 3

The Euler-Poincaré characteristic of
B(Φ)

3.1 Buchsbaum-Rim multiplicity

Let R be a Noetherian local ring of dimension d and L be a finitely generated

R-module. Let N be a submodule of a free R-module G of finite rank g such that

`R((G/N) ⊗R L) < ∞, where `R denotes the length over R. Any such module N is

called a finite colength submodule of G with respect to module L, and for L = R, we

only say that N is a finite colength submodule of G, that is, G/N has finite length. We

can define the function

λN(ν, L) := `R

(
Sν(G)

Rν(N)
⊗R L

)
from the set of positive integers into itself, where S(G) = ⊕ν≥0Sν(G) is the symmetric

algebra of G and R(N) = ⊕ν≥0Rν(N) is the image of the natural map S(N) →

S(G), which is the R-subalgebra of S(G) generated by N . In [BR64], Buchsbaum

and Rim show that λN(ν, L) is a polynomial function for sufficient large ν with degree

dimL + g − 1, and λN(ν, L) is called Buchsbaum-Rim function of N with respect to L.

For ν >> 0, we can write

λN(ν, L) = PN(ν, L) =

d−g+1∑
i=0

(−1)iei

(
ν + d+ g − 2− i
d+ g − 1− i

)



with integer coefficients ei, PN(ν, L) is called Buchsbaum-Rim polynomial of N with

respect to L. The Buchsbaum-Rim multiplicity of N on L, denoted by br(N,L), is

defined to be the coefficient e0.

Let ϕ : Rf → Rg be a R-linear map such that imϕ = N , that is, N is generated

by f elements. By fixing basis, we can consider Φ the representative matrix for ϕ and

Φ is called a matrix for N . Notice that the generators of N are given by the columns

of Φ. We say that Φ is a parameter matrix for L if (i) `R(Cokerϕ ⊗R L) < ∞ and

(ii) f − g + 1 = dimL, and thus f = µ(N) the minimal number of generators of N by

[BR64, Corollary 3.6]. We say that N is a parameter module if there is a parameter

matrix Φ which is a matrix for N .

Example 3.1.1. For the case g = 1, we have that I = N ⊂ G = R is an ideal such
that l(R/I⊗RL) <∞, that is, I is an ideal of definition of L. Hence, S(G) = R[T ] the
polynomial ring in the indeterminate T over R and R(I) = R[I · T ] the Rees algebra
of I. Furthermore,

Sν(G)

Rν(I)
=

R[T ]ν
R[I · T ]ν

=
R · T ν

Iν · T ν
∼=
R

Iν

and thus
λI(ν, L) = `R(R/Iν ⊗R L) = `R(L/IνL)

that is, the Hilbert-Samuel function of I with respect to L. For ν >> 0, λI(ν, L) is
polynomial and we can define the Hilbert-Samuel multiplicity of I on L, denoted by
e(I, L), as being the coefficient e0 of the polynomial

λI(ν, L) = PI(ν, L) =
d∑
i=0

(−1)iei

(
ν + d− 1− i

d− i

)
.

The Buchsbaum-Rim multiplicity generalizes the Hilbert-Samuel multiplicity as

we saw in the example above, in the same way, the concept of finite colength submod-

ules generalize ideals of definition and the concept of parameter modules generalize

parameter systems.

Remark 3.1.2. In the example above, the Rees algebra of I is the image of natural
map S(I)→ S(R) induced by the inclusion of I in R, that is, R(I) = R[I · T ], where
T is an indeterminate. In general, R(I) can not define the Rees algebra of I for an
arbitrary embedding of I in a free R-module, see [EHU02, Example 1.1 and Theorem
1.4]. The concept of Rees algebra of a R-module N , that extends its classical definition
for ideal, requires an special map f : N → F , called versal map, which is defined in the
following way: every maps from N to a free module factors through f ; and thus, we can
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define the Rees algebra of N to being the image of S(f) in S(F ), [EHU02, Proposition
1.3].

The Hilbert-Samuel multiplicity of I = {c1, . . . , cf} on L can be expressed in

terms of the Koszul homology H•(c, L), when c is a parameter system for L, that is,

e(I, L) = χ(c, L) =

f∑
i=0

(−1)il(Hi(c, L))

where χ(c, L) is the Euler-Poincaré characteristic of the Koszul homology, [BH98, The-

orem 4.7.4]. In 1964 Buchsbaum and Rim proved a analogous result for the Buchsbaum-

Rim multiplicity by using the family of the Buchsbaum-Rim complexes [BR64, Corol-

lary 4.4], where the first complex of this family is called the Buchsbaum-Rim complex

and it is part of the family of Buchsbaum-Eisenbud complexes, that is, the complex

indexed by 1, see 2.1.4. Later, in 1985 Kirby proved the analogous result by using the

family of Buchsbaum-Eisenbud complexes, which is of our interest in this work.

Theorem 3.1.3 ([Kir85]). Let R be a Noetherian local ring, L be a finitely generated
R-module and N be a finite colength in a finite free R-module G of rank g. If Φ is a
matrix for N , then for all ν ∈ Z

χ(Φ, L) :=
∑
i

(−1)i`R(Hi(Φ, L, ν)) =

{
br(N,L) , if Φ is a parameter matrix for L;

0 , otherwise.

Remark 3.1.4. In the same way of the Euler-Poincaré characteristic of the classical
Koszul homology, we use the notation χ(Φ, L, ν) for the Euler-Poincaré characteristic
of H•(Φ, L, ν), that is,

χ(Φ, L, ν) =
∑
i

(−1)i`R(Hi(Φ, L, ν)).

But in the theorem above, we use χ(Φ, L), without the index ν, because this result does
not depend on it.

Example 3.1.5. Let R = k[x, y](x,y) be the localization of the polynomial ring over a
field on the maximal ideal m = (x, y). Consider the parameter matrix

Φ =

[
xi 0 −yt

0 yj xs

]
with s, t, i, j, d, e positive integers. N = imΦ is a finite colength submodule of G = R2

such that G/N ' I/a, where I = (xs, yt) and a = (xs+i, yt+j) are m-primary ideals of
R. So, the Buchsbaum-Rim complex B•(Φ, 1) is given by

0 // R
Ψ // R3 Φ // R2 // 0.
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Notice that the ideal Fitt0M = (xs+i, yt+j, xiyj) has grade 2. By the Theorem 2.3.2,
the complex B•(Φ, 1) is acyclic, and hence, the theorem above 3.1.3 implies

br(N) = χ(Φ, 1) = `R(H0(Φ, 1)) = `R(I/a) = (s+ i)(t+ j)− st = e(a)− e(I).

It is an interesting case studied by E. Jones in [J01], where we can relate the Buchsbaum-
Rim multiplicity and Hilbert-Samuel multiplicity.

Our interest in this work is to calculate the Buchsbaum-Rim multiplicity using

the Euler-Poincaré characteristic of the Buschsbaum-Eisenbud complexes, see Theorem

3.3.4. Notice that to apply the theorem above it is necessary to have a parameter

matrix. To conclude this section, the next paragraphs will discuss about this problem.

In classical case, g = 1, the Hilbert-Samuel multiplicity of I on L can be calculated

by using a reduction J of I, that is, e(J, L) = e(I, L). Furthermore, since I is an ideal

of definition of L and supposing that k = R/m the residue field is infinity, then we can

choose J = (x1, . . . , xt) being a minimal reduction of I, with x a parameter system of

L, and thus, e(I, L) = e(J, L) = χ(x, L), as we wanted, see [BH98, Section 4.6]. This

reduction J of I is minimal and comes from the Noether normalization of the special

fiber of I.

Let U be a submodule of N ⊂ Rg with g ≥ 2. So, R(U) ⊂ R(N) is a ring

extension in S(G). We say that U is a reduction of N if R(N) is integral over R(U)

as rings. A minimal reduction of N is a reduction that is minimal with respect to

inclusion. The special fiber of R(N) is the ring F(N) = k ⊗R R(N), and its Krull

dimension is called the analytic spread of R(N) and is denoted by λ(N). Now assume

that the residue field k is infinite. For any reduction U of N , we have µ(U) ≥ λ(N),

where µ(U) denotes the minimal number of generators of U , and the equality holds if

and only if U is minimal, [HS06, Corollary 16.4.7 and Proposition 8.3.7]. Since F(N)

is a finitely generated standard graded algebra of dimension λ = λ(N) over an infinite

field k, then it admits a Noether normalization k[y1, . . . , yλ] generated by linear forms;

lifting these linear forms to x1, . . . , xλ in R(N)[1] = N , we obtain a minimal reduction

U = (x1, . . . , xλ) of N . If G/N has finite length, then µ(U) = dimF(N) = d + g − 1

(and thus U is a parameter module) and br(U) = br(N), see [SUV01, Theorem 5.1(c)

and Corollary 5.5] and [Ree87]. We give an example using the main Theorem of this

work, see 3.3.7.

38



3.2 Hilbert function over an Noetherian base ring

Let R be a Noetherian ring with finite dimension, L be a finitely generated R-

module and Φ = (cij)g×f be a matrix over R with 1 ≤ g ≤ f and Coker Φ = M

. Consider the Koszul complex K•(γ, S ⊗R L) as in previous chapter, where S =

R[T1, . . . , Tg] is standard graded ring and γ = {γj =
∑

i cijTi} is a sequence of linear

elements determined by Φ, and thus, its homologies are graded S-module. Notice that,

indeg(Hj(γ, S ⊗R L)) = j for all j, and

Hj(γ, S ⊗R L)ν = Hj(Φ, L, ν)

for all ν ≥ j+1, where Hj(Φ, L, ν) is an homology of a Buchsbaum-Eisenbud complex.

If we assume that `R(M ⊗R L) < ∞, then by the Proposition 2.2.4 the R-modules

Hj(γ, S ⊗R L)ν have finite length for all ν ≥ j + 1, and hence, the graded S-module

Hj(γ, S ⊗R L) have finite length components, maybe except by the j-th.

In the classical theory of Hilbert function the base ring R of the graded ring S

must be an Artinian ring, but in our case, it is a general Noetherian ring. The goal

of this section is to give a treatment for this case, that is, we can define the Hilbert

Polynomial of a graded S-module H such that its components have finite length over

the Noetherian base ring R eventually.

Fixing S = R[T1, . . . , T g] the polynomial ring in g indeterminates over a Noethe-

rian ring R with the standard graduation and denote X = Proj(S) := Pg−1
R the projec-

tive space over R of dimension g − 1.

Definition 3.2.1. Let H be a finitely generated graded S-module such that the coho-
mology modules H i(X, H̃(ν)) are finite length R-modules for all i ∈ {0, . . . , g− 1} and
ν ∈ Z. We define

hiH(ν) := `R(H i(X, H̃(ν)))

and

ρH(ν) :=

g−1∑
i=0

(−1)ihiH(ν).

Referring to Serre [BH98, Theorem 4.4.3], one may wonder if the function ρ

defined in the Definition above is indeed the Hilbert polynomial.

Lemma 3.2.2. Let H1,H2 and H3 be three finitely generated graded S-module such
that all of the cohomology modules H i(X, H̃j(ν)) are finite length R-modules for all i,
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j and ν. If H1,H2 and H3 fit into a short exact sequence 0 → H1 → H2 → H3 → 0

then for any integer ν,
ρH2(ν) = ρH1(ν) + ρH3(ν).

Using an usual long exact sequence techniques, the previous Lemma follows.

Proposition 3.2.3. Let H be a finitely generated graded S-module such that the co-
homology modules H i(X, H̃(ν)) are finite length R-modules for all i and ν. Then the
function ρH : N→ Z, defined in Definition 3.2.1, is a polynomial function with eventual
positive values.

Proof. Although R is Noetherian, we will show how one can reduce the problem to
Artinian local case.

Notice that there is a chain 0 ⊆ N0 ⊆ · · · ⊆ Ne = H of graded submodules of
H such that for each i, Ni+1/Ni ' S/pi(ai) where pi is a homogeneous prime ideal
of S. If one shows that the proposition holds for modules of the form S/p, with p a
homogeneous prime ideal, the result follows from Lemma 3.2.2.

Now, notice that Dt(H) = Dt(H/Γt(H)) and H i
t(H) = H i

t(H/Γt(H)) for i ≥ 2.
Consequently, ρH = ρH/Γt(H). So that one may suppose that H is a t-torsion free
S-module.

We first treat the case where p ⊇ t. In this case, hiH(ν) = 0 for all i and ν.
Thus ρH is just the zero function. To see hiH(ν) = 0, we consider the ideal transform
functor, Dt(−), according to the notations in [BS13, Chapter 2]. With this setting,
H i(X, H̃(ν)) = RiDt(H)ν .

Now, suppose that p 6⊇ t. Since Γt(H) = 0, H is a graded submodule of Dt(H) =

⊕νH0(X, H̃(ν)). By our hypothesis, for each integer ν, H0(X, H̃(ν)) is a finite length
R-module. Hence Hν is a finite length R-module. Since H is a finitely generated S-
module, its generators are concentrated in a finite number of graded components of H,
say Hi1 , · · · ,Hiq . Any of Hij is an R-module of finite length, thus its support consists
of a finite number of maximal ideals of R. Although H is not necessarily a finitely
generated R-module, the R-support of H will be the union of these maximal ideals
which is a finite set, say {m1, · · · ,mc}.

Then H is annihilated by a power of (m1 · · ·mc), say (m1 · · ·mc)
k. The change of

base ring theorem for local cohomologies, [BS13, Theorem 2.2.24], shows that hiH(ν) :=

`R(H i(X, H̃(ν))) = `R′(H
i(X ′, H̃(ν))), where R′ = R/(m1 · · ·mc)

k and X ′ = X×Spec(R)

Spec(R′). Hence we may substitute R with R′ which is an Artinian semi-local ring.
Considering the decomposition series for the finite length R′-moduleH i(X, H̃(ν)),

it is easy to see that `R′(H i(X ′, H̃(ν))) =
∑c

j=1 `R′mj (H
i(X ′, H̃(ν))mj). Consequently,

the proof of the assertion reduces to the case where R is an Artinian local ring.
For Artinian local ring R, the proof of this theorem is indeed a classical proof,

see for example [BH98, Theorem 4.1.3 and Theorem 4.4.3]. We notice that since the
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polynomial ring S is assumed to be standard, the function ρH is indeed a polynomial,
whereas it is a quasi-polynomial in the general case.

Remark 3.2.4. Notice that the dimension of ρH is well defined, because it reduces to
the Artinian case. Otherwise, we would talk about the relation between the dimension
of H̃ as OX-module and the Krull dimension of H as a graded S-module, where S is
a polynomial ring with Noetherian base ring. In [CRS20, Subsection 3.1], the authors
proof to the case of Noetherian domain base ring.

Let H be a finitely generated graded S-module such that `R(Hν) is finite for all

integer ν. In this case, an argument similar to that in the proof of the Proposition

3.2.3 shows that H is indeed a graded module over a ring with an Artinian base ring.

So that, we may talk about Hilbert polynomial of H in the classical sense. We denote

this function by PH(ν).

Lemma 3.2.5. Let H be a finitely generated S-module with finite length graded com-
ponents. Let Hsat = H/Γt(H). Then

PH(ν) = PHsat(ν)

for all ν.

Proof. Since H is a finitely generated S-module and each graded component of H is
a finite length R-module, a similar argument to that in the proof of Proposition 3.2.3
shows that there exist maximal ideals {m1, · · · ,mc} and an integer k such that H is a
R/(m1 · · ·mc)

k-module. Since, Γt(H) is a finitely generated S-module, it is annihilated
by a power of t. Thence it is annihilated by a product of maximal ideals (mi+t). Being
a Noetherian S-module, the latter implies that it is an Artinian S-module. Therefore,
the following descending chain of graded S-submodules of Γt(H) stops

Γt(H)≥0 ⊇ Γt(H)≥1 ⊇ · · · .

The degree argument then shows that Γt(H)ν = 0 for all ν >> 0. Now, it follows from
the exactness of the sequence

0→ Γt(H)→ H→ Hsat → 0

that PH(ν) = PHsat(ν) for all ν >> 0. However, two polynomials are equal if they have
infinitely many equal values

Proposition 3.2.6. Let H be a finitely generated graded S-module such that the coho-
mology modules H i(X, H̃(ν)) are finite length R-modules for all i and ν. Then for all
ν

ρH(ν) = PHsat(ν)

where Hsat = H/Γt(H).
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The proof follows from the Serre’s vanishing theorems [BS13, Theorem 16.1.5(ii)

and Corollary 16.1.6(iii)]. We notice that, for all ν, Hsat
ν is of finite length, since it

is a subset of H0(X, H̃(ν)). For large enough ν, ρHsat(ν) = `(Hsat
ν ) = PHsat(ν). The

equality ρHsat(ν) = PHsat(ν) for all ν follows from the fact that ρHsat(ν) and PHsat(ν)

are both polynomials.

Discussion 3.2.7. Going back to the discussion before Lemma 3.2.5, one may wish
to find in the literature, a generalization of the theory of Hilbert function for finitely
generated S-module H for which only eventual values of `R(Hν) are finite. In the
Scheme theoretic point of view of projective varieties, this fact is what researchers
indeed deal with. However from the commutative algebra point of view, the issue is in
the intervention of the saturation part; as we did in Proposition 3.2.6. Thenceforth for
a finitely generated S-module H such that `R(Hν) are finite for all ν ≥ ν0, we use the
notation of Hilbert polynomial PH(ν) := PH≥ν0 (ν).

3.3 A genus formula for the Buchsbaum-Rim multi-
plicity

Finally, we reach the main section of this thesis work. In the first chapter, we

defined the family of the Buchsbaum-Eisenbud complexes B•(Φ, L) using the vertical

spectral sequence coming from the double complex E•,• = K•(γ, S ⊗R L) ⊗S C•t . We

used the convergence of spectral sequence to write the Euler characteristic χ(Φ, L, ν)

in terms of the horizontal spectral sequence of E•,•. Recall that the terms on second

page of the horizontal spectral sequence of E•,• in degree ν are given by

Hq
t (Hp(γ, S ⊗R L))[ν],

and using the results of the previous section, supposing Coker(Φ)⊗R L of finite length,

we will can write χ(Φ, L, ν) in terms of the Hilbert polynomials of the Koszul homolo-

gies.

The next Lemma is an important case where the conditions of Lemma 3.2.3 hold.

Lemma 3.3.1. Let R be a Noetherian ring and suppose that M ⊗R L is a finite length
R-module. For p = 0, · · · , f , let Hp = Hp(γ, S ⊗R L) be the Koszul homology modules
with sheafification H̃p. Then the R-modules

Hq(X, H̃p(ν))

are of finite length for all q and ν.

42



Proof. The terms on the second page of the horizontal spectral sequence of third quad-
rant double complex E•,• = K•(γ;S)⊗S C•t ⊗R L in degree ν are Hq

t (Hp(γ, S ⊗R L))ν ,
for 0 ≤ p ≤ f and 0 ≤ q ≤ g. (We refer to Section 1.1, for the required properties and
notations related to this spectral sequence.)

First, notice that Hq
t (Hp(γ, S ⊗R L))ν is of finite length for q ≥ 1. In fact, if

P /∈ SuppR(M ⊗R L), then either MP = 0 or LP = 0. The latter, clearly, implies that
Hq

t (Hp(γ, S ⊗R L))P = 0. In the former case, the map

ΦP : Rf
P → Rg

P

is surjective. Hence the ideal generated by γ is the same as the ideal generated by t.
This fact implies that Hp(γ, S⊗R L)P is tP-torsion for all P, and thus, Hq

t (Hp(γ, S⊗R
L))P = 0 for all q ≥ 1.

Therefore in any degree ν, Hq
t (Hp(γ, S ⊗R L))ν is a finitely generated R-module

whose support is contained in the support of M ⊗R L. The latter consists of maximal
ideals; so that

Hq
t (Hp(γ, S ⊗R L))ν is of finite length for any q ≥ 1. (3.3.1)

Notice that Hq(X, ˜Hp(γ, S ⊗R L)(ν)) = Hq+1
t (Hp(γ, S ⊗R L))ν for q ≥ 1.

It remains to show that Dt(Hp(γ, S ⊗R L))ν is a finite length R-module for all ν.
We study three cases.

Case 1. If ν ≥ f − g + 1. In this case, Hp(γ, S ⊗R L)ν = Hp(B•(Φ, L, ν)) for all
p, according to the structure of B•(Φ, L, ν) which is explained in (2.1.3). Proposition
2.2.4 then shows that these homology modules have finite length.

Case 2. If ν ≤ −1. Hp(γ, S ⊗R L)ν is a subquotient of Λp(Sf (−1)⊗R L)ν for all
p. The latter is zero be degree discussion.

Case 3. If 0 ≤ ν ≤ f − g, we consider three other cases
Case 3.1. If p > ν, then Hp(γ, S⊗R L)ν is a subquotient of Λp(Sf (−1)⊗R L)ν for

all p. The latter is zero be degree discussion.
Case 3.2. If p < ν, then Hp(γ, S ⊗R L)ν = Hp(B•(Φ, L, ν)), according to (2.1.3),

which is of finite length by Proposition 2.2.4.
In all of the above cases, Dt(Hν(γ, S ⊗R L))ν is a finite length R-module by

regarding the exact sequence in conjunction with (3.3.1)

0→ H0
t (Hp(γ, S ⊗R L))ν → Hp(γ, S ⊗R L)ν → Dt(Hp(γ, S ⊗R L))ν → H1

t (Hp(γ, S ⊗R L))ν → 0.

(3.3.2)

Case 3.3. p = ν. Based on the structure of B•(Φ, L, ν), Hν(B•(Φ, L, ν)) =

Ker(∂ν)ν/ Im(τν), where Ker(∂ν)ν = Hν(γ, S ⊗R L)ν . As well, Im(τν) = ∞E−ν,0hor by
(2.1.2).

Therefore, we have

Hν(γ, S ⊗R L)ν
∞E−ν,0hor

= Hν(B•(Φ, L, ν)) (3.3.3)
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The latter is of finite length, according to Proposition 2.2.4.
Finally, the finiteness of Dt(Hν(γ, S ⊗R L))ν follows from the exactness of the

following natural sequence

0→ H0
t (Hν(γ, S ⊗R L))ν

∞E−ν,0hor

→ Hν(γ, S ⊗R L)ν
∞E−ν,0hor

→ Dt(Hν(γ, S ⊗R L))ν → H1
t (Hν(γ, S ⊗R L))ν → 0.

(3.3.4)

We are now ready to present and prove the following main property of χ(Φ, L).

Theorem 3.3.2. Let R be a Noetherian ring and suppose that Coker(Φ)⊗RL is a finite
length R-module. Let ρj(ν) := ρ

Hj(γ,S⊗RL)
(ν) be the ρ function defined in Definition

3.2.1 for j-th Koszul homology module Hj(γ, S ⊗R L). Then, for all integer ν

χ(Φ, L, ν) =

f∑
j=0

(−1)jρj(ν).

Proof. The proof is a deep analysis of the horizontal spectral sequence of (E•,•)ν =

(K•(γ, S ⊗R L)⊗S C•t )ν .
Due to Lemma 2.2.4, the modules (2E−j,−qhor )ν = Hq

t (Hj(γ, S ⊗R L))ν have finite
length for q ≥ 2 and any j. Furthermore, the epimorphism

Dt(Hj(γ, S ⊗R L))ν → H1
t (Hj(γ, S ⊗R L))ν → 0,

implies that H1
t (Hj(γ, S ⊗R L))ν has finite length for every j.

We need to look into H0
t (Hj(γ, S ⊗R L))ν .

For ν ≥ f−g+1, Hj(γ, S⊗RL)ν = Hj(B•(Φ, L, ν)) is of finite length by the same
reason as Case 1 in the proof of Lemma 2.2.4. So thatH0

t (Hj(γ, S⊗RL))ν ⊆ Hj(γ, S⊗R
L)ν is of finite length. For ν ≤ −1, Hj(γ, S⊗RL)ν is a subquotient of Λj(Sf (−1)⊗RL)ν

for all j. The latter is zero by degree discussion, so that H0
t (Hj(γ, S ⊗R L))ν = 0. If

0 ≤ ν ≤ f − g, since

Hj(γ, S ⊗R L)ν =

{
Hj(B•(Φ, L, ν)) , j < ν;

0 , j > ν
, (3.3.5)

andH0
t (Hj(γ, S⊗RL)) ⊆ Hj(γ, S⊗RL) Proposition 2.2.4 yields thatH0

t (Hj(γ, S⊗RL))

has finite length for j 6= ν.
When 0 ≤ ν ≤ f−g the R-module H0

t (Hν(γ, S⊗RL))ν is not necessarily of finite
length. However, as we see in the proof of the Lemma 2.2.4(3.3.3)

Hν(γ, S ⊗R L)ν

(∞E−ν,0hor )ν
= Hν(B•(Φ, L, ν)) (3.3.6)

is of finite length.
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Unless otherwise stated, suppose that 0 ≤ ν ≤ f − g. So far we see that every
terms in the spectral sequence (E•,•)ν except (E−ν,0)ν , is of finite length. In order to
relate the lengths of the homologies ofB•(Φ, L, ν) to the length of the terms of (2E•,•hor)ν ,
we define a new spectral sequence rG•,• which is equal to (rE•,•hor)ν for (−j,−q) 6= (−ν, 0)

with the same differentials, and for (−j,−q) = (−ν, 0)

rG−ν,0 :=
(rE−ν,0hor )ν

(∞E−ν,0hor )ν

with the induced differentials. Hence the induced differentials are just the same maps
as they were in (rE•,•)ν however some parts of their kernels are already killed.

The advantage of rG•,• is that its terms on the second page have finite length.
We only need to notice that

2G−ν,0 =
H0

t (Hν(γ, S ⊗R L))ν

(∞E−ν,0hor )ν
⊆ Hν(γ, S ⊗R L)ν

(∞E−ν,0hor )ν
= Hν(B•(Φ, L, ν))

which is of finite length by Proposition 2.2.4. Since ∞G−ν,0 = 0, the spectral sequence
rG•,• converges to H•, where

Hj =


Hj+g(γ,H

g
t (S ⊗R L))ν , ν + 1 ≤ j ≤ f − g
F1 , j = ν

0 , otherwise.

Here, F1 is the module defined in equation (2.1.1) which is given by the convergence
of rE•,•hor. Notice that

Hj = Hj+1(B•(Φ, L, ν)) for ν + 1 ≤ j ≤ f − g and Hν = F1 = Hν+1(B•(Φ, L, ν))

(3.3.7)
in the same way as the proof of Proposition 2.2.4. Therefore Proposition 2.2.4 implies
that all terms of H• have finite length.

Applying Proposition A.2.2, it follows that

f−g∑
j=ν

(−1)j`(Hj) =
∑
j

∑
q

(−1)j+q`(2G−j,−qhor ).

According to equation (3.3.7), we change the indices on the left side,

−
f−g+1∑
j=ν+1

(−1)j`(Hj(B•(Φ, L, ν))) =

∑
j

∑
q≥2

(−1)j+q`(Hq
t (Hj(γ, S ⊗R L))ν)+

∑
j 6=ν

(−1)j{`(H0
t (Hj(γ, S ⊗R L))ν)− `(H1

t (Hj(γ, S ⊗R L))ν)}+ (3.3.8)
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(−1)ν
{
l

(
H0

t (Hν(γ, S ⊗R L))ν

(∞E−ν,0hor )ν

)
− `(H1

t (Hν(γ, S ⊗R L))ν)

}
. (3.3.9)

For j 6= ν, we consider the following exact sequence where all terms have finite length

0→ H0
t (Hj(γ, S ⊗R L))ν → Hj(γ, S ⊗R L)ν → Dt(Hj(γ, S ⊗R L))ν → H1

t (Hj(γ, S ⊗R L))ν → 0

(3.3.10)

We have

`(H0
t (Hj(γ, S ⊗R L))ν)− `(H1

t (Hj(γ, S ⊗R L))ν) = `(Hj(γ, S ⊗R L)ν)− `(Dt(Hj(γ, S ⊗R L))ν).
(3.3.11)

For j = ν, we consider the sequence

0→ H0
t (Hν(γ, S ⊗R L))ν

(∞E−ν,0hor )ν
→ Hν(γ, S ⊗R L)ν

(∞E−ν,0hor )ν
→ Dt(Hν(γ, S ⊗R L))ν → H1

t (Hν(γ, S ⊗R L))ν → 0,

(3.3.12)

which is exact by a straightforward verification. Thus

`

(
H0

t (Hν(γ, S ⊗R L))ν
(∞E−ν,0hor )ν

)
− `(H1

t (Hν(γ, S ⊗R L))ν) = `

(
Hν(γ, S ⊗R L)ν

(∞E−ν,0hor )ν

)
− `(Dt(Hν(γ, S ⊗R L))ν).

(3.3.13)

Now, plugging (3.3.11) and (3.3.13) in (3.3.8) and (3.3.9), respectively, we have

−
f−g+1∑
j=ν+1

(−1)j`(Hj(B•(Φ, L, ν))) =

∑
j

∑
q≥2

(−1)j+q`(Hq
t (Hj(γ, S ⊗R L))ν)+

∑
j 6=ν

(−1)j{`(Hj(γ, S ⊗R L)ν)− `(Dt(Hj(γ, S ⊗R L))ν)}+

(−1)ν
{
l

(
Hν(γ, S ⊗R L)ν

∞E−ν,0hor

)
− `(Dt(Hν(γ, S ⊗R L))ν)

}
.

Plugging (3.3.5) and (3.3.6) in the last two lines, we have

−
f−g+1∑
j=ν+1

(−1)j`(Hj(B•(Φ, L, ν))) =

∑
j

∑
q≥2

(−1)j+q`(Hq
t (Hj(γ, S ⊗R L))ν)+

∑
j 6=ν

(−1)j(`(Hj(B•(Φ, L, ν)))− `(Dt(Hj(γ, S ⊗R L))ν))+

(−1)ν(`(Hν(B•(Φ, L, ν)))− `(Dt(Hν(γ, S ⊗R L))ν)).

Finally, writing Hq(X, H̃j(γ, S⊗RL)(ν)) = RqDt(Hj(γ, S⊗RL))ν , we obtain the
equality
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χ(Φ, L, ν) =
∑
j

(−1)jρj(ν).

For ν ≥ f − g + 1 or ν ≤ −1, all the terms of the spectral sequence (rE••hor)ν

are all of finite length. Thus, without introducing the spectral sequence rG•,•, the
computation of

∑f−g
j=ν (−1)j`(Hj) shows the asserted equality.

Remark 3.3.3. The proof of Theorem 3.3.2 would be essentially the computational
parts in (3.3.8) and (3.3.9), if (2E−j,−qhor )ν were of finite length for all j and q. By the
way, this desire is true except for j = ν, q = 0. So that, we had to verify the details
thoroughly.

The next Theorem shows how the Buchsbaum-Rim multiplicity is expressed as

the alternating sum of Hilbert polynomials.

Theorem 3.3.4. Let R be Noetherian, Coker(Φ) ⊗R L a finite length R-module,
Hj := Hj(γ, S ⊗R L) the j-th Koszul homology module, Γt(Hj) the t-torsion part of
Hj, and Hsat

j := Hj/Γt(Hj). Then for any integer ν,

χ(Φ, L, ν) = PHsat
0

(ν)− PHsat
1

(ν) + · · ·+ (−1)fPHsat
f

(ν).

In particular, if R is local, then

f∑
i=0

(−1)iPHsat
i

(ν) =

{
br(Φ, L) , if Φ is a parameter matrix ;

0 , otherwise.

Proof. The proof follows by combining Theorem 3.3.2, Lemma 3.2.6 and the Theorem
3.1.3.

Remark 3.3.5. Notice that for large ν the Hilbert polynomial is equal to Hilbert func-
tion, and thus, the terms in the alternating sum of these polynomials above is exactly
the terms in χ(Φ, L).

To show the importance of Theorem 3.3.4, we mention how this theorem general-

izes the Serre’s celebrated theorem about the Hilbert-Samuel multiplicity [Ser65], e.g.

[BH98, 4.7.6].

Corollary 3.3.6. (Serre) Let R be a Noetherian local ring, I = (c1, . . . , cf ) an ideal of
definition of a finitely generated R-module L and Hj := Hj(c;L) the j-th homology of
the Koszul complex of c = c1, . . . , cf with coefficients in L. Then

f∑
i=0

(−1)iχ(c, L) =

{
e(c, L) , if c is a parameter system ;

0 , otherwise.
.
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Proof. In Theorem 3.3.4 we set g = 1, Φ = (c1, . . . , cf ) and Coker(Phi) = R/I.
For any ν, the complex B•(Φ, L, ν) is isomorphic to the Koszul complex K•(c;L).
Hj(γ, S)ν ∼= Hj(c;L) and dimX(Supp(Hj(γ, S)) = 0 for all j. Hence PHsat

j
(ν) = `(Hj)

for all j and ν, that is, a constant polynomial. We, as well, notice that br(M) = e(I, R)

in this case [BR64].

Example 3.3.7. Let R = Q[x, y] be the polynomial ring over the field of rational
numbers and let

Φ =

(
x 0 −y
0 y2 x3

)
be a parameter matrix. Using Macaulay2, we calculate PHsat

i
(ν) by the following way:

(i) Define the polynomial ring S = R[T1, T2] with standard graduation, i.e.,

S = QQ[x, y,T1,T2,Degree => {0, 0, 1, 1}];

(ii) After calculate the Koszul homologies of γ, we calculate the saturation, for exam-
ple

Hsat
0 = (HH_0 K)/saturate(0_(HH_0 K), ideal(T1,T2))

where K is the Koszul complex of γ;

(iii) So, we can take the resolution of Hsat
i , look to the first differential and calculate,

by our hands, the matrix which defines Hsat
0 in degree ν, with the help of betti

table. In our example for Hsat
0 in degree 0, we have the matrix

x 0 0 y2 0 0 0 −y 0 0 x3y 0 0 0 x4 0 0 0

0 x 0 0 y2 0 0 x3 −y 0 0 x3y 0 0 0 x4 0 0

0 0 x 0 0 y2 0 0 x3 −y 0 0 x3y 0 0 0 x4 0

0 0 0 0 0 0 y2 0 0 x3 0 0 0 x3y 0 0 0 x4

;

(iv) Finally, we compute the degree of the cokernel of this matrix.

So, we obtain

PHsat
0
− PHsat

1
+ PHsat

2
− PHsat

3
= 10− 1 + 0− 0 = 9 = br(Φ).

This example comes from the E. Jones work [J01], when U = imΦ is a submodule
of the finite colength submodule N = (xT1, yrT2, x

2yT2, x
3T2 − yT1) ⊂ R2 such that

R2/N ' I/a with I = (x3, y) and a = (x4, y3, x2y2) being m-primary ideals of R. In
this case [J01, Theorem 5], U is a minimal reduction of N (see the discussion in the
end of Section 2.1) and

br(U) = br(N) = e(a)− e(I).
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We define the Euler characteristic 1 of a coherent sheaf F on X relative to the

Noetherian affine scheme Y = Spec(R) to be the following integer (in the case it is

finite)

χ(X,F) =
∑
j=0

(−1)j`R(Hj(X,F)). (3.3.14)

In spacial cases χ(X,F) relates the degree of F with the genus of X. Our last result

is a (Arithmetic) genus explanation of the Buchsbaum-Rim multiplicity, [Har77, III ex

5.3].

Corollary 3.3.8. Let R be a Noetheiran local ring, Coker(Φ) be a finite length R-
module and Hj := Hj(γ, S) be the j-th Koszul homology module with sheafification H̃j.
Then

f∑
j=0

(−1)jχ(X, H̃j) =

{
br(Φ) , if Φ is a parameter matrix ;

0 , otherwise.

Proof. In Theorem 3.3.2, put ν = 0 and use the definition (3.3.14).

3.4 Comments and questions

With the same notations of Theorem 3.3.4, for j ≥ 0 and any integer ν, we can

define the generalized partial Euler-Poincaré characteristic

χj =
∑
i≥j

(−1)i−jPHsat
i

(ν) = PHsat
j

(ν)− PHsat
j+1

(ν) + · · ·+ (f − j)PHsat
f

(ν)

of L with respect to Φ. If R is local and Φ is a parameter matrix, then the χ0 =

br(Φ, L) > 0. Hence, we have the first question:

Question 3.4.1. Is the partial Euler-Poincaré characteristic χj non-negative, for any
j ≥ 0 and any integer ν?

In [HH11], Hayasaka and Hyry show that the partial Euler-Poincaré character-

istic of the Buchsbaum-Eisenbud complexes is non-negative for all ν. Therefore, the

answer to the question above is Yes for large ν, see Remark 3.3.5, and so, this question

is for initial values of ν.

The Koszul-Čech construction of the Buchsbaum-Eisenbud complexes arises in

[BHa19] with the purpose to study the disguised residual intersection, which is the
1This definition is the same as [Har77, III ex 5.1] in which R is a field.
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zeroth homology of the zeroth residual approximation complex, see [HaN16]. This

complex was firstly obtained in [Has12] and the construction is the same of the Koszul-

Čech construction of the Buchsbaum-Eisenbud complexes if we change the Koszul

complex K•(γ, S ⊗R L) by the subcomplex DL
• = Tot(K• ⊗S ZL• ), see [BHa19, Section

4], where the ZL• is an approximation complex which uses the Koszul cycles. The terms

of the residual approximation complexes are not free R-modules as in the complexes

of this thesis work.

Question 3.4.2. Do the residual approximation complexes have similar properties as
the Buchsbaum-Eisenbud complexes? For example:

(i) Duality 2.2.2, since that there is a duality on Koszul cycles, see [CNT19, Propo-
sition 2.2];

(ii) Support of the homologies 2.2.4;

(iii) Acyclicity and depth 2.3.1 and 2.3.2;

(iv) The characteristic formula 3.3.2, and its algebraic or geometric meaning.
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Appendix A

Some results

A.1 A natural duality

We used the next result to proof the Proposition 2.6, in the first chapter. This is

a duality result from the Jouanolou’s works [Jou09], which is in the second section.

Let R be a commutative ring with identity and let S = R[T1, . . . , Tg] be the

polynomial ring in g indeterminates over the ring R with deg(Ti) = αi > 0 for all

i ∈ {1, . . . , g}. Let γ1, . . . , γf be homogeneous polynomials in S with degrees β1, . . . βf ,

respectively; that is

γj =
∑

l1,...,lg≥0∑g
i=1 liαi=βj

cj,lT
l1
1 · · ·T lgg ∈ S[βj ].

Consider K•(γ, S) the Koszul complex of the sequence γ = γ1, . . . , γf over S, and

C•t (S) the Cech complex of the sequence t = T1, . . . , Tg over S.

Proposition A.1.1. There is an isomorphism

Hf (γ, H
g
t (S))

(
−

f∑
j=1

βj

)
[ν]

∼= HomR((S/ γ)[δ−ν], R)

for all ν ∈ Z, where δ =
∑f

j=1 βj −
∑g

i=1 αi.

Proof. For all ν ∈ Z, we have a canonical perfect pairing between R-modules

S[−ν−
∑g
i=1 αi]

⊗R Hg
t (S)[ν] → Hg

t (S)[−
∑g
i=1 αi]

∼= R,

which is induced by multiplication, and this pairing yields a natural isomorphism
Hg

t (S)[ν]

∼=→ HomR(S[−ν−
∑g
i=1 αi]

, R), where it maps a ∈ Hg
t (S)[ν] to an homomorphism



ψa : S[−ν−
∑g
i=1 αi]

→ R which is given by ψa(b) = ab, for all b ∈ S[−ν−
∑g
i=1 αi]

. Thus, if
we consider the S-structure of R = S/t, we have the isomorphism

Hg
t (S) = ⊕νHg

t (S)[ν]

∼= ⊕νHomR(S[−ν−
∑g
i=1 αi]

, R)

∼= ⊕νHomR(S (−ν −
∑g

i=1 αi) , R)

= HomS(S (−
∑g

i=1 αi) , R)

and therefore

Hf (γ, H
g
t (S))

(
−
∑f

j=1 βj

)
[ν]

= HomS(S/γ,Hg
t (S))

(
−
∑f

j=1 βj

)
[ν]

∼= HomS(S/γ,HomS(S (−
∑g

i=1 αi) , R))
(
−
∑f

j=1 βj

)
[ν]

= HomS(S/γ,HomS(S,R))(−δ)[ν]

∼= HomS((S/γ)(δ), R)[ν]

∼= HomR((S/γ)[δ−ν], R).

A.2 Spectral sequence in finite length

Lemma A.2.1. Let C• : 0→ Ck → · · · → C1
d1→ C0 → 0 be a complex of finite length

modules. Then
k∑
i=0

(−1)i`(Ci) =
k∑
i=0

(−1)i`(Hi(C•)).

Proof. We will use induction on k, the length of the complex C•. If k = 0, then the
complex is 0 → Co → 0 and C0 = H0(C•). Suppose k > 0. We can decompose the
complex C• in two pieces

0→ Ck → · · · → C2
d2→ kerd1 → 0

and
0→ imd2 → C1 → C0 → 0

By the induction hypothesis, we have

`(kerd1)−
k∑
i=2

(−1)i`(Ci) = −
k∑
i=1

(−1)i`(Hi(C•))

and
`(C0)− `(C1) + `(imd2) = `(H0(C•))− `(H1(C•))

From the canonical exact sequence 0 → imd2 → kerd1 → H1(C•) → 0, we have
`(H1(C•)) = `(kerd1)− `(imd2), and subtracting the two above

`(C0)− `(C1) + `(imd2)−

(
`(kerd1)−

k∑
i=2

(−1)i`(Ci)

)
=
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`(H0(C•))− `(H1(C•))−

(
−

k∑
i=1

(−1)i`(Hi(C•))

)
and

k∑
i=0

(−1)i`(Ci) =
k∑
i=0

(−1)i`(Hi(C•))

Proposition A.2.2. Let rE⇒rH be a convergent spectral sequence. Suppose that for
some r, rEpq is finite length for all p, q. Then for all s ≥ r

∑
n

(−1)n`(Hn) =
∑
n

(−1)n

( ∑
p+q=n

`(sEpq)

)

Proof. For a given point (p, q) fixed, there is a complex · · · → sEpq
sdpq→ sEp+s,q−(s−1) →

· · · in the s-th page of the spectral rE passing over this point, where s ≥ r. The terms
on s-th page are sub-quocients of terms on r-th page, so they have finite length. Thus,
by the lemma 3.1∑

i(−1)p+is+q−i(s−1)`(sEp+is,q−i(s−1)) = (−1)p+q
∑

i(−1)i`(sEp+is,q−i(s−1))

= (−1)p+q
∑

i(−1)i`(s+1Ep+is,q−i(s−1))

=
∑

i(−1)p+is+q−i(s−1)`(s+1Ep+is,q−i(s−1)).

This shows that, for all s ≥ r∑
p,q

(−1)p+q`(sEpq) =
∑
p,q

(−1)p+q`(s+1Epq),

i.e., the alternating sum is over all the page. In particular,∑
p,q

(−1)p+q`(sEpq) =
∑
p,q

(−1)p+q`(∞Epq).

The convergence of the spectral sequence gives the sum `(Hn) =
∑∞

p+q=nE
pq, and so

∑
n(−1)n`(Hn) =

∑
n(−1)n

(∑
p+q=n `(

∞Epq)
)

=
∑

p,q(−1)p+q`(∞Epq)

=
∑

p,q(−1)p+q`(sEpq)

=
∑

n(−1)n
(∑

p+q=n `(
sEpq)

)
.
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