1 Integral de Superficie

1.1 Representagao paramétrica de uma superficie

Representacao Implicita: S = {(z,y,2): F(x,y,2) = 0}. Exemplo: 2%+
y? + 22 = 1 (superficie esférica)

Representacao explicita: z = f(z,y). Exemplo: z = /1 —22—y? e
z = —y/1 —2? —y? (neste caso, temos a semi-esfera superior e a inferior,
respectivamente. )

Representacao Paramétrica: z = X (u,v), y = Y (u,v), z = Z(u,v).
(u,v) varia num conjunto conexo bidimensional 7" no plano-uv. Os pontos
(x,y, z) correspondem a porgdes de superficie no espago-zryz.

Representacao Paramétrica Vetorial:

r(u,v) =X (u,0)i+Y (u,v)j+ Z (u,v)k, (u,v) €T

>y

Exemplo 1: Representacao paramétrica de uma esfera

T = acoSuUcCosSv, Y = aSenucosv, z = aSenv (1)

dai obtemos
P+ =1
se (u,v) varia no retangulo T = [0, 27| x [—g, g} os pontos determinados (1)
descrevem toda a esfera. O hemisfério superior é a imagem de um retangulo
[0,27] x |0, 7] e o inferior a imagem de [0, 27] X [—g,O} :
Exemplo 2: Representacao vetorial de um cone

r (u,v) = vsen acos ui + vsen asenuj + v cos ak
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onde v é a distancia do vértice ao ponto (x,y, z) no cone, u é o angulo polar
e a ¢é angulo do vértice.

A imagem de T através de r é a superficie paramétrica e representamos
por r(T). Se a funcdo r é injetiva em T, a imagem r(7") se denominard
superficie paramétrica simples. Em tal caso, pontos distintos de T" se aplicam
em pontos distintos da superficie. Em particular, toda curva fechada simples
em T se aplica numa curva fechada simples situada na superficie.

Uma superficie paramétrica r(t) pode degenerar-se num ponto ou em uma
curva. Por exemplo, X (u,v) =u+v, Y(u,v) = (u+v)? Z(u,v) = (u+v)?
sendo T" = [0, 1] x [0, 1] . Escrevendo ¢ = u+v, obtemos a curva parametrizada



porx=t y=t> 2=t 0<t<2.

1.2 Produto Vetorial fundamental

Considere uma superficie representada por
S:or(u,v) =X (u,v)i+Y (u,v)j+ Z (u,v)k, (u,v) €T
Se X,Y e Z sao derivaveis em T podemos considerar os dois vetores

or 0X, 0Y, 07

(?u Ou +% 8uk

@_8X 8_Y 8Zk
ov v 81} 0

r
O produto vetorial — se denominara produto vetorial fundamental de

r 8u v
o o | o, 400K ov. 0z || 0z oX |
8(}?:}2) , dva(z, g() . O(X,Y)

1+ k.

- d(u,v) O(u,v) I+ O(u,v)

Jr Or
Se (u,v) é um ponto em T no qual — e — sao continuas e o produto vetorial

ou Ov

fundamental nao é nulo, entao o ponto imagem r (u, v) se chama ponto reqular
de r, caso contrario, o ponto é dito ponto singular. Uma superficie r (T') se
chama regular se todos os seus pontos sao regulares.

Um retangulo em T que tenha uma area AuAwv se converte numa porgao
em r(7T") que aproximamos por um paralelogramo determinado pelos vetores

(81‘) Au e ((91') Av. A area desse paralelogramo é o médulo do produto

ou v
vetorial 3 3
r r
—Au X —Av = ||=— X — || AuAwv.
Ju Ov
Oor Or )
Em cada ponto regular os vetores — e — determinam um plano que tem
U v
or r - .
o vetor Em X 5y COmO normal. Por esta razao o plano determinado por
u v
or Or Jor Or
— e — se chama plano tangente a superficie. A continuidade de — e —
ou Ov ou Ov



implica na continuidade de Em X %; isto significa que o plano tangente se

: - . .. or
move continuamente numa superficie regular. Assim, a continuidade de 0 e
u
ro. . .. or Or
Er evita a presenca de bicos ou arestas nas superficies, o fato de Em X Er #0
v u Qv

evita os casos degenerados.
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(dr/du)x(dr/dv)

v

Exemplo 3: Superficies com representacao explicita, z = f(z,y). Neste
caso,

r(z,y) =zi+yj+ f(z,9)k, (z,y) € R

A regiao R denomina-se a projecao da superficie sobre o plano—xy.

Temos que
or of or of
— =i+ —k, — =i+ =k, supondo f diferenciavel
ox ox oy dy P /
0 que nos da
i k
8r 8r . of 8f a f .
— x—=|1 0 % ——i——=j+k
Jx Oy 87 or Oy
01 35
y
or r )
Posto que a componente z de 7 X £y é 1, o produto vetorial fundamental
r Y
nunca é zero. Logo os unicos pontos singulares desta representacao sao os
of of _ _ )
pontos onde —— e —— nao sao continuas.
or 0Oy



S: z=1(xy)
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Um caso tipico é a equacao z = /1 — 22 — y?, que representa um hem-
isfério de raio 1 e centro na origem, se 2 + y? < 1. A equacao vetorial é

r(r,y) =ri+yj+/1-22—y’k

ela aplica o disco unitrio T' = {(x,y) : 2? + y* < 1} sobre o hemisfério e tal

. ) .. Or Or | - ,
aplicacao € injetora. As derivadas parciais 97 e — existem e sao continuas
s

em todo o interior do disco, mas nao existem na fronteira do disco. Logo,
todo ponto da fronteira é um ponto singular desta representacao.

Exemplo 4: Consideremos o mesmo hemisfério do exemplo anterior, mas
desta vez como imagem do retangulo 7' = [0,27] X [O, g} através da
aplicacao

r(u,v) = acosucosvi+ asenucosvj + asenvk
or Or

os vetores — e — vem dados pelas féormulas
u v

or
v —a sen v cos vi + a cos u cos vj
U

@
v

= —acosu senvi — asenusenvj + acosvk



Temos que

Jdr  Or

du " v
A imagem de T nao é uma superficie paramétrica simples pois esta aplicacao
nao ¢ injetora. Com efeito, todo ponto do segmento retilineo v = 7, 0 <
u < 27 se aplica no ponto (0,0, a) (pdlo norte). Também pela periodicidade
do seno e cosseno, r toma os mesmos valores nos pontos (0,v) e (2w, v) de
modo que os lados esquerdo e direito de 7' se aplicam na mesma curva, que

= acosvr(u,v)

, , r 81‘
é um arco que o une o polo norte ao ponto (a,0,0). Os vetores — e — sao
ou Ov
or Or - )
ti todo T. C — X —| = a? t t
continuos em todo . omo 8 X a a” cos v, entao 0S umcos pontos
u v

singulares desta representacao se apresenta quando cosv = 0. Logo o tnico
ponto singular é o polo norte.

1.3 Area de uma superficie paramétrica

Seja S = r(T') uma superficie paramétrica representada pela fungao r definida
numa regiao 7' do plano—uwv. Um retangulo em T' de drea AuAw é aplicado
por r sobre um paralelogramo curvilineo em S com area aproximadamente
igual a

8r or
6u Er AuAv.
Defini¢ao: A édrea de S, que representamos por a(.S), se define pela integral
dupla
/ / ‘ dudv. (2)
Ou seja,

() G e o

Se S vem dada explicitamente por uma equagao da forma z = f(z,y), entao

or or| || _of. of. AN A
laxxay _H ErS Ay +kH_\/l+(8x) * oy )
Nesse caso,

= o G+ o



onde T' é a projecao de S no plano-zy.

z

-z

Quando S estd num plano paralelo ao plano-xy, a funcao f é constante e

temos%:Oeg—‘;:Odai
a(S) = //dxdy.
T
: . Jr Or
Em cada ponto de S, seja v = angulo(N, k) onde N = % = 0 Como a
T Y
componente z de N ¢ 1, temos
N -k 1 1
cosy = = -
INTHI (N (o O
or 0Oy
1
Portanto, @ X @ = . Logo,
oxr 0Oy coS 7y
1
a(S) = // dxdy
cos "y
T



Se S esta num plano nao perpendicular ao plano-xy. Neste caso, v =constante
e temos que a(S) = (drea de T') / cos~y, ou

a(S) = ! //dxdy.
CoS 7y
T

Agora se S vem dada implicitamente por F'(x,y, z) = 0. Se S pode projetar-
se injetivamente sobre o plano-zy a equagao F(z,y,z) = 0 define z como
fungao de z e y, seja z = f(z,y), assim

af  9F OF Of  OF OF

or  Ox 6ze<9y_ Oy’ 0z

nos pontos onde 5 # (. Desse modo
z

2
+ (%)

a(S) = / / \/(%_5)2 ’ g ) ddy. (@)

Exemplo 1: Area de um hemisfério. Consideremos um hemisfério S de
raio a e centro na origem. Temos a representacao implicita 2% + % + 22 =

a?, z>0; a explicita z = \/a? — 22 — y?; e a paramétrica
r(u,v) = acosu cosvi+ asenu cosvj+ asenvk.

Para calcular a drea de S a partir da representacao implicita utilizamos a
férmula (4) tomando

F(z,y,2) = 2> +y* + 22 — d*.

Temos que ‘3—5 = 2x, %—5
injetiva no disco D = {(x,y): 2?4+ y* < a*} do plano-zy. Nao podemos
aplica a férmula diretamente pois %—I; é nula na fronteira de D. Mas tal
derivada nao é nula em todo ponto no interior de D, assim consideramos
um disco concéntrico D(R) de raio R, R < a. Se S(R) representa a porgao

correspondente do hemisfério superior, (4) é aplicivel e resulta:

area de S(R) = // \/(255)2 + @)+ <22)2d:cdy
(R)

= 2y, %—f = 2z. O hemisfério se projeto de forma

22|



I dxdy—a//\/—d:cdy

D(R)

temos

) 2m R 1
area de S(R) = a/o {/0 \/ﬁrdr] df = 2ra (a — Va2 — RQ)

Quando R — a entdo area de S(R) — 2ma®. No caso da superficie parametrizada,
temos

Logo, podemos aplicar (3) tomando 7' = [0,27] x [0, 7] . Obtemos

8r or

50 = a0l = lacosv r(u,v)| = a*|cosv|

™

27 -
a(S) = a2/ |cos v| dudv = a2/ /2 cosvdv | du = 2ma’.
0 0
T

1.4 Integrais de Superficie

Definicao: Seja S = r(7T) uma superficie paramétrica descrita por uma funcao
diferenciavel r definida em T do plano-uv e seja f um campo escalar definido
e limitado em S. A integral de superficie de f sobre S se representa por

//de ou por/ f(z,y, z)dS) e é definida como

//de //f u, ) ‘81‘ | P,
v
Exemplo 1: Area de superficie
/ / ds = / / ‘ dudv.

Exemplo 2: Fluzxo de um fluido através de uma superficie. Imagine que
um fluido é uma colecao de pontos chamados particulas. A cada particula
(x,y, z) corresponde um vetor v (z, y, z) chamado velocidade. Este é o campo
de velocidade da corrente. O campo de velocidade pode ou nao mudar com
o tempo. Consideraremos as correntes estaciondrias. Seja p (z,y, z) a den-
sidade (massa por unidade de volume) do fluido em (z,y, z). Se o fluido é



incompressivel a densidade p sera constante em todo fluido. O produto da
densidade pela velocidade representamos por F

F(x,y,2) = p(z,y,2) v(z,y,2) (densidade de fluxo da corrente)
O vetor F(z,y,z) tem a mesma diregao da velocidade e suas medidas de

dimensoes sao

massa distancia massa

unid. vol. unid. tempo  unid. drea - unid. tempo’

F nos diz quanta massa de fluido circula no ponto (z,y, z) na diregao de v,
por unidade de area e de tempo.

Seja S = r (T') uma superficie paramétrica simples. Em cada ponto regu-
lar de S designamos por 1 o vetor unitario normal que tenha o mesmo sentido
que o produto vetorial fundamental. Isto é

"

F -7 é a componente do vetor densidade de fluxo na direcao n . A massa de
fluido que passa através de S na unidade de tempo na dire¢ao de n se define

T e[l

1.5 Mudanca de representacao paramétrica

dudwv.

Sejar : A — r(A) a regiao do plano-uv. Suponha G : B — A injetiva e
continuamente diferenciavel.

G(s,t) =U(s,t)i+V (s,t)j se (s,t) e B (5)
Considere R definida por
R (s,t) =[G (s,t)] (6)
r e R sao reqularmente equivalentes, representam a mesma superficie.

Theorem 1 Sejam r e R reqularmente equivalentes ligadas por (6), donde
G =Ui+ Vj € injetiva e continuamente diferencidvel. Temos entao

(9R OR @X@ a(U, V)
9s ot \ou " du J(s,t)

donde 5 = = (U, V) e & = (U, V).
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5~ OR __ 0roU , Oordv. OR _ O0roU , OrdV ¢
Demonstracao: ¢ = 5055 + 50850 ar = suar T oo or dal

R OR (ar ar) <8U8V 8U8V>

9s ot \ou " aw)\ s ot ot bs

Theorem 2 Ser e R sdo equivalentes e se //de existe entao / fdS
r(4) R(B)

//de://de.

r(A) R(B)

existe e

Demonstracao: //de = //f(r (u,v)) ||g—£ X g—iH dudv agora
A

r(A)
[ ‘

o or
ou Ov

or Or
% X % dudv

dudv = //f(r (G (Si)))‘ ‘%

://f(R(s,t))H%—I: x %—I:Hdsdt://fds.
B R(B)

2 Teorema de Green

Seja C' uma curva plana suave com parametrizagao
r=yg(t), y="h(t), a<t<b.

Suponha que C' seja uma curva fechada simples, isto é, existe somente um
tnico ponto de intersegao, P(a) = P(b). Vamos considerar também que C'
esta orientada positivamente, isto é, ao longo de C' a regiao R que C encerra
estard sempre a esquerda quando o ponto P(t) descreve C. A integral ao
longo de uma curva fechada tera a seguinte notacao:

fM(l‘, y)dx + N(z,y)dy.

e chamaremos a integral curvilinea ao longo de uma curva fechada simples
C. Entao temos o seguinte resultado importante que é conhecido como o
teorema de Green.
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Theorem 3 Seja C uma curva fechada simples parcialmente suave e seja R
a regiao que consiste de C e seu interior. Se M e N sao fung¢oes continuas
com deriwadas parciais primeiras continuas em toda uma regiao D contendo

R, entdo
%M(m y)dx+nydy_//(a—N—a—A;)dA. (7)

Proof. Consideremos R uma regiao do tipo R, ou R, isto ¢,
R={(z,y): a<a<b g(2) Sy < g(e)} =R,
R={(z,y): c<y<d, h(z) Sy<h(z)} =R,

onde g1, g2, h1 e ho sao funcgoes suaves. E suficiente mostrar que

]fM .y)d / oM 4 (8)

j{N(x,y)dx: / %—ZdA ()
C

R

Prova de (8) : C' consiste de duas curvas suaves C; e Cy de equagoes
y = g1(z) e y = ga(x), respectivamente. Dai

szydx-fogydx%—j[Mxy

obtemos entao que

%M(m,y)dw = /abM(x,gl(x))dx + /ba M(x, go(z))dx
c

b b
~ [ M @)~ [ Mo, gle))do
Por outro lado,

92(x)
//—dA / / 8—]Mdydx



segue que:

f / oM 4

De modo analogo, considerando R como uma regiao do tipo R,, prova-se

(9) .Ou seja,
CfN(:E,y)alyc :C]fN(az,y)da: +2N(x,y)dx

obtemos entao que

c d
N(z,y)dz = | N(hi(y),y)dy+ | N(hao(y),y)dy
- [t

d
- / (=N (), y)dy + N (haly), y)dy)de.

Por outro lado,

//—dA //hh O dwdy

- / [N (2, )2 dy
_ / (N (o), 4) — N(ha(y). 9)) dy.

O que prova o teorema. ®
Se R = Rl U RQ, 8R1 = Cl U Ci, 8R2 = CQ U Cé temos

// (a—N—a—M)dA: ¢ Mo+ Nay

C1UC£

//(a—N—a—]\;>dA— J(I{de—IrNdy

CQUCé

A integral ao longo de C] é de sinal contrario a integral ao longo de CY.

Portanto,
j{]\/[(x y)dx + N(z,y dy—// (8_N_8_M) dA.
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Example 4 Usando o teorema de Green, calcule %Sxyda:—i-x?’dy, onde C' €

c
a curva fechada que consiste nos grdficos de y = x* ey = 2x, entre o0s pontos

(0,0) e (2,4).

Solugao: Pelo teorema de Green: M(z,y) = bxy e N = 3 logo

]{Myda: + 23dy = // {85) - a% (5xy)] dA

c
2 2x
:/ / (3:62 — 5x) dydx
0 Ja2
2

= / [3$2y — 5:17y} i‘: dx

0

28

2
_ 3 2 o4 __*°
= /0 [111" 10x 3z } dx 5

Example 5 Usando o teorema de Green, calcule a integral curvilinea

%Qxydx + (m2 + y2) dy
c

onde C € a elipse 42 + 9y? = 36.

Solugao: Pelo teorema de Green, com M (z,y) = 2xy, N(z,y) = 22 + >,

temos
%nyd:n + (332 + y2) dy = //(235 —2z)dzr = //OdA = 0.
R R

C

A integral sempre serd zero para qualquer curva fechada.

Example 6 Calcule % (4 + eﬁ) dx + (seny + 3z%) dy se C' é a fronteira da

c
regiao R delimitada pelos quartos de circulo de raio a e b, respectivamente,
e pelos segmentos de eixo-z e y.

14



Solucao: Por Green

g%(4+eﬁjdx+(%ny+3ﬁ)@pz//k®%—®dA
C

R
T b
= / / 612 cos Odrde
0 a
1.° /2
=6 {—r?’] / cos 0do
3 1.0

2 (b* — a®) [sen 9]§ =2(b°—a?).

Usando o teorema de Green podemos encontrar uma férmula para achar a
area A de uma regiao R delimitada por uma curva simples parcialmente suave
C. Fazendo M =0 e N =z em (7), obtemos

Azé/dA:g{xdy

também se fizermos N =0 e M = —y em (7), obtemos

A:é/dA:—fydx

Dai, podemos estabelecer o seguinte resultado.

Theorem 7 Se uma regiao R do plano-xy é delimitada por uma curva fechada,
simples, parcialmente suave C, entdo a drea da regido A de R €

1
A= ]{:z:dy: —j{ydx = 5%xdy—ydm.
c

C C

Example 8 Ache a drea da elipse usando o teorema de acima.

33'2 y2
StE=1

15



Solucao: As equacgoes paramétricas da elipse sao x = acost, y = bsent,
0 <t <2r. Dai

1
Azij{xdy—ydx
c

1 2
= 5/ (acost) (bcost)dt — (bsent) (—asent)dt
0

1

27
— 3 / ab (cos2 t + sen? t) dt
0

= §abQ7T = abm

O teorema de Green é valido para regioes R que contenha ”buracos 7. A
integracao deve ser feita de modo a manter a regiao R sempre a esquerda
de C. Assim, se tivermos uma regiao R cujo contorno exterior seja Cj e os

contornos interiores sejam C, Cs, -+, C,, temos que

ON OM
foydx—l—nydy Z%Mxydm%—]\fxydy—//(———)d/l
onde C;, © = 0,1,--- ,n sao percorridos no sentido contrario aos ponteiros

do relogio.

Example 9 Sejam Cy e Cy duas curvas fechadas simples parcialmente suaves
que nao se interceptam, cada uma tendo a origem 0 como um ponto inte-
rior.Se
__ Y __*
2 4 y2’ o2 yz
prove que

]{M(ﬂf, y)dr + N(z,y)dy = j{M(x, y)dx + N(z,y)dy.
Cl CQ

Solucao: Denotando por R a regiao entre C e (5, o teorema de Green
nos da

N M
j{Mxydx—i—nydy %Mxydx—i—nydy—//(a——a—)dA
dy

e como
ON (@ +y)(1)—x(2r) Y —2> M

Oz (22 + y2)? (22 +y2)* Oy

16



a integral dupla sobre R é zero. Consequentemente

FM G 9)do + NG vy = MG+ Na )iy
Cl CQ
Example 10 SeF € definida por F(x,y) = aﬂ—in (—yi+ xj), prove que j{F

c
dr = 27 para toda curva fechada simples parcialmente suave que tenha a

origem em Seu interior.

Solugao: Fazendo F = Mi+ Njentao M e N sao as mesmas que no exem-
plo 5. Escolhendo um circulo C; de raio a e centro na origem e inteiramente

contido em C segue que
]{F - dr :fF -dr

c o)
As equacgoes paramétricas de C] sao

r=uacost, y=asent, 0 <t <27

obtemos

fF.dr:]{x2+y2dl’+ mdy
C

27
—asent acost
:/ ——— (—asent)dt + ——acostdt
0 a a

Q

27
= / (sen2t + cos? t) dt = 2.
0

2.1 Teorema de Green na forma vetorial

Seja F'(x,y) = M(z,y)i+ N(z,y)j + 0k, o rotacional de F' é dado por
k

i
ON oM
VxF=|g& & & :Oi+0j+(a——a—)k
M N 0 v

seja s o parametro comprimento de arco para C, consideremos o vetor tan-
gente unitario

assim o teorema de Green toma a seguinte forma.

Teorema de Green: j{F ‘T ds = // (VX F)-kdA.
R
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