
1 Integral de Superficie

1.1 Representação paramétrica de uma superf́ıcie

Representação Impĺıcita: S = {(x, y, z) : F (x, y, z) = 0} . Exemplo: x2+
y2 + z2 = 1 (superf́ıcie esférica)

Representação expĺıcita: z = f(x, y). Exemplo: z =
√
1− x2 − y2 e

z = −
√
1− x2 − y2 (neste caso, temos a semi-esfera superior e a inferior,

respectivamente.)
Representação Paramétrica: x = X(u, v), y = Y (u, v), z = Z(u, v).

(u, v) varia num conjunto conexo bidimensional T no plano-uv. Os pontos
(x, y, z) correspondem a porções de superf́ıcie no espaço-xyz.

Representação Paramétrica Vetorial:

r (u, v) = X (u, v) i+ Y (u, v) j+ Z (u, v)k, (u, v) ∈ T

x

y

z

T

u

v

x=X(u,v)
y=Y(u,v)
z=Z(u,v)

r

Exemplo 1: Representação paramétrica de uma esfera

x = a cosu cos v, y = a senu cos v, z = a sen v (1)

dáı obtemos
x2 + y2 + z2 = 1

se (u, v) varia no retângulo T = [0, 2π]×
[
−π

2
,
π

2

]
os pontos determinados (1)

descrevem toda a esfera. O hemisfério superior é a imagem de um retângulo

[0, 2π]×
[
0,

π

2

]
e o inferior a imagem de [0, 2π]×

[
−π

2
, 0
]
.

Exemplo 2: Representação vetorial de um cone

r (u, v) = v senα cosui+ v senα senuj+ v cosαk

1



u

v

a

x

y

z

/2

/2

0 2 u

v

-

u

v

x

y

z

h

2 u

v

onde v é a distância do vértice ao ponto (x, y, z) no cone, u é o ângulo polar
e α é ângulo do vértice.

A imagem de T através de r é a superf́ıcie paramétrica e representamos
por r(T ). Se a função r é injetiva em T, a imagem r(T ) se denominará
superf́ıcie paramétrica simples. Em tal caso, pontos distintos de T se aplicam
em pontos distintos da superf́ıcie. Em particular, toda curva fechada simples
em T se aplica numa curva fechada simples situada na superf́ıcie.

Uma superf́ıcie paramétrica r(t) pode degenerar-se num ponto ou em uma
curva. Por exemplo, X(u, v) = u+ v, Y (u, v) = (u+ v)2, Z(u, v) = (u+ v)3,
sendo T = [0, 1]×[0, 1] . Escrevendo t = u+v, obtemos a curva parametrizada
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por x = t, y = t2, z = t3, 0 ≤ t ≤ 2.

1.2 Produto Vetorial fundamental

Considere uma superf́ıcie representada por

S : r(u, v) = X (u, v) i+ Y (u, v) j+ Z (u, v)k, (u, v) ∈ T

Se X, Y e Z são deriváveis em T podemos considerar os dois vetores

∂r

∂u
=

∂X

∂u
i+

∂Y

∂u
j+

∂Z

∂u
k

e
∂r

∂v
=

∂X

∂v
i+

∂Y

∂v
j+

∂Z

∂v
k

O produto vetorial
∂r

∂u
× ∂r

∂v
se denominará produto vetorial fundamental de

r.

∂r

∂u
× ∂r

∂v
=

∣∣∣∣∣∣
i j k

∂X
∂u

∂Y
∂u

∂Z
∂u

∂X
∂v

∂Y
∂v

∂Z
∂v

∣∣∣∣∣∣ =
∣∣∣∣ ∂Y

∂u
∂Z
∂u

∂Y
∂v

∂Z
∂v

∣∣∣∣ i+ ∣∣∣∣ ∂Z
∂u

∂X
∂u

∂Z
∂v

∂X
∂v

∣∣∣∣ j+ ∣∣∣∣ ∂X
∂u

∂Y
∂u

∂X
∂v

∂Y
∂v

∣∣∣∣k
=

∂(Y, Z)

∂(u, v)
i+

∂(Z,X)

∂(u, v)
j+

∂(X, Y )

∂(u, v)
k.

Se (u, v) é um ponto em T no qual
∂r

∂u
e
∂r

∂v
são cont́ınuas e o produto vetorial

fundamental não é nulo, então o ponto imagem r (u, v) se chama ponto regular
de r, caso contrário, o ponto é dito ponto singular . Uma superf́ıcie r (T ) se
chama regular se todos os seus pontos são regulares.

Um retângulo em T que tenha uma área ∆u∆v se converte numa porção
em r(T ) que aproximamos por um paralelogramo determinado pelos vetores(
∂r

∂u

)
∆u e

(
∂r

∂v

)
∆v. A área desse paralelogramo é o módulo do produto

vetorial ∥∥∥∥∂r∂u∆u× ∂r

∂v
∆v

∥∥∥∥ =

∥∥∥∥∂r∂u × ∂r

∂v

∥∥∥∥∆u∆v.

Em cada ponto regular os vetores
∂r

∂u
e
∂r

∂v
determinam um plano que tem

o vetor
∂r

∂u
× ∂r

∂v
como normal. Por esta razão o plano determinado por

∂r

∂u
e
∂r

∂v
se chama plano tangente à superf́ıcie. A continuidade de

∂r

∂u
e
∂r

∂v
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implica na continuidade de
∂r

∂u
× ∂r

∂v
; isto significa que o plano tangente se

move continuamente numa superf́ıcie regular. Assim, a continuidade de
∂r

∂u
e

∂r

∂v
evita a presença de bicos ou arestas nas superf́ıcies, o fato de

∂r

∂u
× ∂r

∂v
̸= 0

evita os casos degenerados.

x

y

z

T

u

v

r dr/du

dr/dv

du

dv

(dr/du)x(dr/dv)

Exemplo 3: Superf́ıcies com representação expĺıcita, z = f(x, y). Neste
caso,

r(x, y) = xi+ yj+ f(x, y)k, (x, y) ∈ R

A região R denomina-se a projeção da superf́ıcie sobre o plano−xy.
Temos que

∂r

∂x
= i+

∂f

∂x
k,

∂r

∂y
= i+

∂f

∂y
k, supondo f diferenciável

o que nos dá

∂r

∂x
× ∂r

∂y
=

∣∣∣∣∣∣
i j k

1 0 ∂f
∂x

0 1 ∂f
∂y

∣∣∣∣∣∣ = −∂f

∂x
i− ∂f

∂y
j+ k.

Posto que a componente z de
∂r

∂x
× ∂r

∂y
é 1, o produto vetorial fundamental

nunca é zero. Logo os únicos pontos singulares desta representação são os

pontos onde
∂f

∂x
e
∂f

∂y
não são cont́ınuas.
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Um caso t́ıpico é a equação z =
√

1− x2 − y2, que representa um hem-
isfério de raio 1 e centro na origem, se x2 + y2 ≤ 1. A equação vetorial é

r(x, y) = xi+ yj+
√
1− x2 − y2k

ela aplica o disco unitário T = {(x, y) : x2 + y2 ≤ 1} sobre o hemisfério e tal

aplicação é injetora. As derivadas parciais
∂r

∂x
e
∂r

∂y
existem e são cont́ınuas

em todo o interior do disco, mas não existem na fronteira do disco. Logo,
todo ponto da fronteira é um ponto singular desta representação.

Exemplo 4: Consideremos o mesmo hemisfério do exemplo anterior, mas

desta vez como imagem do retângulo T = [0, 2π] ×
[
0,

π

2

]
através da

aplicação
r(u, v) = a cosu cos vi+ a senu cos vj+ a sen vk

os vetores
∂r

∂u
e
∂r

∂v
vem dados pelas fórmulas

∂r

∂u
= −a sen v cos vi+ a cosu cos vj

∂r

∂v
= −a cosu sen vi− a senu sen vj+ a cos vk
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Temos que
∂r

∂u
× ∂r

∂v
= a cos vr(u, v)

A imagem de T não é uma superf́ıcie paramétrica simples pois esta aplicação
não é injetora. Com efeito, todo ponto do segmento retiĺıneo v = π

2
, 0 ≤

u ≤ 2π se aplica no ponto (0, 0, a) (pólo norte). Também pela periodicidade
do seno e cosseno, r toma os mesmos valores nos pontos (0, v) e (2π, v) de
modo que os lados esquerdo e direito de T se aplicam na mesma curva, que

é um arco que o une o pólo norte ao ponto (a, 0, 0) . Os vetores
∂r

∂u
e
∂r

∂v
são

cont́ınuos em todo T. Como

∥∥∥∥∂r∂u × ∂r

∂v

∥∥∥∥ = a2 cos v, então os únicos pontos

singulares desta representação se apresenta quando cos v = 0. Logo o único
ponto singular é o pólo norte.

1.3 Área de uma superf́ıcie paramétrica

Seja S = r(T ) uma superf́ıcie paramétrica representada pela função r definida
numa região T do plano−uv. Um retângulo em T de área ∆u∆v é aplicado
por r sobre um paralelogramo curviĺıneo em S com área aproximadamente
igual a ∥∥∥∥∂r∂u × ∂r

∂v

∥∥∥∥∆u∆v.

Definição: A área de S, que representamos por a(S), se define pela integral
dupla

a(S) =

∫∫
T

∥∥∥∥∂r∂u × ∂r

∂v

∥∥∥∥ dudv. (2)

Ou seja,

a(S) =

∫∫
T

√(
∂(Y, Z)

∂(u, v)

)2

+

(
∂(Z,X)

∂(u, v)

)2

+

(
∂(X, Y )

∂(u, v)

)2

dudv (3)

Se S vem dada explicitamente por uma equação da forma z = f(x, y), então∥∥∥∥∂r∂x × ∂r

∂y

∥∥∥∥ =

∥∥∥∥−∂f

∂x
i− ∂f

∂y
j+ k

∥∥∥∥ =

√
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

.

Nesse caso,

a(S) =

∫∫
T

√
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

dxdy,
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onde T é a projeção de S no plano-xy.

(x,y)

z=f(x,y)

x

y

z

T

Quando S está num plano paralelo ao plano-xy, a função f é constante e

temos
∂f

∂x
= 0 e

∂f

∂y
= 0 dáı

a(S) =

∫∫
T

dxdy.

Em cada ponto de S, seja γ = ângulo(N,k) onde N =
∂r

∂x
× ∂r

∂y
. Como a

componente z de N é 1, temos

cos γ =
N · k

∥N∥ ∥k∥
=

1

∥N∥
=

1∥∥∥∥∂r∂x × ∂r

∂y

∥∥∥∥ .
Portanto,

∥∥∥∥∂r∂x × ∂r

∂y

∥∥∥∥ =
1

cos γ
. Logo,

a(S) =

∫∫
T

1

cos γ
dxdy.
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Se S está num plano não perpendicular ao plano-xy. Neste caso, γ =constante
e temos que a(S) = (área de T ) / cos γ, ou

a(S) =
1

cos γ

∫∫
T

dxdy.

Agora se S vem dada implicitamente por F (x, y, z) = 0. Se S pode projetar-
se injetivamente sobre o plano-xy a equação F (x, y, z) = 0 define z como
função de x e y, seja z = f(x, y), assim

∂f

∂x
= −∂F

∂x
/
∂F

∂z
e
∂f

∂y
= −∂F

∂y
/
∂F

∂z

nos pontos onde
∂F

∂z
̸= 0. Desse modo

a(S) =

∫∫
T

√(
∂F
∂x

)2
+
(

∂F
∂y

)2

+
(
∂F
∂z

)2∣∣∂F
∂z

∣∣ dxdy. (4)

Exemplo 1: Área de um hemisfério. Consideremos um hemisfério S de
raio a e centro na origem. Temos a representação impĺıcita x2 + y2 + z2 =
a2, z ≥ 0; a expĺıcita z =

√
a2 − x2 − y2; e a paramétrica

r(u, v) = a cosu cos vi+ a senu cos vj+ a sen vk.

Para calcular a área de S a partir da representação impĺıcita utilizamos a
fórmula (4) tomando

F (x, y, z) = x2 + y2 + z2 − a2.

Temos que ∂F
∂x

= 2x, ∂F
∂y

= 2y, ∂F
∂z

= 2z. O hemisfério se projeto de forma

injetiva no disco D = {(x, y) : x2 + y2 ≤ a2} do plano-xy. Não podemos
aplica a fórmula diretamente pois ∂F

∂z
é nula na fronteira de D. Mas tal

derivada não é nula em todo ponto no interior de D, assim consideramos
um disco concêntrico D(R) de raio R, R < a. Se S(R) representa a porção
correspondente do hemisfério superior, (4) é aplicável e resulta:

área de S(R) =

∫∫
D(R)

√
(2x)2 + (2y)2 + (2z)2

|2z|
dxdy

8



=

∫∫
D(R)

a

z
dxdy = a

∫∫
D(R)

1√
a2 − x2 − y2

dxdy

temos

área de S(R) = a

∫ 2π

0

[∫ R

0

1√
a2 − r2

rdr

]
dθ = 2πa

(
a−

√
a2 −R2

)
QuandoR → a então área de S(R) → 2πa2.No caso da superf́ıcie parametrizada,
temos ∥∥∥∥∂r∂u × ∂r

∂v

∥∥∥∥ = ∥a cos v r(u, v)∥ = a2 |cos v|

Logo, podemos aplicar (3) tomando T = [0, 2π]×
[
0, 1

2
π
]
. Obtemos

a(S) = a2
∫∫
T

|cos v| dudv = a2
∫ 2π

0

∫ π

2

0

cos vdv

 du = 2πa2.

1.4 Integrais de Superf́ıcie

Definicao: Seja S = r(T ) uma superf́ıcie paramétrica descrita por uma função
diferenciável r definida em T do plano-uv e seja f um campo escalar definido
e limitado em S. A integral de superf́ıcie de f sobre S se representa por∫∫
S

fdS (ou por

∫∫
S

f(x, y, z)dS) e é definida como

∫∫
S

fdS =

∫∫
T

f(r (u, v))

∥∥∥∥∂r∂u × ∂r

∂v

∥∥∥∥ dudv.
Exemplo 1: Área de superf́ıcie∫∫

S

dS =

∫∫
T

∥∥∥∥∂r∂u × ∂r

∂v

∥∥∥∥ dudv.
Exemplo 2: Fluxo de um fluido através de uma superf́ıcie. Imagine que

um flúıdo é uma coleção de pontos chamados part́ıculas. A cada part́ıcula
(x, y, z) corresponde um vetor v (x, y, z) chamado velocidade. Este é o campo
de velocidade da corrente. O campo de velocidade pode ou não mudar com
o tempo. Consideraremos as correntes estacionárias. Seja ρ (x, y, z) a den-
sidade (massa por unidade de volume) do flúıdo em (x, y, z) . Se o flúıdo é
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incompresśıvel a densidade ρ será constante em todo flúıdo. O produto da
densidade pela velocidade representamos por F

F(x, y, z) = ρ (x, y, z)v (x, y, z) (densidade de fluxo da corrente)

O vetor F(x, y, z) tem a mesma direção da velocidade e suas medidas de
dimensões são

massa

unid. vol.
· distancia

unid. tempo
=

massa

unid. área · unid. tempo
.

F nos diz quanta massa de flúıdo circula no ponto (x, y, z) na direção de v,
por unidade de área e de tempo.

Seja S = r (T ) uma superf́ıcie paramétrica simples. Em cada ponto regu-
lar de S designamos por η o vetor unitário normal que tenha o mesmo sentido
que o produto vetorial fundamental. Isto é

η =
∂r
∂u

× ∂r
∂v∥∥ ∂r

∂u
× ∂r

∂v

∥∥
F · η é a componente do vetor densidade de fluxo na direção η . A massa de
flúıdo que passa através de S na unidade de tempo na direção de η se define
por ∫∫

r(T )

F · ηdS =

∫∫
T

F · η
∥∥∥∥∂r∂u × ∂r

∂v

∥∥∥∥ dudv.
1.5 Mudança de representação paramétrica

Seja r : A → r (A) a região do plano-uv. Suponha G : B → A injetiva e
continuamente diferenciável.

G (s, t) = U (s, t) i+ V (s, t) j se (s, t) ∈ B (5)

Considere R definida por

R (s, t) = r [G (s, t)] (6)

r e R são regularmente equivalentes, representam a mesma superf́ıcie.

Theorem 1 Sejam r e R regularmente equivalentes ligadas por (6) , donde
G =U i+ V j é injetiva e continuamente diferenciável. Temos então

∂R

∂s
× ∂R

∂t
=

(
∂r

∂u
× ∂r

∂v

)
∂ (U, V )

∂ (s, t)

donde ∂r
∂u

= ∂r
∂u

(U, V ) e ∂r
∂v

= ∂r
∂v

(U, V ) .
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Demonstração: ∂R
∂s

= ∂r
∂u

∂U
∂s

+ ∂r
∂v

∂V
∂s
, ∂R

∂t
= ∂r

∂u
∂U
∂t

+ ∂r
∂v

∂V
∂t

dáı

∂R

∂s
× ∂R

∂t
=

(
∂r

∂u
× ∂r

∂v

)(
∂U

∂s

∂V

∂t
− ∂U

∂t

∂V

∂s

)
.

Theorem 2 Se r e R são equivalentes e se

∫∫
r(A)

fdS existe então

∫∫
R(B)

fdS

existe e ∫∫
r(A)

fdS =

∫∫
R(B)

fdS.

Demonstração:

∫∫
r(A)

fdS =

∫∫
A

f(r (u, v))
∥∥ ∂r
∂u

× ∂r
∂v

∥∥ dudv agora

∫∫
A

f(r (u, v))

∥∥∥∥∂r∂u × ∂r

∂v

∥∥∥∥ dudv =

∫∫
B

f(r (G (s, t)))

∥∥∥∥∂r∂u × ∂r

∂v

∥∥∥∥ ∣∣∣∣∂ (U, V )

∂ (s, t)

∣∣∣∣ dudv
=

∫∫
B

f (R (s, t))

∥∥∥∥∂R∂s × ∂R

∂t

∥∥∥∥ dsdt = ∫∫
R(B)

fdS.

2 Teorema de Green

Seja C uma curva plana suave com parametrização

x = g(t), y = h(t), a ≤ t ≤ b.

Suponha que C seja uma curva fechada simples, isto é, existe somente um
único ponto de interseção, P (a) = P (b). Vamos considerar também que C
está orientada positivamente, isto é, ao longo de C a região R que C encerra
estará sempre à esquerda quando o ponto P (t) descreve C. A integral ao
longo de uma curva fechada terá a seguinte notação:∮

C

M(x, y)dx+N(x, y)dy.

e chamaremos a integral curviĺınea ao longo de uma curva fechada simples
C. Então temos o seguinte resultado importante que é conhecido como o
teorema de Green.
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Theorem 3 Seja C uma curva fechada simples parcialmente suave e seja R
a região que consiste de C e seu interior. Se M e N são funções cont́ınuas
com derivadas parciais primeiras cont́ınuas em toda uma região D contendo
R, então ∮

C

M(x, y)dx+N(x, y)dy =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dA. (7)

Proof. Consideremos R uma região do tipo Rx ou Ry, isto é,

R = {(x, y) : a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)} = Rx

R = {(x, y) : c ≤ y ≤ d, h1(x) ≤ y ≤ h2(x)} = Ry

onde g1, g2, h1 e h2 são funções suaves. É suficiente mostrar que∮
C

M(x, y)dx = −
∫∫
R

∂M

∂y
dA (8)

∮
C

N(x, y)dx =

∫∫
R

∂N

∂x
dA (9)

Prova de (8) : C consiste de duas curvas suaves C1 e C2 de equações
y = g1(x) e y = g2(x), respectivamente. Dáı∮

C

M(x, y)dx =

∮
C1

M(x, y)dx+

∮
C2

M(x, y)dx

obtemos então que∮
C

M(x, y)dx =

∫ b

a

M(x, g1(x))dx+

∫ a

b

M(x, g2(x))dx

=

∫ b

a

M(x, g1(x))dx−
∫ b

a

M(x, g2(x))dx

Por outro lado,∫∫
R

∂M

∂y
dA =

∫ b

a

∫ g2(x)

g1(x)

∂M

∂y
dydx

=

∫ b

a

[M(x, y)]
g2(x)
g1(x)

dx

=

∫ b

a

(M(x, g2(x))−M(x, g1(x))) dx
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segue que: ∮
C

M(x, y)dx = −
∫∫
R

∂M

∂y
dA

De modo análogo, considerando R como uma região do tipo Ry, prova-se
(9) .Ou seja, ∮

C

N(x, y)dx =

∮
C1

N(x, y)dx+

∮
C2

N(x, y)dx

obtemos então que∮
C

N(x, y)dx =

∫ c

d

N(h1(y), y)dy +

∫ d

c

N(h2(y), y)dy

=

∫ d

c

(−N(h1(y), y)dy +N(h2(y), y)dy)dx.

Por outro lado,∫∫
R

∂N

∂x
dA =

∫ d

c

∫ h2(y)

h1(y)

∂N

∂x
dxdy

=

∫ d

c

[N(x, y)]
h2(y)
h1(y)

dy

=

∫ d

c

(N(h2(y), y)−N(h1(y), y)) dy.

o que prova o teorema.
Se R = R1 ∪R2, ∂R1 = C1 ∪ C ′

1, ∂R2 = C2 ∪ C ′
2 temos∫∫

R1

(
∂N

∂x
− ∂M

∂y

)
dA =

∮
C1∪C′

1

Mdx+Ndy

∫∫
R2

(
∂N

∂x
− ∂M

∂y

)
dA =

∮
C2∪C′

2

Mdx+Ndy

A integral ao longo de C ′
1 é de sinal contrário à integral ao longo de C ′

2.
Portanto, ∮

C

M(x, y)dx+N(x, y)dy =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dA.
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Example 4 Usando o teorema de Green, calcule

∮
C

5xydx+x3dy, onde C é

a curva fechada que consiste nos gráficos de y = x2 e y = 2x, entre os pontos
(0, 0) e (2, 4).

Solução: Pelo teorema de Green: M(x, y) = 5xy e N = x3 logo∮
C

5xydx+ x3dy =

∫∫
R

[
∂ (x3)

∂x
− ∂

∂y
(5xy)

]
dA

=

∫ 2

0

∫ 2x

x2

(
3x2 − 5x

)
dydx

=

∫ 2

0

[
3x2y − 5xy

]2x
x2 dx

=

∫ 2

0

[
11x3 − 10x2 − 3x4

]
dx = −28

15
.

Example 5 Usando o teorema de Green, calcule a integral curviĺınea∮
C

2xydx+
(
x2 + y2

)
dy

onde C é a elipse 4x2 + 9y2 = 36.

Solução: Pelo teorema de Green, com M(x, y) = 2xy, N(x, y) = x2 + y2,
temos ∮

C

2xydx+
(
x2 + y2

)
dy =

∫∫
R

(2x− 2x)dx =

∫∫
R

0dA = 0.

A integral sempre será zero para qualquer curva fechada.

Example 6 Calcule

∮
C

(
4 + e

√
x
)
dx+(sen y + 3x2) dy se C é a fronteira da

região R delimitada pelos quartos de ćırculo de raio a e b, respectivamente,
e pelos segmentos de eixo-x e y.

14



Solução: Por Green∮
C

(
4 + e

√
x
)
dx+

(
sen y + 3x2

)
dy =

∫∫
R

(6x− 0) dA

=

∫ π
2

0

∫ b

a

6r2 cos θdrdθ

= 6

[
1

3
r3
]b
a

∫ π
2

0

cos θdθ

= 2
(
b3 − a3

)
[sen θ]

π
2
0 = 2

(
b3 − a3

)
.

Usando o teorema de Green podemos encontrar uma fórmula para achar a
área A de uma região R delimitada por uma curva simples parcialmente suave
C. Fazendo M = 0 e N = x em (7) , obtemos

A =

∫∫
R

dA =

∮
C

xdy

também se fizermos N = 0 e M = −y em (7) , obtemos

A =

∫∫
R

dA = −
∮
C

ydx

Dáı, podemos estabelecer o seguinte resultado.

Theorem 7 Se uma região R do plano-xy é delimitada por uma curva fechada,
simples, parcialmente suave C, então a área da região A de R é

A =

∮
C

xdy = −
∮
C

ydx =
1

2

∮
C

xdy − ydx.

Example 8 Ache a área da elipse usando o teorema de acima.

x2

a2
+

y2

b2
= 1.
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Solução: As equações paramétricas da elipse são x = a cos t, y = b sen t,
0 ≤ t ≤ 2π. Dáı

A =
1

2

∮
C

xdy − ydx

=
1

2

∫ 2π

0

(a cos t) (b cos t) dt− (b sen t) (−a sen t) dt

=
1

2

∫ 2π

0

ab
(
cos2 t+ sen2 t

)
dt

=
1

2
ab2π = abπ

O teorema de Green é válido para regiões R que contenha ”buracos ”. A
integração deve ser feita de modo a manter a região R sempre à esquerda
de C. Assim, se tivermos uma região R cujo contorno exterior seja C0 e os
contornos interiores sejam C1, C2, · · · , Cn, temos que∮
C0

M(x, y)dx+N(x, y)dy−
n∑

i=1

∮
Ci

M(x, y)dx+N(x, y)dy =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dA

onde Ci, i = 0, 1, · · · , n são percorridos no sentido contrário aos ponteiros
do relógio.

Example 9 Sejam C1 e C2 duas curvas fechadas simples parcialmente suaves
que não se interceptam, cada uma tendo a origem 0 como um ponto inte-
rior.Se

M =
−y

x2 + y2
, N =

x

x2 + y2

prove que ∮
C1

M(x, y)dx+N(x, y)dy =

∮
C2

M(x, y)dx+N(x, y)dy.

Solução: Denotando por R a região entre C1 e C2, o teorema de Green
nos dá∮
C1

M(x, y)dx+N(x, y)dy−
∮
C2

M(x, y)dx+N(x, y)dy =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dA

e como
∂N

∂x
=

(x2 + y2) (1)− x (2x)

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
=

∂M

∂y
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a integral dupla sobre R é zero. Consequentemente∮
C1

M(x, y)dx+N(x, y)dy =

∮
C2

M(x, y)dx+N(x, y)dy.

Example 10 Se F é definida por F(x, y) = 1
x2+y2

(−yi+ xj) , prove que

∮
C

F·

dr = 2π para toda curva fechada simples parcialmente suave que tenha a
origem em seu interior.

Solução: Fazendo F = M i+N j então M e N são as mesmas que no exem-
plo 5. Escolhendo um ćırculo C1 de raio a e centro na origem e inteiramente
contido em C, segue que ∮

C

F · dr =
∮
C1

F · dr

As equações paramétricas de C1 são

x = a cos t, y = a sen t, 0 ≤ t ≤ 2π

obtemos ∮
C

F · dr=
∮
C1

−y

x2 + y2
dx+

x

x2 + y2
dy

=

∫ 2π

0

−a sen t

a2
(−a sen t) dt+

a cos t

a2
a cos tdt

=

∫ 2π

0

(
sen2 t+ cos2 t

)
dt = 2π.

2.1 Teorema de Green na forma vetorial

Seja F (x, y) = M(x, y)i+N(x, y)j+ 0k, o rotacional de F é dado por

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

M N 0

∣∣∣∣∣∣ = 0i+ 0j+

(
∂N

∂x
− ∂M

∂y

)
k

seja s o parâmetro comprimento de arco para C, consideremos o vetor tan-
gente unitário

T =
dx

ds
i+

dy

ds
j+

dz

ds
k

assim o teorema de Green toma a seguinte forma.

Teorema de Green:

∮
C

F · T ds =

∫∫
R

(∇× F ) · k dA.
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