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2a Lista de Exerćıcios

1. Use f(x) = x2 para mostrar que a imagem de um aberto por uma função
cont́ınua pode não ser um aberto.

2. Prove que se f : S → Rn é cont́ınua e F ⊂ Rn é fechado, então f−1(F ) é fechado
em S.

3. Seja f : Rn → R uma função cont́ınua. Prove que o conjunto dos zeros de f,
Z(f) = {x ∈ Rn; f(x) = 0} é fechado.

4. Prove que a imagem de uma sequência de Cauchy por uma função uniforme-
mente cont́ınua é uma sequência de Cauchy. E se a função for apenas cont́ınua?

5. O cone C = {(x, y, z) ∈ R3; z ≥ 0, x2 + y2 − z = 0} é homeomorfo a R2.

6. Estabeleça um homeomorfismo entre Rn+1 − {0} e Sn × R.

7. O conjunto das aplicações lineares injetivas é aberto em L(Rm,Rn). Onde L(Rm,Rn)
é o conjunto das aplicações lineares de Rm em Rn. Idem para as sobrejetivas.

8. Mostre que as operações usuais de soma de aplicações e produto de uma
aplicação por um número real fazem do conjunto L(Rm,Rn) um espaço ve-
torial. Analogamente, para o conjunto M(n×m). Exiba, explicitamente, bases
para os espaços L(Rm,Rn) e M(n×m). (M(n×m) é o conjunto das matrizes
reais (aij) com n linhas e m colunas).

9. Dado x = (x1, · · · , xm) ∈ Rm, tem-se

x = x1e1 + · · ·+ xmem

onde {e1, · · · , em} é a base canônica do Rm. Tal base permite estabelecer uma
bijeção natural entre o conjunto L(Rm,Rn) das transformações lineares T :
Rm → Rn e o conjunto M(n × m). A matriz (aij) que corresponde à trans-
formação linear T é definido por

T · ej =
n∑

i=1

aijei (j = 1, · · · ,m). ((*))

Ou seja, mostre que a aplicação
Ψ : L(Rm,Rn) → M(n×m)

T 7→ Ψ(T ) = A
, onde A é

tal que T · ej = Aei, é bijetora.
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10. Considere em Rm e Rn a norma euclideana. Dada uma aplicação linear A :
Rm → Rn, existe uma única aplicação linear A∗ : Rn → Rm, chamada a trans-
posta (ou adjunta) de A, tal que 〈Ax, y〉 = 〈x,A∗y〉, ∀x ∈ Rm, ∀y ∈ Rn. Dado
b ∈ Rn, mostre que a equação Ax = b possui solução x ∈ Rm se, e somente se,
b é ortogonal a todo elemento do núcleo de A∗.

11. Uma aplicação linear T : Rn → Rn diz-se simétrica quando T = T ∗. Prove que
o conjunto S das aplicações lineares simétricas constitui um subespaço vetorial
de dimensão n(n + 1)/2 em L(Rn,Rn). Quando T ∗ = −T, diz-se que T é anti-
simétrica. Prove que o conjunto U das aplicações lineares anti-simétricas é um
subespaço vetorial de dimensão n(n− 1)/2 em L(Rn,Rn) e que toda aplicação
linear T se escreve, de modo único, como soma de uma aplicação simétrica com
uma anti-simétrica, isto é, L(Rn,Rn) = S ⊕ U.

12. Dado um subconjunto X ⊂ Rm, seu complemento ortogonal é o conjunto X⊥ =
{y ∈ Rm : 〈x, y〉 = 0, ∀x ∈ X}. Mostre que X⊥ é um subespaço vetorial do Rm

e que se E ⊂ Rm é um subespaço vetorial então E⊥⊥ = E.

13. Dada T ∈ L(Rm,Rn), supomos fixadas uma norma em Rm, outra em Rn e
pomos, |T | = sup{|Tx| ; x ∈ Rm, |x| = 1}. Prove que |T | = inf{c ∈ R; |Tx| ≤
c |x| , ∀x ∈ Rm}.

14. Uma forma quadrática H : IRn → IR é uma função cujo valor num vetor
v = (v1, · · · , vn) é dado por

∑n
i,j=1 hijvivj, onde hij é uma matriz simétrica

n×n. Denotamos por H ·v2. Definimos a Hessiana de uma função diferenciável
f : U ⊂ IRn → IR no ponto x por H(x) = d2f(x), isto é,

H(x) · v2 =
n∑

i,j=1

∂2f

∂xi∂xj

(x)vivj.

Dada uma função diferenciável f : U → IR, um ponto a ∈ U é ponto cŕıtico de

f (ou ponto singular) quando df(a) = 0, isto é,
∂f

∂x1

(a) = · · · = ∂f

∂xn

(a) = 0.Diz-

se que f tem um máximo (resp. mı́nimo) local no ponto a ∈ U quando existe
δ > 0 tal que |v| < δ ⇒ f(a + v) ≤ f(a) (resp. f(a) ≤ f(a + v)).

(a) Mostre que se f tem um máximo local (ou mı́nimo local) no ponto a, então
a é um ponto cŕıtico de f.

O ponto cŕıtico a diz-se não degenerado quando a matriz Hessiana nesse ponto

é invert́ıvel, i. e., det(
∂2f

∂xi∂xj

(a)) 6= 0.

(b) Seja f : U → IR de classe C2. Mostre que todo ponto cŕıtico não-degenerado
a ∈ U é um ponto cŕıtico isolado.

Para mostrar (b), prove primeiro o seguinte resultado:
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(c) Seja F = (f1, · · · , fn) : U → IRn, onde cada fi : U → IR (1 ≤ i ≤ n)

é diferenciável no ponto a ∈ U ⊂ IRn. Se a matriz H = (
∂2f

∂xi∂xj

(a)), tem

determinante 6= 0 então existe δ > 0 tal que 0 < |x− a| < δ ⇒ F (x) 6= F (a).

(d) Conclua com esses resultados que o conjunto dos pontos cŕıticos não-degenerados
de uma função de classe C2 é enumerável. E que em cada compacto K ⊂ U há
apenas um número finito deles.

15. Seja H : IRn → IR uma forma quadrática, dada por H · v2 =
∑

hijvivj para
v = (v1, · · · , vn). Diremos que H é positiva quando tivermos H · v2 > 0, ∀v 6= 0
em IRn. Se for H · v2 < 0,∀v 6= 0 em IRn, diremos que ela é uma forma
quadrática negativa. Se uma forma quadrática for positiva ou negativa, diremos
que ela é uma forma definida. Diremos que H é indefinida quando existirem
vetores v, w ∈ IRn tais que H · v2 > 0 e H · w2 < 0.

(a) Dê exemplos de formas quadráticas definidas e indefinidas.

(b) Seja f : U → IR, f ∈ C2, a ∈ U um ponto cŕıtico de f e H a forma
Hessiana de f em a. Mostre que se H é positiva então a é um ponto de mı́nimo
local não-degenerado.

(c) Sejam f e a nas mesmas condições de (b), mostre que se H é negativa então
a é um ponto de máximo local não-degenerado.

(d) Sejam f e a nas mesmas condições de (b), mostre que se H é indefinida
então a não é ponto de mı́nimo local nem de máximo local para f.

(e) Dê exemplos para as três situações (b), (c) e (d).

16. Mostre que se f : [a, b] → IRn é um caminho cont́ınuo e possui derivada nula
em todos os pontos de (a, b) então f é constante.

17. Seja f : U ⊂ IRn → IR diferenciável em U aberto. Se para i = 1, · · · , n,
∂f

∂xi

:

U → IR são diferenciáveis num ponto a ∈ U então diz-se que f é duas vezes
diferenciável no ponto a. Neste caso, ∀i, j = 1, · · · , n, existem as derivadas
parciais de segunda ordem

∂

∂xi

(
∂f

∂xj

)
(a) =

∂2f

∂xi∂xj

(a).

Assim, ficam definidas n2 funções
∂2f

∂xi∂xj

: U → IR, 1 ≤ i, j ≤ n. Se todas

essas funções são diferenciáveis num ponto, então f é três vezes diferenciável
naquele ponto. E assim por diante.

Utilizando a regra de Leibniz prove a seguinte versão do Teorema de Schwarz:

”Seja f : U → IR tal que existem
∂f

∂xi

e
∂2f

∂xi∂xj

em todos os pontos de U. Se as
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funções
∂f

∂xi

,
∂2f

∂xi∂xj

: U → IR são cont́ınuas, então a derivada
∂2f

∂xj∂xi

existe

em todos os pontos de U e vale
∂2f

∂xj∂xi

=
∂2f

∂xi∂xj

.

18. Seja f : IRm → IR tal que f(tx) = |t|f(x) para x ∈ IRm e t ∈ IR quaisquer.
Se f é diferenciável na origem, então f(x) = 0 para todo x.

19. Se f : U → IR, U ⊂ IRn aberto, assuma seu máximo (ou mı́nimo) num ponto
a ∈ U então qualquer derivada parcial de f que exista em a é nula.

20. Seja f : U → IR cont́ınua no aberto limitado U ⊂ IRn, possuindo derivadas
parciais em todos os pontos de U. Se, para todo a ∈ ∂U tem-se limx→a f(x) = 0

então existe c ∈ U tal que
∂f

∂xi

(c) = 0, i = 1, · · · , n.

21. Se f : U → IR possui derivadas parciais, com
∣∣∣ ∂f
∂xi

(x)
∣∣∣ ≤ M (i = 1, · · · , n) em

todos os pontos do aberto convexo U ⊂ IRm então |f(x) − f(y)| ≤ M |x − y|
(norma da soma) para quaisquer x, y ∈ U. Conclua que se f possui derivadas
parciais limitadas num aberto qualquer então ela é cont́ınua (mas não neces-
sariamente uniformemente cont́ınua).

22. Uma função f : IRm → IR tal que f(0) = 0 e f(tx) = tf(x) para quaisquer

x ∈ IRm e t > 0 tem todas as derivadas direcionais na origem, e vale
∂f

∂v
(0) =

f(v).

23. Sejam U ⊂ IRm aberto, f : U → IR diferenciável no ponto a ∈ U e M =
{(x, y) ∈ IRm+1; x ∈ U, y = f(x)} o gráfico de f. O conjunto E dos vetores v =

(α1, · · · , αm, αm+1) ∈ IRm+1 tais que αm+1 =
∑m

i=1 αi · ∂f

∂xi

(a) é um subespaço

vetorial de dimensão m em IRm+1. Mostre que E coincide com o conjunto dos
vetores λ′(0) dos caminhos λ : (−ε, ε) → IRm+1, diferenciáveis no ponto t = 0,
com λ(0) = a e tais que λ(t) ∈ M para todo t. Determine β1, · · · , βm+1 de modo
que o vetor w = (β1, · · · , βm+1) seja não-nulo e ortogonal ao subespaço E.

24. Mostre que todo funcional linear f : IRm → IR é diferenciável e df(x) ·v = f ·v
para quaisquer x, v ∈ IRm.

25. Para cada uma das funções abaixo, escreva a diferencial sob a forma

df(x) =
∂f

∂x1

dx1 + · · ·+ ∂f

∂xn

dxn

e use esta expressão para calcular df(x) · v para x e v dados.

(a) f : IR× (IR−{0}) → IR, f(x, y) = x/y. Calcule df(x) · v com v = (tx, ty)
e relacione este resultado com as curvas de ńıvel de f.
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(b) f : IR3−{0} → IR, f(x, y, z) = (x2+y2+z2)−1/2. Mostre que df(x, y, z)·v =
0 se, e somente se, v é perpendicular a (x, y, z). Calcule df(x, y, z) · v para
x = 1, y = 2, z = 3, e v = (4, 2, 2).

(c) f : IR2 − {0} → IR, f(z) = log |z|. Calcule df(z) · v, com z = (x, y) e
v = (−y, x).

26. Considere em IRm a norma euclideana. Se f : IRm − {0} → IR é definida por
f(x) = |x|a, com a ∈ IR, então df(x) · v = a|x|a−2〈x, v〉 para todo v ∈ IRm.

27. Seja f : IRm×IRm → IR dada por f(x, y) = 〈x, y〉.Mostre que f é diferenciável
e que df(x, y) · (v, w) = 〈v, y〉 + 〈x,w〉. Generalize, considerando uma forma
bilinear ϕ : IRm × IRn → IR qualquer. Generalize ainda mais, tomando
ψ : IRm1 × · · · × IRmk → IR. Obtenha a diferencial da função determinante
como caso particular.

28. Seja U ⊂ IRm aberto. Se a função diferenciável f : U → IR cumpre a condição
de Lipschitz |f(x)− f(y)| ≤ c |x− y| então |df(x) · v| ≤ c |v| para x ∈ U e
v ∈ IRm.

29. Dada a transformação linear A : IRm → IRn, defina as funções f : IRm ×
IRn → IR e g : IRm → IR pondo f(x, y) = 〈A · x, y〉 e g(x) = 〈A · x, x〉.
Determine grad f(x, y) e grad g(x).

30. Sejam ξ : I → IR cont́ınua e f : IR2 → IR de classe C1, com
∂f

∂y
6= 0 em todos

os pontos. Se f(x, ξ(x)) = 0 para todo x ∈ I, prove que ξ é de classe C1.

31. Seja f : U → IR definida no aberto U ⊂ IR2, tal que (x2+y2)f(x, y)+f(x, y)2 =
1 para qualquer (x, y) ∈ U. Prove que f ∈ C∞.

32. Seja f : U → IR definida no aberto U ⊂ IRn. Se a função g : U → IR, dada

por g(x) =
∫ f(x)

0
(t2 + 1)dt, for de classe C∞, então f também será C∞.

33. Seja f : IR2 → IR de classe C∞, com f(x, 0) = f(0, y) = 0 para quaisquer
x, y ∈ IR. Mostre que existe g : IR2 → IR de classe C∞ tal que f(x, y) =
g(x, y) · x · y para qualquer (x, y) ∈ IR2.

34. Seja f : U → IR de classe Ck (i ≤ k ≤ ∞) no aberto convexo U ⊂ IR2,
contendo a origem. Suponha que f e todas as suas derivadas parciais de ordem
≤ i se anulam na origem. Prove que existem funções a0, a1, · · · , ai : U → IR

de classe Ck−i, tais que f(x, y) =
i∑

j=0

aj(x, y)xjyi−j para todo ponto (x, y) ∈ U.
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