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1. Propriedades Métricas do Rn

O conjunto Rn das ”n-uplas ” x = (x1, · · · , xn) com a ”soma ”

x + y = (x1 + y1, · · · , xn + yn), x, y ∈ Rn

e a ”multiplicação ” por escalar

λx = (λx1, · · · , λxn), λ ∈ R e x ∈ Rn

é um espaço vetorial real.

Produto interno Euclideano: x, y ∈ Rn

〈x, y〉 = x1y1 + · · ·+ xnyn.

Este produto goza das seguintes propriedades:

I.1 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉, x, y, z ∈ Rn.

I.2 〈λx, y〉 = λ〈x, y〉, λ ∈ R e x, y ∈ Rn.

I.3 〈x, y〉 = 〈y, x〉,∀ x, y ∈ Rn.

I.4 〈x, x〉 ≥ 0, ∀x ∈ Rn e 〈x, x〉 = 0 ⇐⇒ x = 0.

Norma Euclideana:x ∈ Rn

(I.4)⇒ 〈x, x〉 ≥ 0 e portanto
√
〈x, x〉 é um número real bem definido

e é denominado ”norma ” do vetor x, i.e.,

‖x‖ =
√
〈x, x〉.

Exemplo: R2, x = (x1, x2)

d =
√
〈x, x〉 =

√
x2

1 + x2
2 = ‖x‖

No Rn, ‖x‖ =
√

x2
1 + · · ·+ x2

n.

Propriedades da Norma

N.1 ‖x‖ ≥ 0, ∀x ∈ Rn, e ‖x‖ = 0 ⇐⇒ x = 0.

N.2 ‖λx‖ = |λ| ‖x‖ , ∀x ∈ Rn, ∀λ ∈ R.

Prova: x = (x1, · · · , xn), λx = (λx1, · · ·, λxn)

(1) ‖λx‖ =
√

(λx1)2 + · · ·+ (λxn)2 =
√

λ2(x2
1 + · · ·+ x2

n) = |λ| ‖x‖

N.3 ‖x + y‖ ≤ ‖x‖+ ‖y‖ , ∀x, y ∈ Rn (Desigualdade Triangular).
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Lemma 1 (Desigualdade de Cauchy Schwarz). Dados x, y ∈ Rn

|〈x, y〉| ≤ ‖x‖ ‖y‖ .

Prova do Lema: 0 ≤ ‖λx− y‖2 = 〈λx − y, λx − y〉 = λ2 ‖x‖2 −
λ〈x, y〉 − λ〈y, x〉+ ‖y‖2

λ2 ‖x‖2 − 2λ〈x, y〉+ ‖y‖2 ≥ 0, ∀λ ∈ R

∆ = b2 − 4ac ≤ 0

∆ = 4〈x, y〉2 − 4 ‖x‖2 ‖y‖2 ≤ 0 ⇒ |〈x, y〉| ≤ ‖x‖ ‖y‖ .

Prova do (N.3): ‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2 ≤ ‖x‖2 +

2 ‖x‖ ‖y‖+ ‖y‖2 ≤ (‖x‖+ ‖y‖)2

Outras normas em Rn :

a) Norma da Soma ‖x‖s

Dado x ∈ Rn, x ∈ (x1, · · ·, xn), define-se

‖x‖s = |x1|+ · · ·+ |xn| .
b) Norma do Máximo ‖x‖∞

Dado x ∈ Rn, x ∈ (x1, · · ·, xn), define-se

‖x‖∞ = max{|x1| , · · ·, |xn|}.
Relação entre ‖·‖ , ‖·‖s , ‖·‖∞ :

a) ‖x‖∞ ≤ ‖x‖s ≤ n ‖x‖∞
Prova:

‖x‖s = |x1|+ · · ·+ |xn|
‖x‖∞ = max{|x1| , · · ·, |xn|}
|xi| ≤ ‖x‖∞ , ∀i = 1, · · · , n

dáı

|x1|+ · · ·+ |xn| ≤ n ‖x‖∞
‖x‖s ≤ n ‖x‖∞ .

Por outro lado,

|xi| ≤ |x1|+ · · ·+ |xn| , ∀i = 1, · · · , n

max
1≤i≤n

{|xi|} ≤ |x1|+ · · ·+ |xn|
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‖x‖∞ ≤ ‖x‖s .

b) ‖x‖∞ ≤ ‖x‖ ≤ √
n ‖x‖∞

Prova:

|xi| =
√

x2
i ≤

√
x2

1 + · · ·+ x2
n = ‖x‖ , ∀i = 1, · · · , n

max
1≤i≤n

{|xi|} ≤ ‖x‖ ⇒ ‖x‖∞ ≤ ‖x‖

Por outro lado, dado x = (x1, · · · , xn) ∈ R, seja |x1| = ‖x‖∞ . Então,

|x1| = ‖x‖∞ , |x2| ≤ ‖x‖∞ , · · · , |xn| ≤ ‖x‖∞
∞∑
i=1

|xi|2 ≤ n ‖x‖2
∞ ⇒ ‖x‖2 ≤ n ‖x‖2

∞ ⇒ ‖x‖ ≤ √
n ‖x‖∞ .

Combinando (a) e (b), segue imediatamente que existem constantes

positivas c1, c2, c3 e c4 tais que

c1 ‖x‖ ≤ c2 ‖x‖s ≤ c3 ‖x‖∞ ≤ c4 ‖x‖

Definio 2. Duas normas ‖·‖1 e ‖·‖2 são ”equivalentes ” quando

existirem constantes c1 e c2, positivas, tais que

c1 ‖·‖2 ≤ ‖·‖1 ≤ c2 ‖·‖2 .

Notação: ‖·‖1 ∼ ‖·‖2 .

Lemma 3. ∼ é uma relação de equivalência, i. e.,

(a) Se ‖·‖1 ∼ ‖·‖2 então ‖·‖2 ∼ ‖·‖1 .

(b) ‖·‖1 ∼ ‖·‖1

(c) Se ‖·‖1 ∼ ‖·‖2 e ‖·‖2 ∼ ‖·‖3 , então ‖·‖1 ∼ ‖·‖3 .

Example 4. C0([a, b],R) = {f : [a, b] → R, cont́ınuas}
(a) Produto Interno em E = C0([0, T ],R) (dim∞, base {1, t, t2, · · · })

〈f, g〉 =

∫ b

a

f(t)g(t)dt

〈f, f〉 = 0 ⇔
∫ b

a

f 2(t)dt = 0 ⇒ f ≡ 0.

Se f(x0) > 0, então f 2(x0) > 0, ∀x ∈ (x0− ε, x0 + ε) (pela continuidade

de f) ⇒ ∫ b

a
f 2dt ≥ ∫ x0+ε

x0−ε
f 2dt > 0.
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(Todo produto interno gera uma norma)

Norma associada:‖f‖ =
√
〈f, f〉; f ∈ E ou ‖f‖ = {∫ b

a
f 2(t)dt} 1

2 .

(b) Outra norma em E : ‖f‖∞ = max[a,b] |f(t)| . (Não provém

de um produto interno, o máximo é atingido, domı́nio compacto, função

cont́ınua. Se for apenas limitada, ‖f‖∞ = sup |f(t)|).

Remark 5. Uma norma ‖·‖ num espaço vetorial E provém de um

produto interno ⇐⇒ é válido a lei do paralelogramo:

‖x + y‖2 + ‖x− y‖2 = 2
(‖x‖2 + ‖y‖2) .

Distância em 6 Rn : Dados x, y ∈ 6 Rn a distância entre x e y com

relação à norma ‖·‖ , é definida por:

d(x, y) = ‖x− y‖ .

Três subconjuntos especiais

a) Esfera de centro x0 e raio r

Sr(x0) = {x ∈ 6 Rn; d(x, x0) = r} ;

b) Bola aberta de centro x0 e raio r

Br(x0) = {x ∈ 6 Rn, d(x, x0) < r} ;

c) Bola fechada de centro x0 e raio r

Br[x0] = {x ∈ 6 Rn, d(x, x0) ≤ r} ;

Br[x0] = Br(x0) ∪ Sr(x0).

Example 6. 6 R2, ‖·‖ ,‖·‖s , ‖·‖∞
(a) Bola Euclideana

d(x, 0) = ‖x‖ ≤ r ⇔
√

x2
1 + x2

2 ≤ r ⇔ x2
1 + x2

2 = r2.

(b) Bola do Máximo

d(x, 0) = ‖x‖∞ ≤ r ⇒ max {|x1| , |x2|} ≤ r ⇒ |x1| ≤ r e |x2| ≤ r.

(c) Bola da Soma

‖x‖s ≤ r ⇒ |x1|+ |x2| ≤ r.
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2. Topologia do Rn

Seja S ⊂ Rn um subconjunto e x0 ∈ Rn um ponto fixado.

Posição de x0 com relação a S :

(A) Existe ε > 0 tal que Bε(x0) ⊂ S;

(B) Existe ε > 0 tal que Bε(x0) ⊂ Sc = Rn − S;

(C) Para qualquer ε > 0, a bola Bε(x0) contém algum ponto de S

e algum ponto de Sc.

No caso (A) o ponto x0 é denominado ”ponto interior”. No caso

(B) o ponto é denominado ”ponto exterior ” e no caso (C) ele é dito

”ponto de fronteira ”.

Notação:

Os pontos interiores a S constituem o ”interior do conjunto S” que

é denotado por int(S); o ”exterior de S” será denotado por ext(S) e

sua fronteira por ∂S. O ”fecho de S” e o conjunto S = S ∪ ∂S.

Example 7. S = {(x, y) ∈ R2, y ≥ 0} ∪ {(0,−1)}
int S = {(x, y) ∈ R2; y > 0}
a não é ponto interior, nem exterior.

ext S =int Sc = {(x, y) ∈ R2; y < 0} − {(0,−1)}
∂S = {(x, y) ∈ R2; y = 0} ∪ {(0,−1)}
S = S = {(x, y) ∈ R2; y ≥ 0} ∪ {(0,−1)}
int S ⊂ S

∂S ⊂ S

Example 8. S = {(x, y); 1 < x2 + y2 ≤ 4} não é aberto nem

fechado.

Rn é aberto e fechado.

intS = {(x, y); 1 < x2 + y2 < 4}
ext S = {(x, y); x2 + y2 < 1 ou x2 + y2 > 4}
∂S = {(x, y); x2 + y2 = 1 ou x2 + y2 = 4}
S = {(x, y); 1 ≤ x2 + y2 ≤ 4}
intS ( S

∂S * S
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Definio 9. S ⊂ Rn é dito ”aberto ” quando intS = S, i.e., todos

os pontos de S são interiores. Quando ∂S ⊂ S então S é denominado

”fechado”.

Example 10. 1) Br(x0) é um conjunto aberto. De fato, seja x ∈
Br(x0) e ε > 0, com ε = r − ‖x− x0‖ > 0. Afirmação: Bε(x) ⊂
Br(x0). Seja y ∈ Bε(x), então ‖y − x‖ < ε e ‖y − x0‖ ≤ ‖y − x‖ +

‖x− x0‖ < ε + ‖x− x0‖ = r.

2) ∂Br(x0) = Sr(x0) = {x ∈ Rn; ‖x− x0‖ = r}.
3) Br[x0] = Br(x0) ∪ Sr(x0);

∂Br[x0] = ∂Br(x0) = Sr(x0) ⇒ ∂Br[x0] ⊂ Br[x0] ⇒ Br[x0] é um

conjunto fechado.

Propriedades:

A1) Se A e B são abertos, então A ∩B é aberto;

A2) Se {Aλ} é uma coleção de abertos, então ∪λAλ é aberto;

F1) Se F e G são fechados, então F ∪G é fechado;

F2) Se {Fλ} é uma coleção de fechados, então F = ∩λFλ é fechado.

Prova: A1) Seja x ∈ A ∩ B, x ∈ A ⇒ ∃ ε1 > 0, Bε1(x) ⊂ A já que

A é aberto.

x ∈ B ⇒ ∃ ε2 > 0, Bε2(x) ⊂ B.

Tome ε = min{ε1, ε2} então

Bε(x) ⊂ Bε1(x) ⊂ A, e Bε(x) ⊂ Bε2(x) ⊂ B ⇒ Bε(x) ⊂ A ∩ B ⇒
x é interior.

A2) Seja x ∈ ∪λAλ = A, ∃ λ, x ∈ Aλ ⇒ ∃ ελ > 0; Bελ
(x) ⊂ Aλ ⇒

Bελ
(x) ⊂ ∪λAλ ⇒ x é interior.¥

Example 11. 1)An = B 1
n
(0) é aberto e B = ∩∞n=1B 1

n
(0) = {0},

pois ∂B = B ⇒ ∂B ⊂ B.

2) In = (− 1
n
, 1 + 1

n
) aberto, ∩λIλ = [0, 1] que é fechado.

Lemma 12. F ⊂ Rn é fechado ⇔ FC é aberto.

Prova: (⇒) Suponha F fechado. Seja x ∈ FC ⇒ x /∈ F ⇒ x /∈
∂F ⇒ x ∈ ext F ⇒ ∃ε > 0 tq. Bε(x) ⊂ FC ∴ FC é aberto.

(⇐) Suponhamos agora que FC é aberto.
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Seja x ∈ ∂F. Se x estivesse em FC , existiria ε > 0 tq Bε(x) ⊂ FC

e isto contradiz a definição de fronteira. Logo, x ∈ F e assim ∂F ⊂ F

e F é fechado.¥
Prova de F1 : (FUG)C = FC ∪ GC é aberto, pelo lema e prop.

A1 ∴ F ∪G é fechado (lema).¥
Prova de F2 : [∩λFλ]

C = ∪λF
C
λ aberto (lema + A2).¥

Example 13. I = (0, 1); In = [ 1
n
, 1− 1

n
], n = 1, 2, 3, · · · UIn = I.

A coleção de todos os subconjuntos abertos do Rn é a ”Topologia

Usual ” do Rn.

Topologia Relativa

Seja S ⊂ Rn um subconjunto .

Definio 14. Dizemos que A ⊂ S é ”aberto em S” quando existir

um aberto A∗ do Rn tal que A = S ∩ A∗.

Proposition 15. Um subconjunto A ⊂ S é aberto em S quando:

dado x ∈ A, existe ε > 0 tal que Bε(x) ∩ S ⊂ A.

Prova: Se A é aberto em S, existe A∗ aberto do Rn tal que A =

S ∩ A∗. Dado x ∈ A, então x ∈ A∗ e portanto existe ε > 0 tal que

Bε(x) ⊂ A∗. Logo, S ∩Bε(x) ⊂ S ∩ A∗ = A.

Reciprocamente, suponhamos para cada x ∈ A existe εx > 0 tal

que Bεx(x) ∩ S ⊂ A. Seja A∗ = ∪x∈ABεx(x) (aberto do Rn). Temos

S ∩ A∗ = S ∩ (∪x∈ABεx(x)) = ∪x∈A(S ∩ Bεx(x)) ⊃ A, por outro lado

S ∩ A∗ = Ux∈A(S ∩Bεx(x)) ⊂ A.

Example 16. S = {(x, y) ∈ R2; y ≥ 0}
A = {(x, y) ∈ S; x2 + y2 < 1}
B = {(x, y) ∈ S; x2 + y2 < 1 ou x2 + y2 = 1 e x ≥ 0}
C = {(x, y) ∈ S; x2 + y2 ≤ 1}
i)A não é aberto no R2;

A é aberto em S, porque A = S ∩B1(0).

ii) B não é aberto em R2 nem em S, pois ∃x ∈ B tq ∀ε > 0, Bε(x)∩
S = Bε(x) * B.

iii) C não é aberto em R2 nem em S.
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iv) CC = S−C é aberto em S, pois CC = S ∩BC
1 [0] é aberto em S

mas não no R2.

Conjuntos Conexos

S ⊂ Rn

Definio 17. S é ”CONEXO ” quando não puder ser decomposto

em união de dois subconjuntos abertos (em S) disjuntos e não-vazios,

isto é, se

S = A ∪B

com A e B abertos (em S) e A ∩B = ∅, então A = ∅ ou B = ∅.

Example 18. i) A bola Bε(x) é conexa,

ii) S = {(x, y) ∈ R2; x2−y2 ≥ 1} é desconexo pois S = A∪B, onde

A∩B 6= ∅ e A = {(x, y) ∈ R2; x < 0}∩S, B = {(x, y) ∈ R2; x > 0}∩S

ambos abertos em S. Note que A e B são conexos.

Proposition 19. Seja {Sα} uma famı́lia de conexos do Rn com

∩αSα 6= ∅. Então S = ∪αSα é conexo.

Prova: Suponhamos S = A ∪ B, A e B abertos em S e disjuntos.

Fixemos x0 ∈ ∩αSα. Temos que

Sα = Sα ∩ S = (Sα ∩ A) ∪ (Sα ∩B)

= Vα ∪Wα

como Sα é conexo, então Sα ∩ A = ∅ ou Sα ∩ B = ∅ , para cada α.

Suponhamos que Sα0∩A = ∅, para algum α0. Mostremos que Sα∩A =

∅, ∀α. De fato, x0 ∈ ∩αSα ⇒ x0 ∈ Sα0 ⇒ x0 /∈ A ⇒ x0 ∈ B ⇒
x0 ∈ Sα ∩ B ⇒ Sα ∩ B 6= ∅ ⇒ Sα ∩ A = ∅, ∀α. Logo, A = S ∩ A =

(∪αSα) ∩ A = ∪α(Sα ∩ A) = ∅.¥

Example 20. Os ”Retângulos do R2” são conexos .

R=I × J ; I, J ⊂ R intervalos, fixemos (a, b) ∈ R .

Cx = I × {b} ∪ {x} × J é conexo

”os intervalos da reta são conexos ”

R = ∪x∈ICx é conexo.

(a, b) ∈ ∩x∈ICx.

Proposition 21. Um subconjunto S ⊂ R é conexo ⇔ S é um

intervalo.
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Prova: (⇒) i) Se S não é um intervalo, então S não é conexo.

S não é um intervalo ⇒ existem a, b ∈ S e a < c < b, com c /∈ S.

S = [(−∞, c) ∩ S]︸ ︷︷ ︸
A

∪ [(c,∞) ∩ S]︸ ︷︷ ︸
B

(i) A 6= ∅, a ∈ A.

(ii) B 6= ∅, b ∈ B.

(iii) A ∩B = ∅.
(iv) A e B são abertos em S ⇒ S é desconexo.

(⇐) Suponha que S é um intervalo e que S não é conexo.

S = A ∪B, A e B abertos em S, A ∩B = ∅ e A 6= ∅ , B 6= ∅.
Sejam a ∈ A e b ∈ B, com a < b. Como S é um intervalo e a, b ∈ S

então [a, b] ⊂ S. Seja c = sup{[a, b] ∩ A} então

(i) a ≤ c ≤ b

(ii) a < c

prova de (ii) : a ∈ A ⇒ ∃ δ > 0; (a, a + δ) = (a, a + δ) ∩ S ⊂ A.

Se a = c, então A ⊂ ]−∞, a] ⇒ (a, a + δ) ∩ A = ∅ (contradição).

(iii) c < b

b ∈ B ⇒ ∃ δ > 0; (b− δ, b) = (b− δ, b) ∩ S ⊂ B

se b = c, então b − δ não é cota superior e portanto existe x ∈
]b− δ, b] ∩ A ⇒ x ∈ A ∩B (contradição).

Logo, a < c < b.

Afirmação: c ∈ A ∩B (contradizendo A ∩B = ∅).
(i) A e B são fechados em S, isto é, A = A e B = B.

(ii) xk = c + 1
k
→ c ⇒ c ∈ B

(iii) yk = c− 1
k
→ c ⇒ c ∈ A

⇒ c ∈ A ∩B.¥

Definio 22. Seja S ⊂ Rn. Um ponto x0 ∈ Rn é um ”ponto de

acumulação ” de S quando: ∀ε > 0, Bε(x0) contém uma infinidade de

pontos de S.

Example 23. (i) S = (0, 1) ⊂ R = (0, 1) ⊂ R.

Dado 0 < x0 < 1, então (x0 − ε, x0 + ε) ∩ S =intervalo (não-

degenerado)⇒ (x0−ε, x0+ε)∩S é infinito. x0 é ponto de acumulação.

S ′ = conjunto dos pontos de acumulação de S = [0, 1].
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(ii) S = {(1, 1
n
), n ∈ N} ⊂ R2 , S ′ = {(1, 0)}.

(iii) S = {((−1)n, 1
n
); n ∈ N} ⊂ R2, S ′ = {(−1, 0), (0, 1)}

Definio 24. Um subconjunto S ⊂ Rn é ”limitado ” quando existir

R > 0 tal que S ⊂ BR(0).

Teorema 25. (Bolzano-Weierstrass ) Todo subconjunto S ⊂ Rn

infinito e limitado tem um ponto de acumulação.

Demonstração:

10 Caso: Unidimensional

Seja a = inf S, b = sup S. Então, S ⊂ [a, b].

(i) Se a for um ponto de acumulação de S o Teorema estará provado.

(ii) Suponhamos que a não é um ponto de acumulação de S.

Seja L = {x ∈ R, [a, x] ∩ S é finito}
(i) L 6= ∅.
Prova: a não é ponto de acumulação de S ⇒ ∃δ > 0 tal que

(a − δ, a + δ) ∩ S é finito. Escolha x ∈ [a, a + δ[, x ∈ L, porque

[a, x] ∩ S ⊂]a− δ, a + δ[∩S.

(ii) L é limitado superiormente.

Prova:

Seja y > b, com y ∈ L

[a, y] ∩ S é finito ⇒ [a, b] ∩ S é finito⇒ S é finito (contradição).

Logo, L ⊂ (−∞, b]

Seja β = sup L.

Afirmação: β ∈ S ′. De fato, se β não fosse ponto de acumulação

de S existiria ε > 0 tal que (β−ε, β+ε)∩S é finito. Sejam x ∈ (β−ε, β)

e y ∈ (β, β + ε) então

[x, y]∩S ⊂ (β− ε, β + ε)∩S é finito. Como [a, x]∩S é finito então

[a, y] ∩ S ⊂ ([a, x] ∩ S) ∪ ([x, y] ∩ S) é finito⇒ y ∈ L (contradição).

20 Caso: Multidimensional

Seja {x1,x2, · · · ,xn, · · · } ⊂ S, limitado com xi 6= xj, i 6= j, xk =

(x1
k, x

2
k, · · · , xn

k) ∈ S ⊂ Rn, |xj
k| ≤ ‖xk‖ ≤ C

S1 = {x1
1, x

1
2, x

1
3, · · · } ⊂ R

S2 = {x2
1, x

2
2, x

2
3, · · · } ⊂ R

...
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Sk = {xk
1, x

k
2, x

k
3, · · · } ⊂ R

Supor S1 é infinito e sendo limitado possui um ponto de acumulação.

Seja P = (x, a2, · · · , an) ∈ Rn, onde aj é um ponto de acumulação

de Sj, se existir, ou aj é o valor constante em Sj, se Sj for finito. P é

ponto de acumulação de S.

Conjuntos Compactos

(1) Seja S ⊂ Rn um subconjunto e seja C uma coleção de abertos

do Rn cuja união contém S, isto é,

S ⊂ ∪Aλ∈CAλ.

Uma tal coleção C é denominada ”cobertura aberta ” de S.

Uma ”subcobertura aberta ” de S é um subconjunto C∗ de C que

ainda é uma cobertura de S.

Example 26. 1. Seja S ⊂ Rn. Dado r > 0 fixado, considere a

seguinte

C = {Br(x), x ∈ S}; S ⊂ Rn

C é uma cobertura aberta de S. A coleção

C∗ = {Br(x), x ∈ S ∩Qn}
Q é denso em R⇒ Qn é denso no Rn.

S ∩Qn é denso em S (S ∩Qn = S ∩Qn = S).

Dado x ∈ S, seja y ∈ S ∩Qn tal que ‖x− y‖ < r ( por densidade)

x ∈ Br(y) e Br(y) ∈ C∗. Logo, C∗ é uma subcobertura aberta.

2. C = {( 1
n
, 1); n = 1, 2, 3, · · · }

C é uma cobertura (aberta) de (0, 1).

Prova de 2.: Seja x ∈ (0, 1). Como lim 1
n

= 0, existe um ı́ndice n0

tal que 1
n

< x < 1,∀n ≥ n0 ⇒ x ∈ ( 1
n0

, 1).¥
C não admite subcobertura finita.

Prova: Seja n1 < n2 < n3 < · · · < nk

C ∗ = {( 1
nj

, 1); j = 1, · · · , k} ⇒ ∪k
j=1(

1
nj

, 1) = ( 1
nk

, 1) ⇒ (0, 1) não é

compacto.

Definio 27. Um subconjunto K ⊂ Rn é ”compacto ” quando toda

cobertura aberta admitir uma subcobertura finita.
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Example 28. (1) (0, 1), (0, 1], [0, 1) não são compactos para [0, 1)

considere C = {(− 1
n
, 1− 1

n
); n ∈ N}.

(2) K = [a, b], −∞ < a ≤ b < ∞ é compacto.

Prova de (2): Seja C uma cobertura aberta de [a, b]. Seja L =

{x ∈ [a, b]; [a, x] pode ser coberto por um número finito de abertos de

C}
·L 6= ∅ (porque a ∈ L)

· · L é limitado (L ⊂ [a, b]).

Seja α = sup L

· · · α ∈ [a, b], pois [a, b] é fechado.

Afirmação: α ∈ L

Como α ∈ [a, b] e C é uma cobertura de [a, b] ⇒ ∃A ∈ C tal que

α ∈ A. Logo existe δ > 0 tq (a − δ, a + δ) ⊂ A ⇒ ∃x ∈ L; β < x.

Seja x ∈ A ∩ L; α − δ < x ≤ α, temos [a, x] ⊂ A1 ∪ A2 ∪ · · · ∪ Ak,

Aj ∈ C ⇒ [a, α] ⊂ A1 ∪ · · · ∪ Ak ∪ A ⇒ α ∈ L.

Afirmação: α = b.

Se α fosse < b, existiria A ∈ C e x ∈ A tq. α < x < b e [α, x] ⊂ A.

Logo [a, α] ⊂ A1 ∪ · · · ∪ Ak e [a, x] ⊂ A1 ∪ · · · ∪ Ak ∪ A; A,Aj ∈ C ⇒
x ∈ L(contradição).¥

Example 29. K ⊂ Rn e L ⊂ Rm são compactos, então K × L ⊂
Rn × Rm ≈ Rn+m é compacto.

Dados (x, y) ∈ Rn × Rm, seja C = {V ×W} uma cobertura aberta

de K × L. Sejam CK = {V } e CL = {W} temos que CK e CL ad-

mitem subcoberturas finitas, porque K e L são compactos, C∗K =

{V1, V2, · · · , Vr}, C∗L = {W1,W2, · · · ,Ws}
C∗ = {Vi × Wj}1≤i≤r, 1≤j≤s temos K ⊂ ∪r

i=1Vi, L ⊂ ∪s
j=1Wj ⇒

K × L ⊂ ∪Vi×Wj∈C∗Vi ×Wj.¥

Example 30. S ⊂ Rn um conjunto finito é compacto.

S = {x1, x2, · · · , xk}
Seja C uma cobertura de S, então x1 ∈ A1, · · · , xk ∈ Ak ,Ai ∈ C

⇒ C∗ = {A1, · · · , Ak} cobre S.
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Example 31. Se K é compacto e F ⊂ K é fechado, então F é

compacto.

Prova: Seja C uma cobertura de F . Então, CK = C ∪ {Rn − F} é

uma cobertura aberta de K a qual admite subcobertura finita

K ⊂ (A1 ∪A2 ∪ · · · ∪Ak) ∪ (Rn − F ) ⇒ F ⊂ A1 ∪A2 ∪ · · · ∪Ak.¥

Teorema 32. (Heine-Borel) K ⊂ Rn é compacto ⇔ é fechado e

limitado.

Demonstração: (⇐) K limitado ⇒ K ⊂ In = I×· · ·× I, I = [a, b].

Temos que In é compacto (veja o exemplo acima). Como K é fechado

e K ⊂ In ⇒ K é compacto.

(⇒) Suponhamos K ⊂ Rn compacto.

(i) K é limitado

C = {B1(x), x ∈ K} é uma cobertura aberta de K e sendo K

compacto esta cobertura admite uma subcobertura finita, isto é,

K ⊂ B1(x1) ∪ · · · ∪B1(xr)

Dado x ∈ K, x ∈ B1(xi), para algum i = 1, 2, · · · , r.

‖x‖ = ‖x− xi + xi‖ ≤ ‖x− xi‖ + ‖xi‖ < 1 + ‖xi‖ ≤ 1 + ‖x1‖ +

· · ·+ ‖xr‖
‖x‖ ≤ M, ∀x ∈ K.

(ii) K é fechado

Se K não fosse fechado, existiria x ∈ ∂K tq. x /∈ K. Tome C =

{Rn −B 1
n
[x], n ∈ N}.

Seja y ∈ K e considere n tq. 1
n

< ‖x− y‖ ⇒ y /∈ B 1
n
[x] ⇒ y ∈ Rn−

B 1
n
[x]. Portanto C é uma cobertura aberta de K. Se n1 < n2 < · · · < nr

então

∪nr
j=1(B 1

nj

[x])C = ∪nr
j=1(Rn −B 1

nj

[x]) = (B 1
nr

[x])C

isto contradiz o fato de x ∈ ∂K.

3. Sequências em Rn

Uma sequência em Rn é uma função f : N → Rn definida no con-

junto

N = {1, 2,· · · } dos números naturais.
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Notação: (xn) representa a sequência f : N → Rn tal que f(n) =

xn.

Convergência:

Fixemos uma norma ‖·‖ em Rn. Dizemos que uma sequência (xn)

em Rn ”converge ” para x quando:

(2) ∀ε > 0, ∃n0 tal que ‖xn − x‖ < ε, ∀n ≥ n0

Interpretação:

‖xn − x‖ < ε ⇔ xn ∈ Bε(x).

A sentença (2) afirma que fora da bola Bε(x) existe, no máximo,

n0 − 1 termos da sequência.

Exemplo: (1) xn = ( 1
n
,− n

n2+1
) (sequência em R2, ‖·‖∞)

‖xn − 0‖∞ = ‖xn‖∞ = max{ 1
n
, n

n2+1
} = 1

n

∀ε > 0, seja n0 ∈ N tal que 1
n0

< ε. Se n ≥ n0 então 1
n
≤ 1

n0
< ε.

Logo,

‖xn − 0‖∞ < ε, ∀n ≥ n0 ⇒ xn → 0 ou lim xn = 0 ou lim( 1
n
,− n

n2+1
) =

(0, 0).

(2) yn = ((−1)n, 1
n
) (não converge)

y2n = (1, 1
2n

) → (1, 0)

y2n−1 = (−1, 1
2n−1

) → (−1, 0).

O que acontece com a convergência quando se muda a norma do

Rn ?

| · | ∼ ‖·‖ ⇔ c1|x| ≤ ‖x‖ ≤ c2|x|, ∀x ∈ Rn

Seja (xn) uma sequência convergente na norma | · |.
∀ε > 0, ∃n0 ∈ N, |xn − x| < ε, ∀n ≥ n0

Logo, ‖xn − x‖ ≤ c2|xn − x| < c2ε, ∀n ≥ n0 ⇒ xn → x, na norma

‖·‖ .

Resultados Clássicos

1. Toda sequência (xn) convergente é limitada.

Prova: ∃n0 ∈ N; ‖xn − x‖ < 1,∀n ≥ n0

‖xn‖ ≤ ‖xn − x‖+ ‖x‖ < 1 + ‖x‖ , ∀n ≥ n0.

Seja M = ‖x1‖+ · · ·+ ‖xn‖+ 1 + ‖x‖ ⇒ ‖xn‖ ≤ M, ∀n.¥
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2. Seja −→x n = (xn, yn, zn) uma sequência em R3. Então, −→x n →
−→x = (x, y, z) ⇔ xn → x, yn → y, zn → z.

Prova: (⇒) Suponhamos que −→x n → −→x e consideremos R3 com a

norma ‖·‖∞ .

Dado ε > 0, ∃n0 ∈ N tal que ‖−→x n −−→x ‖∞ < ε,∀n ≥ n0. Como

‖−→x n −−→x ‖∞ = max{|xn − x| , |yn − y| , |zn − z|} segue que xn → x,

yn → y e zn → z.

(⇐) Consideremos em R3 a norma ‖·‖s :

xn → x ⇒ ∀ε > 0, ∃n1; |xn − x| < ε
3
; n ≥ n1

yn → y ⇒ ∀ε > 0, ∃n2; |yn − y| < ε
3
; n ≥ n2

zn → z ⇒ ∀ε > 0,∃n3; |zn − z| < ε
3
; n ≥ n3

Escolha n0 = max{n1, n2, n3} se n ≥ n0, então

‖xn − x‖s = |xn − x|+ |yn − y|+ |zn − z| < ε, ∀n ≥ n0.¥
3. Seja xn → x, yn → y em Rn e λn → λ em R.

Então:

(3.1) xn + yn → x + y;

(3.2) λnxn → λx;

(3.3) 〈xn, yn〉 → 〈x, y〉.
Prova (3.2): Seja ε > 0. Existe n0 ∈ N tal que |λn − λ| < ε e

‖xn − x‖ < ε, ∀n ≥ n0. Temos

‖λnxn − λx‖ = ‖λnxn − λxn + λxn − λx‖ ≤ ‖(λn − λ)xn‖+‖λ(xn − x)‖
≤ |λn − λ| ‖xn‖+ |λ| ‖xn − x‖

Seja M ≥ ‖xn‖ ; ∀n (tal M existe porque (xn) sendo convergente é

limitada).

Logo,

‖λnxn − λx‖ ≤ M |λn − λ|+ |λ| ‖xn − x‖ < Mε + |λ| ε, ∀n ≥ n0.¥
(3.3) ‖xn − x‖ < ε, ∀n ≥ n0

‖yn − y‖ < ε, ∀n ≥ n0

|〈xn, yn〉 − 〈x, y〉| = |〈xn, yn〉 − 〈xn, y〉+ 〈xn, y〉 − 〈x, y〉|
≤ |〈xn, yn − y〉|+ |〈xn − x, y〉|
≤ ‖xn‖ ‖yn − y‖+ ‖y‖ ‖xn − x‖
< ε(M + ‖y‖),∀n ≥ n0.¥

4. x ∈ S ⇔Existe um sequência (xn) em S que converge para x.
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Prova:

(⇒) x ∈ S = S ∪ ∂S.

Se x ∈ S considere a sequência constante xn = x,∀n. Então (xn) ⊂
S e ‖xn − x‖ = 0, ∀n ⇒ xn → x. Se x /∈ S, então x ∈ ∂S e para cada

n ∈ N a bola B 1
n
(x) contém um ponto xn de S. Temos que

(i) (xn) ⊂ S;

(ii) ‖xn − x‖ < 1
n
⇒ xn → x.

(⇐) xn → x, xn ∈ S, ∀n. x ∈ S ⇔ x ∈ S ou x ∈ ∂S.

Se x /∈ S, então x ∈ ∂S. De fato, ∀ε > 0, a bola Bε(x) contém

os termos xn para n ≥ n0. Logo, Bε(x) ∩ S 6= ∅. Como x /∈ S, então

Bε(x) ∩ SC 6= ∅. Logo, x ∈ ∂S.

4. Subsequências

Dada uma sequência xn = (x1
n, x

2
n, · · · , xN

n ) em RN a restrição de

(xn) a um subconjunto infinito de N é denominada ”subsequência ”

de (xn).

Example 33. xn = ((−1)n, n
n+1

); n ∈ N. Considere N1 = {2, 4, 6, · · · } ⊂
N, N2 = {1, 3, 5, · · · } ⊂ N. Temos que (xn)n∈N1 = {(1, 2

3
), (1, 4

5
), (1, 6

7
), · · · } →

(1, 1)

(xn)n∈N2 = {(−1, 1
2
), (−1, 3

4
), (−1, 5

6
), · · · } → (−1, 1)

Em geral: N′ = {n1 < n2 < n3 < · · · }
(xnk

)k∈N é uma subsequência de (xn).

Lemma 34. Se (xn) converge para x então qualquer subsequência

de (xn) também converge para x.

Demonstração: Dado ε > 0,∃n0 ∈ N tal que

‖xn − x‖ < ε, ∀n ≥ n0.

Se nk ≥ n0 então ‖xnk
− x‖ < ε.¥

Proposition 35. Todo subconjunto limitado S ⊂ Rn possui uma

subsequência convergente.
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Prova: S ⊂ Rn um subconjunto limitado. Suponhamos que S é

infinito. Pelo Teorema de Bolzano-Weierstrass S tem um ponto de

acumulação x.

Para n = 1 escolha xn1 ∈ B1(x) ∩ S; xn1 6= x.

Para n = 2 escolha xn2 ∈ B 1
2
(x) ∩ S; xn2 6= xn1 .

...

Para n = k, escolha xnk
∈ B 1

k
(x) ∩ S; xnk

6= xnj
,∀j

‖xnk
− x‖ < 1

k
→ 0 ⇒ xnk

→ x.

Se S for finito considere a subsequência constante.¥

Proposition 36. Seja S ⊂ Rn com a seguinte propriedade: Toda

sucessão de pontos de S possui uma subsequência convergente. Então,

S é limitada.

Prova: Suponha que S não é limitado. Para cada n ∈ N, podemos

encontrar xn ∈ S tal que ‖xn‖ ≥ n. Nenhuma subsequência de (xn)

é limitada, pois ‖xnk
‖ ≥ nk → ∞ ⇒ (xn) não possui subsequência

convergente.¥

Proposition 37. S ⊂ Rn é compacto ⇔toda sequência de pontos

de S possui uma subsequência convergente para um ponto de S.

Prova: (⇒) Suponhamos S compacto e seja (xn) uma sequência

em S. S é limitado ⇒ (xn) é limitada⇒ (xn) possui uma subsequência

convergente, seja x = lim xnk
. Temos que (xnk

) ⊂ S ⇒ x ∈ S. Como S

é fechado ⇒ S = S ⇒ x ∈ S.

(⇐) Pela proposição anterior, segue que S é limitado. Dado x ∈ S,

então x = lim xn, xn ∈ S ⇒ x ∈ S ⇒ S ⊂ S ⇒ S = S ⇒ S é

fechado.¥
Sequências de Cauchy

Uma sequência (xn) em Rn é de Cauchy quando : ∀ε > 0, ∃n0 ∈
N; ‖xn − xm‖ < ε, ∀n, m ≥ n0.

Example 38. S = (0, 1]; xn = 1
n
, yn = 1 − 1

n
, n ≥ 2. lim xn = 0,

lim yn = 1; (yn) converge em S (porque lim yn = 1 ∈ S), (xn) não

converge em S (porque lim xn = 0 /∈ S).

Proposition 39. Toda sequência convergente é de Cauchy.
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Prova: xk → x; ∀ε > 0, ∃n0 ∈ N , ‖xk − x‖ < ε, ∀k ≥ n0.

‖xn − xm‖ ≤ ‖xn − x‖+ ‖xm − x‖ < 2ε, m, n ≥ n0.¥

Lemma 40. Toda sequência de Cauchy é limitada.

Prova: ∃n0 ∈ N; ‖xn − xm‖ < 1, n,m ≥ n0.

‖xn − xn0‖ < 1 ⇒ ‖xn‖ ≤ ‖xn − xn0‖+ ‖xn0‖ < 1 + ‖xn0‖ . Dáı se

conclui o resultado.¥

Proposition 41. Rn é completo (ser completo significa que toda

sequência de Cauchy é convergente).

Prova: Seja (xn) de Cauchy em Rn. Pelo Lema (xn) é limitada e

portanto (xn) possui uma subsequência (xnk
) convergente para x ∈ Rn.

‖xnk
− x‖ < ε; nk ≥ n0. Assim temos que

‖xn − x‖ ≤ ‖xnk
− xn‖+ ‖xnk

− x‖ < 2ε, n ≥ n0.¥
(−1)n não é de Cauchy ⇒ (−1)n é divergente .

|(−1)n − (−1)n=1| = 2.

Corollary 42. Todo subconjunto (subespaço) fechado do Rn é

completo.

Prova: Seja (xn) de Cauchy em S ⇒ (xn) é de Cauchy em Rn ⇒
xn → x em Rn (pela completeza do Rn). Como (xn) ⊂ S então x ∈
S = S.
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Funções Cont́ınuas

Definio 43. f : S ⊂ Rn → Rm, x0 ∈ S. f é cont́ınua em x0 quando

”pontos vizinhos ” de x0 são transformados em ”pontos vizinhos ” de

f(x0). Analiticamente, f é cont́ınua em x0, quando: ∀ε > 0, ∃δ > 0 tal

que f(Bδ(x0) ∩ S) ⊂ Bε(f(x0)).

Equivalentemente: x ∈ S, ‖x− x0‖ < δ ⇒ ‖f(x)− f(x0)‖ < ε.

Exemplos do Cálculo:

(1) f : R2 → R; f(x, y) = x2y
x2+y2 , se (x, y) 6= (0, 0) e f(0, 0) = 0.

Vamos investigar a continuidade em x0 = (0, 0).

‖f(x, y)− f(0, 0)‖ =
∣∣∣ x2y
x2+y2 − 0

∣∣∣ = x2|y|
x2+y2 ≤ x2+y2

x2+y2

√
x2 + y2 =

=
√

x2 + y2.

Temos que: ‖(x, y)‖ =
√

x2 + y2 e ‖(x, y)− (0, 0)‖ =
√

x2 + y2.

Se
√

x2 + y2 < δ então ‖f(x, y)− f(0, 0)‖ < δ. Dado ε > 0

tome δ = ε.

(2) f(x, y) =

{ xy
x2+y2 , se (x, y) 6= (0, 0)

0, se (x, y) = (0, 0)

A função f(x, y) não é cont́ınua na origem, pois

f(x, y) =
x2

2x2
=

1

2
, se x 6= 0

f(0, 0) = 0

Tomando ε = 1
4
, @δ > 0 tal que |f(x, y)− f(0, 0)| < ε, ∀(x, y) ∈

Bδ(0, 0).

f não é cont́ınua em x0 quando: ∃ε > 0; ∀δ > 0 se tem

‖f(x)− f(x0)‖ ≥ ε e ‖x− x0‖ < δ, para algum x ∈ S.

(3) Projeções : πj : Rn → R; πj(x1, x2, · · · , xn) = xj, j = 1, · · · , n.

|πj(x)− πj(x0)| =
∣∣xj − x0

j

∣∣ ≤ ‖x− x0‖
19
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Dado ε > 0, seja δ = ε. Se ‖x− x0‖ < δ, então |πj(x)− πj(x0)| <
ε. Logo, πj é cont́ınua em qualquer ponto x0 do Rn.

(4) Funções Componentes

Seja f : S ⊂ Rn → Rm e defina fj = πj ◦ f

f(x0) = (y1, y2, · · · , ym) ∈ Rm, x0 = (x1
0, · · · , xn

0 ) ∈ S ⊂
Rn.

πj(f(x0)) = yj, isto é, fj(x0) = yj.

f = (f1, f2, · · · , fm)

As funções f1, f2, · · · , fm são as ”componentes de f ” .

fj : S ⊂ Rn → R.

Proposition 44. Sejam f, g : S ⊂ Rn → Rm cont́ınuas em x0 e

λ ∈ R. Então as funções f + λg e 〈f, g〉 são cont́ınuas em x0.

Prova: Dado ε > 0, existem δ1, δ2 > 0 tais que

x ∈ S e ‖x− x0‖ < δ1 ⇒ ‖f(x)− f(x0)‖ < ε
2

x ∈ S e ‖x− x0‖ < δ2 ⇒ ‖g(x)− g(x0)‖ < ε
2|λ|

‖(f + λg) (x)− (f + λg) (x0)‖ ≤ ‖f(x)− f(x0)‖+|λ| ‖g(x)− g(x0)‖
< ε

2
+ |λ| ε

2|λ| = ε

quando x ∈ S e ‖x− x0‖ < δ = min{δ1, δ2}.
Para a função x → 〈f(x), g(x)〉, temos

|〈f(x), g(x)〉 − 〈f(x0), g(x0)〉| = =

|〈f(x), g(x)〉 − 〈f(x0), g(x)〉+ 〈f(x0), g(x)〉 − 〈f(x0), g(x0)〉|
≤ |〈f(x)− f(x0), g(x)〉|+ |〈f(x0), g(x)− g(x0)〉|

≤ ‖f(x)− f(x0)‖ ‖g(x)‖+ ‖f(x0)‖ ‖g(x)− g(x0)‖
∀ε > 0, ∃δ1 > 0 tal que ‖f(x)− f(x0)‖ < ε, se ‖x− x0‖ < δ1

∃δ2 > 0 tal que ‖f(x)− f(x0)‖ < 1, se ‖x− x0‖ < δ2

∃δ3 > 0 tal que ‖f(x)− f(x0)‖ < ε, se ‖x− x0‖ < δ3

tome δ = min{δ1, δ2, δ3}. Logo,

|〈f(x), g(x)〉 − 〈f(x0), g(x0)〉| < ε(1 + ‖f(x0)‖+ ‖g(x0)‖).¥

Corollary 45. A função produto : R2 3 (x, y) → xy ∈ R é

cont́ınua.

Prova: π1, π2 : R2 → R, π1(x, y) = x, π2(x, y) = y são cont́ınuas e

xy = 〈π1, π2〉.¥
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Proposition 46. f : V ⊂ Rn → Rm, g : W → Rp com f(V ) ⊂ W.

Se f é cont́ınua em x0 ∈ V e g é cont́ınua em y0 = f (x0) ∈ W, então

g ◦ f é cont́ınua em x0.

Prova: g é cont́ınua em y0 = f(x0) ∀ε > 0, ∃δ > 0; g(Bδ(f(x0)) ∩
W ) ⊂ Bε(g(y0)).

f é cont́ınua em x0, ∃δ′ > 0; f(Bδ′(x0) ∩ V ) ⊂ Bδ(f(x0)) ⊂
Bδ(f(x0)) ∩W ⇒ g(f(Bδ′(x0) ∩ V )) ⊂ g(Bδ(f(x0)) ∩W ) ⊂ Bε(z0)

⇒ (g ◦ f)(Bδ′(x0) ∩ V ) ⊂ Bε(g ◦ f(x0)).¥

Proposition 47. f = (f1, · · · , fm) : S ⊂ Rn → Rm é cont́ınua em

x0 ∈ S ⇔ cada componente fj : S → R é cont́ınua em x0.

Prova: (⇒) fj = πj ◦ f é cont́ınua.

(⇐) Suponhamos cada componente fj, j = 1, 2, · · · ,m

cont́ınua em x0. Temos

‖f(x)− f(x0)‖S = |f1(x)− f1(x0)|+ · · ·+ |fm(x)− fm(x0)|
∀ε > 0,∃∃ δ1, δ2, · · · , δm > 0 tais que x ∈ S, ‖x− x0‖ < δk ⇒

|fj(x1)− fj(x0)| < ε/m, k = 1, · · · ,m. Tome δ = min{δ1, δ2, · · · , δm} se

‖x− x0‖ < δ ⇒ ‖f(x)− f(x0)‖ < ε/m + · · ·+ ε/m = ε.¥

Proposition 48. Uma função f : S ⊂ Rn → Rm é cont́ınua no

ponto x0 de S ⇔ para toda sequência (xn) em S, xn → x0, tem-se

f(xn) → f(x0).

Prova: (⇒) Suponhamos f cont́ınua em x0 e seja ε > 0 dado.

∃δ > 0 tal que f(Bδ(x0) ∩ S) ⊂ Bε(f(x0)). Como xn → x0, ao δ > 0

corresponde um n0 ∈ N tal que

‖xn − x0‖ < δ, n ≥ n0 ⇒ xn ∈ Bδ(x0) e xn ∈ S

⇒ xn ∈ Bδ(x0) ∩ S ⇒ f(xn) ∈ Bε(f(x0))

⇔ ‖f(xn)− f(x0)‖ < ε, n ≥ n0 ⇒ f(xn) → f(x0).

(⇐) Suponhamos que xn → x0, xn ∈ S ⇒ f(xn) → f(x0). Se f não

fosse cont́ınua em x0, existiria um ε > 0 e um yn ∈ S tal que

‖yn − x0‖ <
1

n
e ‖f(yn)− f(x0)‖ ≥ ε

o que é uma contradição com a hipótese.
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Example 49. f(x) =

{
sen 1

x
, x 6= 0

0 x = 0
(não é cont́ınua em x = 0)

xn = 1
nπ+π

2
→ 0, f(xn) = sen (nπ + π

2
) = (−1)n diverge.

Definio 50. f : S ⊂ Rn → Rm é dita ”cont́ınua ” quando for

cont́ınua em cada ponto de S.

Proposition 51. f : S ⊂ Rn → Rm é cont́ınua ⇔ f−1(A) é

aberto em S, para todo conjunto A aberto do Rm.

(Exerćıcio: pode-se substituir aberto por fechado)

Prova: (⇒) Suponhamos que f é cont́ınua e seja A ⊂ Rm aberto.

f−1(A) = {x ∈ S; f(x) ∈ A}

seja x ∈ f−1(A), então f (x) ∈ A e como A é aberto, ∃ε > 0 tal

que Bε(f(x)) ⊂ A. Como f é cont́ınua em x, existe um δ > 0 tal que

f(Bδ(x) ∩ S) ⊂ Bε(f(x)). Logo,

Bδ(x) ∩ S ⊂ f−1(Bε(f(x))) ⊂ f−1(A).

(⇐) Suponhamos que f−1(A) é aberto em S, para todo A ⊂ Rm

aberto. Mostremos que f é cont́ınua em x ∈ S. Seja ε > 0 dado. O con-

junto A = Bε(f(x)) é aberto em Rm e portanto A1 = f−1(Bε(f(x)))

é aberto em S e x ∈ A1 (pois f(x) ∈ Bε(f(x))) .

Logo, ∃δ > 0 tal que Bδ(x) ∩ S ⊂ A1 ⇒ f(Bδ(x) ∩ S) ⊂ f(A1) ⊂
Bε(f(x)).¥

Example 52. A = {(x, y) ∈ R2; x2 − y2 < 1} . f(x, y) = x2 − y2

é cont́ınua e A = f−1(]−∞, 1[) é aberto.

Example 53. B = {(x, y) ∈ R2; x2 + y2 = 1}. g(x, y) = x2 + y2 é

cont́ınua e B = g−1({1}). Como {1}C =]−∞, 1[ ∪ ]1, +∞[ é aberto ⇒
{1} é fechado ⇒ g−1({1}) é fechado.

Corollary 54. Se f : S ⊂ Rn → Rm é cont́ınua e A é aberto em

f(S), então f−1(A) é aberto em S.

Prova: A = f(S) ∩ V, V aberto do Rm ⇒ f−1(A) = S ∩ f−1(V ) é

aberto em S.¥
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Proposition 55. Se f : S ⊂ Rn → Rm é cont́ınua e S ⊂ Rn é

conexo, então f(S) é conexo.

Prova: Suponhamos que f(S) = A ∪ B; onde A e B são abertos

em f(S), A ∩ B = ∅ e A 6= ∅ e B 6= ∅. f(S) = A ∪ B ⇒ S =

f−1(A) ∪ f−1(B) ⇒ S é desconexo (contradição).¥

Corollary 56. Se S ⊂ Rn é conexo e f : S → R é cont́ınua,

então f assume todos os valores entre f(a) e f(b). (f(a) < f(b)).

Prova: f(S) ⊂ Rm é conexo ⇒ f(S) é um intervalo de extremos

α e β. f(a), f(b) ∈ f(S) e portanto todo y ∈ [f(a), f(b)] está em f(S).

Logo, existe x ∈ S; f(x) = y.¥

Proposition 57. Se f : K ⊂ Rn → Rm é cont́ınua e K é com-

pacto, então f(K) é um compacto do Rm.

Prova: Seja {Aλ} uma cobertura aberta de f(K).

f(K) ⊂ ∪λAλ ⇒ K ⊂ ∪λf
−1(Aλ).

{f−1(Aλ)} é cobertura aberta de K a qual possui uma subcobertura

finita

{f−1(Aλ1), f
−1(Aλ2), · · · , f−1(Aλk

)}
segue que

K ⊂ ∪k
j=1f

−1(Aλj
) ⇒ f(K) ⊂ ∪k

j=1Aλj
.¥

Proposition 58. f : K ⊂ Rn → Rm cont́ınua no compacto K.

Então, f é limitada e atinge seus extremos, isto é, existem xM e xm ∈
K tais que

f(xM) = max{|f(x)|; x ∈ K}, f(xm) = min{|f(x)|; x ∈ K}.

Prova: f(K) é um compacto de Rn e portanto fechado e limitado.

Logo, f é limitada. Seja M = supx∈K |f(x)|. Para cada n ∈ N, existe

xn ∈ K tal que

M − 1

n
≤ f(xn) ≤ M ; ∀n ∈ N.
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Como K é compacto, a sequência (xn) de K possui alguma subsequência

convergente. Seja (xnk
)k∈N uma tal subsequência

M − 1

nk

≤ f(xnk
) ≤ M, ∀k ∈ N

Seja xM = lim xnk
. Temos que xM ∈ K (K fechado) e como f é

cont́ınua, limk→∞ f(xnk
) = f(xM), conclúımos que

M ≤ f(xM) ≤ M ∴ f(xM) = M.¥

Remark 59. : A ⊂ Rn, x0 ∈ Rn

d(x0, A) = inf{‖x0 − x‖ ; x ∈ A}.

Dados A,B ⊂ Rn, define-se

d(A,B) = inf{d(x,B); x ∈ A}.

Se F é fechado e K é compacto, com K ∩ F = ∅, então d(F, K) > 0.

A figura acima mostra um exemplo em que d(F,G) = 0, F ∩ G =

∅, F, G fechados.

1. Homeomorfismo

Sejam X ⊂ Rm, Y ⊂ Rn. Dizemos que a função f : X → Y é um

homeomorfismo entre X e Y se for uma bijeção cont́ınua, cuja inversa

f−1 : Y → X também seja cont́ınua.

Como exemplo, temos:

Exemplo 1) A aplicação linear e cont́ınua A : Rn → Rn.

2) Ta : Rn → Rn, Ta(x) = x + a, (Ta)
−1 = T−a.

3) Hλ : Rn → Rn, Hλ(x) = λx, 0 6= λ ∈ R, (Hλ)
−1 = Hλ−1 .
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4) Duas bolas quaisquer são homeomorfas

ϕ : Br(a) → Bs (b)

ϕ = Tb ◦Hs/r ◦ T−a

5) f : X → Rn, aplicação cont́ınua definida em X ⊂ Rm.

Graf f = G = {(x, f(x)) , x ∈ X} ⊂ Rm × Rn = Rm+n é homeomorfo

a X. Definimos a aplicação f1 : X → G, por f1(x) = (x, f(x)) sua

inversa g : G → X é definida por g(x, f(x)) = x. Note que g = π1|G
onde π1 : Rm × Rn → Rn.

Exemplo: f : [0, 2π) → S1, onde S1 = {x ∈ R2 : |x| = 1} , f(t) =

(cos t, sen t) é bijeção cont́ınua mas não é um homeomorfismo. Sua

inversa f−1 : S1 → [0, 2π) aplica o compacto S1 sobre o intervalo

[0, 2π) que não compacto, logo, f−1 é descontinua. Note que ela é

descont́ınua em a = (1, 0) = f(0) ∈ S1. Para todo k ∈ N, temos

que se tk =
(
1− 1

k

)
2π e zk = (cos tk, sen tk) então lim zk = a, mas

lim f−1(zk) = lim tk = 2π, ou seja, lim f−1(zk) 6= f−1(a) = 0.

2. Continuidade Uniforme

Exemplos:

1. f(x) =
1

x
, x > 0 e xn = 1

n
. A sequência (xn) é de Cauchy mas

f(xn) = n não é de Cauchy.

2. Seja f(x) =
1

x
, x > 0 e ε > 0 dado. Dado x1 > 0, existe δ1 > 0

tal que f(Bδ1(x1) ∩ S) ⊂ Bε(f(x1)).

”Dizer que f : S ⊂ Rn → Rm é cont́ınua no ponto x0 significa :

∀ε > 0, ∃δ = δ(ε, x0) > 0 tq. f(Bδ(x0) ∩ S) ⊂ Bε(f(x0)).

3. f(x) =
1

x
, x ≥ a > 0. (S = [a, +∞)).

Se (xn) é de Cauchy em S será de Cauchy em R e portanto conver-

gente. Seja x = lim xn. Então, x ∈ S = S. Como f é cont́ınua, temos

f(x) = lim f(xn). Em particular, (f(xn)) é de Cauchy (f preserva
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sequências de Cauchy). Dados x, y ∈ S = [a, +∞), temos que:

|f(x)− f(y)| =
∣∣∣∣
1

x
− 1

y

∣∣∣∣ =

∣∣∣∣
y − x

xy

∣∣∣∣ =
|y − x|

xy

como x, y ≥ a, xy > a2 e 1
xy
≤ 1

a2 . Logo,

|f(x)− f(y)| ≤ 1

a2
|y − x|

dado ε > 0, seja δ = a2ε. Se x, y ∈ [a, +∞) e |y − x| < δ, então

|f(x)− f(y)| < ε. (o δ não dependeu do ponto x, ao contrário do que

ocorreu no ex. 2).

Definio 60. f : S ⊂ Rn → Rm é ”uniformemente cont́ınua ”

quando:

∀ε > 0, ∃δ = δ(ε) > 0 tq. f(Bδ(x) ∩ S) ⊂ Bε(f(x)), ∀x ∈ S.

Remark 61. (1) Toda função uniformente cont́ınua é cont́ınua.

(2) Toda função cont́ınua num compacto é uniformemente cont́ınua.

Prova de (2): f : K ⊂ Rn → Rm cont́ınua, K compacto. Seja

x ∈ K.

Dado ε > 0, ∃δx > 0 tal que f(Bδx(x) ∩ K) ⊂ Bε(f(x)). Como

K ⊂ ∪x∈kBδx(x)

(cobertura aberta), por compacidade, K ⊂ Bδ1(x1)∪· · ·∪Bδp(xp) onde

δj = 1
2
δxj

. Seja δ = min{δ1, · · · , δp}.
Afirmação: Dado x ∈ K, então f(Bδ(x) ∩ K) ⊂ B2ε(f(x)). Seja

y ∈ Bδ(x) ∩ K, então y ∈ Bδj
(x) ∩ K e seja j ∈ {1, 2, · · · , p} tal

quex ∈ Bδj
(x)

‖f(x)− f(y)‖ ≤ ‖f(x)− f(xj)‖+ ‖f(xj)− f(y)‖ < 2ε.¥

Em Rn quaisquer duas normas são equivalentes :

‖·‖ = norma euclideana em Rn

|·| = nova norma em Rn

|·| ∼ ‖·‖?
S = {x ∈ Rn; |x| = 1} é compacto.

Seja f : Rn → R cont́ınua

x 7−→ ‖x‖
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|f(x)− f(y)| = |‖x‖ − ‖y‖| ≤ ‖x− y‖

Seja x1 ∈ S, |f(x)| ≤ |f(x1)| = M, ∀x ∈ S. Dado x ∈ Rn, x 6= 0, então
x
|x| ∈ S e

∣∣∣∣f(
x

|x|)
∣∣∣∣ ≤ M ⇒

∥∥∥∥
x

|x|

∥∥∥∥ ≤ M ⇒ ‖x‖ ≤ M |x| ,∀x ∈ Rn, x 6= 0.¥

3. Sequências de Funções

Fixemos um subconjunto S do Rn. Para cada número natural k

consideremos uma função fk : S → Rm.

Definio 62. Dizemos que a sequência de funções (fk) ”converge

pontualmente ” em S para uma função f : S → Rm quando para

cada x de S a sequência em Rm (fk(x)) converge para f(x). Em outras

palavras, ∀ε > 0, ∃n0 = n0(ε, x) ∈ N tal que ‖fk(x)− f(x)‖ < ε, ∀k ≥
n0.

Exemplos:

(1) fk : R→ R, fk(x) =
x

k
. Seja f ≡ 0. ‖fk(x)− f(x)‖ = |x|

k
→ 0,

para cada x fixado. Neste caso, dado ε > 0, tome k0 > |x|
ε
, x 6= 0.

Se k ≥ k0, então
|x|
k
≤ |x|

k0

< ε. (se x = 0, a sequência (fk(x)) é

identicamente nula).

(2) fk : [0, 1] → R; fk(x) = xk.

i) se x = 0 ⇒ fk(x) = 0, ∀k.

ii) x = 1 ⇒ fk(x) = 1,∀k
iii) 0 < x < 1 ⇒ fk(x) = xk → 0.

Função limite: f(x) =

{
0; x ∈ [0, 1)
1; x = 1

fk → f pontualmente em S.

(3) fk : R→ R; fk(x) =
cos(x2 + kx)

k2
.

|fk(x)| =
∣∣∣∣
cos(x2 + kx)

k2

∣∣∣∣ ≤
1

k2
→ 0, independente do ponto x.
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Dado ε > 0, seja k0 >
√

1/ε. Se k ≥ k0 ⇒ 1
k2 < 1

k2
0

< ε ⇒ |fk(x)| <
ε.

Definio 63. Dizemos que a sequência (fk) ”converge uniforme-

mente ” para a função f quando:

∀ε > 0, ∃n0 = n0(ε) ∈ N tal que ‖fk(x)− f(x)‖ < ε

para todo k ≥ n0,∀x ∈ S.

Notação: fk → f uniformemente.

Example 64. fk : [a, b] → R; fk(x) =
x

k
. fk → 0 uniformemente.

|fk(x)| = |x|
k
≤ b

k
→ 0, independente do ponto x. Neste caso, dado

ε > 0, toma-se k0 > b
ε
.

Example 65. A sequência fk(x) = xk, x ∈ [0, 1] não converge

uniformemente para f(x) =

{
1 se x = 1
0 se x ∈ [0, 1)

.

Lemma 66. O limite uniforme de uma sequência de funções cont́ınuas

é uma função cont́ınua.

Prova: Seja fk : S → Rm uma sequência de funções cont́ınuas

convergindo uniformemente para uma função f : S → Rm. Seja x0 ∈ S

e seja ε > 0 dado. Existe k0 ∈ N tal que

k ≥ k0 ⇒ ‖fk(x)− f(x)‖ < ε, ∀x ∈ S

Temos

‖f(x)− f(x0)‖ ≤ ‖fk(x)− f(x)‖+‖fk(x)− fk(x0)‖+‖fk(x0)− f(x0)‖
< 3ε, se k ≥ k0 e ‖x− x0‖ < δ.

4. O espaço B(S : Rm)

Denotemos por B(S : Rm) (ou simplesmente B) o espaço vetorial

real das funções f : S → Rm limitadas.

f ∈ B, ∃M > 0, ‖f(x)‖ ≤ M, ∀x ∈ S.

Denotemos por

‖f‖∞ = sup{‖f(x)‖ , x ∈ S}.
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O espaço B será equipado com a norma ‖·‖∞ .

Convergência em B :

O que significa fk → f em B?

fk → f em B ⇔ ‖fk − f‖∞ → 0.

Example 67. fk : [0, 1] → R; fk(x) = x2+kx
k

.

fk ∈ B([0, 1];R). Seja f(x) = x; x ∈ [0, 1]

‖fk − f‖∞ = sup{‖fk(x)− f(x)‖ , x ∈ [0, 1]}

= sup
x∈[0,1]

∣∣∣∣
x2

k

∣∣∣∣ =
1

k
⇒ ‖fk − f‖∞ =

1

k
→ 0

Logo fk → f em B.

Teorema 68. fk → f uniformemente ⇔ fk → f em B.

Prova: (⇒) Suponhamos que fk → f uniformemente. Por definição,

dado ε > 0, ∃k0 ∈ N tal que

‖fk(x)− f(x)‖ < ε, ∀x ∈ S, k ≥ k0

sup
x∈S

‖fk(x)− f(x)‖ ≤ ε ⇔ ‖fk − f‖∞ ≤ ε, k ≥ k0

⇔ ‖fk − f‖∞ → 0 ⇔ fk → f em B.

(⇐) Se fk → f em B, então dado ε > 0, ∃k0 ∈ N tal que

‖fk − f‖∞ < ε, k ≥ k0

para qualquer x ∈ S, ‖fk(x)− f(x)‖ ≤ ‖fk − f‖∞ < ε ⇒ fk → f

uniformemente.

Example 69. C0([a, b];R) o subespaço vetorial de B([a, b];R) con-

stitúıdo das funções f : [a, b] → R cont́ınuas. Se fk → f em C0([a, b];R),

então

lim
k→∞

∫ b

a

fk(x)dx =

∫ b

a

f(x)dx.

∣∣∣∣
∫ b

a

fk(x)dx−
∫ b

a

f(x)dx

∣∣∣∣ =

∣∣∣∣
∫ b

a

(fk(x)− f(x))dx

∣∣∣∣

≤
∫ b

a

|fk(x)− f(x)| dx ≤
∫ b

a

‖fk − f‖∞ dx
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≤ (b− a) ‖fk − f‖∞ < (b− a)ε, k ≥ k0.

5. O Teorema de Arzelá-Áscoli

Fixemos K ⊂ Rn um compacto e denotemos por C0(K,Rm) o

espaço vetorial das funções f : K → Rm cont́ınuas equipado da norma

da convergência uniforme:

‖f‖∞ = sup
K
|f(x)| .

Seja F ⊂ C0(K,Rm) uma coleção de funções cont́ınuas.

Objetivo: Sob que condições uma sequência {fn} em F possui

uma subsequência {fnk
} uniformemente convergente?

Definio 70. A coleção F é ”uniformemente limitada ” quando

existir uma constante positiva C tal que

‖f‖∞ ≤ C, ∀f ∈ F .

Example 71. Seja {fn} uniformemente convergente e F = {fn; n ∈
N}, então F é uniformemente limitada.

Seja f : K → Rm o limite uniforme da sequência {fn}, i.e.,

‖fn − f‖∞ → 0

Dado ε = 1, ∃n0 ∈ N tal que

‖fn − f‖∞ < 1,∀n ≥ n0

para cada x ∈ K

‖fn(x)‖ ≤ ‖fn(x)− f(x)‖+ ‖f(x)‖ ≤ ‖fn − f‖∞ + ‖f‖∞

‖fn‖ ≤ ‖fn − f‖∞ + ‖f‖∞ < 1 + ‖f‖∞ , ∀n ≥ n0

Seja C = max{‖f1‖∞ , · · · , ‖fn0‖∞ , 1 + ‖f‖∞}, então

‖fn‖ ≤ C, ∀n.

Definio 72. A coleção F é ”equicont́ınuo ” quando: Dado ε >

0,∃δ = δ(ε) tq.

‖f(x)− f(y)‖ < ε, ∀x, y ∈ K, ‖x− y‖ < δ,∀f ∈ F .
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Example 73. F = {fn; n ∈ N}, onde {fn} é uniformemente con-

vergente. Então F é equicont́ınua.

‖fn(x)− fn(y)‖ ≤ ‖fn(x)− f(x)‖+ ‖f(x)− f(y)‖+ ‖fn(y)− f(y)‖
≤ 2 ‖fn − f‖∞ + ‖f(x)− f(y)‖

∀ε > 0,∃n0 ∈ N, ∃δ = δ(ε, f) > 0 tais que ‖fn − f‖∞ < ε, ∀n ≥ n0,

também ‖f(x)− f(y)‖ < ε, se x, y ∈ K e ‖x− y‖ < δ ⇒ ‖fn(x)− fn(y)‖ <

3ε, n ≥ n0, x, y ∈ K , ‖x− y‖ < δ, cada fj, j = 1, · · · , n0, é uniforme-

mente cont́ınua e portanto existe δj > 0 tal que ‖fj(x)− fj(y)‖ < ε, se

x, y ∈ K, ‖x− y‖ < δj.

Seja δ∗ = min{δ1, · · · , δn0 , δ}. Se x, y ∈ K e ‖x− y‖ < δ∗ então

‖fn(x)− fn(y)‖ < 3ε, ∀n.

Teorema 74. (Arzelá-Ascoli) Com relação à coleção F ⊂ C0(K,Rm),

as seguintes afirmações são equivalentes:

(A) F é uniformemente limitada e equicont́ınua;

(B) Toda sequência {fn} em F possui uma subsequência uniforme-

mente convergente.

Demonstração:

(B)⇒(A)

Suponhamos que (A) não ocorre. Se F não é uniformemente limi-

tada, então para cada n ∈ N, existe fn ∈ F tal que ‖fn‖∞ > n. Logo,

nenhuma subsequência de {fn} é uniformemente limitada e pelo primeiro

exemplo, nenhuma subsequência pode ser uniformemente convergente.

Se F não for equicont́ınuo, existe uma sequência {fn} em F sem

subsequência unif. conv.

(A)⇒(B)

Seja {fn} uma sequência em F . Seja X = {x1, x2, · · · , xk, · · · } ⊂ K

um subconjunto enumerável e denso em K.

Construção da subsequência convergente:

Método da diagonal de Cantor

f1(x1), f2(x1), · · · , fn(x1), · · · (limit.)

f11(x1), f12(x1), · · · , f1n(x1), · · · (conv.) T. Bolz. Weierst.

f11(x2), f12(x2), · · · , f1n(x2), · · · (limit.)
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f21(x2), f22(x2), · · · , f2n(x2), · · · (conv.)

gn = fnn(conv. unif.).¥

6. Transformações Lineares

(1) O ESPAÇO L(E,F )

Fixemos dois espaços vetoriais reais E e F [por exemplo: E = Rm]

normados. Denotemos por || · || e | · | as normas de E e F , respectiva-

mente.

Definio 75. Uma função T : E → F é dita “linear” quando:

T (αx + y) = αT (x) + T (y),∀x, y ∈ E e ∀α ∈ IR

Uma aplicação ϕ : E →IR é denominado ”funcional linear”.

Teorema 76. Com relação a uma transformação linear T : E →
F as seguintes afirmações são equivalentes:

(A): T é uniformente cont́ınua;

(B): T é cont́ınua;

(C): T é cont́ınua em x = 0.

(D): Existe uma constante C > 0 tal que |Tx| ≤ C||x||,∀x ∈ E.

DEMONSTRAÇÃO: (C) ⇒ (D). Se D não ocorresse, existiria para

cada n ∈IN um ponto XN ∈ E, xn, xn 6= 0, tal que

|Txn | > n||xn||,∀n.

Seja yn =
1

n

xn

n||xn|| . Então, ||yn|| = 1
n
→ 0 ⇐⇒ yn → 0 em E por (C)

T é cont́ınua em x = 0 e portanto

Tyn → T0=0

Mas,

Tyn = T

(
1

n

xn

n||xn||
)

=
1

n||xn||T (xn)

⇒ |Tyn| =
1

n||xn|| |Txn| > 1,∀n ⇒ |Tyn |9 0

(D) ⇒ (A)
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|Tx − Tx| = |T (x− y)| ≤ C||x− y||,∀x, y ∈ E

T é Lipts.

EXEMPLO: P = {polinômios p : IR → IR}

||p|| = max
0≤t≤1

|p(t)|, ||p|| = max
0≤t≤2

|p(t)|

id : {P ,|| · ||} −→ {P ,| · |} não é cont́ınua
P −→ P

“A norma do supremo é a norma da convergência uniforme”.

Seja pn(t) =

(
t

2

)n

, ||p|| = sup
[0,1]

|p(t)|, |p| = sup
[0,2]

|p(t)| se t ∈ [0, 1],

então

∣∣∣∣
(

t

2

)n∣∣∣∣ ≤
(

1

2

)n

→ 0, independentemente do t, isto é,

||p|| → 0

[pn → 0 uniformente em relação a || · ||].
Convergência de {pn} com relação à norma | · |. Se 0 ≤ t < z, então

0 ≤ t

2
< 1 e portanto

(
t

2

)n

→ 0 se t = z, então
t

2
= 1 e portanto

(
t

2

)n

→ 1. Logo, pn(t) → f(t), pontualmente, onde

f (t) =

{
0, 0 ≤ t < 2
1, t = 2

Como f não é cont́ınua em [0, 2], a convergência de {pn} para f não

ser uniforme. Então, pn não converge em {P , | · |}.

Teorema 77. Toda aplicação linear T : IRn → F é cont́ınua.

Demonstração: Seja β = {e1, e2, ..., en} base canônica do IRn e seja

C =
n∑

i=1

|Tei
|. Dados x = (x1, ..., xn) =

n∑
i=1

xiei em IRn, então

Tx =
n∑

i=1

xiTei
⇒ |Tx| ≤

n∑
i=1

|xi||Tei
| ≤ C||x||,∀x
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Observação: Seja E um espaço vetorial de dimensão n. seja β =

{v1, v2, ..., vn} uma base de E. Considere o isomorfismo natural Φ :

IRn → E

Φ(x) =
n∑

i=1

xivi

Φ(1, ..., 0) = v1

Φ(0, ..1, ..0) = vj

(i) Φ é um isomorfismo linear;

(ii) Φ é cont́ınua;

(iii) Φ−1 : E → IRn é cont́ınua.

Prova de (iii): IRn Φ−→E|| · ||−−→IR

ϕ(x) = ||φx|| é cont́ınua [ϕ é a composição de || · || com Φ].


||.|| : E −→ IR

x 7−→ ||x||
é Lipschitziana |||x|| − ||y|| ≤ ||x− y|||




A função cont́ınua ϕ assume um máximo e um mı́nimo no compacto

K = {x ∈ IRn; ||x|| = 1}
Seja x0 ∈ K tal que ϕ(x0) ≤ ϕ(x),∀x ∈ K.

Dado x ∈ IRn, x 6= 0, então
x

||x|| ∈ K

ϕ(x0) ≤ ϕ

(
x

||x||
)
⇐⇒ ||Φ(x0)|| ≤ ||Φ(x0)|| ≤

∥∥∥∥Φ

(
x

||x||
)∥∥∥∥

⇐⇒ ||Φ(x0)|| ≤ 1

||x|| ||Φ(x)|| ⇐⇒ ||Φ(x0)|| ||x|| ≤ ||Φ(x)||, ∀x ∈ IRn

Dado y ∈ E, ∃! x ∈ IRn tal que y = Φ(x)

||Φ−1(y)|| ≤ 1

||Φ(x0)|| ||y|| x0 6= 0
Φ(x0) 6= 0

Φ é um “homeomorfismo linear” [bijeção cont́ınua, linear, com inversa

cont́ınua].

Colorário: Se dim E < ∞, então toda aplicação linear T : E → F é

cont́ınua.
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Prova: Φ : IRn → E homeomorfismo natural

IRn Φ−→E T−→F T = (

|Tx| = |TΦ(y)| ≤ C|y| = C|Φ−1x| < C.C1|x|
Colorário: Se dim E < ∞, então quaisquer duas normas em E são

equivalentes.

Prova: | · | e || · || normas em E.

(∗) id : {E, | · |} → {E, || · ||} é cont́ınua, pois dim t < 0 (colorário

anterior)

(∗∗) id : {E, || · ||} → {E, | · |} é cont́ınua

(∗) ⇒ ∃C1 > 0 tal que ||id(x)|| ≤ C1|x|
||x|| ≤ C1|x|

(∗∗) ⇒ ∃C2 > 0 tal que |id(x) ≤ C2||x||
|x| ≤ C2||x||
1

C2

|x| ≤ ||x|| ≤ C1|x|

Notação: O Espaço vetorial das aplicações lineares e cont́ınuas T :

E → F será representada por L(E,F ) e será equipado da seguinte

norma:

||T ||L(E,F ) = sup {|TX |; ||z|| ≤ 1}, pois ||z|| − 1 é comp⇒ T e limi-

tado

[T ∈ L(E, F ) ⇒ ∃C < 0; |TX | ≤ C||x||,∀x ∈ E]. Quando ||x|| ≤ 1,

então

|TX | ≤ C ∴ sup
||x||≤1

|T | ≤ C

· |TX | ≤ ||T || ||X||, ∀x ∈ E

· · |S ◦ T | ∈ ||S|| ||T ||

Prova:

T ∈ L(E, F ), x ∈ E, x 6= 0

||T || = sup
||x||≤1

|TX | ⇒ ||T || ≥
∣∣∣∣T

(
x

||x||
)∣∣∣∣ ⇒ |TX | ≤ ||T || ||x||,∀x ∈

E
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T ∈ L(E, F ), S ∈ L(E, G)

|S ◦ T (x)|G ≤ C|TX |F ≤ C C ′||x||E e

|S ◦ T (x)| ≤ ||S|| ||T || ||x||
|S ◦ T (x)| ≤ ||S|| ||T ||,∀x ∈ E, ||x|| ≤ 1

|S ◦ T | ≤ ||S|| ||T ||

APLICAÇÕES BILINEARES

E,F e G espaços vetoriais normados. No produto cartesiano E×F

considera-se uma das normas:

|(u, v)|1 =
√
|u|2E + |v|2F

|(u, v)|2 = |u|E + |v|F
|(u, v)|3 = max {|u|E, |v|F}

CONVERGÊNCIA em E × F :

(un, vn) → (u, v), em E × f , quando n →∞

⇐⇒
{

un → u em E
vn → v em F

, quando n →∞

|(un, vn) → (u, v)|1 < ε

(un, vn)± (un, v)

|(un − u, v) + (un, vn − v) ≤ |un − u| |v|+ |un| |un − v|

CONTINUIDADE EM E × F

f : E × F → G é CONTÍNUA em (u0, v0) ∈ E × F quando:

(un, vn) → (u0, v0) em E × F ⇒ f(un, vn) → f(u0, v0) em G.

DEFINIÇÃO: Uma função B : E × F → G é “bilinear” quando

B(u + λv, w) = B(u,w) + λB(v, w) u, v ∈ E, w ∈ F
B(u, λv, w) = λB(v, w) + B(u,w)u ∈ E, v, w ∈ F, λ ∈ IR

EXEMPLOS:

(1) Produto de números reais:

P : IR× IR −→ IR
(x, y) 7−→ xy
|P (x, y)| = |x| |y|
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(2) Produto interno em IRn:

< , > IRn × IRn −→ IR

(x, y) 7−→ < x, y >=
n∑

i=1

xiyi

| < x, y > | ≤ ||x|| ||y||

(3) Composição de aplicações lineares

µ : L(IRn, IRm)× L(IRm, IRp) −→ L(IRn, IRp)

(T, S) 7−→ S ◦ T

||u(T, S)||L(IRn,IRp) = ||S ◦ T ||L(IRn,IRp) ≤ ||S||L(IRm,IRp)||T ||L(IRn,IRm)

(4) Função “valor”

V : L(IRn, IRm)× IRn −→ IRm

(T, X) 7−→ TX

V é bilinear:

(i) V (λT + S, x) = (λT + S)(x) = λT (x) + S(x)
= λV (T, x) + V (S, x)

(ii) V (T, λx + y) = T (λx + y) = λTx + Ty

= λV (T, x) + V (T, x)

||V (T, X)|| = ||TX || ≤ ||T || ||X||

TEOREMA: Com relação a uma aplicação bilinear B : E × F → G,

as seguintes afirmações são equivalentes:

(1) (a) B é cont́ınua

(B) B é cont́ınua em (0, 0)

(C) ∃C > 0 tal que ||B(u, v)|| ≤ C||u|| ||v||, ∀(u, v) ∈ E × F .

PROVA:

(B) ⇒ (C)

Se (C) não ocorre, então para cada n ∈ IN , existe (unvn) ∈ E × F

tal que ||B(un, vn)|| > n||un|| ||vn||
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Sejam

zn =
1√
n

un

||un|| , wn =
1√
n

vn

||vn||

||zn|| = 1√
n
→ 0 ||wn|| = 1√

n
→ 0

⇓ ⇓
zn → 0 em E, wn → 0 em F

Então (zn, wn) → (0, 0) em E × F e por (B), B é linear

B(zn, wn) → B(0, 0) = 0

||B(zn, wn)|| = ||B(
1√
n

un

||un|| ,
1√
n

vn

||vn||)||

=
1

n
√

n||un, vn

||B(un, vn)|| > 1

contradiz o fato de B(zn, wn) → 0.

(C) ⇒ (A)

Seja (u0, v0) ∈ E × F e seja (un, vn) → (u0, v0) em E × F.

||B(un, vn)−B(u0, v0)|| = ||B(un, vn)−B(u0, v0) + B(un, vn)−B(u0, v0)||
= ||B(un − u0, vn) + B(u0, vn − v0)||
≤ ||B(un − u0, vn)||+ ||B(u0, vn − v0)|| ≤ (usar (C)) ≤
≤ C||un − u0|| ||vn||+ C||u0|| ||vn − v0|| → 0

COLORÁRIO: Se dim E < ∞, e dim F < ∞, então toda aplicação

bilinear B : E × F → B é cont́ınua.

PROVA:

β + {u1, ..., un} base de E, β′ = {v1, ..., vm} base de F

Seja C =
∑
i,j

||B(ui, vi)||

Dado (u, v) ∈ E × F , então





u =
∑
i

xiui |xi| ≤ ||u||
v =

∑
j

yjvj |yj| ≤ ||v||
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B(u, v) =
∑
i,j

xiyjB(ui, vj)

||B(u, v)|| ≤ ∑
i,j

|xi| |yj| ||B(ui, yj)||
≤ ∑

i,j

||u|| ||v|| ||B(ui, yj)|| = C||u|| ||v||

NOTAÇÃO: L2(E × F,G) = {B : E × F → G bilinear e cont́ınua}
Quando E = F escrevemos L2(E, F )

L2(IR
n, IRm) = {B : IRn × IRn → IRm bilinear}

L2(E) = {B : E × E → E bilinear, cont́ınua}.

7. Diferenciabilidade

Seja f : IR → IR uma função derivada no ponto x = a.

f ′(a) = lim
h→0

f(a + h)− f(a)

h
⇐⇒

lim
h→0

[
f(a + h)− f(a)

h
− f ′(a)

]
= 0 ⇐⇒

lim
h→0

[
f(a + h)− f(a)− hf ′(a)

h

]
= 0

r(h) = f(a + h) − f(a) − f ′(a)h, então a diferenciabilidade de f em

a ⇒ lim
h→0

r(h)

h
= 0.

As aplicações lineares T : IR → IR são do tipo Tx = cx, onde

C = T (1)

L(IR, IR) ≈ IR

T 7−→ C = T (1)

O número real f ′(a) será identificado com a transformação linear T ∈
L(IR, IR) tal que T (1) = f ′(a)

f(a + h) = f(a) + Th + r(h)

lim
h→0

r(h)

h
= 0
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DEFINIÇÃO: Seja Ω ⊂ IRn um conjunto aberto. Seja f : Ω ⊂
IRn → IRm uma função. Dizemos que f é “diferenciável” em x =

a ∈ Ω quando existir uma aplicação linear T ∈ L(Rn,Rm) tal que

f(a + h)− f(a)− Th

||h|| → 0 quando h → 0, isto é

f(a + h) = f(a) + T · h + r(h) onde lim
h→0

r(h)

||h|| = 0.

f : U ⊂ Rn → Rm diferenciável em x0

(*) f(x0 + h) = f(x0) + T · h + r(h)

T ∈ L((Rn,Rm); limh→0
r(h)
||h|| = 0.

A aplicação linear T que satisfaz (*) é única. De fato, se T e S

satisfazem (*), então:

Th = f(x0 + h)− f(x0)− r(h), Sh = f(x0 + h)− f(x0)− ρ(h) ⇒
(T − S)h = ρ(h)− r(h), ∀h ∈ Rn

Dado v ∈ Rn, v 6= 0, então

(T − S)
v

‖v‖ = ρ(
v

‖v‖)− r(
v

‖v‖)

e também

(T − S)
tv

|t| ‖v‖ = ρ(
tv

|t| ‖v‖)− r(
tv

|t| ‖v‖)

(T − S)
v

‖v‖ = ±
[

1

|t| ‖v‖ρ(
tv

|t| ‖v‖)− 1

|t| ‖v‖r(
tv

|t| ‖v‖)

]
|t| ‖v‖

fazendo t → 0, obtemos

(T − S)
v

‖v‖ = 0, ∀v 6= 0 ⇒ T = S.

Definição: A aplicação linear T que satisfaz (*) é denominada

derivada da função f em x0 e é denotada por:

Df(x0) ou f ′(x0).

Assim, quando f é diferenciável em x0, então

f(x0 + h) = f(x0) + Df(x0) · h + r(h) onde lim
h→0

r(h)

||h|| = 0.
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Exemplos:

(1) f : R→ R, f(x) = x2, T ∈ L(R,R)

Df(x) · h = 2xh

f(x + h) = (x + h)2 = x2 + 2xh + h2 = f(x) + Df(x) · h + h2

lim
h→0

r(h)

|h| = lim
h→0

h2

|h| = lim
h→0

|h| = 0.

(2) f :R2 → R2, f(x, y) = x2y

X = (x, y), H = (h, k)

f(X + H) = f(X) + T ·H + r(H); limH→0
r(H)
‖H‖ = 0.

f(X + H) = f(x + h, y + k) = (x + h)2(y + k)

= (x2 + 2xh + h2)(y + k)

= x2y + x2k + 2xyh + h2y + h2k + 2xhk

= f(X) + T · (h, k) + r(H)

|r(H)|
‖H‖ =

|h2y + h2k + 2xhk|
|h|+ |k| ≤ h2 |y|+ h2 |k|+ 2 |x| |h| |k|

|h|+ |k|

≤ (|h|+ |k|)2(|y|+ |k|) + 2 |x| |h| (|h|+ |k|)
|h|+ |k|

= (|h|+ |k|) (|y|+ |k|) + 2 |x| |h| → 0, (h, k) → (0, 0)

Logo, Df(x, y).(h, k) = x2k + 2xyh.

Por exemplo,

Df(1, 0) ∈ L(R2,R)

Df(1, 0)(h, k) = k.

(3) Se T : Rn → Rm é linear, então T ′(x) = T. De fato,

T (x + h) = Tx + Th + r(h), onde r ≡ 0.

DT (x) = T.

(4) Seja B : Rn × Rm → Rp bilinear, X = (x, y), x ∈ Rn, y ∈
Rm, H = (h, k), então

B(X + H) = B(x + h, y + k) = B(x, y) + B(x, k) + B(h, y) + B(h, k)

= B(X) + T (h, k) + r(H),
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onde

T.H = T (h, k) = B(x, k) + B(h, y), r(H) = B(h, k)

T ∈ L(Rn × Rm,Rp) ≈ L(Rn+m,Rp).∥∥∥∥
r(H)

H

∥∥∥∥ =
‖B(h, k)‖
‖(h, k)‖ ≤ C ‖h‖ ‖k‖

‖h + k‖ ≤ C ‖h‖ ‖h + k‖
‖h + k‖ = C ‖h‖ → 0

H → 0 ⇔
{

h → 0
k → 0

⇔
{ ‖h‖ → 0
‖k‖ → 0

B ∈ L(Rn × Rm,Rp) e DB(x, y)(h, k) = B(x, k) + B(h, y).

(5) Derivada Direcional

f : U ⊂ Rn → Rm diferenciável em x0 ∈ U.

f(x0+h)−f(x0) = Df(x0).h+r(h) ⇒ f(x0+th)−f(x0) = tDf(x0).h+r(th)

⇒ f(x0 + th)− f(x0)

t
= Df(x0).h +

r(th)

t
⇒ f(x0 + th)− f(x0)

t
=

= Df(x0).h± r(th) ‖h‖
‖th‖

t → 0 ⇒ th → 0 ⇒ r(th)

‖th‖ → 0

logo,

Df(x0).h = lim
t→0

f(x0 + th)− f(x0)

t

Esta é a derivada direcional de f em x0, na direção h. Considerando

h = ej = (0, 0, · · · , 1, · · · , 0), obtemos

Df(x0).ej = lim
t→0

f(x0 + tej)− f(x0)

t

= lim
t→0

f(x0
1, x

0
2, · · · , xj + t, · · · , x0

n)− f(x0
1, · · · , x0

n)

t

=
∂f(x0)

∂xj

(derivada parcial de f com relação à variável xj).

Notação:

Df(x0).h =
∂f(x0)

∂h
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∂f(x0)

∂ej

= Df(x0).ej =
∂f(x0)

∂xj

(6)

f(x, y) =





x2y

x2 + y2
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

Se h = (u, n) ∈ R2

lim
t→0

f((0, 0) + t(u, n))− f(0, 0)

t
= lim

t→0

f(tu, tn)

t

= lim
t→0

(
t3u2n

t2u2 + t2n2

)
1

t
= lim

t→0

u2n

u2 + n2
=

u2n

u2 + n2

Logo, f em derivada direcional em (0, 0) em qualquer direção h =

(u, n), mas esta derivada não varia linearmente com h. Isto implica que

f não é diferenciável em (0, 0).

Matriz Jacobiana

Dada uma função f : U ⊂ Rn → Rm, ela determina m funções reais

f1, f2, · · · , fm : U → R, que são suas componentes, e

f(x) = (f1(x), f2(x), · · · , fm(x)),∀x ∈ U.

Teorema 78. Uma função f : U ⊂ Rn → Rm é diferenciável em

x0 ∈ U ⇔ cada componente fj é diferenciável em x0. Neste caso,

Df(x0).h = (Df1(x0).h,Df2(x0).h, · · · , Dfm(x0).h).

Prova: Uma aplicação linear T : Rn → Rm é determinada por m

aplicações lineares T1, T2, · · · , Tm : Rn → R,

T.h = (T1.h, · · · , Tm.h), h ∈ Rn

r(h) = (r1(h), · · · , rm(h))

r(h)

‖h‖ = (
r1(h)

‖h‖ , · · · ,
rm(h)

‖h‖ )

lim
h→0

r(h)

‖h‖ = 0 ⇔ lim
h→0

rj(h)

‖h‖ = 0,∀j = 1, · · · ,m
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Se f é diferenciável, f = (f1, · · · , fm), então

Df(x0).ej =
∂f(x0)

∂ej

= (
∂f1

∂xj

(x0), · · · ,
∂fm

∂xj

(x0))

Jf(x0) =




∂f1

∂x1
(x0) · · · ∂f1

∂xn
(x0)

...
. . .

...
∂fm

∂x1
(x0) · · · ∂fm

∂xn
(x0)




m×n

Exemplo: f(x, y) = (ex cos y
f1

, ex sin y
f2

)

Jf(x, y) =

[
ex cos y −ex sin y
ex sin y ex cos y

]

Vamos calcular Df(0, π/2), temos que

Jf(0, π/2) =

[
0 −1
1 0

]

segue que

Df(0, π/2)(u, n) =

[
0 −1
1 0

] [
u
n

]
=

[ −n
u

]

T (u, n) = (−n, u), T : R2 → R2

(*) f : U ⊂ Rn → Rm, Df(x0) ∈ L(Rn,Rm),
Df : U → L(Rn,Rm)

x 7→ Df(x0)
.

Regra da Cadeia

Sejam f : U ⊂ Rn → V ⊂ Rm e g : V → Rp funções diferenciáveis

em x ∈ U e y = f(x), respectivamente. Então, g ◦ f : U → Rp é

diferenciável em x e

((*)) D(g ◦ f)(x) = Dg(y) ◦Df(x) (composição de Apl. Lin.)

Em termos de matriz Jacobiana a relação (*) toma a forma

((**)) J(g ◦ f)(x) = Jg(y) · Jf(x) (Prod. Matrizes)

Demonstração:

f(x + u) = f(x) + Df(x)u + r(u);
r(u)

‖u‖ →u→0 0

g(y + n) = g(y) + Dg(y)n + ρ(n);
ρ(n)

‖n‖ →n→0 0
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Temos

(g ◦ f)(x + u)− (g ◦ f)(x) = g(f(x + u))− g(f(x))

= g(f(x) + Df(x)u + r(u))− g(f(x))

= g(y + Df(x)u + r(u)︸ ︷︷ ︸
n

)− g(y)

= Dg(y)(Df(x)u + r(u)) + ρ(Df(x)u + r(u))

= [Dg(y) ◦Df(x)]u + R(u)

onde R(u) = ρ(Df(x)u+r(u))+Dg(y)(r(u)). Mostraremos que limu→0
R(u)
‖u‖ =

0. Temos

R(u) =
ρ(Df(x)u + r(u))

‖Df(x)u + r(u)‖ ‖Df(x)u + r(u)‖+ Dg(y)(
r(u)

‖u‖ ) ‖u‖ → 0.

Consequências

(1) Seja f : U ⊂ Rn → Rm uma bijeção, diferenciável em x. Se a

inversa f−1 : f(U) → Rn é diferenciável em y = f(x), então Df(x) :

Rn → Rm é um isomorfismo linear (em particular m = n) e

D(f−1)(y) = [Df(x)]−1.

Prova: f ◦ f−1 = idRm ⇒ D(f(x)) ◦D(f−1)(y) = idRm , f−1 ◦ f =

idRn ⇒ Df−1(y) ◦Df(x) = idRn .¥
Caráter Geométrico da Regra da Cadeia

Caminho em Rm : σ : (−ε, ε) → Rm, σ(t) = (x1(t), · · · , xm(t)),

σ′(t) ∈ L(R,Rm).

σ′(t).1 = (x′1(t).1, x
′
2(t).1, · · · , x′m(t).1)

= (x′1(t), x
′
2(t), · · · , x′m(t))

Se σ é um caminho diferenciável em σ(0) = x e σ′(0) = u então

(f ◦ σ)′(0) = Df(σ(0)).σ′(0) = Df(x).u (derivada direcional).

Regra da Cadeia Clássica (Cálculo II)

z = f(x, y), x = x(u, v), y = y(u, v) ⇒
∂z

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
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∂z

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v

w = g(y1, y2, · · · , ym), yj = fj(x1, x2, · · · , xn)

f = (f1, f2, · · · , fm)

w = g ◦ f ⇒ J(w) = J(g) · J(f)

[ ∂w
∂x1

, ∂w
∂x2

, · · · , ∂w
∂xn

] = [ ∂g
∂y1

, ∂g
∂y2

, · · · , ∂g
∂ym

]




∂f1

∂x1
· · · ∂f1

∂xn
...

. . .
...

∂fm

∂x1
· · · ∂fm

∂xn




∂w

∂xj

=
m∑

i=1

∂g

∂yi

∂fi

∂xj

.

Regras de derivação

(a) D[f + λg](x) = Df(x) + λDg(x),

(b) B : Rm × Rn → Rp bilinear,

D[B(f, g)]u = B(f ′(x)u, g(x)) + B(f(x), g′(x)u).

(c) Se f : R→ R é derivável e f(x) 6= 0, ∀x ∈ R,

(
1

f

)′
(x) =

−1

f(x)2
.Df(x).

Prova:Seja F (x) = (f(x), g(x))

(a)ϕ(x, y) = x + λy ⇒ f + λg = ϕ ◦ F

D(f + λg)(x) = D(ϕ ◦ F )(x) = Dϕ(F (x)).DF (x)

= ϕ(f ′(x), g′(x)) = f ′(x) + λg′(x).

Aqui usamos T ∈ L(Rn,Rm), T ′(x) = T.

(b) Seja b = B(f, g), temos b(x) = B(f(x), g(x)) ⇒ b = B ◦ F.

Db(x) = DB(F (x)) ·DF (x)

Db(x)u = DB(f(x), g(x))(f ′(x)u, g′(x)u)

= B(f(x), g′(x)u) + B(f ′(x)u, g(x)).

(c) ϕ(t) =
1

t
, t > 0. ⇒ 1

f
= ϕ ◦ f ⇒

(
1

f

)′
(x) = ϕ′(f(x)).f ′(x)
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=
−1

f(x)2
.f ′(x)

Regra do produto

B : R× R→ R bilinear

(x, y) 7→ xy

f.g = B ◦ F ⇒
(fg)′ = B′(F (x)).F ′(x) = B′(F (x)).(f ′(x), g′(x))

= B′(f(x), g(x))(f ′(x), g′(x))

= f(x)g′(x) + f ′(x)g(x)

Derivada do produto interno

f, g : U ⊂ Rn → Rm diferenciáveis em x0 ∈ U. Seja ϕ : U →
R, ϕ(x) = 〈f(x), g(x)〉. Temos que ϕ = B ◦ F, onde B(x, y) = 〈x, y〉 e

F (x) = (f(x), g(x)). Logo, ϕ é diferenciável em x0 e

Dϕ(x0)u = B′(f(x0)).F
′ (x0) u

Agora

F ′(x0)u = (f ′(x0).u, g′(x0).u)

e

B′(x, y)(h, k) = B(x, k) + B(h, y)

portanto,

Dϕ(x0).u = B(f(x0), g
′(x0).u) + B(f ′(x0).u, g(x0))

segue que

Dϕ(x0).u = 〈f(x0), g
′(x0).u〉+ 〈f ′(x0).u, g(x0)〉.

Derivada da Norma

ϕ(x) = ‖f (x)‖2 , x ∈ U

ϕ(x) = 〈f(x), f(x)〉
Dϕ(x0).u = 2〈f(x0), f

′(x0).u〉
seja agora β(x) = ‖f (x)‖ =

√
〈f(x), f(x)〉, temos que se

α(t) =
√

t ⇒ α′(t) =
1

2
√

t
, t > 0

mas β = α ◦ ϕ

β(x) = α(ϕ(x)) =
√

ϕ(x) =
√
〈f(x), f(x)〉
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e

Dβ(x0).u = α′(ϕ(x0)).ϕ
′(x0).u

=
1

2
√

ϕ(x0)
2〈f(x0), f

′(x0).u〉 =
〈f(x0), f

′(x0).u〉
‖f (x0)‖

f(x) = x, ∀x ∈ Rn

d

dx
(‖x‖).u =

〈x, u〉
‖x‖

quando n = 1, 〈x, u〉 = x.u ⇒ 〈x, u〉
‖x‖ =

x

‖x‖ .u.

Desigualdade do Valor Médio

10 Caso Funções de R→ R.

f : [a, b] → R cont́ınua e derivável em (a, b). Existe um

ξ ∈ (a, b) tal que

f(a)− f(b) = f ′(ξ)(b− a).

Equivalentemente,

f(a + h)− f(a) = f ′(a + th).h, 0 < t < 1.

É claro que

|f(a + h)− f(a)| ≤ sup
0≤t≤1

|f ′(a + th).h| .

20 Caso Funções de Rn → R.

f : U ⊂ Rn → R diferenciável em U e suponha que o

segmento [a, a+h] ⊂ U (Aqui [a, a+h] = {a+ th; 0 ≤ t ≤ 1}).
Então, existe t ∈ (0, 1) tal que

f(a + h)− f(a) = Df(a + th).h. (Teo. Valor Médio)

Prova: Seja ϕ : [0, 1] → R, ϕ(t) = f(a + th), i. e.,

ϕ(t) = (f ◦ α) (t) onde α(t) = a + th é derivável em (0, 1) e

cont́ınua em [0, 1]. Logo, ϕ é derivável em (0, 1) e cont́ınua em

[0, 1], e

ϕ(1)− ϕ(0) = ϕ′(ξ) = f ′(α(ξ)).α′(ξ)

ou

f(a + h)− f(a) = Df(a + ξh).h, 0 < ξ < 1.¥
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Exemplo: Seja f : [0, 2π] → R2, onde f(t) = (cos t, sin t),

temos

f(2π)− f(0) = (1, 0)− (1, 0) = (0, 0) ∈ R2

Df(t0) = (− sin t0, cos t0) 6= (0, 0),∀t0 ∈ [0, 2π]

f(2π)− f(0) = Df(t0)(2π − 0) (nunca ocorre)

30 Caso Funções de Rn → Rm

Seja f : U ⊂ Rn → Rm diferenciável no aberto U e suponha

que o segmento [a, a + h] ⊂ U. Então, temos a seguinte de-

sigualdade

(*) ‖f(a + h)− f(a)‖ ≤ sup
0≤t≤1

‖Df(a + ξh).h‖

Esta é a desigualdade do valor médio.

Prova: Seja ϕ : [0, 1] → Rm, ϕ(t) = f(a + th), temos que

ϕ(1) = f(a + h), ϕ(0) = f(a) e ϕ′(t) = Df(a + th).h. Logo, a

desigualdade (??) toma a seguinte forma:

‖ϕ(1)− ϕ(0)‖ ≤ sup
0≤t≤1

‖ϕ′(t)‖

Seja M = sup0≤t≤1 ‖ϕ′(t)‖ . Se M = ∞, não há nada a provar.

Suponhamos M < ∞. É suficiente mostrar que

‖ϕ(1)− ϕ(0)‖ ≤ M + ε, ∀ε > 0.

Seja X = {t ∈ [0, 1]; ‖ϕ(s)− ϕ(0)‖ ≤ (M + ε) s, ∀s ∈ [0, t]},
(1) X 6= ∅, porque 0 ∈ X.

(2) Se t ∈ X e 0 < t′ ≤ t, então t′ ∈ X.

(3) X é um intervalo do tipo [0, α) ou [0, α].

(A) α ∈ X. De fato, se α /∈ X, então seja s0 ∈ [0, α] tal

que

‖ϕ(s0)− ϕ(0)‖ > (M + ε)s0

por continuidade, ∃δ > 0 tal que

‖ϕ(s)− ϕ(0)‖ > (M + ε)s, ∀s ∈ (s0 − δ, s0) ⊂ [0, α).

Logo, 0 < s0 − δ < t0 < s0 ≤ α e t0 /∈ X. Isto contradiz o fato

de X ser um intervalo. Logo, X = [0, α].
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(B) α = 1 (Logo X = [0, 1]). Suponha que α < 1. Seja

δ > 0; α + δ < 1 então

ϕ(α + h)− ϕ(α) = Dϕ(α).h + r(h)

onde |h| < δ e ‖r(h)‖ < ε ‖h‖ . Dáı

‖ϕ(α + h)− ϕ(α)‖ ≤ ‖Dϕ(α).h‖+ ‖r(h)‖

< ‖Dϕ(α)‖ . ‖h‖+ ε ‖h‖
< (M + ε) ‖h‖ , 0 < h < δ

ou seja,

(I) ‖ϕ(α + h)− ϕ(α)‖ < (M + ε) ‖h‖
Também

(II) ‖ϕ(s)− ϕ(0)‖ < (M + ε)s, ∀s ∈ [0, α]

Combinando (II) e (I) temos:

(III) ‖ϕ(α + h)− ϕ(0)‖ ≤ (M + ε)(h + α)

Afirmação: α + δ
2
∈ X. De fato,

α +
δ

2
∈ X ⇔ ‖ϕ(s)− ϕ(0)‖ ≤ (M + ε)s, ∀s ∈ [0, α +

δ

2
].

Seja s ∈ [0, α + δ
2
], temos que: (i) se s ∈ [0, α], ok!; (ii) seja

s ∈ [α, α + δ
2
], então, s = α + h, 0 < h < δ

2
. Por (III), segue

que

‖ϕ(s)− ϕ(0)‖ ≤ (M + ε)s

mas isto contradiz o fato que X = [0, α].

Consequências da Desigualdade do Valor Médio

f : U ⊂ Rm → Rn diferenciável no segmento {x0 + th; 0 < t < 1}
‖f(x0 + th)− f(x0)‖ ≤ sup

0<t<1
‖Df(x0 + th).h‖

(A) Se U é aberto e conexo e f : U → Rn é diferenciável com

Df(x) ≡ 0, ∀x ∈ U, então f é constante.

Prova: Seja x0 ∈ U fixado e defina X = {x ∈ U ; f(x) = f(x0)}
e Y = {x ∈ U ; f(x) 6= f(x0)} ,Y é aberto, pois f é cont́ınua e Y =

f−1({y0}C) onde y0 = f(x0); temos que X 6= ∅, pois x0 ∈ X; X é

fechado (X = f−1({y0})); X é aberto: de fato, seja x ∈ X e δ > 0 tal
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que Bδ(x) ⊂ U. Dado h ∈ Rm com ‖h‖ < δ, então x+ th ∈ Bδ(x), ∀t ∈
[0, 1], pois ‖x + th− x‖ = |t| ‖h‖ < δ. Também ‖f(x + th)− f(x)‖ ≤
sup0<t<1 ‖Df(x + th).h‖ = 0, logo, f(x + th) = f(x) = f(x0), ‖h‖ <

δ ⇒ Bδ(x) ⊂ X ⇒ x ∈ int(X). Como U = X ∪ Y é conexo, e

X 6= ∅, segue que Y = ∅ ⇒ X = U.

(B) Se f é diferenciável no segmento [x0, x0 + h], então

‖f(x0 + th)− f(x0)− T.h‖ ≤ sup
0<t<1

‖Df(x0 + th)− T‖ . ‖h‖ ,

∀T ∈ L(Rm,Rn).

Prova: Seja G(x) = f(x)− Tx, x ∈ U, DG(x) = Df(x)− T, dáı

‖G(x0 + h)−G(x0)‖ ≤ sup
0≤t≤1

‖DG(x0 + th).h‖ ⇔

‖f(x0 + h)− Tx0 − Th− f(x0) + Tx0‖ ≤ sup
0≤t≤1

‖Df(x0 + th).h− Th‖

≤ sup
0≤t≤1

‖Df(x0 + th)− T‖ ‖h‖¥

Corolário: ‖f(x0 + h)− f(x0)−Df(x0).h‖ ≤ sup0≤t≤1 ‖Df(x0 + th)− T‖ ‖h‖ ⇔
‖r(h)‖ ≤ sup0≤t≤1 ‖Df(x0 + th)−Df(x0)‖ ‖h‖ .

(C) Seja f : U ⊂ Rm → Rn cont́ınua em U e diferenciável em

U − {x0}. Se existir o limite

lim
x→x0

Df(x) = T em L(Rm,Rn)

então f é diferenciável em x0 e Df(x0) = T.

Prova: ‖f(x0 + h)− f(x0)− T.h‖ ≤ sup0≤t≤1 ‖Df(x0 + th)− T‖ ‖h‖
‖r(h)‖
‖h‖ ≤ sup0≤t≤1 ‖Df(x0 + th)− T‖ .

Dado ε > 0, ∃δ > 0 tal que

x ∈ U, ‖x− x0‖ < δ ⇒ ‖Df(x)− T‖L(Rm,Rn) < ε

Se ‖h‖ < δ, então x = x0 + th satisfaz ‖x− x0‖ < δ, e portanto

‖Df(x0 + th)− T‖L(Rm,Rn) < ε, 0 < t ≤ 1

‖r(h)‖
‖h‖ < ε, se ‖h‖ < δ
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(D) Se f : U ⊂ Rm → Rn é diferenciável e ‖Df(x)‖ ≤ M, ∀x ∈ U,

então f é Lipschitziana. (‖T‖L ≤ sup‖x‖≤1 ‖Tx‖).

‖f(x + h)− f(x)‖ ≤ sup
0≤t≤1

‖Df(x + th)‖ . ‖h‖ ≤ M. ‖h‖

Proposition 79. f : U ⊂ Rm → Rn diferenciável com Df(x0)

injetiva. Então, existe δ > 0 tal que f(x) 6= f(x0), ∀x ∈ Bδ(x0),

x 6= x0.

Prova: Df(x0) ∈ L(Rm,Rn), F = Df(x0), Df(x0) : Rm → F é

um isomorfismo linear. Então, existe c > 0 tal que

‖Df(x0).ξ‖ ≥ c ‖ξ‖ ,∀ξ ∈ Rm

∃δ > 0 tal que ‖r(ξ)‖ < c
2
‖ξ‖ , ‖ξ‖ < δ.

‖f(x0 + ξ)− f(x0)‖ = ‖Df(x0).ξ + r(ξ)‖

≥ ‖Df(x0).ξ‖ − ‖r(ξ)‖

≥ c ‖ξ‖ − c

2
‖ξ‖ =

c

2
‖ξ‖ > 0, se ξ 6= 0

∀ξ ∈ Bδ(0). Logo, f(x0 + ξ) 6= f(x0), ∀ξ ∈ Bδ(0), δ 6= 0.

Funções de Classe C1

Dois exemplos clássicos do cálculo.

(A) f(x, y) =

{
x2y

x2+y2 , (x, y) 6= (0, 0)

0 (x, y) = (0, 0)

tem derivada direcional em (0, 0), em qualquer direção, mas não é

diferenciável. Em particular, f(x, y) tem derivadas parciais
∂f

∂x
(0, 0) e

∂f

∂y
(0, 0).

(B) g(x, y) =

{
(x2 + y2) sin( 1√

x2+y2
), (x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Seja H = (h, k). Mostraremos que g é diferenciável em (0, 0)

g(
−→
0 + H)− g(

−→
0 ) = g(h, k) =

(
h2 + k2

)
sin(

1√
h2 + k2

)
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Seja T ≡ 0 e r(h, k) = (h2 + k2) sin( 1√
h2+k2 ), temos

lim
(h,k)→(0,0)

r(h, k)

‖(h, k)‖ = lim
(h,k)→(0,0)

(h2 + k2)√
h2 + k2

sin(
1√

h2 + k2
) = 0

logo, Dg(0, 0) = 0. Agora ∂g
∂x

e ∂g
∂y

não são cont́ınuas na origem.

∂g(x, y)

∂x
= 2x sin

1√
x2 + y2

− x√
x2 + y2

cos
1√

x2 + y2
.

Seja U ⊂ Rn aberto e seja f : U → R uma função.

Teorema 80. Se as derivadas parciais
∂f

∂xi

são cont́ınuas então a

função f é diferenciável, ∀i = 1, · · · , n.

Prova: Dado ξ = (ξ1, · · · , ξn) ∈ Rn defina

T.ξ =
n∑

i=1

∂f(x)

∂xi

.ξi

temos que T ∈ L(Rm,R) e mostremos que T = Df(x).

f(x+ξ)−f(x)−Tξ = f(x1+ξ1, · · · , xn+ξn)−f(x1, · · · , xn)−
n∑

i=1

∂f(x)

∂xi

.ξi

= f(x1 + ξ1, · · · , xn + ξn)− f(x1, x2 + ξ2, · · · , xn + ξn)

+ f(x1, x2 + ξ2, · · · , xn + ξn)− f(x1, x2, x3 + ξ3, · · · , xn + ξn)

+ f(x1, x2, x3 + ξ3, · · · , xn + ξn) + · · ·+ f(x1, x2, · · · , xn−1, xn + ξn)

− f(x1, · · · , xn)−
n∑

i=1

∂f(x)

∂xi

.ξi
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f(x + ξ)− f(x)− Tξ =
∂f

∂x1

(x1 + tξ1, x2 + ξ2, · · · , xn + ξn)ξ1+

+
∂f

∂x2

(x1, x2 + tξ2, · · · , xn + ξn)ξ2 + · · ·

+
∂f

∂xn

(x1, x2, · · · , xn−1, xn + tξn)ξn −
n∑

i=1

∂f(x)

∂xi

.ξi

=

[
∂f

∂x1

(x1 + tξ1, x2 + ξ2, · · · , xn + ξn)− ∂f

∂x1

(x)

]
ξ1+

+ · · ·+
[

∂f

∂xn

(x1, x2, · · · , xn−1, xn + tξn)− ∂f

∂xn

(x)

]
ξn

Dáı usando a + b ≤ |a|+ |b| , obtemos

|r(ξ)|
‖ξ‖ ≤

∣∣∣∣
∂f

∂x1

(x1 + tξ1, x2 + ξ2, · · · , xn + ξn)− ∂f

∂x1

(x)

∣∣∣∣
|ξ1|
‖ξ‖+

+ · · ·+
∣∣∣∣
∂f

∂xn

(x1, x2, · · · , xn−1, xn + tξn)− ∂f

∂xn

(x)

∣∣∣∣
|ξn|
‖ξ‖

note que
|ξi|
‖ξ‖ ≤ 1 e como

∂f

∂xi

, i = 1, · · · , n, são cont́ınuas segue

que quando ξ → 0 ⇒ |r(ξ)|
‖ξ‖ → 0, e, portanto Df(x).ξ = T.ξ =

n∑
i=1

∂f

∂xi

(x).ξi.¥

Remark 81. Se f : U ⊂ Rn → R é diferenciável, podemos definir

a aplicação derivada

Df : U → L(Rn,R)

x 7→ Df(x)

Se esta aplicação for cont́ınua, então as derivadas parciais
∂f

∂xi

, i =

1, · · · , n serão todas cont́ınuas.
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De fato, ∣∣∣∣
∂f

∂xi

(x)− ∂f

∂xi

(x0)

∣∣∣∣ = |Df(x).ei −Df(x0).ei|

= |(Df(x)−Df(x0)).ei|
≤ ‖(Df(x)−Df(x0))‖

logo,

lim
x→x0

∣∣∣∣
∂f

∂xi

(x)− ∂f

∂xi

(x0)

∣∣∣∣ ≤ lim
x→x0

‖(Df(x)−Df(x0))‖ = 0.

combinando o teorema com a observação, temos:

Teorema 82. Seja f : U ⊂ Rn → R uma função. Então, as

derivadas parciais de 1a ordem
∂f

∂xi

, i = 1, · · · , n, são cont́ınuas ⇔ f é

diferenciável e a aplicação derivada Df : U → L(Rn,R) é cont́ınua.

Definio 83. Uma função f : U ⊂ Rn → Rm é de classe C1 quando

suas componentes f1, · · · , fm : U → R possuirem derivadas parciais

∂fi

∂xj

, j = 1, · · · , n, cont́ınuas.

Observando que
∂f

∂xi

= (
∂f1

∂xi

, · · · ,
∂fm

∂xi

), então f ∈ C1 quando as

derivadas
∂f

∂xi

, i = 1, · · · , n forem cont́ınuas.

Generalização da derivada parcial

Rm+n = Rm × Rn = {(x, y), x ∈ Rm, y ∈ Rn}
f : U ⊂ Rm+n → Rp diferenciável em (x0, y0), seja Ux0 = {y ∈

Rn; (x0, y) ∈ U}. Temos Ux0 é aberto em Rn(se (x0, y) ∈ Ux0 ⇒ ∃V ⊂
Rm e W ⊂ Rn abertos tais que (x0, y) ∈ V ×W ⊂ U ⇒ y ∈ W ⊂ Ux0).

Defina fx0 : Ux0 → Rp, fx0(y) = f(x0, y). A função fx0 é difer-

enciável em y0 e Dfx0(y0) ∈ L(Rn,Rp), Dfx0(y0).η = Df(x0, y0).(0, η).

ρ(η) = fx0(y0 + η)− fx0(y0)−Df(x0, y0).(0, η)

= f(x0, y0 + η)− f (x0, y0)−Df(x0, y0).(0, η)

= f(z0 + H)− f(z0)−Df(z0).H = r(H)
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onde z0 = (x0, y0), H = (0, η). Agora

ρ(η)

‖η‖ =
r(0, η)

‖η‖ =
r(H)

‖H‖ → 0

Definio 84. A derivada parcial de f em (x0, y0) com relação a y

é, por definição, a aplicação linear Dyf(x0, y0) ∈ L(Rn,Rp),

(I) Dyf(x0, y0).h = Df(x0, y0).(0, h)

De modo análogo,

Dxf(x0, y0) ∈ L(Rm,Rp)

(II) Dxf(x0, y0).ξ = Df(x0, y0).(ξ, 0)

Somando I e II temos

Df(x0, y0).(ξ, h) = Dxf(x0, y0).ξ + Dyf(x0, y0).h

T =
∑

i

∂f

∂xi

(x).ξi

Remark 85. f : Rm = R× Rm−1 → R
∂f

∂x
(x0, y0) = Df(x0, y0).(1, 0, · · · , 0)

Dxf(x0, y0) ∈ L(R,R) Dxf(x0, y0) ∼= Dxf(x0, y0).1

Dxf(x0, y0).1 = Df(x0, y0).(1, 0, · · · , 0) =
∂f

∂x
(x0, y0).

Teorema 86 (Leibniz). U ⊂ Rm aberto, f : U × [a, b] → Rn uma

função cont́ınua com derivada parcial Dxf : U → L(Rm,Rn) também

cont́ınua. Seja Φ : U → Rn definida por

Φ(x) =

∫ b

a

f(x, t)dt.

Então, Φ é de classe C1 e Φ′(x) =
∫ b

a
Dxf(x, t)dt.
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8. Integração de Funções Vetoriais

Fixemos um caminho f : [a, b] → Rn. Dada uma partição P : a =

t0 < t1 < · · · < tk = b do intervalo [a, b], consideremos o seguinte vetor

do Rn

∑
P

(f) =
k∑

i=1

(ti − ti−1)f(ti) ∈ Rn

Dizemos que f é integrável quando existir um vetor v ∈ Rn tal que

∥∥∥∥∥v −
∑

P

(f)

∥∥∥∥∥ → 0, quando ‖P‖ → 0, onde ‖P‖ = max
1≤i≤k

|ti − ti−1|

Este vetor v é representado pelo śımbolo

∫ b

a

f(t)dt ∈ Rn.

Propriedades Básicas:

Sejam f, g : [a, b] → Rn integráveis, α ∈ R e T ∈ L(Rn,Rm) .

Então, f + αg é integrável, T ◦ f é integrável e

(A)
∫ b

a
(f + αg)dt =

∫ b

a
fdt + α

∫ b

a
gdt;

(B)
∫ b

a
T ◦ f(t)dt = T

∫ b

a
f(t)dt ∈ Rm;

(C)
∥∥∥
∫ b

a
f(t)dt

∥∥∥ ≤
∫ b

a
‖f(t)‖ dt.

Demonstração:

(A)
∑

P (f + αg) =
∑

P (f) + α
∑

P (g) =
∫ b

a
f + α

∫ b

a
g.

(B)
∑

P (T ◦ f) =
∑k

i=1(ti − ti−1)Tf(ti) = T
∑

P (f) como T é

cont́ınua e
∑

P (f) converge então T
∑

P (f) converge.

(C) ‖∑P (f)‖ ≤ ∑k
i=1(ti − ti−1) ‖f(ti)‖ .¥

Exemplos:

(1) Função constante:

Seja µ ∈ Rn um vetor fixo e seja f : [a, b] → Rn dada por f(t) = µ,

∀t

∑
P

(f) =
k∑

i=1

(ti − ti−1)µ = (b− a)µ ∈ Rn.
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(2) Função ”quase nula”

Seja f : [a, b] → Rn uma função que vale zero em [a, b], exceto

no conjunto {r1, · · · , rl}. Então,
∫ b

a
f(t)dt =

−→
0 . De fato, dada uma

partição P : a = t0 < · · · < tn = b do intervalo [a, b], temos que

∑
p

(f) =
k∑

i=1

(ti − ti−1)f(ti)

Seja ε > 0 dado

∥∥∥∥∥
∑

p

(f)

∥∥∥∥∥ ≤
k∑

i=1

(ti − ti−1) ‖f(ti)‖ ≤
k∑

i=1

(ti − ti−1) ‖f(ri)‖

seja M = max1≤i≤l ‖f(ri)‖ . Então

∥∥∥∥∥
∑

p

(f)

∥∥∥∥∥ ≤ M ‖P‖ l

Tome δ =
ε

Ml
, se ‖P‖ < δ, então M ‖P‖ l < ε. Logo, lim‖P‖→0

∑
p(f) =

0, isto é,
∫ b

a
f(t)dt = 0.

(3) Se f, g : [a, b] → Rn são integráveis e f = g, exceto possivel-

mente, num conjunto finito, então
∫ b

a
fdt =

∫ b

a
gdt.

(4) Funções Simples

Uma função f : [a, b] → Rn é denominada ”função simples ”

quando existir uma partição a = t0 < t1 < · · · < tk = b e vetores

v0, v1, · · · , vk−1 ∈ Rn tais que

f(t) = vi, ti < t < ti+1, i = 0, · · · , k − 1.

Para esta função simples

∑
P

(f) =
k∑

i=1

(ti − ti−1)vi−1.

Definio 87. Um caminho f : [a, b] → Rn é denominado ”caminho

regulado ” quando os limites laterais f(x + 0) e f(x − 0) existem em

cada ponto x ∈ [a, b].

(Exemplo: Funções simples)
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Teorema 88 (de Aproximação). : Um caminho f : [a, b] → Rn é

regulado ⇔ f é limite uniforme de uma sequência de funções simples.

Proposition 89. Se f : [a, b] → Rn é regulado, então para cada

x ∈ [a, b] tem-se

∫ b

a

f(t)dt =

∫ x

a

f(t)dt +

∫ b

x

f(t)dt.

Prova:

Fixemos uma sequência {fv} de funções simples, convergindo uni-

formemente para f. Seja

vν =

∫ b

a

f(t)dt, ν = 1, 2, 3, · · ·

Afirmação: {vν} é de Cauchy em Rn (comp.)

‖vν − vµ‖ =

∥∥∥∥
∫ b

a

fνdt−
∫ b

a

fµdt

∥∥∥∥ =

∥∥∥∥
∫ b

a

(fν − fµ)dt

∥∥∥∥

≤
∫ b

a

‖fν − fµ‖ dt ≤ (b− a) ‖fν − fµ‖∞ ,

onde ‖fν − fµ‖∞ = supa≤t≤b ‖fν(t)− fµ(t)‖ , fν → f uniformemente

⇔ ‖fν − f‖∞ → 0, ν →∞⇒ ‖fν − fµ‖∞ → 0, ν, µ →∞.

Seja v = limν→∞ vν . Mostremos que v =
∫ b

a
fdt.

∥∥∥∥∥
∑

P

(f)− v

∥∥∥∥∥ ≤
∥∥∥∥∥
∑

P

(f)−
∑

P

(fν0)

∥∥∥∥∥ +

∥∥∥∥∥
∑

P

(fν0)− vv0

∥∥∥∥∥ + ‖vν0 − v‖

Dado ε > 0, escolha vv0 e δ > 0 tais que

‖vν0 − v‖ < ε/3; ‖f − fν0‖ < ε/3(b−a);

∥∥∥∥∥
∑

P

(fν0)− vv0

∥∥∥∥∥ < ε/3, ‖p‖ < δ .

Logo, f é integrável e

∫ b

a

f(t)dt = lim
ν→∞

∫ b

a

fν(t)dt = (conv. unif.) =

∫ b

a

lim fν(t)dt
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Dado x ∈ [a, b], sejam g = f |[a,x] e h = f |[x,b]. Dada uma partição

P de [a, b], esta partição induz partições P ′ e P ′′ em [a, x] e [x, b],

respectivamente. (Estamos supondo x ∈ P ).

∑
P

(f) =
∑

P ′
(g) +

∑

P ′′
(h)

∫ b

a

f =

∫ x

a

g +

∫ b

x

h =

∫ x

a

f +

∫ b

x

f.

Teorema 90 (Fundamental do Cálculo). Seja f : [a, b] → Rn um

caminho regulado e seja

F (x) =

∫ x

a

f(t)dt; x ∈ [a, b].

Então, F (x) é cont́ınua, possui derivadas laterais em todo ponto x ∈
[a, b] e F ′(x + 0) = f(x + 0) e F ′(x− 0) = f(x− 0).

Demonstração:

‖F (x + ξ)− F (x)‖ =

∥∥∥∥
∫ x+ξ

a

f(t)dt−
∫ x

a

f(t)dt

∥∥∥∥

=

∥∥∥∥
∫ x+ξ

x

f(t)dt

∥∥∥∥ ≤ |ξ| ‖f‖∞

Logo, limξ→0 F (x + ξ) = F (x).

Seja x ∈ [a, b) e ξ > 0
∥∥∥∥
F (x + ξ)− F (x)

ξ
− f(x + 0)

∥∥∥∥ =

∥∥∥∥
1

ξ

∫ x+ξ

x

f(t)dt− f(x + 0)

∥∥∥∥

=

∥∥∥∥
1

ξ

∫ x+ξ

x

[f(t)− f(x + 0)]dt

∥∥∥∥

≤ sup
x≤t≤x+ξ

‖f(t)− f(x + 0)‖

Quando ξ → 0+, então t → x+ e f(t) → f(x + 0). Logo

lim
ξ→0+

F (x + ξ)− F (x)

ξ
= f(x + 0).¥

CONSEQUÊNCIAS:
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(A) Se f : [a, b] → Rn é cont́ınua, então existe uma função F :

[a, b] → Rn de classe C1 tal que F ′(x) = f(x), ∀x ∈ [a, b].

F (x) =

∫ x

a

f(t)dt

F ′(x + 0) = f(x + 0) = f(x− 0) = F ′(x− 0) ⇒ F ′(x) = f(x).

(B) Seja f : [a, a + h] → Rn um caminho com derivada integrável.

Então

f(a + h)− f(a) =

∫ a+h

a

f ′(t)dt = h

∫ 1

0

f ′(a + th)dt.

Prova:

F (x) =
∫ x

a
f ′(t)dt ⇒ F ′(x) = f ′(x) ⇒ F (x) = f(x) + C ⇒ C =

−f(a).

F (x) = f(x)−f(a) ⇒ F (a+h) = f(a+h)−f(a) =
∫ a+h

a
f ′(t)dt.¥

(C) Seja f : U ⊂ Rm → Rn de classe C1, [x, x + h] ⊂ U. Então

f(x + h)− f(x) =

∫ 1

0

Df(x + th).hdt =

(∫ 1

0

Df(x + th)dt

)
.h

Prova:

Seja ϕ : [0, 1] → Rn, ϕ(t) = f(x + th), temos

ϕ(1)− ϕ(0) =

∫ 1

0

ϕ′(t)dt ⇔ f(x + h)− f(x) =

∫ 1

0

Df(x + th).hdt.¥

Lemma 91. T : [a, b] → L(Rm,Rn) integrável. Para cada h ∈ Rm

fixo, o caminho t → T (t).h é integrável e
∫ b

a
T (t).hdt =

(∫ b

a
T (t)dt

)
.h

Prova:
∫ b

a
S ◦ f(t)dt = S

∫ b

a
f(t)dt, S ∈ L(Rm,Rn). Seja Φ :

L(Rm,Rn) → Rn, Φ(S) = S.h

∫ b

a

ΦT (t)dt = Φ

∫ b

a

T (t)dt

∫ b

a

T (t).hdt =

(∫ b

a

T (t)dt

)
.h.¥

(D) d
dx

∫ β(x)

α(x)
f(t)dt = f(β(x)).β′(x)− f(α(x)).α′(x).

Prova:
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α, β ∈ C1, f ∈ C0

b(ξ, η) =
∫ η

ξ
f(t)dt (=

∫ η

a
f(t)dt− ∫ ξ

a
f(t)dt)

F (x) =
∫ β(x)

α(x)
f(t)dt = b(α(x), β(x))

F ′(x) =
∂b

∂ξ

dξ

dx
+

∂b

∂η

dh

dx

= −f(ξ).α′(x) + f(η).β′(x)

onde ξ = α(x), η = β(x).

DEMONSTRAÇÃO DO TEOREMA DE LEIBNIZ:

f : U × [a, b] → Rn, U ⊂ Rm, cont́ınua

Dxf : U × [a, b] → L(Rm,Rn) cont́ınua

Φ(x) =
∫ b

a
f(x, t)dt

Conclusão: Φ ∈ C1, Φ′(x) =
∫ b

a
Dxf(x, t)dt

∥∥∥Φ(x + ξ)− Φ(x)−
(∫ b

a
Dxf(x, t)dt

)
.ξ

∥∥∥ =

=
∥∥∥
∫ b

a
f(x + ξ, t)dt− ∫ b

a
f(x, t)dt−

(∫ b

a
Dxf(x, t)dt

)
.ξ

∥∥∥

=
∥∥∥
∫ b

a
[f(x + ξ, t)− f(x, t)dt−Dxf(x, t).ξ] dt

∥∥∥

≤ ∫ b

a
‖f(x + ξ, t)− f(x, t)dt−Dxf(x, t).ξ‖ dt

≤ (b− a) sup0≤s≤1 ‖Dxf(x + sξ, t)−Dxf(x, t)‖ ‖ξ‖
(x, t) → Dxf(x, t) é cont́ınua em U × [a, b], uniformemente com

relação a t.

∀ε > 0, ∃δ > 0; ‖x− y‖ < δ ⇒ ‖Dxf(x, t)−Dxf(y, t)‖ < ε, ∀t
∀ε > 0, ∃δ > 0;

‖ξ‖ < δ ⇒ ‖Dxf(x + sξ, t)−Dxf(x, t)‖ < ε, ∀t, ∀s ∈ [0, 1]∥∥∥Φ(x + ξ)− Φ(x)−
(∫ b

a
Dxf(x, t)dt

)
.ξ

∥∥∥
‖ξ‖ < ε(b− a),se ‖ξ‖ < δ

Logo, limξ→0
‖r(ξ)‖
‖ξ‖ = 0.¥

Corollary 92. d
dt

∫ β(t)

α(t)
f(x, t)dt = f(β(t), t)β′(t)−f(α(t), t)α′(t)+

∫ β(t)

α(t)
∂f
∂t

(x, t)dt

f : [a, b]× [c, d] → R, C1, α, β : [a, b] → R, C1.
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Prova:

b(ξ, η, t) =
∫ η

ξ
f(x, t)dx ; ξ = α(t), η = β(t), t = t.

F (t) =
∫ β(t)

α(t)
f(x, t)dx = b(α(t), β(t), t)

F ′(t) = ∂b
∂ξ

ξ′ + ∂b
∂η

η′ + ∂b
∂t

= f(β(t), t)β′(t)− f(α(t), t)α′(t) +
∫ β(t)

α(t)
∂f
∂t

(x, t)dx.¥

9. Teoremas Clássicos

(1) Teorema da Função Inversa

Sejam U ⊂ Rn um aberto e f : U → Rn de classe C1 em

U.

Lemma 93. Se existir uma constante M > 0 tal que

∣∣∣∣
∂fi

∂xj

(x)

∣∣∣∣ ≤

M, i, j = 1, 2, · · · , n, ∀x ∈ U, então

‖f(x)− f(y)‖ ≤ n2M ‖x− y‖ .

Demonstração: Para cada ı́ndice i = 1, 2, · · · , n temos

fi(y)− fi(x) =
n∑

j=1

fi(y1, · · · , yj, xj+1, · · · , xn)− fi(y1, · · · , yj−1, xj, · · · , xn)

= T.V.M. =
n∑

j=1

∂fi

∂xj

(ξij)(yj − xj) ⇒

‖fi(y)− fi(x)‖ ≤
n∑

j=1

M ‖x− y‖ = nM ‖x− y‖

‖f(y)− f(x)‖ ≤
n∑

i=1

‖fi(y)− fi(x)‖ ≤
n∑

i=1

nM ‖x− y‖ = n2M ‖x− y‖ .¥

Lemma 94. Seja T ∈ L(Rn,Rm) um isomorfismo linear e

seja ϕ : U → Rn diferenciável. Se T ◦ ϕ tem inversa difer-

enciável, então ϕ também tem inversa diferenciável.

Demonstração: (i) ϕ é injetiva pois, ϕ(x) = ϕ(y) ⇒ T (ϕ(x)) =

T (ϕ(y)) ⇒ x = y.

(ii) ϕ−1 é diferenciável, [T ◦ ϕ]−1 = ϕ−1 ◦ T−1 ⇒ ϕ−1 =

[T ◦ ϕ]−1 ◦ T é diferenciável.¥
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Lemma 95. Seja x0 ∈ U um ponto de máximo de uma

função diferenciável ϕ : U → R. Então, Dϕ(x0) = 0.

Demonstração:

lim
t→0

ϕ(x0 + tξ)− ϕ(x0)

t
= Dϕ(x0).ξ

ϕ(x0) ≥ ϕ(x0 + tξ); ξ ∈ Rn, |t| < δ tal que x0 + tξ ∈ U

ϕ(x0 + tξ)− ϕ(x0)

t

{ ≥ 0 se t < 0
≤ 0 se t > 0

Dϕ(x0).ξ = lim
t→0+

ϕ(x0 + tξ)− ϕ(x0)

t
≤ 0

= lim
t→0−

ϕ(x0 + tξ)− ϕ(x0)

t
≥ 0

⇒ Dϕ(x0).ξ = 0, ∀ξ ∈ Rn ⇒ Dϕ(x0) = 0.

Lemma 96.

Ω = {T ∈ L(Rn,Rn); T é isomorfismo}
(A) Ω é um subconjunto aberto;

(B) A aplicação Φ : Ω → Ω definida por Φ(x) = x−1 é

cont́ınua.

Teorema 97 (Função Inversa). Seja f : U ⊂ Rn → Rn

uma função de classe C1 no aberto U do Rn. Suponhamos que

x0 ∈ U a derivada Df(x0) é isomorfismo. Então,

(A) Existem vizinhanças V0 de x0 e W0 de f(x0), com V0 ⊂
U, tais que a restrição f |V0 : V0 → W0, tem inversa g : W0 →
V0;

(B) A inversa g é de classe C1 e sua derivada Dg vem

dada por

Dg = [Df(x)]−1, x ∈ V0.

Demonstração: Seja T = [Df(x0)]
−1 [T é um isomorfismo]

D(T◦f)(x0) = DT (f(x0))◦Df(x0) = T◦Df(x0) = [Df(x0)]
−1◦Df(x0) = I

Pelo Lema 94, não há perda de generalidade em admitir que

Df(x0) = I (do contrário consideramos h = T ◦ f).
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1a Etapa: f é localmente injetiva

· Seja δ1 > 0 tal que Bδ1(x0) ⊂ U e f(x) 6= f(x0), ∀x ∈
Bδ1(x0)\{x0}.

· Seja δ2 > 0 tal que

(i) det[Df(x)] 6= 0, ∀x ∈ Bδ2(x0) (segue do fato que

det[Df(x0)] 6= 0 e a continuidade da aplicação x → det x, x ∈
Ω ).

(ii)

∥∥∥∥
∂fi

∂xj

(x)− ∂fi

∂xj

(x0)

∥∥∥∥ <
1

2n2
, ∀i, j = 1, · · · , n, ∀x ∈ Bδ2(x0)(segue

da continuidade das derivadas parciais).

· Seja δ = min{δ1, δ2} e seja V = Bδ(x0)

(a) det[Df(x0)] 6= 0,∀x ∈ V ;

(b) f(x) 6= f(x0),∀x ∈ V \{x0}(⇒ f(x) 6= f(x0), ∀x ∈
∂V ).

(c)

∥∥∥∥
∂fi

∂xj

(x)− ∂fi

∂xj

(x0)

∥∥∥∥ <
1

2n2
, ∀i, j = 1, · · · , n, ∀x ∈ V.

Afirmação: ‖x− y‖ ≤ 2 ‖f(x)− f(y)‖ , ∀x, y ∈ V.

Seja ϕ(x) = f(x)− x, ∀x ∈ V ⊂ U, Jϕ(x) = Jf(x)− I ⇒
∂ϕi

∂xj

(x) =
∂fi

∂xj

(x)− δij =
∂fi

∂xj

(x)− ∂fi

∂xj

(x0) (pois Df(x0) = I)

∥∥∥∥
∂ϕi

∂xj

(x)

∥∥∥∥ =

∥∥∥∥
∂fi

∂xj

(x)− ∂fi

∂xj

(x0)

∥∥∥∥ ≤
1

2n2
,∀i, j = 1, · · · , n, ∀x ∈

V. Aplicando o Lema 93 à função ϕ, obtemos

‖ϕ(x)− ϕ(y)‖ ≤ n2 1

2n2
‖x− y‖ =

1

2
‖x− y‖ ⇔

‖f(x)− x− f(y) + y‖ ≤ 1

2
‖x− y‖ ⇒

‖x− y‖ − ‖f(x)− f(y)‖ ≤ 1

2
‖x− y‖ .¥

Conclusão: f é injetiva em V.

2a Etapa: Construção das Vizinhanças V0 e W0.
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f(x0) /∈ f(∂V ) (por (b)) d = dist(f(x0), f(∂V )) > 0,

porque f(∂V ) é compacto e f(x0) /∈ f(∂V ). Seja α = d/2

e W0 = Bα(f(x0)).

Sobrejetividade

Fixemos y ∈ W0 e seja ϕ : V → R, ϕ(x) = ‖y − f(x)‖2

· ϕ é cont́ınua em V ;

· V é compacto;

· ϕ atinge um valor mı́nimo num ponto x∗ ∈ V .

Temos que

‖y − f(x0)‖2 ≤ ‖y − f(x)‖2 , ∀x ∈ ∂V ⇒ ϕ(x0) ≤ ϕ(x), ∀x ∈ ∂V

Como ϕ(x∗) ≤ ϕ(x0), então ϕ(x∗) < ϕ(x), ∀x ∈ ∂V e por-

tanto x∗ /∈ ∂V. Logo, x∗ ∈ V e pelo lema 95, segue que

Dϕ(x∗) ≡ 0

Temos que ϕ(x) = 〈y − f(x), y − f(x)〉, então

Dϕ(x).ξ = 2〈y−f(x), Df(x).ξ〉 ⇒ 〈y−f(x∗), Df(x∗).ξ〉 = 0; ∀ξ ∈ Rn

como det[Df(x∗)] 6= 0, então y − f(x∗) = 0. Basta tomar

ξ = [Df(x∗)]−1(y − f(x∗)).

Tome V0 = V ∩ f−1(W0) ⇒ f : V0 → W0 tem inversa

g : W0 → V0.

3a Etapa: Sobre a inversa g

‖x− y‖ ≤ 2 ‖f(x)− f(y)‖ ,∀x, y ∈ V0 ⇒

‖g(u)− g(v)‖ ≤ 2 ‖u− v‖ ⇒ g é unif. cont́ınua

Afirmação: g é diferenciável em W0.

Seja y ∈ W0, y = f(x), x ∈ V0 (x é único pela injetividade)

temos

f(x1) = f(x) + Df(x)(x1 − x) + r(x1 − x)

assim

[Df(x)]−1(f(x1)− f(x)) = x1 − x + [Df(x)]−1r(x1 − x)

[Df(x)]−1(y1 − y) = g(y1)− g(y) + [Df(x)]−1r(x1 − x)
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ou seja,

g(y1)− g(y) = [Df(x)]−1(y1 − y) + ρ(y1 − y),

onde ρ(y1 − y) = −[Df(x)]−1r(x1 − x). Temos que

‖ρ(y1 − y)‖
‖y1 − y‖ =

‖[Df(x)]−1r(x1 − x)‖
‖y1 − y‖ ≤ C

‖r(x1 − x)‖
‖y1 − y‖

≤ C
‖r(x1 − x)‖

‖f(x1)− f(x)‖ ≤ 2C
‖r(x1 − x)‖
‖x1 − x‖ → 0

x1 → x e usando a continuidade uniforme da g, y1 → y.

Segue que g é diferenciável em y = f(x) e Dg(y) = [Df(x)]−1,

também Dg = Φ ◦Df ◦ g; onde Φ(x) = x−1 do lema 96 ⇒ Dg

é cont́ınua ⇒ g é de classe C1.¥
Demonstração do lema 96:

Ω = {T ∈ L(Rn,Rn); T é isomorfismo}
(i) Ω é aberto;

(ii) Φ : Ω → Ω; Φ(x) = x−1 é cont́ınua.

Prova de (i): Seja A ∈ Ω e seja α = 1
‖A−1‖ > 0. Mostraremos

que Bβ(A) ⊂ Ω, β < α. De fato, dado B ∈ Bβ(A) temos que

‖x‖ =
∥∥A−1Ax

∥∥ ≤
∥∥A−1

∥∥ ‖Ax‖ =
1

α
‖Ax−Bx + Bx‖ ≤

≤ 1

α
[‖Ax−Bx‖+ ‖Bx‖] ≤ 1

α
[‖A−B‖ ‖x‖+ ‖Bx‖]

≤ 1

α
[β ‖x‖+ ‖Bx‖] ⇔

((*)) ‖Bx‖ > (α− β) ‖x‖

A relação (*) ⇒ na injetividade do operador B. Logo, B ∈ Ω

e portanto Bβ(A) ⊂ Ω.

Para a continuidade de Φ em X0 ∈ Ω, notamos que

X−1 −X−1
0 = −X−1(X −X0)X

−1
0 ⇒

∥∥X−1 −X−1
0

∥∥ ≤
∥∥X−1

∥∥ ‖X −X0‖
∥∥X−1

0

∥∥
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Tomando X ∈ Bβ(X0), então

‖X(x)‖ > (α− β) ‖x‖ ⇒
∥∥X−1

∥∥ ≤ 1

α− β

Logo,

‖Φ(X)− Φ(X0)‖ <
1

α(α− β)
‖X −X0‖

Φ é uniformemente cont́ınua.

Comentários sobre o Teorema da Função Inversa

(A) A hipótese de ser f de classe C1 é essencial, pois

f(x) =

{
ax + x2 sin 1

x
, x 6= 0, 0 < a < 1

0, x = 0

f ′(x) =

{
a + 2x sin 1

x
− cos 1

x
, x 6= 0,

a, x = 0

A derivada f ′(x) não é cont́ınua em x = 0. Pois

f ′(
1

kπ
) = a +

2

kπ
sin kπ − cos kπ =

{
a + 1, k ı́mpar
a− 1, k par.

A sequência xk = 1
kπ

converge para zero e a sequência f ′(xk)

diverge. f não é de classe C1. Temos que f ′(0) = a 6= 0,

Df(0).ξ = aξ é isomorfismo mas a função f não tem inversa

em vizinhança alguma da origem. De fato, seja δ > 0 e k ∈ N,

k par, tal que 1
kπ
∈ (−δ, δ), f ′( 1

kπ
) = a − 1 < 0 ⇒ f ′(x) <

0, x ∈ (−δ, δ)∩I, I intervalo contendo 1
kπ

; f ′( 1
(k+1)π

) = a+1 >

0 ⇒ f ′(x) > 0, x ∈ (−δ, δ)∩J, J intervalo contendo 1
(k+1)π

⇒
f não tem inversa em (−δ, δ).

(B) A inversa f−1 pode existir em torno de x0, sem que

Df(x0) seja isomorfismo. Neste caso, a inversa f−1 não é de

classe C1 (não tem derivada). I = D(f ◦f−1)(x0) = Df−1(y0)·
Df(x0) (contraria a hipótese). Se fosse f−1 diferenciável, então

Df(x0) seria um isomorfismo.

Exemplo: f : R→R; f(x) = x3 é de classe C1, tem inversa

f−1(y) = 3
√

y, Df(0) ≡ 0 (não é um isomorfismo).
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(C) Seja f(x, y) = (ex cos y, ex sin y); (x, y) ∈ R2. det[Jf(x, y)] =

e2x 6= 0, ∀(x, y) ∈ R2 ⇒ Df(x, y) é um isomorfismo em cada

ponto (x, y) ∈ R2.

Pelo Teorema da Função Inversa, cada ponto (x, y) ∈ R2

possui uma vizinhança onde a função f tem inversa de classe

C1. A função f não possui inversa global em R2, porque f não

é injetiva (f(x, y + 2kπ) = f(x, y), ∀k ∈ N.

(2) Teorema da Função Impĺıcita

Derivada Parcial

Rm+n = Rm × Rn, W ⊂ Rm+n um aberto, seja z0 =

(x0, y0) ∈ W e sejam

Wx0 = {y ∈ Rn; (x0, y) ∈ W}

Wy0 = {x ∈ Rm; (x, y0) ∈ W}.
Dada uma função f : W → Rp diferenciável em z0, então a

função fx0 : Wx0 → Rp definida por

fx0(y) = f(x0, y)

é diferenciável em y0 e

Dfx0(y) · η = Df(x0, y0) · (0, η)

Notação: Dfx0(y) = Dyf(x0, y0) = ∂2f(x0, y0).

De modo análogo, a derivada parcial de f com respeito à

variável x no ponto z0 = (x0, y0) é a aplicação linear

Dxf(x0, y0) : Rm → Rp

Dxf(x0, y0) · ξ = Dxf(x0, y0) · (ξ, 0)

Fato: Df(x0, y0) · (ξ, η) = Dxf(x0, y0) · ξ + Dyf(x0, y0) · η.

Teorema 98 (Função Impĺıcita). Seja f : W ⊂ Rm+n →
Rn uma função de classe C1 no aberto W e seja z0 = (x0,y0)

um ponto de W onde (i) f(x0, y0) = c. (ii)

Dyf(x0, y0) é um isomorfismo de Rn em Rn. Então, existe uma

vizinhança V de x0 e uma função de classe C1, ϕ : V → Rn

tais que: (A)
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ϕ(x0) = y0; (B) (x, ϕ(x)) ∈ W, ∀x ∈ V ; (C) f(x, ϕ(x)) =

c, ∀x ∈ V.

Demonstração: Seja F : W ⊂ Rm+n → Rm+n ; F (x, y) =

(x, f(x, y))

· F é de classe C1;

· · DF (x0, y0) · (ξ, η) = (ξ,Dxf(x0, y0) · ξ + Dyf(x0, y0) ·η)

DF (z0) ∈ L( Rm+n, Rm+n).

Seja (ξ, η) ∈ N(DF (z0)) ⇒ DF (z0)·(ξ, η) = 0 ⇔ (ξ, Dxf(x0, y0)·
ξ + Dyf(x0, y0) · η) = (0, 0) ⇒ ξ = 0 e Dxf(x0, y0) ·
ξ + Dyf(x0, y0) · η = 0 ⇒ Dyf(x0, y0) · η = 0 ⇒ η = 0,

pois Dyf(x0, y0) é um isomorfismo. Logo N(DF (z0)) = {0}.
Segue que DF (z0) é isomorfismo. Pelo Teorema da Função

Inversa, existem vizinhanças U de (x0, y0) e V × Z de (x0, c)

e uma função de classe C1, G : V × Z → U que é a in-

versa de F, ou seja, G(x, y) = (u(x, y), v(x, y)) ⇒ (x, y) =

F (u(x, y), v(x, y)) = (u(x, y), f(u, v)) ⇒ x = u(x, y). Logo,

G(x, y) = (x, v(x, y)). Seja ϕ : V → Rn, ϕ(x) = v(x, c) ∈
Rn

(i)ϕ é de classe C1;

(A) (x0, y0) = GF (x0, y0) = G(x0, f(x0, y0)) = G(x0, c) =

(x0, v(x0, c)) = (x0, ϕ(x0)) ⇒ ϕ(x0) = y0.

(B) (x, ϕ(x)) ∈ W,∀x ∈ V. De fato, (x, ϕ(x)) = (x, v(x, c)) =

G(x, c) ∈ U ⊂ W.

(C) f(x, ϕ(x)) = c, ∀x ∈ V. Temos que (x, f(x, ϕ(x))) =

F (x, ϕ(x)) = F (x, v(x, y)) = FG(x, c) = (x, c)⇒ f(x, ϕ(x)) =

c.

Remark 99. (A) Como derivar a função y = ϕ(x) obtida

no Teorema anterior?

f(x, ϕ(x)) = c ⇒

Dxf(x, ϕ(x)) · ξ + Dyf(x, ϕ(x)) ·Dϕ(x) · ξ = 0

Dyf(x, ϕ(x)) ·Dϕ(x) · ξ = −Dxf(x, ϕ(x)) · ξ

Dyf(x, ϕ(x)) ·Dϕ(x) = −Dxf(x, ϕ(x))
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Como Dyf(x, ϕ(x)) é um isomorfismo numa vizinhança de

x0 (det JDyf 6= 0)

Dϕ(x) = −[Dyf(x, ϕ(x))]−1Dxf(x, ϕ(x)).

(B) Demonstrar o Teorema da Função Inversa usando o

Teorema da Função Impĺıcita.

Hipóteses

{
f : U ⊂ Rn → Rn de classe C1

Df(x0) : Rn → Rn é um isomorfismo.

F : U × Rn → Rn, F (x, y) = f(x)− y

Temos que F é de classe C1, DxF (x0, y0) = Df(x0) é iso-

morfismo, e F (x0, y0) = f(x0) − y0 = 0. Pelo Teorema da

função impĺıcita existe uma vizinhança W de y0 e uma função

de classe C1, g : W → g(W ) tal que

(i) g(y0) = x0

(ii) F (g(y), y) = 0, ∀y ∈ W ⇒ f(g(y))−y = 0 ⇒ f(g(y)) =

y.

(3) Forma local das Submersões

Uma função f : U ⊂ Rm → Rn diferenciável no aberto U é

denominada submersão quando a derivada Df(x) : Rm → Rn

for sobrejetiva para qualquer x ∈ U. Neste caso, m ≥ n.

Exemplos mais simples são as projeções:

π1 : Rm+n → Rn

(x, y) 7→ x
,

π2 : Rm+n → Rn

(x, y) 7→ y

Dπ2(x, y) = π2 que é sobrejetiva.

Como se comportam as submersões f : U ⊂ Rm → Rn .

Resposta: Se comportam localmente como a projeção π2.

Seja f : U ⊂ Rm → Rn de classe C1, z0 = (x0, y0) é um

ponto de U onde Df(z0) é sobrejetiva.

(Gráficos)

Seja Φ : U → Rm+n; Φ(x, y) = (x, f(x, y)) então

DΦ(z0)(ξ, η) = (ξ,Dxf(z0) · ξ + Dyf(z0) · η)

Dyf(z0) : Rn → Rn é um isomorfismo [Rn = {0} × Rn]?.
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(Df(z0) : Rp+n → Rn, m = p+n, é sobre, tome {η1, · · · , ηn}
uma base do Rn ⇒ {Df(z0)(0, ηi), i = 1, · · · , n} é uma base

do Rn ⇒ Dyf(z0) é isomorfismo.)

DΦ(z0) é um isomorfismo. Pelo Teorema da Função In-

versa a função Φ tem uma inversa h : V ×W → Z de classe

C1(h é um difeomorfismo de classe C1). Fazendo h(x, y) =

(x, h2(x, y)), temos

(x, y) = Φh(x, y) = Φ(x, h2(x, y)) = (x, f(x, h2(x, y))) = (x, fh(x, y)) ⇒
fh(x, y) = y

(4) Forma Local das Imersões

Uma função f : U ⊂ Rm→Rm+n diferenciável no aberto

U ⊂ Rm é denominada imersão quando a derivada Df(x) :

Rm→Rm+n for injetiva para qualquer x ∈ U. O exemplo fun-

damental é a inclusão:

i : Rm → Rm+n

x 7→ (x, 0)

Localmente as imersões de classe C1 se comportam como a

inclusão i. Isto significa que existe um difeomorfismo local de

classe C1, h,tal que

hf = i.

Seja f : U ⊂ Rm → Rm+n de classe C1, x0 ∈ U, Df(x0)

injetiva.

(Gráfico)

E = Df(x0) · Rm, F = E⊥ (Rm+n = E ⊕ F )

Df(x0) : Rm → E isomorfismo.

Seja Φ : U × F → Rm+n; Φ(x, y) = f(x) + y

Φ(x0, 0) = f(x0)

DΦ(x0, 0) · (ξ, η) = Df(x0) · ξ ⊕ η

Φ(x0 + ξ, η) = f(x0 + ξ) + η

= f(x0) + Df(x0) · ξ + η + r(ξ)

DΦ(x0, 0) · (ξ, η) = 0 ⇒ η = 0, Df(x0) · ξ = 0 ⇒ ξ = 0
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pois Df(x0) é injetiva ⇒ DΦ(x0, 0) é um isomorfismo. Seja

h : Z → V ×W o difeomorfismo inverso de Φ. Mostremos que

hf = i.

(x, 0) = hΦ(x, 0) = hf(x), ∀x ∈ V.

(5) Teorema do Posto:

O posto de uma aplicação diferenciável f : U ⊂ Rm → Rn

no ponto x ∈ U é, por definição, o posto da derivada Df(x) ∈
L(Rm,Rn).

· Se f : U ⊂ Rm → Rn é de classe C1 e o posto de f em

x0 ∈ U é igual a r ≤ n, então existe δ > 0 tal que f tem posto

≥ r em todo ponto da bola Bδ(x0).

·· Se U ⊂ Rm é um aberto verticalmente convexo e Dyf ≡ 0

em U então f não depende da segunda coordenada.

U é verticalmente convexo quando: (x, y), (x, y′) ∈ U ⇒
(x, ty + (1− t)y′) ∈ U, t ∈ [0, 1].

(x, y), (x, y′) ∈ U, Φ(t) = f(x, ty + (1 − t)y′) ⇒ Φ′(t) =

Dyf(x, ty + (1 − t)y′) · (y − y′) = 0 ⇒ Φ = cte ⇒ Φ(0) =

Φ(1) ⇒ f(x, y) = f(x, y′).

Teorema do Posto

Seja f : U ⊂ Rm+n → Rm+p uma função de classe C1 no

aberto U. Suponhamos que f tem posto m em cada ponto x ∈
U. Então, dado z0 = (x0, y0) ∈ U existem vizinhanças Z ⊂ U,

V ×W ⊂ Rm+n, V ×W ∗ ⊂ Rm+p, com z0 ∈ Z ∩ {V ×W},
(x, 0) ∈ V ×W ∗ e existem difeomorfismos α : V ×W → Z e

β : Z ′ → V ×W ∗ de classe C1 tais que βfα = iπ1.(Graficos)

O Teorema da Função Impĺıcita no Cálculo III

10 Caso: F (x, y) = 0; ∂F
∂y

(z0) 6= 0. F : R1+1 → R, DyF (z0)

é um isomorfismo. Existe uma vizinhança V × W de z0 =

(x0, y0) e uma função de classe C1, ϕ : V → Z tal que :

(i) (x, ϕ(x)) ∈ U = R2, ∀x ∈ V.

(ii) F (x, ϕ(x)) = 0, ∀x ∈ V.
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Além disso, Dϕ(x) = −[DyF (z)]−1DxF (z). Numa vizin-

hança V de x0 a variável y é definida implicitamente como

função de x e y′ = −Fx/Fy.

20 Caso: f(x, y, u, v) = 0, g(x, y, u, v); ∂(f,g)
∂(u,v)

= det

[
fu fv

gu gv

]
6=

0, no ponto P0 = (x0, y0, u0, v0) ⇒ u e v são funções de x e y.

Seja F : R2+2 → R2; F (x, y, u, v) = (f(x, y, u, v), .g(x, y, u, v))

ou F (X,Y ) onde X = (x, y) e Y = (u, v). ⇒ DY F (P ) =

(DY f, DY g) =

[
fu fv

gu gv

]

det(DY F (P )) 6= 0 ⇔ DY F (P ) é um isomorfismo ⇒ Y =

ϕ(X) em V � (x0, y0) ⇔ (u, v) = (ϕ1(x, y), ϕ2(x, y)).

Cálculo das derivadas: ux, vx, uy, vy

∂f

∂x
.
∂x

∂x
+

∂f

∂x
.
∂y

∂x
+

∂f

∂u
.
∂u

∂x
+

∂f

∂v
.
∂v

∂x
= 0

dáı

fuux + fvvx = −fx

guux + gvvx = −gx.

10. Integração

1. Funções integráveis

Seja A = [a1, b1]× · · · × [an, bn] um retângulo fechado do Rn e seja

f : A → R limitada. O volume do retângulo A é, por definição, o

número real

vol A = Πn
j=1(bj − aj).

Ele é também o volume do retãngulo aberto

Ao = (a1,b1)× · · · × (an, bn).

Uma partição P do retãngulo A é uma coleção P = {P1, P2, · · · , Pn}
onde cada Pj é uma partição do intervalo [aj, bj] . O número de sub-

retângulos da partição P é N1, N2, · · · , Nn onde Nj é o número de

subintervalos da partição Pj, j = 1, · · · , n.
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A soma superior de f relativa à partição P , é por definição,

(3) U(f, P ) =
∑
S∈P

MS(f)vol (S),

onde em (3) a soma é tomada sobre todos os subretângulos S de P e

MS(f) = sup
x∈S

f(x).

A soma inferior de f relativa a P é

(4) L(f, P ) =
∑

S /∈P

mS(f)vol (S)

onde mS(f) = infx∈S f(x).

É claro que

(5) L(f, P ) ≤ U(f, P ), ∀ P.

Proposition 100. Se P e Q são partições de A, então

(6) L(f, P ) ≤ U(f, Q)

(7) sup
P

L(f, P ) ≤ inf
P

U(f, P ).

Demonstração: Seja R um refinamento comum às partições P e Q.

Todo retângulo S de P é subdividido em retângulos S1, · · · , Sk de R e

portanto,

mS(f) ≤ mSj
(f), ∀j,

e vol(S) = vol(S1) + · · ·+ vol(Sk). Então

L(f, P ) =
∑

S /∈P

mS(f)vol (S) ≤
∑
S∈P

k∑
j=1

mSj
(f)vol (Sj)

o que implica

L(f, P ) ≤ L(f, R).

Analogamente,

U(f, Q) ≥ U(f, R)

logo

L(f, P ) ≤ L(f, R) ≤ U(f, R) ≤ U(f,Q).

Para provar (7), fixemos Q e tomemos o sup em (6);
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sup
P

L(f, P ) ≤ U(f,Q)

dáı segue (7).

Definio 101. Uma função limitada f : A → R é integrável em A

quando

(8) sup
P

L(f, P ) = inf
P

U(f, P ).

Este número é a integral de f em A é representado por
∫

A
f.

Example 102. f : [0, 1]× [0, 1] → R,

f(x, y) =

{
0, 0 ≤ x < 1

2
1, 1

2
≤ x ≤ 1

então
∫

A
f = 1

2
.

Seja P uma partição de A. Considerando um refinamento de P,

se necessário, podemos supor que qualquer retângulo S de P está à

esquerda ou à direita de x = 1
2
. P = P ′ ∪ P ′′

L(f, P ) =
∑

S∈P ′
mS(f)vol(S) +

∑

S∈P ′′
mS(f)vol(S)

=
∑

S∈P ′′
vol(S) =

1

2
= U(f, P )

f é integrável e
∫

A
f = 1/2.

Example 103. f : [0, 1]× [0, 1] → R

f(x, y) =

{
0, x ∈ Q

1, x ∈ R \Q
mS(f) = 0, MS(f) = 1 ⇒ L(f, P ) = 0, U(f, P ) = 1

logo f não é integrável em [0, 1]× [0, 1].

Teorema 104. (Critério de integrabilidade) f : A → R é integrável

se, e somente se, dado ε > 0 existe uma partição Pε de A tal que

(9) U(f, Pε)− L(f, Pε) < ε.
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Demonstr.: Suponhamos f integrável em A e seja ε > 0 dado. Por

(8), existe P ′
ε partição de A tal que

sup
P

L(f, P ) + ε > U(f, P ′
ε)

Por definição de supremo, existe P ′′
ε partição de A tal que

L(f, P ′′
ε ) > U(f, P ′

ε)− ε.

Seja Pε um refinamento comum de P ′
ε e P ′′

ε . Temos

U(f, Pε)− L(f, Pε) ≤ U(f, P ′
ε)− L(f, P ′′

ε ) < ε

Reciprocamente, suponhamos (9) válida. Da relação (7)

sup
P

L(f, P ) ≤ U(f,Q) ∀Q.

Por (9), existe Pε, U(f, Pε) < ε + L(f, Pε) ≤ ε + supP L(f, P ). O que

implica

sup L(f, P ) = inf U(f, P ).

Isso demonstra o teorema.

Definio 105. um subconjunto Ω ⊂ Rn tem medida nula quando

cumprir a seguinte condição: dado ε > 0, existe uma cobertura {Ak}k∈N
de Ω por retângulos fechados tal que

∞∑

k=1

vol (Ak) < ε.

Example 106. Seja Ω = {a1, a2, · · · } ⊂ Rn um subconjunto e enu-

merável. Dado ε > 0, seja Ak um retângulo do Rn contendo ak e tal

que vol(Ak) <
ε

2k
. Ou seja, considere ak = (a1k, a2k, · · · , ank) ∈ Rn,

temos

Ijk
= [ajk

− 1

2

( ε

2k

)n

, ajk
+

1

2

( ε

2k

)n

]

Ak = I1k + · · ·+ Ink

temos
∞∑

k=1

vol (Ak) =
∞∑

k=1

ε

(
1

2

)k

< ε.
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Example 107. Ω = {(x, 0) : x ∈ R} tem medida nula como sub-

conjunto do R2.

De fato,

Ak = [−k, k]×
[
− ε

4k2k
,

ε

4k2k

]

vol (Ak) = 2k
ε

2k2k
=

ε

2k

logo
∑

vol (Ak) < ε.

Example 108. Se Ω1, Ω2, · · · , Ωk, · · · é uma coleção enumerável de

subconjuntos de medida nula, então Ω = ∪∞j=1Ωk tem medida nula. De

fato,

Ωk ⊂ ∪∞j=1Ajk,

∞∑
j=1

vol (Ajk) <
ε

2k
.

A coleção {Aj,k; j, k ∈ N} cobre Ω e

∞∑
j=1

vol (Ajk) <

∞∑

k=1

ε

2k
< ε.

Example 109. Se Ω tem medida nula e Ω′ ⊂ Ω, então Ω′ tem

medida nula.

Definio 110. Um subconjunto Ω ⊂ Rn tem conteúdo nulo (es-

creveremos c(Ω) = 0) quando para cada ε > 0 existe uma cobertura

A1, A2, · · · , Ak de Ω por retângulos fechados satisfazendo

k∑
j=1

vol (Aj) < ε.

Example 111. (1) c(Ω) = 0 ⇒ m(Ω) = 0.
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(2) Seja xn → x em R. Então Ω = {x1, x2, · · · , xn, · · · } tem

conteúdo zero. De fato, dado ε > 0, ∃ n0 ∈ N tal que xν ∈
Bε(x), ∀ν ≥ n0. Para cada j = 1, 2, · · · , n0, seja Aj um

retângulo fechado de vol < ε e x1 ∈ A1, x2 ∈ A2, · · · , xn0 ∈
An0 . Então Ω ⊂ A1 ∪ · · · ∪ An0 ∪Bε(x) e

vol (A1) + · · ·+ vol (An0) + vol (Bε(x)) ≤ (n0 + 1)ε.

(3) Ω = [0, 1] ∩ Q ( enumerável) m(Ω) = 0. Se A1, A2, · · · , Ak

são retângulos fechados tais que Ω ⊂ A1 ∪ · · · ∪ Ak, então por

densidade

[0, 1] ⊂ A1 ∪ · · · ∪ Ak

e dáı seque que

k∑
j=1

vol (Aj) =
k∑

j=1

(bj − aj) ≥ 1

portanto, c(Ω) 6= 0.

Lemma 112. Se K ⊂ Rn é compacto e m(K) = 0, então c(K) = 0.

Prova: Seja {Aj}j∈N uma cobertura de K por retângulos abertos

com
∑

vol (Aj) < ε. Esta cobertura admite subcobertura finita, isto é,

K ⊂ Aj1 ∪ · · · ∪ Ajk

e é claro que

k∑

l=1

vol (Ajl) < ε.

2. Oscilação e Integrabilidade

Seja A = [a1, b1]× · · · × [an, bn] ⊂ Rn, f : A → R limitada. Dado

ε > 0, sejam

Mδ(f, a) = sup {f(x) : x ∈ A ∩Bδ(a)}
mδ(f, a) = inf {f(x) : x ∈ A ∩Bδ(a)}

A oscilação de f em a é, por definição,

o(f, a) = lim
δ→0+

[Mδ(f, a)−mδ(f, a)]
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• f é cont́ınua em x = a ⇐⇒ o(f, a) = 0.

• Se F ⊂ Rn é fechado e ε > 0 é dado, então Fε = {x ∈
F ; o(f, x) ≥ ε} é fechado.

• D(f) = {x ∈ A; f é descont́ınua em x}, então D(f) =

∪∞k=1F1/k, onde F1/k = {x ∈ A; o(f, x) ≥ 1/k}.

Lemma 113. Se o(f, x) < α, ∀ x ∈ A, então existe uma partição

Pα de A tal que

U(f, Pα)− L(f, Pα) < α vol (A).

Dem.: Para cada x ∈ A, existe U(x) vizinhança de x tal que

M(f, x)−m(f, x) < α

Seja {U(x1), · · · , U(xk)} uma subcobertura finita de A e considere Pα

uma partição de A cujos retângulos estão contidos em algum U(xj).

∑
S∈Pα

{MS(f)−mS(f)} vol (S) ≤
∑
S∈Pα

αvol (S) = αvol (A).

Teorema 114. f é integrável se, e somente se, m(D(f)) = 0.

Dem.: Suponha que f é integrável. Vamos provar que c(F1/k) =

0, ∀k = 1, 2, · · · . Dado ε > 0 existe Pε partição de A tal que

U(f, Pε)− L(f, Pε) < ε/k.

Seja S a coleção de subretângulos S de Pε tais que S ∩ F1/k 6= ∅. S é

uma cobertura finita de F1/k.

MS(f)−mS(f) ≥ MS ∩ F1/k −mS∩F1/k
≥ 1/k

isto implica que
∑
S∈S

1

k
vol (S) ≤

∑
S∈S

(MS(f)−mS(f))vol (S)

≤ U(f, Pε)− L(f, Pε) <
ε

k
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logo
∑
S∈S

vol (S) < ε.

Reciprocamente, suponhamos que m(D(f)) = 0. D(f) = ∪∞k=1F1/k.

Logo, m(F1/k) = 0 ⇒ c(F1/k) = 0.

Seja U1, · · · , Uk retângulos fechados tais que

F1/k ⊂ ∪k
j=1int(Uj),

k∑
j=1

vol (Uj) < ε

seja P uma partição de A cujos subretângulos S estão em uma das

classes

S1 = {S; S ⊂ Uj, para algum j}
S2 =

{
S; S ∩ F1/k = ∅

}

seja M = supA |f(x)| (f é limitada, logo tem supremo)∑
S∈P

(MS(f)−mS(f))vol (S) =
∑
S∈S1

(MS(f)−mS(f))vol (S) +
∑
S∈S2

(MS(f)−mS(f))vol (S)

≤ 2Mε +
∑
S∈S2

(MS(f)−mS(f))vol (S)

Para S ∈ S2 temos: o(f, x) < 1
k
, ∀x ∈ S ∈ S2. Pelo lema existe uma

partição P ′ de S tal que

U(f, P ′)− L(f, P ′) < 1/k vol (S)

ou seja, temos

∑
S∈S2

[MS(f)−mS(f)]vol (S) <
1

k
vol (A) < εvol (A)

onde k é tal que 1
k

< ε. Logo

U(f,Q)− L(f, Q) < [2M + vol (A)]ε,

onde Q = S1 ∪ S2.


