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1. Propriedades Métricas do R"

O conjunto R™ das "n-uplas ” = = (xy,- -+ ,x,) com a "soma ”
r+y=(x1+y, -, Tn+yn), v,y €R"
e a "multiplicacao ” por escalar
A= Az, ,Axy,), AeER ex eR”

é um espaco vetorial real.

Produto interno Euclideano: z,y € R"
(z,y) = Ty + -+ + LY.

Este produto goza das seguintes propriedades:

L1 (z+y,z2) = (x,2) + (y,2), x,y,z € R™.
1.2 (A\z,y) = XMz,y), A€R ex,y e R
1.3 (z,y) = (y,z),V x,y € R".
[4 (x,z) >0, Ve €eR" e (z,2) =0<= 2 =0.
Norma Euclideana:z € R"
(1.4)= (z,z) > 0 e portanto /(z, r) é um niimero real bem definido

e é denominado "norma ” do vetor z, i.e.,
2] = v/ (z, z).

Exemplo: R?, z = (21, 23)

d=/T,a) = \Ja? + 23 = ||
NoR", |laf = v/aT+- - +a2.

Propriedades da Norma

N1 ||z >0, Vz € R™, ¢ [lz]| = 0 <= & = 0.
N.2 [[Az]| = [Al [|z]|, vz €R", VA€R.

Prova: © = (21, -+ ,x,), A\x = Az, -+, A\xy,)

(1) el = V)2 T+ Q) = /A2(a? + -+ 22) = A |l

N3 ||z +yl| <|lz||+ |ly||, Vz,y € R"* (Desigualdade Triangular).



LEMMA 1 (Desigualdade de Cauchy Schwarz). Dados z,y € R™

[z, )] < =l Iyl -
Prova do Lema: 0 < |[Az —y|° = (\z —y, Az — ) = X2 ||z|* —
Mz, y) = My, @) + |yl
A lz]|* = 2X z, 9) + |lyl* > 0, VA ER
A=b—4ac<0
A =4z,y)® —4lz]* Iy < 0= [z y)| < =l 1yl
Prova do (N.3): [ +y|”* = [[* + 2(z,y) + [ly|” < |l«[* +

2
2|l Iyl + lyll™ < (el + [lyl)?
Outras normas em R" :

a) Norma da Soma ||z||,

Dado z € R", z € (21, - -, z,), define-se
2], = lza] 4 - - - 4 2]

b) Norma do Maximo ||z

Dado z € R", z € (21, - -, z,), define-se
2] o = max{[z1],- - - |2a|}.
Relagao entre |[-[|, [|-[],, [/l :

a) ||zl < llzlly < izl

Prova:
lzlly = lza] + - 4[]
2]l oo = max{laa], - - -, [zn]}
lz;| <|lz|l,, Vi=1,---,n
dai

[wa] 4 ] <nflzfl
lall, < n 2],
Por outro lado,
lzi| < zq|+ -+ |za|, Vi=1,---,n

max {[oif} < foul + -+ |
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[l < NIl

b) Nzl < llzll < Vil

Prova:

max {|z;|} < |[z]| = [lz] <[]

1<i<n
Por outro lado, dado z = (z1,--- ,z,) € R, seja |z1| = ||z], . Entao,
21| = N2l oo » [2a] < M2l oo Jeal <l

o
Yo lal* < nllalll, = llz)* < nllelly = 2] < Vallz., -
i=1

Combinando (a) e (b), segue imediatamente que existem constantes

positivas cj, co, c3 € ¢4 tais que
a |zl < exflzlly < esllafl < call]

).

DEFINIO 2. Duas normas ||-||, e |||l, sao “equivalentes ” quando

existirem constantes ¢ € co, positivas, tais que
cll-lly < [y < ezl
Notagao: ||-f|; ~ ;-

LEMMA 3. ~ € uma relagcao de equivaléncia, i. e.,

(a) Se -y ~ I-lly entao |-l ~ Il -
(0) -l ~ Iy
(c) Selllly ~ Ml ell-lly ~ l-lls, entao [l ~ -]l

ExXAMPLE 4. C°([a,b],R) = {f : [a,b] — R, continuas}
(a) Produto Interno em E = C°([0,T],R) (dim oo, base {1,¢,t* ---})

(f.9) = / F(Dg(b)dt

b
(f,f>—o<:>/ fAt)dt=0= f =0.

Se f(xo) > 0, entao f?(xg) > 0, Vo € (xg—¢€,z0+¢€) (pela continuidade
de f) = [} Pt >[5 fdt > 0.



(Todo produto interno gera uma norma)

Norma associada:|f| = \/{I.]); [ € E ou||fl| = { [} F2(t)dt}?.
(b) Outra norma em E : || f||, = maxyy |f(t)|. (Ndo provém
de um produto interno, o maximo € atingido, dominio compacto, func¢ao

continua. Se for apenas limitada, || f| . = sup|f(t)]).

REMARK 5. Uma norma ||-|| num espago vetorial E provém de um

produto interno <= ¢ valido a lei do paralelogramo:
2 2 2 2
2+ ylI* + flz = yll* =2 (=1 + o) -

Distancia em R" : Dados z,y € R" a distancia entre x e y com

relagdo & norma ||-||, é definida por:

d(z,y) = [l =yl

Trés subconjuntos especiais

a) Esfera de centro z( e raio r
Sp(wo) = {z € R d(z,m0) =1} ;
b) Bola aberta de centro xj e raio r
B, (zo) ={z € R", d(z,z0) <T};
c¢) Bola fechada de centro z e raio r
B, [xo] ={z € R", d(z,z0) <r};
B, [xo) = Br(z9) U Sy(x0).

EXAMPLE 6. R, ||| LI, 5 Il
(a) Bola Euclideana

d(z,0) = ||z|| <r e/ 2?2+ 23 <real+as =1

(b) Bola do Mdazximo
d(z,0) = ||zl <7 =max{|z1],|ze|} <7 =|21] <re |x] <
(c) Bola da Soma

lelly < v = fas] + || <7
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2. Topologia do R"

Seja S C R™ um subconjunto e zy € R” um ponto fixado.

Posicao de zy com relagao a S :

(A) Existe € > 0 tal que Be(zo) C S;

(B) Existe € > 0 tal que B(xy) C 5S¢ =R" — S

(C) Para qualquer € > 0, a bola B(xy) contém algum ponto de S
e algum ponto de S°.

No caso (A) o ponto xy é denominado ”ponto interior”. No caso

Y

(B) o ponto ¢ denominado ”ponto exterior ” e no caso (C) ele é dito
"ponto de fronteira ”.

Notacao:

Os pontos interiores a S constituem o ”interior do conjunto S” que

é denotado por int(S); o "exterior de S” sera denotado por ext(S) e

sua fronteira por 05. O "fecho de S” e o conjunto S = S U 9S.

EXAMPLE 7. S = {(x,y) € R?, y >0} U{(0,-1)}
int S = {(z,y) € R? y >0}

a nao € ponto interior, nem exterior.

ext S =int S¢ = {(z,y) € R% y < 0} — {(0,-1)}
05 = {(z,y) e R% y =0t U{(0, 1)}
S=S={(v.y) €R% y>0}U{(0,~1)}

int SCS

os c S

ExaMPLE 8. S = {(z,y); 1 < 2* + y* < 4} ndo € aberto nem
fechado.

R™ € aberto e fechado.

intS = {(z,y); 1 <2®+y* < 4}

ext S ={(z,y); 2 +y* <1 ou z*+y* >4}

0S ={(z,y); 22 +y*=1oua®+y*=4}

S=A{(z,y); 1<2® +y* <4}

mntS €S

2S¢ S



DEFINIO 9. S C R" € dito  "aberto 7 quando intS = S, i.e., todos
0s pontos de S sao interiores. Quando S C S entao S é denominado
"fechado”.

EXAMPLE 10. 1) B,(zo) ¢ um conjunto aberto. De fato, seja x €
B.(xg) ee > 0, come =1 — ||t —xo|| > 0. Afirmagdo: B.(x) C
B,(x0). Sejay € B.(z), entao |y —z| < ¢ e|y—zol < |y—z[ +
|z — zol] < e+ ||z — o] =1

2) 0B, (z0) = Sy(x0) = {z €R"; ||z — zof =71}

3) B.xo] = B(x¢) US,(z0);

OB, x| = 0B, (x) = Sy(x0) = 0B,[xo] C Br[ro] = Br[xo] € um

congunto fechado.

Propriedades:

Ay) Se A e B sao abertos, entao AN B é aberto;

Ay) Se {A,\} é uma colegao de abertos, entao UyA, é aberto;

Fy) Se F e G sao fechados, entao F'U G é fechado;

Fy) Se {F,} ¢ uma colegao de fechados, entdo F' = NyF) é fechado.

Prova: Ay) Sejaz € ANB,x € A= Je; >0, B, (x) C Ajdque
A é aberto.

r€B=3dey>0,B.,(x) CB.

Tome € = min{ey, £2} entdo
B.(z) C B, (z) C A, e B(x) C B.,(vr) C B= B.(x) CANB=

x ¢ interior.
Az) Seja x € UyA) = A, 3)\,$€AA:>3€)\>0; Ba/\(l‘) C A\ =

B., () C UyA) = x é interior.l

ExXAMPLE 11. 1)A,, = B1(0) € aberto e B = N2, B1(0) = {0},
pois OB = B = 0B C B.
2) I, = (_%, 1+ %) aberto, NI\ = [0, 1] que € fechado.

LEMMA 12. F C R" € fechado < FC ¢ aberto.

Prova: (=) Suponha F fechado. Sejaz € F© = 1z ¢ F = z ¢
OF = x €ext F = 3¢ > 0tq. B.(z) C FY . FC é aberto.

<) Suponhamos agora que F¢ é aberto.
(<) Sup gora q
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Seja x € OF. Se x estivesse em F| existiria ¢ > 0 tq B.(z) C F¢
e isto contradiz a definicao de fronteira. Logo, © € F' e assim 0F C F
e F ¢ fechado.l

Prova de F; :  (FUG)Y = F® U GY é aberto, pelo lema e prop.
Ay . FUG é fechado (lema).H

Prova de Fy : [M\F)]¢ = UyFY aberto (lema + A,).H

EXAMPLE 13. [ = (0,1); I, =[1,1- 3], n=1,2,3,--- UL, =1.

n

A colegao de todos os subconjuntos abertos do R™ é a ”Topologia

Usual 7 do R™.
Topologia Relativa

Seja S C R™ um subconjunto .

DEFINIO 14. Dizemos que A C S é “aberto em S” quando existir
um aberto A* do R™ tal que A =S N A*.

PROPOSITION 15. Um subconjunto A C S € aberto em S quando:
dado x € A, existe € > 0 tal que B-(x) NS C A.

Prova: Se A é aberto em S, existe A* aberto do R™ tal que A =
SN A* Dado x € A, entao x € A* e portanto existe ¢ > 0 tal que
B.(xz) C A*. Logo, SN B.(x) C SNA* = A.

Reciprocamente, suponhamos para cada xr € A existe ¢, > 0 tal
que B () NS C A. Seja A* = UzeaB., (z) (aberto do R™). Temos
SNA* = 5N (UgeaBe, (x)) = Ugea(S N B, (x)) D A, por outro lado
SNA* =Ugea(SN B, () C A.

EXAMPLE 16. S = {(z,y) € R%;y > 0}

A={(z,y) €5; * +y* <1}

B={(z,y)€S; 2*+y>°<1 ou 22 +y*=1cx >0}

C={(z,y) €S; 2* +y*> <1}

i)A ndo é aberto no R?

A € aberto em S, porque A =S N B1(0).

ii) B ndo € aberto em R? nem em S, pois Iz € B tqVe > 0, B.(z)N
S = B.(z) ¢ B.

iii) C' ndo € aberto em R? nem em S.



iw) C¢ =S —C ¢é aberto em S, pois C¢ = SN B|0] € aberto em S
mas nao no R

Conjuntos Conexos

S cR"

DErINIO 17. S ¢ "CONEXO 7 quando nao puder ser decomposto
em unido de dois subconjuntos abertos (em S) disjuntos e ndo-vazios,
1sto €, se

S=AUB
com A e B abertos (em S) e ANB =0, entao A =10 ou B = .

EXAMPLE 18. i) A bola B.(x) € coneza,
i) S = {(x,y) € R? z*>—y* > 1} € desconexo pois S = AUB, onde
ANB# 0 e A= {(z,y) € R*} z <0}NS, B={(z,y) €R* z > 0}NS

ambos abertos em S. Note que A e B sao conexos.

PROPOSITION 19. Seja {S,} uma familia de conexos do R™ com
NaSa # 0. Entao S = U,S, € conexo.

Prova: Suponhamos S = AU B, A e B abertos em S e disjuntos.

Fixemos xg € N,S,. Temos que
Se =85.N8=(SaNA)U(S,NB)
=V, UW,
como S, é conexo, entao S, N A = 0 ou S, N B = () , para cada a.
Suponhamos que S,,NA = (), para algum «y. Mostremos que S,NA =
0, Va. De fato, xg € NSy = g € Soy = 29 ¢ A = 29 € B =
20 € SN B=S,NB#0=S,NA=0,Va. Logo, A=SNA=
(UaSa) NA =U4(SanA)=0.1

EXAMPLE 20. Os ”Retdngulos do R?” sdo conexos .
R=I x J; I,J C R intervalos, firemos (a,b) € R .
Cy =1 x{b}U{z} x J € conexo
“0s intervalos da reta sao coneros
R = U,¢rC, € conexo.

(a,b) € NyerCh.

”

ProposiTION 21. Um subconjunto S C R € conexo & S € um

intervalo.
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Prova: (=) i) Se S nao é um intervalo, entdo S nao é conexo.

S nao é um intervalo = existem a,b € Se a <c<b,comc¢S.
S = [(—o0,c) N SIU[(c,00) N S|

> (- /

<) Suponha que S é um intervalo e que S nao é conexo.
S=AUB,Ae Babertosem S, ANB=0e A#0 ,B # 0.

Sejama € Aeb € B, com a < b. Como S é um intervalo e a,b € S
entao [a,b] C S. Seja ¢ = sup{[a, b] N A} entao

i)a<c<b

(i) a < c

provade (ii): a € A=30>0; (a,a+0) = (a,a+9)NS C A.

Sea=c¢, entdo A C | —00,a] = (a,a+ ) N A= 0 (contradi¢ao).

(iii) ¢ < b

beB=36>0;(b—¥4b=(0b-06bNSCB

se b = ¢, entao b —  nao é cota superior e portanto existe x €
|b—9,0)N A= 2 € AN B (contradigao).

Logo, a < ¢ < b.

Afirmacao: ¢ € AN B (contradizendo AN B = ().

(i) A e B sdo fechados em S, isto 6, A=Ae B=B.

(ii)apk=c+t—c=>ceB

(fii)yy=c— 1+ —c=>ceA

=cecANBNA

DEFINIO 22. Seja S C R™. Um ponto o € R™ € um “ponto de
acumulagdo 7 de S quando: Ve > 0, B:(xo) contém uma infinidade de

pontos de S.

EXAMPLE 23. (1) S=(0,1) CR=(0,1) C R.
Dado 0 < xy < 1, entdo (zo — €, kg + £) N S =intervalo (ndo-
degenerado)= (xo—e,xo+e)NS € infinito. xo € ponto de acumulagdo.

S’ = conjunto dos pontos de acumulac¢ao de S = [0,1].
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(ii) S ={(1,1), ne N} C R?, &= {(1,0)}.
fiii) S = {((—1)", 1); n € N} C R%, &' = {(=1,0), (0,1)}

‘n
.

DEFINIO 24. Um subconjunto S C R™ é “limitado ” quando existir
R >0 tal que S C Bg(0).

TEOREMA 25. (Bolzano-Weierstrass ) Todo subconjunto S C R™

infinito e limitado tem um ponto de acumulacdo.

Demonstracao:

1% Caso: Unidimensional

Seja a = inf S, b = sup S. Entao, S C [a, b].

(i) Se a for um ponto de acumulagao de S o Teorema estard provado.

(ii) Suponhamos que a néao é um ponto de acumulacao de S.

Seja L = {x € R, [a,z] NS é finito}

(i) L # 0.

Prova: a nao é ponto de acumulacao de S = 40 > 0 tal que
(a — d,a+ ) NS é finito. Escolha = € [a,a + §[, x € L, porque
la,z] NS Cla — §,a+ d[NS.

(ii) L é limitado superiormente.

Prova:

Sejay > b, comy € L

[a,y] N S é finito = [a,b] N S é finito= S ¢ finito (contradi¢ao).

Logo, L C (—o0,b]

Seja 0 = sup L.

Afirmagao: 3 € 5. De fato, se 3 nao fosse ponto de acumulagao
de S existiria ¢ > 0 tal que (B—¢, 5+¢)N.S é finito. Sejam x € (G—¢, )
ey € (8,08 +¢) entao

[z,y]NS C (B—¢,0+¢)NS é finito. Como [a,z] NS é finito entao
la,y] NS C ([a,z] N S) U ([x,y] NS) é finito=y € L (contradi¢ao).

20 Caso: Multidimensional

Seja {x1,X2, - -+ ,Xp, -+ } C 5, limitado com x; # X, i # j, X}, =
(ks 23, ,ap) € S TR, 2] < x| < €

Sy ={xl,zl,xl, -} CR

Se={a3,23,23,---} CR
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Sk ={af, 25,25, } CR
Supor S; é infinito e sendo limitado possui um ponto de acumulacao.
Seja P = (z,as, -+ ,a,) € R", onde a; é um ponto de acumulagio
de S;, se existir, ou a; é o valor constante em S;, se S; for finito. P ¢

ponto de acumulagao de S.

Conjuntos Compactos
(1) Seja S C R™ um subconjunto e seja C uma colegao de abertos
do R"™ cuja uniao contém .S, isto é,
S C Ua,ecAn.
Uma tal colecao C é denominada ”cobertura aberta ” de S.

Uma 7"subcobertura aberta ” de S é um subconjunto C* de C que

ainda é uma cobertura de S.

ExXAMPLE 26. 1. Seja S C R™. Dado r > 0 fixzado, considere a
sequinte

C={B.(x),z€ S}, SCR"
C € uma cobertura aberta de S. A colegao
C*={B.(z), € SNQ"}
Q € denso em R = Q" € denso no R".
SNQ" é denso em S (SNQr=5SNQ"=S).
Dado x € S, sejay € SNQ™ tal que ||z —y| < r ( por densidade)
x € B.(y) e B.(y) € C*. Logo, C* é uma subcobertura aberta.
2.C={(,1);n=123"}
C € uma cobertura (aberta) de (0,1).

Prova de 2.: Seja z € (0,1). Como lim £ = 0, existe um indice ng
tal que % <x<lVn>ny=xc¢c (%,1)..
C nao admite subcobertura finita.
Prova: Seja n; <ng <ng <---<ny
Cr={G 1;i=1- kt=U(;.1) =(;,1) = (0,1) ndo é

compacto.

DEFINIO 27. Um subconjunto K C R™ é “compacto 7 quando toda

cobertura aberta admaitir uma subcobertura finita.



12

ExamMPLE 28. (1) (0,1),(0,1],[0,1) ndo sdo compactos para [0,1)
considere C = {(—%,1—1); n € N}.
(2) K =[a,b], —o0o <a<b< oo écompacto.

Prova de (2): Seja C uma cobertura aberta de [a,b]. Seja L =
{z € [a,b]; [a,z] pode ser coberto por um nimero finito de abertos de
C}

-L # 0 (porque a € L)

-+ L é limitado (L C [a,b]).

Seja v = sup L

-+« € [a,bl], pois [a,b] é fechado.

Afirmacao: a € L

Como « € [a,b] e C é uma cobertura de [a,b] = JA € C tal que
a € A. Logo existe § > 0tq (a —d,a+9) C A= Jr € ;5 < x.
Sejax € ANL,a—0 < x < «, temos [a,z] C Aj U Ay U---U Ay,
AjeC=la, 0l CAU---UAUA=a e L

Afirmacao: a = b.

Se a fosse < b, existiria A€ Cex € Atq. a<z <be|nx] C A
Logo [a,a] C AyU---UAelfa,z] CAU---UAUA A A eC=
x € L(contradigao).l

ExXAMPLE 29. K C R" e L C R™ sao compactos, entao K x L C

R™ x R™ ~ R"™™ ¢ compacto.

Dados (z,y) € R" x R™, seja C = {V x W} uma cobertura aberta
de K x L. Sejam Cx = {V} e C, = {W} temos que Cx e Cp ad-
mitem subcoberturas finitas, porque K e L sao compactos, C; =

{‘/17‘/27"' a‘/r}v Cr :{W17W27"' aWs}

I i

K xLC Uviijec*‘/i X Wj.
ExAMPLE 30. S C R"™ um conjunto finito é compacto.

S: {371,1'2,“' ,l’k}
Seja C uma cobertura de S, entao x1 € Ay,--- ,x, € A, ,A; € C
= C* = {4, -, Ay} cobre S.
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ExXAMPLE 31. Se K € compacto e ' C K € fechado, entao F ¢é

compacto.

Prova: Seja C uma cobertura de F. Entao, Cx = CU{R" — F'} ¢é
uma cobertura aberta de K a qual admite subcobertura finita
K C (A1UA2U"'UA]€)U<R”—F) iFCAlLJAQU"'UAk..

TEOREMA 32. (Heine-Borel) K C R" é compacto < € fechado e

limitado.

Demonstragao: (<) K limitado = K C [" =1x---x I, I = [a,}].
Temos que I™ é compacto (veja o exemplo acima). Como K é fechado
e K C I" = K é compacto.

(=) Suponhamos K C R"™ compacto.

(i) K ¢é limitado

C = {Bi(x), x € K} é uma cobertura aberta de K e sendo K
compacto esta cobertura admite uma subcobertura finita, isto é,

K C By(z1)U---U By (x,)

Dado x € K, x € By(z;), para algum i = 1,2,--- | 7.

[zl = llz =z + 2]l < llz =zl + |zl <1+ [lall <1+ [l +

ol

|lz|| < M,Vx € K.

(ii) K é fechado

Se K nao fosse fechado, existiria x € 0K tq. « ¢ K. Tome C =
{R" — B%[az],n € N}.

Sejay € K econsiderentq. + < ||z —y| =y ¢ Bilz] =y e R"—

Bi[z]. Portanto C é uma cobertura aberta de K. Seny < mng < --- <n,
entao
Upea (B [8)° = Upey (B — B ) = (B [e])°

J

isto contradiz o fato de x € 0K.
3. Sequéncias em R"
Uma sequéncia em R” é uma funcao f : N — R" definida no con-

junto

N={1,2,---} dos nimeros naturais.
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Notagao: (z,) representa a sequéncia f: N — R” tal que f(n) =
Ty

Convergéncia:

Fixemos uma norma ||-|| em R". Dizemos que uma sequéncia (x,,)

em R" "converge ” para x quando:

(2) Ve > 0,3ng tal que ||z, — z|| <e,¥n > ng

Interpretacao:
|z, — || < e & x, € B(x).
A sentenga (2) afirma que fora da bola B.(x) existe, no méximo,

nog — 1 termos da sequéncia.

Exemplo: (1) z, = (%, —757) (sequéncia em R, -ll.)
Jon = Ol = Izl = max{?, g} = 2

Ve > 0, seja ng € N tal que = < e. Sen > ng entdo + < L < ¢,
no n ng

Logo,

|, — 0|l <&, Vn >ng =z, — Ooulimz, = 0oulim(;, —=5) =
(0,0).
(2) yn = (=)™, %) (ndo converge)
Yon = (1, %) — (1,0)
Yon—1 = (=1, 577) — (=1,0).
O que acontece com a convergéncia quando se muda a norma do
R™ ?
[P~ & ala] <z < ez, Vo e R
Seja (x,) uma sequéncia convergente na norma | - |.
Ve >0, dng €N, |z, — x| <&, Vn > ny
Logo, ||z, — x| < ca|zn — 2| < c2e,¥n > ny = x,, — x, na norma

Resultados Classicos
1. Toda sequéncia (z,) convergente é limitada.

Prova: dng € N; ||z, — x| < 1,¥n > ng
[znll < flzn =2l + [lz] < T+ [zl ¥n = no.
Seja M = [lza| + -+ + flznll + 1+ 2]l = flznll < M, V0.
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2. Seja T = (Tp,Yn, 2») uma sequéncia em R3. Entdo, 7', —
T = (2,9,2) & Ty — T, Yp — Y, Zn — 2.
Prova: (=) Suponhamos que 7', — Z e consideremos R*® com a
norma ||-|| -
Dado ¢ > 0, Ing € N tal que |7, — 7|, < &,Vn > ng. Como
I %0 = B le = mac{zn — 2], lyn — 9], |20 — 2[} segue que 2, — 1,
Yn — Y € 2, — 2.
(<) Consideremos em R? a norma |||, :
T, — = Ve>0,3ng; [z, — 2| < 55 n>m
Yo — Yy =>Ve>0,Ing; |yn —y[ < 55 n>my
2y — 2= V¥e >0,3n3; |2, — 2| < 55 n>ng
Escolha ng = max{ny, na,n3} se n > ng, entdo
|zn — ||, = |20 — 2| + |lyn —y| + |20 — 2| <&,V > no.M
3. Seja x, = x,y, > yemR"e N\, — A em R.
Entao:
(3.1) zp +yp — x +y;
(3.2) Ay, — Az
(3.3) (Tns Yn) — (T, Y)-
Prova (3.2): Seja ¢ > 0. Existe np € N tal que |\, —\| < € e
|z, — z|| < &,Vn > ng. Temos
Ay — Az|| = [[Anxn — Azy + Az, — Az|| < ||( A — N ||+ M (zn — 2)]|
< A = Alllznll + [Afl2n — |
Seja M > ||z, ; ¥n (tal M existe porque (z,) sendo convergente é
limitada).
Logo,
IAnzn — Az|| < M | Ay — A+ A\ ||zn — || < Me+ |A|e,Vn > no.1
(3.3) ||z, — z|| < &,Yn > ng
1yn —yll <e,Yn = ng
[(@ns Yn) — (T 9)| = K&ns yn) — (@, y) + (@0, y) — (2, 9)]
< (@n, yn = )| + {20 — 2, 9)]
< llzall llyn =yl + llyll 2 — ||
<e(M + |lyl|),Vn > no.M

4. x € S ©Existe um sequéncia (r,) em S que converge para .
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Prova:

(=)reS=5SUds.

Se x € S considere a sequéncia constante x,, = z,Vn. Entao (z,) C
Sel|r,—z|=0,Vn =2, — x. Sex ¢S, entdo x € IS e para cada
n € Na bola B1 () contém um ponto x,, de S. Temos que

(i) (zn) C S;

(i) [|&n — 2| < £ = 2, — @

(<)z, — 2,2, €8, Yn.x €S xcSouxcds.

Se x ¢ S, entdao x € 0S. De fato, Ve > 0, a bola B.(z) contém
os termos x, para n > ng. Logo, B.(x) NS # (. Como x ¢ S, entao
B.(z) NS¢ # . Logo, = € S.

4. Subsequéncias

Dada uma sequéncia x,, = (zl,22,--- ,2)) em RY a restricio de

n’ n’ rn

(z,) a um subconjunto infinito de N é denominada ”subsequéncia ”
de (z,).

EXAMPLE 33. x, = ((=1)", ;25); n € N. Considere N; = {2,4,6,---} C
N, N, = {1,3,5,--- } C N. Temos que (z)nen, = {(1,%),(1,3),(1,2),--- } —
(1,1)

(xn>n€N2 = {(_17 %)7 (_17 %)7 (_17 %)7 o } - (_17 1)

Em geral: N ={n; <ny <ng<---}

(2, )ken € uma subsequéncia de (z,,).

LEMMA 34. Se (x,) converge para x entdo qualquer subsequéncia

de (z,,) também converge para .

Demonstracao: Dado € > 0,dng € N tal que

|zn — || <&, Yn > ny.
Se ny > ng entao ||z, —z| <c.l

PrRoOPOSITION 35. Todo subconjunto limitado S C R™ possui uma

subsequéncia convergente.
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Prova: S C R™ um subconjunto limitado. Suponhamos que S é
infinito. Pelo Teorema de Bolzano-Weierstrass S tem um ponto de
acumulacgao x.

Para n = 1 escolha x,, € Bi(z) N S; x,, # .

Para n = 2 escolha x,,, € B) ()NS5 xp, # X,

Para n =k, escolha z,, € B1(x) NS; @y, # @n;, Vi

@0y, — 2| < 7 = 0=z, — @

Se S for finito considere a subsequéncia constante.ll

PROPOSITION 36. Seja S C R™ com a sequinte propriedade: Toda
sucessao de pontos de S possui uma subsequéncia convergente. Entao,
S € limitada.

Prova: Suponha que S nao ¢ limitado. Para cada n € N, podemos
encontrar x, € S tal que ||z,|| > n. Nenhuma subsequéncia de (z,)
¢ limitada, pois ||z, || > nx — oo = (x,) nao possui subsequéncia

convergente.ll

ProproOSITION 37. S C R" é compacto <toda sequéncia de pontos

de S possui uma subsequéncia convergente para um ponto de S.

Prova: (=) Suponhamos S compacto e seja (z,) uma sequéncia
em S. S é limitado = (x,,) é limitada= (z,,) possui uma subsequéncia
convergente, seja x = lim x,,,. Temos que (z,,) C S = x € S. Como S
é fechado = S =S =z € S.

(<=) Pela proposicio anterior, segue que S é limitado. Dado = € S,

entdo & = limz,, 2, € S=2€ S=5SCS=95=8= 8¢

fechado.l
Sequéncias de Cauchy

Uma sequéncia (z,) em R™ é de Cauchy quando : Ve > 0, dng €
N; ||zn — xm|| < e, Yn,m > ny.

EXAMPLE 38. S = (0,1, z, =%, y, =1—- 1 n>2 limz, =0,

limy, = 1; (yn) converge em S (porque limy, = 1 € S), (x,) nao
converge em S (porque limz, =0 ¢ S).

PROPOSITION 39. Toda sequéncia convergente é de Cauchy.
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Prova: zp — x; Ve > 0, Ing € N | ||z — z|| <&, Yk > no.

ltn — zml| < ||Tn — || + [Jzm — z|| < 26, my,n > ny.A
LEMMA 40. Toda sequéncia de Cauchy € limitada.

Prova: dng € N; ||z, — x| < 1, n,m > ny.
|20 — Zno |l <1 = [Jan]] < 20 — pgll + |20, | <1+ ||, ]| - Daf se
conclui o resultado.l

PROPOSITION 41. R™ ¢é completo (ser completo significa que toda

sequéncia de Cauchy é convergente).

Prova: Seja (x,) de Cauchy em R"™. Pelo Lema (z,) é limitada e
portanto (x,) possui uma subsequéncia (z,, ) convergente para x € R".

|zn, — || <&; nk > np. Assim temos que

ey — || < ||Xn, — znl| + |20, — 2| < 2¢, n>ne.M

(—1)™ nao é de Cauchy = (—1)" é divergente .

(=" = (=) =2

s

COROLLARY 42. Todo subconjunto (subespago) fechado do R™ é

completo.

Prova: Seja (z,) de Cauchy em S = (z,) é de Cauchy em R" =
x, — x em R" (pela completeza do R™). Como (x,) C S entdao z €

S=38.



CHAPTER 2

Funcgoes Continuas

DErFINIO 43. f: S CR" - R™ 29 € S. f € continua em xo quando
"pontos vizinhos 7 de xqy sdo transformados em “pontos vizinhos 7 de
f(zo). Analiticamente, f € continua em xq, quando: Ye > 0, 36 > 0 tal
que f(Bs(zo) NS) C Be(f(x0)).

Equivalentemente: x € S, |jxv — xo|| < = || f(z) — f(zo)| <e.

Exemplos do Calculo:

(1) f:R? > R; flz,y) = 72, se (z,y) # (0,0) e £(0,0) =0.
)

Vamos investigar a continuidade em g = (0,0).

_ ST
Temos que: [|(z,y)|| = /2> +y?el|(z,y) — (0,0)]] = v/a? + y*.

Se /2 4+ y? < d entao || f(z,y) — f(0,0)|| < 6. Dadoe >0

tome § = €.

B s (1,9) £ (0,0)
(2) flz,y) = { 0, se(z,y)=(0,0)

A fungdo f(x,y) nao é continua na origem, pois

z2y _ a2y z24y? 2 2 _
T2 4y? - 0| = T2 4y? < 22 VT +ys =

2 1
f('rvy)_ﬁ_ia SGZE#O
f(0,0)=0
Tomandoe = 1, #6 > 0tal que |f(z,y) — f(0,0)| <&, V(z,y) €

Bs(0,0).
f nao € continua em xo quando: 3¢ > 0; Vo > 0 se tem
| f(x) = f(xo)|| = € e ||z — 20| <9, para algum z € S.

(3) Projecies: mj : R" — R; 7j(x1, 09, ,2,) =14, j=1,-+ ,n.

() = mj(xo)| = [2; — 25| < [lw — ol

19
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Dadoe > 0,sejad = €. Se ||z — x| < 9, entdo |7m;(x) — m;j(x0)| <
e. Logo, ; é continua em qualquer ponto zp do R™.
(4) Fungoes Componentes
Seja f S CR" — R™ e defina f; =m0 f
f(x0) = (Y1,92. ,ym) € R™, X0 = (25, ,75) € S C

R™,
7;(f(xo)) = yj, isto é, f;(x0) = ;-
f: (f17f2>'" 7fm)
As funcoes fi, fa, -+, fmn s@0 as “componentes de f 7 .

fi:SCR*—R.

PROPOSITION 44. Sejam f,g : S C R — R™ continuas em xqy e
A € R. Entao as fungoes f+ Ag e (f,g) sdo continuas em xy.

Prova: Dado € > 0, existem 97, d > 0 tais que
zeSellr—aol <o = |f(x) = flzo)l <3
zeSelr—uxl <dr=llg(x) —glzo)ll <55
1(F +29) (@) = (f + Ag) (o)l < IF(2) — Flao) I+ lg(z) — glz0)]
<5+ A 3 = €
quando z € S e ||x — xo|| < § = min{dy, d2}.
Para a funcao © — (f(x), g(z)), temos
[(f(2),9(x)) = (f(20), 9(w0))| = =
[(f(2), g(x)) = (f(20), 9(2)) + (f(x0), 9(x)) — (f(20), g(x0))]
< |[(f(x) = f(@o), g(2))| + ([ (20), 9(x) — g(20))]
< |Nf (@) = flzo)ll lg(@) ]l + 1f (zo) [lg(x) — g(zo)
Ve > 0,36; > 0 tal que ||f(x) — f(zo)|| <&, se ||z — x| <
6o > 0 tal que || f(z) — f(xo)| < 1, se ||z — xo|| < b2
365 > 0 tal que [|£(z) — f(xo)]| <, se [lz — zo]] < 6
tome & = min{dy, 9z, d3}. Logo,
[(f (@), 9(x)) = (f(@0), g(xo))| < (X + [[f (o)l + llg(z0)]]). M

COROLLARY 45. A fungdo produto : R? > (z,y) — zy € R é
continua.
Prova: mm,m : R? = R, m(z,y) = x, m(z,y) = y sdo continuas e

xy = (my, mo).M
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PROPOSITION 46. f: V CR" = R™, g: W — RP com f(V) C W.
Se f € continua em xy €V e g é continua em yo = f (xo) € W, entao

go f € continua em xy.

Prova: ¢ é continua em yo = f(z0) Ve > 0, 35 > 0; g(Bs(f(zo)) N

W) C B(9(%0))-
f é continua em xy, 30" > 0; f(Bg(xo) NV) C Bs(f(xg)) C

Bs(f(x0)) "W = g(f (By (x0) N V) C g(Bs(f (o)) NW) C Be(z0)
= (g o f)(B(sl(ﬁo) N V) C Ba(g o f(l‘o)).

PROPOSITION 47. f = (f1, -+, fm) : S CR™ — R™ € continua em

xy € S & cada componente f; : S — R € continua em xy.

Prova: (=) f; = o f é continua.
(<) Suponhamos cada componente f;, j = 1,2,--- ,m

continua em xq. Temos

1f (@) = f(@o)llg = [f1(x) = fr(@o)| + -+ + [fm(2) = fim(20)|

Ve > 0,33 61,00, ,0,, > 0 tais que x € S, o — xo]| < I =
|fi(x1) = fi(z0)| <e/m, k=1,--- ,m. Tomed = min{oy,dz, - , 5y} se

|t — x| < 0= ||f(z) = flzo)]| <e/m+---+e/m=ch

PROPOSITION 48. Uma funcdo f : S C R — R™ € continua no

ponto xo de S < para toda sequéncia (x,) em S, x, — xy, tem-se
f(@n) = f(xo).

Prova: (=) Suponhamos f continua em z, e seja ¢ > 0 dado.
36 > 0 tal que f(Bs(zo) NS) C B:(f(z0)). Como x,, — xg, a0 § > 0

corresponde um ng € N tal que
|xn — zo|| < 9, n>ng = x, € Bs(xg) € x, €S
= x, € Bs(zo) NS = f(z,) € Bo(f(0))

& |[f(@n) = flo)ll <&, n =m0 = flan) — f(20).
(<) Suponhamos que z, — %o, ,, € S = f(z,,) — f(z0). Se f nao

fosse continua em xg, existiria um € > 0 e um y, € S tal que

e = 2ol < & () — Flan)]| > &

o que é uma contradicao com a hipotese.
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sen %, x#0

0 =0 (nao € continua em x = 0)

EXAMPLE 49. f(x) = {

In = nwi—% — 0, f(r,) = sen (nm+ 3) = (=1)" diverge.

DErFINIO 50. f : S C R* — R™ € dita "continua ” quando for

continua em cada ponto de S.

PROPOSITION 51. f : S C R — R™ ¢ continua < f~1(A) é
aberto em S, para todo conjunto A aberto do R™.

(Exercicio: pode-se substituir aberto por fechado)

Prova: (=) Suponhamos que f ¢é continua e seja A C R™ aberto.
fA) ={zeS; flx) € A}

seja x € f71(A), entdao f(x) € A e como A é aberto, Je > 0 tal
que B.(f(x)) C A. Como f é continua em x, existe um § > 0 tal que
f(Bs(z) N'S) C Be(f(x)). Logo,

Bs(z) NS C fH(B:(f(x))) € fH(A).

(<) Suponhamos que f~!(A) é aberto em S, para todo A C R™
aberto. Mostremos que f é continua em x € S. Seja € > 0 dado. O con-
junto A = B.(f(z)) é aberto em R™ e portanto A; = f~1(B.(f(x)))
¢é aberto em S e x € A; (pois f(z) € B.(f(z))) -

Logo, 36 > 0 tal que Bs(z) NS C Ay = f(Bs(x)NS) C f(A)) C
B.(f(z)).®

EXAMPLE 52. A = {(z,y) € R?; 22 —¢*> < 1} . f(x,y) = 2% — ¢*

¢ continua e A = (] — oo, 1[) € aberto.

EXAMPLE 53. B = {(z,y) € R* 22+ y? = 1}. g(z,y) = 2*> + 4> é
continua e B = g~*({1}). Como {1}¢ =] — o0, 1[U]1, +o0[ € aberto =
{1} € fechado = g~*({1}) € fechado.

COROLLARY 54. Se f: S C R® — R™ € continua e A € aberto em
f(S), entdo f~Y(A) € aberto em S.

Prova: A = f(S)NV, V aberto do R™ = f~1(A) =Sn f (V)¢
aberto em S.H
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PROPOSITION 55. Se f: S C R* — R™ € continua ¢ S C R" €

conexo, entao f(S) é conexo.

Prova: Suponhamos que f(S) = AU B; onde A e B sao abertos
em f(S), ANB=0eA#0eB#0. f(S)=AUB = S =
Y A)U f~1(B) = S é desconexo (contradi¢ao).l

COROLLARY 56. Se S C R™ € conexo e f : S — R € continua,
entdo f assume todos os valores entre f(a) e f(b). (f(a) < f(b)).

Prova: f(S) C R™ é conexo = f(S) é um intervalo de extremos

ae (. f(a), f(b) € f(S) e portanto todo y € [f(a), f(b)] estd em f(S5).
Logo, existe z € S; f(x) = y.A

ProrosIiTION 57. Se f: K C R" — R™ € continua e K é com-

pacto, entao f(K) é um compacto do R™.
Prova: Seja {A,} uma cobertura aberta de f(K).
f(K) - U)\A)\ = K C U)\fil(AA)

{f7'(A\)} é cobertura aberta de K a qual possui uma subcobertura
finita
{7 A A, F (AN
segue que
KcU_ f7(A)) = f(K)cU_ A, 1
ProrosiTiON 58. f : K C R" — R™ continua no compacto K.

Entao, f ¢ limitada e atinge seus extremos, isto €, existem xp; e T, €

K tais que

faa) = max{|f(@)]; @ € K}, f(2n) = minf|f(2)]; z € K}.

Prova: f(K) é um compacto de R™ e portanto fechado e limitado.
Logo, f é limitada. Seja M = sup,.x |f(z)|. Para cada n € N, existe
r, € K tal que

1
M—— < f(x,) < M; ¥n e N.
n
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Como K é compacto, a sequéncia (z,) de K possui alguma subsequéncia

convergente. Seja (z,, )ren uma tal subsequéncia

1
M- — < f(z,,) <M, VkeN
ng
Seja xp = limx,,. Temos que z);, € K (K fechado) e como f é

continua, limy_, f(xn,) = f(xum), concluimos que
M < f(xp) <M - f(xy) =M1
REMARK 59. : ACR", g € R"
d(xg, A) = inf{||xg — z||; x € A}.
Dados A, B C R"™, define-se
d(A, B) = inf{d(z, B); x € A}.

Se F € fechado e K € compacto, com K N F =0, entao d(F, K) > 0.

A figura acima mostra um exemplo em que d(F,G) = 0, FNG =
(), F,G fechados.

1. Homeomorfismo

Sejam X C R™, Y C R". Dizemos que a funcao f: X — Y é um
homeomorfismo entre X e Y se for uma bijecao continua, cuja inversa
f~1:Y — X também seja continua.

Como exemplo, temos:

Exemplo 1) A aplicagao linear e continua A : R™ — R™.

) T,:R" - R" T, (x)=x+a, (T,)7'=T.
3)Hy :R" - R", Hy(zx)=Xr, 0£XNER, (Hy)' = Hy-1.
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4) Duas bolas quaisquer sao homeomorfas
¢ : By(a) — Bs (b)

gO:TbO S/T‘OT—(I

5) f:X — R™ aplicacdo continua definida em X C R™.
Graf f = G = {(z, f(z)), x € X} C R™ x R" = R™*" ¢ homeomorfo
a X. Definimos a aplicacdo fi : X — G, por fi(z) = (x, f(z)) sua
inversa g : G — X ¢ definida por g(z, f(x)) = z. Note que g = m|g
onde m : R™ x R™ — R".

Exemplo: f :[0,27) — S', onde S' = {zx e R*: |z| =1}, f(t) =
(cost,sent) é bijecdo continua mas nao ¢ um homeomorfismo. Sua
inversa f~! : S1 — [0,27) aplica o compacto S sobre o intervalo
[0,27) que nao compacto, logo, f~! é descontinua. Note que ela é
descontinua em a = (1,0) = f(0) € S'. Para todo k € N, temos
que se t, = (1 — %) 21 e z, = (costg,senty) entdao limz, = a, mas

lim f~!(z;) = lim ¢, = 27, ou seja, lim f~1(2;) # f~(a) = 0.

2. Continuidade Uniforme
Exemplos:
1. f(z) = é, > 0ewx, =1 A sequéncia (z,) é de Cauchy mas
f(z,) = n nao é de Cauchy.
2. Seja f(z) = i, x> 0ee >0 dado. Dado z; > 0, existe ; > 0
tal que f(Bs,(z1) NS) C Be(f(21)).

"Dizer que f: S C R"™ — R™ é continua no ponto xq significa :

Ve >0, 30 = (e, m9) > 0tq. f(Bs(xo) NS) C Be(f(xp)).

1
3. f(x) = i >a>0.(S = [a,+00)).
Se (z,,) é de Cauchy em S sera de Cauchy em R e portanto conver-

gente. Seja z = limx,,. Entdo, z € S = S. Como f é continua, temos

f(z) = lim f(x,). Em particular, (f(z,)) é de Cauchy (f preserva
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sequéncias de Cauchy). Dados z,y € S = [a, +00), temos que:

Yy—x
Y

_ ly—1

7@) = fl)l = -

r oy

11'

como z,y > a, xy > a’ e xiy < a% Logo,

7@~ )] < = Iy — o]

dado ¢ > 0, seja & = a’e. Se x,y € [a,+00) e |y — x| < 4, entao
|f(z) — f(y)|] <e. (06 ndo dependeu do ponto x, ao contrario do que

ocorreu no ex. 2).

DEerFINIO 60. f : S C R* — R™ é "uniformemente continua ”

quando:
Ve >0, 30 =d(e) >0tqg. f(Bs(z)NS) C B(f(x)),Vx € S.

REMARK 61. (1) Toda fun¢do uniformente continua é continua.

(2) Toda fung¢ao continua num compacto € uniformemente continua.

Prova de (2): f : K C R® — R™ continua, K compacto. Seja
r e K.
Dado ¢ > 0,36, > 0 tal que f(Bs,(x) N K) C B.(f(z)). Como

K C UgerBs, ()
(cobertura aberta), por compacidade, K C Bs, (x1)U---UBj, () onde
d; = %593],. Seja § = min{dy,---,9,}.

Afirmacao: Dado x € K, entdo f(Bs(x) N K) C Ba(f(z)). Seja
y € Bs(x) N K, entao y € Bs;(v) N K e seja j € {1,2,---,p} tal
quex € Bs,(x)

1 () = FWIl < (1 () = Fla)l + 11 () = fy)] <2¢.M

Em R" quaisquer duas normas sao equivalentes :
|-|| = norma euclideana em R™

|-| = nova norma em R"

[~ (-7

S ={zx € R"; |z| =1} é compacto.

Seja f : R™ — R continua

z— ||z
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[f () = F@)l = [zl = llylll < [l =yl

Seja 1 € S, |f(x)] < |f(z1)| = M,Vz € S. Dado € R", x # 0, entao
1 € Se

|z

’f(ﬁ)‘ <M= HﬁH <M=|z|| < M|z|,Vx e R", x # 0.1
x x

3. Sequéncias de Funcoes

Fixemos um subconjunto S do R". Para cada ntimero natural &

consideremos uma fungao f; : S — R™.

DEFINIO 62. Dizemos que a sequéncia de fungoes (fr) “converge

”

pontualmente 7 em S para uma funcio f : S — R™ quando para
cada x de S a sequéncia em R™ (fy(x)) converge para f(x). Em outras
palavras, Ye > 0, Ing = no(e, x) € N tal que || fi(z) — f(x)]| < e, Vk >
no.

Exemplos:
(1) fr :R—=R, fi(x) = % Seja f = 0. || fu(x) — f(2)|| = ‘%l — 0,

para cada x fixado. Neste caso, dado € > 0, tome ky > ‘%l, x # 0.
Se k > kg, entao % < |kx_| < e. (se x = 0, a sequéncia (fx(z)) é
0
identicamente nula).
(2) fr:10,1] = R; fi(x) = a*.
i)se x =0= fg(z) =0,Vk.
i) z=1= filx) =1,Vk
iii) 0 <z < 1= fy(z) =2% - 0.
0; z€][0,1)

Funcao limite: f(x) = { L oo

fx — [ pontualmente em S.
2
(3) fu :R—=R; fr(z) = M

L2
cos(z? + k)

1
% < = — 0, independente do ponto x.

| fi(@)| =
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Dado & > 0, seja kg > \/1/e. Se k > ko = 15 < = <e = |fu(z)] <
0

DEFINIO 63. Dizemos que a sequéncia (fy) “converge uniforme-

mente 7 para a funcdo f quando:
Ve > 0, Ing = no(e) € N tal que || fr(z) — f(2)| <e
para todo k > ng,Vr € S.

Notagao: f; — f uniformemente.

EXAMPLE 64. f; : [a,b] = R; fi(z) = % fr — 0 uniformemente.

| fre(z)| = %‘ < 2 — 0, independente do ponto x. Neste caso, dado

e >0, toma-se kg > Zg’

EXAMPLE 65. A sequéncia fi(z) = 2%, x € [0,1] ndo converge

1 sex =1

uniformemente para f(x) = { 0 sexel01)

LEMMA 66. O limite uniforme de uma sequéncia de fungoes continuas

¢ uma func¢do continua.

Prova: Seja fr : S — R™ uma sequéncia de fungdes continuas
convergindo uniformemente para uma funcao f : S — R™. Seja x¢g € S

e seja & > 0 dado. Existe ko € N tal que
k> ko= ||fu(z) — f(z)]| <&, Vo € S

Temos

1f(z) = flzo)|l < | fu(z) = F@)[+fr(z) = frlzo) |+ fe(zo) — f(zo)ll

<3e,sek >koe ||z— x| <.

4. O espago B(S:R™)

Denotemos por B(S : R™) (ou simplesmente B) o espago vetorial
real das funcoes f : S — R™ limitadas.

feB, IM >0, | f(z)| < MVzeS.

Denotemos por

[flloe = sup{llf(@)[], = € S}.
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O espaco B serd equipado com a norma ||| .
Convergéncia em B :
O que significa fy — f em B?
fo = f em B || fi— fll. — 0.

EXAMPLE 67. f;.: [0,1] = R; fi(z) = IZZM'

fr € B([0,1];R). Seja f(x) = x; x € ]0,1]
1fe = flloo = sup{ll fe(z) — f(2)||, = € [0,1]}

= sup
z€[0,1]

Logo fr, — f em B.

1 1
_E:>||f/€_f||oo_E—>0

z*
k

TEOREMA 68. fr — f uniformemente < fr — f em B.

Prova: (=) Suponhamos que f; — f uniformemente. Por definigao,
dado € > 0, dky € N tal que

| fe(x) — f(2)|| <e, Ve eS8, k>ky
sup 1fe(z) = f@)| < e |fi = fllo <& k=Ko
TeE
S|fi—fllo = 0< fi = fem B.
(<) Se fr, — f em B, entdao dado € > 0, kg € N tal que
1fe = flloo <&k = ko

para qualquer x € S, ||fu(z) — f(2)|| < |fi—fll, <e = fu — f

uniformemente.

EXAMPLE 69. C°([a,b];R) o subespago vetorial de B([a,b];R) con-
stituido das funcaes f : [a,b] — R continuas. Se fr, — f em C°([a,b]; R),

entao

lim / () — / ’ Ha)de.

k—oo

/ab fr(x)de — /ab f(z)dz

b b
< / fule) — f(2)|de < / Vi — fll., de

/ (fu(@) — f(2))de
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<(b=a)llfs = fllo < (0= a)e, k= ko.

5. O Teorema de Arzeli-Ascoli

Fixemos K C R" um compacto e denotemos por C°(K,R™) o
espaco vetorial das fungoes f : K — R™ continuas equipado da norma

da convergéncia uniforme:

[flloe = sup [f ()]
K

Seja F C C°(K,R™) uma colecao de fungdes continuas.
Objetivo: Sob que condi¢oes uma sequéncia {f,} em F possui

uma subsequéncia { f,,, } uniformemente convergente?

).

DEFINIO 70. A colecio F ¢ “uniformemente limitada ” quando

existir uma constante positiva C' tal que
Iflle <G VfeF.

EXAMPLE 71. Seja {f,} uniformemente convergente e F = { fn; n €

N}, entao F € uniformemente limitada.

Seja f : K — R™ o limite uniforme da sequéncia {f,}, i.e.,

1o = fllo =0
Dado € =1, dny € N tal que

1o = fllo < 1.Vn 2 ng
para cada z € K
1@ < L fal@) = F@I+ 1@ < 1fa = flloo + 1l
Lfall < 1fa = fllso + 1 flloe <L+ 1l ¥ = g
Seja €' = max{|[fill . - | fuolloo 1 + [[fll o}, entdo
Ifull < C,¥n.

DEFINIO 72. A colecao F é “equicontinuo ” quando: Dado & >
0,30 =d(e) tq.

(@) = fWll <& Va,y € K, [le -yl <6,¥f € F.
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EXAMPLE 73. F = {f,;n € N}, onde {f,} € uniformemente con-

vergente. Entao F é equicontinua.

1fn(@) = ()] < ([ fal@) = F@)] + 1f () = FW) + [[aly) = FW)]

< 2|[fa = flloo + 1F(2) = FW)I
Ve > 0,3ng € N, 36 = (¢, f) > 0 tais que ||f, — fllo, <&, Vn > ng,
também || f(x) — f(Y)|| < e, sex,y € K elle —yl| <= |[fulz) = fu(y)]| <
3e, n>ng, x,y € K, ||lx—y| <9, cada f;, j =1,--- ,ng, € uniforme-
mente continua e portanto existe 6; > 0 tal que || f;j(x) — f;(v)| < e, se
z,y € K, |z —yll <dj.
Seja 6* = min{0y, -+ ,0ny,0}. Sex,y € K e ||z —y|| < entdo

[ fn(z) = fuly)] < 3¢, Vn.

TEOREMA T4. (Arzeld-Ascoli) Com relagdo a cole¢io F C C°(K,R™),
as sequintes afirmagoes sao equivalentes:

(A) F € uniformemente limitada e equicontinua;

(B) Toda sequéncia { f,} em F possui uma subsequéncia uniforme-

mente convergente.

Demonstracao:

(B)=(A)

Suponhamos que (A) nao ocorre. Se F nao é uniformemente limi-
tada, entao para cada n € N, existe f,, € F tal que || f,||,, > n. Logo,
nenhuma subsequéncia de { f,, } é uniformemente limitada e pelo primeiro
exemplo, nenhuma subsequéncia pode ser uniformemente convergente.

Se F nao for equicontinuo, existe uma sequéncia {f,} em F sem
subsequéncia unif. conv.

(A)=(B)

Seja { f,} uma sequénciaem F. Seja X = {xy,z9, -+ ,xp, -} C K
um subconjunto enumeravel e denso em K.

Construcao da subsequéncia convergente:

Método da diagonal de Cantor

filay), fo(@a), -+, fu(ay), -+ (limit.)

fir(z1), fia(x1), -+, fin(x1),- -+ (conv.) T. Bolz. Weierst.

Ji1(w2), fia(w2), -+, fin(22), - - - (limit.)
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le('TQ)’ f22($2)7 ) f2n(x2)7 cee (CODV.)
Gn = fun(conv. unif.).l

6. Transformacoes Lineares

(1) O ESPACO L(E, F)
Fixemos dois espagos vetoriais reais £ e F' [por exemplo: E = R™]

normados. Denotemos por || - || e | - | as normas de E e F, respectiva-

mente.

DEFINIO 75. Uma funcao T : E — F ¢é dita “linear” quando:
T(ax+y)=al(x)+T(y),Ve,y € E eVa € IR
Uma aplicagao ¢ : E —IR é denominado “funcional linear”.

TEOREMA 76. Com relacao a uma transformacao linear T : E —

F' as sequintes afirmacoes sao equivalentes:

(A): T ¢ uniformente continua;

(B): T ¢é continua;

(C): T é continua em z = 0.

(D): Existe uma constante C' > 0 tal que |T,| < C||z||,Vx € E.

DEMONSTRAGCAO: (C) = (D). Se D niio ocorresse, existiria para
cadan €N um ponto Xy € E, x,, x, # 0, tal que

[T, | > nf[zn]], V.

T Entao, [|ya|| = £ — 0 <=y, — 0 em E por (C)

nlfan|| !

T é continua em x = 0 e portanto

1
Seja vy, = —
n

Tyn — TO:O

Mas,

Tyn:T<1 n )— L 1)

-0

T, | > 1,Vn = |T,

= |Tyn -

n

1
||
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T = To| = |T(z —y)| < Cllz —yl|, Yo,y € E
T é Lipts.
EXEMPLO: P = {polinémios p : R — IR}

ol = masx Ip@)], 1ol = mas [p(t)

id :{PJ| -]} — {P,|-|} nao é continua
P — P

“A norma do supremo é a norma da convergéncia uniforme”.

) t\"
Seja p,(t) = (5) , |Ipll = sup |p(t)|, |p| = sup|p(t)| se tec[0,1],
0,1] 0,2]
t n
2

[pn, — 0 uniformente em relagao a || - ||].

entao

1 n
< (5) — 0, independentemente do ¢, isto é,

[lpl] =0

Convergéncia de {p, } com rela¢ao a norma |-|. Se 0 <t < z, entéo

0< .

( :

t\" t
< 1 e portanto (§> — 0 se t = z, entao 5= 1 e portanto

) — 1. Logo, p,(t) — f(t), pontualmente, onde

0,0<t<?2
f<t>:{ 1, t=2

Como f nao é continua em [0,2], a convergéncia de {p,} para f nao

DO | =+

ser uniforme. Entéao, p, nao converge em {P, |- |}.
TEOREMA 77. Toda aplicagao linear T : IR™ — F' é continua.

Demonstracao: Seja 3 = {eq,eq,...,e,} base canonica do IR" e seja
Y Y 9

n n
C =>|T.,| Dados x = (z1,...,2,) = > x;¢; em IR™, entao
i=1

=1

T o P N S

i=1 =1

< C||x||,Vz
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Observacao: Seja F um espaco vetorial de dimensao n. seja § =

{v1,v9,...,v,} uma base de E. Considere o isomorfismo natural ¢ :
R'— FE
O(x) = >z
i=1
(I)(l, ceey 0) = U
0(0,..1,..0) = v,
(i) ® ¢ um isomorfismo linear;
(ii) @ é continua;
(iii) @' : £ — IR™ ¢ continua.
Prova de (iii): R"® FE|| - ||IR
-

o(z) = ||¢pz]| é continua [p é a composicao de || - || com P].

11 BE— R & Lipschitziana ||[z]| — [lyl| < [l= — yll
z— |le]

A funcao continua ¢ assume um maximo e um minimo no compacto
K ={ze R ||z =1}
Seja xg € K tal que p(xg) < p(z),Vr € K.

Dado z € IR™, x # 0, entao Hx—H eK
x

ol < o (T2 ) = 0t < ot < @ ()|

1

= ||®(z0)]] <
[|]]

| @(2)]] <= [|@(zo)[[ ||| < [|@(2)[|, Ve € R
Dado y € E, 3l z € IR" tal que y = ®(x)

H(I)_l(y)H < zo # 0

R T
2™ g 20

® é um “homeomorfismo linear” [bije¢ao continua, linear, com inversa

continua].

Colorario: Se dim F < oo, entao toda aplicagao linear T': F — F ¢

continua.
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Prova: ¢ : IR® — E homeomorfismo natural

R"®ETF  T=(
— =

T.| = |T®(y)| < Cly| = C| 'z < C.Cz]
Colorario: Se dim EF < oo, entao quaisquer duas normas em E sao

equivalentes.

Prova: |-| e ||| normas em E.
(%) id:{E,| |} = {E,|| - ||} é continua, pois dim¢ < 0 (colorario
anterior)
(%) id : {E,|| - ||} — {E,|-|} é continua
(%) = 3C; > 0 tal que ||id(x)|| < Cy|z|

||z[| < Cilz]
(%) = 3Cy > 0 tal que |id(x) < Cyf|z||

|z < Colf]]
o1l = Ml = Calad

Notagao: O Espaco vetorial das aplicacoes lineares e continuas 7' :
E — F sera representada por L(F,F') e serda equipado da seguinte
norma:

|| zee,ry = sup {|Tx|; ||2]| < 1}, pois ||z]| — 1 é comp=T e limi-
tado

[T € LIE,F) = 3C <0;|Tx| < C||z||,Vx € E]. Quando ||z|| <1,
entao

Tx| < C .. sup T <C

l2]|<1
AT | < [TIHIXT], Vo € B
- [Se T e |ISIHIT]

Prova:
TeL(EF), xeE x#0

X
7l = sup |Tx] = |71 > ‘T (m)' o 7] < 1T ], Ve €

lll|<
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TeL(EF) SeL(EQG)
[SoT(z)le < ClTx[r < C |z|lp e

1S o T ()| < [[SIIT] ]|

|SoT(@)| <[ISIHITI, Ve € E, [|lz]| <1
[So T < |ISIHIT]

APLICACOES BILINEARES

E, F e (G espacos vetoriais normados. No produto cartesiano E x F

considera-se uma das normas:
|(w, 0) 1 = V/Julf + vl
|(u, 0)]2 = |ulp + |v|F
|(u, v)|s = max {|ulg, [v]r}

CONVERGENCIA em E x F:

(Un, vp) — (u,v), em E x f, quando n — oo

U, — uem I
= ,quando n — oo
v, — vemF

’(Un,Un) — (U,U)|1 <€
(U, V) £ (Up, )

(U, — u,0) + (Up, vy — v) < |up — u| |v] + |up| |un — v
CONTINUIDADE EM E x F

f:ExF — G é CONTINUA em (ug,v0) € E x F quando:

(U, Uy) = (ug,v0) em E X F = f(u,,v,) — f(ug,v9) em G.

DEFINICAO: Uma funcao B : E x ' — G é “bilinear” quando

B(u+ Av,w) = B(u,w) + AB(v,w) u,v € E, w € F
B(u, \v,w) = AB(v,w) + B(u,w)u € E, v, w € F, A€ R

EXEMPLOS:

(1) Produto de ntimeros reais:

P: RxR — R

(r,y) +— ay
|P(z,y)] = ||yl
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(2) Produto interno em IR™:

<, > R"x R" — IR
(z,y) +— <z,y>=> Ty

| <zy>[ < ll[llyll

(3) Composicao de aplicagoes lineares
w: L(R", IR™) x L(IR™, R?) — L(IR", IR?)

(T,S)— SoT

[u(T, S)||c(me,mey = IS © Tl e, mey < ||S||emm )| T cmn, mm)

(4) Fungao “valor”

V. LR, R™) x R* —s R™
(T,X) — Ty

V' é bilinear:
(i) VINT+ S,z) = (AT +95)(x) = (z)+ S(x)
= \V(T,z)+V(S,x)

i) V(T2 z+vy) = TAx+y) =T, +T,
= \V(T,z)+V(T,x)

V(T X)) = [|Tx]] < ||IT]] [ X]]
TEOREMA: Com relagao a uma aplicacao bilinear B : E X F' — G,

as seguintes afirmacoes sao equivalentes:

(1) (a) B é continua
(B) B é continua em (0,0)
(C) 3C > 0 tal que ||B(u,v)|| < Cllul|||v]], Y(u,v) € E x F.

PROVA:
(B) = (C)

Se (C') nao ocorre, entao para cada n € IN, existe (u,v,) € E X F

tal que [|B(un, vn)[| > nfun||{[on]]
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Sejam

1 u, 1 v,

Zn = —= , Wnp = —=
V||| V[ |vn|]

oall = == =0 [wnll = == — 0

ZTL = — —> wn = — —>
NLD NLD

{2 N2

Zpn — 0 em F, wy, — 0 em F

Entao (z,,w,) — (0,0) em £ x F' e por (B), B é linear
B(z,,w,) — B(0,0) =0

1 w 1 wvn
|B(zn, wa)ll = |B(—=7—7, —= il
JlﬁllunH V| [vn]|
= || B(tn, vn)|| > 1

ny/n||tn, v,

contradiz o fato de B(z,,w,) — 0.
(€)= (4)

Seja (ug,v9) € E X F e seja (un, v,) — (ug,v9) em FE x F.

HB(Un,Un> - B('LLO,'UO)H = (unu Un) - B(UO,'UO) + B(UTL’UTL) - B(UO7U0)||

|B

|| B (tn — uo, vy) + B(ug, vy, — )]

|| B(tn — o, vn)|| + || B(uo, vn — wo)|| < (usar (C)) <
Cllun = wo|[[vall + Clluol| [[vn = vol[ — 0

COLORARIO: Se dimE < o0, e dim F' < 0o, entao toda aplicagao
bilinear B : F x F' — B ¢é continua.

PROVA:

B+ {uq,...,u,} base de E, ' = {vy,...,v,,} base de F'
Seja C' =3 |[B(ui, vi)||

i
w=> wu; || < |[ul|

Dado (u,v) € E2 x F', entao L
(u, ) o=y lyl <l
J
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B(u,v) = ;$iij(Ui,Uj)
1Bl < 3 ol o5 1B (s, )]
< ;j«”“” ol 1B (ui, ;)1 = Cllull{]v]]
NOTACAO: Ly(E x F,G) = {B: E x F — G bilinear e continua}
Quando E = F escrevemos Lo(E, F)
Lo(R", IR™) = {B : IR" x IR" — IR™ bilinear}

Lo(E) ={B: E x E — E bilinear, continua}.

7. Diferenciabilidade

Seja f : IR — IR uma funcao derivada no ponto z = a.

o ) = f@)

f(a) = lim h
. [fla+h)— f(a) ,
ﬂ%{ h _f(a)] 0=

o [H R0 )]

h—0 h

r(h) = f(a+ h) — f(a) — f'(a)h, entdo a diferenciabilidade de f em
r(h)

o= lim—==0.

As aplicagoes lineares T : IR — IR sao do tipo T, = cx, onde
C=1T(1)
L(R,R)~ IR

T— C=T(1)

O ntmero real f'(a) serd identificado com a transformagao linear 7' €
L(R, IR) tal que T'(1) = f'(a)
fla+h)= f(a)+Th+r(h)
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DEFINICAO: Seja © C IR™ um conjunto aberto. Seja f : Q C
IR" — IR™ uma funcao. Dizemos que f ¢é “diferenciavel” em x =
a € Q quando existir uma aplicacao linear T € L(R™ R™) tal que

fla+h)— f(a) = Th
|7

— 0 quando h — 0, isto é

fla+h)= f(a)+T-h+r(h)onde }l}g(l)%:().

f:U CR" — R™ diferenciavel em x
(*) f(xo+h) = f(xo) + T h+r(h)
T € L((R",R™); limy_o Tt = 0
A aplicacao linear T' que satisfaz (*) é unica. De fato, se T e S

satisfazem (*), entao:
Th = f(zo+h) — f(xo) = r(h), Sh= f(zo+ h) = f(x0) — p(h) =

(T'— S)h = p(h) —r(h), Yh € R"
Dado v € R", v # 0, entao

(% v v
(T —25) = p( )—7r )
ol ="l ™" el
e também
tv tv tv
r->5 =p —r(—
=l = " @en @
v 1 tv 1 to
T=98mn=* p - r t ||v
T ol Ten ™ men e e

fazendo t — 0, obtemos

(%

(T—8)— =0Yo#£0=T=35.

o]

Definicao: A aplicacdo linear T' que satisfaz (*) é denominada

deriwada da funcao f em zy e é denotada por:

Df(xg) ou f'(xo).

Assim, quando f é diferencidvel em xq, entao

f(xo+h) = f(xo) + D f(xo) - h+ r(h) onde ]1113%% =
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Exemplos:
(1) f:R—R, f(x)=2% T € LR,R)

Df(z)-h=2xh
f(x+h)=(z+h)?=2>+2zh+h*= f(z)+ Df(x)-h+h?
_r(h) R B
M Ry T Ay = Rl = 0.

(2) fR* =R, f(z,y) = 2%y
X =(z,y), H=(h,k)

FX+H) = f(X)+T-H+r(H); limpg_ T5 = 0.

f(X+H) =flx+hy+k)=(@+h)?*(y+k)

= (2* + 2zh + B*)(y + k)
= 2%y + 2%k + 22yh + h*y + h?k + 2zhk
=f(X)+T-(hk)+r(H)

[r(H)| _ Wy + Wk + 2chk| _ B2 |yl + B k| +2 || |h] k]
1] o] + || - o] + ||

< P+ IED*(yl + 1K[) + 2] [] (2] + [K])
N o] + ||

= ([h[ + [E]) (fyl + [K]) + 2 |2[ [n] =0, (h, k) — (0,0)

Logo, Df(z,y).(h, k) = 2°k + 2xyh.
Por exemplo,
Df(1,0) € L(R* R)
Df(1,0)(h, k) = k.
(3) Se T': R™ — R™ ¢ linear, entao 17"(x) = T De fato,
T(x+h)=Tx+Th+r(h), onder=0.
DT (x)=T.
(4) Seja B : R™ x R™ — RP bilinear, X = (x,y), = € R", y €
R™ H = (h,k), entao
B(X+H)=B(x+h,y+ k)= B(z,y) + B(z,k) + B(h,y) + B(h, k)
=B(X)+T(h,k)+r(H),
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onde

T.H = T(h,k) = B(x,k) + B(h,y), r(H) = B(h, k)

T € L(R" x R™, RP) ~ L(R"™™ RP).

r(H)|| _ [[B(h, k)|l < C'[|h[ | %] < C|[A]| ||+ K| _Cn) =0
H I(h.E)[| = [|h+kl — |[h+Ek|
h—0 1A — 0
HHO@{ k—0 ‘:’{ k]| — 0

B e L(R" x R™ RP) e DB(x,y)(h,k) = B(x,k) + B(h,y).
(5) Derivada Direcional
f:U CR" — R™ diferenciavel em x( € U.

f(zo+h)—f(w0) = Df(wo).htr(h) = f(zo+th)—f(xo) = tDf(z0).h+r(th)
N f(zo +ﬂ? — f(x0) — Df(wo)h+ T(ih) N f(zo +ﬁ? — f(zo)

r(th) ||l
izl

r(th)

0
[£h]]

t—=0=th—0=

logo,

D f (o) h = lim L0 1) = (o)

t—0 t
Esta é a derivada direcional de f em z(, na direcao h. Considerando

h=e;=(0,0,---,1,---,0), obtemos

D (zo).e; — lim LE0 T 16) = /(o)

t—0 t
i S0 08wyt af) — faf )
t—0 t
0f (o) : - e
= oz, (derivada parcial de f com relacao a variavel z;).
Notacao:
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df (o) ~ Of(wo)
8ej a 6xj

= Df(xo) €5

flzy) =9 224y

Se h = (u,n) € R?

lim F((0,0) + t(u,n)) = £(0,0) . f(tu,in)

t—0 t t—0 t

t3un 1 ) u’n un
— = lim 2 2 = 9 2
t t—0u -+ n u*+n

- 15% <t2u2 + t2n? -
Logo, f em derivada direcional em (0,0) em qualquer direcao h =
(u,n), mas esta derivada ndo varia linearmente com h. Isto implica que
f nao é diferenciavel em (0, 0).

Matriz Jacobiana
Dada uma funcao f : U C R® — R™, ela determina m fungoes reais

fi, fas oo fmn - U — R, que sao suas componentes, e

f(l’) = (fl(x>7f2<x>7 U me(x))yv«f e U.

TEOREMA 78. Uma fungdo f: U C R" — R™ ¢ diferencidvel em

xo € U & cada componente f; é diferencidvel em xy. Neste caso,

Df(xo).h = (D fi(x0).h, D fa(xo).h, - -+, D fin(o).h).

Prova: Uma aplicacao linear 7' : R® — R™ é determinada por m

aplicagoes lineares 17,715, -+ ,T,, : R® — R,

T.h=(Tyh,--  Tp.h), h € R

172 10—

. 7(h) . 7i(h) ,
lim — = 0 < lim - =0,Vj=1,---.m
h=0 |[h]] h=0 |[h]
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Se f é diferenciavel, f = (f1,--+, fm), entao

0 ) Ofm
Df(l'o).@j = '];11;0) - <8£i (l’o), ) %xj(xO))

9 )
h(we) oo F(x0)

J f(xg) = :
Ofm Ofm
Fe(wo) o Pmlwo) |,

Exemplo: f(z,y) = (e” cosy, e*siny)

f1 f2
| €"cosy —esiny
Jf(x,y) = [ efsiny  e*cosy ]

Vamos calcular D f(0,7/2), temos que

JF(0,7/2) = { . }

segue que

DF(0,/2)(u,n) = H _01} [z] :{_n]

u

T(u,n) = (—n,u), T : R* —» R?

Df:U — L(R",R™)

(*) f:UCR" = R™ Df(x) € L(R",R™), z — Df(z0)

Regra da Cadeia
Sejam f: U CR" -V CR™ e g:V — RP fungoes diferencidveis
em x € U ey = f(x), respectivamente. Entao, go f : U — RP é

diferenciavel em x e
((*))  D(go f)(z) = Dg(y) o Df(x) (composicio de Apl. Lin.)

Em termos de matriz Jacobiana a relagao (*) toma a forma

(%)) Jgo @) = Jg(y)- Jf(x) (Prod. Matrizes)

Demonstracao:

f(z +u) = f(z) + Df @)+ r(u) ﬂlf 00

[

—n—0 0

g(y +n) = g(y) + Dg(y)n + p(n); %
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Temos
(go f)w+u)—(go f)(x) =g(f(z+u)) —g(f(x))
=g(f(z) + Df(x)u+1r(u) — g(f(x))
=gy +Df(@)u+r(u)) —g(y)

n

= Dg(y)(Df(x)u+r(u)) + p(Df(x)u+r(u))
= [Dg(y) o Df(x)]u + R(u)
onde R(u) = p(D f(x)u+r(u))+Dg(y)(r(u)). Mostraremos que lim,, g

0. Temos

_ p(Df(@)u + r(u)
[Df(w)u+ ()]

IDf (@) + ()] + Dgw)(- ) ul] — 0.

B(u) Tl

Consequéncias
(1) Seja f : U C R™ — R™ uma bijecao, diferencidvel em z. Se a
inversa f~!: f(U) — R" ¢ diferencidvel em y = f(z), entao Df(x) :

R™ — R™ é um isomorfismo linear (em particular m =n) e

D(f™)(y) = [Df ()™

Prova: fo f = idgn = D(f(2)) o D(f)(y) = idzn, {10 f =
idgn = Df7 (y) o Df(z) = idg-.1

Carater Geométrico da Regra da Cadeia

Caminho em R™ : ¢ : (—¢,e) = R™, o(t) = (z1(t), -, zn(?)),
o'(t) € LR, R™).

o' (t).1 = (24 (¢).1,25(¢).1,- - , 2! (t).1)
= (4 (0).2h(0). -2 1)
Se ¢ é um caminho diferencidvel em o(0) = x e ¢’(0) = u entao
(fo0)(0)=Df(c(0)).0'(0) = Df(x).u (derivada direcional).

Regra da Cadeia Classica (Célculo II)
z=f(zy), v =x(u,v), y = y(u,v) =

0: _0fox  of oy
ou Oxdu Oyodu

Rlu) _

lull
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0: _0fos 010y
v Oxdv  Oydv

w :g(yl7y27"' >ym)7 Yy; = fj(xlvx%“' axn)

f:(flaf%”'afm)
w=gof=Jw)=J(g) J(f)
ox1 Oxn
ow Jw Owl __ [0O0g OJg dg . . .
[a—a—a—][@aa@,—m][ S ]
fm .. Ofm
Ox1 Oxn
ow " 0g Of;

Or; =y 0x;’
Regras de derivagao
(a) DIf + Agl(x) = Df(x) + ADg(x),
(b) B : R™ x R™ — RP? bilinear,
DIB(f,g)lu = B(f'(z)u, g(z)) + B(f(2), ¢ ()u).

(c) Se f:R — R é derivavel e f(z) # 0, Va € R,

(3) @ = 7o ps

Prova:Seja F(z) = (f(x), g(x))
(a)p(z,y) =+ y=f+Ag=poF

D(f +Ag)(x) = D(p o F)(x) = Dp(F(x)).DF(x)
= ¢(f'(2),4'(z)) = f'(x) + Ad'(z).
Aqui usamos T' € L(R",R™), T'(z) = T.
(b) Seja b = B(f, g), temos b(x) = B(f(z),g(x)) = b= Bo F.
Db(z) = DB(F(x)) - DF(x)
Db(z)u = DB(f(x), g(x))(f'(x)u, g'(x)u)
= B(f(x),d'(x)u) + B(f'(x)u, g()).
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Regra do produto
B :R xR — R bilinear

(z,y) — xy
fg=BoF =
(f9)" = B'(F(x)).F'(z) = B'(F(z)).(f'(z), ¢'(x))
= B'(f(x), 9(x))(f'(x), g'(x))
= f(2)g'(z) + f'(x)g(x)

Derivada do produto interno

fig : U C R* — R™ diferenciaveis em zy € U. Seja ¢ : U —
R, o(z) = (f(x),g(x)). Temos que ¢ = B o F, onde B(z,y) = (z,y) e
F(z) = (f(z),g(x)). Logo, ¢ é diferencidvel em z, e

Dop(xo)u = B'(f(w0)).F' (w0) u

Agora
F'(wo)u = (f'(20)-u, g'(x0)-u)
B'(x,y)(h, k) = B(x, k) + B(h,y)
portanto,

D(zo).u = B(f(x0), g (x0).u) + B(f'(20)-u, g(x0))
segue que
Dy(xo).u = (f(x0), g'(x0)-u) + (f'(z0).u, g(x0))-

Derivada da Norma
pl@)=f @), zeU
p(x) = (f(z), f(z))
De(xo).u = 2(f(x0), f'(x0) -u)
seja agora () = ||f (z)|| = /{f(x), f(x)), temos que se

alt) =Vt =a(t) = %\/%,t>0

mas =aop

B(x) = alp(x)) = V() = V(f(2), f(2))
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DB(wg).u = ' (p(w0)) ¢ (w0).u

LU () o))
- 9 Sp(x0>2<f( 0)7f( 0)' > Hf($0>H
flx) =z,Vr e R"
d ()
uvandon =1, (z,u) = z.u <x7u>:iu
auando =1, (01) = 24 S S =

Desigualdade do Valor Médio
19 Caso Funcoes de R — R.
f :]a,b] — R continua e derivavel em (a,b). Existe um
€ € (a,b) tal que
fla) = f(b) = F(E)b—a).
Equivalentemente,
fla+h) = f(a) = f'(a+th).h, 0<t<]1.
E claro que

|f(a+h) = f(a)| < sup |f'(a+th).h|.

0<t<1

20 Caso Funcoes de R" — R.
f U C R" — R diferenciavel em U e suponha que o
segmento [a,a+h] C U (Aqui [a,a+h] = {a+th;0 <t < 1}).
Entao, existe t € (0,1) tal que
fla+h)— f(a) = Df(a+th).h. (Teo. Valor Médio)
Prova: Seja ¢ : [0,1] — R, ¢(t) = f(a + th), i. e,
o(t) = (foa)(t) onde a(t) = a + th é derivavel em (0,1) e

continua em [0, 1]. Logo, ¢ é derivavel em (0, 1) e continua em
[0,1], e

ou

fla+h)— f(a)=Df(a+&h).h, 0<E< 1.0
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Exemplo: Seja f : [0,27] — R?, onde f(t) = (cost,sint),

temos
f(2m) = f(0) = (1,0) — (1,0) = (0,0) € R?
Df(ty) = (—sintg,costy) # (0,0), Vty € [0, 27]
f(2m) — f(0) = Df(to)(2m — 0) (nunca ocorre)

Funcoes de R® — R™
Seja f : U C R" — R™ diferenciavel no aberto U e suponha
que o segmento [a,a + h] C U. Entao, temos a seguinte de-

sigualdade

I£(a-+h) = F@)l| < sup |DS(a-+€h).b|

Esta ¢é a desigualdade do valor médio.

Prova: Seja ¢ :[0,1] — R™, o(t) = f(a + th), temos que
o(1) = f(a+h), p(0) = f(a) e ¢'(t) = Df(a+ th).h. Logo, a
desigualdade (??) toma a seguinte forma:

(1) = p(0)]] < sup 1" ()]

Seja M = supg<i<; ||¢'(t)|| . Se M = oo, nao ha nada a provar.
Suponhamos M < oo. E suficiente mostrar que
lo(1) — p(O)]| < M+, ¥e > 0.

Seja X = {t € [0,1]; [lp(s) = p(0)[| < (M +¢) s, Vs € [0, 1]},
(1) X # 0, porque 0 € X.
(2) Sete X e0<t <t entaot € X.
(3) X é um intervalo do tipo [0, «) ou [0, a].

(A) @ € X. De fato, se a ¢ X, entdo seja sq € [0,a] tal
que

le(s0) — (O)] > (M + £)s0

por continuidade, 39 > 0 tal que
lo(s) = p(0)|| > (M +e)s, Vs € (so—d,80) C [0, ).

Logo, 0 < 59— 6 <ty < 59 < a ety ¢ X. Isto contradiz o fato

de X ser um intervalo. Logo, X = [0, a/.
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(B) a = 1 (Logo X = [0,1]). Suponha que a < 1. Seja
0>0; a+ 6 <1 entao
o(la+h) —¢(a) = Dp(a).h + r(h)
onde |h| < d e ||r(h)]| < e||h|. Dai
le(a+h) —e(a)|| < [|De(e).hll + [[r(h)]]
<[[De(@)]l - Il + Al
<(M+¢e)|h], 0<h<d
ou seja,
(D) lle(a+h) —e(a)l| < (M +e) [|A]
Também
(I) [le(s) = ()] < (M +¢)s, Vs € [0,q]
Combinando (II) e (I) temos:

(I1T) le(a+h) —0)]| < (M +¢)(h+ )

Afirmagao: o+ g € X. De fato,
) )
a+tg € X & |le(s) —p0)|| < (M +¢e)s, Vs € [0,a+ 5]

Seja s € [0, + &), temos que: (i) se s € [0,a], ok!; (ii) seja
s € o, + %], entdo, s =a+h, 0 < h < %. Por (III), segue
que
le(s) = @0)]] < (M +¢)s
mas isto contradiz o fato que X = [0, a].
Consequéncias da Desigualdade do Valor Médio
f:U C R™ — R™ diferencidvel no segmento {xo+ th; 0 <t < 1}

(a0 + th) = F(zo)l| < sup |Df(zo+ th).|

(A) Se U é aberto e conexo e f : U — R™ ¢é diferencidvel com
Df(z) =0, Vx € U, entdo f é constante.

Prova: Seja z¢ € U fixado e defina X = {z € U; f(x) = f(zo)}
eY ={z €U, f(z) # f(zo)} ,Y é aberto, pois f é continua e Y =
F{yo}€) onde yo = f(x0); temos que X # 0, pois 7y € X; X 6
fechado (X = f~'({yo})); X ¢ aberto: de fato, seja x € X e § > 0 tal



7. DIFERENCIABILIDADE 51

que Bs(z) C U. Dado h € R™ com ||h|| < d, entdo x +th € Bs(z), Vt €
0,1], pois ||z 4+ th — x| = |t|||h]| < 0. Também ||f(z +th) — f(x)] <
SWPocror | DF(x + th) bl = 0, logo, f(x+th) = f(x) = f(zo). [h] <
0 = Bs(z) € X = z € int(X). Como U = X UY é conexo, e
X #0,segue que Y =0 = X =U.

(B) Se f ¢ diferenciavel no segmento [z, zo + h], entao

1/ (zo +th) — f(x0) = T.h|| < Sup 1D f (o + th) = T . [[],

<t<

VT e L(R™,R").
Prova: Seja G(z) = f(x) — Tz, x € U, DG(x) = Df(x) — T, dai

|G (xg + h) — G(z0)|| < sup ||DG(x¢ + th).h|| <
0<t<1
I f(xo 4+ h) — Taxg— Th — f(xg) + Txol| < 08<le1 |Df(xo + th).h — Th|
< sup ||Df(xo+th)—T| ||| M
0<t<1

Corolario: [|f(zo+ h) — f(zo) — Df(x0).h|| < supges< [[Df(z0 +th) =T |2 <
[ ()] < supg<scr [Df (2o + th) — D f (o)l [[2]] -

(C) Seja f : U € R™ — R"™ continua em U e diferencidvel em

U — {xo}. Se existir o limite

lim Df(x) =T em L(R™,R")

r—T0

entdo f ¢é diferencidvel em zg e Df(zg) =T.
Prova: |[f(zo +h) — f(z0) = T'h|| < supgeycy [|Df (20 + th) — T|| [[7]

||7|~|(:”)|| < supg<i<t | D f (20 +th) =T

Dado € > 0, 36 > 0 tal que
el |lz =l <= |Df(x) =Tl mpn) <€
Se ||h]| < 9, entdo x = x¢ + th satisfaz ||z — || < J, e portanto

||Df(ffo ‘I’th) - T||L(Rm7Rn) <e, 0<t<L1

(W]
——— <&, se ||h]| <0
7]
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(D) Se f: U Cc R™ — R" é diferenciavel e | Df(z)| < M,Vx € U,
entdo f é Lipschitziana. (||T'[|, < supj, < [|Tz]]).

If(@+h) = f@)] < sup [IDf(@+th)l[|a]] < M.[|A]

PrRoOPOSITION 79. f : U C R™ — R" diferencidvel com D f(x)
injetiva. Entao, existe 6 > 0 tal que f(x) # f(x), YV € Bs(xo),
T # 1.

Prova: Df(xzy) € LR™,R™), F = Df(xy), Df(xg) : R™ — F ¢

um isomorfismo linear. Entao, existe ¢ > 0 tal que

[Df(zo)-&ll = cll&]l, V¢ € R™

36 > 0 tal que [[r(§)] < 5 lI€ll, (1€l <o
1f (w0 + &) = fzo)ll = [ Df(0)-£ + ()]
2 [[Df(xo)£ll = [[r ()

> cll¢ll - 5 llell = 5 gl > 0, se € #0

V¢ € Bs(0). Logo, f(zo + &) # f(wo), V& € Bs(0), 0 # 0.
Fungoes de Classe C*

Dois exemplos classicos do calculo.

B :ﬁﬁTny’ ($,y)7’é(070)
) s ={ Fr 0700

tem derivada direcional em (0,0), em qualquer dire¢ao, mas nao é

0
diferencidvel. Em particular, f(z,y) tem derivadas parciais —f(O, 0) e

ox
aof
N (0,0).

2 | 2\ 1
('T +y )Sln(\/m)> ('Tay) 7é (070)
0 (z,y) = (0,0)
Seja H = (h, k). Mostraremos que g ¢é diferenciavel em (0, 0)

(B) g(z,y) = {

1
Ve

— —
0

g(0 +H)—g(0)=g(h k)= (h2+k2)sin(
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Seja T =0 e r(h, k) = (h* + k?) sin(—=—= ), temos

VeEwel
2 2
1
lim r(h, k) = lim (" ++) sin( )=20
(hk)—0,0) || (R, k)| (hk)—=(0,0) \/B2Z + k2 VhZ + k2

logo, Dg(0,0) = 0. Agora % e g—g nao sao continuas na origem.

Og(z,y) _ o o0 1 x 1

O VEAPE JErg R

Seja U C R™ aberto e seja f : U — R uma funcao.

TEOREMA 80. Se as derivadas parciais sao continuas entao a

i

fungao f é diferencidavel, Vi =1,---  n.

Prova: Dado & = (&, -+ ,&,) € R™ defina

T.§= Z @f(x) i

i=1 Oz;

temos que T' € L(R™,R) e mostremos que T'= D f(x).

0/(x)
.

f($+f)—f($)—T§ = f<x1+§1a e 7xn+€n>_f(wl7 o ?xn)_z )
i=1 ¢

:f(w1+£1a"' 7$n+€n)_f(x17$2+€27"' 7xn+€n)
+ fla, 22+ &, w0 + &) — flo, 20,25+ &5, 00 + &)

+ f(z1, 20,23+ &, -+ ,xn + &) + -+ f(T1, 20, T, 20 + &)

— fa1, ) — Z af(x)gz
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flx+8) — flx) —T¢ = g—i(x1+t§1,x2+§2,--- s Tn + &n)&1t

0
+—af (1,0 + 1o, -+ +E)E0+ -+
Z2

+ gﬁi (21,20, , Tne1, T + 1E,)En — Z agif) £

=1

= {g—f(ﬂ?l +té, e+ &, a0 + &) — ﬁ(ﬂf)} &+
sl

o0x
+- {%(ml’@’”' L1, Ty + &) — gi(:c)l &n
Dai usando a + b < |a| + |b| , obtemos
|7|n‘(§”>| < ‘g—xfl(x1+t£1,x2+£2,--- T+ &) — aa—ai(x) ||’§§—1|||—|—
+ -4 ’%(xl,xg,--- s Tp1, Ty + &) — gx{l(x) %
note que hiﬂl < Lecomo 5o, i = 1o m, sio contimuas segue

que quando & — 0 = |7|’|(§H)| — 0, e, portanto Df(z).§ = T.§ =

1221 P (x).§;.1

REMARK 81. Se f: U C R" — R ¢ diferencidvel, podemos definir
a aplicacao deriwada

Df:U — L(R",R)
x— Df(x)

L ) N . . of
Se esta aplicagao for continua, entao as derivadas parciais

81‘,‘7

7 =

1,---,n serao todas continuas.
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De fato,

of of B

oz (z) = ox; (20)| = |Df(2).e; — Df(xo).€il
= [(Df(z) — Df(xo))-€il
< (D f(x) — Df ()|

logo,
. |of of ' )
xlgilo oz (z) — oz, (zo)] < xhg}o (Df(x) — Df(xo))] = 0.

combinando o teorema com a observacgao, temos:

TEOREMA 82. Seja f : U C R* — R uma fun¢ao. FEntao, as
0
derivadas parciais de 1% ordem a—f,i =1,---,n, sao continuas < f €
L

diferencidvel e a aplicagio derivada Df : U — L(R™ R) € continua.

DEFINIO 83. Uma fungao f : U C R™® — R™ ¢ de classe C' quando

suas componentes fi,---, fm + U — R possuirem derivadas parciais
of /
,J=1,--+ n, continuas.
83:]-
of of Ofm

Observando que ), entdo f € C! quando as

ﬁxi B (8.7)27 ’ 5’@

derivadas ,1=1,---,n forem continuas.

Generalizacao da derivada parcial

R™" = R™ x R" = {(x,y), v € R™, y € R"}

f U C R™™ — RP diferencidvel em (z,%0), seja Uy, = {y €
R™; (z9,y) € U}. Temos U,, ¢ aberto em R"(se (xg,y) € Uy, = 3V C
R™ e W C R™ abertos tais que (zg,y) e VW CU =ye W C U,).

Defina f,, : Uy, — RP, fi,(y) = f(zo,y). A fungdo f,, é difer-

enciavel em Yo € szo (yO) S L(Rna Rp)’ szo (90)77 = Df(x()’ yO)'(07 7])

P(n) = foo(Yo + 1) — fao(y0) — Df(20,0)-(0,7)
= f(wo,y0 + 1) — f (w0, %0) — D f(w0,90)-(0,n)
= f(zo+ H) — f(20) = Df(20).H =r(H)
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onde zy = (zo,%0), H = (0,n). Agora

p(n) _rO,n) r(H)
Il Al A

DEFINIO 84. A derivada parcial de f em (zo,y0) com rela¢io ay

€, por definicao, a aplicagao linear D, f(zo,yo) € L(R™,RP),

(1) Dy f(z0,y0)-h = D f(x0,0)-(0, h)
De modo analogo,

D, f(x0,y0) € LR™, RP)

(1T) Dy f(x0,40)-£ = D f(x0,10)-(£,0)
Somando I e II temos

Df(wo,90)-(§, 1) = Do f(x0,90)-§ + Dy f(20,40).h

REMARK 85. f:R™ =R x R"' — R

0

a_f;(xo,yo) = Df(z0,%0).(1,0,--- ,0)

Dy f(zo0,y0) € LIR,R) Dy f(x0,y0) = Do f (20, y0)-1
0

Dmf(xo,yo)-l = Df(xo,yo).(l,O, e, 0) = a—i(xoayo)-

TEOREMA 86 (Leibniz). U C R™ aberto, f : U x [a,b] — R™ uma
fungao continua com derivada parcial D, f : U — L(R™ R™) também

continua. Seja ® : U — R"™ definida por

b
Cb(x):/ f(x, t)dt.

Entdo, ® ¢ de classe C' e @'(x) = ff D, f(z,t)dt.
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8. Integracao de Funcgoes Vetoriais

Fixemos um caminho f : [a,b] — R™. Dada uma particdo P : a =

to < t; <--- <t =bdo intervalo [a,b], consideremos o seguinte vetor
do R"
k

ST =t~ ti)f(t:) €R"

P i=1

Dizemos que f é integravel quando existir um vetor v € R™ tal que

v - Z<f>H — 0, quando ||| =0, onde |[P]| = max |t; —t:
P ==

Este vetor v é representado pelo simbolo

b
/ f(t)dt € R™.

Propriedades Basicas:
Sejam f,g : [a,b] — R™ integraveis, « € Re T € L(R",R™) .

Entao, f + ag ¢é integravel, T o f é integrével e
(A) [2(f + ag)dt = [} fdt + o [ gdt;
B‘LTofmﬁ:TLftﬁeR%

[2 st < 215 de.

Demonstracao:

(A) Xp(f +ag) = Xp(f)+aXple) = [ f+a g

(B) Yp(T o f) = Yii(ti — tie))Tf(t) = TS p(f) como T 6

continua e ) ,(f) converge entdo T ,(f) converge.

(C) IO < 2t — i) (/2] 0

Exemplos:

(1) Fungao constante:
Seja € R™ um vetor fixo e seja f : [a,b] — R™ dada por f(t) = p,
Vi
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(2) Funcao ”"quase nula”
Seja f : [a,b] — R™ uma fungdo que vale zero em |a,b], exceto
. . b —
no conjunto {ry,---,r}. Entao, [ f(t)dt = 0. De fato, dada uma

partigdo P :a =ty < --- < t, = b do intervalo [a, b], temos que

d(H= Z(tz’ —ti1)f(t:)
Seja € > 0 dado
k
‘Z(f) SZ(z‘—z1||f |<Z i —tic) | f(rs) ]

seja M = max;<;<; || f(r;)] . Entao

>

p

< M||P|1

Tome § = Mil’ se || P|| < 4, entdao M || P/l < e. Logo, limypj—o>_,(f) =

0, isto ¢, [ f(t)dt = 0.

(3) Se f,g : [a,b] — R™ sdo integraveis e f = g, exceto possivel-
mente, num conjunto finito, entao ff fdt = fj gdt.

(4) Fungoes Simples

Uma fungao f : [a,b] — R" é denominada "funcdo simples ”
quando existir uma particao a = typ < t; < .-+ < 1 = b e vetores
Vo, V1, -+ ,Up_1 € R™ tais que

f(t):UZ’ t; <t<ti+17 7':07 7k_1

Para esta funcao simples

k

ST =Yt~ tivi

P i=1

DEFINIO 87. Um caminho f : [a,b] — R™ é denominado ”caminho

”

requlado 7 quando os limites laterais f(x +0) e f(z — 0) ezistem em

cada ponto x € [a,b].

(Exemplo: Fungoes simples)
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TEOREMA 88 (de Aproximacao). : Um caminho f : [a,b] — R" ¢

requlado < f € limite uniforme de uma sequéncia de funcoes simples.

PROPOSITION 89. Se f : [a,b] — R™ € requlado, entao para cada

/abf(t)dt _ / F)dt + /:f(t)dt.

Fixemos uma sequéncia {f,} de fungoes simples, convergindo uni-

x € [a,b] tem-se

Prova:

formemente para f. Seja

b
vl,:/ f)dt, v=1,2,3,---

Afirmacao: {v,} é de Cauchy em R™ (comp.)

[ sl o

b
g/ Vo= fulldt < b= a)lfy — full.

[vy = vull =

onde ||f, — ful . = sUPaci<s |fo(t) = fu(®)|l, fu — f uniformemente
S |fo = fllo =0, v =00 = |f, = fullo = 0, v, u — 0.

Seja v = lim,,_,, v,,. Mostremos que v = fab fdt.

<

> () —v

P

Z(f) - Z(fvo)

P P

+

Z(fVo) — Uy

P

+ v, =

Dado € > 0, escolha v,, e § > 0 tais que

[owg — vl <e/3; W = full < e/3(b—a);

Z(flfo) — Uy

P

Logo, f é integravel e

V—00

b b b
/ f@dt = tim [ f(t)dt = (conv. unif.) = / lim f, (¢)dt

<e/3, llpll <9
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Dado z € [a,b], sejam g = f|jaq € b = f|zp. Dada uma particao
P de [a,b], esta parti¢ao induz partigoes P’ e P” em [a,x] e [z,b],

respectivamente. (Estamos supondo z € P).

D NH=D 9+ (h

P P/ Pl/

/abf:/azg_l_/wbh:/axf_}—/xbf’

TEOREMA 90 (Fundamental do Célculo). Seja f : [a,b] — R™ um

caminho requlado e seja

= /93 f(t)dt; x € [a,b].

Entao, F(x) € continua, possui derivadas laterais em todo ponto x €

[a,6] ¢ F'(x +0) = f(z +0) e F'(x = 0) = f(z = 0).

Demonstracao:

[1F(z+¢) -

L[ e [ o

z+€
/ ﬂﬂﬁHskwﬂu

Logo, limg_o F'(z + &) = F(x).
Seja x € [a,b) e £ >0

|Fes9=Fe) o <[ [ st sia 0

:
~|¢ [ v s o
< sw_ 70~ fla+0)]

Quando & — 0%, entao t — z e f(t) — f(x +0). Logo

i Pl +8) — F@)
£—0F §

= f(z+0).1

CONSEQUENCIAS:



8. INTEGRACAO DE FUNCOES VETORIAIS 61

(A) Se f : [a,b] — R™ é continua, entdo existe uma fungao F :
[a,b] — R™ de classe C* tal que F'(z) = f(z), Vx € [a,b].

Fla) = / oL

F'(z40)=f(z4+0)=f(zx—0)=F(x—0) = F'(z) = f(2).
(B) Seja f : [a,a + h] — R™ um caminho com derivada integravel.

Entao

f(a+h)—f(a):/a+ f’(t)dt:h/o Fla+ th)dt.

Prova:
F(x) = famf’(t)dt = Fl(z) = fl(x) = F(z) = f(z)+ C = C =

—f(a).
F(z) = f(z)— f(a) = F(a+h) = f(a+h)— f(a) = [**" f'(t)dt.]
(C) Seja f : U C R™ — R™ de classe C, [x,z + h] C U. Entao

flx+h)— f(x)= /01 Df(x +th).hdt = </01 Df(:c+th)dt> h

Prova:
Seja ¢ : [0,1] — R™, ¢(t) = f(z + th), temos

o(1) — (0) = /0 P(t)dt & f(z+h) — f(z) = /01 Df(x + th).hdt.m

LEMMA 91. T : [a,b] — L(R™,R™) integravel. Para cada h € R™
fizxo, o caminho t — T(t).h € integrdvel e f; T(t).hdt = (fab T(t)dt) h

Prova: fabS o f(t)dt = Sfabf(t)dt, S € L(R™ R"). Seja ¢
LR™ R") - R", &(5)=S5.h

/a ’ T(t)dt = ® / bT(t)dt

/:T(t).hdt = (/:T(t)dt> b1

(D) & [29) f(t)dt = f(B(2)).0 (2) — F(a(x)).o/ ().

Prova:
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a,ﬁecl,feco

- fgn fn t)dt — fﬁ
fﬁ(” t)dt = ba(z), 5(x))
;o obdg  Obdh
= —f(&).d(x) + f(n).B (x)

onde & = a(x), n = B(x).
DEMONSTRACAO DO TEOREMA DE LEIBNIZ:
f:U x[a,b] = R*, U C R™, continua
Dxf : U X [a,b] — L(R™,R™) continua

= [ f(a, t)dt
Conclusao: ® € C!, d'(z f D, f(z,

H<1>x+§) (foxtdt) H
= |17 fle+ & t)dt — [ f(a,t)dt (fj xtdt).gH

J2 [flo+&8) = f(,)dt = Dof(o,1).€

< [P\ fla+Et) — fa,t)dt — Dy f(x,t).€]| dt
< (b—a) SUPp<s<1 | Dy f(x 4 s&,t) — Dy f(x, )| ||

(x,t) — D,f(x,t) é continua em U X [a,b], uniformemente com

relacao a t.
Ve > 0,35 > 0; ||z —y|| <6 = ||Duf(x,t) — Dof(y,t)|| <e,Vt
Ve >0, 30 > 0
€]l < 0 = || Dx f(:c—l—sf t)— D.f(x,t)] <e, Vt, Vs € [0,1]

O(z + Dy f(x, t)dt
|26+~ ela) = (2 Datlot)dt) ]| e el =5
HfH
Logo, lim¢_.o ||T|(§ﬁ|)|| =0.1
CoROLLARY 92. 4 [0 f( = F(B(1), )8 (t)—f (L), ) (£)+

Bt
Ju &€

f [a,b] [c,d] = R, C', o, : [a,b] - R, C".
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Prova:
(& n.t) = [ flw,t)da s £ =alt), n=pB(1), t =t.
(t) = [L) flx,)dz = ba(t), B(t), 1)
( ) 5/ ab /+ ab

= F(B), B () — fla(t),)a'(t) + [1y) WL (4, )de.m

9. Teoremas Classicos
(1) Teorema da Fungao Inversa

Sejam U C R™ um aberto e f : U — R™ de classe C! em

U.
- 0fi
LEMMA 93. Se existir uma constante M > 0 tal que a—(x) <
Zj
M, i,j=1,2,--- ., n, Yo € U, entdo
1f(z) = fw)l| <n°M ||z —y]|.
Demonstracao: Para cada indice i = 1,2,--- ,n temos

fily) = filz) = Zfz‘(yla LY T, @) = filyn Y @, )
j=1
=T.V.M. = Zaf’ &Ny —x;) =

1fiy) = f@)| < Y~ M ||z —yl| = nM [|lz - y]|

j=1

1 (y) = fl@)] < Z Ifiy) = fi)] <Y nM ||z —y|| = n*M |}z — y|| W

=1

LEMMA 94. Seja T € L(R™,R™) um isomorfismo linear e
seja ¢ : U — R™ diferencidvel. Se T o ¢ tem inversa difer-

encidvel, entao ¢ também tem inversa diferencidvel.
Demonstragao: (i) ¢ é injetiva pois, ¢(x) = ¢(y) = T(p(x)) =
T(e(y)) =z =y.

(ii) ¢t é diferencidvel, [T o o]t = p o T ! = p! =
[T o ¢]™! o T é diferencidvel.ll



64 2. FUNCOES CONTINUAS

LEMMA 95. Seja xg € U um ponto de mdaximo de uma
fungao diferencidqvel ¢ : U — R. Entdo, Dyp(zg) = 0.

Demonstracao:

o(wo + &) — p(x0)

lim

t—0

= D(x0).§

o(rg) > (g +1t€); € € R, |t] < 0 tal que xg+t£ € U

o(xg+t&) —(xg) [ >0 set<0
t <0 set>0

p(zo + &) — p(x0)

Do(o).€ = tli%i r <0
~ i o(zo + tft) — ¢(x0) >0
t—0—

= Dp(x0).£ =0, V¢ € R" = Dyp(xg) = 0.

LEMMA 96.

Q={T e L(R",R™); T é isomorfismo}

(A) Q é um subconjunto aberto;

(B) A aplicacio ® : Q — Q definida por ®(x) = 7! €
continua.

TEOREMA 97 (Funcao Inversa). Seja f : U C R" — R”
uma funcao de classe C' no aberto U do R™. Suponhamos que
zo € U a derivada D f(xy) € isomorfismo. Entao,

(A) Ezistem vizinhanc¢as Vg de xq e Wy de f(xq), com Vy C
U, tais que a restri¢ao fly, : Vo — W, tem inversa g : Wy —
Vo3

(B) A inversa g é de classe C' e sua derivada Dg vem
dada por

Dg = [Df(z)]™", z € Vp.

Demonstragao: Seja T = [D f(x()]~! [T é um isomorfismo]

D(Tof)(xo) = DT(f(x0))oD f(x0) = ToD f(xo) = [Df(x0)] oD f(xo) = 1

Pelo Lema 94, nao ha perda de generalidade em admitir que

Df(zo) = I (do contrario consideramos h =T o f).
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1* Etapa: f ¢ localmente injetiva

- Seja §; > 0 tal que Bg,(zg) C U e f(z) # f(zo), Vx €

Bs, (zo)\{zo}-

- Seja 0o > 0 tal que
(i) det[Df(z)] # 0, Vo € Bys,(zo) (segue do fato que
det[D f(z0)] # 0 e a continuidade da aplicacdo v — detz, x €

(i1)
da continuidade das derivadas parciais).

- Seja § = min{dy, 02} e seja V' = Bs(x)

(a) det[Df(xo)] # 0,Vx € V;

(b) f(x) # f(z0),Y2 € V\{zo}(= f(x) # f(z0), Vo €
av).
(c) ‘ (o)

Afirmagio: |l — yl| < 2| f(x) — fW)ll Yo,y € V.
Seja p(z) = f(z)—x, Ve €V C U, Jp(z) = Jf(x) -1 =

f; of;
)~ 5w

Vi,j=1,--+,n,Vo € Bs,(xo)(segue

< on?’

1

of; of;
- S on2

J

Vi,j=1,--- ,n,YrxeV.

i . df; _ dfi . dfi . -
0p; af; af; .
‘ afj (I)H - @i‘] (I) - 6£j (IO) < ﬁ?vzvj = ]-7' o JnJ\V/x €

V. Aplicando o Lema 93 & funcao ¢, obtemos

@) = Wl < s sl =yl = 5 lle =yl &
I1£) = — f) +l < gl — vl =

Iz~ yll — 117(x) ~ £ < 3 lle ]|

Conclusao: f ¢ injetiva em V.

2% Etapa: Construcao das Vizinhancas V e W,
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f(wo) & f(OV) (por (b)) d = dist(f(xo), f(OV)) > 0,
porque f(9V) é compacto e f(xg) ¢ f(OV). Seja a = d/2

(§] WO == Ba<f(l‘0))
Sobrejetividade

Fixemos y € Wy e seja ¢ : V — R, o(z) = |ly — f(2)|?
- ¢ é continua em V;

-V é compacto;

- ¢ atinge um valor minimo num ponto z* € V.

Temos que

ly — f(xo)|I” < lly — f(@)II°, Vo € OV = p(x0) < p(x), Vo € OV

Como p(z*) < p(zo), entdo p(z*) < p(z), Yo € OV e por-
tanto 2* ¢ OV. Logo, * € V e pelo lema 95, segue que

Dp(z*)=0
Temos que ¢(z) = (y — f(x),y — f(z)), entdo
Dop(x).€ = 2(y— f(x), Df(2).£) = (y— f(«"), Df(2").£) = 0; ¥ € R
como det[Df(xz*)] # 0, entdo y — f(2*) = 0. Basta tomar
§=[Df()] " (y - fa)).
Tome Vo = VN f71(Wy) = f: Vo — Wy tem inversa
g: Wy — V.

3% Etapa: Sobre a inversa g
e —yll < 2| f(x) = fW)II, Y2,y € Vo =

llg(uw) — g(v)|| < 2||lu—v|| = g é unif. continua

Afirmacgao: g ¢é diferenciavel em Wj.
Sejay € Wy, y = f(z), x € Vp (x é tnico pela injetividade)

temos
flar) = f(z) + Df(@)(z1 — x) + r(z1 — )

[Df ()] (f(21) = f(2)) = 21 — 2+ [Df(2)]"'r(z1 — o)

[Df(2)] "y —y) = g(n) — 9(y) + [Df(@)]'r(zs — z)
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ou seja,

9(1) —g(y) = [Df ()] (v —y) + oy — v),

onde p(yr —y) = —[Df(x)]"'r(z1 — x). Temos que

o =)l _ NDF@] e = o) _ lr(e = )]

ly1 — vl lyr — vl |y =yl
(1 — 2)] (e o)l
=) @l =2 e e "

r1 — x e usando a continuidade uniforme da g, y1 — .
Segue que g é diferencidvel em y = f(x) e Dg(y) = [Df(x)]™*
também Dg = ® o Dfog; onde ®(x) = 7! do lema 96 = Dg
é continua = ¢ é de classe C'. 1

Demonstracao do lema 96:

Q={T e L(R",R"); T é isomorfismo}

(i) Q ¢é aberto;

(i) @ : Q — Q; &(x) =2! é continua.

Provade (i): Seja A € Qesejaa = a7 > 0- Mostraremos

||A
que Bs(A) C Q, f < a. De fato, dado B € Bg(A) temos que

1
lzll = [[A7 Az || < |A7[[[Az]| = = || Az — Bz + Bzl <

< LAz — Ba + [ Bal] < A~ Bl o] + | Bz]
< ~[Bllall + 1B =
() Bzl > (o~ 5) la]

A relagao (*) = na injetividade do operador B. Logo, B € Q
e portanto Bg(A) C Q.

Para a continuidade de ® em X, € (2, notamos que

X' =X'=— XX -X0)X; ' =

17 = X | < XX = Xol 1 X7
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Tomando X € Bg(X), entao

1
IX@I > (@=Bllel = X7 < o=

Logo,

12(X) = &(Xo)ll < ~ X = Xo

1
(= p)
® é uniformemente continua.

Comentarios sobre o Teorema da Funcao Inversa

(A) A hip6tese de ser f de classe C! é essencial, pois
_Jar+a®sini, r#0,0<a<]1
Jx) = { 0, z=0

D a—i—2:csin%—cos%, x # 0,
f@)_{ a, x=0

A derivada f’(x) nao é continua em x = 0. Pois

1 2
I( =a+ —sinkm — coskm =

2 a+1, k impar
km km

a—1, kpar.

A sequéncia xp = % converge para zero e a sequéncia f’(xy)

diverge. f nao ¢é de classe C'. Temos que f/(0) = a # 0,

Df(0).€ = a& é isomorfismo mas a fun¢ao f nao tem inversa

em vizinhanca alguma da origem. De fato, sejad > 0e k € N,
k par, tal que = € (=6,9), f'(=) =a—1<0= f'(z) <
0, z € (=6,0)NI, I intervalo contendo =; f'(7=5) = a+1 >

(k+1)m

0= f'(z) >0, 2 € (=0,6)NJ, J intervalo contendo 1~ =

(k+1)7

f nao tem inversa em (—46,0).

(B) A inversa f~! pode existir em torno de zg, sem que

Df(zo) seja isomorfismo. Neste caso, a inversa f~! nao ¢é de
classe C' (nao tem derivada). I = D(fof~")(xo) = Df~ (yo)-

D f(zo) (contraria a hipétese). Se fosse f~! diferencidvel, entao

D f(xo) seria um isomorfismo.

Exemplo: f: R —R; f(z) = 23 é de classe C, tem inversa

fy) = ¥y, Df(0) =0 (ndo é um isomorfismo).
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(C) Seja f(x,y) = (e" cosy,e”siny); (x,y) € R det[J f(x,y)] =

e** #£ 0,Y(z,y) € R? = Df(z,y) é um isomorfismo em cada
ponto (z,y) € R

Pelo Teorema da Fungao Inversa, cada ponto (z,y) € R?
possui uma vizinhanca onde a funcao f tem inversa de classe
C'. A funcao f nao possui inversa global em R?, porque f nao
¢ injetiva (f(z,y + 2km) = f(z,y),Vk € N.
Teorema da Funcao Implicita

Derivada Parcial
R™™ = R™ x R" W C R™™ um aberto, seja zg =

(20, 90) € W e sejam
Wao = {y € R"; (20,) € W}

Wy, = {z € R™; (z,y0) € W}.

Dada uma funcao f : W — RP diferenciavel em z;, entao a

funcao f,, : W,, — RP? definida por
fﬂfo(y) - f(x())y)

¢ diferenciavel em yg e
D fuo(y) - n = Df(0,50) - (0,7)

Notagao: D fu,(y) = Dy f(z0,y0) = 02f (0, Y0)-
De modo analogo, a derivada parcial de f com respeito a

variavel x no ponto zy = (xg,yo) é a aplicagao linear

D;cf(xm yo) :R™ — RP

D f(x0,40) - § = Do f(20,%0) - (£,0)
Fato: D f(xo,v0) - (&§,m) = Dayf(z0,y0) - &+ Dy f(z0,%0) - 1.

TEOREMA 98 (Fungao Implicita). Seja f: W C R™" —
R™ uma funcao de classe C* no aberto W e seja zg = (20.y0)
um ponto de W onde (1) f(xo,y0) = c. (i1)
D, f(xo,yo) € um isomorfismo de R™ em R". Entao, existe uma

vizinhanca V de xo e uma funcio de classe Ct, ¢ : V — R"
tais que: (A)
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e(x0) = yo; (B) (z,0(x)) € Wz € V; (C) f(z,0(x)) =
c,Vr eV.

Demonstragao: Seja F': W C R™™™ — R™" : F(z,y) =
(@, f(z,y))

- I ¢ de classe C;

- DF(x0,90) - (§,m) = (§, Daf(z0,90) - €+ Dy f(0,90) )

DF(z) € L( R™™ R™™),

Seja (§,n) € N(DF(2)) = DF(z0)-(&,m) = 0« (&, Duf (20, Yo)-
£+ Dyf(zo,y0) -m) = (0,0) =& =0e Dyf(xo, )
£+ Dyf(wo,y0) - m =0 = Dyf(xo,90) - n=0 = n=0,
pois D, f(zo, yo) é um isomorfismo. Logo N(DF(z)) = {0}.
Segue que DF(zy) é isomorfismo. Pelo Teorema da Fungao
Inversa, existem vizinhangas U de (xg,y) € V x Z de (zo, ¢)

e uma funcao de classe C', G : V x Z — U que é a in-
versa de F, ou seja, G(z,y) = (u(z,y),v(z,y)) = (z,y) =
Plu(,y),o(,9)) = (u(z,y), Fu,v) = = = u(z,y). Logo,
G(z,y) = (z,v(z,y)). Seja ¢ : V. — R", p(x) = v(z,c) €
R”

(i)p é de classe C1;

(A) (o, 90) = GF(z0,y0) = G(xo, f(z0,%)) = G(zo,¢) =
(o, v(zo, ¢)) = (20, p(x0)) = ¥(20) = Yo

(B) (z,¢(x)) € W,Vx € V. De fato, (x, p(x)) = (x,v(z,c)) =
G(z,c) e U CW.

(C) f(x,0(x)) = ¢,V € V. Temos que (z, f(x,p(zx))) =
F(z,p(x)) = F(z,v(z,y)) = FG(x,¢) = (x,¢) = f(x,0(2)) =

REMARK 99. (A) Como derivar a fungao y = ¢(x) obtida

no Teorema anterior?
[z, o(x)) = c=
Dy f(x,¢(x)) - &+ Dyf(w,0(x)) - Dp(x) - £ =0
Dyf(x,p(x)) - Dp(x) - § = Do f(z,0(x)) - €
Dyf(z, ¢(x)) - Do(x) = =Da f(x, ¢(x))
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Como D, f(z,¢(x)) € um isomorfismo numa vizinhang¢a de
zo (det JD, f #0)

Dy(x) = =[Dy f(x,(2))] 7' Do f(x, ().

(B) Demonstrar o Teorema da Fungao Inversa usando o
Teorema da Funcgao Implicita.

f:UCR"—R" de classe C*

Hipdoteses { Df(zg) : R™ — R™ é um isomorfismo.

F:UxR"—R" F(z,y) = f(z) —y

Temos que F € de classe C', D, F(xo,y0) = Df(xg) € iso-
morfismo, e F(xo,y0) = f(zo) — yo = 0. Pelo Teorema da
funcao implicita existe uma vizinhanca W de yo e uma func¢ao
de classe C*, g: W — g(W) tal que

(i) 9(y0) = o

(i) F(g(y),y) = 0,Yy € W = f(g(y))—y =0= f(9(y)) =
1.

Forma local das Submersoes

Uma fungao f: U C R™ — R" diferenciavel no aberto U é
denominada submersio quando a derivada D f(zx) : R™ — R"
for sobrejetiva para qualquer x € U. Neste caso, m > n.

Exemplos mais simples sao as projegoes:

m: R™™ — R m,: R — R"
)

(z,y) — = (z,y) — y

Dmy(x,y) = w2 que é sobrejetiva.

Como se comportam as submersoes f : U C R™ — R" .
Resposta: Se comportam localmente como a projecao ms.

Seja f : U C R™ — R"™ de classe C', 2y = (w9,%0) é um
ponto de U onde D f(z) é sobrejetiva.

(Graficos)

Seja @ : U — R™™; &(z,y) = (z, f(x,y)) entdo

D®(20)(&,m) = (&, Dof(20) - § + Dy f(20) - m)

D, f(z) : R" — R"™ é um isomorfismo [R™ = {0} x R"]?.
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(Df(z) : RPT™ — R" m = p+n, ésobre, tome {1, , My}
uma base do R"™ = {Df(20)(0,7;), i = 1,--+ ,n} é uma base
do R" = D, f(20) ¢é isomorfismo.)

D®(zp) é um isomorfismo. Pelo Teorema da Fungao In-
versa a fungao ® tem uma inversa h : V x W — Z de classe
C'(h é um difeomorfismo de classe C'). Fazendo h(z,y) =

(x,ha(x,y)), temos
($ay) = (I)h(ﬁ,y) = (I)(JT,hQ(CE,y)) = ($,f($,h2(l’,y))) = (x,fh(x,y)) =
fh(%,y) =Y

(4) Forma Local das Imersoes
Uma fungao f : U C R™—=R™" diferencidvel no aberto
U C R™ é denominada imersao quando a derivada Df(x) :
R™—R™*" for injetiva para qualquer x € U. O exemplo fun-

damental é a inclusao:
i: R — R
r +— (z,0)

Localmente as imersoes de classe C! se comportam como a

inclusao 7. Isto significa que existe um difeomorfismo local de

classe C*, h,tal que

hf=i.
Seja f : U C R™ — R™™ de classe C', xy € U, Df(xo)
injetiva.
(Gréfico)

E = Df(z) -R" F = B+ (R"" = E@ F)
Df(zg) : R™ — E isomorfismo.
Seja @ : U x F — R™" &(x,y) = f(x) +y
P(9,0) = f(z0)
D®(x0,0) - (§,n) = Df(xo) -{&m
O(xo+&,m) = flwo+&) +n
= f(x0) + Df(xo) - E+n+7(E)

D®(x0,0) - (§,m) =0=>n=0,Df(xg)-{=0=&=0
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pois Df(zg) ¢ injetiva = DP(z(,0) é um isomorfismo. Seja
h:Z —V xW o difeomorfismo inverso de ®. Mostremos que
hf =i.

(,0) = h®(x,0) = hf(x), Y € V.

Teorema do Posto:

O posto de uma aplicacao diferenciavel f : U C R™ — R”
no ponto x € U é, por defini¢ao, o posto da derivada D f(z) €
L(R™ R™).

-Se f:U CR™ — R" é de classe C! e o posto de f em
xo € U éigual a r < n, entao existe 0 > 0 tal que f tem posto
> r em todo ponto da bola Bs(zg).

- Se U C R™ é um aberto verticalmente convexo e D, f = 0
em U entao f nao depende da segunda coordenada.

U é verticalmente convexo quando: (z,y), (z,y') € U =
(z,ty+ (1 —t)y) €U, t €]0,1].

(z,9), (@,9) € U, (1) = flz,ty + (1 = t)y) = ¥(¢) =
Dyf(z,ty + (1 —=t)y) - (y—v) =0 = & = cte = ®(0) =
(1) = f(z,y) = f(=z,y).

Teorema do Posto

Seja f : U C R™"™ — R™P yma funcao de classe C* no
aberto U. Suponhamos que f tem posto m em cada ponto x €
U. Entao, dado zg = (70, y0) € U existem vizinhancas Z C U,
VxWCR™ VxW*CR™?P comzy € ZN{V x W},
(z,0) € V x W* e existem difeomorfismos a: V x W — Z e
B:7 — V x W* de classe C! tais que Sfa = im.(Graficos)

O Teorema da Fungao Implicita no Calculo III

19 Caso: F(z,y) = 0; %—5(20) #0. F: R — R, D,F(z)
¢ um isomorfismo. Existe uma vizinhanca V x W de zy =
(7o, o) e uma fungao de classe C, p : V — Z tal que :

(i) (z,o(x)) €U =R? Vz € V.

(ii) F(z,p(z)) =0, Ve e V.
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Além disso, Dy(z) = —[D,F(z)]'D,F(z). Numa vizin-
hanca V' de xy a varidavel y é definida implicitamente como

funcao de z e y = —F, /F,.

29 Caso: f($ay>uav) = 07 g(x,y,u,v); ggfz) = det |: .Z;u .Z;U :| 7&

0, no ponto Py = (o, Yo, Uo, Vo) = u e v sao fungodes de x e y.

Seja F: R?*™? — R?, F(z,y,u,v) = (f(x,y,u,v),.9(x,y,u,v))
ou F(X,Y) onde X = (z,y) e Y = (u,v). = DyF(P) =
(vt Drg) = | B ]

det(Dy F(P)) # 0 & Dy F(P) é um isomorfismo = Y =
p(X) em V' 5 (z0,50) < (u,v) = (p1(z,y), p2(z, y))-

Calculo das derivadas: g, Vs, Uy, vy

of 0x  Of dy Of ou  Of dv
Ox Ox + Ox Oz + ou Oz + ov or 0
dai
fuum+fvvm:_fx
GuUy + GvUz = —Gz-

10. Integracao

1. Funcoes integraveis

Seja A = [ay,b1] X -+ X [ay, b,] um retangulo fechado do R™ e seja
f A — R limitada. O volume do retangulo A é, por definicao, o
nimero real
vol A =1I;_,(b; — a;).
Ele é também o volume do retangulo aberto

A° = (al,bl) X+ X (an,bn).

Uma partigdo P do retangulo A é uma colecao P = {Py, P, -+, P,}
onde cada P; é uma partigdo do intervalo [a;, b;]. O ntmero de sub-
retangulos da particao P é Ny, N,---, N, onde N; é o numero de

subintervalos da parti¢ao P, 7 =1,--- ,n.
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A soma superior de f relativa a particao P, é por definicao,
(3) Z Ms(f)vol (
Sep

onde em (3) a soma é tomada sobre todos os subretangulos S de P e

Ms(f) = sup f(x).

T€S
A soma inferior de f relativa a P é

(4) Z ms(f)vol (

S¢P

onde mg(f) = inf,es f(x).

E claro que
(5) L(f,P) < U(f,P), ¥ P.
PrRoOPOSITION 100. Se P e Q) sao particoes de A, entao

(6) L(f,P) <U(f,Q)

(7) sup L(f, P) <infU(f, P).
IS P

Demonstracao: Seja R um refinamento comum as partigoes P e Q).
Todo retangulo S de P é subdividido em retangulos Sy, -+, Sy de R e
portanto,

ms(f) < ms,(f), Vj,
e vol(S) = vol(Sy) + - - - + vol(Sk). Entao

P) = ng(f)vol Zng fvol (S;)

s¢p SepP j=1
o que implica
L(f,P) < L(f,R).
Analogamente,
U(f,Q) =2 U(f,R)
logo
L(f,P) < L(f,R) <U(f,R) < U(f,Q).

Para provar (7), fixemos @) e tomemos o sup em (6);
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sgpL(f,P) <U(f,Q)
dai segue (7).

DEFINIO 101. Uma funcao limitada f : A — R € integrdvel em A

quando

(8) sup L(f,P)= ir]%f U(f,P).

Este numero € a integral de f em A € representado por fA f.

Z]

ExAMPLE 102. f:[0,1] x [0,1] —

0,
1

Y

=N

f(l‘,y)z{

= O
IAIA
ST
IA N

entio [, f = 1.

Seja P uma particao de A. Considerando um refinamento de P,
se necessario, podemos supor que qualquer retangulo S de P esta a

esquerda ou & direita de z = 3. P = P'U P"

L(f,P)= Z ms(f)vol(S) + Z ms(f)vol(S)

Sep’ Sep
1
= D wol(S) = 5 =U(£. P)
Sep

f é integravel e [, f =1/2.
ExampLE 103. f:[0,1] x [0,1] = R
0, €@
ren={, % 05 %

logo f nao é integravel em [0, 1] x [0, 1].

TEOREMA 104. (Critério de integrabilidade) f : A — R € integrdvel

se, e somente se, dado € > 0 existe uma particio P. de A tal que

(9) U(f7P€)_L(f7P€)<€‘
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Demonstr.: Suponhamos f integravel em A e seja € > 0 dado. Por

(8), existe P! parti¢ao de A tal que

sup L(f, P) + &> U(f, F))
P

Por defini¢ao de supremo, existe P! partigao de A tal que
L(f, PY) > U(f, Pl) — <.
Seja P. um refinamento comum de P! e P”. Temos
U(f,P) — L(f, P) < UGS, P) — L(f, PY) < =
Reciprocamente, suponhamos (9) vélida. Da relagao (7)

St;pL(f, P) < U(f,Q) VQ.

Por (9), existe P., U(f, P.) < e+ L(f, P:) < e+ supp L(f, P). O que
implica
sup L(f, P) =inf U(f, P).

Isso demonstra o teorema.

DEFINIO 105. um subconjunto €2 C R"™ tem medida nula quando
cumprir a sequinte condi¢do: dado € > 0, existe uma cobertura { Ag}, o
de Q por retangulos fechados tal que

[e.9]

Zvol (Ap) <e.

k=1

EXAMPLE 106. Seja Q2 = {ay, as,---} C R™ um subconjunto e enu-

merdvel. Dado € > 0, seja A, um retangulo do R™ contendo ay, e tal

€ . ‘
que vol(Ay) < 5 Ou seja, considere ay = (ag, Gog, " - , An) € R,

1 /e\n 1 /e\n
B =l =5 (56) o+ 5 (50) )

Ay =L+ -+ Ly

temos

temos

g;wl (Ag) = kf:a (%)k <e.

=1
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EXAMPLE 107. Q = {(z,0) : x € R} tem medida nula como sub-

conjunto do R2.

De fato,
€ €
Ay = [k, K] X |~ ]
o= R KD = n T
€ €
logo
Zvol (Ag) < e.
EXAMPLE 108. Se Q1,0, -+ ,Qp, -+ € uma colecao enumerdvel de

subconjuntos de medida nula, entao {2 =U372,$; tem medida nula. De

fato,

o . 6
Qp CUZ Aje, Y wol (Ay) < oL

j=1

A colecao {A;k; j, k € N} cobre Q e

oo o0 c
Zvol (Ajr) < Z 5 <€
j=1 k=1

ExXAMPLE 109. Se Q tem medida nula e Q' C §Q, entdio Q' tem

medida nula.

DErINIO 110. Um subconjunto Q@ C R"™ tem conteido nulo (es-
creveremos ¢(Q2) = 0) quando para cada € > 0 existe uma cobertura

Ay, Ay, - Ay de S por retangulos fechados satisfazendo

k
Zvol (4;) <e.
j=1

ExAMPLE 111. (1) ¢(Q2) =0=m(Q2) = 0.
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(2) Seja x,, — = em R. Entao Q = {x1,29, -+ , &y, -~} tem
conteudo zero. De fato, dado € > 0, 4 ng € N tal que x, €
B.(z), Yv > ng. Para cada j = 1,2,---,ng, seja A; um
retangulo fechado de vol < e exy € Ay, x9 € Ag,--+ , 2y, €
Any. Entio Q C Ay U---UA,, UB(x) e
vol (A1) + - +wol (A,,) +vol (Be(z)) < (ng+ 1)e.

(3) 2 = [0,1] N Q ( enumerdvel) m(Q) = 0. Se Ay, Ay -+, Ay
sao retangulos fechados tais que Q0 C Ay U ---U Ay, entdo por

densidade
0,1] C AyU---U A

e dai seque que

k k

> wol (A) = (bj—a;) > 1

j=1 j=1

portanto, c¢(§2) # 0.

LEMMA 112. Se K C R™ é compacto e m(K) = 0, entao ¢(K) = 0.

Prova: Seja {4}, y uma cobertura de K por retangulos abertos

com Y vol (A;) < e. Esta cobertura admite subcobertura finita, isto é,
KCAﬂU"'UAjk

e é claro que

k
Zvol (Aj) <e
I=1

2. Oscilagao e Integrabilidade
Seja A = [a1,b1] X -+ X [a,,b,] CR™,  f:A— R limitada. Dado
e > 0, sejam
Ms(f,a) =sup{f(z): x € AN Bs(a)}
ms(f,a) = inf{f(z): x € AN Bs(a)}
A oscilacao de f em a é, por definicao,

O(f7 CL) = éli%lJr [M5<f7 CL) - m5(f> CL)]
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e f é continua em z = a <= o(f,a) =0.

e Se FF C R" é fechado e ¢ > 0 é dado, entao F, = {x €
F; o(f,x) > €} é fechado.

e D(f) = {x € A; f é descontinua em =z}, entdo D(f) =
U2, Fijk, onde Fiyp = {x € A; of,x) > 1/k}.

LEMMA 113. Se o(f,z) < o, ¥ x € A, entdo existe uma parti¢ao
P, de A tal que

U(f,P.) — L(f, P.) < awvol (A).

Dem.: Para cada = € A, existe U(x) vizinhanga de = tal que
Al(fax)__7n(f7$>(< a

Seja {U(z1),- -+ ,U(zx)} uma subcobertura finita de A e considere P,

uma particao de A cujos retangulos estao contidos em algum U(z;).

> A{Ms(f) —ms(f)}vol (S) < Y avol (S) = avol (A).

SeP, SeP,

TEOREMA 114. f € integravel se, e somente se, m(D(f)) = 0.

Dem.: Suponha que f é integravel. Vamos provar que c(Fy) =

0, VE=1,2,--- . Dado € > 0 existe P, particao de A tal que
[](fafl)‘_7L<f7ll) <:€/k'

Seja S a colegao de subretangulos S de P, tais que SN Fy, # @. S ¢é

uma cobertura finita de F .
Ms(f) —ms(f) > Ms 0 Fix — msnr,, > 1/k
isto implica que

Z %vol (S) < Z(Ms(f> —ms(f))vol (5)

Ses SeS
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logo

Zvol (9) <e

Reciprocamente, suponhamos que m(D(f)) = 0. D(f) = U, F /.
Logo, m(Fi/k) = 0 = c¢(Fix) = 0.
Seja Uy, - -+ , U, retangulos fechados tais que

k
Fi C U?le’nt(Uj), Zvol (U;) < e

J=1

seja P uma particao de A cujos subretangulos S estdao em uma das

classes
S; ={5; S C U;, para algum j}

S, ={S; SNFy =0}
seja M =supy |f(z)] (f é limitada, logo tem supremo)

> (Ms(f) — ms(f)vol (S) =Y (Ms(f) —ms(f))vol (S)+ > (Ms(f) — ms(f))vol (S)

SepP SeS SES2

<2Me+ Y (Ms(f) —ms(f))vol (S)

SESs

Para S € S, temos: o(f,z) < 5, Vo € S € S,. Pelo lema existe uma
particao P’ de S tal que

U(f,P")— L(f,P") < 1/k vol (S)
ou seja, temos
S;&[Ms(f) —mg(f)]vol (5) < %vol (A) < evol (A)
onde k é tal que % < €. Logo
U(f» Q) - L(f7 Q) < [QM + vol (A)]E’
onde Q = &1 U Ss.



