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Preface

Nonlinear Functional Analysis studies the properties of (con-
linuous) mappings between normed linear spaces and evolves meth-
«xls to solve nonlinear equations involving such mappings. T'wo
inajor approaches to the solution of nonlinear equations could be
described as topological and variational, Topological methods are
derived from fixed point theorems and are usually based on the
notion of the topological degree. Variational methods describe the
solutions as critical points of a suitable functional and study ways
of locating them,

The aim of this book is to present the basic theory of these
wethods. Tt is meant to be a primer of nonlinear analysis and is
designed to be used as a text or reference book by students at
the masters or doctoral level in Indian universities. The prereq-
uisite for following this book is knowledge of functional analysis
and topology, usually part of the curriculum at the masters level
in most universities in India.

The first chapter covers the preliminaries needed from the dif-
ferential calculus in normed linear spaces. It introduces the no-
t1om of the Fréchet derivative, which generalizes the notion of the
derivative of a real valued function of a single real variable. Some
classical theorems which are repeatedly used in the sequel, like the
implicit function theorem and Sard’s theorem, are proved here.

The second chapter develops the theory of the topological de-
gree in finite dimensions. The Brouwer fixed point theorem and
Borsuk’s theorem are proved and some of their applications are
presented.

The next chapter extends the notion of tlhie topological de-
gree to infinite dimensional spaces for a special class of mappings
ktlow1il a8 compact perturbations of the identity. Again, fixed




point theorems (in particular, Schauder’s theorem) are proved and
applications are given.

The fourth chapter deals with bifurcation theory. This studies
the nature of the set of solutions to equations dependent on a pa-
rameter, in the neighbourhaod of a ‘trivial solution’. Science and
cugincering are full of instances of such problems. A variety of
methods for the identification of bifurcation points - topological
and variational - are presented.

The concluding chapter deals with the existence and multi-
plicity of critical points of functionals defined on Banach spaces.
While minimization is one method, ather critical points, like sad-
dle points are found by using results like the mountain pass theo-
rem, or, more generally, what are known as min - max theorems.

Nr.mlinea.r Analysis, today, has a bewildering array of tools. In
sclecting the above topics, a conscious choice has been made with
the following objectives in mind:

® Lo provide a text book which can be used for an introductory
one - semester conrse covering classical material;

¢ 10 be of inlerest to a general student of higher mathematics.

The examples and exercises that are found throughout the text
have been chiosen to be in tune with these objectives (though, from
time to time, my own bias towards differential equations does show
up.) '

1L I8 for this reason that some of the tools developed more re-
contly have been (regrettably) omitted. Two examples spring to
onos mind, The frst is the method of concentration compactness
(which won Ll Fields Medal for P. L. Lions). It deals with the
convergence of sequences in Sobolev spaces. Its main application
I in the study of winimizing sequences for functionals associated
b0 Koo sentilinear elliptic partial differential equations into which

vii

n certain ‘lack of compactness’ has been built. Another instance
iv the theory of I' - convergence. This theory studies the conver-
goence of the minima and minimizers of a family of functionals.
Again, while the theory can be developed in the very general con-
text of a topological space, alot of technical results in Sobolev
spaces are needed in order to present reasonably interesting re-
«nlts. The applications of this theory are myriad, ranging from
nonlinear elasticity to homogenization theory. Such topics, in my
opinion, would be ideal for a sequel to this volume, meant for an
advanced course on nonlinear analysis, specifically aimed at stu-
dents working in applications of mathematics.

The material presented here is classical and no claim is made
lowards originality of presentation (except for some of my own
work included in Chapter 4). My treatment of the subject has
been greatly influenced by the works of Cartan [4], Deimling [7],
Kavian [11], Nirenberg [19] and Rabinowitz [20].

This book grew out of the notes prepared for courses that I
gave on various occasions to doctoral students at the TIFR Cen-
tre, Bangalore, India {where I worked earlier), the Dipartimento
di Matematica G. Castelnuovo, Universitd degli Studi di Roma
“La Sapienza”, Rome, [taly and the Laboratoire MMAS, Univer-
vité de Metz, Metz, France. 1 would like to take this oppurtunity
to thank these institutions for their facilities and hospitality.

1 would like to thank the Institute of Mathematical Sciences,
Chennai, India, for its excellent facilities and research euviron-
ment which permitted me to bring out this book. T also thank
the publishers, Hindustan Book Agency and the Managing Editor
of their TRIM Series, Prof. Rajendra Bhatia, for their coopera-
tion and support. I also thank the two anonymous referees who
rea] through the entire manuseript and made several helpful sug-
gestious which led to the improvement of this text. At a personal
lovel, T would like to thank my friend and erstwhile colleague, Prof.




viil

_V' S. Borkar, who egged me on to give the lectures at Bangalore
in the first place and kept insisting that T publish the notes. I
also. wish to thank one of my summer students. Mr. Shivana;nd
waefﬁ, who, while learning the material from the manuscript
also did valuable proof reading. Finally, for numerous personai

reasons, I thank the members of my famnil d >
this book to them. y and fondly dedicate

Chennaj,

October, 2003. S. Kesavan
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Index - 1.1 The Fréchet Derivative

In this chapter we will review some of the important results of the
differential calculus on normed linear spaces. .
Given a function f : R — R we know what is meant by its
derivative (if it exists) at a point ¢ € R. It is a number denoted
by f'{a) (or Df{a) or %(a}) such that
fla+h) - f(a)

lig : = {'(a) (1.1.1)

or, equivalently,
|£(a+h) = fla) — f'(a)h| = o(h) (1.1.2)

where, by the symbol o(h) we understand that the right-hand side
is equal to a function (k) such that

le(R)l

i — 0 as |h| = 0. (1.1.3)

Il we wish to generalize this notion of the derivative to a function
tlufined in an open set of R® or, more generally, to a function
defined in an open set of a normed linear space E and taking
values in another normed linear space F', it will be convenient




2 CH.1 DIFFERENTIAL CALCULUS

to regard f'{a)h as the result of a linear operation on h. Thus,
f'(a) is now considered as a bounded linear operator on R which
satisfies (1.1.2). We now define the notion of differentiability for
functions defined on a normed linear space.

Let £ and F be normed linear spaces (over R).We denote by
L{E, F) the space of bounded linear transformations of ¥ into F.

Definition 1.1.1 Let U C E be an open set and let f:U—>F
be a given function. The function f is said to be differentiable
at a € U i there exists a bounded linear transformation f{a) €
L(E,F) such that

W2+ h) — fla) = f'(a)h]] = o(||A))). (1.1.4)
Equivalently, we can write
Ha+h) = fa) ~ fi{a)h = e(h) (1.1.5)
where S — 0 as |[A|[ — 0.0

Remark 1.1.1 The following facts are simple consequences of
the above definition: (i)if f is differentiable at ¢ ¢ U, then f is
continuons at that point; (ii)if f is differentiable at a < U, then
the devivative f'(e) € L{E, F) is uniquely defined. It is for the
uniquencss of the derivative that it is convenient to assume that
the domain of definition is an open set. M

The derivative defined above is called the Fréchet derivative
of f at the point a. We can also define the Géteau derivative of
I ot o elong o given vector he E by means of the limit

lim f(“tf? - /(@)

t—=0

: (1.1.6)

Remark 1.1.2 If f is Fréchet differentiable at a point @, then,
for every h € E, it is Gateau differentiable at that point along
h and the Gateau derivative is given by § {a)h. The converse is
not true. A function may possess a Gateau derivative at a point
along every direction but can fail to be Fréchet differentiable at

1.1 The Fréchet Derivative

that point. 1
Example 1.1.1 Let £ = R and F = R Define

EF,;;W if (z,y) # (0,0)

flz,y) = { 0 if (x,y) = (0,0).

Then if (z,y) — (0,0) along any direction 4 (i.e. along the l-ine
joining A to the origin), we get that the Jimit in (1.}1.6) exists
and is equal to zero. Thus, if f were differentiable, f'(0,0) = 0.

: — 2
However, if we pass to the same limit along the parabola y = z°,

the limit turns out to be unity, which contradicts (1.1 5). ThAus, f
is not differentiable at the origin even though it possesses a Gateau
derivative at that point along every direction. B

Definition 1.1.2 Let f : U C E = F be o given .funct‘ion. If
f'(a) exists for each a € U, we say that f is differentiable in U. If
the mapping a v f'(a) is continuous from U into L(E,F), we

say that f is of class N |

We now give examples to illustrate the Fréchet derivative.

Example 1.1.2 Let E, F be normed linear spaces and let C e
L(E,F). For b € I, define

f(z) = Ca+b.

Then f is differentiable in £ and

Fliz)h = Ch, for every z,h € E.
Thus f'=CH

Example 1.1.3 Let E be a Hitbert space and a: EXE - R a
kymmetric and continuous bilinear forin on E. Let b € E. Define

f(z) = 12(1(-1:,3;) —(b,7), for z € E.
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where (...} stands for the inner-product in £. Then

f@+h)— f{x)=alz, h) + %a(h,h) — (b h).
Since a{.,.) is continuous,
la(h, )| < MBI,
H(;n(:e it follows thai f is differentiable in E and that

(@) = alz, k) — (b,h), forevery . h € E.H

Example 1.1.4 (The Nemytskii Operator) Let Q@ ¢ R be a
domain and let f: Q x R = R be a given function such that the
mapping £ — f{z,t) is measurable for all fixed t € R and the
mapping { — f(z,t) is continuous for almost all z € Q. Such
a function is called a Carathéodory funetion. Let W be a vector
space of real - valued functions on Q. The Nemytskii operator
associated to f s a nonlinear mapping defined on W by

N{u)z) = f(z,u(z)).

A remarkable theorem, due to Krasnoselsk’ii [14] (see also Joshi
and Bose [10] for a proof), is that if (1/p) + (1/g) = 1, where 1 <
p,q < 00, and if N maps LP(Q2) into LY(Q2), then this mapping is
continuous and bounded, i.e. it maps bounded sets into bounded
sets. A typical condition on f would be a growth condition of the
Lype
[f(@ 8] < alz) + bl

where I8 a non-negative function in L9(Q) and b is a positive
constal,

Let {2 be a bounded domain and let p = ¢ = 2. Assume that,
in addibion, f i in £ x R and that %E(.r, u{z)) isin L2(0) if u €
L4(€2). Thus, the mapping u — %%(, u(.)) is, by Krasnoselsk'ii’s

1.1 The Préchet Dermuvative 5

result, continuous from L2(§2) into itself (since, ﬂ.being !)ounded,
I ‘;“(Sl’) is contained in L2(§1)). Then, N is also differentiable and
if h ¢ L2(f2), then the funclion N'(u)h € L?(Q) is given by

V@) = Lo ulm)hiz).

To see this, notice that by the classical mean value theorem for
functions of several variables, there exists #(x) such that 0 <

8(z) < 1 and
flo,ulz) + h(z)) — flz,ulz)) = %%(:cu(:c) + G(z)h(z))h(z)-

Hence, denoting the norm in L*(£2) by |||}, we get

: J
Niu+h) = N(u) - N(u)hl O v -,
™ ] < -5 |

. af
By the continuity of the Nemytskii operator associated to 7%(, Q11;

follows that the term on the right tends to zero as b = 0 in L*(§2)
and this proves our claim. W

Example 1.1.5 Let  C BY be a bounded domain andllet f:
(Ix R -+ R be function as in the preceding exampl(le. Le.t H g (€2) be
the usual Sobolev space (cf. Kesavan [13]) of functions in L( Q). _all
of whose first derivatives are also in that space and which vam.sh,
in the sense of trace on the boundary 0€). Then, the following
problem has a unique (weak) solution (cf. Kesavan [13]):

fla,ulz)) zcl
0

T € 9.

—-Aw(r) =
w(z) =

Since HL () € L*(8), we can thus define the mapping1': L2 ((12) —
LA(Q) via the relation T(u) = w. Let h € L2(Q). let z € Hg(2)
e the unique solution of the problem:

~Az(z) = %ti[:r,u(a:))h(:r) AERY
zz) = 0 r € 0L
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We claim that 7" is differentiable and that 7'(u)k = z. Indeed, if
v="T(u+ h), then, { = » — w — z vanishes on 0 and satisfies

d
SAC = fluth) - i) - 2w
in 2. By standard estimates, we know that ||¢|| r2(q) 18 bounded
by the norm in L%((2) of the expression in the right-hand side,
which, in turn, is of the order of||A]| £2(q)) as seen in the preceding
example. This establishes our claim. W

Exercise 1.1.1 Let £ C R™ be a bounded domain, where n < 3.
Then it is known that (cf. Kesavan [13]) H}(Q) ¢ L?(Q), with
continuous inclusion, if 1 < p < 6. Let f ¢ L*(Q) be given. Show
that the functional J defined for v € H}(Q) by

J(v) = %/vau]%—éfnuﬁdm—/ﬂfudx

18 differentiable and that

<Juy,v>= Vu.Vvdz ——/
2 0

u%da:—/.f"uda:
Q

where < .,. > denotes the duality bracket between Hj () and its
dual {denoted by H~'(2)). &

Exercise 1.1.2 Let M(n,R) denote the space of all n x n matrices
with real entries. Let GL(rn, R) be the set of all invertible matrices
in M(n,R).

(i) Show that GL(n,R) is an open set in M(n,R) (provided with
the usual topology of R™").

(ii) Show that the mapping f : GL(n,R) — M(n,IR) defined by
J(4) =A=' is differentiable and that

fl(AH = —A'HA ' @

Exercise 1.1.3 Let E be a nornied linear space. Show that the
map f : E — R defined by f(z) = ||z| for all z € F is never

1.1 The Fréchet Derivative 7

differentiable at the origin. W

The Fréchet derivative follows the usual rules of the calcylus.
For instance, if f and g are two functions which are differentiable
at a point ¢ and if we define f +g and Af (for A € R) by

(f +9)(&) = fz) + g9la) , (Af)(z) = Af(z),

then

(f+9)(a) = f'(a) +4(a) , (Af)'(a) = Af'(a)

as can be easily seen. Another important rule relates to the deriva-
tive of the composition of two differentiable functions.

Proposition 1.1.1 Let E,F and G be normed linear spaces, U
an open set in E and V an open set in F. Let f: U — F,g:V
G such that for a given point a € U, we have f(a) =b€ V. On
the open set U' = F71(V), which contains a, define

h=gof:U =G

If f is differentiable at a and g at b, then h is differentiable at o
and

R(a) = ¢(f(a)) o f'(a). (1.1.7)
Proof: We have

flz) = fla)+ flla)z —a)+elz —a),
gly) = gb)+g'(B)y—b) +nly—b),

where ¢(z — a) = o{llz — af|) and gy — b) = o(|ly - b[|). Now,

h(z) —h(a) = g(f(=) - a(f(a))
v = ;;’(f(a))(f(m)*f(a))+'f1(f(ﬂf)'f(a))-

Thus

h(x)=h(a) = ¢ (f(a))f'(a)(l‘*a)ﬂf(f(a))E(:r‘-—ﬂ«)--*—n(.f(fﬂ)—({(f»)g)).
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But
g’ (f(@)e(z—a)ll < llg'(F )] lle(z —a)ll = o(ljz —all). (1.1.9)
Further, if M > ||f'(a)]|, then, for |z — a| small enough,
17(2) ~ /(@] < Ml - all,
and o |1 (z) - f{a)|l = 0 as |jz — al] = 0. Thus

n(f(e) = F@Dll . Yinlfe) — Fan)]
a7 —fl

which proves that

|in(f(z) = fl@))]] = ol|lz — ali). (1.1.10)

The relations (1.1.8)-(1.1.10) prove (1.1.7). W

We look at some special situations where E and F are product
spaces. Let us assume that F = F} x ... x Fj,, the product of
nornied linear spaces. For 1 < i < m, define the projection

—0Das|lz—a|l =0

Pi: F— Fi,
and let w; 1 F; = F be the injection defined by
TL,'(.'I,'.,') = (0, oy 0, T, 0, ..,0),

{(with 0 everywhere except in the é-th place). Then

{E piou i 1;1::, (1.1.11)

m

=1 Wi O
(where Ig denotes the identity map in a norined linear space E).
Proposition 1.1.2 Let U C F be an open set and f U = F
be o given map. Then | is differentiable at a € U if, and only if,

[ =pof U -+ F, is differentiable at o far each 2,1 <i<m. In
this case,

m

f'la) =Y uio fi(a). (1.1.12)

i=1

1.1 The Fréchet Derwative 9

Proof: If f is differentiable, so is f;, since it is the composition
of f and a continuous linear map (which is always differentiable;
¢[. Example 1.1.2).Thus, by Proposition 1.1.1,

fHa) =pic fia). (1.1.13)

If, conversely, f; is differentiable for each i, we get, from (1.1.11),
that

L

ftzuiof-;

=1

and again, as u; is a linear map, it is differentiable and (1.1.12)
follows.This completes the proof. B

Let us now consider the case where E is the product of normed
linear spaces. Let E = E| X ... x E, and Y C E an open set and
f:U — F a given map. Given a = (aj,...,an) € £, we define
)\'i E; > E by

}\,;(.’El') = (al, i1, Ty, Gy, ..an).

Propaosition 1.1.8 If f is differentiable at a € U, then for each
i, f o A; 18 differentiable at a;. Further,

ki3

Fl@) (b, ha) =D (f o XY (@ih (1.1.14)

i=1
for any h = (h1,....,hn) € E1 x .. X By = E.

Proof: If u; is the injection of E; into F as defined previously, we
Liave

Ai(zi) = a + uilz; — ay).
Then (cf. Example 1.1.2),

M(zi) = w, for all z; € E.
Ilence if f is differentiable, so is f o A; and

(f o X)) (ag) = f(a) o u,.
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Once again we have
i
> uiop;=Ig
i=1

which gives
n

S (@) o) oy = f(a)
=1

which is just a reformulation of (1.1.14). W

Definition 1.1.3 The derivative of f o \; at a; is called the i-

th partial derivative of f at @ and is denoted by %(a) or by
dif(a) W

Example 1.1.6 Let i C R* be an open set and let f : U -+ R
be a given function differentiable at a point a € . Then the
partial derivatives of f at a are the usual ones we know from
the calculus of functions of several variables. Further the relation
(1.1.14) implies that f'(a) can be represented as follows (since

L(R,R) & R*):
Fla) = (ﬁ(a),...,@i(a))

55’:1 6$n

(which is also denoted by V f(a}). It can also be seen that gﬂ:f—(a)
is the Gateau derivative of f along e;, the 3-th standard basis vec-
tor of R*.1l

Example 1.1.7 Let I be as in the previous example and let
f 1 U —» R™ be differentiable at a € U. Then f'(a) € L{R",R™)
which can be represented by an m x n matrix. Indeed, if f(z) =
(f1(2), ., Fin(z)),then, by (1.1.12) and (1.1.14), we deduce that
F'{a) is given by the usual Jacobian matrix,

i) .. #a)

-Q-L’;'(a) Q&‘(a)

dry

1.1 The Fréchet Derivative 11

Remark 1.1.3 As shown by Example 1.1.1, the converse of Propo-
sition 1.1.3 is false; all partial derivatives of f may exist at a point
but f could fail to be differentiable there. However, we will prove
{¢f. Proposition 1.1.4} the differentiability of f given the existence
of partial derivatives under some additional hypotheses. B

We now discuss an important result of differential calculus,
viz. the mean value theorem. One of the earliest forms of this
thecorem states that if f : R -+ R is differentiable in an interval
containing [a,a + h], then there exists a & € (0,1) such that

fla+h) = f(a) = f'(a + 6Rh)h. (1.1.15)
Ii. is clear that (1.1.15) cannot be true in more general situations

[or arbitrary normed linear spaces F and F. Indeed, even if we
tnke E =R and F = R? and set

f(4) = (cost,sint),
then it follows from Proposition 1.1.2 that
f'(1) = ( — sint,cost).
Thus, while f(0) = f(2n), we can never have f'({) = 0 for any
! € (0,2r). However, there are other versions of this result which
nre true.
Indeed, from (1.1.15) we deduce that if f is a real valued func-

lHon of a real variable which is differentiable in an interval con-
tnining [¢,a + A, then

|fla+h) ~ f(a)] < sup |f'(a+8h)[A| (1.1.16)
0<h<1

Thix form of the mean value theorem can be readily generalized.
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Definition 1.1.4 Let E be a normed linear space and leta,b € E.
Then by the interval [a,b) we mean the set

{ze Elz=(1-tla+1th,0< <1}
The open interval {a,b) is similarly defined using 0 <t < 1.H

Theorem 1.1.1 (Mean Value Theorem)Let E and F be normed
linear spaces and U an open set in E. Let f: U — F be differen-
tiable in U and let [a,b] C U. Then

1) ~ f(@)|l < |lb— al| sup |If'(=)]]. (1.1.17)

z€la,b

Proof: Step 1. We first prove the result when f : I/ C R —
F,where F is a normed linear space. Clearly, it suffices to show
that, given £ > 0, we have

1£() = F@)I| < (k+ =)@ —a) + ¢ (1.118)

where z € [0,8] C U and k = Sup,cp,y ||f/(#)||; the relation
(1.1.17) follows on letting € — 0 and then setting z = b.

Assuming the contrary, let V be the set of all z € [a, 5] such
that

[|f{z) — fle)|] > (k+ &)z —a)+e.

On one hand, by the continuity of the members on both sides of
the above inequality, we have that V is an open subset of [a, 5].
Hence, if ¢ is its greatest lower bound, then ¢ & V.

By continuity, {1.1.18) is true for all x near a and so ¢ # a.
Again, ¢ # b, for, otherwise, we would have V = {b} which is not
possible. Hence, ¢ < ¢ < b and [|f'(¢)|| < k. Thus, for some

1 > 0, we have
o5 @ =1
T —c

foralle <z <c+ny,or,

1f(z) = fOll < (k + )z —c).

L.1 The Fréchet Derivative

But since ¢ € V,
l|fle) — fla)]| < (k+e)(c—a)+e.

Clomwbining the two inequalities above,we deduce that for ¢ < ¢ <
¢ +n, = & V which contradicts the definition of c. This shows that
V = B and hence proves {1.1.17).

Step 2. Define, for 0 <t <1,
h(t) = f((1 —t)a + tb).

‘Thus, & : [0,1] = F and, by Proposition 1.1.2, it is differentiable.
Iirther,
() = f (1 —t)a+tb)(b - a)
whence
IR ()] < F((L = t)a+ tb)]].||6 — al}.
"The result now follows ou applying Step 1 to i.0

Corollary 1.1.1 Ifi{ C E is an open conver set and f : U — F
iy differentiable at all points of U and verifies

IF' (@) <k, for every z €U,

then, for any x, and zg in U, we have

|1 £ (z1) — fl@2)l| < Kllzy — z2||. B (1.1.19)

Remark 1.1.4 A function which satisfies (1.1.19) is called a Lip-
wehitz continuous function with Lipschitz constant k.

Corollary 1.1.2 Let f : Y C E — F be differentiable on the
wet Y. Assume that U is connected and that f'(z) = 0 for every
@ € U. Then f is a constant function.

Proof: Let z, € i and let B(z,;¢) C I be the open ball with
centre at z, and radius € > 0. Then B{z,; <) is an open convex
ot and, by (1.1.19), we get that f(z) = f(z,) on this set since
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k = 0. Thus f is locally constant. Then for any b € F, f~1(b) is

an open set and since F is Hausdorft, it is also closed. Thus, by

the connectedness of ¢, f~1(5) = @ or U. If we choose b = flz,)

for some z, € U, we get that f(z) = b for all z c 4.1 ’
The mean value theorem has numerous applications. We present

below one such result, the converse of Proposition 1.1.3, as promised

earlit.ar (cf. Remark 1.1.3). Some other important applications will
be discussed in Section 1.3.

Proposition 1.1.4 Let E = Ey x ... x Ey, the product of normed
linear spaces and let F be a normed linear space. Let U C E be
an open set and let f : U — F be given. If the partial derwa,twes'

(a:‘) exist at every point of U and if the maps x —» (a:) are

contmuous at a €U for each 1 < i < n, then f is dzﬂerentzable at
a.

ProF)f: If f were differentiable, then we know what f’(a) should
be, i.e. we need to show that

LAy
f'{a)h Z a_f i (1.1.20)
Consider

f@1, o zn) = flat, v an) = % 2L(a)(z; — a;)

= (@1, 20) = £(01,82, ., 20) — 2L (a) (w1 ~ a1)
+fla1, 22, .., 25) — flay, a2, T3, .., Tp) — (%L(a)(:lfg — ag)
+...+ f(ala -'aan—lamﬂ-) - f(a'la--aan) - %(a)(ﬂjn - a'ﬂ)-

_ (1.1.21)
Let ¢ > 0 be any arbitrarily small positive quantity. Let

0(€1) = F(Er, 22, m) — g—;ml ~ay).

Then

F@1, 2,0 20) = (01,22, 020) = - @)1~ ) = g(a1) ~g(on).
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But g is differentiable and

JlE) = gj—l(gl,a:z, o n) — %(al,ag, o an).

Since a%':t is continuous, there exists > 0 such that ||g el <«
whenever (|z; — a;]| < 1 for each 1 < i < n.Hence,by the mean

value theorem,
llg(z1) — glan)l| < ellz — all.

We have similar estimates for the terms in each row of (1.1.21)
which in turn proves that

(@)~ @)= 3 (@) = i)l = ofllz = el

This shows that f is differentiable at a and that its derivative at
a is given by (1.1.20). W

Exercise 1.1.4 If f : { C E — R, then, show that, under the
hypotheses of Thoerem 1.1.1, there exists a point ¢ € (a,b) such
that

fF&) = fla) = f'(c)(b—a)M
Exercise 1.1.5 We say that f : i C E — F is Gateau differen-
tiable at a point a € I if there exists a contjnuons linear operator
df(a) : E — F such that

N {CERL) — fla) _
t—0 t
If F =R, and f is Gateau differentiable at all points of U, show
that we can still have the same conclusion as in the preceding
exrecise. If the mapping = df(z) is continuous at a € U,
show that, in that case, f is Fréchet differentiable at a and that

f'(a) = df (a) W

df (a)h, forall h€E.

There are several applications of the mean value theorem which
interested readers can find in Cartan [4]. We will use it again in
Section 1.3 to prove some important results.
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1.2 Higher Order Derivatives

Let £ and F be normed linear spaces and let 24 C E be an open
set. Let f: U — F be a given mapping which is differentiable in
U. Consider the map

z+— f!(z) € L(E, F).

This is a mapping from Z{ into £(F, F) and cne could again inves-
tigate its differentiability. Its derivative at a point a, if it exigts, is
a linear map of E into L(E, F) and thus belongs to L{E, L(E, F)).
This is called the second derivative of f at ¢ and is denoted by

f"(a) (or D*f(a)).

Remark 1.2.1 To define the second derivative at a point e ¢ 24,
we need not assume that it is differentiable at every point of /.
It suffices to assume that it is differentiable in a neighbourhood V
of @, and in that neighbourhood, the mapping

@ —> f'{z)
is differentiable at ¢.H

Definition 1.2.1 The function f is said to be twice differentiable
in U if f"(a) evists at every point a of U. If the map x — f(z)
15 continuous from U into L(E, L(E, F)), we say that f s of class
clm

Recall that the space L(F, L(E, F)) is isomorphic to £2(E, F),
the space of continuous bilinear forms from F x E into F. Thus
f"(a) can be thought of as a bilinear form and if (h, k) € E x E,

f(a){h, k) = (f"(a)h)k. (1.2.1)

Note that f"(e)h € L(FE, F) and so (1.2.1) makes sense.
As an application of the mean value theorem, one can prove
that (cf.Cartan [4])

F(@)(h, k) = f'(a)(k, h), (1.2.2)
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i e. the bilinear form is symmetric. We omit the proof.

Example 1.2.1 Let us consider the function defined in Examp‘le
11.3. Let E be a Hilbert space and let a(.,.) be a symmetric
bhilinear form on F and b € E. We have

#lz) = ga(z,2) - (b.2)
i f’(Io)h. = G(SCO, h’) - (bah)
Tt is now easy to see that

(o) (h, k) = alh, k)R

Let us now assume that £ = B x ... X Ep; the pro‘duct.of
normed linear spaces and that U C E. Assume t‘hat‘ fis tv‘vn:e
differentiable at @ € 4. Then f' exists at each point in a neigh-
bourhood of a. Now

N
fl(m)(hla“'ahn) = Z B_;Sf;(m)h',

=1

In the same way,

n At
f”(a)(kla k'n.) = ait (d)ki.
i=1
Hence,
o L k) by s ).
(£ @) R o)A, ) = (3 G (@0}t s
i=1 !

(1.2.3)
Note that ga%(a) € L(E;, L(E,F)) and so (1.2.3) defines an ele-
ment of F. Now,
I T a 6]“
L (@) s o ) = 3 o (L (@) ).

oz, = Ox; dz;
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8?2 l
We denote by ma%}—,(a) (orby 8;;f(a)) the term i(ﬁf—(a)) which
15 an element of £{E;, L(F;, F)), 4 linear form |

- ‘ i, L(Ej, F)), i.e. a bilinear form on E; x E;
with values in 7. Thus we can rewrite (1.2.3) as ’

n

(F"@k)h =" 74 (a)k:)h;. (1.2.4)

T a)k:)h
. j
ig—1 Oz;0z;

But (f"(a)k)h = (f"(a)h)k, which gives
n _c?i n :
ij=1 (T, (@) ki)hs i,j:l(a_i'—%c-(a) hi)k;
af’ 1.2.5
E:j:l(amjax; {a)hy)k;. (1-2.5)

In particular, if £ = R* je. E, = )

. ; \ =K%ue By =Rforl <7 < n, then
can identify £(R, ) with F and so L(R, £(R )} with F a a'we
‘Then the bilinear map —aff—( :R s i .

Bz:0z; a): R xR — F is just given by

(M) — ey
R i
where ¢;; = mj;—](a) € F'. Then, we deduce from (1.2.5) that

O 9
9202, " ~ 3202 (). (1.2.6)

As in t%le case of Proposition 1.1.4, the existence of the second
ordef partial derivatives implies that f is twice differentiable at
a point provided these partial derivatives exist at all points of 2/
and are continuous at the given point. 7

We can now successivel i
Ve ¢ s y define higher order derivatives. B
considering the differentiability of the map Y

€ € U f"(z) € Lo( B, F),

we can define tle third derivative of f and so on. In general
W(E:L )can define the n-th derivative of f at a point a, denoted b’
I ‘(a).or D" f(a), by induction: if the concept of thé first (n — ly
derivatives has already been defined, then f is said to be n—timei
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differentiable at o € U if it is (n — 1)-times differentiable in a
neighbourhood V C i of @ and the map

¢ — f™z) € Lyi (B, F)

is differentiable at a. The derivative f*(a) belongs to Ln.(E, I),the
space of n-linear forms on E with values in F.If the map z —
£")(z) is continuous, we say that f is of class ™.

Definition 1.2.2 We say that ¥ is of class CY if it is continuous.
We say that f is of class C™ iof it is of class C" for all positive
integers n. 1

Remark 1.2.2 As in the case of the second derivative, the n-th
derivative is a symmetric n-linear form. Thus, if o Is a permuta-
tion of the symbols {1,2,...,n}, then,

f(n) (a)(hh seay hn) = f(n)(af)(ha(l)a vy ho(n))-.

For completeness, we state below the various generalizations
of the mean value theorem and the Taylor expansion formulae
known for real valued functious of a real variable. For detailed
proofs, see Cartan [4]. ‘

Theorem 1.2.1 (Taylor's Formula) Let E and F be normed lin-
ear spaces and U C E an open set. Let [ : U Fbe(n-1)
-times differentiable in U and let f be n-times differentiable at
a € U. Then,

| fla+h)~ fla)= fll@)h—..— ﬁf(”)(a)(h)”ll = ofI[1]["), (1.2.7)

where £ (a)(A) = f™{(a)( A,k ). B

n times

Theorem 1.2.2 (Mean Value Theorem) Let f :U C E — F be
(n 4 1)-times differentiable in U and assume that

Hf[ﬂH}(a:)H < M for everyxz € U.
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Then
L — ) — fa — Hl n il Mllh’”n-l.l
@t h) = fla) = f@h — . - @bl < g
(1.2.8)

Remark 1.2.3 The relation (1.2.8) is stronger than (1.2.7). While
(1.2.7) is asymptotic in the sense that it just tells us what hap-
pens as ||k} -+ 0,(1.2.8) gives us an estimate of the error in the
n~-th order expansion. It is sometimes called the Taylor’s formila
with Lagrange form of the remainder. Note however that the hy-

potheses of Theorem 1.2.2 are also stronger than those of Theorem
1.2.1. |

Example 1.2.2 Let E = F = R and consider the function

[ #3sin(l/z) if x50,
f(ﬁ)_{ 0 if z =10.

It is easy to check that f is not twice differentiable at the origin.
However,

fle) = oll|=]]*)

and so it possesses a “Taylor expansion” of order 2 at the origin,
i€,

flz) = a0+ mz + 092" + o(jz)?)

with eg = a; = a; = 0.0

Remark 1.2.4 As the above example shows, a function f : U C

R — R may possess an n-th order Taylor expansion at a point in
the form

1] [#2 N
flat+h)=ag+arh+ Qe!h? +..+ ﬁh +o(lh™y  (1.2.9)

but fail to be n-times differentiable at a. However, if it is n-times
differentiable at ¢ and admits a Taylor expansion of the form given
in (1.2.9), then necessarily,

ap=f(a) ;= fa),1<i<nM
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Finally, we describe the Taylor formula with the “integral form
of the remainder”.

If F is a Banach space and f : [a,b] € R — F is a continuous
map, then we can define the integral

y= / ’ fltyar

as a vector in . This can be done by defining it as the limit ,as
n — oo, of appropriate Riemann sums. Using the continuity of f,
we can show that the Riemann sums form a Cauchy sequence and
hence converge, since F' is complete. The integral also turns out to
be the unique vector y € F (unique, by virtue of the Hahn-Banach
Theorem) such that for any ¢ € F* (the dual of F,

b
oly) = ] o(F(1))dt

where the integral on the right-hand side is now that of a real
valued continuous function on [¢, b].

Theorem 1.2.3 Let F be a Banach space and E a normed linear
space and U C E an open set. Let f:U — F be of class clntl),
Let ja,a +h] CU. Then,

Fla+h) = fla)+ f@h+..+ 5f™(@)h)"
+ J‘Ol L%f(n-l‘l)(a't' th)(]l)(n+1)dt. (1.210)

Remark 1.2.5 Observe now that we need even stronger hypothe-
ses on f.We need that the derivative of f of order (n + 1) be
continuous and that F' be complete. ll

If f is of class C!, a particular case of (1.2.10) gives

fla+ h) = fla) +/: f{a + th)hdt. (1.2.11)
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1.3 Some Important Theorems

In this section we will present some very important results in
Analysis which will also be frequently used in the sequel. It will
also be seen that the mean value theorem will play an important
role in the proof of these results.
The first result we will examine concerns the solution set of
the equation
F(5,y) =0 (1.3.1)

where f : F x F — ( is a continuous function, E, F and &
being normed linear spaces. Of course, the very general nature
of the problem prevents us from having a precise general result
on the global structure of the set of solutions to (1.3.1). However,
given a solution, say, (a, ), of the equation, under some reasonable
conditions, we can describe locally the set of solutions of (1.3.1).
In fact, we will show that the solutions “close” to (a,b) lic on a
“curve”, More precisely, we have the following result.

Theorem 1.3.1 (Implicit Function Theorem} Let E,,E3 and F
be normed linear spaces and assume that Ey is complete. Let
£} C By x E; be an open set and let f : Q@ - F be a function
such that

(1) f is continuous;

(i1)for every (z1,12) € 1, a%%(ml,xg) ezists end is continuous on
Q;

(#i)f{a,b) = 0 and A =
inverse,

Then, there exist neighbourhoods U of a and V of b and a contin-
uous function @ : U = V such that pla) = b and

flz.p(z)) =0 (1.3.2)

and these are the only solutions of (1.8.1) in U x V. Purther, if f
us differentiable at (a,b),then ¢ is differenticble at o and

#la) = - [%Q(a,b)r ).

aQ,;:L(a, b) is invertible with continuous
T2

(1.3.3)
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Proof: Step 1. Define g : & — Fz by

9wy, z2) = 22 — A~ Fla1, z2)- (1.3.4)
Looking for solutions of (1.3.1) is the samc as finding fixed points
x5 of g for given z1. Now,

a

1 Of
g, 7419
3552 (.31,272) =71 A 3:172 (.’El,IQ)

and, by (ii} above, 8%9; is continuous on 2. Fuarther,

dg
=3 (a,b) =0, gla,b) = b. 1.3.5)
axz(”’b) g{a, b) (

Hence, by the continuity of the partial derivative, there exist
neighbourhoods U of @ and V of b such that
5

< (1.3.6)

1
2

aﬁ;{thg)!

for every (¢1,22) € Uy x V. Without loss of generality, we may
assume that ¥ = B(b;7), the closed ball with centre at b and
radius » > 0. By the coutinuity of g, we deduce the existence of a
neighbourhood U C U of a such that

lg{z1,b) — g(a,b}|| < r/2, for every z; € U. (1.3.7)
Step 2. Let xy € U be fixed. Define g, : V — Ez by
guy (22) = gl21,32).

Then

llgz, (z2} — bi)

I

ljg(zy, z2) — b

llg(z1. z2) — gla, b)]|

llg(zy, z2) — glzr, b)|| + llglz1,b) — gla, b|
sl = bl + 3

IAIA A N
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by virtue of (1.3.6) and the mean value theorem and also by
(1.3.7). Thus, g,; maps V into itself and, again by (1.3, 6) and the
mean value theorem, g;, is a contraction (with Lipschitz constant
equal to 1/2) and so there exists a unique fixed point zo = (zy)
in V. Thus the only solutions to (1.3.1) in i x V are given by
(z1,0(z1)). Clearly, p(a) = b.

Step 3. (Continuity of ¢) Let z{ € U. Then
lie) — o@Dl = llglen ela) - g(=g, 0@
< Algler, @21)) = gz, o))
Hlglor, olef) - g(at (o)
allelzr) — (=9
Hlg(z1, 0(29)) - g(29, 0z

AN

Thus,

le(z1) = p(EDI < 2lg(e, p(9)) - g(2f, (z3))]]

and the result follows from the continuity of g.

Step 4. (Differentiability of ) Assume now that f is differentiable
at (a,b). Let h € E, small enough such that a + k € 1. Set

k=@la+h) —¢la).

Now

0 = fla+hela+k) - fla, pla))
= £ (a,b)h + 2L (a,0)k + c(h, k)(|1h]] + [k]])

where e(h, k) — 0 when |[h|| — 0 aud ||k|| = 0. Then,

4| F 1
k= -4 [ f(abJh—mh|+|lk'r)A*1e<n,k>.

To prove (1.3.3), it suffices to show that

(IRl + [IEIDIA e(h, k)| == n(B)||A]] (1.3.8)
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where n(h) — 0 as ||A]] — 0. But

kil < efinl] + BUiRI + Iklile(h, &)

where

HA (a b)\ and B = JJA7).

Since 18 continuous, Hkh — 0 as l}h|| — 0 aud so e(h,k} = O
ns ||h|| = 0. Thus there exists r, > 0 such that if (|h|| < 74, then
Ble(h, k)| <1/2 and so

k1) < ofja; + 5 01Al =+ ki)

or

Ikl < 2a+1)]]A]]
which proves {1.3.8) and completes the proof of the theorem. [

Remark 1.3.1 If f is a C? function, theu the right-hand side of
(1.3.3) is C* and so ¢ will be C2. By induction, if f is of class C?,
then ¢ will also be of class C*. 1

Remark 1.3.2 We can derive (1.3.3) heuristically by implicit dif-
ferentiation. We have

f(:nla 99(7:1)) =0.

Differentiating this w.r.t z;, we get

9 (0,8 (a) =0

&
—f(a:b) +3—5’:2

which yields (1.3.3). ®
The following consequence of the implicit function theorem
tolls us when a mapping is a local homeomorphism.

Theorem 1.3.2 (Inverse Function Theorem) Let B and F be Ba-
nach spaces and f : @ C E — F be a CP- map, for some p = 1.Let
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a € Q with f(a) = b and let f'(a) : E — F be an isomorphism,
Then there exists a neighbourhood V of b in F and a unigue CP
function g : V — E such that

g(b)

{ few) = v (1.3.9)

for everyy € V.
Proof: Define ¢ : Q@ x F -+ F by

Pz, y) = fla) —y.

The result now follows immediately on applying the implicit func-
tion theorem to .M

A stronger version of Theorem 1.3.2 exists, wherein sufficient
conditions are given for f to be a global homeomorphism. We
state it without proof (cf. Schwartz [23]).

Theorem 1.3.3 Let f : E -+ F be a C' map such that for every
x € E, we have that f'(z): E — F is an isomorphism of E onto
F. Assume further that there exists o constant K > 0 such that

N (x)} N < K for every z € E. Then f is a homeomorphism
of E onto F'R

Example 1.3.1 The above result is not true if (f/(z))~! is not
uniformly bounded in £(F, E}.Consider E = F = R? and

fz) = (™ sinxy, €™ cosza) , for & = (1, z9).

Then
1oy _ | €Ftsinzy €%l coszo
=) = [ " coszy — €lsingy J
and det(f'(z)) = — € # 0 and so f'(z) is invertible for each

z € R? but the norm of its inverse is uubounded. The mmapping f
is neither one-one nor onto for

Flz1, 20+ 2n7) = f(zq,22) for all n
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nud
f(z) # 0 for any z € R R

We conclude with one more classical result,

Theorem 1.3.4 (Sd'rd’s Theoremn) Let t C R™ be an open set
and let f:Q — B be a C* function. Let

S =4z Q| Ji(z) =0},
where Jp(x) = det(f'(z)). Then f(S) is of measure zero in R".

Proof: Step 1. Let C be a cube of side a contained in 2. We
divide it into k™ sub-cubes each of side a/k. Since f is of class
C', the map &+ f'{x) is uniformly continuous on C. Thus, for
g > 0, there exists § > 0 such that

|z —yll <6 =>If'(=)} = f'w)il <e. (1.3.10)

We choose k large enough so that v/na/k < 4, i.e. the diameter
of each sub-cube is less than d.

Since f' is bounded on C, the function f is Lipschitz continu-
ous on C by the mean value theorem. Thus,

I1f(z1) = flz2

where

)| < Lijzy — 32|, for every z1,z2 € C, (1.3.11)

L =sup |[f'(=)]l.
xcC

Step 2. Let z € C'NS. Then there exists a sub-cube € such that
x € C. Then for every y € C,

1£(z} = f () < Lv/na/k, (1.3.12)

Ly {1.3.11). On the other hand,

1
f) - Fo) - Fio)ly ~ ) = ]0 ('l + tly = 2)) — F'(2)y — )t
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which, by (1.3.10), yields

1F{w) = fle) = @)y — o))l Selly — 2]} < ev/mafk. (1.3.13)

Step 3. Now f/(z) is singular and so f'(z)(R") = H is a subspace
of dimension < n — 1. Hence, by (1.3.13), we have

P f (). fz) + H) < ev/nafk, for every y € € (1.3.14)

wl]'u.ere pla, X) denotes the distance of a point ¢ from a set X. Com-
blmn.g (1_.3.12) and (1.3.14), we deduce that f{C) is coutained in
a cylindrical block of radius Zv/na/k and height 2ev/na/k. Thus

m{f(C)) < ZAE\/E%(zL\/H%)n—l

where A4 is a constant depending only on n and m(X) is the
(Lebesgue) measure of a set X . Thus

m{f(CN8)) Zéns;&m m{f(C))
2nALn—1annn/‘25
K(n, Ce.

A A

Since ¢ is arbitrary, m{(f(C N S)) = 0 for any cube O contained
in €. But Q can be covered by a countable number of such cubes
and so f(5) is of measure zero. M

Example 1.3.2 If f(z) = Tz, where T is a linear operator on R*
such that det T = O,then f'(z) = T and so § = R". But f(8) is

now a subspace of dimension < n — 1 in R® and heuce f(S) is of
measure zero. Wl

Remark 1.3.3 More generally,we can show that
m() < [ Vg
X

for any set X C Q (cf. Schwartz [23]). W
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Remark 1.3.4 A more general version of Sard’s theorem states
that if f : @ C B® — K™ is a mapping of class C""™"" and if
n > m, then f(S) is of measure zero, where now S is the set of all
points z € € such that the rank of f'(z) is < m (cf. Sard [22]}.
The result is not true in general if f is only of class C*™™ (cf.
Whitney [26]). B

Definition 1.3.1 If f : Q@ C B* — K™ and v € Q is such that
Fi(z) is of rank < m, then z is said to be o critical point of f.
If not, & is o regulor point. A vector y € K™ is called a critical
value if there erists o critical point x € Q such that flz) =y
Qtherwise, it is called a regular value. B

Thus, Sard’s theorem states that if f : 2 C R* — R" is of
¢lass C1, then almost every value f takes is regular, i.e. the set of
critical values is of measure zero.

1.4 Extrema of Real Valued Functions

Let U4 be an open set in a normed linear space £ and let f : i{ -+ R
he a given function.

Definition 1.4.1 We say that f ottains a relative maximum
(resp. minimum) at u € U if there exists a neighbourhood V C U
of u such that for allv €V,

Flo) < flu) (resp. flv) 2 f(uw)

If the inequality is strict for all v € V,v # u, then we say that
f attains o strict relative maximum (resp. minimum) af u €
4. 1

We will now present results which generalize the well known
tecessary conditions for the existence of a relative extreinuim (e
aximum or inininum) at a point in terms of its first and second
prder derivatives at that point.
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Theorem 1.4.1 Let f : U C E — R admit a relative extremum
at u € U. If [ is differentiable aof u, then

fitu) = 0.

Praof: Let v € F be an arbitrary vector. Since U is open, we can
find an open interval J C R containing the origin such that for all
te J, u+tv €l Define

(1.4.1)

ot) = f(u+tv).

Then ¢ is differentiable at the origin and

2'0) = f'(u).
Assunie that f attains a relative minimum at u. Then
0 > lim e(t) — w0 _ ¢'(0) = lim elt) = 0(0) > 0.
t—0- ¢ =0+ t

Thus, f'(u}v = 0 and since v was arbitrary, (1.4.1) follows. The
case of a relative maximum is similar. W

Remark 1.4.1 The relation (1.4.1) is called Fuler’s equation cor-
responding to the extremal problem. B

Remark 1.4.2 If £ = R*, then f'(u) = 0 is equivalent to the
system of equations

Oiflur,ua,...,un) = 0 foralll <i<n

where u = (uj,uz,..,u,) and this is the well known necessary
condition for the existence of a relative extremum. il

We now consider the case of extrema under constraints. Let E
and F' be normed linear spaces and let I ¢ E be an open subset,
Let

K = {vcl | p(v) =0} (1.4.2)
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where ¢ : U C E —» F is a given mapping. We then look for a
relative extremum of f : &4 C £ — R in K. Notice that K is not
an open set. In fact, if ¢ is continuous, then K is closed. Thus
the previous theorem cannot be applied.

Exercise 1.4.1 Let E be a vector space and let g and g;,1 <1 <
m be linear functionals on E. Assume that

N7, Ker(g:) C Ker(g).

Show that there exist scalars A\;,1 < i < m such that

m
g = Z Aigi..
i=1

Theorem 1.4.2 Assume that E is a Banach space and that p €
CHE;R). Let

K = {veE|p) =0}
Assume, further, that for all v € K, we have ¢'(v) #0. If [ €
CHE;R) and if u € K s such that

flu) =

of ’
Inf f(v)
then there ecists A € R such that f'(u) = A¢'(u).

Proof: Since u € K, by hypothesis, ¢'(u) # 0. Hence, there
exists wy € F such that |Jwg|| = 1 and < ¢'(u),wp >= 1 where
< .,. > denotes the duality bracket between E and its dual. Set
E; = Ker(¢'(u)). Then, clearly, £ = Ey @ R{wo}. Define @ :
E{) xR -+ R by

O(v,t) = wlu+ v+ tup).

Then ®(0,0) = 0. Further, we also have that

8,3(0,0)
8,3(0,0)

u)lg, =
< @' (u),wo >

f
T
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Thus, by the implicit function theorem, there exists a neighbour-
hood V of 0 in £y and a ¢! function ¢ : ¥V — R such that
¢{0) = ¢’(0) = 0 and if Q@ = w - V, then the only points in
M K are of the form w = u + v + ({(v)wy with v € V. Now
setting F(v) = flu+v+ C('u) wp), for v € V, we see that f attmn;
its minimum over the open set 1V at 0. Thus, < f’(O), v >»=0 for
every v € Ey. Since ¢'(0) = 0, we deduce that for all v € Fy,
we have 0 =< f(0),v >=< f'(u),v >. Thus, it follows that
Ker(¢'(u)) C Ker(f'(v)) and the conclusion follows from the pre-
ceding exercise. H

B,emark }.4.3 In the same way, it can be shown that if o;,1 <
i <m are in C'(E;R) and if we define K by -

ffhen, if f attains a relative extremum at v € K and if ¢f(u),1 <
t < m are linearly independent, there exist scalars \;,1 <1 < cn_m
such that .

m
= > Aph(w). W
i=1]

Example 1. 4.1 Let f: U/ CR* - R Let ; : U 5 R, 1<i <
m, 1 <m < n be given functions. Let -

= {vell | piv) =0, 1 <i < m).

Thus, if at a point u € U, the m vectors ¢l(u), I < i < m
are linearly independent, a necessary condition that fiattanls a
relative extremum at u, by the preceding theorem, is the existence
of Ay € R1 < ¢ < m such that f'{u) — 37 ANigh{u) = 0. Let
u = (u1,..,un). To find the n + m unknowns U, 1< g n and
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Aj, 1 <7 <m, we solve the system of n + m equations

Of(u) — Morp1(u) — . = Ambrpm{u) = 0]

aﬂ-f(u) - Alan‘}:’l(u) -
er{u) = 0
‘Pm(u) = 0 7

which is exactly the well known method of Lagrange multipliers
in the calculus of several variables. H

Exercise 1.4.2 Let A be a symmetric n X n matrix with real
ontries and let B be a symmetric and positive definite matrix.
Characterize the relative extrema of the functional

flv) = %(A’U,fu)

on the set K given by
= {veR" | (Bu,v) =1]

where (.,.) denotes the usual inner product in K" .1
We will now take into account the second order derivatives of

f to characterize extremal points.

Theorem 1.4.3 Let f : U C E — R be differentiable :n U and
twice differentiable at w € U. If f admits a relative minimum at
u, then, for allv € B,

) (v,v) = 0. (1.4.3)

Proof: Let v # 0 be an arbitrary vector in . Then, there exists
an interval J C R containing the origin such that for all ¢ € J,

we have that uw -+ v € U,

Thus for all ¢+ € J, it follows that
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f(u+tv) > f(u). By Taylor’s formula (cf. Theorem 1.2.1) and
the fact that f'(u) = 0, we get

2
0 < flut )= F) = S(F()(w.0) +e(0)

where £(t) — 0 as ¢ — 0, from which (1.4.3) follows. B

Remark 1.4.4 If f admits a relative maximum at v € U, then,
under the above conditions, the inequality in (1.4.3) will be re-
versed. B

Theorem 1.4.4 (Sufficient conditions) Let f : U C E — R be
differentiable in U4 and let w € U be such that f'(u) = 0.
(i) If f is twice differentiable at u and if there ezists a0 > 0 such
that

F{w)(v,0) 2 allv? (1.4.4)
for all v € E, then f admils a strict relative minimum af 1.
(i) If f is twice differentiable inlUf and there exists a ball B(u; 1) C
U such that

Fw)(w,wy = 0 (1.4.5)

Jor all v € B(u;r) and all w € E, then f admits a relative mini-
mum at u.

Proof: (i) For all w with sufficiently small norm, we have, by
Taylor’s formula,

Fotw)=F) = 5w, ulPew)) 2 1 (a-e(w))ful?

b =

where £(w) — 0 as |jw|] —» 0. Thus there exists 7 > 0 such thas
as soon as fjw|| < r we have e{w) < o. Then f(u +w) > f(u) for
all u+w € B(u;r) and so f admits a strict relative minimum at «.

(ii) Since f is real valued, there exists a » in the open 1nterval
(u, 2 + w) C B(u;r) such that

Flutw) = )+ 37" 0)w,w)
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Hence, by (1.4.5) we have that f(u+w) 2 flu) forall u +w €
B(u;7). &

Exercise 1.4.3 Let A be a symmetric n X n matrix with real
entries. Define

Flo) = 5(Av.o) = (bv)

where b € R” is a given vector. |
(i) Show that f admits a strict minimum in B" if, and only if, A

is positive definite.

(ii) Show that f attains its minimum if, and only if, A is positive
semi-definite and the set § = {w € R* | Aw = b} is non-empty.
(iii) If the matrix A is positive semi-definite and the set S is empty,
show that

Jof flv) = —oco

(iv) If the infimum of f over R™ is a real number, show that the
matrix A is positive semi-definite and that the set S is non-empty.




Chapter 2

The Brouwer Degree

2.1 Definition of the Degree

The topological degree is a useful tool in the study of existence
of solutions to nonlinear equations. In this chapter, we will study
the finite dimensional version of the degree, known as the Brouwer
degree.

Let 2 C R” be a bounded open set. By C*({2; R*), we denote
the space of functions f : 2 — K" which are & times differentiable
in §2 such that these functions and all their derivatives upto order
k can be extended continuously to 2. We denote the boundary of
2 by 092.

Let f € CY(§;R*). Recall that f'(z) € L(R*,R*) and hence
f'(z) can be represented by an n x n matrix. Let § be the set of
critical points of f (cf. Definition 1.3.1).

Definition 2.1.1 Let f : @ = R* be a function in C1((; R") and
let b f(S)U f(IQ). Then we define the degree of f in Q with
respect to b as

[0, i ) =9, :
a(f. b)) = {Zzef—l(b)ﬂgn(;]f(i')), otherwise. B (210

The function sgn denotes the sign (= +1 if positive and = — 1
if negative) and J;(z) denotes the determinant of f'(z).
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Remark 2.1.1 We will now verify that the above definition makes
sense. Since b & f(5) U f(9), we know that f'(z) is well defined
for z € f~1(b) and that Js(z) # 0. Thus, J¢(z) has a definite sign
and, by the inverse function theorem, f is invertible in a neigh-
bourhood of z. Consequently, since 2 i3 compact, the set f ~1(b)
is finite and so (2.1.1} makes sense. W

Example 2.1.1 Let I : R* — R" be the identity map and set
f=1|g for @ c R*. Then

1 ifbeQ
SSAUL {o if b Q.

More generally, if T : R* — R" is a nonsingular linear operator,
and if f =T|q, we have

_ [ sgn(detT) if b T()
d(f,,b) = { 0 if b ¢ T().

Notice that sgn(detT) = (—=1)#, where 3 is the sum of the (alge-
braic) multiplicities of the negative eigenvalues of 7.1

Example 2.1.2 Let 2 = (-1, 1) and define
flz)=xz% — €2, fore <1,
Then, f'(z) = 2z and f 1(0) = {+e, — ¢}. Thus,
d(f,9,0) = 0.0

Remark 2.1.2 We defined the degree to be zero if the value b were
uot attained by f. The couverse, as seen by the above example,
is false. However, if d(f,2,6) # 0, the the solution set to the
equation f(r) = b is indeed non-empty. W

We wish to extend the definition of the degree to functions
which are merely contimuous on §. To do this we need some
preliminary results. We start with another formula for the degree.
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Proposition 2.1.1 Let f € C1((;R*) and let b ¢ £(S) U £(8Q).
Then there exists €, such that, for all O < e < g,

drb) = [e(@-ny@e (212

where . : R — R 18 a C° function whose support is contained
in the ball B(0;c) with centre at 0 and radius € and such that

/ welz)de = 1. (2.1.3)
JRr

Proof: If f~1(b) = {, then we choose g, < p(b, (1)) (where
p(z, A) denotes the distance of the point z from the.set A). If
@ is as above, we then have @.(f(2} — b) = 0 and so (2.1.2}) is
trivially true.

Let us now assume that f~1{8) = {z,,22,....,2yn}. For each
1 < i < m, we have Je(z;) # 0, and so, by the inverse function
theorem, there exists a neighbourhood I; of z; and a neighbour-
hood V; of b such that the I4; are all pairwise disjoint and

flu, : Uy =V,

is a homeomorphism. Further, by shrinking the neighbourhoods if
necessary, we can also ensure that Jyjy, has a constant sign. Now
choose g, > 0 such that

Set W; = f~1(B(b;e,)) NU;. Then the W; are all pairwise disjoint
and Jy is of constant sign in each of them. Hence, if 0 < € < ¢,,
as @ (f(z) — b) = 0 outside the sets W;, we have

[Q pelf(z) - b)Ts(2)dz = Z[W el £(2) — b)J;(z)da

= Sl [ eeli(@) - vl (@)lds

n(Jy(x; e (1y)d
sty ”./Bm;.g)“’“)y
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by an obvious change of variable in each of the sets W; and the
right-hand side is exactly d(f,€2,b) thanks to (2.1.3).M

We use the formula (2.1.2) to prove the robustness of the de-
gree in the sense that it remains stable when b or f is slightly
perturbed. In order to do this, we need a technical result.

Lemma 2.1.1 Let g € C?((; R™ 1), Set
B; =det(d1g,..., 319, 019, .-, ng).
Then

n

(-1)'3;B; = 0. . (2.1.4)
)

=1
Proof: Let 1 <i < n. Set C;; = 0. If j < i, define
Ciy; = det(hg,....3j-19,0i;9, 05418, .-, 0i=19, 0i+10, .-, Ong)
and, if j > ¢, set
Ci; = det(drg, .-, 6i-19, 8419, ... 0,19, 0139, 05419, -+, Ong).

Then, clearly, &B; = 3 7_) Cyj. by the rule for differentiating
determinants. Thus the left hand side of (2.1.4) equals

n

> (-1

=1

Since g is C?, 0ijg = 0;¢ and so, by the property of determinants
relating to transposition of columns, it is easy to see that

Cij = (1P 'Cy
and the lenima follows easily.l

Lemma 2.1.2 Let f ¢ C*(R*). Let Ajj(z) denote the cofactor
of the entry 0;f;(z) in Jr(x). Then for all 1 < j < n,

Y 94y = o (2.1.5)
i=1
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Proof: Recall that A;; is given by
A,,;j = (—1)i+j det(agfk)k;ej,;#i.

For fixed 7, we apply the preceding lemma to

= (fro-s fimts fij1s e F)

to get the desired result.ll

Remark 2.1.3 The above lemma is essentially a consequence of
the fact that the order of derivation is immaterial for €2 functions
(and this was used in the proof of Lemma 2.1.1). For instance, if
n = 2, then
A = Oaf2, A =-01fo
App =-0fi, Axn =01,

and we readily verify that, if f is 2,
04 + hAn = 1A+ A = 00

Proposition 2.1.2 Let f € C?({;R") and let b ¢ f(0Q). Let
po = plb, (39)) > 0. Let b € B(bip,) for i =1,2. If b & £(5),
we have

d(f, b)) = d(f, 1 ba).

Proof: Clearly, by choice, b; ¢ f(09Q). Thus, by hypothesis, the
degree d(f, 2, b;) is well-defined for i = 1,2. Let

§ < po—lb—bil, i=1,2
Then there exists e < § such that
d(f, 2 bi) = /Qcpg(f(m) b)p(@)da, i=1,2,
where (. i8 as in Proposition 2.1.1. Then

=[] Lo (y — by +t{by — ba))dt
= (b1 — b2). fy Vo (y — by + t(by — b))t
= div{w(y))

e {y — b2) — pe(y — b)
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where

1
w(y) = (f ey — by + (b — bg))dt) b — B2).
0
Now, if y € f(00}),

ly — (1 —t)by —tha| = [(y=~b)+(L—2)(b—b1) +t(b—bo)]
> pa_(l'_t)(lpo—“é)—t(pa_a)

d > &,

Since the support of ¢, is contained in B(0;¢), it follows that
w(y) = 0 for y € f(ON). Now, for 1 <{ < n, define

T { E?:le(f(m))Aij(E), z e
' O: €T e Rn’\ﬁ

By the preceding considerations, v; = 0 on 982, Now

Bu; Skt 22 (F(2) 3 (2) 45 (2)

BI,' -

+ 3051 wi (£ () 22 Aij ().
Thus,

iv(v = Lik=1 ‘;;”A (flz (Eb—l c’h (-‘T))
div{v(z}) {+EJ Lw_,,( (z )( :1_1 o 23(33))

By Lemma 2.1.2, the second term on the right-hand side vanishes.

Notice that, by the definition of the A;;,

Bfﬁ
Z Fyl = djdp(z).
i=1 t
Thus,

. "L B,
div(v(z)) = ) E;j(f(wwf(x) = div(w(f(2))J5(z).
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Hence it follows that

d(f, 0,02y —d(f, Q. b1) = [ div(w(f(
Jodiv(v(z))dz = 0

B
by

5

S
a
8

since v vanishes on 1.1

Let f € C?(€; R™) and b & f(89). Let p, be as in the previous
proposition. Since, by Sard’s theorem (cf. Theorem 1.3.4), the
singular values of f are of measure zero, there exist regular values
in the ball B(b; po) and the degrees of all such points are the same
by the previous proposition. We are thus led to the following
definition.

Definition 2.1.2 Let f € C?(Q;R™) and b ¢ F(0R). Set p, =
p(b, f(0Q)). The degree of f in § with respect to b is defined as

d(faﬂsb) = d(_f,Q,b’) (2‘1'6)
where ¥ is any reqular value in B(b, p,). M

Exercise 2.1.1 Let f,b and p, be as above. If |by — b| < p,/2,
show that
d(faﬂabl) = d(.f:‘Qab).

Exercise 2.1.2 Let C denote the complex plane and let & C C
be a bounded open set. Let f : {8 — C be a function which is
lLiolomorphic in . We identify C with R? in the usual way using
the canonical correspondence z = z 4+ iy € C & (2,y) € B2
Thus £ can be considered as a bounded open set in B? and we
can consider f as a map from € into R? via the correspondence
f=u+ive f=(uuv).

(i) Show that J;(z,y) =|f(2)|?, for (z,y) € Q.

(ii) Compute d(f, },0) where D is the unit disc in the complex
plane and f(z) = 2"l

Proposition 2.1.3 Let f,g € C2(Q:R™) andletb & f(0Q). Then
there exists ¢ = e(f, g, ), such that for 0 < |t| < ¢,

d(f +tg,Q.b) = d(f,S,b). (2.1.7)
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Proof: Case 1. Let b & f(f2). Then g = p(b, f(02)) > 0. Set
¢ = p/2llgllo (where |||l denotes the norm in C(Q;R™)). If
t| < e, then p(b, (f +19)(Q)) > 5/2 > 0 and thus b € (f +1g)(Q).
Hence (2.1.7) is trivially true as both sides vanish.

Case 2. Let b ¢ f(S) and let f71(b) = {z1,...,2m} so that
Je(x;) # 0 for 1 <7 < m. Define

hit,z) = f(z) +tg(z) -0
Then, for 1 < i < m,

h(O,:cz-) = 0
Oh(0,2;) = flx)

and f'(x;) is invertible, by assumption. Hence, by the implicit
function theorem, there exist neighbourhoods {(—¢;,€;) of 0 in R
and pairwise disjoint neighbourhoods U; of x; in € and functions
@i+ (—e4,€i) — Uy such that the only solutions of h(¢,z) = 0 in
(—&s,64) x U are of the form (¢, ¢;(¢)). Further, by shrinking the
neighbourhoods if necessary, we can ensure that sgn(Jyy,(z)) =
sgn(Jy(x;)) in each ;. Now set
£ = min Ei-
1<i<m,

The relation (2.1.7) now follows from the definition of the degree
in the regular case.

Case 3. Assume now that b € f(S). Let p, be the distance of b
from f(d). Choose b, € B(b,p,/3) such that b, is regular and
so there exists £, > 0 such that for all 0 < |¢| < €,,

d(f +19,Q,b1) = d(f,Q,b1) = d(f,Q,b).

Now choose € < min{e,, py/3||glloc }- Clearly, b € (f +1¢){(9R2) for
[t| <e. In fact, p(b, (f + tg){02)) > 2p,/3 while

b=til < pof3 < (b (7 +19) ().
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Consequently (cf. Exercise 2.1.1),
d(f +1g,9,b1) = d(f + tg,, b)

and the proof is complete. &

We are now in a position to define the degree for all con-
tinuous functions. Let f € C(;R") and let b ¢ f(99). Let
po = plb, f(O)). We can always find g € C?(Q; R*) such that
lg—fllso < po/2. Then clearly, b ¢ g(8) and the degree d(g, 2, b)
is well defined. If g; and g2 are two such functions, set § = g, — go.
Then, for 0 <t < 1, we have || f — (g2 +17)||o0 < po and, by Propo-
sition 2.1.3, the function

dlt) = dig: +13,2,)

is locally constant, and hence, by the connectedness of [0,1], is
constant on this interval. Thus

d(gl’ Q, b) = d(QZ) £, b)
This paves the way for the following definition.

Definition 2.1.3 Let f,b and p, be as above. Then the degree
of f in § with respect to b is given by

da(f,Q,b) = d(g,Q,b) (2.1.8)
for any g € C2(LR™) such that ||f — glleo < po/2.M
Remark 2.1.4 Compare this with the result of Exercise 2.1.1. M
Proposition 2.1.4 Let f € C(R®) and let b ¢ F(ON). Then
d(f,,b) = d(f —5,,0). (2.1.9)

Proof: If p, = p(b, f(82)) = p(0, (f — b)(80)) and if g is C2 such
that [|g — flleo < £o/2, then

g =8 = (f =Bllic = llg = Fllo < po/2
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and so, by definition,
d(f, b)) = d(g,,b) and d(f —5,Q,0) = d(g-—-5,,0).

If & is a singular value of g, then we can find a regular value & of
g such that
b—b1] < p(b,g(6%2))/2

so that
dig — b1,Q,0) = d(g —5,Q,0) and d(g.Q.6) = d(g,,b).
Since by is a regular value of g, it is trivial to see that
dg, ) = d(g— b.,9,0)

and the proof is complete. B

2.2 Properties of the Degree

In this section, we prove the basic properties of the Brouwer degree
and look at some of their simple consequences.

Theorem 2.2.1 (i) (Continuity with respect to the function) Let
feC(RY) and let b & f(ON). There ezists a neighbourhood U
of f in C(S,;R™) such that for every g € U,

d(g,,b) = d(f,,b). (2.2.1)

(it) (Invariance under homotopy) Let H € C( x [0,1;; R*) such
that b & H(8Q x [0,1]). Then d(H(.,t),,b) is independent of 1.
(i) The degree is constant, with respect to b, in each connected
component of R™\ f(052).

(iv) (Additivity)Let @1 N Q=0 and b & f(80) U f(0Qs), where
fE€CELRY), Q=Q1UQ. Then

d{f,2,0) = d{f,,b) +d(f,,b). (2.22)
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Proof: (i) Define

U = {g€CEER) | ||f ~ gllso < o/}

where p, = p(b, f(0Q)). If g € U, then p(b, g(3Q)) > 3p,/4. Thus
b ¢ 9(641) and the degree is well-defined. Let h € C#(C; B*) such
that || f — Allac < po/8. Then

lo =kl < o0 < ofbg(00).

Hence, by definition,
d(g, 2,6y = d(h,Q,b) = d(f,Q,b).

(ii) By the. preceding step, d(H(.,t),{}, ) is locally constant and
hence continuous and therefore constant on [0,1] by connected-
ness. L

‘(iii) By virtue of (2.1.9), d(f,0,b) = d(f —b,£,0) and so if |b— & |
is small, d(f — b,9,0) = d(f — b,,$,0). Thus, the degree is lo-
cally constant and thus continuous and so constant on connected
components.

(iv) Let p, be as in Step (i) and let g be a €? function such that
If — 9l < po/2.Then, it is clear that

dlg,2.b6) = d(f,Q,b)
d(g:‘o"isb) = d(f,Qi,b), 7::1)2-

Now B = B(b;p,/2) is connected and is contained in B\ g(00)
as well as in R?\g(80;) for i = 1,2 and hence in one connected
component of each of these sets. By Sard’s theorem, there exists
¢ € B such that it is a regular value of ¢ and so

d(g,Qc) = dg,%,b) and d(g,,c) = d(g,0u,b)

for i = 1,2. Since g is C? and ¢ is regular, it readily follows from
the definition of the degree that

d(g,Q,C) = d(g1 lec) + d(gvﬂizac)
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and the result follows. @

Exercise 2.2.1 Let f : [2,b] = R be continuous and such that
f(e) by # 0. Show that

d(f,(a,6).0) = lsgn(f(b) — sgn(f())).m

Proposition 2.2.1 If f € C(%;R") and b & f(9), then d(f,2,b) =
0. Equivalently, if d(f,Q,b) # 0, then there emists x € {2 such that

f{z) =5

Proof: Let p, = p(b, f(Q)). If g is C? such that ||f — gllec < pe/2,
then b € g(€2). Thus, as b is now a regular ‘value’ of g, we have
that d(g,Q,b) = 0 and the result follows. W

Corollary 2.2.1 If d(f,Q.b) # 0, then f(Q) is a neighbourhood
of b.

Proof: Tet () be the connected component of R*\ f (6€2) contain-
ing 5. Then, for all ¢ € C}, we have d(f,{2,c} # 0 and so, by the
preceding proposition, Cy < () and the conclusion follows as
Cy is open. W

Exercise 2.2.2 If f(Q) is contained in a proper subspace of R,
show that, for all b & f(0), d(f,Q,b) = 0.1

Exercise 2.2.3 Let f(z) = 2" + a1zt + a2z 2+ ..+ an bea
polynomial with complex coefficients in the complex variable z.
(i) Assume that |a;|+|ag!+...+|as| < 1. Then using the properties
of the degree (cf. Exercise 2.1.2), show that f has a root in the
unit disc D < C,

(ii) Using the change of variable z = cw where ¢ > 0, show that
we can reduce the search for a root of a general polynomial f to
the preceding case and thus prove the fundamental theorem of
algebra. A
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Proposition 2.2.2 (Ezcision) Let K C () be a closed set and let
bd f(O) U f(K). Then

d(f,,0) = d(f, 2K, b).

Proof: Choose g, a C? function such that d(g,,4) = d(f,€2,b)
and such that b ¢ g(K). Now choose ¢, a regular value of g,
close enough to & such that ¢ ¢ g(K') and belonging to the same
connected component as b in R*\g(9Q2) and R*\g(5(Q\ K)). The
result :ow follows from the definition of the degree in the regular
case.

The following two exercises can also be solved by reducing the
problem to the regular case.

Exercise 2.2.4 Let {£2;};cs be a family of pairwise disjoint open
sets in R whose union is contained in a bounded open set 2.
Let f € C(R") and b such that f=!(b) C Ujes82;. Show that
d(f,€;,b) = 0 for all but a finite number of j € J and that

df,Q.6) = Y d(f,9;,b).m
jed

Exercise 2.2.5 (Product Formula) For i = 1,2, let ¢; € C(Q; R™)
where {2 C R™ is a bounded open set. Tet b; ¢ ;(0€%). Show
that

d((‘Pla‘P2):Ql X Q'Za (blab‘Z)) = d(wlaﬂlabl)'d(fpﬂaﬂm62)'.

Proposition 2.2.3 Let f,g € C(&; R"™) such that f = g on 0S.
Let b ¢ f(0%2). Then

d(f,8,6) = d(g,Q,b).
Proof: Define H € C(Q x [0,1}; R") by
H(z,t) = tf(z}+ (1 - t)g(z).

Then H(.,t) = f = g on the boundary and so d(H(..t),§%,b) is
defined and independent of ¢ and the result follows by successively
setting t =0 and t = 1.1
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Corollary 2.2.2 Let f,g € C((;R"). Assume that there exists
H e C(Ox[0,1); R") such that H never assumes the value b and

such that H(.,0) = flaq and H(,1) = glan. Then

d(f,,b) = d(g,9,b).

Proof: By Tietze’s theorem, we can extend H to He Cfx
[0,1]; B*®). Set H(.,0) = fand H(,1) = g Then, by homotopy
invariance of the degree,

d(f,,b) = d(F 2,b)-

The result now follows from the previous proposition since f = f
and g = g on the boundary. B

Remark 2.2.1 The above proposition and its corollary imply
that, as long as the value b is not attained on the boundary along
a homotopy, the degree is essentially determined by homotopy
classes of continuous functions defined on the boundary. If S"
is the unit sphere in B**!, and if 0 is not attained on it for a
continuous function f : B R, where B™*1 is the open
unit ball in R**!, we can consuder flz) = f(z)/|f(z)| which then
maps S™ into itself. We can define

d(f) = d(f,B"",0).

Then d(.) will be constant on homotopy classes of continuous maps
of §% into itself. This gives rise to a theory of a topological degree
for such maps. We can also define a degree of continuous maps
f: 8" — 8" in another way. We know that the singular homology
groups of S™ are given by

Hp(S") = {Z oo,

0 otherwise.

Thus fgenerates a homomorphism

f# :Hn(Sn) — Hn(S™)
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and, as H,(8") = Z, _fg is completely determined by f.(1) € Z.

It turns out that d(f) = fx(1). In the case n = 2, this is the
familiar winding number for functions on S'.1

Exercise 2.2.6 If n is odd, show that there does not exist a
homotopy H : 8%~ ! x [0,1] — S™! such that H{z,0) = z and
H(z,1)=-zforallz e $*1.m

Proposition 2.2.4 (Hairy Ball Theorem) If n is odd, there is no
non-vanishing vector field on 8™}, i.e., there i3 no continuous
map ¢ : S*1 = Bsuch that ¢(z) # 0 and (p(2),z) =0 (where
(.,.) denotes the usual inner-product in ) for all x € §*~1,

Proof: If such a map were to exist, set 1(z) = ¢(z)/|z|. Then
H(z,t) = cos(mt)z + sin(mt)e(z)

defines a homotopy as in the preceding exercise, which is impos-
sible. W

Remark 2.2.2 The map (z,y) — (y, - ) is a non-vanishing vee-
tor field on S'. N

~

2.3 Brouwer’s Theorem and Applications

Propos:tlon 2.3.1 There 1s no retraction from the closed unit
ball B" in BR™ onto S™~ 1 ie., there does not ezist a continuous
map ¢ : B® = §"!, such that wlz) =2 for allz e S™°L,

Proof If such a map existed, then 0 ¢ ¢(B") and since ¢ = I,
the identity map, on §%~! we have

0 = d{p,B",0) = d(I,B",0) = 1
which is impossible. B

Theorem 2.3.1 (Brouwer’s Fized Point Theorem) Let f : B —
B" be continuous. Then [ has a fized point.
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Proof: Assume that f has no fixed point. Then f(z) # z for every
z € B". The line segment starting at f(z) and going to z is then
well-defined and can be produced in the same dlrectlon to meet
§"=1 i a point that we denote by ¢(z). Then ¢ : B" — S is
clearly a retraction and we thus get a contradiction to the previ-
ous result. W

Remark 2.3.1 We can describe the mapping ¢ above analytically
as follows. We look for A > 1 such that

Do+ (L= M/ = 1
which yields
|z = f@)PN +2(z ~ f(2), fl@)r+ (|f (@) = 1) = 0.

Since f(z) — a # 0 for all z, this quadratic equation in A has
exactly two roots. The product of the roots is non-positive since
|7(z)| < 1. Hence there are two real roots, one positive and the
other negative. Since, at A = 1, the value of the quadratic expres-
sion is \:{:\2 — 1 < 0, the positive root is greater than or equal to
unity and this root is continuously dependent on = and equal to
unity on S"°1. W

Remark 2.3.2 Obviously, Brouwer’s theorem holds for any closed
ball in R*.1

Exercise 2.3.1 Show that the following statements are equiva-
lent:

(i) There is uo retraction from a clased ball in R* onto its bound-
ary.

(ii) Every continuous map of a closed ball in R™ into itself has a
fixed point.

(iii) Let f : B* — R* be continuous. Let R > 0 such that for all
\z} = R, we have (f(z),2) > 0. Then there exists z, such that
|zo| < Rand f(z,) =00
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Exercise 2.3.2 Prove Brouwer’s theorem directly from the prop-
erties of the degree. B

- Corollary 2.3.1 Let K C R® be a compact and conver subset.
Let f : K — K be continuous. Then f has a fized point.

Proof: If K is compact, there exists a ball B(0; R) containing K.
Since K is closed and convex, let Px : R* — K be the projection
map, t.e. given z € R", Pg(x) € K is the unique point such that

-P — minlz —
|2 = Pre(x)] = minje -y

Define f: B(0;R) » K C B(;R) by f(z) = f(Px(x)). Then J
has a fixed point and as the image of this map is contained in K,
it follows that this fixed point x, is in K. But then Px(z,) = z,
and so

2o = f(Px(wo)) = f(o)
which proves the result. B

We now illustrate the use of Brouwer’s theorem via some ex-
amples.

Example 2.3.1 Let A be an n x n matrix such that all its coeffi-
clents are non-negative. Then A has a non-negative eigenvalue
with an associated eigenvector whose components are all non-
negative as well. To see this, set

n
K ={zeR |2;20,1<i<n, and Y =1}
=1
This is a compact convex set in R*. If there exists z, € K such
that Az, =0, then 0 is an eigenvalue and we are through. If not,

Az # 0 for all z € Kand so Y7 | (Ax); attains a strict positive
minimum in K. Define f: K = K by

(Az);
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Thus, f has a fixed point z, € K and we have Az, = Az, where
A= T (4z,); W

Remark 2.3.3 The Perron - Frobenius theorem states that if, in
addition A satisfies a condition called irreducibility, then , in fact,
the spectral radius is itself a (simple) eigenvalue and we have au
eigenvector whose components are all strictly positive. B

Example 2.3.2 (Periodic solutions, c¢f. Deimling [71) Let f :
R x B* — B® be w - periodic in ¢, i.e. f(t+w,z) = f(t,z) for
every (t,z) € Rx R". Consider the system of ordinary differential
equations,

W) = Fltu). (2.31)
Let us assume that f is continuous and that there exists a ball
B(0;r} C R™ such that for every z € B(0;r), the initial value

(1)

problem
w0) = :{:(t’“)} (2.3.2)

has a unique solution u(£; z) on [0, o) whichﬂc_ontinuously depends
on the initial value z. Thus the map 7 : B(0;r) — K" defined
by P (z) = u(t;z) is continuous. Now assume further that the

following condition holds:
(H) For every t € [0,w], and for every z such that |z| = r, we have

(ft,z),zy < 0.

Then P, : B(0;7) — B(0;r). For, if |u(t;z)| =, then

il

Hence, by the Brouwer fixed point theorem, P, (in particular) has
a fixed point, i.e. there exists z, € B(0;r) such that w(w; Tp) = To.
Now define

v(t) = u(t — kw;zo) for € [kw, (k+ Dw).

Z(u(t;2)?) = 2/ (k) u(t;z) = (fGult),utz) < 0.
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By the w-periodicity of f, it follows that v is a w-periodic solution

of (2.3.1). P, is called the Poincaré operator associated Lo (2.3.1).
[

We conclude with an example of the Galerkin method. This
method is very useful in constructing solutions of nonlinear equa-
tions. The theorem which follows is an abstract result with appli-
cations to nonlinear partial differential equations (cf. Lions [16])

Theorem 2.3.2 Let H be a separable Hilbert space with scalar
product {.,.} and let A: H > H be a map such that
(1) A is monotone, i.e. for every u,v € H,

{Au ~ Av,u — v} > 0 (2.3.3})

(#i) A is hemi-continuous, i.e. for every u,v € H fiwed, the map
Ay Alu+ M) s continuous;

(1ii) A maps bounded sets into bounded sets.

Then, given any f € H, there erists a unique solution w ¢ H of
the eguation,

utAu = § (2.3.4)
and, further,

Jlull < [lA0 - £fl. (2.3.5)

Proof: Step 1. (Uniqueness) If u; and u; were two solutions of
(2.3.4), we have

Uy — uy + Auy — Aug = 0.
Thus,
lur = ual? + (Auy — Aug,uy ~uy) = 0
and hence, by virtue of (2.3.3), we have u; — uz = 0.
Step 2. (A priori Estimate) If « € H is a solution of (2.3.4), then
lull® + (Au ~ AQ,%) = (f — A0, )

and the estimate (2.3.5) follows, again thanks to (2.3.3).

55
2.3 Brouwer’s Theorem

Step 3. Let W C H be a finite dimensional subspace with IRe;n
‘ i i = g} E RE

orthonormal basis {wy,ws, ey W b G1lvenv (@1;:112,“ ) k)Deﬁne

we associate with it v € W by setting » = 3 viwi.

T:RF > RE by

(TV){, = ('U,'w,;) + (A‘U,’UJ.L') — (f, w,;),

Then. T is continuous and (denoting the usual inner product in
H
B by (.,.)x) we have

vk = Il (Ao,w) — (7,0)
v = ]\||1)”2 + (Av — AQ,v) ~ (f — A0, v}
> |lvll® = 140 = F(i-lill.

Setting R = ||40 — fl|, we have that (Tv,v)k 2.0 for all |v| =
lv}l = R. Hence, by Brouwer’s theorem (c:f.NExer(nse 2.3.1)‘: the;‘Ve
esists a @ € R* such that &' < R and Tu = 0. Thus, v €

satisfies ' |
(75, wi) + (A,wy) = (frws), 1 <1<k

e
(i1, v) + (A%, v) = (f,v) forall veW

and Jjill) < |40 ~ fil.

Step 4. Let {w,)} be a complete orthonormal basis for H (whic’h
is separable) and set Wi = span{w,wy, o). Let uy € Wy

verify
luall < 1140 = £l (2.3.6)

and
(tn,v) + (AUp,v) = (f,v) forall ve Wh (2.3.7)

as guaranteed by the result of Step 3. Thus, upto the extraction
of a subsequence, un, — u weakly in H.
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Step 5. Given v € H, the sequence {vn} defined by

n

Un = Z(Ua wl)wz

i=1

is such that v, € W, for each n and v, — v strougly in H. From
(2.3.7), we get

(un,vn) + (Atn,vp) = (fsvn). (2.3.8)

As {Aua} is bounded, we can also assume (after taking a further
subsequence if necessary) that Au, — weakly in . Passing to
the limit as n — oo in (2.3.8), we get

(u,v) + (x,v) = (f,v} forall ve H. (2.3.9)
Step 6. By (2.3.3) we have for any v € H,

0<Xn = (Aun— Av,u, - v)
= (Aup,up)— (f‘lun, v) ~ (Av,up —v)
= (fiun) — Jua|? - {(Aun,v) — (Av,u, —v),

using (2.3.8). Thus,

0 S limnﬁiooXn (.f: 'U,) - h_mn—}oo”uﬂnz - (X1 U) - (.A’U,'U - ’U)

< (A = llull = (F,0) + (u,0) = (Av,u - v)
using (2.3.9). Thus,
(f —u— Au,u—v) + (Au — Av,u —v) > 0. (2.3.10)
Let A> 0 and w € H. Set v = u — \w in (2.3.10) to get
(f —u— Au,w) + (Au — A(u — dw),w) > 0.

As A — 0, by the hemi-continuity of A, the second term on the
left-hand side tends to zero. Thus (f — u — Au,w) > 0 for all

w € H and, by considering —w in place of w, we conclude that w
satisfies (2.3.4). W
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2.4 Borsuk’s Theorem

Let © C R" be a bounded open set which is symmetric with
respect to the origin, i.e. if z € €, then —z € ©. Let f €
C1{; R") be an odd function, i.e. f(—z) = —f(z) forall z € 2.
Assume that 0 ¢ £(S)U f(8Q). Assume further that 0 ¢ Q. If
f~10) is empty, then d(f,,0) = 0. If not, the solution set has
to be of the form

U?ll{wi’ _IL}

Since f' is now an even function, we have Jy(—z) = Jy(z). Thus,

d(f,2,0) = 3 (sgn(Jy(:)) + sgn(Jp(—zi)))
= 23235 sgn(J(z:)).

Thus, if 0 ¢ ©2, the degree is an even integer.

If 0 € Q, we do have f(0) = 0. Thus the solution set is now of

the form

{0} or {0} ULy {=s, -2}
In the former case, the degree is +1 and in the latter it is £1 +
25, sgn(J¢(zi)). Thus, in either case, the degree d(f,,0) is
an odd integer.

Borsuk’s theorem generalizes this result to the case when f €
C(;R?) and 0 ¢ f(6€2). In order to prove it, we need a few tech-
nical lemmas which essentially deal with the extension of functions
to larger sets retaining special properties.

Lemma 2.4.1 Let K C R” be compact. Let ¢ € C(K;R™) where
m >mn. Let 0 ¢ o(K). Then, if Q is any cube containing K, there
exists pg € C(Q;R") estending ¢ and such that 0 ¢ po(Q).

Proof: Step 1. Since K is compact, and 0 ¢ ¢(K), we have
a = Inf lp(z)| > 0.
Let 0 < & < /2. Let ¢ € C1(Q; R™) such that

sup [p(2) — ¥(z)] < e/2.
reK
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0 ¢ 4(Q), set ¢ = ¢. If, on the other hand, 0 € ¢{Q), define
T € CYQ x R™ ", R™) by

V(z,y) = ¥(z) for z€ @, ye R™" ",

Then for all z = (z,y) € @ x ™™, Jg(2) = 0. Hence, by Sard’s
theorem, the range of ¢ is of measure zero. Thus, there exists
a ¢ 9(Q) with |a| < £/2. Set ¢ = — a.

Thus, in either case, there exists ¢ € C'(Q;®™) such that
11 —~ @iloo,x < € and 0 & 4 (Q).

Step 2. Let  : Ry — R, be defined by

n(t) = { 1, t>af2

%t, t<af2

Define p1 () = ¢ (x) /(|41 (2)]) for = € Q. By definition, |p:(z)| >
a/2 and s0 0 ¢ 1(Q). z € K, -

Wi2)] 2 le(@)l - lp(z) —¢1(2)] 2 a—c > o/2.

Hence n{|¢n(z){) =1 and so p; =¢; on K.

Step 3. Let § = o1 — p. By the Tietze extension theorem, we can
extend 6 to 6 on ¢} such that |6] < ¢ on @ (since 18] = |y — ¢l < ¢
on K). Set wg = 1 ~ 6. Then g extends ¢ and

legl > |y — 18] > e/2-¢ > 0.
Hence 0 ¢ ¢¢(Q), which completes the proof. W

Lemma 2.4.2 Let Q@ C R" be a bounded open set symmetric with
respect to the origin and such that 0 ¢ Q. Let ¢ € C(8Q;R™)
where m > n. Assume that p is odd and that 0 ¢ ©(9Q). Then

there ezists © € C(QGR™) extending ¢ which is odd and non-
vanishing.
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Proof: We will proceed by induction on n, Let n = 1. We set
Q=[-4-£Uld, 0<e<d

By the preceding lemma, we can extend ¢ to ¢y on [, §] such that
it is non-vanishing. Now define

_ (lpl(z)’ $E[575)
o) = { pi(~z), © € [,e.

Thus ® has the required properties.
We now assume the result to hold for all dimensions < (n—1).

Let @ C R*. Set
Qp = {zeQlzy >0} Q- = {z€|azy <0}

Now, (QNEKR*1) = 90N R*~! and, by induction, we can extend
@ to & on N R* 1, with & _odd and non-vanishing. Now, let )
be a cube in R} containing {2, and Qn R, Consider -

. [ many
1= 7 onQNERL

Then @; can be extended to a non-vanishing function pg on Q.

Now define @) 0
_ polr), =iy
®(z) = { —pg(—z), ze_.

It is now immediate to see that ® has the required properties. W

Lemma 2.4.3 Let Q@ C R be a bounded open set which is sym-
metric with respect to the origin and such that 0 ¢ Q. Let p €
C(OGR™) be an odd and non-vanishing mapping. Then, there
ezists ® € C(Q;R") which extends ¢ and is odd and such that
0¢ OQNRL). . .

Proof: Consider @ restricted to 8QNR*~!. Tt is odd and nonvan-
ishing and belongs to C(8(QNE*~!}; R*). Thus, by the preceding
lemma, we can extend it to a continuous, odd and nonvanishing
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mapping on 0 NR*! taking values in R™. Let § be equal to this
function on QNR*~! and to ¢ on 90, NS By Tietze’s theorem
we can extend it to a function on Q. and then, as usual extenci
it as an odd map to all of (1.1 , ,

Ler_nm:l 2.4.4 Let Q be as in the preceding lemma and let @ €
C{S;R™) be odd and non-vanishing on 8Q. Then d{ip, 2,0) is

[A IR

Proof: By the preceding lemma, we can find & € ¢/((; RB™) which
1s equal to ¢ on 8, is odd and which does not vanish on QN R*1
Then, (cf. Proposition 2.2.3) |

d(p, 0, 0) = d(®,0,0).

There exi.sts € > 0 such that if [® — |l < £, then the degrees of
o an('i ¥ in § with respect to 0 are the same. Now choose P a?
f1111ct10i1 E'J-u(,‘h that [P —vlec < e and set P(z) = L(y(z) —p(—2z))

Then @ is €%, is odd, and |[® — Zlloc < € so that d(®,Q,0) -

d(i,§2,0). If we further choose ¢ < %p(o,q)(g AR 1)), we also

g '\ i

d@,2,0) = d@NQNR"?),0)
d((r’aa Q+1 0) + d(@, Q—a O)
We can now find a regular value b of & such that
j(fa 24,0) = d(ﬁ:'? Q4,0 = E.;s(;,;):b sgn(Jz(z))
((10? Q*} O) = d((}o* Q“J —-b) = Z‘E(a):b 3973(‘]@\(_“2‘))
2o

aley= 597 (Jp(2))
= d(%,Q+,0)

since Jp is now even. Thus d{p, Q,0) = d(7,0,0) is even. B

Theorem 2.4.1 (Borsuk’s Theorem) Let 8 C R™ be a bounded
open set, symmetric with respect to the origin and such that 0 € Q.
Let v € CELR™) be odd end non-vanishing on the boundary.
Then d(¢,Q,0) is an odd integer.
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Proof: Since 0 € Q, let B(0;7) be a ball of (sufficiently small)
radius contained in Q. By Tieize’s theorem, let ¢ &€ C (0 R™)

such that
plr), T €

vz} = { z zcBO;)
Then 1 does not vanish for jz| = 7 and so by Proposition 2.2.3,
excision and additivity we have

d(#,2,0) = d(1,8,0)
_ . Q\0B(0:r),0)
= d{e, \\B(0;7),0) + d(v, B(0;7),0).

By Lemma 2.4.4, the first term on the right is an even integer and
since ¢ = I on the boundary of B(0;r), the second term is unity.
This proves the theorem. W

Corollary 2.4.1 Let Q be os in the preceding theorem and 151;
o € C(Q;RY) be odd on the boundary. Then there exist z,y € §
such that o{z) =0 and (y) = v.

Proof: If ¢ vanishes on the boundary, we have z € 082 such that
¢(z) = 0. If not, the degree d(,Q,0) is well-defined and is an
odd integer, and therefore, non-zero. Thus, there exists z €
where ¢ vanishes. Now, consider ¥(z) = x — ¢(z) which is also
odd and continuous, and therefore must vanish at a point y € Q,
which completes the proot, B

Corollary 2.4.2 There is no retraction of the closed unit ball in
R onto its boundary.

Proof: The identity map is odd on $*~! and, so any retraction
must vanish, which is impossible.

Corollary 2.4.3 Let @ C R* be a bounded open set containing
the origin and symmetric with respect to it. Let ¢ € C(;RY)
be non-vanishing on the boundary. Assume further that for each
z € 09, w(z) and o(—x) do not point in the same direction. The
d(p,,0) is odd and thus the image of ¢ 15 a neighbourhood of the
oriyin.
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Proof: Define H(z,%) = () - tp(-z) for (x,t) € 90 x [0, 1]. By
hypothesis, H does not vanish on the boundary and the degi:ee is
thus well-defined and independent of ¢. We have HY(.,0) = ¢ while
H(.,1) is odd. The result now follows from Borsuk’s theorem. B

Corollary 2.4.4 Let Q be as in the preceding corollary and let
w € C(OHRYY be odd and non-vanishing. Then, there does not
exist a homotopy H € C(IN x [0,1]); R*) which is non-vanishing
and such that H(.,0) = ¢ and H(.,,1) = z, € R"\{0}.

Proof: If such a H existed, we can extend it, by Tietze’s theorem,
to H € C(Q x [0,1]; ™) and while d(H(.,0),0,0) is odd, we will
have d(H(.,1),Q,0) = 0, which is impossible. W

Exercise 2.4.1 Show that no sphere in R" can be deformed within
itself to a single point. B

Corollary 2.4.5 Let § be as in the preceding corollary and let
w C C{OGRY) be odd and such that its image is contained in
a proper subspace of R™. Then there exists ©, € 90 such that
wlz,) = 0.

Proof: If not, p would be odd and non-vanishing on the boundary
and hence its image would be a neighbourhood of the origin which
is not possible. @

Corollary 2.4.6 (Borsuk - Ulam) Let Q be as above and let ¢ €
C{OR"Y) be such that s tmage is contained in a proper subspace
of R*. Then there exists £ € 00 such that p(€) = p(-¢£).

Proof: Apply the preceding corollary to ¥(z) = p(z) — p(—2).1H

Example 2.4.1 Assume that the surface of the earth is spherical
and that the temperature and atmospheric pressure vary contin-
uously on it. Then there exist a pair of antipodal points with the
sanie temperature and the same pressure. B
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Example 2.4.2 (Sandwich theorem) Given three regions in R?,
there exists a single plane which divides each region into two
parts of equal volume. (A single knife stroke can halve a piece
of bread, a piece of cheese and a piece of ham, placed arbitrarily
in space!!) The result is true for any n regions in K". Consider
2 = (x',%nq1) € S, where 2’ € R", and the hyperplane defined
by

H, = {ye¥ |ys =znnl}
Let

HY = {yeR" | y2' > zns1}

If 1 is the n-dimensional Lebesgue measure, define
pi(z) = p(ANHY), 1<i<n

where {A;}™_, are the given regions. By the Borsuk - Ulam the-
orem, bthere exists £, € S™ such that pi(x,) = @i(—=,) for all
1 < i € n which gives the result. B

Exercise 2.4.2 Show that there does not exist an odd continuous
map f: 8% — 8™ for m < n.M

Remark 2.4.1 We can tell two finite sets apart by counting their
elements. Two finite dimensional spaces can be compared by look-
ing at their dimensions. We have dim £ > dim F if, and only if,
there is no injective linear map from £ into F. The above exercise
is, in some sense, a result in this spirit, to compare two spheres.
More generally, we can compare two sets that are symmetric with
respect to the origin and not containing it by examining the exis-
tence of continuous odd maps from one to the other. This leads
us to the notion of the genus of such sets which will be discussed
in the next section. W '

2.5 The Genus

Let £ be a (real) Banach space and let £(E) denote the collection
of all closed subsets in £ that are symmetric with respect to the
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origin and not containing it.

Deﬁniti.on '2.5.1 Let A € 3(F). We denote by v(A) the genus
of A which 15 the smallest positive wmnteger n such that there exists

a continuous odd map of A into RP\{0}. We set +()) =0 and if
no such n exists for A, we set v(A) = ool

Example 2.5.1 Let F = R" and let © be a bounded open set
symmetric with respect to the origin and containing it. Ther;
7(69) < n since we have the identity map I : 90 — R*\ {0} which
is odd. But by Corollary 2.4.5, there is no add non-vanishing map
nto a proper subspace of R*. Thus, v(802) = n. In particular,

(5" = n.l

Examplg_ 2.5.2 Le_t E be a Bapach space and let x € E, z #0
Set A = B{x;r) U B{—a;r) where 0 < r < {z(i. Then A,G Z(E')
and 7(A4) = 1 since we have the odd map f : A — R\{0} given by
f=1on B(z;r)and f = ~1 on B(—z;7).8

In. general, any disconnected set in (E) will have genns equal
to unity. If (A} > 2, then clearly, A has to be an infinite set.
We now list the important properties of the genus.

’Ijheorem 2.5.1 Let £ be Banach and let A, B € D(E).
(i) If there ezists an odd continuous map f: A — B, then

{A) < ¥(B). (2.5.1)
(n) If AC B, then (2.5.1) is again true.

(i) IPh: A— B is an odd homeomornhs
; phism, then y{ 4] = _
(iv) Subadditiviy: en y(4) = v(B)

HWAUB) < +(A) +~(B). (25.2)
{v) Let y(B) < co. Then

7(A\B} > v(A) —~(B). (2.5.3)
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(i) If A is compact, then y{A) < <.
(vii) Let A be compact. Define

Ns(A) = {z € B | plz, 4) < 5. (2.5.4)
Then, for sufficiently small 4,
v(Ns(4)) = ~(4). (2.5.5)

Proof: (i) Let v(B) = n < oo {otherwise the result is trivially
true). Tf ¢ : B — R*\{0} is odd, then g o f: A - R*\{0} is odd
and the result follows.

(ii) Set f = I, the identity map, in (i}.

(iii) Follows from (2.5.1); we have 1{A) <y(B) < ~¥(4).

(iv) If either y(A4) or ¥(B) is infinite, then the result is trivially
true. Let v(A) = m and 4(B) = n and ¢ : A — R™\{0} and
% + B — R*\{0} the corresponding odd maps. Extend these
maps to all of E as ¢ and ¢ respectively and we can assume that
they are odd (if, for instance, & s not odd, we can replace it by
L(@(z) — P(—=))). Now define h = (@\aum, ¥ aus) € B, Then
h is odd and non-vanishing on AU B. This proves (2.5.2).
(v)Note that A\B € S(E) and A C A\BUB. Now (2.5.3) follows
from (ii) and (2.5.2).

(vi) Let = € 4 and let r < [lz|l. Then Y(B(z;r) U B(—z;7)) =1
and we can cover A by a finite number of such sets and the result
follows from (i} and (iv).

(vii) Let y(A) = n and let © : A — R*\{0} be the corresponding
odd map. As before, we can extend it to an odd map @ on E.
Since A is compact, |@(z)] > « > 0 for all z € A and so, for
sufficiently small 8§, @(z) # 0 for z &€ Ns(A). Thus ¥{(Ns(A) < =
while the reverse inequality is true by virtue of (ii) and {2.5.5) is
proved. W

We now prove a stronger version of Corollary 2.4.5 regarding
the zero set of an odd continuous map on a symmetric domain
containing the origin.
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Proposition 2.5.1 Let Q ¢ R be a bounded open set which con-

tains the origin and i3 symmetric with respect to it. Let w00 —
R™ be a continuous and odd map, and let m < n. Let

A = {.’L' € o) ’ tp(;r;) :O}
Then ’}’(A) >n—m.

Proof: Let N;(A) be such that (2.5.5) holds. We claim that for
some ¢ > 0, We have Z. C N3(A), where

Ze = {2z €0 lo(z)| <&},

If. not, we 1_1ave a sequence ¢, decreasing to zero and z, € Z.
.Wlth lo(zn)| < en and @, ¢ Nj(A). Thus, p(z,, A) > 4. Since 96
1s compact, for a subsequence, z, — z and so p(z, 4) > 4. On

the other hand, ¢(z) = 0 and so z € A, a contradicti
' ntradict
the claim holds. ! iction and so

" Thus, A C Z, C Ns(A4) and so y(Z.) = v(A). Now, for n > 0,
L§]

Cyp = {z €0, | |p(z) > n}.
If P(y) = /||yl is the radial projection in R™, then

Poyw: Cp - R™\{0}
is odd and continuous and so v(C,,) < m. Thus
YONCy) 2 4(82) —v(Cy) 2 n—m.
But m = Zp and the result follows on setting nn = .l

et be @8 ab() £ a let m n Let

A = {z €80 | ¢(z) = ¥(—z)}
then v(A) > n — m.
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Proof: Apply the preceding proposition to the function y(z) =
$(z) — ¥(-z)W

Lemma 2.5.1 There ezists a covering of S™~' by n closed antipo-
dal gets, i.e., gl = JE By where B; = CU(=C;), CGin(-C;) =
B, 1<i<n.

Proof: If n = 1, we have §° = {~1,+1} and so By = {-1} U
{+1}. Ifn = 2, §* = ByUB; where By = {(z,¥) € Stilzl > 1/2}
and By = {(z,y) € 8| |y| > 1/2}. Assume the result upto n.
Set §*~1 = UP_ Bl Let ¢ = (z/,za11} € R, with 2’ € R™.
Identify the hyperplane {zn4, = 0} with R™. Define

Crt1 = {(&s@ns1) € " | 21 2 1/4}.

For 1 <i < n, define

where B! = C/U(-C}), Cin(-C)) = @. Then the C;for 1 <i <
n-+1 are closed, C;N(—C;) = @ and the B; = C;U(—Cy) cover S™.1

The above lemma is used to prove a result which will allow us
to calculate the genus of a set made up of sets of genus unity.

Theorem 2.5.2 Let A € S(E). Then 7(A) = n if, and only
if, n is the least integer such that there evist sets A; € Z(E) for
1 < i< n such that v(A;) = 1 for all suchi and A C UL A,

Proof: If v(A) = n, then there exist D1, ..., Dy in E(E) covering
A and each of them having genus unity. For, if ¢ is the odd non-
vanishing map into B® from A, and if P is the radial projection
in R*, then P o ¢ maps 4 into 5§71, 1f B; and C; are as in the
statement of the preceding lemma, then {(P o ¢)~'(Bi)} covers
A. Furiher,

Di = (Pog) (B} = (Poy) H{C)U(Poyp) (-Ci)

TR
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and 50, as the two sets on the right are disjoint, v(D;) = 1.

Sufficiency: If the {A;} exist as in the statement of the theorem,
then clearly v(A) < n. If y(A) = m < n, then by the preceding
argument, there exist m sets D; with the same properties as the
A;, contradicting the minimality of n.

Necessity: By our initial argument, we know that A can be cov-
ered by n sets of genus unity. If n were not minimal, then A
would be covered by m sets of genus unity, where m < n and then
¥(A) < m, a contradiction. W

Inspired by the above theorem, we can define a notion analo-
gous to the genus in topological spaces.

Definition 2.5.2 Let X be a fopological spuce and A C X a
closed subset. A is said to be of category 1 in X (catx(A) =1)
if it can be deformed continuously to a single point, i.e., there ez-
ist H € C{A x [0,1]; X) such that H(z,0) =z for all z € A and
Hz,\)=z,€ Aforallzc AR

Definition 2.5.3 Let X be o topological space and let A C X a
closed subset. We say that catx (A) = n if. and only if, n is the
least infeger such that there ezist closed sets A; for 1 < i < n
covering A and such that catx(A;) =1 for each such i. If no such
n ezists, we say that catx{A) = ool

The category defined above, called the Lyusternik - Schnirelman
Category, has properties analogous to the genus. It is more flexi-
ble and more general than the genus. But its properties are more
difficult to prove. The genus and the category give information
on the size of solution sets of nonlinear equations.

Chapter 3

The Leray - Schauder Degree

3.1 Preliminaries

Let X be a (real) Banach space. Henceforth, unless otherwise
stated, all mappings of X into itself, or any other space, will be
assumed to be contimious and mapping bounded sets into bounded
sets.

Definition 3.1.1 Let X and Y be Banach spaces. Let § be an
open set in X. Let T: 1 = Y be continuous. Then f is soid to be
compact if it maps bounded sets (in X ) into relatively compact
sets (inY ). B

Example 3.1.1 By Ascoli’s theorem, the injection CH([0,1;R) —
C({0,1];R) is compact. B

Example 3.1.2 Let K € C(]0,1] x [0,1]; R). Let f € C([0,1]; ).
Define

T(f)(x) = fGIK(%y)f(y)dy-

Then 7 is a compact linear operator on C([0, 1];R). To see this,
notice that K is uniformly continuous. Hence, given € > (0, there
exists § > 0 such that |7, — z9| < ¢ imples that, for all y € [0, 1],

\K(z1,y) — K{z2,9)| < €/C




ek e

70 CH 3. THE LERAY - SCHAUDER DEGREE

where C' > 0 is fixed. Hence for all |||l < C, we have
IT(f)(z1) = T(f)(z2)| < ¢

and so the the image under T of the ball of radius € is equicon-
tinuous. Clearly it is also bounded. Thus, the result follows, once
again, from Ascoli’s theorem. B

Example 3.1.3 Let 2 C E" be a bounded open set. Then, by
the Rellich - Kondrasov theorem (cf. for instance, Kesavan [13])
we have that the injection

Hy(Q) = LX)

ig compact. W
All the above examples deal with compact linear operators.

Example 3.1.4 Let X and ¥ be Banach spaces and let T: X —
Y be such that T(X) is contained in a finite dimensional subspace

of Y. Clearly such a map is compact. Such maps are called maps
of finite rank. M

Exercise 3.1.1 Let 7,7 : X — Y be bounded linear maps such
that all the Ty, are of finite rank and || T, — T|| — 0 as n — oco.
Show that T is compact. l

Henceforth, throughout this chapter, £2 will denote a bounded
open subset of a Banach space X. The identity operator on X
will, as usual, be denoted by I.

Definition 3.1.2 Let T : @ — X be a compact map. The map-
ping @ = I —T is called o compact perturbation of the iden-
tity. W

Proposition 3.1.1 A compact perturbation of the identity in X
is closed (i.e. maps closed sets into closed sets) and proper (i.e.
inverse tmages of compact sets are compact).
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Proof: Let ¢ = I — T be a compact perturbation of the identity.
Let A C X be closed. Let yn = @(xq) € w(A) and let y, — ¥ in
X. Thus, y, = #n — Tzn. Since {z,} is bounded, we have, for a
subsequence, Tz, — z and so z, - y+z and y + 2z € A, since A
is closed. It then follows that y = ¢(y + z) and thus ¢ is closed.

Let A C X be compact. Let {z,} be a sequence in ¢ ~*(A). Thus,
yn = on — T'rn € A and since A is compact, we have , for a sub-
sequence, yn — y € A. Since Q is bounded, again, for a further
subsequence, Tz, — z. Again, it follows that, for that subse-
quence in question, z, — y + z and thus ¢~1(4) is compact and
so ¢ is proper. W

We will try to generalize the notion of the finite dimensional
degree to proper maps in infinite dimensional Banach spaces. We
will do this by approximating, in a suitable sense, a compact map
by a map of finite rank. To do this we will later need the following
technical result.

Lemma 3.1.1 Let K C X be compact. Given £ > 0, there exists
a finite dimensional subspace Ve C X and a map g. : K = V,
such thet, for every x € K,

lge(z) — 2| < e (3.1.1)

Proof: Given ¢ > 0, there exist z1,...,z, € K, where n = n(¢),
such that

K C Uﬂ 1B(.T“ )

Set
Ve = span{z1,....,&n}.

Then dimV. < n < co. Define, for z € K,

: _ [ e—llz—=z, if =€ Blz;e)
bilz) = { (0, otherwise. (3.1.2)
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Since the B(wi;¢) cover K, we have Y 1, bi{z) # 0foreachz € K.
Hence we can define, for r € K,

a(a) = SO oy,

If b;(z) # 0, then ||z — =;]]l < e. Thus, if z € K,

_ H > ier bifz) (2 — 24)
> bilz)

3.2 Definition of the Degree

(3.1.3)

llge(z) — |

< ezl

Let V be a finite diinensional space of dimension n. Given a basis
for V, we can identify V with RB®. Given two different bases, a
vector z € V may be expressed as () € R® or as @ e B’e
depending on the base chosen. There exists an invertible matrix
M such that Mz® = 2. If © is a bounded open set in V,
and if b € V, then piven p € C(Q;V), we can consider it as
w; € C(QRY), i =1 or 2, as the case may be. We have

ea(2®) = Ml (MzD). (3.2.1)

Now, if ¢ € C1(Q; V), then (3.2.1) shows that J,(z) is indepen-
dent of the basis chosen. Let b ¢ o(8Q). Let us write b as b!)
or ) depending on the base chosen. We see that if & is regnlar,
then the degree is independent of the base:

d(p1, 1, b(l)) = d((PQ,QQ,b(z)).

By reducing to the regular case, we see easily that this is true
even for values b that are not regular. Thus we have proved the
following result.

Lemma 3.2.1 Let V be finite dimensional of dimension n and
let o € C(Q;V) where  is @ bounded open subset of V. Let
b o(0Q). Then d(p,Q,b) is independent of the base chosen to
identify V with R" .M
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Let £ be a bounded open set in R* and let m < n. Let
T € C(Q;R™) and let b € R™. We imbed R™ in R® by setting the
last n — m coordinates as zero. Thus, b = (b, ..., b,0,..,0) € R"
and Tz = (Tiz, ..., T 7,0,...,0) € B*. I T is C! and b ¢ ¢(69) is
a regular value of ¢ = I — T, then, if £ € ©~1(b), it follows that
z € R™ CR* and

iy _ | (@lorrm)'(z) 0O
dla) = | Gl O
and so

J‘p(m) = J(p|nn]km($)‘
Thus

d(p,,b) = d(@lggm, @ NR™,B). (3.2.2)

It now follows that (3.2.2) also holds for ¢ € C(€; R™) and any b €
R™\ (o). Now if F, and F) are two finite dimensional subspaces

containing T(2) and b, then F; N F, has the same properties.
Further, it follows from the preceding considerations that

d(@lﬁﬂFiJQﬂFiab) = d((10|ﬁmF1mF2:QﬂFlmF27b) (323)

for s = 1,2. Thus, we are naturally led to the following definition.

Definition 3.2.1 Let @ C X be a bounded open set in o Banach
space X and let T : @ = X be a map of finite rank. Then, if
b p(0Q) where ¢ = I — T, we define

d(e,2,b) = d(glgnp 2N FD) (3.2.4)

where F C X is a finite dimensional subspace containing T(Q)
and bl

The preceding considerations (cf. (3.2.3)) show that the above
definition is independent of the choice of the subspace F.

Definition 3.2.2 Let Q0 be a bounded open set in a Banach space
Xandlet o =1 -T:8 = X be a compact perturbation of the
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identity. Let b & o(8Q). Let p, = p(b,p(8Q)). Let T : T — X be
a map of finite rank such that ||Tz — ’f.z:|| < po/2 for all x € Q.
We define the Leray - Schauder degree of ¢ in Q with respect
to b by

d(e,2,0) = d(@,Q,b) (3.2.5)
where =1 — T

We now ensure that the above definition makes sense. First
of all, by Proposition 3.1.1, ¢(9Q) is closed and so p, > 0. Next,
there do exist maps of finite rank as in the above definition. For
instance, set

o~

T=g,p20T
where g, /2 18 the map described in Lemma 3.1.1 for £ == p,/2.

If T is any mapping as in the definition, then, for z € 95, we
have |Jo(z) — @(z)]] < po/2 so that p(b, (OQ)) > ps/2 > 0. Thus
b ¢ 2(9Q) and so d(7, Q,b) is well-defined. Finally, we need to
check that this definition is independent of the choice of T.

Let Ty and Ty be two mappings of finite rank such that, for
i = 1,2 and for all z € Q, we have ||Tz — T.x|| < po/2. Set @; =
I —7;. Let F; C X be a finite dimensional subspace containing
T:(Q) and b, for ¢ = 1,2. Let F be a finite dimensional subspace
of X containing Fy + F» and b. Then for i = 1,2,

d((wohﬂab) = d(‘pilﬁﬁFign‘Fab)'

If H(z,0) = 01 (x) + (1 — 0)pa(z), for x € © and 8 € [0,1], then,

for z € 99, we have ||b— H(z,8)|| > po/2 since [[¢(z) - H(z,0)| <

po/2. Hence by the homotopy invariance of the (Brouwer) degree,
d(‘Pl |ﬁ[‘]}?‘5 Q ﬂ F: b) = d((p2|ﬁﬂFﬁ Q n Fﬂ b)

and so the degree given by (3.2.5) is indeed well-defined.
3.3 Properties of the Degree
Hencefortly, we will denote by Q(Q; X) the space of all compact

mappings from Q into X, where Q is a bounded open set in a
Banach space X.
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Theorem 3.3.1 (i) Let T € Q(0; X) and let b ¢ (I — T)(00Q).
There exists a neighbourhood U of T in Q(§; X) such that for all
S €U, we have b ¢ (I — 5)(d9) end

d(I — S,Q,b) = d(I —T,Q,b). (3.3.1)

(i) Let H € C(R x [0,1]; X) be defined by H{z,t) = = — S(x,1)

where § € QOX[0,1]; X). Ifb & H(OQx[0,1]), thend(H(.,1),8,b)
is independent of 1.

(iit) The degree is constant on connected components of X\(I -

T)(91).

(i) FUNQ =0, Q=00 and b ¢ (I - THOY), i= 1,2,

then

dI - T,0,b) = d(I —T,Q,b)+d(I - T,Q2,8).  (3.3.2)
Proof: Let p, = p(b, (I — T}(3€)) > 0. We set

IS = Tlleo = suEHS-J:*Ta:“.
TeN

Let U be given 'by
U = {8 € QX)) IS —Tllao < po/2}-

If S € U, then clearly b is not a boundary value of I — §. Choose
finite dimensional maps T; and S such that

1T = Tilloe < Po/4, IS = Sillee < po/4:

Let F be a finite dimensional subspace of X containing T4 (£2), S1 Q)
and &. Then

dI-T, 00 = d(I —T)lgnp 2N F,b) } (53.3)
d(I — 8,9, b) d((I = 81) g 2N F, D).

Set
H(z,8) = 6(I -Ti)z+(1— NI - S1)x
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forz € QN F. Then for z € 3(QN F) and for 0 < § < 1,

IH(z.68) bl = |Ib~(T —T)z|| - OI/(J - Ti)z — (I — Tz
—{(1 -0 - S}z — (I - S)z||

—(1 =0 — Tz —~ (I - S)lf

Po— Bpof/4 — (1 — B)po/4 — (1 — 0}p0/2
3p0/4 — (L = 0)po/2 > po/4 > 0.

v

Thus b ¢ H(.,0)(8(§2N F)). Then (3.3.1) follows from the homo-
topy invariance of the Brouwer degree and (3.3.3).

(ii) Since, by (i), the degree is locally constant, the result follows
from the connectedness of [0, 1].

(iif) Clearly, by definition, it follows that

d((P) Qa b) = d((P - ba Q: 0) ( (334)

where ¢ = I — T. Now the result follows from (i).
(iv) The relation (3.3.2) follows directly from the definition and
from the additivity of the Brouwer degree. R

Remark 3.3.1 Notice that if t — S(., ¢} is continuous from [0, 1]
into Q% X), then S € Q(Q x [0,1]; X).1M

Proposition 3.3.1 Let @ C X be a bounded open set. Then

_J1 i be
d(I,,b) = { 0. if be Q. (3.3.5)
Proof: Set T' = 0 and note that T(2) and b are contained in the
one-dimensional space Rb. Thus d(7,,b) = d(I, QN Rb,b) and
the result follows. @l

Proposition 3.3.2 (Ezcision) Let K C § be closed and let ¢ =

I —T be a compact perturbation of the identity. Let b ¢ o(K) U
©(aQ). Then

d(p, 0, b) = d{w, K, b). (3.3.6)

3.8 Properties of the Degree

Proof: By Proposition 3.1.1, ¢(K) is closed and so

p1 = min{p(b, p(K)), p(b, p(882))} > 0.

Let T, be a mapping of finite rank such that [T — Tiljse < p1/2.
Then, by definition, d(p, 2, b} = d(¥,$,b), where ¢ =T —T1. If
F is a finite dimensional subspace containing T1(?) and b,

d(y, b)) = d(yp,QNF,b)
= d(¥r, (Q\K)NF,b)
= d(, Q\K, b)
= d(p, MK, b)

where ¥r = | p-0

Proposition 3.3.3 Let 5,7 € Q2 X) such that S =T on 3.
Then if b ¢ o(30) = $(9N), where o =TI -T and Yy =1- 5, we
have

dle, 0,6y = d{,Q,b).

Proof: Set H(z,t) = tp(z) + (1 — t}¥(z) for t € [0,1]. The result
now follows from Theorem 3.3.1. A

Proposition 3.3.4 Let F C X be a closed subspace containing
T(Q) and b, where T € Q(; X) and b ¢ ©(09), ¢ =1—T. Then

d(p, 0, b) = d(pr, AN F, b) (3.3.7)
where wp = @lanp-
Proof: Let K = T((}), which is compact. Let p, = p(b, p(982)) >

0. Let V,,, 2 be the finite dimensional space and g, 5 the mapping
as described in Lemma 3.1.1. Then, V,, » C F. Let

p1 = p(b,(pp(ap(ﬂ ﬂF))) > 0.
Then p1 > pp. Farther, if ¢,, =1 —g, 00T, then

ler — @polloc < pof/2 < m/2.
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Consequently,

dlop, QN Eb) = -
F ) = d(py,, ANE,b) = d(tppolﬁnuoﬂyﬁﬂ"}o/zsb)

which is exactly d(y,2,b) by definition. B

Exercise 3.3.1 Let T € Q({2; X) and b € (6

. g ’ % o0 3 her =i
(1) If b ¢ (), show that d(y, Q,b) = 0. (060) where p = [-T.
(ii) If d(ip, @, b) # 0, show that (1) is a neighbourhood of b.

(iii) If () is included in a pro
b
d(p,0,5) = 0.m proper subspace of X, then show that

Et}ferlese 3.3:2 I..et v be as in the preceding exercise. If {0} ¢ is
a.h amily of pairwise disjoint open sets in Q with ¢! (b)y Cu ‘{jQ

" < 3
show that d(i,(2;,b) is zero except for a finite number offj anjd

that
d((p, Q, b) = Z d((p, Q, b)
JEJ
Exercise 3.3.3 Let X; and X, be Banach spaces and let 2,
gzﬂ_be‘xlr)ounded open subsets, for i = 1,2. Assume that T? c
13 2 ), d . . ) _ %
Show th‘ta‘)t and that b’t ¢ (Pz(aﬂf) where P = I— T!i, for g = 1’ 2.

a{{@1,92), 01 x Oy, (b1, 02)) = d(p1,Q,01).d(ps, U, by) . W

3.4 Fixed Point Theorems

The .Brouwer fixed point theorem (Theorem 2.3.1) states that an:

continuous function of a closed ball in R* into itself has a.tlea{
one fixed point. It was generalized (cf. Corollary 2.3.1) to thSe
?j:fl of a compact conevex set. We cannot relax these conditions

! ;;:r to I:Eavc_e the fixed point property in general. For instance

f n - S given by f(z) = —z does not have a fixed point anci
5", while being compact, is not convex. Similarly, f : R — R given
by f(z) = 2 + 1 has no fixed point and here R is convex but not
compact. One other generalization is that if K is homeomorphic
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to a closed ball in B, then any continuous function f: K=K

has a fixed point, as it is trivial to see.
In the infinite dimensional case, the classical version of Brouwer’s

theorem is false as the following example shows.

Example 3.4.1 Let H = [?, the space of square summable se-
quences. Thus, if z = {z;} € 1%, we have

Izl = > lel* < oo
i=1

Let B be the closed unit ball in H. Define I': B — B by

Ty = {V 1- ”ﬂ”“ 2'.'9:1:5523"'}‘

Then 7T' is continuous and its range is the unit sphere. Thus, if
 were a fixed point, it follows that ||z|| = ||Tz|| = 1 and then it
would follow from the definition of T' that

0 = 21 = T2 = T3 = -

Hence z = 0, which is absurd. Thus, 7' cannot have a fixed point.
n

However, the version of the theorem as in Corollary 2.3.1 holds.

Theorem 3.4.1 (Schauder Fized Pount Theorem) Let X be a Ba-
nach space and let K C X be a compact and conver subset. If
f+ K — K is continuous, then f has a fized point.

Proof: Let ¢ > 0 and consider the pair (ge, V:) as in Lemma
3.1.1. Then, for = € K, g.(z) is a convex combination of the basis
vectors {1,223, ..., Tn} where n = n(g). Hence, gelz) € K. CK
where K. is the closed convex hull of {z1, 22, 0s Tn }- Consider the
continuous map ¢, : K. —+ K. defined by

pe(x) = g:(f(z)).
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Since K. C K, it follows that K. is also compact and is thus

a compact convex set in the finite dimensional space V. as well.
Hence, by Corollary 2.3.1, there exists a fixed point z, € K, of

pe. Again, since K is compact, {z.} has a convergent subsequence
converging to some z € K. Now, ‘

lle=f@) < iz - zell +llze ~ f )]l + 1 f(22) ~ f2). (34.1)

The first and last terms on the right-hand side tend to zero as
£ = 0 by the definition of z and the continuity of f. Further,

||I,:- - f(xs)H = “Qe(f(ms)) - f(-re)” < &

Thus, the right-hand side of (3.4.1) can be made arbitrarily small
and so f{x) = z and the proof is camplete. M

A minor variation of the above result is as follows.

Corollary 3.4.1 Let K be a closed, bounded and convez subsct
of X and let f : K — K be compact. Then f has a fived point.

Proof: Since f(K) is compact, so is its closed convex hull K.
Since K is closed and convex, and as f maps K into itself, it

follows that K c K. Now [z maps K into itself and thus has a
fixed point which is also a fixed point for f in K.

Theorem 3.4.2 (Schaeffer) Let f : X — X be compact. Assume
that there erists R > 0 such that if u = o f(u) for some o € [0,1],

then lull < R. Then f has a fized point in the ball B(0; R).

Proof: Consider I — of : B(0;R) — B(0;R). By hypothesis,
0 & (I~-of)N0B(0;R)) for o & [0,1]. Consequently, the degree
d{I-af.B(0; R),0) is well-defined and is independent of o. Thus,

d(I - f,B(0;R),0) = d(I, B(0;R),0) = 1.

Thus, the degree is non-zero and so the equation (/ — Fz)y=20
has a solution in the ball. W
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Example 3.4.2 Let f: R - R bea bounded and continuou‘s
function. Let € ¢ B" be a bounded domain. Consider the semi-

linear elliptic boundary value problem:

—Au = flu) inQ } (34.2)
w = 0 on oL

i i ion in H} ().
We will show that this problem has a solution in H; ‘
Given p € L), define Glp) € Hy(42) to be the unique
solution w of the problem:

w = 0 on Bﬂ.

Now, let |f(z)] < M for all z € R. Clea.rlbf, J.’(u) e L¥(Q) gilci
so, by the dominated convergence theorem,ﬁlt is easy to Se?—_[\ g a

the mapping % — f () is continuous from L (ﬂ) Tnto. 1tse.1f.H1 1;;3,
using Rellich’s theorem which states tk.Lat the injection of Hy (l )
into L2(R) is compact for £ bounded, it can be delducefi tha.t t 11;,
map u — T{u) = G(f(u}) is a compact map 9f HQ(Q) into 1tse‘3 t
Clearly  is a solution of (3.4.2) if, and only if, u is a fixed poin
of T.

If v = oTw for some o € [0, 1], then

—Ay = of{v) in Q2 }
v o= 0 on oS

Hence,

Jo [Vv)Pde = o fo fv)vdr

A IA

MlQPﬂ“v“LQ(Q)
C(J‘Q \V’U‘zdﬂ:)l 2

by Poincaré’s inequality. Thus,
Wllgyoy < € <C+n

for any n > 0 and so, by Schaeffer’s theorem, there exists a fixed
point of T satisfying

lullgyey < CH
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Exercise 3.4.1 Let (2 C R be a bounded domain. Let fTRoR
be a Lipschitz continuous map with Lipschitz constant K > 0, Let

n
a d
A= - | aii(z)—
2 £ (“‘f (m)aa:j)
1,7=1
where the coefficients a;; € L°°(Q) and satisfy

ki3

o€ < D ai(a)g; < plef
i,7=1
for almost every = in 0 and for all € < R", where o and 3 are

positive constants. If K is sufliciently small, show that there exists
a solution to the problem:

Av = f(u) in -
u = 0 on 0,

3.5 The Index

Let X be a Banach space and let Q be a bounded open subset of
X Let Te Q(;X). Let o= I —T.

Definition 3.5.1 We say that z, € X is an isolated solution
of the equation p(x) = 0 if there ezists £, > 0 such that Ty is the
only solution of this equation in the ball B(zo;e,).M

If z, is an isolated solution of the equation ¢(z) = 0 and if
€, 18 a8 In the above definition, then , for every 0 < £ < g,
the degree d(yp, B(z,;¢),0) is well-defined and, by the excision
property, this degree is independent of ¢, Thus, if ¢, = 0, the
sequence {d{@, B(zq;cn),0)} is stationary.

Definition 3.5.2 The index of an isolated solution w, of the
equation () = 0, denoted by (i, 2,,0) is given by the relation

7:(‘:09'7;010) = Ehj:é d(501B('T0;5)10)-. (351)
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Remark 3.5.1 If b € X is any point, and if %, is an iso‘la.ted
solution of the equation ¢(z} = b, then we can define the index

with respect to b via the relation

i(‘i’ammb) = ’.':((Pub,ﬂL‘O,O)..

Remark 3.5.2 It X were finite diﬁensional, then the above defi-
nitions make sense for any ¢ € C(; X)W

Proposition 3.5.1 Let T :R* - R? be.a a lin‘ear map such that 1
is not an eigenvalue, ie. ¢ =1 —T i3 invertible, Then
i(,0,0) = (=1
where B is the sum of the (algebraic) multiplicities of the churac-
teristic values of T lying in the interval (0,1).
Proof: We have ¢'(0) = I — T which is invertible and so
i{p,0,0) = sgn(det( — T})).
So, if {A}, 1 € i € n, are the eigenvalues of T, we need to
compute the sign of p(1) where
p(A) = det(AI -T) = II_; (A — A).

If A; = 0 for some %, then it does not contribute to the sign of p(1).
If ); is complex, then }; is also an eigenva_lue and the pr.oduct (1—
2 (1—23) = 11— X% also does not contribute to the sign of p(.l).‘
For non-zero and real \;, we call g; = 1/); as the corresponding
characteristic value. Again, if gy < 0 or > 1, the term 1 — A; =
1— 1/u; does not contribute to the sign of p(1). Thus

sen(p(1)) = (-1)
where 3 is as in the statement of the proposition. W
To generalize this result to infinite dimensions, we recall the

following facts about the spectrum of a compact linear operator
on a Banach space (¢f. Dieudonné [8}, Limaye [15] or Sunder [25]).




84 CH 3. THE LERAY - SCHAUDER DEGREE

* The spectrum of a compact linear operator T on a Banach
space X is atmost countable with 0 as its only possible ac-
cumulation point. If A # 0 is in the spectrum, then it has

to be an eigenvalue. Its reciprocal gy = A1 is called a char-
acteristic valuc.

* The sequence
Ker(l — pT) € Ker({ - pT)? < Ker(I - uT)® C ...
Is slationary, i.e. there exists a positive integer & such that
Ker(I — uT)* ™! # Ker(I — uT)* = Ker(I — uTY (3.5.2)

for all I > k. The space Ker(f — uT)* is finite dimensional
and its dimnension is called the algebraic multiplicity of u.
If T were symmetric, then & = 1, i.e. the algebraic and

1

geownetric multiplicities are the saine.

* If ;4 were not a characteristic value, 7 — pT is invertible with
continuous inverse.

Proposition 3.5.2 Let X be o Banach space and {et T € Q% X)
where Q C X 15 a neighbourhood of the origin. Assume that T is

differentiable at the origin. Then T'(0) : X — X is a cotnpact
linear operator,

s

Proof: If not, we can find a sequence {z,} in X and an ¢ > 0
such that [lza(| < 1 and ||T(0)(wy, — &m)|| > & for all n amd m.
By the definition of differentiability,

& Y T(bp) - T(0) — 8T (0)zp|| — 0

uniformly in n as § = 0. Choose § > (0 small enough such that
[T(62,) = T(0) = 6T"(O)en|| < de/4

for all » so that

IT(02n) = T(dx0m) — 6T (0} (@0, — )| < Je /2.
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Thus
be/2 ST (0)(@n — el = IT(02n) — T{6Tm)|

o — | T{0zp) — T{dzm )il

AVARY

Whence,'

1T (8zn) — T ($wm)|| > de/2.
Hence {8z} will be a bounded sequence while {T(éx,)} will have
no cluster point, contradicting the compactness of T'H

Proposition 3.5.3 Let X be a Banach space and let {1 be a boqnfied
open subset of X. LetT € Q(Q; X) be differentiable at the origin
and assume that T(0) = 0. If 1 is not a characteristic value of
T'(0) (so that zero is an isolated solution of (I — T)(z) = 0), we
have

i, 0,0) = (-1)° |
where ¢ = I =T and j3 is the sum of the (algebraic) multe:p.!éczte'es
of the characteristic values of T'(0) lying in the interval {0, 1).

Proof: Since H(z,t) = x — T(zt)/t is an admissible homotopy
connecting [ — T and [ — 7"(0), it sufficies to show that

i1 —T'(0),0,0) = (-1)°

where /3 is as in the statement of the proposition. o

Since the only accumulation point of the cha.rac‘Perlstlc valugs
is at infinity, the interval (0,1) contains only a finite nuniber kL:f
characteristic values, say, {11, 12, ..., fip. Let Ny = Kerzgf - ,u,:T)- ,
the characteristic subspace as in (3.5.2). Set N = EB,B.:lN.L which
is finite dimensional. Hence, it admits a complement, ie. a cl(?sed
subspace F such that X = N @ F. Bot'h N and ,F are invariant
under I —T'{0}. Thus, we can now consider I —T'(0) : X — X as

(I =T O (I =T O)F): Nx F > NxF

and for € > 0 sufficiently small, we have

(1 —T(0),0,0) = d(I—T'(0),B(0¢),0)
" oy d((f = T'(0))|w, B{0;6) N N, 0)
xd((I = T'(0)){r, B(O;2)} F,0)

i
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by the product formula (cf. Exercise 3.3.3).

For any t € [0,1], {1 — ¢tT’(0) is invertible in F and so 0 is
the only solution of the equation (I —¢T(0))z = 0 and thus the
degree d((I — tT'(0))|r, B(0;¢) N F,0) is independent of ¢ and is
thus equal to d(f,B(0;¢) N F,0) = 1. Since N is finite dimen-
sional, the degree d(({ — 7"(0))|w, B(0;2) N N,0) is none other
than ((I — T'(0))|~,0,0) and, by Proposition 3.5.1, is equal to
(—1)?, where 8 is as defined previously since the characteristic

values of (I —T'(0})|n are precisely p1, pia, ..., it and this com-
pletes the proof. B

d(H(.,t), B(0;2),(1,0)) is well-defined and is independent of ¢.
At t = 0, the degree is equal to 3, as can be easily seen. Thus, if
¥ = H(.,1), we have

d(¥, B(0;2),(1,0)) = 3. (3.5.5)
Now, ¥(1,0) = (1,0). Further,

3zt — 3% + ¢’ () —bzy
Jy(z,y) = ‘ 6y 322 - 3y°

and s0 Jg(1,0) = 9+3¢'(1} > 0. Thus (1,0) isan isolated solution

If z, is an isolated solution of ¢ (z) = 0 and if 0 & ©(99), we and

have i(T, (1,0),(1,0) = 1. (3.5.6)

Since, by hypotheses, z* + ¢(z) = 1 has only one solution, viz.
z == 1, there are no solutions other than (1,0) on the liney =0
for the original system. Now, using (3.5.5} and (3.5.6) in (3.5.3),
we deduce that there has to be atleast one solution to (3.5.4) with
y # 0. But if (z,4) is one such solntion, it is easy to see that
(z,—y) is also a solution. Thus there are at least three solntions
in all to the system (3.5.4). W'

d((PaQ:O) = d(¢p, Q\E(ﬁO;E),U) + 1, o, 0) (353)

for suﬂicient.ly small £ > 0. This is usefnl in getting information
on the solution set as illustrated by the following example.

Example 3.5.1 Let ¢ : R — Rbe aC' function such that lp(z)| <

1 and ¢'(z) > 0 for all z € R Assume that (1) = 0. Then the
system

(3.5.4) 3.6 An Application to Differential Equations

2= 3zy? +p(z) = 1
-3 +32% = 0

Let O ¢ BY be a bounded domain and let J C R an interval. Let
f: Jx € — R® be continuous. Consider the initial value problem:

Wty = flt,u), t€J } (3.6.1)

u(to) = U

has atleast three solutions in the ball B(0;2). To see this, define
H:B(0;2) x [0,1] —» R by

H((z,y),t) = (2* = 32y + to(z), ~y° + 32%y).

We first vell‘ify that this does not assume the value (1,0) ou the
circle £%+y? = 4. Indeed, if {(z,y),t) = (1,0), then either y = 0
or ¥ # 0 and y* = 322. On the said circle, these conditioﬁs are
met only at the points (£2,0) and (£1,%£+/3). At these points
we must further have fp(z) = 1 — 2% — 3zy%. But |to(z)] < 1
while at these points the right-hand side is of absolute value >
1. Thus, there are no solutions on the circle and so the degree

where (f,,1,) € J x {1 is given. If f were Lipschitz continuous,
then we have a unique local solntion to (3.6.1). If f were merely
continuous, even then we have the existence of a local solution but
the uniqueness is no longer valid. For instance, the problem

’U,r(t) - u2/3
w(0) = 0 }
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has atleast two solutions, viz. u = 0 and u = (¢/3)3.

In fact, using the Leray - Schauder degree, we can get more
information on the solution set. We can show that at any instant
t, the set of all values u(t) taken by solutions % to (3.6.1) is a
connected set (this result is due to Kneser and Hukuhara). In
particular, if we have two distinct solutions, then we must have
an infinity of solutions!

We will follow the treatment of Rabinowitz [20]. We first prove
an abstract result.

Theorem 3.6.1 (Krasnoselsk’ii - Perov) Let X be a Banach space
and let ! be a bounded open subset of X. Let T € Q(; X) and
let o = I —T. Assume that the following conditions hold:
(1) For each € > 0, there exists T, € Q(§;X) such that for all
u € 0,

|Tu — Teu|| < e.

(ii) Whenever ||b|| < ¢, the equation
u = Tu+b

admits at most one solution.

Let 0 ¢ @(0Q) and assume that d{p,2,0) # 0. Then the set
of solutions

§ = {ue Q| pw) =0)

is connected,

Proof: Since the degree d{p, Q,0) # 0, the solution set § must
be non-empty. Since ¢ is proper, § is compact. If S were not
conuected, then it can be written as the disjoint union of two
non-empty compact sets. Thus, there exist non-empty open sets
Uand Vsuch that UNV =0, SCUUV, SNU#D, SNV #0.

Since SN # @, there exists u € SNU. Hence Tu = u. Define,
fore >0and v €V,

PYe(v) = (v —Tew) — (u — TLu),
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where 7 is as in the hypotheses. Let
H(t,v)- = tyhe(v) + (1 — t)p(v)

for t € [0, 1].
Since 0 ¢ ©(8V), and since g is closed, we have inf,, ¢y {|@{v)| =

~a > 0. So, for v € OV,

WH I 2 le@)l = Te - Tevl] = flu - Teu|

> a—€E—¢€

(since Tu = u) by hypotheses. Thus, choosing ¢ < a/4, we see
that H(¢,.) does not vanish on the boundary of V and so the de-
gree d(H (t,.),V,0) is well-defined and is independent of ¢. Con-
sequently,

dp,V,0) = d(¥:,V,0). (3.6.2)

But the solution set for the equation % (v) = 0 is empty in V.
For, if v € V were a solution, then

v—Twv = u—T.u

and setting b = u — Tou = Tu — T.u, we have ||b]| < £ and so as
u € U already solves u© — T,u = b, we cannot have any solution in
V which is disjoint from 4. Thus, from (3.6.2) it follows that

d(p,V,0) = 0.

Similarly, d(¢,,0) = 0. But then, by the additivity and excision
properties of the degree, we have

0 #d(e,,0) = dle,U,0) +d(g,V,0) =0

and we have a contradiction. Thus the set S is connected. H

We now apply this result to an initial value problem of the
type (3.6.1). Let ‘

f:]—a,a] x B(0;¢) » R (3.6.3)
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be continuous, where B(0;¢) is the (open) ball of radius ¢ and
centre at the origin in R™. Let

M sup{|f(t,u}| : [¢| <a, |ul <c}
o = min{ae,c/M}. } (3.6.4)

Then by the Cauchy - Peano existence theorem, there exists atleast
one solution to the problem

w(t) = f(t,U)}

uw0) = 0 (3.6.5)

for |t| < .

We can extend f to a continuous function f : [—a, a]xK* — R
such that

sup{|f(t,u)| : {t| <o, u € R*} = M.

If E = C([—a, ]; R*) which is a Banach space with the sup-norm,

a simple application of Ascoli’s theorem shows that T : £ = E
defined by

i
Tu(t) = f F(ru(r))dr

is compact. If v = Tu, then
lul < Mlt| < Ma < ¢

and thus f(t,u) = f(t,u). It then follows that solutions to () =
0 where ¢ = I — T, are precisely solutions of (3.6.5).

We now show that we are in the situation of Theorem 3.6.1.
Let €2 be the ball of radius ¢ + 1 and centre at the origin in F.
Since the solutions of p(u) = 0 verify the estimate |jul, < ¢, as
seen above, it follows that 0 € (9§). This is also true for all
solutions of the equation u — ¢Tu = 0 where ¢ € [0,1]. Hence,

d(p,2,0) = d(1,2,0) =1L
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Given ¢ > 0, there exists fo € C'([—a, o] x R*;R") such that
for all |t] < a, and for all |z| <c+ 1,
\f.(t,2) — [(t,2)] < ¢/
Set .
Tou(t) = / fe(m, u(r))dr.
0
Then, again, T, is compact and
|Tou(t) - Tu(t)] < (e/a)lt] < &

Finally, if b € E, and v and w are solutions of w = T.u + b, then
t
o) —w(t) = [ (felrelr) = felrulr)dr
0

so that

¢
w(t) —wit) < K fo o(r) — w(r)idr
where
K = sup{‘%ff(t,z)l |t € a, |z|§c+1} < 00

Hence, by Gronwall's lemma, u(t} = v(t) for all ¢. .
Thus all the hypotheses of Theorem 3.6.1 are satisfied and so

the solution set of the equation p(u) = 0 is connected in E.

Theorem 3.6.2 (Kneser - Hukuhara) Let the conditions (3.6.3)
and (8.6.4) hold for f.Define

K, — {u(t) | u solution of (3.6.5)}}.

Then K, is a connected set in R,

Proof: If S is the solution set for the equation p(u) =01in E
a5 described above, then K; = &(S5), where d; E — R" is the
evaluation map & (u) = u(t). Since S is connected in E and since
8, is continuous, it follows that K is also connected. H




Chapter 4

Bifurcation Theory

4.1 Introduction

Let X and Y be Banach spaces. Let f € C(X;Y). We are often
terested in the set of solutions to the equation

flz) = 0.

However, this question is too general to be answered satisfactorily,
even when the spaces X and Y are finite dimensional. Very often,

we are led to study nonlinear equations dependent on a parameter
of the form

f(:f',)\) =0

where f : X xY — Z, with X, ¥ and Z being Banach spaces.
Usually, it will turn out that ¥ = R. Tt is quite usual for the above
equation to possess a ‘nice’ family of solutions (often called the
trivial sotutions). However, for certain values of A\, new solutions
may appear and hence we use the term ‘bifurcation’.

The classical example for this kind of phenomenon is the buck-
ling of a thin rod. Consider a thin rod of unit length lying on the
z-axis along the interval [0, 1] with its left end point fixed. Con-
sider a compressive force of magnitude P applied at the right end.
Upto a certaiu critical value of P, the rod is merely compressed
along the axis. But once P crosses a critical value, the rod buckles
out of its original state. Thus, we can cousider the zero vertical
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displacement as the trivial solution for all values of P while there
exist nontrivial solutions to the displacement for some values of
p.

There are numerous examples from physics for bifurcation phe-
nomena. The Bénard problem in heat transfer is one such. If an
infinite layer of viscous incompressible fluid lies between a pair
of parallel and perfectly conducting plates and if a temperature
gradient T is maintained between them, the lower plate being
warmer, tlien upto a certain value of T, the heat is transfered
purely by conduction and there is no movement of the fluid (triv-
ial solution), When T crosses a critical value, convection currents
appear.

In the Taylor problem, a viscous incompressible fluid lies be-
tween a pair of coaxial cylinders with vertical axis. The inner
cylinder rotates with an angular velocity w while the outer cylin-
der is at rest. For small values of w,the flow - called the Couette
flow - consists of circular orbits of particles with velocity propor-
tional to their distance from the axis of rotation. As w increases
beyond a critical value, the fluid breaks up into horizontal bands
called Taylor vortices and a new motion in the vertical direction
is superimposed on the Couette flow.

Normally, when we wish to approximate a nonlinear equation,
we linearize it. However, this is not satisfactory in describing bi-
furcation phenomena as the example of the buckling rod shows.

Example 4.1.1 (cf. Stakgold [24]} Consider a rod occupying the
interval [0,1] of the z-axis with its left end fixed and right end
free to move along the axis. If it is subjected to a compressive
load, the rod will buckle. Assume that the buckling takes place in
the  — y plane. Let p(z) denote the angle between the tangent
at a point z € (0,1) of the buckled rod and the x- axis, then the
function ¢ satisfies the following equatio.

¢’ +psing = 0 in (0,1) }
J0) = $0) = 0.

We can compute the vertical displacement v(z) of the rod from
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¢lz). Notice that ¢ = 0 (corresponding to the unbuckled state) is
a solution for all . If we linearize this equation about this trivial
solution, we get

20 = ¢'{1) = 0

and the equation satisfied by v becomes

@ +ppe = 0 in (0,1)}

v+ = 0 i (0,1)
v(0) = »(1) = 0.

This linear eigenvalue problem has non-zero solutions only when
p=0o0rp=n" neIN. At 4 =0, we get v = constant and
Lence » = 0. Thus there is no deflection. If 0 < u < n?, again
we have only the zero solution. Thus the rod buckles at x = 72
and as we cownpress further, again returns to the unbuckled state
as p increases further, till it reaches the value p = 4n? and so on.
This is clearly unacceptable physically. Hence we need a proper
nonlinear theory to study bifurcation phenomena. We will return
to this exampie in Remark 4.3.4. B

Henceforth we assume that X, Y and Z are Banach spaces and
that f: X xY — Z is coutinuous. Further assume that for all
AeY,

fO,N) = 0.

Definition 4.1.1 4 point (0, Xg) € X xY is said to be a bifurca-
tion point if every neighbourhood of this point in X x Y contains
a solution (x, ), = # 0 of the equation

Flu,p) = 0. (4.1.1)

bf Remark 4.1.1 Note that, essentially, only sinall neighbourhoods
count. The definition ensures the existence of a sequence {(z,, )}
of nontrivial solutions such that z, = 0 aud A, — Xy as n = co.
It does not guarantee the existence of a continuous branch of so-
lutions {z(A). A} with 2(A) = 0 as A — ;.M
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The following basic questions can thus be asked.
(1) When is a point (0,X) € X x Y a bifurcation point?
(ii) Do there exist branches of solutions emanating from this point,
and if so0, how mauy?
(iii) Can we describe the dependence of these branches on A at
least in a neighbourhood of the bifurcation point?
(iv) In case of several branches of solutions, which branch does
the system follow?

The basic results of bifurcation theory presented in the sequel
attempt to answer questions (i) - (iii) above. Question (iv) is
related to the study of stability of solutions. We first prove a
necessary condition for the existence of a bifurcation point and
then consider several simple examples to illustrate the various
possibilities that one could expect.

Proposition 4.1.1 Let f : X x Y — Z be differentiable. If
(0, X0) € X xY is a bifurcation point, then 8, f(0,x) : X — Z s
not an isomorphism.

Proof: Let {{z,,  \»)} be a sequence of solutions to (4.1.1) con-

verging to (0, Ap). Then

0 = f($n7 )\n) = f(o, )\n) + a:r:f(oa )\n)mn + R(-Tns D\n)

where | R{zpn, A)||/|zall = 0 as n = oo, If 8, £(0, Xo) is an isomor-
phism, then so is &, f(0, A,) for sufficiently large n and its inverse
is bounded and independent of n. Since f(0, An) = 0 as well, we

have
Tpn = “(aa:f(or)\n))_lR(-T-na)\n)

and so, for a constant €' > 0, independent of n, we have
lznll < CliR(zn, An)l]
which is impossible. W

Example 4.1.2 Let X =Y = Z =R Let f(x,A) = 2 —z*°A. For
any A € R, the point (G, A) is not a bifurcation point, The solution
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set is given by the z-axis i.e. the set of points (0, A) for all A € R
and the two branches of the rectangular hyperbola zA = 1. Notice
that ;. f(0, A) = 1 which gives the identity map on R.M

Example 4.1.3Let X =Z =R? and Y =R. TLet

fen = a-n (o) (3.

Then 8, f(0,A) = (1 — A)T which fails to be an isomorphism only
for A = 1. However, (0,1) is not a bifurcation point. Indeed
1t is immediate to see that if (2, A) is a solution to (4.1.1), then
T} 4 z‘gl = 0 so that the only solutions are the trivial oncs. Thus,
the condition given in Proposition 4.1.1 is only necessary but not
sufficient. H

Example 4.1.4Let X =Y =Z =R Let f(z,)\) = = + 2% — Az.
Then (0, A) is always a solution of (4.1.1). Further, if z # 0 and
if {z, A) is a solution, then,

2 = A-—1.

Thus, there are no nontrivial solutions for A < 1 while there
is a branch of nontrivial solutious given by the above parabola
bifurcating from the trivial branch at (0,1). Notice again that
8z £(0,A) = 1— X which fails to be an isomorphism only at A = 1.1

Example 4.1.5 Let X = Z =R and Y = R Let f(x.A) =
Az — Az where Az = Bz + C(z), aud C(z) being given by

2 2
Clz) = Tml(ml + I’Z)
m=( TG ) ro

Thus &, f 0,A) = (8 — A)I and so bifurcation can only occur at

(
(0,8). If (z,A) with z # 0. A # 8 is a solution of (4.1.1), then,
fori=1,2 l

?

vi(@} + 28) = (A Pz
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Hence z7 + r3 = (A — B)/y which is a paraboloid of revolution
about the A axis. In this case, we have a continuum of branches
emanating from the point (0,5). Again, there are no nontrivial
solutions for A < 5.1

Example 4.1.6 It can happen that a single branch emanates from
a bifurcation point involving a multiple eigenvalue of the linearized
operator. Let X = Z = R? and Y =R Let

1@ = (205 )

eyl +.7;]'_ +2$2

Let f(z,A) = A(x) — Az. Then d;f(0,)) = (1 —A)1. Thus, A=1
is a double eigenvalue. If (z, \) is a solution of (4.1.1), then

r1+ 28120 —Ar; = 0O
T+ a4 208 —Azg = O

Clearly x5 = 0 imaplies that z; = 0. Thus, for a nontrivial solution,
z9 # 0. If z; # 0, theu by the first equation above, x2 = (A —
1)/2 and substituting in the second equation we get 21 = 0, a
contradiction. Thus, z; = 0 and then zo = (A — 1)/2. Thus
the only branch emanating from (0,1) is the line 21 = 0, 2 =
A=—1/2.1

4.2 The Lyapunov - Schmidt Method

Henceforth, we consider equations of the form (4.1.1) where f :
X xR — Y is a continuous function, X and Y being Banach
spaces.

Definition 4.2.1 A linear operator T: X = Y between Banach
spaces X and Y is said to be a Fredhdln operator if Ker(T)

has finite dimension and the range R(T) has finite codimension

(i.e. dim(Y/R(T)) < oc). B
Let f: X xR =Y be aC? map for some p > 1. Assume that

f(0,4) =
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for all A € R Assume further that 8,f(0,%) : X — ¥ is a
Fredhélm map. Thus

A1 =Ker(9, f(0, X)), dim{X;) < o
Y= (6 f(O )\0)) (‘,OdiIIl(Yl) < 0o,

Hence, there exists a closed subspace X5 of X and a finite dimen-
sional subspace Y, of ¥ such that

X =X10X,,, YV = V1Y,

Let P be the projection from Y onto ¥7. Thus, to solve (4.1.1),
we need to solve the following equivalent set of equations

Pf(z,A) = 0 }

(I—-P)f(x,)) = 0. (4.2.1)

Consider the map g : (X1 x R} x Xy — ¥ defined by

gl{z, A), 22} = Pflzi +29. ).
Then

61'29((07)\0)?0) = Paa:f(oa)\ONXz = a’rf(os)\O)le

which is clearly an isomorphism. Hence, by the implicit function
theorem, there exists a neighbourhood U of (0, Ap) in X7 x R and
a neighbourhood V of 0 in X, and a C? function w : ¢4 — V such
that

Pf(zy+u(z1,A),\) = 0
for all (x1, A} € U and these are the only solutious in that neigh-

bourhood. Thus the first equation in (4.2.1) is already satisfied
and hence we are reduced to solving the equation

(I = P)f(zy+ufz1,\),A) = 0. (4.2.2)

No?ice that thie above equation involves the space X; x R and ¥;
which are both finite dimensional. Equation (4.2.2) is called the
bifurcation equation.
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If dim(Y2) = 1, then there exists y* € Y’, where Y is the dual
space of Y, such that the bifurcation equation (4.2.2) is reduced

to
<yt flor + u(z,A),A) > = 0 (4.2.3)

where < .,. > denotes the duality bracket between Y and Y.
By the implicit function theorem, we can also calculate the
derivatives of . We have

20.0) = (#£020),0) ( 22.((0,%),0))
20 = (2(0.2),0) (%(0.2.0).)
But, since Ker{8,f(0, X)) = X, we have

Jyg
oz

22 {(0,X0),0) = Pdf(0,20)x; = 0.

ou ou _
2 00a) = 05 350.00) = B:£0 20 PASO0]
Remark 4.2.1 If 8, f (0, Ao) is surjective, then £ = I and so there
is no bifurcation equation. The solution set near (0, Ag) is a finite
dimensional submanifold of X described by

{{z1 +u(z1,2),A) | (z1,2) €U}

4.3 Morse’s Lemma

The following result, due to Morse, allows us to describe the struc-
ture of the set of zeros of a nonlinear equation near a bifurcation
point in some cases. We follow the treatment given by Niren-
berg [19].

Theorem 4.3.1 (Morse’s Lemma) Let f : R* — R be a CF map,
for some p > 2. Assume that f{0) =0, f'(0) = 0 and that F'(0)
is a non-singular matriz. Then, in a neighbourhood of the origin,
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there exists a change of coordinates v y(z) which is a CP~2 map
such that y(0) =0, ¢'(0) = I and

f) = S("O)e)yle)) (43.)

Proof: We will look for a matrix R(z) such that R(D) = I and
set y(z) = R(z)z. Then, clearly, y(0) = 0 and y/{0) = I. We
will then try to express f(z) in the form L(R(z)T f"(0)R(2)z, 7)

where A7 stands for the transpose of a matrix A.
Step 1. By the fundamental theorem of calculus, we have

flz) = /01 f(tz)adt.

Integrating by parts, we get

} 1 T !
f@) = Fla)e— /D H"(b2) 2, z)dt — /D (1= O)(f"(tz)z, o).
Step 2. Set
B(z) = 2fl(l—t)f"(t'dt
| x)dt.

Notice that B(z) is a symmetric matrix and that B(0) = f "{0).
Let M be the space of all » x n matrices and let S denote the
subspace of symmetric matrices of order n. Consider the C?P—2
map g: R* x M — § defined by

glz,R) = RTf"(O)R - B(x).

Then ¢(0,I) = 0. Further,

?
%(o,ns = ST f0) + £(0)S € S.

If S €S, then T" = 3(f"(0)) 1S is such that 2&(0, )T = S. Thus
(‘9—91%(0,[) is surjective.
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Step 3. Let M, = Ker($%(0,1)). Set M = M1®My. Let A € M
and consider the operator P(4) = (A — (f"(0)) 'ATf"(0)).
Then it is immediate to see that P(A) € M for all A € M
and also that for A € M), we have P(4) = A. Thus, P is the
projection of M onto M;. Since P(I) =0, it follows that I € M.

Step 4. Now consider ¢ : (M; x R?) x Mg — § defined by
(P((Rl,:f), R‘?.) = g(mﬂ Ry + R'B)
Then ¢((0,0),7) = g(0,1) =0 and

dp _
é)_Rg((O’ 0)1 I) -

dg
8R(0’I) s

which is an isomorphism from Mg onto S. Thus, by the implicit
function theorem,there exists a neighbourhood of the origin in
M; x B* and a C? 2 map v from this neighbourhood into M,
such that (0,0) = I and g(z, R1 + u(Ry,z)) = 0 for all (K1, z)
in that neighbourhood. Now set R(z) = u(0,z) so that, in a
neighbourhood of the origin in R?, we have g(z, R{z)) = 0, t.e.
R(z)¥ f"(0)R(z) = B{z), which proves the result. R

Corollary 4.3.1 Let n = 2 and let [ be as in the preceding the-
orem. If f"(0) is an indefinite matriz then the set of solutions to
the equation f(z) = O near the origin is a pair of curves which
intersect only at the origin. If p > 2, these curves are €l and they
cut transversally. W

Remark 4.3.1 In general if n > 2, and if f7(0) is indefinite, then
the solution set near the origin is in the form of a deformed cone. B

We will now consider soine applications of Morse’s lemina,

Theorem 4.3.2 Let f be a CP map from a Banach space X into a
Banach space Y, for some p > 2. Assume that f(0) = 0 and that
F'(0) is a Fredholm operator. Let X\ = Ker(f'(0)) be of dimension
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n and let Y1 = R(f'(0)) be of codimension 1, so that there exists
y* €Y' such that

Yl = {yEY'| <y*,y>:O}_

2 . .
Assume that y*g—:é(o) 15 a nonsinguler and indefinite matriz. Then,

wn a neighbourhood of the origin, the set of solutions of f(z) = 0
cor.zsz'sts of a deformed cone of dimension n — 1 with vertex at the
orzgz".r.a. In particular, if n = 2, then it consists of two CP~2 curves
crossing only at the origin (transversally, if p > 2).

x 92 . e :
Ify 3—$-1§(0) is positive (or negative) definite, then the origin is
the only local solution of the equation.

Proof: Proceeding as in the Lyapunov- Schmidt method, there
exists a C* map « from the neighbourhood of the origin in X, into
a neighbourhood of the origin of its complement X, such that the
only solutions in a neighbourhood of the origin in X of f (£) =0
are given by those of (c¢f. (4.2.3))

g(z1) = <y', flz +ulz1)) > = 0.

We.apply the Morse lemma to the above equation to deduce the
desired result.

; First of all, we know that (cf. Section 4.2) (0} = 0 and that
u'(0) = 0. Thus g{(0) = 0. Now, if z € X},

g0z =<y f0) eI+ (0)2> =<y, f'(0)z> = 0

since X is the kernel of f/{0).

F'mallyt we compute g"{0). We recall the formula for the
second derivative of a composite function (ef. Cartan [4]). If
H=GoF and if F(a) = b, then

H'(a)(z1,2) = G'(B)(F"(a)(21,22)) + G"(B){F'(a)z1, F'(a)22).
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Setting w(z1) = f(z1 + u(z1)), we immediately see that
9"(0)(z1,2)) = <y" ¢ (0)(z1,21) >

for any z1,%, € X;. Again p = fo (I +u) and s0

& (0)(z1,2h) = f£10) (W (0) (w1, 2y )+ O T+ (0))er, (T+u'(0))a)).

Since y* vanishes on the image of f/(0), we easily see that
g" () (w1, 7)) = <y*, F(0)(z1,2) >

The result now follows from the indefiniteness of g”(0), as guar-
anteed by the hypotheses, as a direct consequence of the lemma
of Morse. #

Remark 4.3.2 If » = 2, and p > 2, then the solution set near
the origin consists of two curves cutting each. other trangversally.
Their slopes are given by the vectors which make the indefinite

2
form < y*, E;é([))(v,v) > vanish. B
1

Let f: X x R = Y be a C? function for some p > 2. Assume
that f(0,A) = 0 for all A € R. We have seen that in order that
(0, \o) be a bifurcation point it is necessary that ¢ f (0, Ap) is not
an isomorphism and that this condition is not sufficient. We now
prove a result which gives further conditions to ensure that such
a point is a bifurcatiou point.

Theorem 4.3.3 Let f : X xR = Y be a CP map for some p = 2.
Assume that f(0,xq) = 0. Assume further that

(3} 05£(0, ) = 0.

(i1) Ker(0:£(0,X0)) is one dimensional and spanned by zo € X.
(14 )R(D: £ (0, Ag)) = Y1 which has codimension 1.

(iv) With the obuvious idenitifications,

BMf(O, }‘0) €Y and a)\mf((], )\Q)CEU ¢ Y..

Then, (0, ) is a bifurcation point and the set of solutions fo
flz,)) = 0 near (0, ) consists of two CP~% curves Ty and Ty
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cutting only at (0, M), Further, if p > 2, T'1 is tangent to the A-
aris at (0, Ao) and can be parametrized by )\); i.e.

D= {{=(A), X)) | [N <€}
[y can be porametrized as
Ty = {(szg + z2(s),A(s)) |ls| < &}
with £5(0) = 0, a}(0) = 0, A(0) = Ao

Proof: Set X = X xR and define ¥ : X =+ Y by F(Z) =
f(z,A) where ¥ = (z,A). Then with obvious notation, we have
F'((0,A0)} = :f(0,h0) ® 9,f(0,X0). Thus, Ker(F'((0, X)) is
two dimensional aud is spanned by (z9,0) and (0,1) by virtue
of conditions (i) and (ii) above. The image of F'({0,)¢)) is Y}
and has codimension 1; let y* € Y’ annihilate ¥;. Then the ma-
trix y*0z, 5, F((0, Ao)), where T is the generic variable in X| =
Ker(F'({0, Ao))), is given by (with the obvious identifications)

[ <y, a:l:omof(a Ao) > < y*aaﬂ:o)\f(oa Ag) >
<Y epaf(0,20) > < y*, Baf(0,)) >

By condition (iv) above, the off-diagonal terms (which are equal)
are non-zero while the last term in the diagonal vanishes. Thus,
the determinant of this matrix is strictly negative and hence the
matrix is non-singular and indefinite. Hence, from the previous
theorem, we deduce the existence of two branches of solutions
which will cut each other transversally when p > 2. The slopes of
these branches at the bifurcation point are given by the vectors
whicli make the quadratic form associated to the above matrix
vanish. Since the last diagonal term is zero, one such vector is
{0,1). Thus one of the curves is tangent to the \- axis at the
bifurcation point. W.

Remark 4.3.3 If f{(0,)\) =0 for all A ¢ R, then 'y is the A axis
itsell. B
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Example 4.3.1 Let g : R — R be a € function with hounded
derivative such that g(0) = 0 and ¢'(0) # 0. Let & C R" be a
bounded domain. Consider the problem

Au = Aglu) in @ }

4.3.2
u = 0 on OfL ( )

Notice that for all A € R, we have the trivial solution u = 0. We
look for solutions in H§ (€2). By hypotheses, u — g(u) is a mapping
of I2(€) into itself and so the map u — T{u,A) = w € Hy(Q),
where w is the unique solution of the problem

Aw = Ag(u) in Q
w = 0 on 01,

is a compact map of L*(£2) into itself. Thus the solutions of (4.3.2)
are just the solutions of

u—T(u,A) = 0.

It is easy to see that 8,T(0, \v = z where z € H(Q) is the
solution of the prohlem

Az = Ag(0)p in O
z = 0 on df.

Again, 8,T{0,\) is a compact operator and it is also Self-adjloint.
Assume that Xp # 0 is a simple characteristic value (i.e. Ay isa
simple eigenvalue) of this operator with normalized eigenfunction
o € H} () (i.e. (p,9) = [ o°dz =1). Since the operator is St?lf-
adjoint, it follows that ¥Y; = R{I — &,T(0, Ag)) has codimension
one and is the orthogonal complement (in L%(§)) of ¢.

Now &,T(u, A) can be identified with an element of L2(2) and
is, in fact, the solution ( in H}(%2)) of the problem

Aw = g(u) in Q
w = 0 on 05
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Thus, clearly 8,T(0,A) = 0 and so 8,\(I — T(0, Ag)) = 0. Also
O —T{0, ) =0 € Y1, Finally, 8s,(7 - T(0, Ag))e can also
be identified with an element of L*(Q) as the solution (in H}(2))
of the problem

Aw = ¢{0)p in Q
w = 0 on g€,

It is easy to see that w ¢ ¥7. For,

(w9 = spmlw.de) = oA )
= Ll #0.

Thus, by the preceding theorem, if A; is a simple eigenvalue of the
linearized problem, then (0, Aq) is a bifurcation point.m

Remark 4.3.4 We go back to Example 4.1.1. We can treat the
equation for ¢ in exactly the same way as the preceding exam-
ple. In this case the characteristic values are all simnple and so all
these values yield bifurcation points. When the rod is subjected
to a compressive load, it will just contract and remain in the unde-
flected state. When the force reaches a eritical level corresponding
to the first characteristic value, the rod will buckle and there will
be a non-zero vertical displacement. Beyond this value, there are
several solutions given by the various bifurcation branches at each
successive characteristic value. The actual displacement realised
by the rod will be the physically acceptable solution which de-

pends on other criteria like the minimization of the strain energy.
[ |

Theorem 4.3.3 was also proved by Crandall and Rabinowitz [6]
using the iinplicit function theorein. In some cases we can also de-
duce it by a perturbation method (which is in fact the Lyapunov-
Schmidt method in disguise, and thus, again a consequence of the
implicit function theorem). We will see an illustration of this in
the next section.
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4.4 A Perturbation Method

Let H be a separable Hilbert space and let L : H —+ H be a
compact and self-adjoint bounded linear operator. Let Aq be a
simple characteristic value and let ¢y be an eigenvector such that

wo = AoLo, (L‘PU,‘P{]) = 1. (1.4.1)

Let A : H — H be a compact map such that A(0) = 0 and for
which the following property holds: There exists a constant ¢’ > 0
such that if \|u}| < r and jjv)} < r, where u,v € H, then

1A() — A@)|| < Cr?|lu — vij. (4.4.2)
Let us consider solutions {u, A) € H X R of the equation
u— ALu+ A(u) = 0. (4.4.3)

An example of this situation occurs in the study of buckling of
clamped plates via the von Karman equations (cf. Kesavan [12]).

By hypotheses, the trivial solution u = 0 is valid for all values
of ). Bifurcation can occur only at the characteristic values of L.
1t is trivial to check that all the hypotheses of Theorem 4.3.3 are
verified and thus (0, Aq) is a bifurcation point and there are two
branches, one of which is the A- axis itself.

We now will prove the existence of the other branch via a
perturbation method, which also provides a method for actually
computing the branch of nontrivial solutions bifurcating from the
trivial branch.

The idea is to look for solutions of the form

u = epg+v (4.4.4)

where £ is a small parameter, (v,q) = 0 and |[v]| < e. Substitut-
ing this in (4.4.3), we get

cpp + v — AL{epo + v) + Alepo +v} = 0
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or, equivalently,

v—2Aolv = (A —Ag)Lu — A(n). (4.4.5)

But this equation has a solution if, and only if (by the Fredholm
alternative), the right-hand side is orthogonal to ¢y. Further, the
solution » will be unique if we impose the additional condition
that (v,¢q) = 0. Hence

(A= Ao)(Lu,00) = (A(u), o).

Now, using (4.4.1), we get

(Lu,p0) = e(Lwo, o)+ (Lv,pp)
= ¢+ (v, Lyg)
= ¢+ A5 (v, 00)
= E‘_
Consequently,
A= o+ YA(w), go). (4.4.6)

Let us define, for w € H,

Asw = Ao +e 1(A(w),po) } (4.4.7)

Sew = (Aqw — Ag)Lw — A(w).

If By is the orthogonal projection onto the orthogonal complement

of pg, i.e. the subspace {¢p}L, let Qu denote the solution v €
{0}* of the equation

v—Aglv = Pyw. (4.4.8)

Notice that @ is a bounded linear map. There exists a constant
C > 0 such that

1Qu|l < Cllwl|.

(If not, we can find a sequence {w,} in H such that w, -+ 0 in
H while z, = Quy, is such that ||z,|| = 1 for all n. Then, for a

4.4 A Perturbation Method 109

subsequence, z, — z weakly in H and by the compactness of L,
it follows that
Z — }\oLZ = 0.

Hence z = oo for some o € R But {zy,p0) = 0 implies that
(2,0) = 0 and so it follows that z = 0. Again, by the compact.ness
of L, it follows that z, = AgLz, + Phwy converges strongly in H
and so ||z|| = 1, which gives a contradiction.) Thus, forv € {wo}t,
we define T,v € {po}* by

T.ov = Q(S:(epp +v)) (4.4.9)

and we are looking for fixed points of 7 such that |[v]] < ¢ in view
of (4.4.5) and (4.4.6).

We will now show that 7. is a contraction of the closed ball of
radius £ in {tpo}L into itself. This will then prove the existenf:e of
a unique fixed point for each ¢ and will also provide an algorithm
to compute it.

Lemma 4.4.1 Let

B = {ve H|(v,p0)=0, |lv] <¢},
U. = {epp+v|v€ B}

There exists a constant C > 0, independent of € such that for all
u, 1y, u2 € Uz, we have

|Acw— Ko < Cé° (4.4.10)
Acus — Acwa) € Cellug — ug| (4.4.11)
[Seull < C€ (4.4.12)

[Seuy — Seus|| < Cellur — uall. (4.4.13)

Proof: We have
Ao — o] < & A@W)illeoli.
But by (4.4.2),
JA@)| = JlA@w) —AQ)] < Cellull < Ce.
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"This proves (4.4.10}. Again,
[Acur = Acup| = M (A(ur) — Aua), o)
and so (4.4.11) follows from (4.4.2). Next,
IScull < [Acu — Aol Zull + [ A(w)]

< Ceiul) + C¥ < B

Finally,
(Seur = Seuall < [Aeuy — Aof|L(w1 — ua)fl+

HAcur — Acugll[ Lugf| + [ A(ur) ~ Afu)|

and (4.4.13) follows from (4.4.10), (4.4.11) and (4.4.2). =

Proposition 4.4.1 There exists eg > 0 such that, for all0 < ¢ <
eg, the map T, 1s a contraction of B. into wtself.

Proof: By the preceding lemma, if v € B,, we have
[Teoll = 11Q(Se(epo + 0}l < €&
and, similarly,
[Tev1 = Tevpl| < Coefivg - val.

Thus if we choose gy such that Cie} < 1 and Caed < 1, we get
that the desired result. R

We are thus led to the following algorithm for the computation
of the branch of nontrivial solutions of (4.4.3) near (0, Ag).

Step 1. Choose v° € B‘?. For instance v* = 0.
Step 2. Assume that v* has been computed. Set uf = gpg + 1,

Step 3. Compute (
AL = 6+ eTHAW), o)
Sew' = (A= No)Lu' — A(ui),
Step 4. Solve for »'*1 € {y}L, the linear equation
vl - Molvtl = Sk

T'hen u' — u, and AY = X., where (e, A:} will be a nonfrivial
solution of (4.4.3) with flu. |} < Ce and M. ~ Ay| < Ce2,
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4.5 Krasnoselsk'ii’s Theorem

Let X be a Banach space and let L : X — X be a compact
bounded linear operator. Let g : X x R — X be a compact
mapping. We are interested in solutions of the equation

uw—ALu+ g{u, A} = 0. (4.5.1}
Assume that g(0,A) =0 for all A € R so that we always have the
trivial branch of solutions. Let Ay be a characteristic value of L
and let g(z,2) = o(||z}}) uniformly in a neighbourhood of Ay so
that 8,f(0, Ag), where f(u,A) = u — ALu + g(u, A), is given by
I — XL which is not an isomorphism. Thus (0, Ap) satisfies the
necessary condition for being a bifurcation point. The following
theorem, due to Krasnoselsk'il, provides a suflicient condition for
it to be a bifurcation point.

Theorem 4.5.1 (Krasnoselsk’ii) Let Ay be a characteristic value
of odd (algebraic) multiplicity of L. Then (0,20} is a bifurcation
potnt.

Proof: Assume the contrary. Then there exist g > O and g, >0
such that, for [\ — Ap| < ép and for llzf| < &1, * # 0, we have
F(z,A\) # 0. Thus for any fixed A such that [A — Ao| < eo, the
degree d(f(., ), B(0;e1),0) is well defined (f(.,A} is a compact
perturbation of the identity) and this degree is independent of A by
homotopy invariance. Let A < Ap and Az > Ag with |A; —Ae| < =0
for j =1,2. Then (cf. Proposition 3.5.3) we know that

d(F(. ), B(0;£1),0) = i(f(,A),0,0) = (=1)F)

for 7 = 1,2, where S(}) is the sum of the algebraic multiplicities of
the characteristic values of L between 0 and A. But we can always
choose g sufficently small such that A is the only characteristic
value of L in the interval (Mg — sy, Ao + &o). Then, it follows that

B(A2) = A(AM)* multiplicity of A
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and thus

d(f (., M), B(;1),0) = —d(f(-,kz),B.(O;h),G)

which is a contradiction. This proves the theorem. B

If tye multiplicity of X is even, we cannot guarantee that
(0, }\.U) 1s a bifurcation point as can be seen from Examplé 4.1.3
If ¢ 1s smooth and if A is a simple charactersitic value. then it' is‘ z;.
51n1‘p1e exercise to check that the hypotheses of Theorém 4.3.3 are
Yenﬁed and that we have two branches of solutions {one o'f \‘vhich
is the A-z?xis) cutting each other transversally, If the wultiplicit
is not ]_mlty, then Theorem 4.3.3 does not hold and while we s‘tilsi
hz?.vg bifurcation at (0, Ag), the non-trivial branch may not cut the
trivial one transversally, as the following example shows.

Example 4.5.1 (cf. Nirenberg [19]) Let v : 52 < R be a vector
ﬁeld‘vanishing only at (0,0,1), i.e. {v{y),¥) = 0 for a.il y € 8%
and it vanishes only at the north pole {cf. };’mposition 2.2.4). An
example of such a vector field is given by o

wy) = (L-ys— i, —niye, 11 — ni1ys)

where y = (y1.,43) € 5% Tt is easy to see that (v{y),y) = 0 for

all y € 5% and that |v(y))? = 9 )
. ¥)° = (1 — y3)? so that v(y) = 0 i
only if y3 = 1 and thus n=ys=0 (y) 0 if, and

Define, for z € B3,
ok
g(ﬁ) = { e lsf ‘U(..’C/le)’ if =0,

Let L = I. Consider tle equation

(1-Xz+glz) = 0. {4.5.2)

Then A =1 is a chararteristic value of multiplicity 3.
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Since (g(z), z) = 0, it follows thai the only nontrivial solutions
of (4.5.2) occur when A = 1. In this case, we have g{z} = 0 and so
x = (0,0, 23) where z3 > 0. Thus the branch bifurcating from the
M\-axis is the positive half-line parallel to the z3-axis which does
not cut the \-axis transversally. @

4.6 Rabinowitz’® Theorem

Tn this section, we present a result which could be described as a
global bifurcation result. It investigates the global behaviour of
a branch of solutions bifurcating from the trivial branch in the
context of the result of Krasnoselsk’it presented in the previous
section.

Let X be a Banach space and let L : X — X be a compact
bounded Linear operator. Let g : X x B — X be a compact
mapping such that g(z,A) = o{jjz[) in the neighbourhood of a
characteristic value ) of L. We consider solutions of the equation

flz,)) = z—ALr+g(z, ) = 0 (4.6.1)

By Krasnoselsk'ii’s theorem, if Ag 18 of odd multiplicity, then
(0, Xg) is a bifurcation point. Thus it will lie in the closure S
of all nontrivial solutions of (4.6.1) in X x R The theorem of Ra-
binowitz investigates the behavionr of the connected component
C in S that contains the point (D, do). We present below the proof
due to lze (cf. Nirenberg [19]).

Since L is compact, we can choose g > 0 such that Ap is the
only characteristic value of L in the interval [Ao—£0, Ao +Eg]. Thus
I — AL is invertible for A # Ag in the above interval. Hence, the
indices

i, = {I~XL,0.0) = d(I- AL, B(0;7),0), A > Ao

i = i(I-AL0.0) = d(I —AL,B(0;r},0}, A <o

are well defined and are independent of A and r > 0, for » suffi-
ciently small. Now define ffy : X x R = X x E by

Ho(me) = (o, 20 +) zl” =)
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Now, if A = ), :‘te{), we know that 9, f(0, \) = I — AL is invertible.
HBHC{? € = 0 is the only solution in B(0,7) for (4.6.1) if r is
sufficiently small. Hence, if we set

Brey = {(z,6) | [lal] + &2 < 2 + &3},
there will be no 2ero of H, on the boundary of B, .,. Thus the
degree B
d(HT'a B?',Em (0: O))

15 well defined.
Lemma 4.6.1 (Ize) We have

d(Hm BT,EO! (01 O)) = i~ i‘l“ (4‘62)

Proof: For 0 <t <1, define

Hy(z,€) = (I-(Note)L)z+tg(z, Ao+e), t(|z]|*=r?)+ (1~ 1) (2 ~£2)).

For any such ¢, HL will not vanish on the boundary of B{0;7) %
(—£0,€0). Thus the degree

d(H}, By o, (0,0))
is well defined and is independent of £. At # = 0,
HYz,¢) = (I - (g +e)L)a, € — &)
and so its derivative at (0,¢) is given by
(HPY(0.€)(x,m) = (I — (Ao +¢) L), —2en).
Now, H? vanishes only at the points (0, —£0) and (0, £9). These are

isolated solutions and their indices are got by the product formula

as 1_ for the point (0, —¢y) and as —iy for the point (0,€9) and
we deduce (4.6.2). W
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Theorem 4.8.1 (Rabinowitz) Let Ao be ¢ characteristic value of
odd multiplicity for L. Let C be the connected component of &
containing the point (0, Ao). Then

(1) either C is not compael,

(ii) or, C contains o finite number of points of the form (0, A;)
where the A; are characteristic values of L, and the number of
such ; of odd multiplicity is even.

Consequently, a compact component of 8 through (0, Ao) must
meet the A-azis again at a point (0, X'), where X' is a characteristic
value of odd multiplicity.

Proof: Assume that C is compact. Since the only accumulation
point of the characteristic values of L (which is compact) is at
infinity, it follows that there are atmost finitely many points (0, A;)
in C where A; is a characteristic value of L. Let § be a bounded
open set in X x R such that C C Q, such that 90 does not contain
any nontrivial solution of (4.6.1) and also such that the only points
of the form (0, ) in ©, where A is a characteristic value of L, are
when X is one of the A; mentioned above. Now, define

f(@A) = (Fa, ), dfzl? - 7).

Notice that f, = H] defined in the previous lemma when X lies
in the neighbourhood of a characteristic value of L. If fr(z,A) =
{0,0) on 89, then it follows that on one hand, z = 0, while on
the other hand ||z|| = r which is impossible for » > 0. Thus the
degree d{fy, 9, {0,0)) is well defined and is independent of r > 0.

If » > 0 is large, then f, cannot vanish for it will imply that
|lz)| = r whicli cannot hold in the bounded set £2. Thus

d(fr,$2.(0,0)) = 0.

Now, let 7 > 0 be small. If f, vanishes at (z, A), then [jz|| = r
and A must lie close to one of the A;. (Fix disjoint and small
neighbourhoods (\; — €, A; + £;) of these characteristic values.
Qutside these neighbourhoods, ||{(7— AL)~1|| is uniformly bounded
and so, for sufficiently small » > 0, the only solutions of (4.6.1)




116 CH4. BIFURCATION THEORY

are the trivial ones.) Hence, by the preceding lemma and the
additivity of the degree,

0 = d(fn,,0,00) = S (i-() — it (5)

b

where 7_(j) and ¢ (7) are the indices associated to the character-
istic value ;. But i_(j) = (~1)™i,(j), where rn; is the multi-
plicity of X;. Thus the only terms surviving in the above sum are
those corresponding to characteristic values of odd multiplicity
and, as the sum is zero, there must be an even number of them.
This completes the proof. B

Both possibilities exist as the following examples show.

Example 4.6.1 Consider the equation ¥ — ALu = 0. Then the
component attached to (0, Ap) is {(xx, Ag} | = € the eigenspace of Ag}
which 18 not compact. W

Example 4.6.2 (Rabinowitz) Let X = R? and consider the equa-
tion
w—ALu—Lg(u) = 0

o 1 0 _ —u%
b= [p g )= 75]
The characteristic values of L are 1 and 2 and both are of odd

multiplicity. We have L™y = Au + g(u) and so

(1—XNu = —ud
(2—Nuz =
whence we get 1 < A <2 and

u o= EA-1)F2-N)F }

where

wp = E(A-1)FQ2-N)S

Thus, there is only one connected component of solutions i.e. S =
C and it is compact and mieets the A-axis at both characteristic
values. B
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4.7 A Variational Method

We will now retwrn to the problem studied in Section 4.4 with
some additional hypotheses. We assume that H is a separable
Hilbert space aud look for (w, A) € H x R such that

u—ALu+ A(u) = 0. (4.7.1)

We make the following hypotheses on L and A,
(H1) The bounded linear operator L : H — H is compact and
self-adjoint. Further, for all v € H,

(Lv,v) > 0
with strict inequality if v # 0.0

(H2) The nonlinear mapping A : H — H is compact and for all
v € H and for all ¢ € R,

Altn) = B3 A(w). (4.7.2)

(In particular, A(0) = 0 and there exists a coustant C' > 0 such
that ||A(»)|| < Cjlv|? for all v € H). Further

(A(v),v) = 0 (4.7.3)

for all v € H with strict inequality if v # 0.
Finally, we assumne that the functional j(v) = +(A(v),v) is differ-
entiable in H and that

(3'(v).h) = (A(v), k) (4.7.4)
forallv,h c HR

The above hypotheses, as well as the condition (4.4.2), are
all verified in the case of the weak formulation of the von Kar-
man equations modelling the buckling of a thin elastic plate (cf.
Kesavan [12]).
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In view of the hypothesis (H1), the operator L has a least
characteristic value A; > 0 and it is characterized by

1o sup (Lv, v) 4.7.5
A1 vro ol (4.7.5)

In view of hypothesis (H2), it follows that (0,}) is always a
solution of (4.7.1) for all A € R

Pl"o'position 4.7.1 If A < Xy, the equation (4.7.1) has only the
trivial solution. If A > Xy, for each such X, there exist ot least two
nontrivial solutions.

Proof: Step 1. Let A < X, and let u be a solution of {(4.7.1).
Then,

] = MLu, u) + (A(w),u) = o.
Hence, it follows from (4.7.5) that

A
(l - /\—1) el + (A(u),u) < 0.

Thus, (Alu),w) < 0 from which it follows that u = 0 in view of
(H2).

Step 2. If A > Ay, we can find w € H such that

, [l])?
L, > . 4.7.
(Lw, w) 3 {4.7.6)
Now cousider the functional
L A 1 ,
J(v) = §Hvl| - -2—(L*u,fn) +Z(A(’U),U). {(4.7.7)

Setting (t) = J(tw), we get

;2 !
plt) = E(H'w”2 — A Lw,w)) + Z(A(w),u;)
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so that ¢{t) — oo when t — *oc. But, in view of (4.7.6), it
follows that (1) < 0 for ¢ small. Thus there do exist » € H such
that J(v) < 0 aund so

inf . 4.7.8

".}élHJ(U) < 0 (4.7.8)
Step 3. We claim that J is coercive, i.e. J(v) = +oo when
|lv], = +oc. If not, there exists & > 0 and a sequence {w,} in
H such that J(v,) < o and |jvp)| = +oc as n — oo we set
Wy, = vn/|'vn|| so that ||w,| = 1 for all n. Then

@ 2 Jn) = glnl? - 5L, v) + A, m) (479

i.e

—"Uf:”4 > 1_%“’_@ + jI(A(wn),wn). (4.7.10)

Since {wn} is bounded, working with an appropriate subsequence,
we may assume that w, — w weakly in H. Passing to the limit,
using the compactness of L and A, we deduce from (4.7.10) that
(A{w),w) < 0, so that w = 0. Again, since (A(v,),v,) > 0, we
deduce from (4.7.9) that

o LA
— > - — —(Lup,w
o = 27 3tk
which yields a contradiction on passing to the limit as n — oc.
Thus .J is coercive.

Step 4. Let {u,} be a minimizing sequence in H, i.e. J(u,) —
infoem J(v) < 0. By the coercivity of J, it follows that {un,} is
bounded and so working with a weakly convergent subsequence,
we may assume that u, — u« weakly in H. By the compactness
of L and A, it is easy to see that J attains its infimum at % and
since this infimum is negative, it follows that u # 0. Thus (cf.
Theorem 1.4.1) J'(u) = 0 and in view of (4.7.4), this is precisely
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the equation (4.7.1). Again, thanks to (4.7.2), it follows that —u
is also a solution. This completes the proof. B

Upto now, we have the following information about the solu-
tions of (4.7.1).

e If A < Ay, then we only have the trivial solution.

e If A > Ay, then we have the trivial solution and at least two
nontrivial solutions.

e If X is a characteristic value of L with odd multiplicity, then,
by Krasnoselsk'ii’s theorem, (0, A} is a bifurcation point.

o If X is a simple characteristic value, then we can check that
all the hypotheses of Theorem 4.3.3 are verified and thus
(0, A} is again a bifurcation point and we have a curve of
solutions branching froin the trivial branch.

We will now show, by a different method, that (0, A;) is always
a bifurcation point. Notice that this is not necessarily covered hy
the cases listed above.

As observed in the proof of Proposition 4.7.1, we can obtain
solutions of (4.7.1) by finding the extrema of the functional J
defined by (4.7.7). Another method is to find the extrema of the
functional v — (Lv,v) over the set

04, = [veEH | %nv“? + i(A(U),U) = r}. (4.7.11)

Then A will appear in the form of a Lagrange multiplier (¢f. The-
orem 1.4.2 and Remark 1.4.3}. For convenience, let us set

F@) = Sl + 14w, ).

Proposition 4.7.2 The functional v — (Lv,v) does not attain a
minsmum on 3A, forr > 0.
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Proof: We will show that the infimum of this functional is zero
and so, as 0 ¢ 94,, the minimum will not be attained.
Let {2} be an orthonormal basis for H. Set

Wy = / 2(r + €)2Zm

where £ > 0 is fixed. Thus, ||wm|/? = 2(r + €). Hence

1
Flwgp) = r+e+ Z(A(‘wm)awm) > T

Now consider the polynomial

4
Pn(®) = Fliwm) = 2(0+2)+ T(Alum), )
Then p,, is increasing for t > 0, pp(0) = 0 and py(l) > 7.
Heuce, there exists a unique t,, € (0,1) such that py(tm) = r,
ie. tmwm € OAr Since 2z, — 0 weakly in H, it follows that
tmwm — 0 weakly in H as well. Since L is compact, L{tpwm) — 0
strongly in H and so

(L(tm'wm)s tmWm) — 0

as m — 0. Thus the infimum of the given functional (which is
non-negative, by hypothesis) is zero and the proof is complete. W

Proposition 4.7.3 The functional v — (Lv,v) attains its mai-
imum on OA, for every r > 0. If u, is a mazimizer, $0 i8 —Uy.
Further, v, = 0 as r = 0.

Proof: Clearly the supremum of the functional is strictly positive.
Thus any maximizer will be non-zero. If u, is a maximizer, so will
be —u,. Since u, € 34,, we have

“ur”2 < 2r

and so u, — 0 as r — 0. Thus we only need to show the existence
of a maximizer.
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Let {w,} be a maximizing sequence in 84,. Again, each ele-
ment of this sequence is bounded in norm by 2r and so, we can
work with a weakly convergent subsequence. We will assume,
therefore, that w,,, — w weakly in H. Then, since L is compact,
we immediately see that

(Lw,w) = sup (Lv,v).
vEFA,

By the weak lower semicontinuity of the norm (cf. Definition
5.1.2 and Example 5.1.1) and the compactness of A, we have

Flw) < r

Assume, if possible, that F(w) < r. Then (by considering the
polynomial p(¢) = F(tw)) we can easily deduce the existence of a
real number ¢ > 1| such that tw € 0A,. But then

(L{tw),tw) = t*(Lw,w) > (Lw,w) = sup (Lv,v)
ved A,

which is a contradiction. thus w € 8A, and is a maximizer. H
Thus, if 4, € 04, is a maximizer of the above functional,

then, we have a Lagrange multiplier —1, such that Lu, — v (ur +
A(uy)) = 0, thanks to the relation (4.7.4) of the hypothesis (H2)

(cf. Theorem 1.4.2). It is immediate to see that v, % 0. Thus,

setting p, = 1/v,, we see that (u,, pr) and (—u,, pr) are solutions
to (4.7.1). Since we know that u, — 0 as r — 0, we only need
to show that p, — A; as » — 0 in order to prove that (0, ;) is a
bifurcation point. This we now proceed to do.

Proposition 4.7.4 With the preceding notations, we have

lim Hr = }\1.

r—0

Proof: Step 1. Since u, # 0, we know by Proposition 4.7.1 that
fy > A1 Thus 0 < v < 1/A) and so, for a subsequence, vy — v

4.7 A Variational Method

asr — 0.

Step 2. Let ¢ > 0 be defined by

. 2r
t = —
T [ulf?

Since u, € 8A,, it follows that

A, ) = 7 (1 - tlz)

Further, since ||u,||? < 2r, it follows that

(Alur), ur)

<
0 < 4r

< Cr
where G > 0 is a constant independent of r. Thus ¢, — 1asr — 0.
Step 3. Now, since (u, pir) satisfies (4.7.1), we have
Urtetty — L{truy) + vptr Alu,) = 0.
Setting w, = tru,, we get |lw||? = 2r and

Vrﬂerz — (Lwy,wr) + vt (Aluy), wr) =

(Lwr, wy) + vrtr

ret) 4 Y (A wr) = 0.

Vp —

But ! c
o (Alur),wr)| < ?Huerer“ < Or
whicl: tends to zero as r — 0. Hence, passing to the limit in

(4.7.12) using the result of Step 2, we get

g L)
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Step 4. Let u be a normalized eigenfunction of L corresponding
to Aq, t.e

u = ALu, ||[u? = 1.

Let £, > 0 be such that tou € A, for r < 1/2. Indeed, if p(t) =

F(tu), then p(0) = 0 and p(1) > 1/2 > r and so there does exist
such a ¢, € (0,1). Further,

1?24-% A
2 T Z( ('U),"U,) =T

which implies that £, — 0 as r — 0. Hence we deduce that

£2(A(u), u)
9

<

= 1+ = 1

sy

as r — (0.

Step 5. Let #%, = t,u. Since u, maximizes v > (Lv,v) over JA4,,
we have

1 -
— = (Lu,u) = (L“‘L?“T) < (L#:;Unr)
2 T 1

whence we get

1 < (Luwy., w,.)

(Lwp,wy) 1 2r

and, by the preceding steps, the right-hand side tends to v as
7 — 0. Thus 1/A; < v, while Step 1 gives the reverse inequality.
Thus v = 1/X; , i.e. pp — A; and the proof is complete, W

Remark 4.7.1 Using the Lyusternik- Schuireliman category (cf.
Definition 2.5.3} suitably, it can be proved that every character-
istic value A of L is such that (0, ) is a bifurcation point for tlhe
equation (4.7.1) (cf. Berger [2] and Berger and Fife [3]). B

Chapter 5

Critical Points of Functionals

5.1 Minimization of Functionals

In the last section of the preceding chapter, we have already seen
examples of how solutions to certain nonlinear equations could be
obtained as critical points of appropriate functionals.

Let H be a Hilbert space and let F : H — R be a differentiable
functional. Then, for v € H, we have F'(v) € L(H,R) = H', the
dual space, and by the Riesz representation theorem, H' can be
identified with H., Thus, F’ can be thought of as a mapping of
H iuto itself and F'{v)h = (F'(v), k) for all v,h € H, where (.,.)
denotes the inner product of H.

Thus, if f : H — H is a given mapping and if there exists a
functional F : H — R such that F' = f, then looking for the zeros
of f is the same as looking for the critical points of F.

One of the principal critical points of a functional is that point
where the functional attains a minimnm (or maximum) in the ab-
sence of constraints. We therefore examine conditions when a
functional attains a ninimum (analogous results can be formu-
lated for a maximun).

Definition 5.1.1 Let X be a topological space and let f - X — R
be a given function. Then f is said fo be lower semi-continuous
(Ls.c.) if, for every ¢ € B, the set f~1((—o0,c]) is closed. It is
said to be upper semi-continuous (u.s.c.) ¢f ~f is [s.c. W
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Exercise 5.1.1 Let X be a metric space and let f : X — R be
a given function. Show that f is Ls.c. if, and ounly if, for every
convergent sequence z,, = z, we have

f(@) < limint () m

Definition 5.1.2 Let F be o Banach space and let Q@ C E. We
say that J : @ = R is weakly Ls.c. if J '((—o0,c]) is weakly
closed for all ¢ € R. We say that J is weakly sequentially l.s.c.
if whenever a sequence {x,} in §¥ coverges weakly to z € §2, we

have
J(z) € liminfJ(z,).H (5.1.1)

n—o0

Remark 5.1.1 Obviously, a weakly Ls.c. functional in F is weakly
sequentially l.s.c. B

Definition 5.1.3 Let E be o normed linear space and let K C E
be a convexr subset. A functional J defined over K is said to be
convex if for every u,v € K and every X € [0,1],

Ju+ (1= M) < A@) + (1 — N J (). (5.1.2)

We say that J is strictly convex if strict inequality holds in (5.1.2)
whenever u # v and A € (0,1). We say that J is concave (resp.
strictly concave) if —J s convez (resp. strictly convez). B

Example 5.1.1 Let £ be a Banach space and let K C F be a
closed convex set. Then any convex functional J : K —+ R which
is L.s.c. i3 also weakly ls.c.; in particular, the norm is a weakly
Ls.c. functional. To see this, notice that, by the convexity of J,
the set J~1((—o0, ¢]) is convex and it is also closed since J is L.s.c..
But, by the Hahn-Banach theorem, a closed and convex set is also
weakly closed and the result follows. B

Example 5.1.2 Consider the functional J defined in Section 4.7

by (4.7.7). Since L and A are compact, it follows that if v, — v

weakly in H,

. el 9 A 1

liminf J(v,) = llmlnfiﬁ’t)n“ — —(Lv,v) + Z(A(U)’U) > J(v).
o0

n— o0 n— 2
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Thus, J is weakly sequentially l.s.c.. l

Definition 5.1.4 Let J: Q@ C E — R be a functional defined on
a subset Q of a Banach space E. We say that J is coercive if
J{vn) = +oo whenever we have z, € Q such that ||z, — +oo.l

Proposition 5.1.1 Let E be a reflexive Banach space and let
K C E be a closed convez subset. Let J : K — R be a coer-
cive and weakly sequentially Ls.c. functional. Then J atteins ils
mimimum over K, 1.e. there exvists u € K such that
J = minJ(v).
(u) = minJ(v)
Proof: Let {un} be a minimizing sequence in K. Since J is
coercive, it follows that this sequence is bounded. Since FE is
reflexive, there exists a weakly convergent subsequence. Thus, let
us assume that u, — w weakly in F. Since, K is closed and
convex, it is weakly closed and so u € K. Now,
in}f{J(v) < J(uw) < liminfJ(u,) = inf J(v)
v

71— 00 el

which completes the proof. B

Iu view of Example 5.1.1, we have the following result.

Corollary 5.1.1 Let E and K be as in the preceding proposition.
Let J: K = R be @ convez and Ls.c. functional which is also
coercive. Then J attains ¢ minimum over K and, if, in addition,
J s strictly convex, the mintmum is attained at a unique point.

Prooft The weak sequential lower semi-continuity of J follows
from Example 5.1.1 and Remark 5.1.1. Hence, the existence of
a minimum follows from the preceding proposition. If « is the
minimum value of J and if it is attained at two distinct points u,
and up in K, then (u; + uz)/2 € K and so

a < J((ur +uz)/2) < %(J(ul)JrJ(uz)) = o
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which is impossible. B

Let E be a normed linear space and let ) be an open subset on
which a functional J is defined. If J attains a minimum at u € Q
and if J is differentiable at u, then the Euler equation, whicl is
a necessary condition, reads as J'(u) = 0. But if J attains a
minimum with respect to a convex subset K at a point u € K,
this condition is no longer valid. Instead, we have the following
necessary condition (sometimnes called a variational inequality).

Proposition 5.1.2 Let E be o normed linear space and let ) C E
be open. Let J : Q@ — R be a given functional. Let K C § be
conver end let J attain o minimum over K at u € K. Assume
that J is differentiable at w. Then, for every v € K,

J'(u(v—u) > 0. (5.1.3)

Proof: Let v € K be an arbitrary point and set w = v —u. Then,
for 6 € [0,1], we have u + fw € K since K is convex. Siuce J is
differentiable at u, we have

0 < Ju+6w) - Jw) = 8(J()w +e(@)

where £(f) — 0 as & — 0. Thus, we deduce that J'(u)w > 0 which
is exactly (5.1.3). W

Exercise 5.1.2 Under the conditions of the preceding proposition,
show that, if, in addition, K is a cone with vertex at the origin,
then (5.1.3) is equivalent to the conditions:

Jwu = 0
J{upw > 0.

Deduce that if K is a subspace of E, then (5.1.3) becomes

Juw = 0 forall ve KB

This necessary condition is also sufficient for convex function-
als. We need a preliminary result to prove this.
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Proposition 5.1.3 Let E be o normed linear space and let S C E
be open. Let J : ©Q — R be differentiable in Q. Let K C £} be a

conwex subsel.
(i) J is convez over K if, and only i,

Jw) > J) +J'(u) (v —u) (5.1.4)

for every u,v € K. ‘ ‘
(i1) J is strictly convex over K if, and only if, strict inequality
holds in (5.1.4) whenever u,v € K and u # v.

Proof: Step 1. Let v,v € K and let 8 € (0,1). Then, by the
definition of convexity,

J(u+ 0w —u)) — J(u)

5 < J() - J(u)

and (5.1.4) follows on letting § — 0.

Step 2. Unforiunately, we cannot prove the strict version of (5.1.4)
in case of strict convexity by the same argunent, since on passing
to the limit as @ — 0, we only get the same inequality. Let A €
(0,1). Let v # u. Then

(A—-#6)

w0 —u) = Tu+§(u+/\(v_u)).

Hence, for 0 < # < A, we have

)

3 J(u) + EJ(u—}-)\(u —u)).

Ju+0v-u)) < 5

Thus, by strict convexity, for 0 < < A <1, we have

J(u+0(v —u)) = J(u) J{u+ Alv —u)) — J(u)

5 < 5 < Jw)=J(u)

and now we get the strict inequality in (5.1.4) on letting § — 0.
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Step 3. If (5.1.4) were valid for all u,v € K, then for 8 € (0,1),
we have

Jw) 2 Ju+0(u—-v)) -0 (v+0(u-—v)){u—uv),
> Jw+0u—v))+(1-0)J(v+6(u—v){u-—uv).

Multiplying the first inequality by (1 —6) and the second by 8 and
adding them, we get that J is convex. The strict convexity will
follow from the corresponding strict inequalities. ¥

When studying functions of a single real variable, we have seen
that a function which is twice differentiable is convex if and only
if its second derivative is non-negative, i.e. the first derivative is
monotonic increasing. This result generalizes as follows.

Proposition 5.1.4 Let F be a normed linear space and let @ C E
be open. Let J . 8 = R be differentiable in Q. Let K C Q be a
conver subset. Then J is convez if, and only if, J' is monotone,
i.e. for every u,v € K,

(J'(v) = T (w)(v —u) > 0. (5.1.5)
Proof: If J is convex, then (5.1.4) holds. Interchanging the roles
of v and v in that inequality and adding the two inequalities, we

get (5.1.5). :

Conversely, assume that J' is monotone. Let 0 < A < 1. Let
u,v € K. Then,

AJ(w) + (1= A J@) — JQu+ (1 — A) =
= AMJ(u) = T+ (1 — X)) + (1= A)(J() — T+ (1= N)2)).

Now, by the mean value theorem for real valued functions (cf.
Exercise 1.1.1) we have

Ju)+-JOu+ (1 -XNv) = (1 - XN (21} {u—v)
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where
7z = du+({1=Xv+6(1—-A(z—v)
for some 0 < 6; < 1. Similarly,
J@) - J(Au+ (1= X)) = AT (z2)(v ~ u)

where
29 = M+ (1= Xw-+02(v—uj

for some 0 < 8 < 1, Thus,
A () +H1=A)J (8) =T Qi (1-A)w) = ML=A)J (1) =T (22)) ().

But
z— 2y = (01(1~ X) -+ 02A)(u — v)

and so, by the monotonicity of J', it follows that
M () + (1= M) - JQu+ (1= Ap) > 0,
i.e. Jis convex. W

Proposition 5.1.5 Let Q be an open subset of a normed linear
space F and let J : Q0 = R be differentiable in 1. Let K C () be
convez and let J be convezx over K. Then J admils a minimum
over K at u € K if, and only if, (5.1.3) holds.

Proof: The necessity has already been established. Conversely,
if (5.1.3) holds, then by (5.1.4), we have for any v € K,

Jwy—Jw) > J{ulv-u) > 0.0

Proposition 5.1.6 Under the conditions of the preceding propo-
sition, assume, further, that J' is hemi-continuous, i.e. the map
T J'(v -+ 7(w — v)) is continuous on [0,1] for every v,w € K.
Then, J attains a minimum ot w € K if, and only if,

J@wyv—-u) >0 (5.1.6)

for every v € K.
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Proof: If J attains a winimum at « € K, then (5.1.3) holds
and then so does (5.1.6) by the monotonicity of J' (cf. (5.1.5)).
Conversely, if (5.1.6) holds, then for 0 < 7 < 1, we have

Jutrlv—u))(u+rlo—u)—u) > 0.

Dividing by 7 and then letting 7 — 0, we deduce (5.1.3) using
the hemi-continuity of J' from which it follows that J attains a
minimum at «. M

Exercise 5.1.3 Let £ be a normed linear space and let 3 C F
be open. Let J : 2 — R be twice differentiable in €. Let K C 2
be convex. Show that J is convex if, and only if, for all u,v € K,

J'u)(v —u,v —u) > 0.

Show also that strict inequality in the above, whenever u # v,
implies that J is strictly convex. Show, by meansg of an example,
that the converse of the last assertion does not hold. W

5.2 Saddle Points

In the previous section, we encountered results on functionals
which attained their minimum (resp. maximum) on certain sets.
But such functionals are therefore necessarily bounded below (resp.
above) on those sets. In case of functionals that are bounded nei-
ther above nor below, we look for other critical points.

Definition 5.2.1 Let X and Y be two sets andlet L : X xY - R
be a given mapping. A point (z*,y*) € X xY is said to be a saddle
point of L over X x Y if, for every (z,y) € X x Y, we have

Liz*,y) < L{z"y") < Lz,y"). W (5.2.1)

Thus, at {(z*,y*), the function L attains a maximum in one
direction and a minimun in the other.

Example 5.2.1 Let X =Y =R and let L{z,y) = «* —y*. Then
it is easy to see that the origin is a saddle point for L.l
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Proposition 5.2.1 Let X and Y be two sels and let L: X XY —
R. Then L admits a saddle point over X x Y ¢f, and only if,

ax inf L = minsup L(z,y). 5.2.2
I;’}Ed}:i{;élx {(z,y) grél}(,l;ey (z,y) { )

Proof: It is obvious that

sup inf L{z,y) < inf sup L(z,y). (5.2.3)

Assume that there exists a saddle point {z*,y*) € X x Y. Then,
by definition,

sup L{z*,y) = L(z*,y") = inf L{z,y").
yeY TCEX

But then

inf sup L(x,y) < L(z",%") < sup inf L{z,y) (5.2.4)
TEX yey yeY TEX

which shows that we have equality in (5.2.3). Further, we also see
from (5.2.4) that

L{z*,y*) = sup,ey L(z™,y) = mingex supyey L(z,y)
L(.’L‘*,y*) = inf:re.\'L(w?y‘) = ma-xerinszXL(w:y)

which proves (5.2.2).
Conversely, assume that (5.2.2) holds. Let {(z*,y*) € X x Y
be defined by

supyey L{z*,y) = mingex SUpyey L(z,y) = m
infrex L{z,y*) = maxyeyinfzex L(z,y) = m.

Then, clearly, m = infzex Lz, y") < L{z*, y*) < supyey L{z*,y) =
m. Thus, m = L{z*,y*). Thus for all (z,y) € X x Y, we have
(5.2.1), i.e. (z*,y") is a saddie point. B
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Example 5.2.2 Let X =Y = [0,2n] and let L(z,y) = sin(z + y).
Then
sup inf L(:r y} = —1; inf sup L(z,y) = 1.
yeYy T€X 7E€X yey
Thus, L cannot have a saddle point. B
The following thieorem gives sufficient conditions for the exis-
tence of a saddle poiut,.

Theorem 5.2.1 (Ky Fan - von Neumann) Let Hy and Hy be
Hilbert spaces and let K; C H;,¢ = 1,2 be bounded and closed
convex subsets. Let L : K: x Ko — R be such that the following
conditions hold:

(1) For every z € K, the map y — L(z,y) is concave and w.s.c.
on Ko.

(1i) For every y € Ko, the map © — L(x,y) is convezr and ls.c.
on K.

Then, L admits at least one saddle point over K x Ko.

Proof: Step 1. Let us assume, to start with, that for each y € Ko,
the map L(.,y) is strictly convex. Let y € Kj;. Set F(y) =
infyex, L(z,y). By Corollary 5.1.1 (the coerciveness condition
is not necessary since K is bounded), there exists a unique point
@(y) € K| such that

Lp(y),y) = Fly} = min L(z,y).
zeK,

Step 2. Tt is trivial to check that F is a concave function. It is u.8.C.
as well. For, let ¢ € R. Consider theset i = {y € Ky | F(y) < ¢}.
If y € U, there exists z € K; such that L(x,y) < ¢ and since the
function L(z,.) is u.s.c., there is a neighbourhood Vin Ky of g
such that for all z € V, we have L(z,2) < ¢. Hence F(2} < ¢
for all z € V whiclh shows that If is open in K5 and so F' is u.s.c.
(i.e. the lower envelope of a concave and u.s.c. function is con-
cave and u.s.c.). Again, by a result analogous to Corollary 5.1.1,
F will attain a maximum at a point y* € Ka. We will show that
(w(y*), y*) is a saddle point for L.
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Step 3. Set z* = @(y*). Let y € Ky and let ¢ € {0,1]. Set
zr = o((1 — t)y* + ty). For any =z € K, by the concavity of
L{x,.}), we have

Lz, (L -t)y" +ty) 2 (1 —t}L(z,y") + tL(z,y).

F((1 -ty +ty) = Lz, (1 =ty +1y)
(1 —t)L{zs, y*) + tL(xs,y)
(1 - 8)F(y*) + tL(xy,y)

v IV IV

whence we deduce that, for all y € K,
F(y*) = L(zt,y)-

Let ¢, | 0. Since K is bounded, closed and convex, we have that
(for a subsequence) x;, — T € Ky weakly in H;. Since the map
L(.,y)} is convex and ls.c., it is also weakly lL.s.c. and thus

L(z*,v*) = F(y*) 2 li?lfglfL(mg,n,y) > L(Z,y). (5.2.5)

On the other hand, for any z € K,
(1 - tn)L(wtnv y*) + tnL(mtn > TJ) < L(‘rtm (1 tn)y* + tny)
< Lz, (1 - ta)y* +tay).

Taking the limsup on the right {and using the upper semi-continuity
of L(x,.}) and liminf on the left (and using (5.2.5}) as ¢, | 0, we
get, for all z € K3,

L(z,y"} < L(z,y7)

and so, by tle strict convexity of the map L(.,y*}, it follows that
Z = z*. Thus, when t = 0, x; — x* weakly in H; and again, by
(5.2.5),

Lz"y) < Liz"y") = inf Lizy") < Ly’




136 CH 5. CRITICAL POINTS OF FUNCTIONALS

for any (z,y) € K7 x Kp and so (z*,y*) is a saddle point for L.

Step 4. If the map L(.,y) were not strictly convex, let us consider,
for e > 0,

LE(E, y) = L(;Ea U) + EH‘IEHZ
Since the norm in a Hilbert space is strictly convex, so is the map
L.(.,y) and, by the preceding steps, we have a saddlepoint (z}, )
for L.. Hence, for every (z,y) € K1 x K3, we have
Le(zr.y) < Le(zi,yi) < Le(wv:)

Since L{z¥,y) < L.(z},y), we get
Lizy) < Lizy2) +ellz]® (5.2.6)

Now (for a subsequence), ¥ — z* € K; weakly in H; and yf —
y* € Ko weakly in Hy. Taking the liminf on the left side and
the limsup on the right side of (5.2.6), we deduce that, for all
($,y) € K] x K21

L(z*,y) < L{x,y")

which is exactly (5.2.1), i.e. (z*,y*) is a saddle point for L.W

Remark 5.2.1 The above theorem holds in reflexive Banach
spaces as well. We need to use the result that, in a reflexive Ba-
nach space, we can replace the norm by an equivalent one which
is also strictly convex. This will then carry out Step 4 of the
proof above. The result is also valid when the sets K and K are
unbounded under the following additional (coercivity type) con-
ditions:

o If K is unbounded, then there exists yo € K3 such that

lim L(z,y) = +o0o.

[|z]|—oo
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e If X is unbounded, then there exists zo € K7 such that

lim L(zo,y) = —co.
yli—o0

The idea of the proof is to first consider the sets (K; By (0;n)) x
(Ko N By(0;n)) (where B;(0;n) is the ball centred at the origin
and of radius » in H; for ¢ = 1,2} and consider the corresponding
saddle points (z3;,,¥;). The above conditions are to be used to
show that {z}} and {y}} are bounded sequences and then pass to
the limit. 1

Exercise 5.2.1 Let H;,i = 1,2 be Hilbert spaces and let  C
H; x Hy be an open set. Let L : © — R be differentiable in
Q. Let K; C H;,i = 1,2 be closed convex subsets such that
Ky x Ky C Q. Show that if L satisfies the conditions of Theorem
5.2.1, then (z*,y*) is a saddle point for L if, and only if, for every
(z,y) € Kj x Ka,

(hL(z* y%),z—z*) > 0; (GL(z",y"),y—9y*) < O.I

If K7 and K; are closed subspaces of Hy and Hp respec-
tively, it follows from the above exercise that & L(z*,y*) = 0
and & L(z*, y*) =0, i.e. (z*,4*) is a critical point of L.

5.3 The Palais - Smale Condition

In proving that a functional attains its minimum, we had to show
that a minimizing sequence was compact (s.e. it admitted a con-
vergent subsequence) in an appropriate topology. More generally,
when looking for critical points of a functional, we will construct
sequences which we expect to converge to a critical point. How-
ever, we must notice that, even when a functional, J, is bounded
below and we have a minimizing sequence {u,}, it is not necessary
that J'(u,) — 0. We now give below a fairly strong compactness
condition which is relevant, from this point of view, in the search
for critical points.
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Definition 5.3.1 Let F be @ Banach space and let J: E = R be
a C! functional. Let c € R. Then J is said to satisfy the Palais -
Smale condition, (PS), at level ¢ if, given a sequence {u,} in E
such that J(u,) — ¢ and J'(uy) = 0 in E' (the dual space), there
always exists o convergent subsequence {un, ;.M

Remark 5.3.1 If the Palais - Smale condition is satisfied at all
levels ¢ € R, we simply say that J satisfies PS. l

Example 5.3.1 The function f : R = R given by f(z) = e® does
not satisfy PS. #l

Example 5.3.2 Let n < 3 and let & C B* be a bounded do-
main. Let E = H}(Q), the usual Sobolev space of square in-
tegrable functions whose first order (distribution) derivatives are
also square integrable functions and which vanish, in the trace
sense, on the boundary 99 (cf. Kesavan [13]). We denote the
norm in this space by |v|1,0 (= ([, |Vvi%dz)'/?) and the norm in
L*(Q) by [vloa (= (fq|v]%dz)/?). Let 2 < r < 4 be an inte-
ger. Let f € L?{Q?) be a given function. Define the functional
J:E—= Rby

1 1
= - [ |Vol’d ———f f“d—/ dz. (5.3.1
2/9] v|“dzx ——) Qv ko vaa: ( )

We claim that J satisfies PS. Indeed let {v,,} be a sequence in F
such that J{vy,) = cand J'(v,) 2 0in B = H-HQ). f < .,. >
denotes the duality bracket between E' and F, we have

<J(u),w>= fVu.dea:—/
)
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urwdx—fftud:r. (5.3.2)
Q

Using (5.3.1) and (5.3.2), we get

<J(om),vm > = fo|VomlPde — fyoitlde — [ fomde
= (r+ DJd(wm) — 5 1) I [V |?dz
+7 fq fumdz

(5.3.3)
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which gives

{r—1
2

)|’Um|iﬂ < (r+1)J(vm)+7| floalvm|o.o+ | (em)] - 1alvm|10

(5.3.4)
where |.||-1 o denotes the norm in E' = H=1(Q). We deduce from
(5.3.4) that the sequerce {v,} is bounded in E (if not, divide
throughout by |vm!f)ﬂ and pass to the limit as m — oo to get
a contradiction). Thus, for a subsequence, v,, — v weakly in
E = H}{(Q) and, by Rellich’s theorem, strongly in L™*() and in
L*(Q), since n < 3. Substituting u = vy, in (5.3.2), and passing
to the limit, we get

0 = va.dew—/vrwdx—/fwdx
) Q Q
/1Vv|zda: = [v7'+1d3;+/fvda:.

Q 0 Q

On the other hand, we also have, from the first relation in {5.3.3),
that

lim f|wm2dm = /v’+1d:c+[fvdr = /thgdmv

‘Thus the concerned (sub)sequence is, in fact, strongly convergent
in H}(Q) and so J satisfies PS. @

so that

Exercise 5.3.1 With the same notations as in the preceding ex-
ample, show that the following functionals satisfy PS:

(i)

J(w) = /IVU|2dI+— v"+1dx~—[fvdx.
Q

J(v) = f|VU|2drE+ f vide —é[?,J2d3:
2 Ja

(ii)
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where A c R

We remarked earlier that for a functional bounded below, min-
imizing sequences need not be such that their gradients tend to
zero. However, if the functional satisfies the Palais - Smale con-
dition, it can be shown that it attains a minimmum. Before we do

this, we need a preliminary result, which is a very general result
proved by Ekeland [9].

Lemma 5.3.1 (Ekeland Variational Principle) Let (X,d) be a
complete metric space and let J : X — R be a Ls.c. function.
Assume, further, that J is bounded below and set ¢ = infcx J(z).
Then, for every ¢ > 0, there exists u. € X such that

¢ < J(u) < ote
J(z) — J(u:) + ed(z,u.) > 0 } (5.3.5)
for every z € X, = # u,.

Proof: Step 1. Fix € > 0. Consider the epigraph of J, i.e. the
set

A = {{z,e) e X xR | J(x) < a}.

Since J is ls.c., 4 i3 closed. Natice that for all z € X, we have
(r,J(r)) € A. We define an order relation in X x R by

(z,a) =% (y,b) & a—-b+ed(z,y) < 0.

Notice that if the above relation holds then, necessarily b > a.
Notice also that, if @ < b, then, (z,e) < (z,b). We will now pro-
ceed to construct, inductively, a decreasing family of sets 4, C A.

Step 2. We can always choose z; € X such that
c < J(r1) € c+e.
Set a1 = J(x1) and define

A = {(z,0) € 4] (z,0) < (z1,m)}.
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Assume, now, that, for 1 < 7 < n, we have determined (z4,ai)
such that a; = J(z;) and set

Ai = {("T:G') €A | (:r,a) = (Iiﬂai)}'
Define, further,
A, = {z € X | there exists ¢ € R such that (z,a) € An}.

Let
cp = inf J(z).
iEEAn
If (r,a) € A;, by definition J(z) < a and further (z,a) = (z:,a:)
and so0 a < a;. Thus, for all 1 <4 < n, it follows that ¢; < a;.

Step 3. Assume, for the moment, that for all 1 <14 < n, we have
¢; < a;. Then, we can choose T,41 € Ay such that

[

0 € J(@ng1) —cn £ z{en —cn).

no

Then, there exists a € R such that J(&p41) < @ and (Tg41,0) =
(xn,an) whence it follows that (&1, J (Tni1)) 2 (Tpt1,8) 2
(Zn,an). Thus we can set ani1 = J(Lat1) to get (Tniy1,@n41) €
A, and then define

Anyi = {(z.a) € 4| (z,0) 2 (Zni1,@n41)}-

Step 4. By the transitivity of the order relation, it is evident that
Ap1 C Ay Also, as Apy C Ap, we also have ¢ <cp S ony1 £
Gn+1. Thus,

1
0 € ant1 = a1 £ Gnyr—Cn = 'i(an — ¢n)
so that, recursively,

0 < ant1—Cnt1 < 27%(e1 1)
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Further, (z,a) € A, 41 implies that
a—ane1 + Ed($,$n+1) < 0.

Also, since ¢p+y € a < ap41, we deduce that
d LY gn
(#,Zp41) +|a—ann] < 1+E 27 - )

?vhich implies that the diameter of A,,.) tends to zero. Since A
is complete, it follows that there exists a unique point (u,b) € A
such that -

{(w,b)} = NiZy4n.

Step 5. If {z,a) € A such that (z,a) < (u,b), then, for all n > 1,
we have (z,a4) X (zn,6,) and so (z,a) € A, for all n. Thus
(z,0) = (w,b). Hence (u,b) is a minimal element in A in this
sense. Further, since, J(x) < b, we have (u, J(u)) < (u,b) and so,
by the minimality of (u,b), we have that J(u) = b. It now follows
that if (z,a) € A and (x,a) # (x,b), then

a—b+ed(x,u) > 0,
In particular, for z # u, we have (z,J(z)) € A and so
J(z) — J(u) + ed(z,u) > 0.
Finally, since (u, J(u)) € Ay, we have
Ju) £ J(z1) € c+¢
and we can conclude the proof setting u. = wu.

Step 6. In case we encounter n > 1 such that ¢,, = a, = J (zn), let
(x,a) = (2n,an). Then, by definition, a, = ¢, < J(z) < a while
a - ap + ed{x,z,) < 0. This implies that (z,a) = (z,, a;) and so
An is the singleton {(z,, ¢,)} and we can set (u,b) = (2q, a,) and
verify its minimality and conclude the proof as before. B
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Proposition 5.3.1 Let E be a Banach space and let J: E =2 R
be a C! functional. If J satisfies PS and is bounded below, then it
attains a mintmum over E.

Proof: By the Ekeland variational principle, we can choose a
sequence {uy,} such that ¢ < J{un) <c+ 1/n and also such that,
forallw € E,

1
J(v) + E“U —un|l = J(un)
where ¢ = infyeg J(v). Thus, J(un) — ¢. Further,
J() = J(un) + J'(un)® — un) + o(llv — unll).

Let w € E such that ||w| = 1 and let ¢ > 0. Then, applying the
above relations to v = un + tw, we get

b <t tw) = Ta) = 4 G 4 0(0).
2
Dividing by ¢ and letting ¢ — 0, we get, for all w such that |jw|| =

L,
1 f
—— < Jup)w
n

and so, taking —w in place of w as well, it follows that,

1
W)l <
i.e. J'(ug) — 0. Thus, by PS, we can extract a convergent subse-
quence u,, — u and, since J is of class C!, we have J{u) = ¢ and

that J'(u) = 0.1

Example 5.3.3 Let n <3 andlet R CR" bea bounded domain.
Let B = H}(Q). Define J: E — R by

J('U) = 1/ I'V?_ledﬂf—l—l/'l}:kdﬂ:—/ .fUdI
2 Q 4 Ly 0
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where f ¢ L*(?) is given. We know that (c¢f. Exerci
) . ercise 5.3.
satisfies PS. Further, ( xercise 5.3.1) J

J{v) %fn IVo?dz — | floglvlon
3153 o — Clvle (by Poincaré’s inequality)
—02/2

IV IV IV

Thus., J is bounded below as well and so J attains a minimum at
a point u € E. Thus u € H}{Q) satisfies, for all v € H($),

/ Vu.Voudr + f wodr = f fudz
Q 0 0

which is the weak formulation of the semilinear elliptic boundary
value problem:

—Au+u® = f in 0
U 0 on 80

where A =37 —g is the Laplacian. B

Remark 5.3..2 Of course, in this example, we could have also
proved the existence of a minimum by showing that J was coercive
and weakly sequentially lower semi-continuous. M

5.4 The Deformation Lemma

Let X be aset and let J: X — R be a given mapping. Force R
we denote by {J < ¢} the set j

{zcX | Jz) <e).

In an analogous way we can define the sets {J > c},{c; < J <
ez}, {J = ¢} and so on.

. Omne of the rich theories in the study of critical points of func-
tlogals is that of M. Morse. For an introduction to this fasci-
natmg‘ topic, see, for instance, the book of Milnor [18]. One of
the principal ideas behind this theory is that the critical values
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of a functional on a suitable topological space X with a differen-
tiable structure are precisely those values ¢ € R for which, when
¢ > 0 is sufficiently small, one cannot continuously deform the
set {J < c+¢} into {J < ¢ —¢}. In fact these sets can be,
topologically, very different.

For example, if X = R and J(z) = 2 — 3z, the critical points
are located at z = 1. Let ¢; = J(1) = —2 and ¢ = J(-—-1) = 2.
If ¢ < ¢y, then the set {J < ¢} is of the type [—00,al for some
a €R Ife; <c < cy, then this set is of the form [—o00,a] U [8,7]
while for ¢ > cg, the set is again of the form [—co,a]. Thus, in
the second case, the set has two connected components while the
others have just one connected component.

Tt can also happen that, while passing through a critical value,
though in all cases the sets have the same number of connected
components, some could be simply connected while others are
multiply connected (cf. Kavian [111).

The deformation lemma (Lemma 5.4.2, below) gives a precise
meaning to what we mean by saying that one set is continuously
deformable into another. We need a few preliminaries before we
can state and prove this result.

Definition 5.4.1 Let E be a Banach space and let J : E — R
be a C! functional. Let u € E. A vector v € E is said ta be a
pseudo-gradient for J at u if

ol <20l and < J'(w),v > 2 |7 @)|"H

In the above definition, and throughout the sequel, < .,. >
will stand for the duality bracket between E and its dual E'.

Remark 5.4.1 The above conditions clearly imply that if v is a
pseudo-gradient for J at u, then

17 @ < lloll < 217 (w)}]. . (5.4.1)

Example 5.4.1 If E were a Hilbert space, then J'(u) € E will
itself be a pseudo-gradient for J at u.l
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Definition 5.4.2 Let E be a Banach space and let J: E 5 R be
a C' functional. Let E, = {u € E| J'(u) # 0} denote the set of
reqular points of E. A mapping V : E, — E i3 called a pseudo-
gradient vector field for J if V is q locally Lipschitz function

on E. and, for every u € E,, V(u) is a pseudo-gradient for J at
u. M

The condition that a pseudo-gradient vector field be locally
Lipschitz makes the search for such vector fields a non-trivial task.
Even in the case of a Hilbert space, the map u — J' (%} need not

necessarily be locally Lipschitz. In this context, the following
result is relevant.

Lemma 5.4.1 Let E be o Banach space and let J: F - R be a
Cl functional. Then J admils a pseudo-gradient vector field.

Proof: Let u € F,. Since J'(u) # 0, there exists a point T, € FE
such that ||z,]| = 1 and < J'(u), 2, > > (2/3)]|J (u)||. Let v, =
(3/2){ (w)!|x. Then, by construction, ||vy|| = (32| (e} <
217°(w)|| and < J'(u),vy > > ||J'(w)|2. Thus, v, is a pseudo-
gradient for J at u and, since J' is continuous, it is also a pseudo-
gradient for J at all points z € V,, a neighbourhood of .

The sets V, form a covering of E, which is a metric space
and hence a paracompact space. Thus (cf. Dieudonné [8]) there
exists a locally finite refinement {w;} and an associated locally
Lipschitz partition of unity {#;}, i.e. wj C Wy, for some u; €
E: and supp(#;) C w;, and, further >-;%; =1 (the sum makes
sense, irrespective of the cardinality of the indexing set, since the
refinement is locally finite). Now we set

Vizg) = Z 05 (w)vuj
i

and V will be the required pseudo-gradient vector field. W

Corollary 5.4.1 If E and J are as in the preceding lemma and

if, in addition, J is an even functional, then there ezists a pseudo-
gradient vector field that is odd.
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Proof: Since J is even, it follows that J' is odd and that E} is
symmetric with respect to the origin. If V; is a pseudo-gradient
vector field, then so is Va(z) = —Vi(—7). Then V(;r;) = (V1( ) -
Vi(—x))/2 is also pseudo-gradient vector field, which, in addition,
is odd. W

Lemma 5.4.2 (Deformation Lemma) Let E be a Banach space
and let J : E — R be a C! functional which satisfies PS. Letc € R
be a reqular value of J. Then, there exists e > 0 such that, for all
0 < £ < €9, there ezists a continuous map 7 :-R x E —+E (called
the flow associated to J) satisfying the following conditions:

(i) For every u € E, n(0,u) = u. . _
(i) For every t € R, the mapping n(t,.) : E — E is a homeomor

ism.

?::,'L) For every t € R and everyu & {c—eo < J < cteoly n(t,u) =
?w) For every u € E, the function t = J(n(t,u}) i decreasing.
(v) Fue{J <c+e}, thenn(lu) €{J <c— e}

(vi) If, in addition, J is even, then, for every t € R, the map
n(t,.) is odd. ‘

Proof: Step 1. Since c is not a critical value and since J statisﬁes
PS. it follows that we can find an £; > 0 and a § > 0 (in fact,
we ,Can choose, without loss of generality, 6 < 1) such that, for all
u€ {c—e <J < c+er}, we have ||J'(u)| > 6. We now set
¢o = min{e1, 42/8} and, for 0 < € < €9, we define

A={J<c-gtU{J>c+e}, B ={c-e<J<c+e}
Since A and B are disjoint closed sets, the function

- p(z, A)
p(z) = p(z, A) + p(z, B)

(where p(z, S) denotes the distance of the point z from the s.et. S}
is locally Lipschitz and ¢ = 0 on A while ¢ =1 on B. In addlt:.lo‘n,
if J is even, these sets are symmetric with respect to the origin
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and ¢ is even as well.

Step 2. Let V be a pseudo-gradient vector field (which can be
chosen to be odd, if J is even) for J. For z € E, we define

= (x) min _r z).
W)~ eteymin {1 sy Vi)

Then, W is well defined, locally Lipschitz and such that [|[W (z)|| <
l1forallz € E. If J is even, then W is odd. Now, the initial value
problem

Dt,z) = —W(??(taﬂ?))}

toe) — 2 (5.4.2)

has a unique solution n(.,z) € C'(R,E) for each z € E and,
further, n is locally Lipschitz on R x E. Since, for ¢,s € R,

n(t,n(s,z)) = n(t+s,x)

{(by the uniqueness of the solution to (5.4.2)), it readily follows
that, for each ¢ € R, the map n(t,.) : E — E is a homeomorphism
with inverse map given by n(—¢,.). This is the required flow asso-
ciated to J and we will now verify the conditions (i) - (vi) in the
statement of the lemma.

Step 3. Condition (i) is satisfied,by the definiton of 7 and we have
just proved condition (ii) in the preceding step. Again, by the
uniqueness of the solution to (5.4.2), it follows that if J is even,
then, as W is odd, that n(¢,.) is also odd for all t € R and thus
condition (vi) is verified.

Step 4. Ifu & {c —g9g < J < ¢+ gg}, then p{u) = 0 and so the
unique solution to (5.4.2) when z = u is the constant function

n(t,u) = u for all £ € R. This proves (iii).

Step 5. Let w € E. Since V(n(¢,u)) is a pseudo-gradient for J at
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n(t,u), we have

iJ 3 = < J’( (tau))a dj(t’u) Z
al (1l u)) _(p(n?t,u))rc & n(t,w)), V{n(t,u}) > }
—o(n(t, w))kh I (n(tu)) | (5.4.3)

where

S

which shows that J decreases along the flow starting from any
u € E, thus proving (iv).

Step 6. We now verify the crucial condition (v). Let u € {J <
¢+ e}. If, for some tp € [0,1), we have n(tg,u) € {J <¢ —‘e},
then, by Step 5, n(t,u) will continue in this set for all future time
and so n(1,u) € {J < ¢ —¢}. Assume now that, for all £ € [0,1),
we have that n(t,u) € {c—e<J <c+e} CB. Then, by (5.4.1)

and (5.4.3),

dymnitw) < —iElVnw)l?
o [ A Vw2
= { 8 i Wintw)l <t
Since § < 1, we get
52 52
o) € <1 < -Frete

and hence, by the definition of &g,
62
J(lu) € e-5 < ce—¢
which completes the proof. B

The deformation lemma is the basis of all variational methods
which seek critical points via a min-max principle.
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Theorem 5.4.1 (Min-Max Principle) Let E be o Banach space
and let J: E — R be a C! functional satisfying PS. Let A be a
non-empty collection of non-empty subsets of E with the following
property: for every ¢ € R, and sufficiently small € > 0, the asso-
ciated flow n(t,u) constructed in the deformation lemma is such
that whenever A € A, we have n(1,A) € A.
Define

¢ = inf supJ(v).

Aed A ( )

If ¢* € R, then, ¢* is a critical value of J.

Proof: If ¢* is not a critical value, choose A € A such that

supJ(v) < ¢*+¢

YEA
for sufficiently small & > 0. Thus, A ¢ {J < ¢* + ¢} and so
7(1,A4) C {J < ¢* — ¢} and this contradicts the definition of ¢*
since (1, A} € AR

5.5 The Mountain Pass Theorem

The mountain pass theorem, due to Ambrosetti and Rabinowitz [1],
is one of the important applications of the min-max principle enun-
ciated in the previous section. It has turned out to be extremely
useful in the study of solutions of semilinear elliptic boundary
value problems.

Theorem 5.5.1 (Mountain Pass Theorem) Let E be a Banach
space and let J : B — R be a C' functional satisfying PS. Let
ug, 1 € B, cg € R and R > 0 such that

(i) luo — url| > R; (i) for all v € E such that |[v — uwo|| = R,

max{J(up), J{u1)} <en < J(v).

Then J admits a critical value ¢ > ¢y defined by

= 5.1
c ;g;f,tgl[gﬁ]uf(v(t)), (5.5.1)

e T

[
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. where P is the collection of all continuous paths v : [0,1] - E

such that v(0) = ug and (1) = ;.

Proof: Clearly c is finite and, since any path from ug to u; must
cross the sphere {v € E | ||v — ug|]| = R} by virtue of condition
(i) in the hypotheses, it follows that ¢ > c¢g. Assume that ¢ is
not a critical value. Then we can find gy > 0 and a flow 7 as
in the deformation lemma such that for all 0 < £ < gy, we have
{1, {J < c+e}) C {J < c—e}. Choose g such that

max{J(ug), J(ul)} < €— &g (5.5.2)
and for somme 0 < € < gg, choose v € P such that
tlél[g::lc].f('y(t)) < c+e.
Set ¢(t) = n(1,~(¢)). Then, it follows that
max J(((t)) < c—e. {5.5.3)

te[0,1]

Now, {(0) = n(1,ug) = ug and (1) = 5{l,%1) = u; by virtue of
condition (iii} of the deformation lemma, in view of (5.5.2). Thus
¢ € P and (5.5.3) contradicts the definition of ¢. This completes
the proof.

The above theorem derives its name from the following geo-
metric analogy. Assume that J represents the height of a place
above sea level and let ug be a place surrounded by a ring of moun-
tains and u; a place on the plains outside this ring. To travel from
ug t0 uy, we will naturally have to cross the mountain range and
the ideal path for us to choose would be the one wherein we climb
the least which gives us a pass in the mountain range.

Since the critical value ¢ is strictly greater than J(up) and
J(u1), if it happens that either of them is already a critical point
(for instance, J could attain a local minimum at uy) we get a new
critical point by this theorem. We illustrate this via an example.
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Example 5.5.1 Let n < 3 and let & C R" be a bounded domain.
Let f € L?(Q) be given. Consider the problem

—Av = w2+ f in Q
u = 0 on BQ.} (5.5.4)

The weak formulation of this problem is to look for u € H}(€)

such that
fV’LL.V’UdSC = fuzvdm+[fvdm (5.5.5)
0 Y )

for all v € H§(Q). Then, a solution u is a critical point of the
functional defined by

J(v) = % /Q |VU!2d:r—% /Q P — fn fodz  (5.5.6)

for all v € H}(Q). Thus, J is a C' functional on the Hilbert
space H} () and we have already seen (¢f. Example 5.3.2) that
it satisfies PS.

If f is a sufficiently smooth function such that f < 0, one can
use the maximum principle available for second order elliptic oper-
ators and show that there exists a solution ug < 0. (This is called
the method of monotone iterations or the method of sub- and
super- solutions, or, again, Perron’s method, cf. Kesavan [13]).
Let w € H}(Q) be such that |w|i,q =1 and consider v = ug + ew
for some fixed ¢ > 0. Thus |[v — ug|1 0 = ¢ > 0. Now, taking
into account (5.5.5) - where ug takes the place of % - a simple
calculation yields

e 5 2 £ 3
Jw) — JHu) = 5 € nuow dr — 3 nw dz.

Since, ug < 0, we get

2 3
Jw)~Ju) > = - f w3de.
2 3 Jq
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Further, since, for n < 3, we have the continuous inclusion of
HAS) into L*(Q), and we finally get

J(v) -
Thus, choosing ¢ < 3/4C, we get that

£
Jw)y — J{wg) > n
for all v such that |v — ug|1,0 = €.

Let us now consider z = tp; where ¢; € H} () is the positive
and normalized eigenfunction corresponding to the first eigenvalue

of the Laplacian in § with Dirichlet boundary conditions, i.e.

-Apy A1 in Q
w1 0 in
@1 0 on dQ

Ja pidz 1

(5.5.8)

and Ay > 0 is the first such real number such that a solution
to (5.5.8) holds. (That ¢1 > 0 is a consequence of the strong
maximum principle and this property does not hold for subsequent
eigenfunctions, cf. Kesavan [13]). Then,

t2 3 N
J(z) = E}\I_E Qtpld:r—t thpldas.

As t = 4oo, J(2) = —oo (in particular, J is not bounded be-
low). Thus, we choose t large enough such that J(z) < J{uo) <
infi,_y,|, g=e J(v). Then, all the hypotheses of the mountain pass
theorem are satisfied and we have a critical point » such that
J(u) > J{ug). Thus the problem (5.5.4) has at least two solutions
when f < 0 and is smooth enough.l

Several generalizations of the mountain pass theorem are avail-
able.
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Theorem 5.5.2 (Rabinowitz [21]) Let E be a Banach space and
let By C E be o finite dimensional subspace. Let Fo be o closed
subspace such that E = E\GFy. Let J 1 E — R be a C' functional
satisfying PS and such that J{0) = 0. Assume further that

(i) there exist R > 0 and a > 0 such that if u € Ey and ||u| = R,
then, J{u) > a;

(1i) there exist ug € FEo such that ||ugl| = 1 and real numbers
Ry > R, R; > R such that J{u) <0 for all u € Q0 where

Q = {ur +rup | w1 € By, ]| € Ry, 0<r < Ry}

and O§) is its boundary in Eh @ R{ug}. Then J admits a critical
value ¢ > a defined by

¢ = inf maxJ(v)
AcA ved

where
A = {p(Q) | ¢ €C(Q E), p(u) =u forall uc 0Q}.

Proof: Observe, first of all, that since Q € A, the collection A is
non-empty.

Step 1. Let A € A, We claim that there exists v € Fp N A
such that ||u|| = R. Let P denote the projection of £ onto Ej.
Then, looking for such an element w is the same as finding u € A
such that Pu = 0 and ||u — Pul| = R. Let A = (). Define
F:FE &R{ug} + F1 @ R{ug} by

F(z) = Po(z) + [lp(z) — Po(z)|luo.

If z € 9Q, then ¢(z) = r and so F(z) = . The search for u now
amounts to finding u € {2 such that F(z) = Rugp (so that we can
set u = p(x)).

Now, £ is a cylinder and J{? has either elements of the form u,
or uy + Roug with uy € E), ||ul| < Ry, or, elements of the form
11 +ruz with uy € Eq, |Jup|| = Ry > R. Thus, Rug ¢ 0€). Hence,
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the (Brouwer) degree d(F, 2, Rug) is well defined and, since F' = I,
the identity, on 92, we have (cf. Proposiition 2.2.3)

d(F,Q,Ru) = d(I,Q,Rup) = 1

since Rup € €. Thus, the degree being non-zero, we do have x € {2
such that F(z) = Rug and the claim is established.

Step 2. Thus, if A € A, we have max,eca J(v) > a by virtue of
Step 1 and condition (i} in the hypotheses. Thus, ¢ > a > 0. If
¢ is not a critical value, we then apply the deformation lemma to
find gy > 0 and a flow n such that for all 0 < ¢ < gy, we have
n(1,{J <c+e}}) C {J <e—e}. Choose 0 < gy < a/f2 and for
0 < £ < €, choose A € A such that max,cq J(v) < c+e If
B = (1, A), then max,ep J(v} < ¢ — . The proof of by contra-
diction will be then complete if we show that B € A.

Step 3. If A = (), define 4(v) = n(1, p(v}} so that B = ().
If u € 99, then ¢(u) = w. Further, since J(u) < 0, by hypothesis,
we have u € {¢ —¢p < J < c+eo} and s0 n(1,u) = u. Thus, it
follows that ¥{u) = u on 9% and so B € A which completes the
proof. &

For applications of this result to semilinear elliptic boundary
value problems, see Kavian {11] or Rabinowitz [21].

5.6 Multiplicity of Critical Points

In the preceding section, we saw applications of the min-max prin-
ciple to produce critical points. A combination of the deformation
lemma and the notion of the genus of symmetric and closed sets,
introduced in Section 2.5, yields results on the existence of several
critical points via the min-max principle.

Let F be a Banach space and, as before, let ¥(F) denote the
collection of subsets of E that are closed and symmetric (with
respect to the origin}, not containing the origin. Let v{A} denote
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the genus of a set A € B(E) (cf. Definition 2.5.1}. For j > 1, we
define
I; = {AeX(B)|~(4) 23}

If ¢ is a critical value of a functional J : E — R, we set
K. = {ueE|Ju)=c¢, J'(u)=0}.

Theorem 5.6.1 (Clark [5]) Let E be a Banach space and let J :
E 5 R be a C' functional which is even, satisfies P§ and is such
that J(0) = 0. For j > 1, define

¢; = inf sup J{(v).

g Aely 'UEE (v)
Then {c;} is @ non-decreasing sequence and, if —o0 < ¢; <0, ¢; is
o critical value of J. Further, if, for some 7 > 1 and somen > 1,
we have

Cj = Ciy1 = .. = ¢j3n <0,

then, y(Kc;) > n+ 1 and thus, in this case, there are an infinite
number of critical points.

Proof: Step 1. The fact that the sequence {c;} is non-decreasing
is a straightforward consequence of the fact that {I';} is a de-
creasing family of sets. Assume that —oo < ¢; < 0. If ¢; is
not a critical value, then let ¢y and n be as in the deformation
lemma. Let 0 < ¢ < min{eg,lc;|/2}. Choose A € T, such
that sup,cq J(v) < ¢j +¢e < 0 so that if B = n(1, A}, then
sup,ep J(v) € ¢; —e < 0. Then B does not contain the origin.
Since J is even, we can choose 7(t,.) odd so that B is symimetric
with respect to the origin. Thus, B € L(F} and, as n(1,.} is an
odd homeomorphism, v(B) = (A} > j. Hence B € ['; and we
immediately have a contradiction to the definition of ¢;. Thus c;
is a critical value.

Step 2. Assume that ¢; = ¢j.41 = ... = ¢j4n < 0. Since J satisfies
PS, K., is compact and so its genus is finite. Let A” be given by

N = {z€FE|pz K;) <7}
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If 7 > 0 is sufficiently small, then K = N is also in L(E) and
v(K) = v(K¢,} (cf. Theorem 2.5.1). Assume that ¥K) <n.

Step 3. Since J satisfies PS, we can find £, > 0 and § > 0 (in fact
§ < 1) such that if v € {J < ¢j + a}\({J < ¢; —e1} JN)}, then
|J'(v}|| = &. Now we set

A = {JéCj—Eo}UKU{JZCj+EU}
B = {¢—-e<J<¢+epW

where g9 = min{e, 62/8, |¢;]/2} and 0 < ¢ < gy. We set

olz) = plz, A) _
p(z, A) + p(z, B}

Now we can proceed exactly as in the proof of the deformation
lemma to get n odd and such that

11, ({J < +epW) C{J < ¢ e}
Step 4. Now choose A € I';1,, such that

¢; = ¢jtn <supJv) <¢jte
vEA

Then (cf. Theorem 2.5.1)
YAK) > y(4) —y(K) 2j+n—n.

Set B = n(1,A\K). Since sup,cp J(v) < ¢; —¢e < 0, it follows:
that 0 ¢ B and, since 7(1,.) is odd, B € ©(E). Further, as (1, .)
is a homeomorphism, v(B) = y(A\K} > j. Thus, B € I'; and we
have a contradiction to the definition of ¢;. Thus y(K) > n +1
and the same is true for y(K,,).H

Example 5.6.1 Let n < 3 and let ¢ C R" be a bounded domain.
Let X € R. Define the functional J : H3{Q2) = R by

1 A
J(v) = %LVU|2d$+Z-/;2v4dm—§fS}112dz.
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We have already seen that this functional satisfies PS (cf. Exercise
5.3.1). We can also easily show that J is coercive and that it
attains its minimnm.

. Let 0 < Ay < A3 < X3 € ... € X € ... 5 o0 denote the
eigenvalues of the Laplacian in € with Dirichlet boundary con-

ditions and let {¢;} denote the orthonormal basis {in L2(Q)) of
eigenfunctions, 4.e.

_A(Pk, = My In
wrp = 0 on 9%}
fn}(ﬂﬂzdﬂ? = L

We will show that, if A > X, then J has at least 2% critical
points. Thus the problem:

~Au+u? = X in Q
u = (0 on of)

will have at least 2k (nontrivial) solutions. (In fact, v = 0 is
always a solution and it is easy to see that if A < Ap, then it is
the only solution. The critical points that we shall obtain will all
be nontrivial since the associated critical values will be strictly
negative.)

Define ¢; as in Theorem 5.6.1. Since J is bounded below, the
¢; are all real valued.We will show that if X > Ag, then ¢; < 0
for 1 <j <k and will thus be critical values. Further, since J is
even, if u is a nontrivial critical point, so will be —u. Hence, if the
¢, 1 <7 <k are all distinct, we get at least 2k critical points. If
they are not distinet, then, by the preceding theorem, we have, in
fact, infinitely many critical points.

Let V; = span{i1,02,...,9;}. Let S. denote the sphere of
radius ¢ in V;. Then S; € B(E) and 4(S.) = j (cf. Example

2.5.1). Thus, S; € Ty. Let v = 37 eviip; € S.. Then

J(v) % ijl(/\i - /\)O‘E + i fn | Z’Ll Q'i‘loi|4d$

S(M - A) + Cet,

A
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If A > Ag, then, for sufficiently small & > 0, we have sup,c¢_J(v) <
Dandsoc; <Ofor 1 <j <kl

Using the notion of the genus, it is also possible to prove mul-
tiplicity results for critical points obtained via the mountain pass
theorem or its variants. We give below two such results corre-
sponding to Theorems 5.5.1 and 5.5.2. For their proofs and appli-
cations, see, for example, Kavian [11].

Theorem 5.6.2 Let E be an infinite dimensional Banach space
and let J: E — R be a C! functional satisfying PS. Assume that
J 15 even and, further, that:

(i) J(0) = 0 and there exist R > 0, a > 0 such that, for all
lle)] = R, we have J(u) > a;

(ii) If E1 C E is a finite dimensional subspace, then the set {u €
Ey | J(u) > 0} is bounded.

Then J admits an unbounded sequence of critical values. B

Theorem 5.6.3 Let E be a Banach space. let Ey be a finile
dimensional subspace and Es a closed subspace such that E =
Ey®E;. Let J: E — R be a C' functional satisfying PS and such
that J(0) = 0. Assume, further, that:

(1) there exist R > 0, a > 0 such that for allv € Fs with |[v|| = R,
we have J(v) > a;

{11) If By C E 1s a finite dimensional subspace, then {v € By | J(v)
0} is bounded.

Then J admils an unbounded sequence of critical values. B

5.7 Critical Points with Constraints

In Section 4.7, we saw that by maximizing a given functional over
a set of constraints, we got new solutions to the nonlinear equation
in question which led to a bifurcation result. Just as in the un-
constrained case, we can have several critical points which do not
correspond to extremal values of the functional. Let us consider
a very simple example.

A4
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Let A be an n X n real and symnietric matrix. Then it has
n real eigenvalues which can therefore be numbered in increasing
order as
Al € A £ < AL

Let {ux}}., be an orthonormal basis of eigenvectectors. Thus,
Aug = Agug and (ug,w;) = 0, 1 < kI < n, where (,,.) de-
notes the inner product in R®. Let ||.|| denote the corresponding
(Euclidean) norm. If Vj; is the subspace spanned by the first &
eigenvectors {uy,us,...,ux} for 1 < k < n, we have the following
characterization of the eigenvalues which is well known.

Theorem 5.7.1 With the preceding notations, the eigenvalues of
A are charecterized as follows:

Ak = mavaVk,HvH:l(AvaU)
= mlan_Vk_l,Hv||=1(Av, v)
= NGy y—p M8XpeW,||v]|=1 (Av,v).H

The proof of this result is a sinple exercise and is left to the

reader. In particular, we have

A1 = min (Av,v) and A, = max (Av,v).
llell=1 |l=/}=1
Thus, the least and the greatest eigenvalues are the extrema of
the functional (Av,v} on the set of constraints which is the unit
sphere in R". The other eigenvalues are, in the sense of Definition
5.7.1 below, other critical values of the functional on this same set
of constraints and the eigenvectors are the critical points.

Definition 5.7.1 Let E be ¢ Banach space and let F: E — R be
a C! functional which defines the set of constraints by

S = {veE|F)=0}. (5.7.1)

Assume that
F'(v) # 0 for every veES. (5.7.2)
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Let J: E 5 R be a C! functional. Then ¢ € R is called o critical
value of J on S if there exists u € S and A € R such that J(u) = ¢
and J'(u) = AF'(u). The point u is called o critical point of J
on S.A

As observed in Remark 1.4.3, extremal points of J over § are
critical points. As seen by the example of a real symmetric ma-
trix A, all eigenvectors of A are critical points of the functional
v+ (Av,v) on the unit sphere of R* and the corresponding eigen-
values turn out to be the critical values. In general, of course, the
X in the above definition is just a Lagrange multiplier.

Exercise 5.7.1 Let E be a Banach space and let F and J be C!
functionals on E. Let S be defined by (5.7.1) and let (5.7.2) hold.
Assume that F is weakly sequentially continuous. Assume that J
is bounded below, is weakly sequentially L.s.c. and further that

lim J(v) = +oc.
vES, [Jv[l—oc

Show that J attains a minimum on S.H

Definition 5.7.2 Let E be o Banach space and let F and J be C!
functionals on E. Let S be defined by (5.7.1) and let (5.7.2) hold.
Let ¢ € R. We say that J satisfies the Palais - Smale condition
(PS) at level ¢ on S if for every sequence {(tn, An)} in § X R such
that

J(up) = ¢ and J'(up) — A F'{up) = 0 (in E),
there exists a convergent subsequence with limit (u,A) € S x RM

As usual, we will say that J satisfies PS on S if it satisfies PS
at all levels c € R,

Example 5.7.1 Let £ = HY(R"). Let F(v) = [g. |[v|*dz — 1.
Thus

S = {ve H(R")| fRn [v|*dz = 1}.
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Let J(v) = fpn |Vv|?dz. Then, J does not satisfy PS over S.
Indeed, let ¢ € D(R™) N S. Define

Then wm € 5. Further J(un) = m 2 f4. [Vol’dz — 0. If
J (tUm) = Amtt, = 0 In H-1(R®), it follows that 2 S |V um|?dz —
Am — 0 which implies that A, = 0. Thus, if (tm, Am) = {u, A) €
S x R, we must have A = 0 and so, J'(u) = A = 0. Since u € S,
it follows that it is a non-zero constant, which is impossible. B

Example 5.7.2 Let @ C R" be a bounded domain. Let E =
Hi(Q). Let J(v) = [,|Vu|?dz and let F(v) = fo lv)?dz — 1.
Thus,

S = {veHNQ) | fnv|2d$ -1},

Then, J satisfies PS on S. If (un, Am) € S x R such that J(um,) —
¢ and J'{um) - A, = 0 in H-1(Q), it follows, from Poincaré’s
inequality, that {u,,} is bounded in H}(2) and hence, for a sub-
sequence, u,, — u weakly in I} () and so, by Rellich’s theorem,
strongly in L#(2). Thus, u € S. Further, if by, = J{2) — Amtim,
we have, for every w € HJ(Q),

< A > = 2/ Vug, Vudr — 2)\m/ umwds (5.7.3)
o )
where < .,. > denotes the duality bracket between H~1((2) and
H;(€2). Since hy, — 0 in H-1(Q), we have that A, is bounded
and so, for a further subsequence, A, = A. Thus, (u,A) € § xR
and

/Vu.de:c—/\/uwd:c =0 (5.7.4)
Q Q

for all w € HY(Q). Tn particular, A = fo IVul?dz. On the other
hand, setting w = w, in (5.7.3), and passing to the limit, we get

nt— 00

lim /’Vum|2da:—/\ = 0.
]
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Thus, u, — u strongly in Hj{Q) and J satisfies PS over S.H

Example 5.7.3 Let H be a separable Hilbert space and let L
and A satisfy the conditions laid out in Section 4.7. Let J(v) =
$lvl2 + $(A{v),v) and let F(v) = 3{Lv,v) — 7 for some r > 0.
Thus, let

S = {ve H| (Lv,v) =2r}

Then J satisfies PS over §. Let J(up) — ¢ and let J'(u,) —
AnF'(un) — 0 in H. By definition of J, it follows immediately
that {u,} is bounded in H and so, for a subsequence, up, —
weakly in H. Since L is compact, it then follows that u € S.
Setting hy, = u, + A(up) — ApLu, which tends to zero in H, we
get

“un”2 + (A(Un)aun) - A':'L(-L"'-"ﬂiri,aun) = (h"naun) (5'7'5)
which can be rewritten as
1
2J(un) + §(A(un),un) —2rhn = (h,up).

By hypotheses and the compactness of A, we deduce that A, — A
and u + A(u} — ALy = 0. Thus,

lull? + (A(u), u) = MLu,u) = 0
while passing to the limit in (5.7.5) yields
s 2 _ —
nlirrgo llunli® + (Alu), v} — A{Lu, u) 0.

Thus u, — u strongly in H and we deduce that J satisfies PS on
S

Exercise 5.7.2 Let H be a separable Hilbert space and let L and
A be as in the preceding example. Let J{v) = 3{Lv,v) and le{

§={veh | bl + {(A@),v) =)
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for r > 0. Show that J satisfies PS on S at all levels ¢ > 0 but
not at ¢ = 0.1

Let E be a Banach space and let F,J : E — R be C! function-
als. Let S be defined by (5.7.1) and let (5.7.2) hold. For v € S,
define ‘

@ = sup{< Fo)w > } w € B, lul| = 1 }

< Fl{v),w >=10

Thus, ||J'(¢)||« = 0 for v € § implies that J'(v) = AF'(v) (since
Ker(F'(v)) C Ker(J'(v))), i.e. v will be a critical point of J on S.
The ‘norm’ ||J'(v)|ls is the norm of the projection of J'(v) onto
the tangent plane to S at v. If E were reflexive, then ||J'{(v}||.
will be attained at some point w, which will also be unique if the
norm on F were strictly convex. Thus, for a Hilbert space, w, will
be uniquely defined.

Definition 5.7.3 Let I be a Banach space and let F,J: E - R
be C! functionals. Let S be defined by (5.7.1) and let (5.7.2) hold.
Letue 8. Then v € § is said to be a pseudo-gradient of J ai
u tangent to S if

ol < 2 (u)l«
<J'u),v> > [T (u)]? (5.7.6)
< Fl(u)v> = 0.

Let S, = {u € S| J'(u) = AF'(u) # 0 for all A € R}, the set
of regular points of J on S. A map V : 8, = FE is a pseudo-
gradient vector field of J tangent to S if V is locally Lipschitz
on S, and for each u € S, V(u) is a pseudo-gradient vector for
J at u tangent to S.A

Lemma 5.7.1 Let E be a Banach space and let F,J : I = R be
C! functionals. Let S be defined by (5.7.1) and let (5.7.2) hold. Let
F' E = F' be locally Lipschitz. Assume that J is not constant
on S. Then there exists o pseudo-gradient vector field, V', for J
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tangent to S defined on a neighbourhood S, of S,. If, in addition,
F and J are even, then S, can be chosen to be symmetric with
respect to the origin and V' can be chosen to be odd. R

Lemma 5.7.2 (Deformation Lemma) Let E.F and J be as in
the preceding lemma and assume further that J satisfies PS on S.
Let ¢ € R be such that it is not a critical value of J on S. Then,
there erists eg > 0 such that, for every 0 < £ < gg, there emists a
map n: R x § — § with the following properties:

(i) For every u € S, we have n(0,u) = u.

(ii) For every t € R and for every u & {¢ —eo £ J < c+ e}, we
have n(t,u) = u.

(iii) For every t € R, n(t,.) s a homeomorphism of S into itself.
(iv) For every u € S, the function t — J(n(t,u)) is decreasing.
(v) Ifu e {J <e+e}, thenn(l,u) € {J <c—e}.

(vi) If J and F are even, then, for every t € R, the mapping n(t,.)
can be chosen to be odd. W

For proofs of these results, see, for instance, Kavian [11]. As
an immediate cousequence, we have the following result.

Theorem 5.7.2 (Min~- Maz Principle) Let E,F and J be as in
the deformation lemma. Let F be a nonempty family of subsets of
S. If c € R is not a critical value of J on S, and if ¢ > 0 is suffi-
ciently small, assume that for every A € F, we have n(1, A) € F,
where n is the mapping constructed as in the deformation lemma.
Set

Cr = ﬁlelg-'iggj(v)

If c, € R, then it is a critical value of J on S.H
Analogous to Theorem 5.6.1, we have the following result.

Theorem 5.7.3 Let E be o Banach space and let F\J : E —
R and § be as in the deformation lemma. Assume that 0 € 5.
Assume, in addition, that F and J are even. For each integer
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E>1, set
Fi = {A€S(E)| ACS, 1(4) > k)
ey — Infaer, sup,cq J{v).
Then,
(i} for each k > 1 such that Fj # @ and cx € R, we have that c
15 a critical value of J on S. Further, cx < cgy1 for all such k

and if, for some integer j > 1, we have that ¢ = cx1; € R, then
¥(Ku) > j+ 1, where

K, = {ues| Ju)=c, J'(u)=IF{u) for some XcR}.

(5.7.7)
(1) If, for each k > 1, we have Fr # 0, and ¢t € R, then
klggo e = +oo. (5.7.8)

Proof: (i) That ¢ is a critical value of J on S when F; # # and
¢ € R follows immediately from the min-max principle (Theorem
5.7.2). That ¢ < cxyq is obvious and the result on the genus
of K., when ¢y = ¢;; follows an argument similar to that used
in the proof of Theorem 5.6.1, by modifying the proof of the de-
formation lemma. We omit the details and refer the reader to
Kavian [11}.

(ii) To prove (5.7.8), we observe, first of all, that the sequence {cx }
cannot be stationary. For, in that case, there exists a k > 1 such
that ¢y = ¢xy; for all § > 1 and by the preceding arguments it will
follow that v(K,,} > j+1 for all . Thus, y(K,,) = +oo which is
impossible since, thanks to the PS condition, K., is compact and
hence must have a finite genus. Thus, if (5.7.8) is false, the only
possibility is that ¢z — ¢ where ¢ > ¢ for all %.
In this case, we set

K ={uel§|a<Ju) <e, J(u)=IF'(u) for some e R}

which, again, thanks to PS, is compact. Let y(K) = n. Once
again ,by an argument on the lines of the proof of the deforma-
tion lemmia, we can find, for some £ > 0, a k such that ¢, > ¢c— ¢,

i
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and a set A € F for which sup,c4 J(v) < ¢+ ¢ and such that
M = 9(l, A) € Fi. Thus, while sup,»s J(v) > ¢k, we also have
M C {J < ¢ — ¢}, which is impossible. l

Example 5.7.4 Let E = R® and J : R* = R a C' functional
which is even. Let § = §™ ! be the unit sphere in R*®. Then if

Fi = {BCS"| BeS®"), 7(B) 2 K},

we have that F; # ) for 1 < k < n while 5,11 = 0. Thus, since
the sets involved are all compact, we can replace the sup by a max
and deduce that the values
g = inf maxJ(v)
BEF, vEB
are all real for 1 < k < n and are critical values of J on 5. Thus,
there exist at least n pairs (g, Ag) € §* ! x R such that

J(ur) = Mpug, 1 <k <n.

Obviously, the pairs (—ug, A;), 1 < & < n also have the same
property. This is the theorem of Lyusternik and Schnirelmann
(originally proved using the notion of the category, cf. Section
2.5).

If J(v) = %(A’U, v) where A is a real symmetric n X n matrix,
then we get the existence of n eigenvalues of A via the ¢. I we
now set

Dy = {W | W asubspace of B" dimW =k}

and
= inf J(v),
i = 2, s T
we can see that ug = ¢g. For, if W € Dy, then (W N S) = k and
so WnNS e Fy sothat ¢ < pg. On the other hand, the span V,
of the first k£ eigenvectors is of dimension k£ and it is easily seen
that

= ax J > .
Ck Uér‘]f.rk}m(s (U) o p'k
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Vor, Aug = Agug, ¢ = (Aug,uz)/2 and so ¢ = Ax/2. Fur-
ther, it is easy to check that Ay = max,ecy, |uj|=1(Av,v). Thus,
Cp = Py = %)\k, wlere Ay is the k-th eigenvalue of A in increasing
order and we recover the result of Theorem 5.7.1. W

The conditions on the sets defining the family Fj can vary
depending on the problem that we have at hand. For instance,
it could be stipulated (in infinite dimensions) that the sets ‘are,
in addition, compact or are exactly of genus % and so on. In this
spirit we have the following examples.

Example 5.7.5 Let 8 C R® be a bounded domain. Let A(z)
be a symmetric matrix of order n whose coefficients, a;;(z) are in
L>(f)). Assume that there exist constants 0 < a < 3 such that,
for all £ ¢ R* and almost all z € Q, we have

ale]? < (A=), 6), < B¢ {5.7.9)
Let
S = {ve HY(Q) | [ﬂ\v|2dm=1}.

Then, if J(v) = § [, AVv.Vudz, it is easy to see that J satisfies
PS on S (cf. Example 5.7.2). If we set

Fip = {Be€L(H; ()| BCS, B compact and (B} >k},

then, since S is the unit sphere in an infinite dimensional Hilbert
space, it follows that F; # @ for each k¥ > 1. Also, by the com-
pactness imposed on the sets B in the above definition, and the
condition (5.7.9), it follows that cx € R where

¢ = Inf sup J(v).

k= guf supJ(v)

"Thus, the ¢ are critical values of J on S for all £ > 1 and, in fact,
e —r 0o, 1f we set

Dy = {W |W subspace of Hj(Q), dimW =k},
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then, exactly as in the previous example, we can show that

¢ = _inf max J(v).
WeD,veWwns
The values A = 2¢; and the corresponding critical points ug are
such that
A(z)Vug Vudz = /\k/ ugpvde
0 )

for all v € H}(£) which is the variational formulation of the prob-
lem

—div(AVu} = Au in
v = 0 on of.

The characterization of the eigenvalues via the min-max principle
based on k - dimensional subspaces is known in the literature as
the Courant-Fischer principle. B

In the same way, we can prove the following generalization of
the Lyusternik-Schnirelmann theorem to infinite dimensions.

Theorem 5.7.4 Let H be an infinite dimensional Hilbert space
and let J: H — R be a C! functional which is even and which

is non-constant and bounded below on the unit sphere S = {v €
H | ||v[? =1}. Set

Fp, = {AcD(H)|ACS, A compact and y(A) > k}
cxg = infacr, sup,cq J(v).

Then, for each k > 1, ¢ 15 a critical value of J on 8, ¢x < cg41
and if, for some § > 1, we have ¢ = cpyj, then y(K. ) > j+1,
where K, is defined via (5.7.7). Finally,

lim ¢z = 4ol

k—o0
Example 5.7.6 Returning once more to the problem considered
in Section 4.7, we can consider the functional J and the set S of
Exainple 5.7.3, We then saw that J satisfies PS on 5. Thus, as
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J and F are even, we can deduce that, for each r > 0, there i3 a
sequence of values A} — oo as k — co and uj, € 5 such that

up — ApLup, + A(uy) = 0.

If we show that the A} are bounded with respect to r for each
fixed k, then it follows from the relation

luglf? + (Auk), uf) = Af(Luf,up) = 2r)j

that v}, — 0 as r — 0. Thus if one can show that A}, — Ay, the
k-th characteristic value of L, ag r -» 0, we would have proven
that (0, Ax) is a bifurcation point for each characteristic value A
of L. This is the spirit of the work of Berger {2] and Berger and
Fife [3] cited earlier (cf. Remark 4.7.1), who, however, use the
notion of the category. B
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