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1 Introduction

The main purpose of this paper is to establish the existence of solution for the Schrödinger
equation

−∆u + V (x)u = K(x)|u|2∗−2u + f(x, u) in RN (1.1)

where 2∗ = 2N/(N − 2), N ≥ 3, is the critical Sobolev exponent and f : RN × R→ R is
given by

f(x, t) = ρ(x)tp−1H(t− a),

where H is the Heaviside function, a > 0 and p ∈ (2, 2∗). We assume that V, ρ and K
are continuous and 1-periodic functions in each variable. Furthermore, ρ is nonnegative
and K is positive in RN .

We notice that by a solution for (1.1) we mean a function u ∈ W 1,s
loc (RN), for some

s > 1, verifying, in an appropriate weak sense, the following inequalities:

f(x, u(x)− 0) ≤ −∆u + V (x)u−K(x)|u(x)|2∗−2u(x) ≤ f(x, u(x) + 0), (1.2)
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where

f(x, t + 0) = lim
s↓t

f(x, s) and f(x, t− 0) = lim
s↑t

f(x, s).

Throughout this paper we will be using the following assumptions:

(h1) 0 is in the spectral gap of the operator −∆ + V ,

(h2) 0 < maxB1(0) K = K(0) and K(x) = K(0) + O(|x|) for x ∈ B1(0).

The main result of this paper is stated as follows:

Theorem 1.1 Suppose (h1)-(h2) hold. Furthermore assume that there is 0 < r ≤ 1 such
that

(h3) ρ(x) (|x|α + 1) ≥ 1 for all x ∈ Br(0),

where α is a positive real number verifying

α >

{
max{2, N − 1− p(N − 2)} if 2 < p < (N + 2)/(N − 2)
p(N − 2)−N if (N + 2)/(N − 2) < p < 2N/(N − 2)

Then, for each a > 0 fixed, there is a solution u = ua of (1.1).

Remark 1.2 Assumptions like (h1)− (h2) are quite natural and have already appeared in
the papers [12, 14, 25].

Furthermore it should be remarked that in the proof of theorem 1.1, in place of (h3)
we use the technical assumption

∫

B√ε(0)

ρ(x)

(
ε

|x|2 + ε2

)p(N−2)/2

dx ≥ O(ετ ),

where τ < min{(N − 2)/2, N − p(N − 2)/2}, which included the family of functions ρ
satisfying (h3).

Remark 1.3 The set defined by

Λa(u) = {x ∈ RN , u(x) = a}

has a great importance relating to the regularity of the solution u. In fact, if the Lebesgue
measure of Λa(u) is zero, then u is a solution in the almost everywhere sense, that means,
u satisfies

−∆u(x) + V (x)u(x) = K(x)|u(x)|2∗−2u(x) + f(u(x)), (1.3)
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almost everywhere in RN . Now, by applying Stampacchia theorem in the set Λa(u) (see
[28]), we obtain the relation

K(x)a2∗−2 ≤ V (x) ≤ K(x)a2∗−2 + ρ(x)ap−2 (1.4)

which represents a condition involving K, V , ρ and a. Therefore, if the set characterized
by condition (1.4) has measure zero, then the set Λa(u) also has measure zero. We can
deduce that u satisfies (1.3). Thus, a natural assumption to get a solution in the almost
everywhere sense is the following

meas
({x ∈ RN : K(x)a2∗−2 ≤ V (x) ≤ K(x)a2∗−2 + ρ(x)ap−2}) = 0.

We notice that we can present a simple case where this hypothesis holds, for instance
in condition

sup
x∈RN

V (x) ≤ sup
x∈RN

K(x)a2∗−2.

An equation of type (1.1) is related to the so called Grad-Schafranov equation
of Plasma Physics and obstacle problems. For the background and related results
on some typical models involving discontinuous nonlinearities we refer the reader to
[3, 4, 5, 10, 11, 15, 16, 17, 20]. There is an extensive bibliography dealing with semilinear
Schrödringer equations with periodic potential. At first, let us recall the so called definite
case, that is, when V is strictly positive. In [24], Pankov using the Nehari variational
principle, proved the existence of ground states, i.e., solutions having smallest energy
among all nontrivial solutions. Rabinowitz in [26], under less restrictive assumptions on
f(x, s), has obtained a result of existence but not necessarily a ground state. Moreover,
in [18], Coti Zelati and Rabinowitz have proved the existence of infinitely many solutions
under some additional technical assumptions.

When it is the case that V is indefinite and 0 lies in a gap of the spectrum, H1(RN)
is the direct sum of two infinite dimensional subspaces where the quadratic part of the
variational functional is negative and positive respectively. Thus it is not possible to
use the Leray - Schauder degree like in the proof of the Benci-Rabinowitz mountain
pass theorem (see [6]). This class of problems under the additional assumption that the
primitive F is strictly convex has been explored by many authors including [1, 9, 19, 22].
This assumption allows them to solve the problem via a reduction method by applying
the mountain-pass theorem.

In recent papers Troestler and Willem [30] and Kryszewski and Szulkin [21] have
proved a result of existence for this class based on the generalized linking theorem. This
linking theorem requires the construction of a new degree theory. This approach has been
simplified by Pankov and Pflüger [25] by using the approximation technique with periodic
functions. Later, Chabrowski and Jianfu in [12], used this same approach in dealing with
a periodic semilinear Schrödringer equation and critical Sobolev exponent. In this paper
we also apply this technique to obtain an existence result for equation (1.1). The crucial
point in the approach presented here lies in the fact that the approximation technique of
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[25] can be combined with the methods developed in [13] to determine the range for level
sets of the energy functional for which the Palais-Smale condition holds. This allows us
to obtain an approximating sequence by applying a linking theorem for local Lipschitz
functionals.

This paper is composed of three sections. In the next section we shall prove preliminary
results and -the main result in the third section.

Notation. In this paper we make use of the following notation:

- c, c1, c2, ... denote (possibly different) positive constants;

- BR(p) denotes the open ball with the radius R centered at point p of RN ;

- Lp(Ω), 1 ≤ p ≤ ∞, denote Lebesgue spaces; the norm in Lp(Ω) is denoted by |u|p;

- S is the optimal constant to the Sobolev embedding, D1,2(RN) ↪→ L2∗(RN), that is,

S = inf{|∇u|22 : u ∈ D1,2(RN) and |u|2∗ = 1},

where D1,2(RN) is the completion of C0F
∞(RN) in the norm ||u|| := (

∫
RN |∇u|2dx)1/2.

It is known (see [29]) that the optimal constant S is attained by the functions

ψε,xo(x) :=

(
cNε

(ε2 + |x− xo|2)
)(N−2)/2

where cN := (N(N − 2))1/2. (1.5)

2 Preliminary Results

To prove the theorem 1.1 we will combine variational methods applied to locally
lipschitzian functionals and an approximation technique as in [12, 25]. As starting point,
we solve the problem

{ −∆u + V (x)u = K(x)|u|2∗−2u + f(x, u) in Qk

u ∈ H1
per(Qk)

(1.1)a,k

where Qk is a cube in RN with length of edge k ∈ N, L2
per(Qk) is the space of k−periodic

functions of L2(Qk), and
H1

per(Qk) = H1(Qk) ∩ L2
per(Qk).

The proof of the result of existence for problem (1.1)a,k will be based on the next
critical point theorem and its proof follows the same kind of ideas as those used in the
proof of an analogous result for differential functionals (see [2, 7]).

In what follows let X be a Banach space, Φ ∈ Liploc(X,R) means that the functional
Φ is locally lipschitzian from X to R and we denote by ∂Φ the generalized gradient at
the point u ∈ X of Φ (see [16]).
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Theorem 2.1 Let X = Y ⊕ Z with dim Y < ∞. Let R > R1 > 0 and z ∈ Z such that
‖z‖ = R1. Define

M = {u = y + tz, ‖u‖ ≤ R, t ≥ 0, y ∈ Y },
Γ = {γ ∈ C(M, X); γ|∂M = id} and c = inf

γ∈Γ
max
u∈M

I(γ(u)), (2.1)

where I ∈ Liploc(X;R) verifying

inf
‖u‖=R1

u∈Z

I(u) > max
u∈∂M

I(u). (2.2)

Then there exists a sequence un ∈ X such that

I(un) → c and min
µ∈∂I(un)

‖µ‖X′ → 0, both of limits taken when n →∞. (2.3)

The variational functional associated with (1.1)a,k is defined by

Ja,k(u) =
1

2

∫

Qk

(|∇u|2 + V (x)u2)dx− 1

2∗
Ψk(u)− Φa,k(u), u ∈ H1

per(Qk),

where

Φa,k(u) =

∫

Qk

∫ u

0

f(x, σ)dσdx and Ψk(u) =

∫

Qk

K(x)|u|2∗−1u(x)dx.

Using standard arguments (see [16]) we can find that Φa,k ∈ Liploc(L
s(Qk),R) for

2 ≤ s ≤ 2∗ and Φa,k|H1
per(Qk) ∈ Liploc(H

1
per(Qk),R). Furthermore, if µ ∈ ∂Φa,k(u) then

f(x, u(x)− 0) ≤ µ(x) ≤ f(x, u(x) + 0), (2.4)

in the weak sense.

We recall that the operator −∆+V on L2
per(Qk) has discrete spectrum with eigenvalues

λk,1 ≤ . . . λk,i ≤ · · · → ∞ and there is a finite γ(k) minimum of {i : λk,i > 0}. Moreover,
every eigenvalue λk,i is contained in the spectrum of −∆+V on the whole space and then
if (α, β), α > 0 is the spectral gap around 0, we find that λk,i /∈ (α, β) for all k, i ∈ N.
We denote by φk,i the corresponding eigenfunctions. Since every function u ∈ H1

per(Qk)
is, by periodicity, also in H1

per(Qmk) for every natural number m, we claim that every
eigenvalue of −∆+V on L2

per(Qk) is also an eigenvalue of this operator on L2
per(Qmk) (see

[27]).
Furthermore, the space H1

per(Qk) can be decomposed in the direct sum of the spaces
Yk, finite dimensional, and Zk both generated by the eigenfunctions corresponding to
negative and positive eigenvalues, respectively.

The quadratic part of Ja,k,

`k(u) =

∫

Qk

(|∇u|2 + V (x)u2)dx, u ∈ H1
per(Qk)
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is positive on Zk and negative on Yk. We may define a new scalar product (·, ·)k on
H1

per(Qk) and a corresponding norm ‖ · ‖k such that

∫

Qk

(|∇y|2 + V (x)y2)dx = −‖y‖2
k for y ∈ Yk,

∫

Qk

(|∇z|2 + V (x)z2)dx = ‖z‖2
k for z ∈ Zk.

Let Pk : H1
per(Qk) −→ Yk and Tk : H1

per(Qk) −→ Zk be the orthogonal projections of
H1

per(Qk) onto Yk and Zk respectively. Using these projections we can write the variational
functional Ja,k by the formula

Ja,k(u) =
1

2
(‖Tku‖2

k − ‖Pku‖2
k)−

1

2∗
Ψk(u)− Φa,k(u), u ∈ H1

per(Qk).

In order to prove our main result of this section, we begin stating some basic lemmas.
Set

Mk,R(z0) = {u = y + tz0, ‖u‖k ≤ R, t ≥ 0, y ∈ Yk} (2.5)

for some fixed z0 ∈ Zk and R > 0, to be determined later and

Γk = {γ ∈ C(Mk,R(z0), H
1
per(Qk)); γ|∂Mk,R

= id}. (2.6)

We notice that the set ∂Ja,k(u) is weakly*-compact (see [16]) and then the minimum
of {‖µ‖k, µ ∈ ∂Ja,k(u)} is attained by some µk

n ∈ ∂Ja,k(u
k
n). We will use this fact in the

next lemma.

Lemma 2.2 If un ∈ H1
per(Qk) is a sequence verifying

Ja,k(u
k
n) → ck with 0 < ck <

SN/2

N |K|(N−2)/2
∞

, and (2.7)

µk
n → 0 as n →∞, (2.8)

then uk
n is relatively compact in H1

per(Qk).

Proof. First we prove that the sequence uk
n is bounded in H1

per(Qk). Let µk
n and

σk
n ∈ ∂Φa,k(u

k
n) such that

µk
n = `′k(u

k
n)−Ψ′

k(u
k
n)− σk

n. (2.9)

We have for ‖v‖k = 1 that | 〈µk
n, v

〉 | ≤ ‖µk
n‖k, as n →∞, so that we can write

| 〈µk
n, u

k
n

〉 | = εn‖uk
n‖k with εn → 0.

Using (2.4) with u−(x) = max{−u(x), 0} as a function test we get

0 =

∫

uk
n>a

ρ(x)
(
uk

n

)p−1
uk

n−dx ≤
∫

Qk

σk
nuk

n−dx ≤
∫

uk
n≥a

ρ(x)
(
uk

n

)p−1
uk

n−dx = 0,
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and then 〈
µk

n, u
k
n−

〉
= 0.

Consequently, using again (2.4) with u+(x) = max{u(x), 0} as a test function, we obtain

Ja,k(u
k
n)− 1

2

〈
µk

n, uk
n

〉
= 1

N

∫
Qk

K(x)|u|2∗dx + 1
2

〈
σk

n, u
k
n

〉− Φa,k(u
k
n)

= 1
N

∫
Qk

K(x)|u|2∗dx + 1
2

〈
σk

n, u
k
n+

〉

−1
p

∫
Qk

ρ(x)(
(
uk

n

)p − ap)H(uk
n − a)dx

≥ 1
N

∫
Qk

K(x)|u|2∗dx + (1
2
− 1

p
)
∫

Qk
ρ(x)

(
uk

n

)p
H(uk

n − a)dx.

This fact combined with (2.7) infer the following crucial inequalities:

1

N

∫

Qk

K(x)|u|2∗dx ≤ ck + on(1) +
εn

2
‖uk

n‖k, and (2.10)

p− 2

2p

∫

Qk

ρ(x)
(
uk

n

)p
H(uk

n − a)dx ≤ ck + on(1) +
εn

2
‖uk

n‖k. (2.11)

On the other hand, we have

Ja,k(u
k
n)− 1

2∗
〈
µk

n, uk
n

〉 ≥ 1

N
(‖Tku

k
n‖2

k − ‖Pku
k
n‖2

k)

+

(
1

2∗
− 1

p

) ∫

Qk

ρ(x)
(
uk

n

)p
H(uk

n − a)dx.

Denoting Tk(u
k
n) = zn and Pk(u

k
n) = yn one obtains

1

N
‖zn‖2

k ≤
1

N
‖yn‖2

k + (
1

p
− 1

2∗
)

∫

Qk

ρ(x)
(
uk

n

)p
H(uk

n − a)dx + ck +
εn

2∗
‖uk

n‖k + on(1),

so that from (2.11) follows

1

N
‖zn‖2

k ≤
1

N
‖yn‖2

k +
(2∗ − p)2p

2∗p(p− 2)

(
ck +

εn

2
‖uk

n‖k

)
+ ck +

εn

2∗
‖uk

n‖k + on(1).

Now, using (2.7) and since ‖uk
n‖2

k = ‖zn‖2
k + ‖yn‖2

k and ‖yn‖2
k ≤ c1|uk

n|22, one gets

1

N
‖uk

n‖2
k − c2‖uk

n‖k − c3 ≤ c4|uk
n|22, (2.12)

for large n. We notice that, from (2.12), it is sufficient to prove that the L2 norm of
uk

n on Qk is bounded to obtain the same result for ‖uk
n‖k, for each fixed k. Suppose, by

contradiction, taking a subsequence if necessary, that |uk
n|22 → ∞ as n → ∞ and define

vn = uk
n/|uk

n|2 . Thus, one has |vn|2 = 1 and ‖vn‖k ≤ c. In fact, by letting n1 such that
|uk

n|2 ≥ 1 for n ≥ n1 and from (2.12) it infers

1

N
‖vn‖2

k − c2‖vn‖k − c3 ≤ 1

|uk
n|22

(
1

N
‖uk

n‖2
k − c2‖uk

n‖k − c3

)
≤ c4,
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which implies that ‖vn‖k is bounded.

Now, we take φ ∈ C∞
0 (Qk) and use (2.9) to obtain

∫

Qk

(∇uk
n∇φ + V (x)uk

nφ
)
dx =

∫

Qk

K(x)|uk
n|2

∗−1φdx +
〈
σk

n, φ
〉

+ on(1). (2.13)

To proceed further, we shall estimate the two terms on the right side using the inequalities
(2.10) and (2.11) as follows

∫

Qk

K(x)|uk
n|2

∗−1|φ|dx ≤
(∫

Qk

(K(x)|uk
n|2

∗−1dx)2∗/(2∗−1)

)(2∗−1)/2∗

|φ|2∗

≤ |φ|2∗|K|1/2∗
∞ N (2∗−1)/2∗(ck + on(1) + εn‖uk

n‖k)
(2∗−1)/2∗ .(2.14)

On the other hand, from (2.4) it infers

| 〈σk
n, φ

〉 | ≤
∫

uk
n≥a

ρ(x)
(
uk

n

)p−1 |φ|dx ≤
∫

uk
n>a

ρ(x)
(
uk

n

)p−1 |φ|+ ap−1

∫

Qk

ρ(x)|φ|dx (2.15)

Besides, using (2.11) we get

∫

uk
n>a

ρ(x)
(
uk

n

)p−1 |φ| ≤ |ρ|1/p
∞ |φ|p

(
2p

p− 2

)(p−1)/p

(ck + on(1) +
εn

2
‖uk

n‖k)
(p−1)/p. (2.16)

Consequently from (2.13)–(2.16) follow that

| ∫
Qk

(∇vn∇φ + V (x)vnφ)dx| ≤ 1
|uk

n|2 (
∫

Qk
K(x)|uk

n|2∗|φ|dx + | 〈σk
n, φ

〉 |+ on(1))

≤ c
|uk

n|2 (c(k) + on(1) + ε̃n‖uk
n‖(2∗−1)/2∗

k + ε̂n‖uk
n‖(p−1)/p

k ),

where ε̃n, ε̂n → 0 and c(k) is a constant which depends on k. This implies that

|
∫

Qk

(∇vn∇φ + V (x)vnφ)dx| ≤ on(1) + ε̃n|uk
n|−1/2∗

2 ‖vn‖(2∗−1)/2∗
k + ε̂n|uk

n|−1/p
2 ‖vn‖(p−1)/p

k

= on(1), (2.17)

where here we use that ‖vn‖k is bounded. Therefore, there exists vk ∈ H1
per(Qk) such

that vn ⇀ vk in H1
per(Qk) and vn → vk in L2(Qk). Since |vn|2 = 1 one has |vk|2 = 1 and

consequently vk 6≡ 0. But, from (2.17) it verifies

∫

Qk

(∇vk∇φ + V (x)vkφ)dx = 0, ∀φ ∈ C∞
0 (Qk),

which contradicts the assumption (h1). This proved that |uk
n|2 is bounded. As a

consequence the norm ‖uk
n‖k is as well bounded.
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Now, taking subsequence if necessary, we have a function uk ∈ H1
per(Qk), uk

n ⇀ uk in
H1

per(Qk) and uk
n → uk in Ls(Qk), 2 ≤ s < 2∗.

Next we will prove that the convergence of uk
n to uk is a strong one. Indeed, let

wk
n = uk

n − uk and 0 ≤ l = lim
n→∞

∫

Qk

|∇wk
n|2dx.

Then, we have wk
n ⇀ 0 in H1

per(Qk), wk
n → 0 in Ls(Qk) for all 2 ≤ s < 2∗ and

〈
µk

n, wk
n

〉 ≥ ∫
Qk
|∇wk

n|2 +
∫

Qk
∇uk∇wk

ndx− |V |∞|uk
n|2|wk

n|2

−|K|∞
∫

Qk
|uk

n|2∗−1wk
n −

∫
uk

n>a

ρ(x)|uk
n|p−1wk

n+dx.

Thus

l + on(1) ≤ |K|∞
∫

Qk
|uk

n|2∗−1wk
ndx +

∫
uk

n≥u

ρ(x)(uk
n − uk)dx

≤ |K|∞
∫

Qk
|uk

n|2∗−1wk
ndx +

∫
uk

n≥u

ρ(x)
(
uk

n

)p
dx− ∫

uk
n≥u

ρ(x)
(
uk

n

)p−1
ukdx

= on(1) + |K|∞
(∫

Qk
|uk

n|2∗dx− ∫
Qk
|uk

n|2∗−1ukdx
)

= on(1) + |K|∞
(∫

Qk
|uk|2∗dx +

∫
Qk
|wk

n|2∗dx + on(1)− ∫
Qk
|uk

n|2∗−1ukdx
)

= on(1) + |K|∞
∫

Qk
|wk

n|2∗dx

≤ on(1) + |K|∞
(
S−1

∫
Qk
|∇wk

n|2dx
)2∗/2

,

where here we used the Brézis-Lieb lemma (see [8], thm 1). As a consequence, taking
limit,

SN/2

|K|(N−2)/2
∞

≤ l. (2.18)

On the other hand, since we have

∣∣〈σk
n, φ

〉∣∣ =
∣∣∣−

〈
µk

n, φ
〉

+
∫

Qk
(∇uk

n∇φ + V (x)uk
nφ)dx− ∫

Qk
K(x)|uk

n|2∗−1φdx
∣∣∣

≤ εn‖φ‖k + c|(uk
n, φ)|+ |K|∞|uk

n|L2∗ |φ|L2∗

≤ c‖φ‖k,

for each test function φ, there is σk
0 ∈ H1

per(Qk) such that σk
n ⇀ σk

0 in H1
per(Qk) and

σk
n → σk

0 in Ls for all 2 ≤ s < 2∗.
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Now we will show that the following estimate holds to be true:

Ja,k(u
k
n) ≥ 1

2

∫

Qk

|∇wk
n|2 +

1

2

∫

Qk

K(x)|wk
n|2

∗−1|uk|

−1

p

〈
σk

n, wk
n

〉− 1

2

∫

Qk

K(x)|wk
n|2

∗
+ on(1). (2.19)

In fact,

Ja,k(u
k
n) ≥ 1

2

∫
Qk
|∇wk

n|2dx− 1
2

∫
Qk
|∇uk|2dx +

∫
Qk
∇uk

n∇ukdx

+1
2

∫
Qk

V (x)wk
n
2
dx− 1

2

∫
Qk

V (x)u2
k +

∫
Qk

V (x)uk
nukdx

−1
p

∫
uk

n>a
ρ(x)

(
uk

n

)p
dx− 1

2∗
∫

Qk
K(x)|uk

n|2∗dx

≥ 1
2

∫
Qk
|∇wk

n|2dx + 1
2

∫
Qk
|∇uk|2dx + 1

2

∫
Qk

V (x)u2
kdx

−1
p

〈
σk

n, uk
n

〉− 1
2∗

∫
Qk

K(x)|uk
n|2∗dx + on(1)

= 1
2

∫
Qk
|∇wk

n|2dx + 1
2∗

∫
Qk

K(x)|uk
n|2∗−1|uk|dx

−1
p

〈
σk

n, wk
n

〉− 1
2∗

∫
Qk

K(x)|uk
n|2∗dx + on(1),

where here we have used〈
µk

n, |uk|
〉

=
∫

Qk

(∇uk
n∇|uk|dx + V (x)uk

n|uk|
)
dx

− ∫
Qk

K(x)|uk
n|2∗−1|uk|dx− 〈

σk
n, |uk|

〉

holds and then

lim
n→∞

∫

Qk

K(x)|uk
n|2

∗−1|uk|dx =

∫

Qk

(∇|uk|dx + V (x)|uk|2
)
dx− 〈

σk
0 , |uk|

〉
.

Hence, from (2.19) we conclude

Ja,k(u
k
n)− 1

2∗
〈
µk

n, w
k
n

〉 ≥ 1

N

∫

Qk

|∇wk
n|2dx +

1

2

∫

Qk

K(x)|uk
n|2

∗ |uk|dx

+

(
1

2∗
− 1

p

) 〈
σk

n, w
k
n

〉
+ on(1)

=
1

N

∫

Qk

|∇wk
n|2dx + on(1). (2.20)

Finally, taking limit when n →∞ in (2.20) it would be seen, from (2.18) that

ck ≥ l

N
≥ SN/2

N |K|(N−2)/2
∞

,
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which contradicts that 0 < ck < SN/2/N |K|(N−2)/2
∞ . This proved the lemma.

In the next lemma we shall check the linking condition (2.2) of theorem 2.1.
Take r0 > 0 such that B2r0(x0) ⊂ Q1, where x0 is a center of the cube Q1. Let

ζ ∈ C∞
0 (RN , [0, 1]) be a cut-off function such that ζ ≡ 1 in Br0(x0) and ζ ≡ 0 in

RN\B2r0(x0). For each ε > 0 we set φε(x) = ζ(x)ψε,0(x) (see (1.5)) and extending as a
periodic function we have φε ∈ H1

per(Qk). Let ϕε
.
= φ/kN and denote Mk,R(ε) the set

{y + tTkϕε : ‖y + tTkϕε‖k ≤ R, t ≥ 0, y ∈ Yk}, defined in (2.5).

Lemma 2.3 There exist R > R1 > 0, independent of k, such that

inf
‖u‖k=R1

u∈Zk

Ja,k(u) ≥ sup
u∈∂Mk,R(ε)

Ja,k(u)

Proof. Since ρ is continuous and periodic we have for z ∈ Zk that

|Φa,k(z)| ≤ c

∫

Qk

|z(x)|pdx ≤ c‖z‖p
k,

where c depends only on |ρ|∞. Thus,

Ja,k(z) ≥ 1

2
‖z‖2

k −
|K|∞

2∗
‖z‖2∗

k − c‖z‖p
k

and since p > 2 we obtain R1 > 0, independent of k, such that if ‖z‖k = R1 then
Ja,k(z) ≥ α > 0.

If u ∈ ∂Mk,R(ε) and t = 0, then Ja,k(u) ≤ 0. So let R = ‖y + tTkϕε‖k with t > 0.
Therefore

Ja,k(y + tTkϕε) = −1
2
‖y‖2

k + t2

2
‖tTkϕε‖2

k − 1
2∗

∫
Qk

K(x)|y + tTkϕε|2∗dx− Φa,k(u)

≤ −1
2
‖y‖2

k + t2

2
‖tTkϕε‖2

k − 1
2∗ infx∈RN K(x)

∫
Qk
|y + tTkϕε|2∗dx,

where here we used (h2). In accordance with (see [14])

|tTkϕε|L2∗ ≤ c|y + tTkϕε|L2∗

we obtain

Ja,k(y + tTkϕε) ≤ −1

2
‖y‖2

k +
t2

2
‖tTkϕε‖2

k − ct2
∗ |tTkϕε|2∗L2∗ .

Moreover, since ‖y + tTkϕε‖2
k = ‖y‖2

k + t‖Tkϕε‖2
k we infer ‖y + tTkϕε‖k →∞ if ‖y‖2

k →∞
or t → ∞. Therefore, Ja,k(y + tTkϕε) → −∞ when ‖y‖2

k → ∞ or t → ∞, which proved
the lemma.

In the next step we will be using the assumption (h3) to get appropriate estimates for
the minimax levels.
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Lemma 2.4 For each a > 0 we have uk critical point of Ja,k at minimax level ck given
by

ck = inf
γ∈Γk

max
u∈Mk,R(ε)

Ja,k(γ(u))

Furthermore, 0 < ck < SN/2/N |K|(N−2)/2
∞ .

Proof. Here we will use some ideas from [13]. From lemma 5 in [13] there exists ε0

such that Tkϕε 6≡ 0 for each 0 < ε ≤ ε0. Now, let

M̃k(ε) = {x = y + tTkϕε, y ∈ Yk and t ≥ 0}.

We are going to prove that for each a > 0 and ρ verifying (h3) it holds

sup
u∈fMk(ε)

Jk,a <
SN/2

N |K|(N−2)/N
∞

.

In fact, let s ≥ 0, u 6≡ 0 and define

I(u) =
1

2

∫

Qk

(|∇u|2 + V (x)u
)
dx− 1

2∗

∫

Qk

K(x)|u|2∗dx.

Then, we have

I(u) ≥ Ja,k(u), and (2.21)

max
s≥0

I(su) ≤ 1

N

(
∫

Qk
(∇|u|2 + V (x)u2)dx)N/2

(
∫

Qk
K(x)|u|2∗dx)(N−2)/2

. (2.22)

Next we will be using the following estimates with respect to ϕε (see [13]):

|∇ϕε|22 = SN/2 + O(εN−2),

|∇ϕε|1 = O(ε(N−2)/2),

|ϕε|2∗2∗ = SN/2 + O(εN),

|ϕε|2∗−1
2∗−1 = O(ε(N−2)/2),

|ϕε|1 = O(ε(N−2)/2).

Set ‖u‖2∗
2∗,K =

∫
Qk

K(x)|u|2∗dx, and u = u− + tTkϕε, with Pku = u−, t ≥ 0. Thus

‖Tkϕε‖2
2∗,K =

(‖ϕε‖2
2∗,K + O(εN−2)

)(N−2)/N

≤ |K|(N−2)/N
∞ S(N−2)/2 + O(ε(N−2)2/N), and (2.23)

|
∫

Qk

|∇ϕε|2dx−
∫

Qk

|∇(Tkϕε)|2dx|+
∫

Qk

|∇ϕε|2dx = O(εN−2) + SN/2 + O(εN). (2.24)
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Now, by using (h2) and the previous estimates we obtain

‖Tkϕε‖2
2∗,K =

(‖Tkϕε‖2∗
2∗,K

)2/2∗

=
(‖ϕε‖2

2∗,K + O(εN−2)
)(N−2)/N

≤ (
K(0)SN/2 + O(ε) + O(εN−2)

)(N−2)/N

= |K|(N−2)/N
∞ S(N−2)/2 + O(ε(N−2)2/N). (2.25)

Thus, setting ‖u‖2∗
2∗,K = 1 and taking into account (2.21)-(2.25) in the equation

∫

Qk

(|∇u|2 + V (x)u2
)
dx = −‖u−‖2

k +
|∇(tTkϕε)|22
|tTkϕε|22∗

|tTkϕε|22∗ + t2
∫

Qk

V (x)(tTkϕε)
2dx,

we deduce
∫

Qk

(∇u|2 + V (x)u2
)
dx =

SN/2

N |K|(N−2)/2
∞

‖Tkϕε‖N
2∗,K + t2cεN(N−2)/2. (2.26)

Now, we have that t is bounded and if

‖u−‖2∗
2∗,K ≤ 2c1t

2∗εN(N−2)/(N+2)

then
‖tTkϕε‖2∗

2∗,K ≤ 1 + cεN−2,

since it holds that

1 = ‖u‖2∗
2∗,K ≥ ‖tTkϕε‖2∗

2∗,K + 1
2
‖u−‖2∗

2∗,K − c1t
2∗εN(N−2)(N+2)

≥ t2
∗‖ϕε‖2∗

2∗,K + 1
2
‖u−‖2∗

2∗,K − c2t
2∗εN−2 − c1t

2∗εN(N−2)/(N+2),

Otherwise we get
‖tTkϕε‖2∗

2∗,K ≤ 1.

Hence, in any case, we have

‖tTkϕε‖2∗
2∗,K ≤ 1 + O(εN−2). (2.27)

Now we estimate the part related to the discontinuity f , namely, the expression
involving the primitive F (x, v) = ρ(x)H(v − a)vp:

| ∫
Qk

F (x, u− + tTkϕε)dx− ∫
Qk

F (x, u−)dx− ∫
Qk

F (x, tTkϕε)dx|

=
∣∣∣
∫

Qk

∫ tTkϕε

0
ρ(x)H(u− + σ − a)(u− + σ)p−1dx− ∫

Qk

∫ tTkϕε

0
ρ(x)H(σ − a)σp−1dx

∣∣∣

≤ c
(∫

Qk
|tTkϕε||u−|p−1dx + 2

∫
Qk
|tTkϕε|pdx

)

≤ c
(
t|u−|∞|Tkϕε|L1 + 2tp

∣∣∣
∫

Qk
|tTkϕε|p − |ϕε|pdx

∣∣∣ + 2tp
∫

Qk
|ϕε|pdx

)

≤ c
(
ε(N−2)/2 + εN−p(N−2)/2

)
,
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where c is independent of ε since (2.27) holds. Analogously one gets

|
∫

Qk

F (x, tTkϕε)dx−
∫

Qk

F (x, ϕε)dx| ≤ cε(N−2)/2.

Consequently, going back to (2.26) and joint up the previous facts, we get

Ja,k(su) ≤ SN/2

N |K|−
N−2

2∞
+ c

(
ε(N−2)/2 + εN−p(N−2)/2

)−
∫

Qk

F (x, ϕε)dx. (2.28)

Let ε1 ≤ ε0 such that the inequality a < cN/ε
(N−2)/2
1 holds for a > 0 fixed. Hence, for all

ε ≤ ε1 we get a < cN/ε(N−2)/2. Thus the positive radius r(ε) defined by

r(ε) =
( cNε

a2/(N−2)
− ε2

)1/2

is well defined and less than r given by (h3). Furthermore the following inclusion holds

Br(ε)(0) ⊂ {x ∈ Qk, ϕε > a}.

Hence, by using (h3), we can conclude

∫
ϕε>a

ρ(x)(ϕp
ε(x)− ap)dx ≥ ∫

Br(ε)(0)

(
ρ(x)

(
cNε

|x|2+ε2

)p(N−2)/2
)

dx− ap‖ρ‖∞r(ε)NµN

= O(ετ )−O(εN/2),

where µN is the volume of the unit ball in RN . Now, using this estimate together with
(2.28) and taking ε small enough, the conclusion of the lemma readily follows.

Lemma 2.5 Any critical point uk of Ja,k satisfies ‖uk‖k ≤ c (independent of k).

Proof We have Mk,R(ε) ⊂ Mk+1(ε). In fact, since we can write

Tkϕε(x) =
∞∑

j=k+1

αε
j(x),

with αε
j =

∫
RN ϕε(x)ej(x)dx then

Tk+1ϕε(x) = Tkϕε(x)−
(∫

RN

ϕε(x)ek(x)dx

)
ek(x)

so that, if y ∈ Yk and t > 0 one gets

y + tTk+1ϕε(x) = y + tTkϕε(x)− t

(∫

RN

ϕε(x)ek(x)dx

)
ek(x).
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Hence, if u = y + tTkϕε ∈ Mk,R(ε), then

u = y + t

(∫

RN

ϕε(x)ek(x)dx

)
ek(x) + tTk+1ϕε(x) = ỹ + tTk+1ϕε(x), with ỹ ∈ Yk+1.

Therefore, for h ∈ Γk (defined in (2.6)) we have

sup
u∈Mk+1(ε)

Ja,k+1(h(u)) ≥ sup
u∈Mk,R(ε)

Ja,k+1(h(u))

On the other hand, if u ∈ Mk,R(ε), one has

Ja,k(h(u)) ≥ Ja,k+1(h(u)) and Γk ⊂ Γk+1,

then

inf
h∈Γk+1

sup
u∈Mk+1(ε)

Ja,k+1(h(u)) ≤ inf
h∈Γk

sup
u∈Mk,R(ε)

Ja,k(h(u)),

which proved

ck+1 ≤ ck ≤ · · · ≤ c1 <
SN/2

N |K|(N−2)/2
∞

.

Finally, using the same arguments of the proof of lemma 2.4, we can establish a uniform
bound for ‖uk‖k.

Remark 2.6 As a consequence of these lemmas and from theorem 2.1, we have already
proved, up to this moment, that for each k the functional Ja,k associated to (1,1)a,k has a

critical point uk at level ck ∈ (0, SN/2/N |K|(N−2)/2
∞ ) and ‖uk‖k ≤ c, for all k ∈ N.

Proposition 2.7 There is a sequence ξk ∈ RN and s, η > 0 such that

lim sup
k→∞

|uk|2L2(Qs(ξk)) ≥ η,

where Qs(ξk)) is a cube with edge length s and centered at ξk.

The proof of this proposition follows immediately from the next auxiliary lemmas

Lemma 2.8 There exists ε > 0 independent of k such that ‖uk‖k ≥ ε and Ja,k(uk) ≥ ε
hold for each nontrivial critical point uk of Ja,k.

Proof Since (α, β) is in the spectral gap, there exists c = c(α, β) > 0 such that

|`k(u)| ≥ c|u|2L2(Qk), u ∈ H1
per(Qk).
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Therefore for ε < 1 we get

|`k(uk)| = ε| ∫
Qk

(|∇u|2 + V (x)u2)dx|+ (1− ε)| ∫
Qk

(|∇u|2 + V (x)u2)dx|

≥ ε
∫

Qk
(|∇u|2 − ε max

x∈Qk

V (x)|u|L2(Qk)dx + (1− ε)c|u|L2(Qk)

= ε‖u‖2
k + ((1− ε)c− ε max

x∈Qk

V (x))|u|2L2(Qk)

Thus, taking ε small enough, we obtain

|`k(u)| ≥ c1‖u‖2
k, u ∈ H1

per(Qk), (2.29)

Let uk be a nontrivial critical point of Ja,k. Then, by using (2.29), one gets

c1‖u‖2
k ≤ |`k(u)| ≤ c2‖uk‖2∗

k + c3‖uk‖p,

So that, since the polinomium p(t) = c2tk
2∗−2 + c3t

p−2 − c1 is nonnegative for t ≥ ε1 for
some ε1 > 0, the conclusion readily follows.

Finally, using the fact uk is a critical point of Ja,k, we have σk ∈ ∂Φa,k(uk) such that
0 = `′k(uk)−Ψ′

k(uk)− σk. Therefore

Ja,k(uk) ≥ 1
2
`k(uk)− 1

2∗
∫

Qk
K(x)|uk|2∗dx− 1

p
〈σk, |uk|〉

= 1
2

(
`k(uk)−

∫
Qk

K(x)|uk|2∗dx− 〈σk, |uk|〉
)

+
(

1
2
− 1

2∗
) ∫

Qk
K(x)|uk|2∗dx +

(
1
2
− 1

p

)
〈σk, |uk|〉

≥ min{1/N, (p− 2)/2p}|`k(uk)| ≥ ‖uk‖2
k.

,

and the proof is completed.

Remark 2.9 The same arguments could be used to prove the result above for J the
functional associated with (1.1).

Next we shall use a modification of the well known concentration-compactness lemma of
P.L. Lions [23].

Lemma 2.10 Let Qn be the cube of edge length ln → ∞ as n → ∞ centered at the
origin, and Kr(ξ) be the closed cube with the edge length r centered at the point ξ. Let
un ∈ H1

loc(RN) of ln−periodic functions such that ‖uk‖H1(Qn) ≤ c for some constant
independent of n. Suppose that there is r > 0 such that

lim inf
n→∞

(
sup

ξ

∫

Kr(ξ)

|un|2dx

)
= 0.

Then ‖un‖Lq(Qn) → 0 as n →∞ for q ∈ (2, 2∗).
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Proof For the proof see [25].

Lemma 2.11 Let uk be a sequence verifying

Ja,k(uk) = ck <
SN/2

N |K|(N−2)/2
∞

and min
µ∈∂Ja,k(uk)

‖µ‖ → 0 as k →∞.

Then either
1) ‖uk‖k → 0 when k →∞, or
2) there is a sequence ξk ∈ RN , and s, η > 0 such that

lim
k→∞

|uk|2L2(Qs(ξk)) ≥ η.

Proof Suppose that (ii) does not hold. By concentration-compactness arguments (see
lemma 2.10) one has

|uk|Lq → 0 for 2 < q < 2∗.

Following [13] we have ∫

Qk

V (x)u2
k → 0.

On the other hand, it holds

| 〈σk, uk〉 | ≤ c

∫

Qk

|uk|dx → 0, and

|Φa,k(uk)| ≤ c

∫

Qk

|uk|pdx → 0.

Thus

Ja,k(uk) =
1

2

∫

Qk

|∇uk|2dx− 1

2∗

∫

Qk

K(x)|uk|2∗dx + ok(1), and

0 =

∫

Qk

|∇uk|2dx−
∫

Qk

K(x)|uk|2∗dx + ok(1).

Consequently,

ck =
1

N

∫

Qk

K(x)|uk|2∗dx, and (2.30)

∫

Qk

|∇uk|2dx + ok(1) ≥ S‖uk‖2
2∗ + ok(1)

≥ S|K|2/2∗
∞

(∫

Qk

K(x)|uk|2∗dx

)2/2∗

+ ok(1).

Therefore
l ≥ SN/2|K|−(N−2)/2

∞ .
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This and (2.30) imply that

lim
k→∞

ck ≥ SN/2

N |K|(N−2)/2
∞

,

which is a contradiction.
Finally, since uk verifies 0 = l′k(uk)−Ψ′

k(uk)− σk, we obtain

0 = −‖zk‖2 −
∫

Qk

K(x)|uk|2∗−2ukzkdx− 〈σk, zk〉 , and

0 = ‖yk‖2 −
∫

Qk

K(x)|uk|2∗−2ukykdx− 〈σk, yk〉 ,

where zk = Tkuk and yk = Pkuk. So that, since

| 〈σk, zk〉 | ≤ ∫
uk≥a

ρ(x)up−1
k |zk|dx

≤ ∫
Qk

ρ(x)up−1
k |zk|dx

≤ c|uk|p−1
Lp |zk|Lp → 0,

it follows ‖uk‖k → 0 and (i) holds.

3 Proof of The Main Result

As a consequence of the results of the previous section, we have a bounded sequence of
solutions uk of (1.1)a,k which verifies

|uk|2L2(Qs(ξk)) ≥ η > 0,

for all k and for some s ∈ (0, 1).
Now, we denote by ξi the ith component of vector ξi

k, the center of cube Qs(ξ
i
k) given

in proposition 2.7 and bi
k = [ξi

k], i = 1, · · · , N is the greatest integer equal or less than
ξi
k. Next, defining a new sequence ûk as

ûk(x) = uk(x + bk)

we find that
|ûk|2L2(Qs+1(0)) ≥ η. (3.1)

On the other hand, since K, V and ρ are 1–periodics we get, by taking Qk centered at
the origin,

Ja,k(uk) = 1
2

∫
Qk

(|∇uk(x)|2 + V (x)uk(x)2)dx

− 1
2∗

∫
Qk

K(x)|u(x)|2∗dx− ∫
Qk

ρ(x)H(u(x)− a)(up(x)− ap)dx

= 1
2

∫ bQk
(|∇ûk(x)|2 + V (x)ûk(x)2)dx− 1

2∗
∫ bQk

K(x)|ûk(x)|2∗dx

− ∫ bQk
ρ(x)H(ûk(x)− a)(ûp

k(x)− ap)dx

≡ Ĵa,k(ûk),
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where Q̂k is the cube in RN with length k and centered in −bk.
Now using that uk is a critical point of Ja,k, we have σk ∈ ∂Φa,k(uk) verifying

∫

Qk

f(x, uk(x)− 0)φ(x)dx ≤
∫

Qk

σk(x)φ(x)dx ≤
∫

Qk

f(x, u(x) + 0)φ(x)dx,

for φ ∈ C∞
0 (Qk), φ ≥ 0. Then

0 =

∫

Qk

(∇uk(x)∇φ(x) + V (x)uk(x)φ(x))dx

−
∫
bQk

K(x)|u2∗−1
k |u(x)φ(x)dx−

∫

Qk

σk(x)φ(x)dx

=

∫
bQk

(∇ûk(x)∇φ̂(x) + V (x)ûk(x)φ̂(x))dx

−
∫
bQk

K(x)|û2∗−1
k |û(x)φ̂(x)dx−

∫
bQk

σ̂k(x)φ̂(x)dx, and (3.2)

∫
bQk

f(x, ûk(x)− 0)φ̂(x)dx ≤
∫
bQk

σ̂k(x)φ̂(x)dx ≤
∫
bQk

f(x, û(x) + 0)φ̂(x)dx, (3.3)

where here σ̂k(x) = σk(x + bk) and φ̂(x) = φ(x + bk).

Thus from (3.2) and (3.3), we have ûk as a critical point of Ĵa,k. Now, by using the
same arguments as before, we can conclude that ûk is bounded in H1

loc(RN) and, taking
subsequence if necessary, we obtain u ∈ H1

loc(RN) such that ûk ⇀ u.
Furthermore, from the assumption on the growth of the function f it follows that

‖σ̂k‖k ≤ c, where c is independent of k. Hence, taking a subsequence we have σ̂k ⇀ σ0

and σ̂k(x) → σ0(x) almost everywhere x ∈ RN for some σ0 ∈ H1
loc(RN). Therefore, by

taking limit in (3.3), we get

σ0(x) ∈ [f(u(x)− 0), f(u(x) + 0)],

almost everywhere in RN . Then passing to the limit in (3.2) and from the interior elliptic
estimates one gets u ∈ W 2,2∗

loc (RN) and

−∆u(x) + V (x)u(x) + K(x)u(x)2∗−1 ∈ [f(u(x)− 0), f(u(x) + 0)],

almost everywhere in RN , which proved that u is a solution of (1.1). Finally we observe
that, by (3.1), u 6= 0.
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