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Abstract: This paper deals with the following class of singular biharmonic problems

(P) A2u 4+ V() |u|? u = [u]2"~2u, in QC RV,
weDy*(Q), N>5,
where 1 < g < 2*—1, 2* = A?in is the critical Sobolev exponent, A2 denotes the biharmonic operator,

Q is open domain (not necessarily bounded, it may be equal to H{N) and V is a potential that changes
sign in Q@ with some points of singularities in 2. Some results on the existence of solutions are obtained
by combining the Mountain Pass Theorem and Hardy inequality with some arguments used by Brézis

and Nirenberg.
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1 Introduction
In this paper we are concerned with a class of singular biharmonic problems involving
critical Sobolev exponents of the type

A2y +V(2)|u|?'u = |u)* "?u, in Qc RY,
we D22(Q), N> 5,

(P)
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where 1 < ¢ < 2*—1, 2*=2N/(N —4) is the critical Sobolev exponent, A? denotes
the biharmonic operator, €2 is open domain (not necessarily bounded, it may be equal to
RY) and V : Q — IR is a potential that changes sign with some points of singularities
in Q.

When the potential V' is a regular function, this kind of the problem has been
studied by several authors. We would like to mention the paper by Bernis, Garcia
Azorero and Peral Alonso [4] and references therein for problem (P) in a bounded
domain with V" equal to a constant. For the other references about this problem (P)
in whole space with regular potential, we cite a recent paper by Chabrowski and do
o) [9]. Some results of existence involving the p-Laplacian operator with potential V,
still being a regular function, were considered by several authors, more precisely, for
the following quasilinear elliptic problem

») [~ VO e

u € D'P(IRY),

where A, denotes p-Laplacian operator, N >p>1, p<q+1<p*= Np/(N —p),
D' (IRY) is the completion of C°(IRY) in the LP-norm of Vu and V is a continuous
function in IRY. Related to the problem above with s = p*, among others, we
would like to cite the papers of Benci and Cerami in [2] which treated the case
g =1 p=2and V = V- € L"?(R"), while Pan in [20] studied the case
¢g>1, p=2and V = V*+ ¢ LN?(R"). In [3] Ben-Naoum, Troestler and Willem
considered V = VT — V=, VE £ 0, V e LP/O-P(RY) satisfying |V |p/pr—p) =

(f]RN v 3

P/ =P dy) 5 < S, where S is the best constant of the Sobolev embedding

WP(IRYN) in to LP"(IR"), and they proved that problem (P,) has a positive solution
provided

(N + 1)p® — 2Np
N—pe-n P2V

In the case when the potential V' has some singularity, for instance V (x) =

q>

23, we
observe that by Pohozaev identity [21] (see also [13]) the problem (P;) has no s‘ol‘ution
when f=p=g¢q, A <0, s=p*:=pN/(N —p)and Q is a bounded starshaped with
respect to the origin. Still in a bounded domain, Garcia Azorero and Peral Alonso in
[13] have shown that problem above has at least one solution provided that one of the

conditions below hold

i) B=p=gq, s<p*, 0<—)\<)\N::(%)2

il) B<p=gq, s=p", 0< =A<\, N>p*—(p-1)8,

where Ay and A; denote the best constant of the Hardy inequality and the first
eigenvalue of (—A,, Wl?(Q)), respectively.

In [14], Ghoussoub and Yuan not only extended the results of existence and
nonexistence mentioned above when V' has a singularity at the origin but also get
multiplicity results for problem (P;) on a bounded domain, considering a large class
of possibilities among the numbers p,q, 5, s,p* and g* = %(Hardy’s critical
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exponent). Now when Q = IRY, Terracini in [24], among others results, applying
Pohozaev type inequality concluded that (P;) has no solution when A\ # 0, [ #
2, p=2 and s = 2*. While, Lions in [16] proved the existence of positive solutions for
the case A < 0, § =2 =pand s = 2%, and Jannelli in [15] presented a explicit positive
solution for this situation.

With respect to the problems involving the biharmonic operators with potential V'
having singularities, more exactly, the problem of the type (P), we remark firstly that
with some changes the nonexistence result obtained in [24] also holds for problem (P)
with 5 # 4. Still related to problem (P), Noussair, Swanson and Yang in [19], applying
a compactness result due to Egnell [11, Lemma 10], treated the situation when the
potential V' is nonpositive and verifies the condition:

_ ) O(lz]") as |z| — o0;
() Vi) —{ O(lal®) as |z] = 0,
where —4 < v < p and % <g+1< %. Notice that this condition implies

that V should cross the critical hyperbole |z| 2.

In this work, motivated by the papers mentioned above, we study problem (P),
mainly in a domain not necessarily bounded,when the potential V' = V* — ¥V~ changes
sign and the positive part ¥+ either cross the hyperbole |z|~* likes above or it remains
below of the critical hyperbole near of the origin and at the infinity, that is, v < —4 < p.
More exactly, we will impose the following condition:

(VeELL(Q), V=Vi—V =Vi+ V=V, VE+£0;

Vi, V= € L*(Q)NL>®(Q), ap= 52

2 (q11)’
(H>) )
‘v’y € Qa hmx—)y, z€QN |1‘ - y|a‘/2(1‘) =0
| and limy,o [2]*V2(2) = 0,
where
{ 4 if ¢g=1,
Q= N—4)(g+1)
N — =D %(q Loif g >1,
and

VE(z) := max{£V (z),0}.

Example 1.1 Consider the potential V. =V, + Vo, =V~ := Vi +¢|z|™® =V~ on R"
where Vi, V= € L% (Q)NL>®(Q), VE #0 and € is sufficiently small.

Example 1.2 Consider the potential V. = Vi + Vo, — V-, VE £ 0, V|,V €
L*(Q)NL>*(Q) and Va behaves like |z|~*"¢ and |x|~*¢ at the origin and the infinity,
respectively.
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Remark 1.1 The number a defined above, it exactly the exponent where the Hardy
type inequality hold (see e.g. Lions[17]), that is,

g+l

q+1 ;
77/]RN Y dr< (/]RN |Aul?dz)™=, ¢>1, ue€ D**(IR"), (1.1)

]

where « := N — (N —4)(¢ +1)/2, N > 5, and when « = 4 and q = 1 then
n < Ay = (85%)? is the optimal constant, whose the proof can be found in [10]. The
p-Laplacian version of this inequality is proved in [7].

We shall state our first result.

Theorem 1.1 Assume either (Hs) or that VE # 0 with V' wverifying (Hy). Then,
problem (P) has at least one nontrivial solution provided that

i) 1<qg<2"—1, if N>8,
ii) 2 <¢<2°—1, if N=56and N =1,

iii) 1 <¢ < ﬁ, if V7o is sufficiently large.

Here, we also study the same kind of results when the potential V' is below of the
critical hyperbole |z|~* at the origin and € a bounded domain, that is, we consider the
following problem.

A?u+ V(z)u = plul 'u+ [u* ?u, in QC RY,
(P)

uwe D**(Q), N>5, p>0,1<qg<p'—1.
In this case we shall state the following result.

Theorem 1.2 Suppose that ) is a bounded smooth domain. Assume that either
V = ﬁ, A< Ay orV = ﬁ, A < 0, 8 < 4. Then, the problem (P») has at
least one nontrivial solution provided

i) 1<qg<2-—1, if N>§,
ii) 7 <¢<2°—1, if N=56and N =1,

iii) 1 <q <<%, if |V |s is sufficiently large,

In order to conclude, we like to say that our main theorems extend or complement
the results obtained in [3] for the fourth order operator A? as well as results get in [19],
considering the potential V' more general having some singularities. In addition, when
the domain is bounded, we also complement some results proved in [14].

This paper is organized as follows. Section 2 contains the statements and the proofs
of two crucial lemmas related with the proof of Theorem 1.1. Section 3 and Section 4
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deal with the proof of Theorems 1.1 and 1.2, respectively. Finally in section 5 we have
some generalization and concluding remarks.

Notation. In this paper we make use of the following notation.

C, Cy, Oy, ... denote (possibly different) positive constants;

Blp, R] and B(p, R) denote the closed and open ball with the radius R centered at
point p of RY, respectively:

LP(Q), 1 < p < oo, denote Lebesgue spaces; the norm in L? is denoted by |u|;
D?2(€2) denotes the completion of the space C2°(€2) in the norm ||u|| := ([ |Au|?dz)'/2.
In this work we are denoting by S the best constant to the Sobolev embedding,
D2%(Q) — L?(Q), that is,

S :=inf{|Aul5: u € D>**(Q) and |uly- = 1}.

It is known (see [19]) that for Q = IR™ the best constant is attained by the functions

Sems (@) = L en = (N(N — 4)(N? — 4N (1)

2 Preliminary results

We begin this section stating the following crucial result

Lemma 2.1 Suppose either (Hy) or that VE # 0 with VT wverifying (H,). Then the
function ¢ : D>?(Q) — IR, given by

Y(u) = / V| dz, 1<q<2 -1,
Q
15 weakly continuous.

Proof. If V£ # 0 with V1 satisfying (H,), this case is exactly one of results in
[11, LemmalO]. If (H,) holds, the case ¢ = 1 was proved in [22, Lemma 2.1](see also
[23, 25] for related results). For the case ¢ > 1, the proof is done adapting arguments
by [22], thus, we are going to give only a sketch of the proof. Since V; € L% (Q), from
a result by Brezis and Lieb [5] it follows that

u / Vilu|™ da

Q
is weakly continuous. Hence it remains to show that
u > / Valu|d.

Q

is weakly continuous. Let u,, — u (weakly)and € > 0. By (H,), there exists R > 0 such
that

|z|*Va(z) <€, z€Q, |z|>R. (2.3)
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Define
Ql =0 \ B[O, R], QQ =QnN B(O, R),
From (2.3) and by using the Hardy type inequality(see [17]) we infer that

(I+1
[ o e, 5 < oo
1951

so that
/ Valun | tdx < Ce, ¥n, C > 0. (2.4)
Q1

By compactness of Oy, there is a finite covering of Q, by closed ball Blzy, ], k=
1,2,...m such that

|z — 2| Va(z) <€, |x—axK| <1k, k=1,2,...m. (2.5)

Taking r := min{r, k= 1,2,...m} we obtain

|z — xp|*Va(x) <€, |z —mz|<r, k=1,2,...m (2.6)

Define
A= UL, Blxg, 1],

then invoking again the Hardy inequality we get

g+1
/V|Un|q+1d1‘ < 6/ || n| v < GC(/ |Aun|2dl‘)(q+1)/2
A

x — .Z‘k|0‘
thus
/AV2|un|q+1dx < Ce, ¥n, C > 0. (2.7)

On the other hand, since from (2.4) we have V5 € L>(2, \ A), and since 2, \ A is
bounded, we can assume that V5 € L% (€ \ A). Then, by a result by Brezis and Lieb
[5], we infer that

/ Vaup |1 da —)/ Valu|™dz, as n — oo, (2.8)
0\ A 0\ A
This inequality together with (2.4), (2.6) and (2.7) we conclude

/ Valu | de — / Valu|®tdz, as n — oo.

Q Q

This completes the proof of Lemma 2.1. O

Next result will be used in order to get a weak solution.
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Lemma 2.2 Suppose either that (Hy) or that V* # 0 with V' satisfying (Hy). Then
the function ¢ : D>?(Q) — IR, given by

o(u) = /QV+|u|q_1uvd$, 1<qg<2 =1, ve D*(Q) fired,
18 weakly continuous.

Proof. If V+ #£ 0 with VT satisfying (H;), the proof is similar to those given
above(see [11]). Suppose that (H,) holds and let (u,) be a sequence such that
u, — u (weakly,) u, u, € D>*(Q) and € > 0. We are using the same notations of
the proof of Lemma 2.1. Since V; € L% () by a result due to Brezis and Lieb [5], we
have

/QV1|un|q_1unvdx—>/QV1|u|q_1uvdx, as n — 0o.

Hence it remains to show that

/ Valun |7 uyvde — / Valu|' tuvdz, as n — oo.
Q Q
Once more, by the Hardy type inequality and (2.3), we have

/V2|un|q_1unvd:z:) < (/ v dx)V? (| VP dx)' P
Ql Q1

Q1

< el o dn) ([ el da)
1 1

([ v¥d W*/A?d%
([, v da) ([ 1Aupan

IN

where in the last inequality we used the Hardy inequality, since ap’ = N —(qp'(N —4)/2
because « = N — (¢ + 1)(n — 4)/2 and p’ = 2N/(N + 4). Then,

/ Va|un| ™ tupvds < Ce. (2.9)
1951

Similarly, we have the following estimates

Jo, Valu|"tuvde - < Ce,
[a Valun | tuyvdr < C,
[ Valu|® tuvdz < Ce,

where C does not depend on n. Combining these inequalities with (2.9) we obtain
/ Valun|? tu,vde —>/ Valul|? tuvdz, as n — oo,
2\A 2\A

thus, the Lemma 2.2 is proved. 0.
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3 Proof of Theorem 1.1

The proof of the theorem is done adapting some ideas from [3] and arguments by [6].
The associated energy functional to problem (P) is I : D>?(Q) — IR, defined by

o 1 9 1 g1 L
1) = [ (GlAu + g VIul™! = ol

which is a C! functional and its Fréchet derivative is given by
I'(u)v := / (AuAv + Viu"  uw — [v]* 2uv)da.
Q

We shall prove that the functional I verifies the mountain pass geometry conditions,
namely

Lemma 3.1 Suppose either (Hy) or that VE # 0 with V't verifying (Hy). Then I
verifies the following conditions:

a. There exist constants p, > 0, such that I(u) > 3, ||ul| = p,

b. There exists e € D>*(Q) with ||e|| > p, such that I(e) < 0.

Proof. a. Since V3, u%t" > 0 and Vi, V~ € L% (Q) N L>(RQ), we have

I(u)

v

]. *
Sull” = Cllul| " = Clul]
> B, lull=p, C>0.

b. Let w € D**(Q) — {0} thus

2

L Aw|*dx + e V|w| da — —tQ*
I(tw) : / / /
(tw) 5 |Aw|*dx T 1) |w] T3 A |w

Since 2 < ¢+ 1 < 2* we have that

.
Y dx.

I(tw) = —o0, as t— +oc.
This proves lemma 3.1. O

From Lemma 3.1, applying the Mountain Pass Theorem ([1]), there exists a
sequence {u,} C D%*(Q) such that

I(uy) — cand I'(u,) — 0, as n — oo,
where

(%) c:=inf sup I(h(1)),

her ¢elo,1]

I:={h € C([0,1],D>*(Q)) : h(0) = 0, h(1) = e}.
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It is standard to prove that the sequence above is bounded in D?*2?(Q), so that
passing to the subsequence if necessary, we can assume that
u, — u, weakly in D>*(Q), as n — oo.

By using Lemma 2.1, Lemma 2.2 and a result by Brezis and Lieb, we conclude that
u is a weak solution. Finally, by virtue of next result, Lemma 3.2, and arguing as in
Brezis and Nirenberg [6] we reach that w is nontrivial.

Lemma 3.2 The mountain pass level ¢ given in (x) verifies the inequality

2
0<B<c<—SN*
f<c N

Proof. Let x € C2°(2) be a positive function satisfying
A:=int{x € Q: x(x) =1} #0 and suppV ™~ N A # (.
Notice that the functions s.,, defined in (1.2) satisfies
Sews — 0, weakly in D>*(Q), as e — 0

and then
XSew, — 0, weakly in D2?(Q2), as e — 0.

From Lemma 2.1, we infer that

/vﬂwwaM—%Q as € 0. (3.10)
Q

We now claim that
sttt e LMIRY), if ¢ >

N —4
Indeed,
dx
¢+l el (N=4)(g+1)/2
S = CEe e @
_ Cq+1 —(N—-4)(¢+1)/2+N /oo Pt
0 (L [r)(N=ath)/2
< if ¢ > .
oo, It q>
Next, define

UE,OEO(I‘) = X(l‘)SG,CEo = X(x)se,o(l‘ - xO)a

then (see [4]) we have
At [ = [Aueol; +0(e" ),
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|ue,s %I - |Ue,0 %: + O(EN)
KeN—9r/2 4 o((N-4)r/2) if < N
e golt = ¢ KeN=WV=0r2]loge| + o(N =N/ [loge| if r=
KeN-(N—4)r/2 4 o(N—(N-4)r/2) if > 2
Now we consider f, := sZ'/|sZ5']; as an approximation of identity, then

[ vuttiar = [ V)t @)t @ - 5o

S KGECUIERS: T2

= [s?5 [1(V (o)™ (w0) + 0(1))
— OG- (N-Da+)/2+N / - T dr

1
o = (V@)X (@) + o1))
— C’q“ —(N= 4)(q+1)/2+NC(V(-T0)Xq+1(.’170) +o(1), C>0, ae zo€ RN

)|sq+1| dx

From the assumption on the function y, that is, choosing xy such that
X(xg) =1, V(xg) ==V"(29) <0

and that the convergence holds, we obtain

[ Vuttlds = e RN (<1 (a4) + o(1). (3.11)
Define
ue,:z:g
Ve 1= ,
|ue,:1?o|2*
then (as in [6]) we have
= |Av 2 < S+ O("), L:=min{N —4,4}. (3.12)

On the other hand, notice that
I(tve) — —o0, as t— o0,

where ) . "
t t tq

I(tv) = =X — —

2 2* qg-+1

thus there exists ¢, > 0 such that

/ Vvq+1d:17

Y, :=sup I(tve) = I(tcve).
>0

In addition,
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achieves its unique positive maximum at X/"=2) so that

2 * * q+1
Y, < ZxZieeD / Vit
N q+ q+1

From (3.12), we have

‘I+1

2
Y. < NSNM + O(e") + / Voltldz.

Now since |ue g2+ is bounded away from zero by a constant C' independent of €, we

obtain

€,T0

Cot!
SN/4 +O(e / Vultlde.

Observing that t, — S/ =2 ase — 0 ( see [8]), inserting (3.11) in to the inequality
above we have

V., < ESN/4 + O(eh) + CME—(N—AL)(HI)/HN((_V—(x ) + 0(1))
= N q+1 °
< %SN/AL + 6N74(O _ |V7|0067(N74)(q+1)/2+N7(N74) + 0(1)67(N74)(q+1)/2+4).
Since ¢ > N 1, we get
Y, < %SNM + 6N74(O _ (|V7|oo _ 0(1)6—(N74)(q+1)/2+4)
2
< NSNM, as € — 0.
This completes the proof of Lemma 3.2 as well as the proof of Theorem 1.1. O

4 Proof of Theorem 1.2

For that matter we start by proving the following crucial result.

Lemma 4.1 Suppose < 4 and that 2 is a bounded domain. Then

f:D>(Q)— R

2

u
= [ —d
u) /Q|x|6x

given by

15 weakly continuous.
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Proof. Notice that
1 e pN-1
/B(O,e) 7|$|ﬁN/4dx = C/o —TﬁN/4dr < 00

then i € LN4(Q) and since u? € LN/(V=9(Q) using a result by Brezis and Lieb we
ConcluAe the proof of Lemma 4.1. O

Now, from the Hardy inequality it is easy to see that

A
lulle = ([ (Auf + Zpu?)da)?, A< A,
0 ]

define an equivalent norm in D??(Q2). Thus, in both cases, arguing as in [6](or [8, 19])

and combining the remarks above with the arguments used in the proof of Theorem
1.1 we complete the proof of Theorem 1.2.
O

5 Further results and concluding remarks

Finally, we point out that the same argument done to prove the Theorem 1.1 can
also be used without dificulty in order to get similar results involving the p-Laplacian
operator. In this case, the main tool is the Hardy type inequality (see e.g. [17] or [7])
given by

g+1

it
77/11«2” de = (/ZRN \VulPdz)», ¢>p—1, uwe D"(RY), (5.13)

where a:= N — (N —p)(¢+1)/p, N >p.
Thus assume that either the conditions (H3) or (H4) below hold, where

V() is a nonpositive function which is locally bounded in R \ {0} and

_J O(z[") as [z] = oo;
(H3) V(l‘) - { O(|x|u) as |,ZU| — 0,
(N+v) (N+p)
where —p < v < u and pN——P<q+1<pN_:
and

(VELL(Q), V=Vt—V-=Vi+V,— V", VE£0;

loc

Vi, V=€ L%(Q)NLX(Q), o, =L

p*—(g+1)’

vy € Qa hm:r%y, €N |l' - y|a‘/2(x) =0

and limy,|_,q [2|*Va(z) = 0,
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where
p if ¢q=p—1,
=) N— 7(prz))(q+1) if ¢>p—1.

Theorem 5.1 Suppose either (Hy) or VE # 0 and V' verifying (H3). Then problem
(Py) has at least one nontrivial solution provided

i. N>p? p<qg+1l<s=p* andp>0.

ii. p<N<p’, p" =2y <qg+1<s=p*andpn>0.

We remark that the proof of Theorem 5.1 follows the same line to those made in
the proof of Theorem 1.1, because the condition (Hjz) for p-Laplacian, which was used
by [18], is equivalent to the condition (H;) for the biharmonic operator. In addition,
this theorem complement the results in [3] for problem (P;) in the sense that it is true
for a class of potentials changing sign with singularities.

Finally we shall state the similar results to Theorem 1.2 for the p-Laplacian
operator, whose the proof follows as in the proof of Theorem 1.2, that is, when the
potential V' is below of the critical hyperbole |z| P at the origin and Q a bounded
domain for the problem below
(Py) { —Apu+V(z)uP~t = plult u + |ulP"2u, in Q C RY,

3 weDP(Q), p>0,p—1<g<p —1

Theorem 5.2 Suppose that € is a bounded smooth domain. Assume that either
V=2 A< Ay orV = k%ﬁ, A < 0, B < p. Then, the problem (Ps) has at

o
least one nontrivial solution provided

i. N>p? p<q+1<p*andpu>0.

ii. p< N <p®, p" =2y <q+1<p*and p>0.

This theorem is related to some results found in [13] and [14], because in our case
we studied situation not considered by them, for example, in [13] the authors worked
with the case = 0 and V = —V~, while in [14] is analyzed the situation where y =0
and A € (—A\y,0).
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