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Abstract

We establish the existence of two nontrivial solutions for certain semilinear
elliptic systems with superquadratic and subcritical growth rates of the form




−∆v = λf(u), in Ω,
−∆u = g(v), in Ω,

u = v = 0, on ∂Ω.

for a small positive parameter λ and where Ω ⊂ RN with N ≥ 1 is a smooth
bounded domain. The first solution is obtained applying Ambrosetti and
Rabinowitz’s mountain-pass theorem while the second by local minimization.
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1 Introduction

The main purpose of this paper is to establish by using a variational approach the
existence of two nontrivial solutions for a class of elliptic problems. In particular we
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consider the following problem for Hamiltonian systems:



−∆v = λf(u), in Ω
−∆u = g(v), in Ω

u = v = 0, on ∂Ω,
(1)

where Ω ⊂ RN with N ≥ 1 is a smooth bounded domain, λ a small positive
parameter, and f, g : Ω → R are given continuous functions satisfying the following
hypotheses:

(H1) there exists a positive constant C such that

| f(t) |≤ C(1+ | t |r), for all t ∈ R;

(H2) g is an increasing odd function such that g(0) = 0 and

lim
t→+∞

g(t)

ts
= 1

where r ≥ 0, s > 0 and
1

r + 1
+

1

s + 1
>

N − 2

N
, (2)

when N ≥ 3. For N = 1, 2 there is no restriction.

The last inequality expresses the subcritical character of system (1). Its
superquadratic behavior is given by the next assumption.

(H3) There are positive constants µ and R, with (µ − 1)s > 1, such that for all
| u |≥ R we have

0 < µF (u) ≤ uf(u).

In recent years, various results on the existence of solutions for superlinear elliptic
systems have been obtained. Among others, de Figueiredo and Felmer in [7] and
Hulshof and van der Vorst in [9] study these problems by means of a variational
approach that considers a Lagrangian formulation with strongly indefinite quadratic
part and uses the generalized mountain-pass theorem in its infinite dimensional
setting due to Benci-Rabinowitz [2].

In system (1) we isolate v in the second equation to obtain the following fourth
order quasilinear scalar problem





∆(g−1(∆u) = λf(u) in Ω
u = 0 on ∂Ω

∆u = 0 nn ∂Ω
(3)
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which has a variational structure and whose solutions may be obtained through
the framework of the Critical Point Theory as was first developed by Ambrosetti-
Rabinowitz [1]. Namely, by now classical mountain-pass theorem and, by local
minimization as a consequence of the Ekeland’s variational principle.

We study the existence of solutions of (3) understood as critical points of the
associated functional

Iλ(u) =
1

p

∫

Ω

A(| ∆u |p)dx− λ

∫

Ω

F (u)dx (4)

defined on the reflexive Banach space E = W 2,p(Ω) ∩ W 1,p
0 (Ω) endowed with the

norm ‖ u ‖=‖ ∆u ‖Lp and with Fréchet derivative given by

〈I ′λ(u), φ〉 =

∫

Ω

a(| ∆u |p) | ∆u |p−2 ∆u∆φdx− λ

∫

Ω

f(u)φdx, φ ∈ E, (5)

where

A(t) =

∫ t

0

a(s)ds, F (t) =

∫ t

0

f(s)ds

and the function a is defined by

a(| t |p) | t |p−2 t = g−1(t) (6)

where p = (s+1)/s. Using (H1) and (H2), usual arguments give that the expressions
in (4) and (5) are well defined, as well as that the functional Iλ is of class C1 (see
[6] and [11], for example). Note that the subcritical condition for equation (3) that
is given by r < p∗∗ = Np/(N − 2p), is equivalent to condition (2).

We now consider a technical condition concerned with the regularity of critical
points of the functional Iλ, namely,

(H4) Assume either




s ≤ 2,
3N − 2

2N

1

r + 1
+

1

s + 1
≥ N − 2

N
+

1

(r + 1)(s + 1)

and that g is a differentiable function such that its derivative g′ is a Lipschitz
continuous function, or





s > 2,
1

r + 1
+

1

s + 1
≤ N − 2

N
+

1

(r + 1)(s + 1)
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and that g is of class C2 with g′′(t) = O(| t |s−2) at infinity.

We now state our main result.

Theorem 1 Assume that hypothesis (H1)-(H3) hold. Furthermore, suppose
(H5) there are positive constants r0 and s0 such that r0s0 < 1,

lim
t→0

f(tσ)

f(t)
= σr0 and lim

t→0

g(tσ)

g(t)
= σs0.

Then there exists a positive constant λ∗ such that, for any 0 < λ < λ∗, there exist
at least two nontrivial critical points uλ,1, uλ,2 ∈ E of the functional Iλ such that
‖ uλ,1 ‖E→ +∞ and ‖ uλ,2 ‖E→ 0 as λ → 0. Moreover, if we assume that (H4)
holds, then we have that (uλ,1, g

−1(∆uλ,1)) and (uλ,2, g
−1(∆uλ,2)) are strong solutions

of system (1).

The superquadratic behavior of system (1) expresses by assumption (H3) takes
into account the coupling of the system. It does not imply that both equations in (1)
are superquadratic. A similar remark is valid for the subcritical character expressed
by assumptions (H1) and (H2).

It should be mentioned that this idea of isolating one variable of the system to
obtain a scalar equation is similar in spirit to that used in [4], to derive some results
concerning the existence of positive periodic and of homoclinic solutions to a class of
Hamiltonian system. There it was considered systems where the nonlinearity g(v)
is a power and consequently the functional analytic framework is different that we
have considered here.

We remark that some authors have studied superlinear elliptic systems with the
help of the a priori estimates and degree theory argument see, for example [3, 12])
and also the references therein. Other results on systems with a Hamiltonian form
are discussed by Costa and Magalhães in [5].

This paper is composed of three sections. In Section 2 we have an abstract
framework where we establish an abstract critical point theorem which is used in
Section 3 to prove the main result.

2 The Abstract Framework

In this section we establish an abstract critical point theorem which will be used in
the next section to prove our main result.
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We start by recalling some standard notations and definitions. Let X be a
reflexive Banach space equipped with norm ‖ . ‖. By 〈·, ·〉 we denote the duality
pairing between X and its dual X∗. We denote the weak convergence in X by “ ⇀ ”
and strong convergence by “ → ”.

As usual, we say that a mapping T : X → X∗ satisfies condition (S+) if for every
sequence (un) ⊂ X with un ⇀ u in X and limsupn→+∞〈T (un), un − u〉 ≤ 0 we have
un → u in X.

Let I ∈ C1(X,R). We say I satisfies the Palais-Smale condition, denoted by
(PS), if every Palais-sequence of I, that is, (un) ⊂ X such that (I(un)) is bounded
and I ′(un) → 0 in the dual space X∗, is relatively compact.

Lemma 2 Let Φ, Ψ : X → R be C1 functionals satisfying

µΦ(u)− 〈Φ′(u), u〉 ≥ M ‖ u ‖p −N and
µΨ(u)− 〈Ψ′(u), u〉 ≤ Q

(7)

for all u ∈ X, where µ > p > 1 and M,N and Q are positive constants. Then every
Palais-sequence of the functional Iλ(u) = Φ(u)− λΨ(u) is bounded.

Proof. Let (un) ⊂ X be a Palais-Smale sequence; i.e.,

Φ(un)− λΨ(un) → c, (8)

and

| 〈Φ′(un), v〉 − λ〈Ψ′(un), v〉 |≤ εn ‖ v ‖ (9)

where εn → 0 as n → +∞. Multiplying (8) by µ, subtracting (9), with v = un, from
the expression obtained, using (7) we conclude that

1 + µc + εn ‖ un ‖ ≥ µΦ(un)− Φ′(un)un + λ(Ψ′(un)un − µΨ(un))
≥ M ‖ un ‖p −N − λQ.

Consequently, (un) is bounded in X, since p > 1.

Lemma 3 Let Φ, Ψ : X → R be functionals satisfying the hypotheses of Lemma 2
such that Φ′ belongs to the class (S)+ and Ψ′ is such that for every sequence (un)
in X with un ⇀ u, we have limn→∞〈Ψ′(un), un − u〉 = 0. Then the functional I :
X → R given by I(u) = Φ(u)− λΨ(u) satisfies the Palais-Smale condition.



6 do Ó and Ubilla

Proof. Let (un) ⊂ X be a Palais-Smale sequence. By Lemma 2, (un) is bounded
in X, thus we may take a subsequence, again denoted by (un), such that un ⇀ u
for some u in X. Now by I ′(un) → 0 in X∗,

| 〈Φ′(un), un − u〉 − λ〈Ψ′(un), un − u〉 |≤ εn ‖ un − u ‖

where εn → 0 as n → ∞. Thus limn→∞〈Φ′(un), un − u〉 = 0, since
limn→∞〈Ψ′(un), un − u〉 = 0. Therefore, using that Φ′ belongs to the class (S)+,
we conclude that un → u in X.

Next we have the main result of this section.

Theorem 4 Let Φ, Ψ : X → R be functionals satisfying the hypotheses of Lemma
3. Furthermore suppose
(I1) C1 ‖ u ‖p≤ Φ(u) ≤ C2 ‖ u ‖p +C3, for all u ∈ X;
(I2) C4 ‖ u ‖µ −C5 ≤ Ψ(u) ≤ C6 ‖ u ‖r +C7, for all u ∈ X;
(I3) there is v ∈ X − {0} such that

lim
t→0

Ψ(tv)

Φ(tv)
= +∞,

where r > µ > p > 1 and C1, . . . , C7 are positive constants. Then there exists λ∗ > 0
such that, for all λ ∈ (0, λ∗), there exist two nontrivial critical points {uλ, vλ} of
the functional Iλ(u) = Φ(u) − λΨ(u) such that ‖ uλ ‖→ +∞ and ‖ vλ ‖→ 0 as
λ → 0.

The proof of Theorem 4 follows the proof of Lemma 7 below.

Lemma 5 Let Φ, Ψ : X → R be functionals satisfying

Φ(u) ≥ C1 ‖ u ‖p,
Ψ(u) ≤ C6 ‖ u ‖r +C7,

(10)

for all u ∈ X, where r > p > 1 and C1, C6 and C7 are positive constants. Then
there exist positive constants αλ, ρλ such that

lim
λ→0+

ρλ = +∞

and
Iλ(u) = Φ(u)− λΨ(u) > αλ, if ‖ u ‖= ρλ.
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Proof. By assumptions (10), we obtain

Iλ(u) ≥ C1 ‖ u ‖p −λC6 ‖ u ‖r −λC7, for all u ∈ X.

Now, choosing u ∈ X such that

‖ u ‖= λ−s, with 0 < s(r − p) < 1, (11)

and setting ρλ = λ−s, we obtain

Iλ(u) ≥ C1λ
−sp − C6λ

1−sr − λC7.

Finally, taking αλ = C1λ
−sp − C6λ

1−sr − λC7, we have completed the proof of the
lemma, since 0 < s(r − p) < 1.

Lemma 6 Let Φ, Ψ : X → R be functionals satisfying

Φ(u) ≤ C2 ‖ u ‖p +C3,
Ψ(u) ≥ C4 ‖ u ‖µ −C5,

(12)

for all u ∈ X, where µ > p > 1 and C2, C3, C4 and C5 are positive constants. Then
Iλ(tu) = Φ(tu)− λΨ(tu) → −∞ as t → +∞, for all u ∈ X − {0}.

Proof. Using (12) we conclude easily that, for all t > 0,

Iλ(tu) ≤ C2t
p ‖ u ‖p +C3 − C4t

µλ ‖ u ‖µ +C5, for all u ∈ X.

Consequently, we obtain I(tu) → −∞ as t → +∞, for all u ∈ X −{0}, since µ > p.

Lemma 7 Let Φ, Ψ : X → R be C1 functionals satisfying (PS) condition and (10).
Furthermore, assume that there exits v ∈ X − {0} such that

lim
t→0

Ψ(tv)

Φ(tv)
= +∞. (13)

Then there exits λ̃ > 0 such that, for all λ ∈ (0, λ̃ ), the functional Iλ(u) =
Φ(u) − λΨ(u) has a nontrivial critical point vλ such that ‖ vλ ‖→ 0 as λ → 0,
provided that Iλ(0) = 0.
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Proof. Since for all u ∈ X,

Iλ(u) ≥ C1 ‖ u ‖p −λC6 ‖ u ‖r −λC7.

Now, choosing α ∈ R such that αp < 1 and u ∈ X, with ‖ u ‖= λα, we obtain λ̃ > 0
such that, for all λ ∈ (0, λ̃), we have

Iλ(u) ≥ C1λ
αp − C6λ

1+αr − λC7 ≥ 0.

Now, using the first inequality in (10) and (13), we can prove that there is δ > 0
such that Ψ(tv) > 0, for all | t |≤ δ. Therefore, given λ ∈ (0, λ̃), we have tλ ∈ (−δ, δ)
such that

Iλ(tλv) = Φ(tλv)− λΨ(tλv)

= Ψ(tλv)

(
Φ(tλv)

Ψ(tλv)
− λ

)
< 0.

Then we conclude that the infimum of the functional Iλ in BX [0, λα] is negative,
where BX [0, R] denotes the closed ball with radius R centered at origin of X.
Applying Ekeland’s variational principle we obtain a sequence (un) ⊂ BX [0, λα]
such that Iλ(un) → infBX [0,λα] Iλ and I ′λ(un) → 0. Finally, using that Iλ satisfies
the (PS) condition and Iλ(0) = 0, we find a nontrivial minimizer uλ. This proves
Lemma 7.

2.1 The proof of Theorem 4

By Lemma 3 the functional Iλ satisfies the (PS) condition. Now, in view of Lemmas
5 and 6, we may apply the mountain-pass theorem, hence it follows that there exists
λ̂ > 0 such that, for all λ ∈ (0, λ̂), the functional Iλ has a critical point uλ such
that Iλ(uλ) > αλ > 0 and ‖ uλ ‖≥ ρλ = λ−s → +∞ as λ → 0. Finally, since the
functional Iλ satisfies the (PS) condition, using Lemma 7, we can take a suitable
small λ∗ such that, for all λ ∈ (0, λ∗), the functional Iλ has another critical point vλ

such that Iλ(vλ) < 0 and ‖ vλ ‖≤ λα → 0 as λ → 0. The proof of Theorem 4 is now
complete.

2.2 On the (S+) condition

The next two lemmas concern the condition (S+) and they are crucial to our minimax
argument.
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Lemma 8 Let L : D(L) → (Lp(Ω))k be a continuous and injective linear operator
defined on the Banach space D(L) endowed with the norm given by

‖ u ‖p=

∫
| Lu |p,

where | | denote a norm of Rk. Then, the derivative of the functional J : D(L) → R
defined by

J(u) =
1

p

∫

Ω

| Lu |p dx

belongs to class (S+).

Proof. Let (un) ⊂ D(L) such that

un ⇀ u in D(L) and lim
n→∞

sup〈J ′(un), un − u〉 ≤ 0.

Note that

Jn
.
=

1

p

∫

Ω

| Lu |p−2 Lu(Lun − Lu)dx → 0, (14)

since un ⇀ u in D(L) and L is continuous. Also, using the Hölder inequality and
the elementary inequality

| x− y |p≤ c(p){(| x |p−2 x− | y |p−2 y)(x− y)}s/2{| x |p + | y |p}1−s/2,

where s = p if p ∈ (1, 2), s = 2 if p ≥ 2 and c(p) is a positive constant depending
only on p, we obtain

〈J ′(un), un − u〉 =
∫
Ω
| Lun |p−2 Lun(Lun − Lu)dx

=
∫
Ω
[| Lun |p−2 Lun− | Lu |p−2 Lu]L(un − u)dx + Jn

≥ C
{∫

Ω
| Lun |p + | Lu |p}s/2−1 ∫

Ω
| L(un − u) |p +Jn.

(15)

Finally, (14) and (15) together with the fact that

lim
n→∞

sup〈J ′(un), un − u〉 ≤ 0

imply that

lim
n→∞

∫

Ω

| L(un − u) |p dx = 0,

which completes the proof of the lemma.
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Let a ∈ C(R+,R) and A(s)
.
=

∫ s

0
a(t)dt such that:

(A1) the function h(t)
.
= A(| t |p) is strictly convex;

(A2) there are positive constants c0, c1, c2 and c4 such that

c0t− c1 ≤ A(t) ≤ c2t− c3, for all t > 0.

Now, consider the functional Φ : D(L) → R given by

Φ(u) =
1

p

∫

Ω

A(| Lu |p)dx.

Φ is well defined and it is a C1 functional with Fréchet derivative given by

〈Φ′(u), v〉 =

∫

Ω

a(| Lu |p) | Lu |p−2 LuLvdx.

These statements are standard (see [11]). Also, the following result holds:

Lemma 9 The derivative of the functional Φ belongs to the class (S+).

Proof. Let (un) ⊂ D(L) such that

un ⇀ u in D(L) and lim
n→∞

sup〈Φ′(un), un − u〉 ≤ 0.

We will to prove that

lim
n→∞

sup

∫

Ω

| Lun |p−2 Lun.(Lun − Lu)dx = 0,

and the proof follows from Lemma 8. First we note that

〈Φ′(un), un − u〉 =∫
Ω
[a(| Lun |p) | Lun |p−2 Lun − a(| Lu |p) | Lu |p−2 Lu](Lun − Lu)dx + Kn

where

Kn
.
=

∫

Ω

a(| Lu |p) | Lu |p−2 Lu](Lun − Lu)dx → 0,

since un ⇀ u in D(L) and, a and L are continuous functions. Also, since the function
h(t) = A(| t |p) is strictly convex and limn→∞ sup〈Φ′(un), un − u〉 ≤ 0, we conclude
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that Lun(x) → Lu(x), almost everywhere in Ω. Next we remark that, if x ∈ Ω and
satisfies

Lun(x)(Lun(x)− Lu(x)) ≤ 0,

we have
Lun(x)Lun(x) ≤ Lun(x)Lu(x) ≤| Lun(x) || Lu(x) |,

which implies that
| Lun(x) |≤| Lu(x) | .

On the other hand, if x ∈ Ω and satisfies

Lun(x)(Lun(x)− Lu(x)) ≥ 0,

then

a(| Lun |p) | Lun |p−2 Lun(Lun − Lu) ≥ C | Lun |p−2 Lun(Lun − Lu),

by (A2) if | Lun(x) |> M for some positive constants C and M . Now, we set

ηn(x) =| Lun(x) |p−2 Lun(x)(Lun(x)− Lu(x))

and consider the sets

An = {x ∈ Ω :| Lun(x) |≤ M} ;
Bn = {x ∈ Ω :| Lun(x) |> M} ;
Cn = {x ∈ Ω : ηn(x) ≥ 0} ;
Dn = {x ∈ Ω : ηn(x) < 0} .

We have ∫

Ω

ηn(x)dx =

∫

Ω

ηnχAnχCndx +

∫

Ω

ηnχBnχCndx +

∫

Ω

ηnχDndx,

where χU denotes the characteristic function of the a set U ⊂ RN . By the Lebesgue
dominated convergence theorem,

lim
n→∞

∫

Ω

ηnχAnχCndx =

∫

Ω

ηnχDndx = 0. (16)

On the other hand,
∫
Ω

ηnχBnχCndx ≤ C
∫
Ω

a(| Lun |p)ηnχBnχCndx
= C

∫
Ω

a(| Lun |p)ηnχBn(1− χDn)dx
= C

∫
Ω

a(| Lun |p)ηnχBndx− C
∫

Ω
a(| Lun |p)ηnχBnχDndx

= C
∫
Ω

a(| Lun |p)ηn(1− χAn)dx− C
∫
Ω

a(| Lun |p)ηnχBnχDndx.



12 do Ó and Ubilla

This estimates together with the Lebesgue dominated convergence theorem and the
fact that limn→∞ sup〈Φ′(un), un − u〉 ≤ 0, imply that

lim
n→∞

sup

∫

Ω

ηnχBnχCndx = 0. (17)

From (16) and (17) we obtain

lim
n→∞

sup

∫

Ω

| Lun |p−2 Lun.(Lun − Lu)dx = 0,

which together with un ⇀ u in D(L) imply that un → u in D(L). The proof of
Lemma 9 is complete.

3 Proof of Theorem 1

3.1 Existence of critical point for functional Iλ in (4)

This part of the proof of Theorem 1 is an application of Theorem 4. Consider the
functionals

Φ(u) =
1

p

∫

Ω

A(| ∆u |p)dx and Ψ(u) =

∫

Ω

F (u)dx

defined on the Banach space E = W 2,p(Ω) ∩ W 1,p
0 (Ω). Next we check that the

conditions of Theorem 4 are satisfied. By our assumption (H2) and (6), it is standard
to prove that assumptions (A1) and (A2) of Lemma 9 hold with c1 = 0 and, of
course, the condition (I1) of Theorem 4 holds with L = ∆. Thus, by Lemma 9,
the derivative of the functional Φ belongs to the class (S+). Furthermore, from
assumptions (H1), (H2) and (H3) it is easy to see that conditions (7) and (I2) hold,
and using the Sobolev imbedding theorem we have

lim
n→∞

〈Ψ′(un), un − u〉 = lim

∫

Ω

f(x, un)(un − u) = 0,

for every sequence (un) in E such that un ⇀ u.
Finally, using assumption (H4), we show that condition (I3) holds, i.e., there

exists v ∈ E such that

lim
t→0

Ψ(tv)

Φ(tv)
= +∞. (18)
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First, note that by assumption (H5),

lim
t→0

F (t)

A(tp)
= +∞. (19)

Let v ∈ C∞
0 (Ω, [0, 1])\{0} such that 0 ≤ ∆v ≤ 1. We have

Ψ(tv)

Φ(tv)
=

p
∫

Ω

F (tv)

F (t)
dx

∫
Ω

A(tp | ∆v |p)
A(tp)

dx

F (t)

A(tp)
. (20)

Also, from (H5), by the Lebesgue dominated convergence theorem we get

lim
t→0+

∫

Ω

F (tv)

F (t)
dx =

∫

Ω

vr0+1dx

and

lim
t→0+

∫
A(tp | ∆v |p)

A(tp)
dx =

∫

Ω

| ∆v |p dx.

Therefore, passing to the limit in (20) and using (19) we obtain (18).

3.2 Regularity and the existence of solutions for system (1)

Here we prove that critical points of functional Iλ are indeed strong solutions of
problem (3).

Proposition 10 Let u ∈ E = W 2,p(Ω) ∩W 1,p
0 (Ω) be a critical point of functional

Iλ. Then u ∈ W 4,l(Ω) for some l > 1.

As a consequence of Proposition 10 we see that u ∈ W 4−(1/l),l(∂Ω). Hence,
integration by parts shows that u satisfies the second boundary condition of problem
(3). Therefore the pair (u, g−1(∆u)) is a strong solution of system (1).

Proof of Proposition 10. Assume that N > 2p, the other case is easiest. Using
the continuous imbedding W 2,p(Ω) ↪→ Lq(Ω) for q = Np/(N − 2p) and assumption
(H1) we see that f(u) ∈ Lq/r(Ω). Thus, from standard regularity argument we
get that v = g−1(∆u) belongs to W 2,q/r(Ω) which is continuously immersed in the
Sobolev space W 1,r1(Ω) with r1 = Nq/(Nr − q) (see [8]).
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Claim: g(v) ∈ W 2,l(Ω) for some l > 1.

Notice that from Claim, using standard regularity argument we get that u ∈
W 4,l(Ω).

Verification of Claim: For that matter it is enough to verify that g′(v)∂v/∂xi ∈
W 1,l(Ω) for some l > 1. We separate the proof into two cases.

Case 1. Assume that



s ≤ 2,
3N − 2

2N

1

r + 1
+

1

s + 1
≥ N − 2

N
+

1

(r + 1)(s + 1)

(21)

and that g is a differentiable function such that its derivative g′ is a Lipschitz
continuous function. In this case, it is well known that g′(v) ∈ W 1,r1(Ω). This
fact together with (21) imply that g′(v)∂v/∂xi ∈ W 1,l(Ω) for some l > 1. Hence,
Proposition 10 is proved in case 1.

Case 2. Assume that



s > 2,
1

r + 1
+

1

s + 1
≤ N − 2

N
+

1

(r + 1)(s + 1)

(22)

and that g is of class C2 with g′′(t) = O(| t |s−2) at infinity.

Next, we use the following result concerns superposition mapping on Sobolev
space due to Marcus and Mizel [10].

Let M(Ω) denote the space of real measurable functions in Ω. Given a Borel
function h : R → R we define the superposition mapping Th : M(Ω) → M(Ω) by
Thu

.
= h ◦ u.

Proposition 11 Assume that η, ξ are two numbers such that 1 < η ≤ ξ < N . Then
Th maps W 1,ξ(Ω) into W 1,η(Ω) if and only if the following conditions hold

1. h is locally Lipschitz in R;
2. the first order derivative of h satisfies the inequality

| h′(t) |≤ C(1+ | t |R) almost everywere in R,

where C is a positive constant and

R =
N(ξ − η)

η(N − ξ)
.
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We know that v ∈ W 1,ξ(Ω) where ξ = Nq/(Nr− q), thus using that g is of class
C2 and g′′(t) = O(| t |s−2) at infinity, we get that g′(v) ∈ W 1,η(Ω) where

s− 2 =
N(ξ − η)

η(N − ξ)
,

thus

η =
Nξ

(N − ξ)(s− 2) + N
.

We must have that η ≤ ξ, i.e.,

(N − ξ)(s− 2) ≥ 0,

since s > 2 we see that we must have

N ≥ ξ =
Nq

Nr − q
,

that is,
N − 2

N
+

1

(r + 1)(s + 1)
≥ 1

r + 1
+

1

s + 1
.

This completes the proof of Proposition 10
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