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Abstract

In this work we study the existence of positive solutions of the critical problem
(P) A%+ a(z)u = |uf* 2u, RN and u € D*?*(RY),

where 2** = 2N/(N —4), N > 5, a € LN/*(IRN) is a nonnegative continuous
function and A? is the biharmonic operator. We also prove a global compactness
result for the associated energy functional of problem (P), similar to that due to
Struwe in [22]. The basic tool employed here is the concentration compactness due
to P. L. Lions and a linking theorem on the cone of nonnegative functions.
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1 Introduction

The main purpose of this paper is to investigate the existence of positive solutions of the

fourth-order critical problem

A%u+ a(z)u = [ul* ?u, RN and u € D**(RY), (1.1)

where 2** = 2N/(N —4), N > 5, a: RY — IR is a nonnegative continuous function with
a € LN/*(IRN) and A? is the biharmonic operator.

*The authors have been partially supported by CNPq/Brazil
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Problems involving critical growth in second-order semilinear and quasilinear problems
have been object of intensive research in the last years, starting with the work of Brezis-
Nirenberg [8]. See, for example, [4, 24] for semilinear elliptic equations and [5, 14] for
quasilinear equations. For results involving biharmonic equations with critical growth, we
refer to [3, 6, 10, 11, 13, 15, 19] and references therein.

Here we extend to problem (1.1) the results of the paper of Benci-Cerami [4]. Also,
we prove a global compactness result similar to that due to Struwe in [21]. We use the
variational method and our arguments make use of the Lions concentration-compactness
principle the limit case (see [18]) and a linking theorem on the cone of positive functions.
This global compactness result is crucial to investigate the behavior of the Palais-Smale
sequence of the associated energy functional of problem (1.1). We would also like to
mention that this kind of problem as well a global compactness for the p-Laplacian
operator has been studied in [2].

We study the existence of solutions for problem (1.1), regarded as critical points of
the associated energy functional I : D*?(IR") — IR given by

1 1 1
I(u):E/IRN |Au!2dx—|—§/]RNa(x)u2dx— e /IRN |u

The main theorem of this paper is stated as follows.

2**
dz.

Theorem 1.1 Let a : IRYN — IR be a nonnegative continuous function such that

a(z,) >0, for some x, € RN, (1.2)
there are numbers 1 < p; < N/4 < py and, for N <7, py < N/(8 — N), such that

a € L*(RY), for all s € [py,ps) (1.3)

and
lal s < S2YN = 1), (1.4)

where S corresponds to the best constant for the embedding of D**(IRYN) in L* (IRY).
Then there exists a critical point u, € D**(IRN) of the functional I with

SNAIN < I(u,) < 26N/*/N.

Remark 1.2 Assumptions like (1.2) — (1.4) are quite natural and have already appeared
in the papers [2, 4] for the p— Laplacian and Laplacian operator, respectively. It should
be remarked that assumption (1.4) seems to be just technical and it leaves room for

improvement.
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This paper is organized as follows: In section 2 we list some elementary properties
and prove the fundamental results for Palais-Smale Sequences. In section 3 we prove the
main result of this paper, via a link theorem on the cone of nonnegative functions.

Notation. In this work we make use of the following notation.
We denote in a Banach space X the strong convergence by “ — 7 and the weak convergence
by “« — 7.
As usual, we say that a C''-functional ® : X — IR satisfies the Palais-Smale condition at
level ¢ (the (PS). condition for short) if every Palais-Smale sequence of ® at level ¢, that
is, ®(u,) — c and ®'(u,) — 0 in a dual space X*, is relatively compact.
Br(p) denotes as usual the open ball of IRY, centered at p and of radius R.
L"(IRY), 1 < r < oo denote Lebesgue spaces and by |u], = ([ |u|” dz)'/" their norm.
We denote by S the best constant of the immersion, D*?(IRY) — L?" (IRY), that is,

S = inf {/ |Aul® dz - w € D*?*(IRN) with / lu>" dx = 1} :

RN RN

where D*?(IRY) is the closure of C>°(IRY) with respect to the norm

1/2
Jull = ( / |Au12dx) .
RN

This infimum S is achieved by the functions s, given by

CyoN-4)/4

usy(r) = } (N—4)/2°

Cy = [(N = 4)(N = 2)N(N +2)]¥4%  (15)
[0+ |z —yf?

for any § > 0 and y € RN ( see [13, 18, 19, 25]).

2 Preliminary Results

This section supplies a basic tool needed to study the behavior of the Palais-Smale
sequences of I, the associated energy functional of problem (1.1). For that matter we
shall need the concentration-compactness principle due to P.L. Lions [18]. In what follows
we enunciate a version adequate for our purposes (see also [10, 23]).

Lemma 2.1 Let {u,} C D*?(IRN) with u, — u in D*?(IRN). Then, there exists
{yitien € RY and {v;}ien C IR, where A is at most countable set such that, for all

¢ € C(RY),
[l ot = [ oo+ 3 ot

€A
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Using Lemma 2.1, we investigate the behavior of the Palais-Smale sequences of the energy
functional I, : D*?(IRY) — IR given by

1 1
Io(u) == |Aul? do — lu
2 RN 2** RN

associated to the limiting problem

2**
dx

A% = [u]”" Pu, RY and u € D**(IRN). (2:6)

The next result is crucial to do a careful study of the behavior of Palais-Smale sequence
associated to the functional I. A version of this result for bounded domain and Laplacian

operator was proved by Struwe in [22].

Lemma 2.2 Let {u,} a Palais-Smale sequence for I, such that u, — 0 and u, # 0
in D**(IRN). Then, there exists a sequence {R,} C IR, {x,} C RY, v, a nontrivial
solution of the limiting problem (Py) and a Palais-Smale sequence {w,} for I, such that

for some subsequence of {u,} we have

W () = un(z) — RN"D29 (R, (x — 2,)) + 0n(1).

Proof. Let {u,} a Palais-Smale sequence for I, that is,
Io(uy) — cand I (u,) — 0 asn — oo. (2.7)

We can assume that 5
c> NSN/4 (2.8)

because if ¢ < %S N/4 " a similar arguments to that used by Brezis-Nirenberg in [8] shows
that u,, — 0 strongly in D?2(IRY). From (2.7), taking subsequence if necessary, we have

2

¥ |Au,|* de — ¢ asn — oo, (2.9)
RN

then by (2.8) and (2.9),
lim | A, | dz > SN/,

n—oo | BN

Choose {z,} C RY and {R,} C IR such that

1
sup/ |Aun|2dx:/ |Auy, | de = — SN/,
verN JB, () By () 2L

Ry Ry
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where L is a natural number such that Bs(0) is covered by L balls of radius 1, and scale

Up +— V() = RGNy, (/R + 2,,).

n

Thus I (uy) = Io(v,) and

1
sup / |Awv,|? do = / | A, | de = — SN/,
very JBiw) B1(0) 2L

Now, for each ® € D*?(IRY) the following sequence

®,(z) = ngN_4)/2q>(Rn(x — Zn))

satisfies
/ AUNACfndx :/ Av, Addx
RN RN
and
/ [, 22, EI;n dr = / |vn|2*t2 v, ® dx.
RN RN
Hence,

Io(vy,) — cand I (v,) — 0, asn — oo.

Thus for each bounded sequence {¢,} C D*?(IRN), we have
I’ (v,)(én) — 0 as n — oo. (2.10)

Considering v, € D*?(IRY), the weak limit of {v,} C D*?*(IRY), we have v, is a solution
of (P)s and by Lemma 2.1, for all ¢ € C>(IRY),

/ o gz — / ool o+ 3 by, (2.11)
RN RN ieA

for some sequence T = {y; : i € A} € RN and {y; : i € A} C IR. Using similar
arguments explored in [1, 14, 19], we can prove that A is empty or finite. Hereafter we
denote B, = B,(0) and I' = {y; € T : |y;| > 1}. Our objective is to show that v, is

nontrivial. If we assume by contradiction that v, is trivial, for all ¢ € C°(IRN \ T),

/ 0a|* pda — 0 (2.12)
RN

and by (2.10) and (2.12),
/ Avy? pdz — 0. (2.13)
RN
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Let p be a fixed real number such that
0 < p < min{dist(T', B;(0)), 1},

and
P (2) = O(x)va(),

where ® € C3°(B14,,[0,1]) is a cut-off function such that ® =1 in By ,/3 and ® =01in
BN\BHQp/g. We remark that

/ |AD,|* dz — 0, (2.14)
Bitp\B14,/3

because by (2.13),
/ | A, | dz — 0. (2.15)
B14p\B14p/3

Using the fact that {®,} is a bounded sequence, we have
I’ (v,)(®,) — 0asn — oo
hence

/ Av, AD, dx — / |vn]2**72 U, ®pdx = 0,(1)
Bitp

Biyp

and we find

[ e | N A 02 @ = 0,(1).
Biips B14p\Bi4,/3 Biip3 B14p\Bi4,/3
From (2.12), (2.14) and this last fact we conclude that
/ \A@n]2dx—/ 1, do = 0,(1)
Biy,/3 Biyp/3
or equivalently
/ IAD,|* dx —/ 1®,|* da = 0,(1). (2.16)
RN RN
Now, using (2.16) and the definition of S, we have
BNk [1 _ 55 ||o, 2***2} < on(1). (2.17)

Using the estimate

||<1>n||2s/B AvaPde+on(1) < [ |Avnf da + on(1)

140/3 Ba
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we obtain

1
[, < L/B A i+ 0u(1) = 55N + 0,(1). (2.18)

Combining (2.17) and (2.18) it follows

L\ /N1
lim sup ||®,[|* |1 — (—)

<0

n—oo 2

and we can conclude that
®,, — 0in D**(IRN).

Using again the definition of sequence {®,} we have

lim |Av,|* dz = 0,

n—oo Bl

contradicting the equality

1
., |Av,|” dx = ﬁsN/{ Vn e N,
thus v, is nontrivial.
To conclude the lemma, let ¥ € C®(RY,[0,1]) such that ¥(z) = 1 in B;(0),
U(z) = 0in RN\ By, and let

wy () = up () — R;N_4)/2vo(Rn(m - xn))\ll(R(x — Tp))

where the sequence { R} C IR is chosen satisfy R, (R) — 00. Using the same arguments
explored by Struwe in [22] we finish the proof of Lemma 2.2. [

Remark 2.3 If in Lemma 2.2 the sequence {u,} is nonnegative, then the function v, is
nonnegative. Moreover, if {u,} is a Palais-Smale sequence at level ¢ = S%/N, we have
that v, assume the best constant S, thus (see [18, 25]) there exist § > 0 and y € RN such
that v,(x) = us,(x), for all x € RN. Therefore, for all x € RN

un () = wy(z) + S(N_4)/8®5n7yn () 4+ on(1)

where @5, ,, = SUN/By;s . for some y, € RN and &, > 0.

The next result is a technical lemma and its proof we can be found in Brezis-Lieb [7]
(see also Alves [2]).
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Lemma 2.4 A: RK — RX; A(y) = [y["*y and n, : RN — RX such that n,(z) — 0
almost everywhere, n, € (LP(IRN))X (p > 2) and 7l (o (myyx < €. Then we have

/IRN |A(n, +w) — A(n,) — A(w)’p/(p—l) dr = on(1),

for each w € (LP(IRN))X fized.

Next we study the behavior of the Palais-Smale sequence of the functional I associated
to (1.1).

Theorem 2.5 (A Global Compactness Result) Let {u,} C D**(IRY) be a Palais-
Smale sequence of the functional I. Then, or {u,} possesses a strongly convergent

subsequence, or else there exists a finite sequence {z}, ..., 2%} of nontrivial solutions for

the problem (2.6) such that

k
2 2 P2
lunl® = fuol* + > ||22]|
j=1

and
k

I(up) = I(uo) + > In(z))

j=1

where u, is the weak limit of sequence {u,} in D**(IR").

Proof. First note that u,(r) — u,(x) almost everywhere in IRY and hence u, is
a solution of (1.1). Suppose that w, does not converge to u, in D*2(IRY), and let
{21} € D*?(IRY) given by z} = u,, — u,. Then

zt = 0but 2, £ 0in D*?(IRY)

and
Io(2}) = I(u,) — I(u,) + 0n(1) (2.19)
because we have
20 =l = vll® = Nuaall® = Joll* 4 0(1)
and by Brezis and Lieb [7]
|22 e = [t = o = [t — [1to 3o + 00 (1)

and

/IR alr)udr = /JR ale)u,dr + on(1),
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because u, converges weakly to u, in L™* since u? is bounded in LY/®=% and
Un(2) — uy(x) almost everywhere in IRY.
Moreover, by Lemma 3 we have
I e e e A e 2 T
RN
and
Gom = / a(z) [un — uo|* dz — 0.
RN
Thus we obtain
I (2)) = I'(up) — I'(uo) + 0, (1). (2.20)

Since I'(u,) = 0, using (2.19) and (2.20), we conclude that {z!} is a Palais-Smale sequence
of the functional I,. From Lemma 2.2, we have {R,,;} C R, {z,1} C IRY, 2! a nontrivial

solution of (2.6) and a Palais-Smale sequence {z2} for I, given by

2(x) = 2 (x) = RN Y221 Ry (2 — 21)) + 0a(1).

n n n, o

If we define
on(e) = Ry P2 @/ R + )
and
Zn(@) = vy (2) — 2,(2) + 0a(1),
we have
Un = %
Io(vy) = Ioc(zy) + 0a(1)
I(v,) = ou(1).
Thus
12211 = lloall® = =]l + oa (),
that is,
2207 = Nl = =207 + on0),
which implies
122017 = laeall® = o> = 123" + 0n (1),

consequently
IOO(E?L) = IOO(UrlL) - IOO(Z;) +on(1) = I(u,) — I(uo) — IOO(Z;) + 0n(1)

and
IL(Zh) = I (vy) = I (2,) + 0a(1) = 0,(1).
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If 22 — 0 in DYP(IRY), the proof is complete. Otherwise, we can iterating the above

ZF1 of nontrivial

ceey o

produce with the help of Lemma 2.2 to get a finite sequence {z.,

solutions for the problem (2.6) satisfying

122" > sM1, j=1,...k (2.21)
and
~L (12 2 2 ! P12
1Z5017 = llunll* = Hluoll® = > [[22]17 + 0a(1). (2.22)
j=1
Then
k—1
Io(Z7) = I(uy) — I(u,) — Lo (22) + 0,(1). (2.23)

1

.
Il

We notice that this iteration must terminate at some finite index k, because from (2.21)
and (2.22) we have

k—1
~ 112
0 < 12517 < lhwal® = luoll* = Y2 8™ = fluall* = uol* = (k = 1)V + 04(1). (2:24)

j=1

which implies, for k sufficiently large, that
. ~k 12
lim sup ||an <0,
n—oo

and hence zF — 0 in D"P(RY). [

Corollary 2.6 Let {u,} be a Palais-Smale sequence for I at level ¢ € (0,2SN/*/N).

Then {u,} has a subsequence strongly convergent in D*2?(IRN).

Next we have a regularity result which it will be used to prove a compactness criterion.
Lemma 2.7 Let u € D*?(IRY) be a distributional solution of
A%y = V(z)u in D'(RY), (2.25)
where V(x) € LN*(IRN). Then u € LP(IRN) for all p > 2N/(N —4), (N > 5).

Proof. The proof follows adapting arguments as those of Lemma B1 of [23] and applying
the Calderon-Zigmund inequality (see Theorem 9.9 in [16]). [
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Proposition 2.8 Let {u,} it be a nonnegative Palais-Smale sequence for I at level
c € (2SN /N, 4SNYN). Then {u,} has a subsequence strongly convergent in D>2(IRN).

Proof. If not, by Theorem 2.5,
k
I(un) — I(u,) + Z Io(23)
j=1

where u, is the weak limit of sequence {u,} in D*?(IR"). Thus v, is nontrivial, because

if u, = 0 we get
k
I(uy) — Z IOO(ZZ)
j=1

hence k = 1, since I, (22) > 2SV/4 /N for j = 1...k. On the other hand, as a consequence
of Lemma 2.7, we get that 2} is a classical solution of (2.6) with I..(z}) = 25V/*/N. Thus

I(u,) — 25N/4)N,
which is a contradiction with I(u,) — c € (25N/*/N,4SN/*/N).

Let f: D**(RN) — IR ;

Flu) = /]RN(|AU|2—|—CL(JC)U2)d:(:
and
M={uc D?»?(JRN);/ lul*" dz = 1}.

RN
We notice that {u,} C M satisfies

flun) = cand f'|p (un) — 0
if and only if v, = ¢(N=/8y,, satisfies
I(v,) — 2¢N*/N and I'(v,) — 0.
Corollary 2.9 If there exists a nonnegative sequence {u,} C M such that
F ) — ¢ and ' |aa (1) — 0,
for c € (S,24NS) | then the functional f has a critical point v € D*?*(IRN) at level c.

Remark 2.10 The Corollary 2.9 implies that (1.1) has at least a positive solution.
Moreover, it shows that (PS). condition holds in the cone of the positive functions to
functional f |y for all c € (S,2YN ).
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3 Proof of the Main Theorem

In this section we will show the existence of positive solution for problem (1.1). To this
end we do arguments which are similar in spirit to those addressed in [4].
Here we consider the family of functions (see 1.5)

CI)(S,y — S<4_N)/8U57y c D2’2(BN)7

which satisfies: @5, (2)|I> = S, |®s,(x)
g€ (N/(N —4),27].

=1 and ®5, € LURY), for all

Lemma 3.1 For each y € RN and q € (N/(N — 4),2*), we have

|Ads, | — 400 asd— 0, (3.26)
Ads,| . — 0 asd — 4o, (3.27)
[Psyl, — 0asd—0, (3.28)
[®sy], — 400 asd — +oo. (3.29)
Proof. Using the definition of the function ®;,,
N — 4)sN=Y/1 2|z —y|* + N§
e Al
[0+ |z —y|7]
then o
N —N/4
[A®sy | = rrmgs VN = 4)5~
and consequently (3.26) and (3.27) hold. Since
Cy b (e (4—N)q/2
a_ (N—4)(2*—q) /4 2 q
|(I)5,y|q - (S(N_4)/8) o ! /I;N [1+ |:L‘| ] d{[‘,
and 2** > ¢, we have that (3.28) and (3.29) hold. [

Lemma 3.2 The infimum inf{f(u) : u € M} is never achieved.

Proof. It is easy to see that inf{f(u) : v € M} > S. In fact the equality holds, because
by Hoélder’s inequality, with 2¢ € (N/(N —4),2*) and 1/q¢+ 1/t =1,

F(®s0) < S+ al, [@s0l;,

and by Lemma 3.1 - (3.28), |®s0[,, — 0 as d — 0.
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Therefore, if we assume that there is v € M such that f(v) = S, we obtain a
contradiction, because

S < ol < f(v) = 5.

[
Lemma 3.3 For each € > 0,
/ |ADs,[>dr — 0 as 6 — 0
RN\B.
Proof. Using the definition of ®5,, we obtain
02 (N o 4)25(N—4)/2 00 (7”2 4 N5)2
2 N
/]R . |ADs,[" do < R / g dr —02asd = 0.
[

Lemma 3.4 For each ¢ > 0, there exists § = §(¢) > 0 and 0 = 6(¢) > 0 such that, for all

d € (0,9] U [0, +00) we have
sup f(Psy) < S +e.

yeRN

Proof. For each y € IRY fixed, we distinguish two cases:
(i) s € (N/4,ps). By Holder’s Inequality,

/N a(x) |®s,|° dr < |al, |<I>570|§t, for y € RY,
R

where t = s/(s — 1). Then, by Lemma 3.1, there exists § > 0, such that for all 6 € (0, J]
sup / a(z) |5, dr < €.
yeRN J RN
Thus, for all § € (0, 9],
sup f(®s,) < S+ sup / a(z) |®s, [P dr < S +e.
yERN yeRN J RN

(ii) s € (p1,N/4). In this case we have 2t = 2s/(s — 1) > 2 and

2**/t

[ a(@) | @5, dz < al, @5, @5,

< (5($ﬁ>/s)(2t_2**)/t ’a|s §U—N)(2t—27) /4t
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Thus there exists 6 > 0, such that for all § € [§, +00),

sup / a(z) |®s,* dz < €
RN

yeRN

and hence for all § € [9, +00),

sup f(®s,) < S+ sup / a(z) |®s, > dz < S +e.
RN

yeRN yeRN
|
Lemma 3.5 Assume that |a|y,, < S(2N —1). Then
sup f(®@s,) < 2VS.
yeRN
6€(0,00)
Proof. Using the definition of ®;, and Holder’s inequality,
F(s) =S+ [ ala) s, de < 5+ faly
BN
thus
sup f(Psy) <5+ lalyyy-
yeR
§€(0,00)
Finally, using that |a|N/4 < S(2YN — 1), we obtain
sup f(®s,) < 2YVS.
yERN
§€(0,00)
|

Now we consider the function a : D*?(IRY) — IRVT! given by

1
o) = 5 [ (o) |Auf de = (3(u).9 (),
where
0 if |z| <1
o(z) { 1if |z > 1;
1 X 2 .
ﬁ(u) - g RNm’AU| dl‘,

y(u) = %/]RNJ(xHAuFdx.
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Lemma 3.6 For |y| > 1/2, we have

B(®sy) = y/ lyl +05(1) asd — 0.

Proof. Fixed ¢ > 0, by Lemma 3.3 there exists 6 > 0 such that for all § € (0, 5\),

1
—/ |AD;,|> do < e,
S JrRM\B.(4)

‘ﬁ(%y) 1 / 18D, do

|
If € > 0is small and |y| > 1/2, for all = € B.(y) we get

then

<e (3.30)

z )

— < 2e.
x| Tyl

Thus we have

|’A(I)5y| dx ~

’|y| S B(y)‘

1/ T 1
- (= — L) |A®s,[? do| + ‘ / |AD;,[* da
‘S Be(y) |z| |y Y S RN\B(y |y| Y

and hence

’ = A, [Pde| < 2c+e=3

= — = — syl dx €+e=3e¢

lyl S I |2l !
This fact together with (3.30) imply that

'ﬁ(%y) - Ll <y
[yl

for all |y| > 1/2 and § € (0,9). [

Now we consider the following set

T={ueMnX:al)=(0,1/2)},

where

Y = {u € D**(IRY);u > 0}.
Notice that T is a nonempty set, because ®;, belongs to the cone ¥ and for all § > 0 we
/ x
|l
1 2
s | o st = (@)
RN

have

|AD;,[Pdz = 0
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and

Y(Ps0) — 0asd — 0 and y(Ps,) — 1 as d — oo,

thus there exists 4; > 0 such that
(ﬁ(q)ého)a ,Y(q)t;ho)) = (07 1/2)

Lemma 3.7 We have
= inf :
Co = Inf flu) > S
Proof. It is obvious that ¢, > S. To prove this lemma we suppose by contradiction that

¢ = S. Thus there exists a sequence of nonnegative functions {u,} C D?*?(IR") such
that

|,

o = 1 and a(u,) = (0,1/2)

and

f(up) — S.

Using Remark 1 we obtain a sequence of points y,, C IRV, a sequence of positive numbers
4, and a sequence of functions w,, C D*?(IRY) converging strongly to 0 in D??(IRY) such
that

Up(z) = wy(x) + ®s,, 4, (), Vo € RN
Since w,, — 0 in D??(IRY), from the definition of a,
awn, + (I)én,yn) = a<q)5n,yn) + 0,(1).
Therefore

B(P®s, 4,) — 0, n— 400 (3.31)
Y(Ps, 4n) — 1/2, 1 — +00 (3.32)

Going if necessary to a subsequence, one of the following cases occurs for (®s, ,.) as

n — +00,
Op — o0, (3.33)
5, — 8 >0, (3.34)
0, — 0andy, — yo with |y |< 1/2, (3.35)
0, — Oand |y, |>1/2. (3.36)
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Now we shall prove that none of these possibilities can be true. Assume that (3.33) holds,

then by Lemma 3.1,

1 1
’y(q)(;n,yn) =3 ‘Aéényynﬁ d'x = 1 - _/ ‘Aéanyynﬁ da: = 1 - On(l)
S JRM\BL(0) S /i)

which implies a contradiction with (3.32). If (3.34) holds, then |y,| — +o00, because
otherwise {®s, ,, } would converge strongly in D*?(IRY), thus the same would be true for
{u,}, and therefore f(u) = S for some u € M, which it is a contradiction with Lemma

3.2. Thus,

fY(@én,yn) = ’7((1)60,yn)+OTZ( )

5 [ 0(2) | A®, [ dfb’—On(l)
= sszNU yn)|A<I>500\ dx
1+SfB )|A(I)5oyn| dz
1— on(l)

which implies a contradiction with (3.32). If (3.35) holds, thus

1 1
(®5,,) = = A, [Pde = = / AGs o dz = 0n(1)
S RN\ B (0) S RN\Bi1(yn)

which implies a contradiction with (3.32). If (3.36) holds, by Lemma 3.6,

B(Psy,) = Yn/ | Yn | +05(1) asd — 0,

which it is a contradiction with (3.31). [

The next three lemmas follow using the Change Variable Theorem and lemmas that

we showed until this moment.

Lemma 3.8 There exists 6, € (0,1/2) such that

f(®5,,) < (S+¢)/2, forye RV, (3.37)
Y Ps, ) < 1/2, for |yl <1/2, (3.38)
00 - | < 1 por 2172 (3.39)

Proof. First we remark that (3.37) follows from Lemmas 3.3 and 3.6, and (3.39) holds,
because Lemma 3.6. To show (3.38) we record the following equality

1 1
7((1)5,1/) = §/||>1 ‘A(Dé,y‘de = §/| - ’A(I)é,o‘dea
x|> T—=yY|=Z
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thus X
Y Psy) =1— _/ ‘Aq)é,oﬁ dr — 0asd — 0.
S Bi1(y)

This yields (3.38). |

Lemma 3.9 There exists 6o > 1/2 such that for all y € RY,

F(®s,,) < (S+c)/2, (3.40)
Y ®s,,) > 1/2. (3.41)

Proof. From Lemmas 3.4 and 3.7 we show (3.40). And, by similar argument as used in
the proof of Lemma 3.8, we show (3.41). |

Lemma 3.10 There exists R > 0 such that for y € RN \ B(0, R) and § € [0y, 0o,

f((Pé,y) < (S+Co)/2a (342)
(B(Psy) [Y)mr > 0. (3.43)

Proof. To show this lemma we use the definition of ®5, and the same arguments
explored in [4]. [

Now we consider the map @ : RN x (0,00) — D*?(IRN) given by

Q(yv 5) = (I)é,y
and the following sets

V' = Bg(0) x (61, 02),

0 = Q)

H = {heCcEnM,2NM): h(u) =uif f(u) < (S+c)/2},
' = {AcXnM:A=h(O), for some h € H}.

Lemma 3.11 Let F : V — RN given by

Fd) = (00 Q)0) = 5 [ (Fo(a) a0, P

Then
deg(F,V,(0,1/2)) = 1.
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Proof. Consider the homotopy
Z(t,.) =tF + (1 —t)Idy
which satisfies (0,1/2) ¢ Z(t,0V), that is, for every (y,d) € 9V, we have
(tB(Psy) + (1 — 1)y, t7(Psy) + (1 —1)3) # (0,1/2).
To prove this fact we distinguish the cases.
(i) If | y |< 1/2, from (3.38) we have v(®s, ,) < 1/2, thus for all ¢ € [0, 1],
ty(Ds, ) + (1 —1)d < 1/2.

(ii) If 1/2 <| y < R, from (3.39),

Y 1

o=

‘ ( 1y) | y | 4

hence, for all ¢ € [0, 1],
Y
| 16(Ps, ) + (L —=t)y | = | tm + A=y | —[t6(Psy) — ¢
> t+(1—t)|y|—t/4

> 1/2.

(iii) If | y |< R, from (3.41), y(®s, ) > 1/2, thus for all ¢ € [0, 1],
ty(Ps,,) + (L —1)0 > 1/2.
(iv) If | y |= R, from 3.43, for all § € [§1, 5] and ¢ € [0, 1],
(tB(Psy) + (L= )y ly)my > (1—1t) |y [*= (1 - t)R™
Therefore, by the homotopy invariance of the topological degree,

deg(F,V,(0,1/2)) = deg(Idy,V,(0,1/2)) = 1.

Lemma 3.12 ANT #0, for all AeT.

Y

Iyl
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Proof. Consider the map
Fy=aohoQ: RY x (0,00) — IRY x (0,00).

We claim that Fj,(y,0) = F(y,9), for all (y,d) € 0V. In fact, if (y,d) € OV, by (3.40),
(3.37) and (3.42), we have

f(Dy5) < (co+9)/2,

thus
h(®ys) = Dy 5.

So, for all (y,d) € IV,
Fu(y,0) = a(h(@,5)) = a(@,5) = F(y,).
Therefore, by the properties of the degree theory and Lemma 3.8 we have
deg(Fy, V,(0,1/2))) = deg(F,V,(0,1/2))) = 1,
which implies that for all h € H, there is (y,d) € V such that

a(h(®sy)) = (0,1/2).

Proof of Theorem 1.1 Consider the minimax level

= inf
c ;‘rérilelgf(w,

and
Kc={ueXnNM: f(u) =cand f'|p (u) = 0}.

It is easy to see that the proof of Theorem 1.1 is a consequence of the following.
Claim 3.13 S < ¢ < 2YNS and K, is nonempty.

Proof of claim 3.13 Using the definition of minimax level ¢ and Lemma 3.5, we have

¢ <sup f(u) < sup f(®s,) < 2VVS. (3.44)
"eo oo

On the other hand, by Lemma 3.11, ANY # ) for all A € I, thus

c>inf f(u)=c, > S. (3.45)

ueY
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From (3.44) and (3.45)
S <e<2v8.

Suppose now K, = (). For each s € IR, denote
ff={uexnM: f(u) <s}.
By Corollary 2.9, the Palais-Smale condition holds in
{fueonNM:S < flu) <22NsY.

Thus, using the deformation lemma there is ¢, > 0 and n € C([0,1] x XN M, ¥ N M)
such that

n(t,u) =ufor t =0 or (t,u) € (0,1) x f<CU(ZNM\ fr)

and
(1, fetee/2) C n(1, foer/?).

Let Ay € I" such that

c < sup f(u) < c+€/2,
ucAp

thus 7(1, Ap) € T and sup,e .4, f(u) < ¢ — €/2 which is a contradiction and we
concluded the proof of Theorem 1.1.
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