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REMARK. In case #9(x) converges tO f(x) for almost every € Q the
lemma says that

fim nf [ P )ude) 2 [ faucaa)

Even in this case the inequality can be strict. To give an example, consider
on R the sequence of functions fi(z) = 1/j for |z| < j and fi(z) =0
otherwise. Obviously Jr #i(z) dz = 2 for all j but fi(z) =0 pointwise for
all .

@ So far we have only considered the interchange of limits and integrals
for nonnegative functions. The following theorem, again due to Lebesgue, is
the one that is usually used for applications and takes care of this limitation.
It is one of the most important theorems in analysis. It is equivalent to the
monotone convergence theorem in the sense that cach can be simply derived

from the other.

1.8 THEOREM (Dominated convergence)

Let f*, f2,... be a sequence of complez-valued summable functions on (Q,%,
©) and assume that these functions converge to a function f pointwise a.€.
If there exists a summable, nonnegative function G(z) on (£, 3%, p) such that
\fi(z)| < G(=) for all § =1,2,..., then |f(z)| < G(z) and

im [ f9(@)u(de) = / F(2)u(da).
Q Q

j—oo

» Caution: The existence of the dominating G is crucial!

PROOF. It is obvious that the real and imaginary parts of 17, R’ and I,
satisfy the same assumptions as 7 itself. The same is true for the positive
and negative parts of R/ and I7. Thus it suffices to prove the theorem for
nonnegative functions {3 and f. By Fatou’s lemma

!
}

Yiminf [ 7> / 1.
Q

j—oe  Ja

Again by Fatou’s lemma

lim nf /Q (G(a) - Fi()u(da) = /Q (616) ~ FlaNu(eo)

j—oo
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since G(z) — fi(z) > 0 for all j and all z € Q. Summarizing these two *
inequalities we obtain

liminf/fj( (dz) /f p(dz) >hmsup/fj(:r)p(dx
Q

J— j—o00

which proves the theorem. |

REMARK. The previous theorem allows a slight, but useful, generalization
in which the dominating function G(z) is replaced by a sequence GI(z) with
the property that there exists a summable G such that

/ |G(z GJ (z)|p(dz) = 0 asj— o0

and such that 0 < |f7(z)| < G7(z). Again, if f7(z) converges pointwise a.e.
to f the limit and the integral can be interchanged, i.e.,

lim f7 p(dz) / f(z

j—o0

To see this assume first that f7(z) > 0 and note that
/(G—fj)+—>/(G—f)+ s j — 00

since (G — f7)+ < G, using dominated convergence. Next observe that
[ie-pr=[c-cra-p) s [G-6)

since GJ — fi > 0. See 1.5(5). The last integral however tends to zero as
j — o0, by assumption. Thus we obtain

im [@- )= [©@-pi=[©-5)
since clearly f(z) < G(z). The generalization in which f takes complex
values is straightforward.

® Theorem 1.8 was proved using Fatou’s lemma. It is interesting to note
that Theorem 1.8 can be used, in turn, to prove the following generalization
of Fatou’s lemma. Suppose that f7 is a sequence of nonnegative functions
that converges pointwise to a function f. As we have seen in the Remark
after Lemma 1.7, limit and integral cannot be interchanged since, intuitively,




Sections 1.8-1.9 21

the sequence f7 might ‘leak out to infinity’. The next theorem taken from
[Brézis-Lieb] makes this intuition precise and provides us with a correction
term that changes Fatou’s lemma from an inequality to an equality. ‘While it
is not going to be used in this book, it is of intrinsic interest as a theorem in
measure theory and has been used effectively to solve some problems in the
calculus of variations. We shall state a simple version of the theorem; the
reader can consult the original paper for the general version in which, among
other things, f — | f|P is replaced by a larger class of functions, f — 3(f)-

1.9 THEOREM (Missing term in Fatou’s lemma)

Let fI be a sequence of complex—valued functions on a measure space that
converges pointwise a.e. 10 a function f (which is measurable by the remarks
in 1.5). Assume, also, that the f1’s are uniformly pth power summable for

some fizred 0 < p < 00, L€,
[ 17 @putdn) <0 for i =12
Q
and for some constant C'. Then

i [ 1P - |e) - f@P - @l =0 (O
Q

Jj—o0

REMARKS. (1) By Fatou’s lemma, [ | fP<C.
(2) By applying the triangle inequality to (1) we can conclude that

/uﬂﬂ=/vv+/u—owmux 2)

where o(1) indicates a quantity that vanishes as j — oo. Thus the correction
term is [ |f — f7IP, which measures the ‘leakage’ of the sequence f7. One
obvious consequence of (2), for all 0 < p < 00, is that if [|f—f[P —0 and A

L i fi — f ace., then
/wwa/uw

, (In fact, this can be proved directly under the sole assumption that
[1f - f7P — 0. When 1 < p <00 this a trivial consequence of the triangle
inequality in 2.4(2). When 0 < p < 1 it follows from the elementary in-
equality |a+ bjP < |afP +[b[P for all complex a and b.) Another consequence
of (2), for all 0 < p < 00, is that if [|fi]P— [IfIP and fi — f a.e., then

[ir-r =0
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PROOF. Assume, for the moment, that the following family of ineqﬁalities,
(3), is true: For any € >0 there is a constant C, such that for all numbers

a,beC

|la + bIP — [bf?| < €fbf” + Celal”. (3)
Next, write fi=f+ ¢’ so that g/ — 0 pointwise a.e. by assumption. We
claim that the quantity '

i = (|If + g1 — 1P = 1FP| = elg’P) 4 (4)

satisfies lim;—oo | G = 0. Here ()4 denotes as usual the positive part of
a function h. To see this, note first that

17+ PP =g’ — I£1F]
<|If+ P =P+ 1P < elg’? + (1 + Ce)l PP

and hence GZ < (1 + C:)|f|P. Moreover GJ — 0 pointwise a.e. and hence
the claim follows by Theorem 1.8 (dominated convergence). Now

[l +op-top-iiri =< [P+ [ 6L
We have to show [ |g7]? is uniformly bounded. Indeed,
167 = [1i-pp <2 [isprirm 2o

Therefore, A A :
imewp [ |If-+6F =19 - FF] <€D
j—00
Since ¢ was arbitrary the theorem is _prove:d.

It remains to prove (3). The function £ — |t|P is convex if p > 1. Hence
la +b|P < (la| + [b])P < (1 — A)Plaff + AL=P|p|P for any 0 < A < 1. The
choice A = (1 + g)~1/(P~1) yiclds (3) in the case where p > 1. f0<p<1
we have the simple inequality |a+ b|P —[b[F < |a|P whose proof is left to the

reader. H

® With these convergence tools at our disposal we turn to the question
of proving Fubini’s theorem, 1.12. Our strategy to prove Fubini’s theorem
in full generality will be the following: First, we prove the ‘easy’ form in
Theorem 1.10; this will imply 1.5(9). Then we usc a small generalization of
Theorem 1.10 to establish the general case in Theorem 1.12.,




