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Existence and Uniqueness of solutions

Silke Stapelkamp

ABSTRACT. We consider the equation Agnu+ Au + u% =0ina
domain D' in hyperbolic space H", n > 3 with Dirichlet boundary
conditions. For different values of A we search for positive solutions.
Existence holds for A* < A < A, where we can compute the value
of \* exactly if D’ is a geodesic ball. In particular it turns out that
- like in the Euclidean space - the case n = 3 is different from the
case n > 4 and has to be studied separately.

1 Introduction

We consider the problem

Agpnu+Mu+u> =0 in D

vu>0 inD' (BN)
u=0 on oD’
where D' is a domain in hyperbolic space H*, n > 3, A € R and
2% = % the critical Sobolovexponent. We want to know for which

values of \ there exists a solution u € W,?(D').

The same problem for balls in Euclidean space was solved in 1983 by
Brezis and Nirenberg [BN] and in the following years a lot of extensions
of this problem appeared.

In spaces of constant curvature it has been studied by Bandle, Bril-
lard and Flucher [BBF]. The special case of $* has been treated in
[BB]. Our aim is now to extend the problem to domains in hyperbolic
space. It turns out that the results are very similar to the results in
the Euclidean case.

After a brief introduction in the hyperbolic space we will discuss the
existence of nontrivial solutions for the two cases n > 4 (section 3)
and n = 3 (section 4). In the special case n = 3 we will make further
remarks on properties of solutions.

2 The hyperbolic space

The hyperbolic space H" is defined as a subset of R"*! by
H'={z e R"" | 2]+ -+ — 22, =—1, Tn41 >0}



We can use the stereographic projection to map H" into R"™. This is
done by mapping a point P’ in H" to a point P € R™. P is the inter-
section of the line between P’ and the point (0,...,0,—1) and R™. In
particular, the space H" is mapped into B(0,1) C R".

Figure 1: The stereographic projection from H"” into B(0,1) C R"™

Change of coordinates transforms the line element of H" into

2

ds = p(z)|dz|, with p(z) = s

The gradient, the Dirichlet integral and the Laplace-Beltrami operator
corresponding to this metric are

Vi = L4
p

Du= [ |Vunul?ds :/ (Vul>p"? dzx
D D
Apnu = p " div(p" *Vu)

Here is D' € H™ and D its stereographic projection into R".

The first eigenvalue of the Laplace-Beltrami operator with Dirichlet
boundary conditions will be denoted by A;.

3 The casen >14

The main result of this section is



Theorem 1 (Existence of solutions for n > 4)
Let D' be a bounded domain in H",n > 4. Then the following state-
ments are true:

i) For A > \; the problem (BN) has no nontrivial solution.

ii) For A < @ and if D' is starshaped, the problem (BN) has no
nontrivial solution.

iii) If X € (@, A1) there exists a nontrivial solution of the problem
(BN).

Remarks e Statement i) and ii) of Theorem 1 remain true if n = 3.
They can be proved in the same way.

o If D' is a geodesic ball in H” we may assume without loss of genera-
lity that D' is centered at (0,...,0,1) € H". Then the stereographic
projection D of D' is a ball in R™, centered at the origin with radius
0 < R < 1. We can illustrate the statements of Theorem 1 in the
following picture

Nonexistence

Existence
n(n—2)

Nonexistence

1 R
Figure 2: Existence of solutions for n > 4

Proof of Theorem 1 We shall sketch the proof and refer to [St] for
more details.

Denote by ¢; the eigenfunction of —Apg» corresponding to the eigen-
value A\; on D' with ¢ > 0in D’'. Assume that v is a solution of (BN).
Then

/A]Hnugpl ds—i—)\/ U Py ds-l—/ uZ*_lwl ds = 0

This is equivalent to

/()\—Al)ugol ds = —/ u” "oy ds.
. —_—

N

-~

>0 >0



The equality above only holds if © = 0. This completes the proof of
the first statement.

To show the second claim we assume that v is a nontrivial solution of
(BN) and we define

n—2
v(z) :=p > () u(r)
The function v is a nontrivial solution of
- 2 *
Av + (A—%)p%ﬁk?ﬂ '=0 inD
M v>0 in D
v=0 ondD

(BN¥)

=

where D C R™ is the stereographic projection of D' into R™. Notice
that D is also starshaped.

We now use the classical Pohozaev inequality. Multiplying the equation
(BN%) by xVuv we get

(=Av)(xVv) = (V¥ 7 4 ppv) (x Vo)

This equation is equivalent to
2 2

|Vl Yo

—V(V’U(va)— 5 +x (2—*4— 2pv ))
_n—2 2 oy M99 M oog 9
= — (|IVv]* —v*) 2,upv x2v Vp

Integration over D yields

Ll

(x-v)dS = ,u/ (p* + ngQ)’UQ dx

3 Lol

Because D is starshaped, the left hand side of the equation is strictly
positiv if v is a nontrivial solution. On the other hand, the right hand
side is negativ if A < - "4 2) which is a contradiction. We conclude that
v=0in D and v = 0 in D’ and the second statement is proved.

(r-v)dS = u/ v*p*(1 + plz|?) dx

Existence of solutions of problem (BN) will be shown by the concentration-
compactness alternative ([Lil], [Li2]; for a summary see [B]).

We have to prove that there exists a function u € W2?(D, pdz) so that
the value of the quotient

Jp |VulPp"=? dz — X [, up"™ dx
(Jpu>p" dz)™*

@Qp(u) =



is smaller then S* where S* denotes the best Sobolev constant of the
embedding of W,**(D) into L?" (D). As trial functions we choose

2y PO
(e +z?) =

with ¢ a smooth function, ¢ = 1 near 0 and ¢ = 0 on 0D and estimate
the quotient:

Oro(11,) < S*-l—O(san)—i-c(@—/\)s ifn>5
hp\tte) = S*—i—O(s)—i—c(@—/\)elns ifn=14

for positive € and with some constant ¢ > 0. We conclude Q) ,(u.) < S*

if € is small enough.

In view of the concentration-compactness alternative there exists a mi-

nimizer of the quotient if A > @ and this minimizer is a solution

of problem (BN) if A < ;. 0

4 The case n =3

It turns out that in this case the value of \* depends on the geometry
of D'. We will give a complete picture of existence of solutions for
geodesic balls. Without loss of generality we can assume that this ball
has his center in (0,0,0,1) € H3.

Our main result is

Theorem 2 (Existence of solutions for n = 3)

Let D' be a geodesic ball in H* with center at (0,0,0,1), and D =
B(0,R) with 0 < R < 1 the stereographic projection of D' into R3.
Put

71_2

16 arctanh?2 R’
Then the following statements are true:

i) For A < X* and A > \; the problem (BN) has only the trivial
solution.

N=1+

i) If X € (A\*, A1) there exists a nontrivial solution of the problem
(BN).
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Figure 3: Existence of solutions for n = 3

Proof of Theorem 2 Again we sketch the proof and refer to [St] for
details.

The nonexistence results for A > A\; and )\ < % can be shown in the
same way as in the case n > 4.

To show the nonexistence of a nontrivial solution for % < A< A* we
use again a Pohozaev argument with special test functions.

By the moving plane method we know that if a nontrivial solution
exists it is radial. Problem (BN) is equivalent to

u” + gu' +p* M +p*u® =0 in (0, R)
u>0 in (0, R) (BNR)
u(R) =0

Testing the equation (BN R) with r2f(r)u’ where

sinh(2v/1 — Ag(r)) - cosh(2v/1 =X g(r)) if2<A<1
flr)=q9(r) ifA=1
sin(2v/ A —1g(r)) - cos(2y/A — 1 g(r)) ifl< A< N

and ¢(r) = arctanhr

gives us after some computations an integral equality for the solution
u which can only be valid if u = 0. So the first statement is proved.

To prove the second part of Theorem 2 we must again estimate the
quotient @) ,. Assuming ¢ is a smooth function, ¢(0) =1, ¢'(0) = 0,



¢(R) =0 and

_ (=)
uc(z) = (e + |z[2)1/2
we get
Quplus) = 5"+ %F(@, ) +0(e)
with

R R R
F(p,\) = 47r/ ©’p dr + 47r/ ©*p? dr — 47r/\/ ©*p® dr.
0 0 0

Now choose ¢(r) = p1(r) = (1 — r?) - cos(m/2 - arctanh r /arctanh R).
This function satisfies the assumptions above and is a ground state of
the eigenvalue problem

—(pp))' +p°p1 — NP’ =0 in (0, R)
©1 >0 in (0,R)
©1(R) =0, ¢1(0)=0

In particular
R R
o dr + [ dr -

R
fo QO%p?’ dr

R R R
/ ©p dr +/ o p? dr > )\*/ o*p® dr
0 0 0

for all admissible functions . We deduce

and

R
Fp,\) > 47r(/\* — A) / pP? dr
0

and F(p,A) < 0if A > A If ¢ is small enough it follows that
Qrp(us) < S*. Again we use the concentration-compactness alter-
native to conclude that there exists a minimizer and if A < A; this
minimizer is a solution of our problem (BN). 0

Remarks For n = 3 the following properties of nontrivial solutions of
the problem (BN) are known:

e By the moving plane method it can be shown that all solutions
of problem BN are radial and by [KwL] we know that a radially
symmetric solution is unique.



Suppose that uy is a solution of equation (BN) for A € (A*, \y).
If X tends to A\; the solution uy belonging to A tends to 0 pointwise.

If X tends to A\* the radially symmetric solution concentrates at
the origin.

(see [B] for references)
Suppose that D' C H? is a geodesic ball with center at ¢ :=

(0,0,0,1) € R* and G is Green’s function of Ag» + A on D' with
Dirichlet boundary conditions.

After changing to radial symmetric coordinates in Euclidean space
we can compute G with singularity in 0.

11—
2 r
(— cos(4V A — 1arctanh R — 2/ A — 1 arctanh r)

+ cos(2v A — 1 arctanh r))

G(r)

Denote the regular part of G by hy(r). hx(r) is a monotone de-
creasing function in r and is strictly negativ if A < A\*. If A > \*
the function hy(r) changes sign in (0, R). In particular hy«(0) = 0.

This supports the conjecture of Budd and Humphries ([BuH],
confirm also [B]) as for balls in $3.
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