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Gagliardo-Nirenberg, composition and products
in fractional Sobolev spaces

Haı̈m brezis and Petru Mironescu

Dedicated with emotion to the memory of Tosio Kato

I. Introduction

Our main result is the following: let 1 ≤ s < ∞, 1 < p < ∞, and let

m =
{
s, if s is an integer
[s] + 1, otherwise.

Set

R = {f ∈ Cm(R) ; f (0) = 0, f, f ′, . . . , f (m) ∈ L∞(R)}.
THEOREM 1.1. For every f ∈ R the map ψ �→ f (ψ) is well-defined and continuous

from Ws,p(Rn) ∩ W 1,sp(Rn) into Ws,p(Rn).

An immediate consequence of Theorem 1.1 is

THEOREM 1.1’. Let � be a smooth bounded domain in R
n and f ∈ Cm be such that

f, f ′, . . . , f (m) ∈ L∞. Then the map

Ws,p(�) ∩ W 1,sp(�) � ψ �→ f (ψ) ∈ Ws,p(�)

is well-defined and continuous.

Our original motivation in proving Theorem 1.1 comes from the study of properties of
the space

X = Ws,p(�; S1) = {u ∈ Ws,p(�; R
2) ; |u| = 1 a.e.}.

Here, 0 < s < ∞, 1 < p < ∞ and � is a smooth bounded simply connected domain in R
n.

In particular, one may ask whether X is path-connected and whether C∞(�; S1) is dense in
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X. Several results concerning the first question were obtained in [10] (and subsequently in
[18]) for the spaces W 1,p(M; N), where M , N are compact oriented Riemannian manifolds.
The second question was studied in [3], [4] and [18] for the spaces W 1,p(M; N) and in [16]
for the spaces Ws,p(M; Sk).

The case where N = S1 is somehow special; one may attempt to answer these questions
by lifting the maps u ∈ X. Here is a strategy: given u ∈ Ws,p(�; S1), one may try to find
some ϕ ∈ Ws,p(�; R) such that u = eiϕ . Then, hopefully, the path

t ∈ [0, 1] �→ eitϕ

will connect continuously u0 ≡ 1 to u.
Moreover, if ϕj are smooth R-valued functions on � such that ϕj → ϕ in Ws,p, then,

hopefully, the smooth maps eiϕj converge to u in Ws,p(�; S1).
We are thus naturally led to the study of the mapping

Ws,p(�) � ψ �→ f (ψ)

for “reasonable” functions f (e.g. f (x) = eix − 1), where � is either a smooth bounded
domain or � = R

n and s ≥ 1.
In a forthcoming paper [12], we will apply Theorem 1.1 to settle the above mentioned

questions about Ws,p(�; S1) when s ≥ 1.
Another motivation for analysing composition and products in fractional Sobolev spaces

comes from the study of nonlinear evolution equations (e.g. Schrödinger equation) in Hs

spaces; see e.g. T. Kato [20] and the references therein. In fact, the Appendix in [20]
contains a result which is a special case of the Runst-Sickel lemma about products: it
coincides with Lemma 4.1 below when q = 2.

REMARK 1.2. The reader may wonder why we impose the additional condition ψ ∈
W 1,sp. At least for the case we are interested in, i.e. f (x) = eix − 1, this condition is also
necessary in order to conclude that f (ψ) ∈ Ws,p(Rn).

Indeed, assume that ψ ∈ Ws,p and (eiψ − 1) ∈ Ws,p. Then (eiψ − 1) ∈ Ws,p ∩
L∞ �⇒ (eiψ −1) ∈ W 1,sp (by Gagliardo-Nirenberg, see Corollary 3.2 below). Therefore,
ieiψDψ ∈ Lsp, so that Dψ ∈ Lsp. Thus ψ ∈ W 1,sp.

REMARK 1.3. There is a vast literature about composition, starting with the result of
Moser [26] asserting that f (ψ) ∈ Wm,p when ψ ∈ Wm,p ∩L∞, f ∈ R and m is an integer.
(See the historical comments at the end of Section V). Unfortunately, for the application
we have in mind, the lifting ϕ of an arbitrary u ∈ Ws,p(�; S1) need not belong to L∞.
However, if s ≥ 1 and if the lifting ϕ exists in Ws,p(�; R), it must belong to W 1,sp, by the
above remark.

Surprisingly, Theorem 1.1 is new, but it is closely related and implies two earlier results
having a similar flavour; see Adams-Frazier [1] and Runst-Sickel [32], Theorem 1.1, p. 345
and Remark 1, p. 348.
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REMARK 1.4. When s is an integer, the proof of Theorem 1.1 is very easy via the
standard Gagliardo-Nirenberg inequality [27] (e.g. Wk,p ∩ L∞ ⊂ W�,q , with � < k,
�q = kp). When s > 1, s is not an integer, our proof is quite involved. The standard form
of the Gagliardo-Nirenberg inequality (e.g. Ws,p ∩ L∞ ⊂ Wσ,q , with σ < s, σq = sp)
does not suffice. We rely on a “microscopic” improvement (due to T. Runst [31]) of the
Gagliardo-Nirenberg inequality, in the Triebel-Lizorkin scale, namely Ws,p ∩ L∞ ⊂ F̃ σ

q,ν

for every ν. We present in Section III a more general form of the Gagliardo-Nirenberg
inequality due to Oru [28]; see also P. Gérard, Y. Meyer and F. Oru [17] for a special case.
We combine this with an important estimate on products of functions in the Triebel-Lizorkin
spaces, due to T. Runst and W. Sickel (see [32] and Section IV).

It would be interesting to find a more elementary argument which avoids this excursion
into the F̃ s

p,q scale.

The paper is organized as follows. In Section II we recall the definition of the Triebel-
Lizorkin spaces F̃ s

p,q , their connection with the classical function spaces and some results
needed in the proof of Theorem 1.1. In Section III we recall the general form of the
Gagliardo-Nirenberg inequality, due to Oru [28]. Section IV deals with the Runst-Sickel
lemma. This beautiful result contains all the usual statements about products in fractional
Sobolev spaces: e.g. it implies that if u, v ∈ Ws,p ∩ L∞ then uv ∈ Ws,p ∩ L∞, and if
s ≥ 1, then uDv ∈ Ws−1,p. More consequences of the Runst-Sickel lemma are presented
in Section VI. Theorem 1.1 is proved in Section V.

II. Triebel-Lizorkin spaces and maximal inequalities

We start by recalling the Littlewood-Paley decomposition of temperate distributions.
Let ψ0 ∈ C∞

0 (Rn) be such that 0 ≤ ψ0 ≤ 1, ψ0(ξ) = 1 for |ξ | ≤ 1, ψ0(ξ) = 0 for |ξ | ≥ 2.
Set ψj (ξ) = ψ0(2−j ξ) − ψ0(2−j+1ξ), j ≥ 1, and ϕj = F−1(ψj ), j ≥ 0.

Thus

ϕj (x) = 2njϕ0(2
j x) − 2n(j−1)ϕ0(2

j−1x), j ≥ 1, (1)

and∑
k≤j

ϕk(x) = 2njϕ0(2
j x), j ≥ 0. (2)

For f ∈ S′, set fj = f � ϕj . We have f =
∑
j≥0

fj in S′.

DEFINITION. ([34], 2.3.1) For −∞ < s < ∞, 0 < p ≤ ∞, 0 < q ≤ ∞, set

F̃ s
p,q = {f ∈ S′ ; ‖f ‖

F̃ s
p,q

= ‖‖2sj fj (x)‖�q ‖Lp(Rn) < ∞}.
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For 0 < p < ∞ or p = q = ∞, these are the standard Triebel-Lizorkin spaces F s
p,q

[34]. We have added the ˜ to avoid confusions in the exceptional cases where they do not
coincide. When 0 < p < ∞, different choices of ψ0 yield equivalent quasi-norms ([34],
2.3.5). The usual function spaces are special cases of these Triebel-Lizorkin spaces ([34]):

a) Lp = F̃ 0
p,2, 1 < p < ∞;

b) Wm,p = F̃ m
p,2, m = 1, 2, . . . , 1 < p < ∞;

c) Ws,p = F̃ s
p,p, 0 < s < ∞, s non-integer, 1 ≤ p < ∞;

d) Ls,p = F̃ s
p,2, s ∈ R, 1 < p < ∞;

e) L∞ ⊂ F̃ 0∞,∞, i.e.,

sup
j,x

|fj (x)| ≤ C‖f ‖L∞ . (3)

In this list, when 1 ≤ p < ∞, 0 < s < ∞, s non-integer, the Ws,p are the Sobolev-
Slobodeckij spaces. An equivalent norm on these spaces may be obtained as follows: let
s = k + σ , k integer, 0 < σ < 1. Then

‖f ‖p
Ws,p ∼ ‖f ‖p

Lp + ‖Dkf ‖p
Lp +

∫
R

n

∫
R

n

|Dkf (x) − Dkf (y)|p
|x − y|n+σp

dx dy (4)

([34], 2.6.1). These spaces also coincide with the Besov spaces Bs
p,p (recall that s is not

an integer). We warn the reader that, for p �= 2, the spaces Ws,p do not coincide with the
Bessel potential spaces Ls,p.

We will often use the trivial fact that, for fixed s and p, the space F̃ s
p,q increases with q.

The following result is well-known:

LEMMA 2.1. ([35]) Let 0 < s < ∞, 1 < p < ∞, 1 < q < ∞. For every j ≥ 0, let
f j ∈ S′ be such that supp F(f j ) ⊂ B2j+2 . Then∥∥∥∥∥∥

∑
j

f j

∥∥∥∥∥∥
F̃ s

p,q

≤ C‖‖2sj f j (x)‖�q ‖Lp(Rn). (5)

In the Hs-spaces (p = q = 2), this result is proved in [14], p. 21. We postpone the
proof of Lemma 2.1 after the discussion of some maximal inequalities. Recall that, for any
f ∈ L1

loc, the maximal function Mf is defined by

Mf (x) = sup
r>0

1

|Br(x)|
∫

Br(x)

|f (y)|dy.
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For t > 0, set, for ϕ : R
n → R,

ϕt (x) = t−nϕ(x/t), x ∈ R
n. (6)

We recall some classical inequalities

LEMMA 2.2. We have:

a) ([33], p. 13) for 1 < p ≤ ∞ and any function f ,

‖Mf ‖Lp ∼ ‖f ‖Lp ; (7)

b) ([33], p. 55) for 1 < p < ∞, 1 < q < ∞, and any sequence of function (f j ),

‖‖Mf j(x)‖�q ‖Lp(Rn) ≤ C‖‖f j (x)‖�q ‖Lp(Rn); (8)

c) ([33], p. 57) for any fixed ϕ ∈ S and any function f ,

|f � ϕt (x)| ≤ C Mf (x), ∀t > 0, ∀x ∈ R
n. (9)

By (1), (2) and (9) we obtain the following

COROLLARY 2.3. For every f ∈ L1
loc we have

|fj (x)| ≤ C Mf (x), j ≥ 0, x ∈ R
n, (10)

∣∣∣∣∣∣
∑
j≤k

fj (x)

∣∣∣∣∣∣ ≤ C Mf (x), k ≥ 0, x ∈ R
n. (11)

We now return to the

Proof of Lemma 2.1. With f =
∑
j

f j , we have

fk =

∑

j

f j




k

=

 ∑

j≥k−3

f j




k

=
∑

j≥k−3

(f j )k.
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Therefore

‖f ‖
F̃ s

p,q
=

∥∥∥∥∥∥
∥∥∥∥∥∥2sk

∑
j≥k−3

(f j )k(x)

∥∥∥∥∥∥
�q

∥∥∥∥∥∥
Lp(Rn)

=

∥∥∥∥∥∥∥

∑

k

2sqk

∣∣∣∣∣∣
∑

j≥k−3

(f j )k(x)

∣∣∣∣∣∣
q


1/q
∥∥∥∥∥∥∥

Lp(Rn)

≤ C

∥∥∥∥∥∥∥

∑

k

2sqk
∑

j≥k−3

|(f j )k(x)|q(j − k + 4)2q




1/q
∥∥∥∥∥∥∥

Lp(Rn)

,

by the Hölder inequality with exponents q and q ′ = q
q−1 applied to the inner sum. We

obtain, using (10), that

‖f ‖
F̃ s

p,q
≤ C

∥∥∥∥∥∥∥

∑

j

∑
k≤j+3

2sqk(j − k + 4)2q |Mf j(x)|q



1/q
∥∥∥∥∥∥∥

Lp(Rn)

≤ C

∥∥∥∥∥∥∥

∑

j

2sqj |Mf j(x)|q



1/q
∥∥∥∥∥∥∥

Lp(Rn)

= C‖‖2sjMf j (x)‖�q ‖Lp(Rn). (12)

The desired conclusion is a consequence of (8) and (12).

III. A “microscopic” improvement of the Gagliardo-Nirenberg inequality

The main result of this section is that, in the Gagliardo-Nirenberg type inequalities for
the spaces F̃ s

p,q , there is a gain in the “microscopic” parameter q; this gain is also called
sometimes “precised” or “improved” Sobolev inequalities. Let us explain what we mean.
In the context of Besov spaces, a typical Gagliardo-Nirenberg inequality asserts that

Bs
p,r ∩ L∞ ⊂ B

s/2
2p,2r , for 0 < s < ∞, 0 < p < ∞, 0 < r ≤ ∞

(see, e.g. [31], Lemma 2.2, p. 331).
Here, the value 2r of the microscopic parameter is optimal in general. By contrast, in

the scale of F̃ -spaces we have, given 0 < s < ∞, 0 < p < ∞, 0 < r ≤ ∞,

F̃ s
p,r ∩ L∞ ⊂ F̃

s/2
2p,q for every 0 < q ≤ ∞

([31], Lemma 2.1, p. 329).
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A more general version of this phenomenon, due to Oru [28], is the following. Let
−∞ < s1 < s2 < ∞, 0 < q1, q2 ≤ ∞, 0 < p1, p2 ≤ ∞, 0 < θ < 1, and define

s = θs1 + (1 − θ)s2

1

p
= θ

p1
+ 1 − θ

p2
.

LEMMA 3.1. Under the above hypotheses we have, for every 0 < q ≤ ∞,

‖f ‖
F̃ s

p,q
≤ C‖f ‖θ

F̃
s1
p1,q1

‖f ‖1−θ

F̃
s2
p2,q2

, (13)

where C depends on si, pi, θ and q.

For the convenience of the reader, we reproduce the proof of Oru, since it is not yet
published.

Before proving Lemma 3.1, we state some interesting consequences:

COROLLARY 3.2. We have

a) for 0 ≤ s1 < s2 < ∞, 1 < p1 < ∞, 1 < p2 < ∞,

s = θs1 + (1 − θ)s2,
1

p
= θ

p1
+ 1 − θ

p2
,

‖f ‖Ws,p ≤ C‖f ‖θ
Ws1,p1 ‖f ‖1−θ

Ws2,p2 ; (14)

b) ([31], Lemma 2.1, p. 329) for 0 < s < ∞, 1 < p < ∞, 0 < q ≤ ∞,

‖f ‖
F̃ θs

p/θ,q
≤ C‖f ‖θ

Ws,p‖f ‖1−θ
L∞ . (15)

In particular, we have
c) for 0 < s < ∞, 1 < p < ∞, 0 < θ < 1,

‖f ‖Wθs,p/θ ≤ C‖f ‖θ
Ws,p‖f ‖1−θ

L∞ . (16)

REMARK 3.3. Inequality (14) is a special case of (13), with q = 2 when s is an integer,
q = p otherwise, and similarly for q1 and q2. Inequality (15) is a consequence of (13) for
s1 = 0, θ replaced by 1 − θ , p1 = q1 = ∞, s2 = s, q2 = 2 if s is an integer, q2 = p

otherwise. Here one uses in addition the fact that ‖f ‖
F̃ 0∞,∞ ≤ C‖f ‖L∞ (inequality (3)

above). Finally, (16) is a special case of (15).

REMARK 3.4. There is something intriguing about inequality (16). It is trivial when
s < 1 (with C = 1) if one takes the usual Gagliardo norm (4). It is also straightforward when
both s and θs are integers. We do not know any elementary (i.e. without the Littlewood-
Paley machinery) proof when s = 1. It would be of interest to establish (16) with control
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of the constant C, in particular when s ↗ 1. In view of the results in [8], one may expect
an inequality of the form

‖f ‖Ws/2,2p ≤ C(p)(1 − s)1/2p‖f ‖1/2
Ws,p‖f ‖1/2

L∞ as s ↗ 1,

if we take the Gagliardo norms (4).

REMARK 3.5. Inequality (15) may be viewed as an improvement of (16), since for
0 < q < min{2, p/θ} we have F̃ θs

p/θ,q ⊂ Wθs,p/θ , F̃ θs
p/θ,q �=Wθs,p/θ . This improvement

seems microscopic, however in our situation it is magnified and it plays a central role. A
similar (microscopic) improvement of the Sobolev embeddings in the framework of Lorentz
spaces which is magnified by the Trudinger inequality is presented in [13], [9].

REMARK 3.6. We call the attention of the reader to the fact that some inequalities à la
Gagliardo-Nirenberg are wrong, e.g. W 1,1 ∩L∞ is not contained in Wθ,1/θ for 0 < θ < 1;
see [7], Remark D.1.

We now turn to the proof of Lemma 3.1. It relies on the following inequality:

LEMMA 3.7. Let −∞ < s1 < s2 < ∞, 0 < q < ∞, 0 < θ < 1, and set s =
θs1 + (1 − θ)s2. Then for every sequence (aj ) we have

‖2sj aj‖�q ≤ C‖2s1j aj‖θ
�∞‖2s2j aj‖1−θ

�∞ . (17)

REMARK 3.8. A special case of (17) is implicit in the proof of Theorem 1.1, p. 328,
in [31]. For similar inequalities, see also [34], Theorem 2.7.1 or [19].

Proof of Lemma 3.7. Let C1 = sup 2s1j |aj |, C2 = sup 2s2j |aj |, so that C1 ≤ C2. We
may assume C1 > 0. Since s1 < s2, there is some j0 > 0 such that

min

{
C1

2s1j
,

C2

ss2j

}
=




C1
2s1j , j ≤ j0

C2
2s2j , j > j0.

Since
C1

2s1j0
≤ C2

2s2j0
and

C2

2s1(j0+1)
≤ C1

2s1(j0+1)
we find that

C2 ∼ C12(s2−s1)j0 . (18)

Therefore

‖2s1j aj‖θ
�∞‖2s2j aj‖1−θ

�∞ ∼ C12(s2−s1)j0(1−θ). (19)

On the other hand, we have aj ≤ min
{

C1
2s1j , C2

ss2j

}
, so that

aj ≤ C1

2s1j
for 0 ≤ j ≤ j0, aj ≤ C2

2s2j
for j > j0. (20)
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It then follows that

‖2sj aj‖�q ≤

∑

j≤j0

C
q

1 2(s−s1)jq +
∑
j>j0

C
q

2 2(s−s2)jq




1/q

≤ C


∑

j≤j0

C
q

1 2(s−s1)jq +
∑
j>j0

C
q

1 2−θ(s2−s1)jq+(s2−s1)j0q




1/q

,

so that

‖2sj aj‖�q ≤ C C12(s2−s1)j0(1−θ)
∑

j≤j0

2−(1−θ)(s2−s1)(j0−j)q +
∑
j>j0

2−θ(s2−s1)(j−j0)q




1/q

.

Finally, we find that

‖2sj aj‖�q ≤ C C12(s2−s1)j0(1−θ), (21)

and (17) follows from (19) and (21).

Proof of Lemma 3.1. Since ‖aj‖�∞ ≤ ‖aj‖�q , 0 < q ≤ ∞, we find that the r.h.s. of (13) is

≥ C‖f ‖θ

F̃
s1
p1,∞

‖f ‖1−θ

F̃
s2
p2,∞

.

On the other hand, ‖f ‖
F̃ s

p,∞ ≤ ‖f ‖
F̃ s

p,q
, 0 < q < ∞. It therefore suffices to prove (13) in

the special case 0 < q < ∞, q1 = q2 = ∞.
In this case, we have

‖f ‖
F̃ s

p,q
= ‖‖2sj fj (x)‖�q ‖Lp(Rn) ≤ (by (17))

≤ C‖‖2s1j fj (x)‖θ
�∞‖2s2j fj (x)‖1−θ

�∞ ‖Lp(Rn). (22)

Using the Hölder inequality, (22) yields

‖f ‖
F̃ s

p,q
≤ C‖‖2s1j fj (x)‖�∞‖θ

Lp1 (Rn)‖‖2s2j fj (x)‖�∞‖1−θ
Lp2 (Rn)

= C‖f ‖θ

F̃
s1
p1,∞

‖f ‖1−θ

F̃
s2
p2,∞

.

The proof of Lemma 3.1 is complete.

REMARK 3.9. While talking about microscoping improvements in the F̃ -scale, we call
the attention of the reader to the following “improved” Sobolev embedding:

Ws,p ↪→ F̃ σ
r,q for every 0 < q ≤ ∞

if 0 ≤ σ < s and
1

r
= 1

p
− s − σ

n
> 0 (see ([19] or [32], p. 31).
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IV. The Runst-Sickel lemma

For the convenience of the reader, we split the statement into two parts; the first one
contains the fundamental estimate, the other one deals with the continuity of the product.

Let 0 < s < ∞, 1 < q < ∞, 1 < p1 ≤ ∞, 1 < p2 ≤ ∞, 1 < r1 ≤ ∞, 1 < r2 ≤ ∞
be such that

0 <
1

p
= 1

p1
+ 1

r2
= 1

p2
+ 1

r1
< 1. (23)

LEMMA 4.1. ([32], p. 345) We have, for f ∈ F̃ s
p1,q

∩ Lr1 and g ∈ F̃ s
p2,q

∩ Lr2 ,

‖fg‖
F̃ s

p,q
≤ C(‖Mf (x)‖2sj gj (x)‖�q ‖Lp(Rn)

+‖Mg(x)‖2sj fj (x)‖�q ‖Lp(Rn)) (24)

and

‖fg‖
F̃ s

p,q
≤ C(‖f ‖

F̃ s
p1,q

‖g‖Lr2 + ‖g‖
F̃ s

p2,q

‖f ‖Lr1). (25)

Proof. We start by noting that (25) follows from (24). Indeed, using the Hölder inequality
we find

‖Mf (x)‖2sj gj (x)‖�q ‖Lp(Rn) + ‖Mg(x)‖2sj fj (x)‖�q ‖Lp(Rn)

≤ ‖‖2sj gj (x)‖�q ‖Lp2 (Rn)‖Mf (x)‖Lr1 (Rn)

+ ‖‖2sj fj (x)‖�q ‖Lp1 (Rn)‖Mg(x)‖Lr2 (Rn)

≤ C(‖f ‖
F̃ s

p1,q
‖g‖Lr2 + ‖g‖

F̃ s
p2,q

‖f ‖Lr1 ),

by (7).
We turn to the proof of (24). It relies on Lemma 2.1 which is valid since 1 < p < ∞

and 1 < q < ∞. We have

fg =
∑

k

Gk +
∑
j

Fj ,

where Gk = (
∑

j≤k fj )gk, Fj = (
∑

k<j gk)fj . Since supp F(Fj ) ⊂ B2j+2 and supp
F(Gk) ⊂ B2k+2 , Lemma 2.1 yields

‖fg‖
F̃ s

p,q
≤ C(A + B), (26)

with

A = ‖‖2skGk(x)‖�q ‖Lp(Rn),

B = ‖‖2skFj (x)‖�q ‖Lp(Rn).
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We estimate, e.g. A:

A =
∥∥∥∥∥∥‖2sk


∑

j≤k

fj (x)


 gk(x)‖�q

∥∥∥∥∥∥
Lp(Rn)

≤ by (11)

C‖Mfj(x)‖2skgk(x)‖�q ‖Lp(Rn). (27)

We obtain (24) by combining (26), (27) and the similar estimate for B.

We state the continuity part of this result in the three possible situations:

COROLLARY 4.2. We have that:

a) for 1 < q < ∞, 0 < s < ∞, 1 < p1 < ∞, 1 < p2 < ∞, 1 < r1 < ∞,

1 < r2 < ∞, 0 <
1

p
= 1

p1
+ 1

r2
= 1

p2
+ 1

r1
< 1, the map

(F̃ s
p1,q

∩ Lr1) × (F̃ s
p2,q

∩ Lr2) � (f, g) �→ fg ∈ F̃ s
p,q

is continuous;
b) for 1 < q < ∞, 0 < s < ∞, 1 < p < ∞, if{

f � → f in F̃ s
p,q , ‖f �‖L∞ ≤ C

g� → g in F̃ s
p,q , ‖g�‖L∞ ≤ C

then f �g� → fg in F̃ s
p,q ;

c) for 1 < q < ∞, 0 < s < ∞, 1 < p1 < ∞, 1 < r < ∞, 1 < p < ∞ such that
1

p
= 1

p1
+ 1

r
, if

{
f � → f in F̃ s

p1,q
, ‖f �‖L∞ ≤ C

g� → g in F̃ s
p,q ∩ Lr,

then f �g� → fg in F̃ s
p,q .

Proof. a) follows directly from (25).
Some care is needed when one of the r ′

j s is ∞. We treat, e.g. case c). It clearly suffices
to prove the following two assertions:

(i) if f � → 0 in F̃ s
p1,q

and ‖f �‖L∞ ≤ C, then f �g → 0 for each g ∈ F̃ s
p,q ∩ Lr .

(ii) if g� → 0 in F̃ s
p,q ∩ Lr , ‖f �‖

F̃ s
p1,q

≤ C, ‖f �‖L∞ ≤ C, then f �g� → 0.
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Assertion (ii) is clear from (25). We prove (i) using (24). We have

‖f �g‖
F̃ s

p,q
≤ C(‖f �‖

F̃ s
p1,q

‖g‖Lr + ‖Mf �(x)‖2sj gj (x)‖�q ‖Lp(Rn))

≤ o(1) + C‖Mf �(x)‖2sj gj (x)‖�q ‖Lp(Rn). (28)

Set

F�(x) = Mf �(x)‖2sj gj (x)‖�q .

Then clearly

|F�(x)| ≤ C‖2sj gj (x)‖�q ∈ Lp. (29)

�

On the other hand, F̃ s
p1,q

↪→ Lp1 (see, e.g. [34], 2.3.2, or [32], Proposition 2.2.1, p. 29).
It follows from the maximal inequality (7) that Mf � → 0 in Lp1 and, up to a subsequence,
that Mf � → 0 a.e. Then (i) follows from (28) and (29) by dominated convergence.

V. Proof of Theorem 1.1

The conclusion is well-known when s is an integer (this uses the standard Gagliardo-
Nirenberg inequalities).

Assume s non integer. Clearly, the map

Ws,p ∩ W 1,sp � u �→ f (u) ∈ Lp

is well-defined and continuous, since f (0) = 0, f is Lipschitz and Ws,p ↪→ Lp.
Thus it suffices to prove that the map

Ws,p ∩ W 1,sp � u �→ D(f (u)) = f ′(u)Du ∈ Ws−1,p

is well-defined and continuous.
With m = [s] + 1 ≥ 2, we obtain, using (14), that the inclusion

Ws,p ∩ W 1,sp ↪→ Wm−1,
sp

m−1 ∩ W 1,sp (30)

is continuous. Applying Theorem 1.1 to the integer s = m − 1 ≥ 1, we find that

if u� → u in Ws,p ∩ W 1,sp, then f ′(u�) → f ′(u) in F̃ m−1
sp

m−1 ,2
= Wm−1,

sp
m−1

and ‖f ′(u�)‖L∞ ≤ C. (31)

On the other hand, we clearly have that

if u� → u in Ws,p ∩ W 1,sp, then Du� → Du in Ws−1,p ∩ Lsp

= F̃ s−1
p,p ∩ Lsp. (32)
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Using (31) and the Gagliardo-Nirenberg type inequality (15) (with q = p, s = m − 1,
θ = s−1

m−1 , p = sp
m−1 ), we obtain

if u� → u in Ws,p ∩ W 1,sp, then f ′(u�) → f ′(u) in F̃ s−1
sp

s−1 ,p
and

‖f ′(u�)‖L∞ ≤ C. (33)

Finally, by (32), (33), the Runst-Sickel Lemma 4.1 and Corollary 4.2c), we obtain that
f ′(u)Du ∈ F̃ s−1

p,p = Ws−1,p and that

if u� → u in Ws,p ∩ W 1,sp, then f ′(u�)Du� → f ′(u)Du in Ws−1,p.

REMARK 5.1. The same proof yields the following variant of Theorem 1.1.

THEOREM 5.2. Assume 1 < s < ∞, s non integer, 1 < p < ∞, 1 < q < ∞. Then,
for every f ∈ R, the map

F̃ s
p,q ∩ W 1,sp � ψ �→ f (ψ) ∈ F̃ s

p,q

is well-defined and continuous.

REMARK 5.3. There is a natural strategy for proving Theorem 1.1: assume, e.g. that
1 < s < 2 and try to prove that f ′(u)Du ∈ Ws−1,p. Set s = 1 + σ . On the one hand,
we have Du ∈ Wσ,p ∩ L(1+σ)p. On the other hand, since u ∈ W 1,(1+σ)p, we find that
f ′(u) ∈ W 1,(1+σ)p ∩ L∞. By the “standard” Gagliardo-Nirenberg inequality, we obtain

f ′(u) ∈ Wσ, 1+σ
σ

p ∩ L∞. The conclusion of Theorem 1.1 would follow if we can prove that

U ∈ Wσ,p ∩ L(1+σ)p

V ∈ Wσ, 1+σ
σ

p ∩ L∞

}
�⇒ UV ∈ Wσ,p. (34)

Using the Gagliardo norm (4), we have to estimate∫
R

n

∫
R

n

|U(x + h)V (x + h) − U(x)V (x)|p
|h|n+σp

dx dh

≤ C

(∫
R

n

∫
R

n

|V (x)|p|U(x + h) − U(x)|p
|h|n+σp

dx dh

+
∫

R
n

∫
R

n

|U(x)|p|V (x + h) − V (x)|p
|h|n+σp

dx dh

)

≤ C

(
‖V ‖p

L∞‖U‖p
Wσ,p +

∫
R

n

∫
R

n

|U(x)|p|V (x + h) − V (x)|p
|h|n+σp

dx dh

)
. (35)
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It is natural to estimate the last integral in (34) using the Hölder inequality with exponents
1 + σ and 1+σ

σ
. We find

‖UV ‖p
Wσ,p ≤ C

(
‖V ‖p

L∞‖U‖p
Wσ,p + ‖V ‖p

Wσ, 1+σ
σ p

(∫
R

n

∫
R

n

|U(x)|(1+σ)p

|h|n dx dh

) 1
1+σ

)
.

Unfortunately, the last integral diverges, but we are “close” to convergence. In fact, we
suspect that (34) is wrong.

It is here that the microscopic improvement of the Gagliardo-Nirenberg inequality
Lemma 3.1, combined with the Runst-Sickel Lemma 4.1, magically saves the proof. We
make use, in an essential way, of the additional information that V = f ′(u) ∈ Fσ

1+σ
σ

p,p
.

We conclude this section with a brief survey of earlier results dealing with composition.

a) if 0 < s ≤ 1, 1 < p < ∞, f (0) = 0, f Lipschitz, then

u ∈ Ws,p �⇒ f (u) ∈ Ws,p (trivial for s < 1; see [21] and [22] for s = 1);

b) if s = n/p, 1 < p < ∞, f ∈ R, where m =
{
s, if s is an integer
[s] + 1, otherwise

,

then u ∈ Ws,p �⇒ f (u) ∈ Ws,p.
This result is explicitely stated in [11]; G. Bourdaud has pointed out that it may also

be derived from a result of T. Runst and W. Sickel, see p. 345 in [32], combined with
a result in [19] which asserts that, when s = n/p, Ws,p ↪→ F̃ θs

p/θ,q for 0 < θ < 1
and every 0 < q < ∞ (see Remark 3.9 above);

c) if s > n/p, 1 < p < ∞, f (0) = 0 and f ∈ Cm, then u ∈ Ws,p �⇒ f (u) ∈ Ws,p;
see [25] for p = 2 and [29] for the general case;

d) if 1 < s < n/p, we have to impose additional restrictions on u. Indeed, if 1 + 1/p <

s < n/p, the only C2f ’s that act on Ws,p are of the form f (t) = ct ; see [15]
for s integer and [31], Theorem 3.2, p. 319, for a general s. For 1 < s < n/p,
it follows from Remark 1.2 in the Introduction that R does not act on Ws,p, since
Ws,p �⊂ W 1,sp. A standard additional condition on u is u ∈ L∞: if f (0) = 0 and
f ∈ Cm, then u ∈ Ws,p ∩ L∞ �⇒ f (u) ∈ Ws,p; see [29], [16];

e) an improvement is that, for f as above and 0 < σ < 1 we have u ∈ Ws,p ∩
Wσ,sp/σ �⇒ f (u) ∈ Ws,p; see [11]. This result implies the previous one, since
Ws,p ∩ L∞ ↪→ Wσ,sp/σ (by Corollary 3.2);
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f) a finer result asserts that, for f as above, we have u ∈ Ws,p ∩ F̃ 1
sp,q (with q ≤ 2

sufficiently small depending on s and p) �⇒ f (u) ∈ Ws,p; see [32], Theorem 1.1,
p. 345. This hypothesis on u is weaker than the previous one, since Ws,p∩Wσ,sp/σ ↪→
F̃ 1

sp,q for all q > 0, by Lemma 3.1. This result is contained in Theorem 1.1, since

F̃ 1
sp,q ↪→ W 1,sp = F̃ 1

sp,2 as soon as q ≤ 2 (recall that F̃ s
p,q increases with q).

However, when p ≤ 2 or 1 < s < 2, Runst and Sickel point out in Remark 1, p. 348
that the above smallness condition on q is precisely q ≤ 2. This means that Runst
and Sickel had established Theorem 1.1 when p ≤ 2 or 1 < s < 2.

g) in the framework of Bessel potential spaces

Ls,p = {f = Gs � g ; g ∈ Lp, Ĝs(ξ) = (1 + |ξ |2)−s/2} = F̃ s
p,2,

there are various similar results about composition, starting with [23], [24] when
s > n/p, [30], [2] and [14] for Hs ∩ L∞ when s ≥ 1. The ultimate result for s ≥ 1
was obtained by Adams-Frazier in [1]: if 1 ≤ s < ∞, 1 < p < ∞, f ∈ R, then
u ∈ Ls,p ∩ L1,sp �⇒ f (u) ∈ Ls,p. This is a special case (q = 2) of Theorem 5.2
since L1,sp = W 1,sp.

h) Other questions concerning composition in Sobolev spaces have been investigated
e.g. in [5], [6], [32].

VI. More about products

In this last section, we state some natural results about products which may be derived
from the Runst-Sickel lemma.

Let 1 < p < ∞, 0 < s < ∞, 1 < r < ∞, 0 < θ < 1, 1 < t < ∞ be such that

1

r
+ θ

t
= 1

p
.

LEMMA 6.1. For f ∈ Ws,t ∩ L∞, g ∈ Wθs,p ∩ Lr , we have fg ∈ Wθs,p and

‖fg‖Wθs,p ≤ C(‖f ‖L∞‖g‖Wθs,p + ‖g‖Lr ‖f ‖θ
Ws,t ‖f ‖1−θ

L∞ ). (36)

In the special case s > 1, θ = s−1
s

, we have r = sp and we obtain the following

COROLLARY 6.2. If 1 < s < ∞, 1 < p < ∞ and f ∈ Ws,p∩L∞, g ∈ Ws−1,p∩Lsp,
then fg ∈ Ws−1,p and

‖fg‖Ws−1,p ≤ C(‖f ‖L∞‖g‖Ws−1,p + ‖g‖Lsp‖f ‖1−1/s
Ws,p ‖f ‖1/s

L∞). (37)
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In particular, if f, g ∈ Ws,p ∩ L∞, then Dg ∈ Ws−1,p ∩ Lsp, so that Corollary 6.2
contains as a special case the following result

COROLLARY 6.3. ([7], Lemma 2.2) If 1 < s < ∞, 1 < p < ∞ and f, g ∈
Ws,p ∩ L∞, then f Dg ∈ Ws−1,p.

REMARK 6.4. Clearly, Corollary 6.3 implies the well-known assertion that Ws,p ∩L∞
is an algebra.

Proof of Lemma 6.1. Let q = 2 if θs is an integer, q = p otherwise. By (15), we find
that f ∈ F̃ θs

t/θ,q and

‖f ‖
F̃ θs

t/θ,q
≤ C‖f ‖θ

Ws,t ‖f ‖1−θ
L∞ . (38)

From the Runst-Sickel lemma, we deduce that fg ∈ F̃ θs
p,q and

‖fg‖Wθs,p = ‖fg‖
F̃ θs

p ,q
≤ C(‖f ‖L∞‖g‖

F̃ θs
p,q

+ ‖g‖Lr ‖f ‖
F̃ θs

t/θ,q
)

≤ C(‖f ‖L∞‖g‖Wθs,p + ‖g‖Lr ‖f ‖θ
Ws,t ‖f ‖1−θ

L∞ ).
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