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Gagliardo-Nirenberg, composition and products
in fractional Sobolev spaces

HAIM BREZIS AND PETRU MIRONESCU

Dedicated with emotion to the memory of Tosio Kato

1. Introduction

Our main result is the following: let 1 <s < 00, 1 < p < 00, and let

S, if s is an integer
m = )
[s]+ 1, otherwise.

Set
R={feC"®); fO)=0, f f,.... f™ e L*R)).

THEOREM 1.1. Forevery f € R the map ¥ — f () is well-defined and continuous
from WP (R") N WIS (R™) into WP (R").

An immediate consequence of Theorem 1.1 is

THEOREM 1.1°. Let Q be a smooth bounded domain in R" and f € C™ be such that
£ f's..., f™ € L. Then the map

WHP(@) N WP (Q) 5 ¥ > f()) € WHP(Q)

is well-defined and continuous.
Our original motivation in proving Theorem 1.1 comes from the study of properties of
the space

X=WPSH={ueWPEQRY: jul=1ae.l.

Here,0 < s < 00,1 < p < ooand Q2 is a smooth bounded simply connected domain in R".
In particular, one may ask whether X is path-connected and whether C*°($2; S') is dense in
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X. Several results concerning the first question were obtained in [10] (and subsequently in
[18]) for the spaces WLP(M; N), where M, N are compact oriented Riemannian manifolds.
The second question was studied in [3], [4] and [18] for the spaces WLP(M; N)andin[16]
for the spaces W*” (M, sky.

The case where N = S is somehow special; one may attempt to answer these questions
by lifting the maps u € X. Here is a strategy: given u € W*?(; S'), one may try to find
some ¢ € WP (2; R) such that u = €'%. Then, hopefully, the path

t €0,1] — ¢

will connect continuously ug = 1 to u.

Moreover, if ¢; are smooth R-valued functions on Q such that @j — @ in WP then,
hopefully, the smooth maps e/%i converge to u in W7 (2; S).

We are thus naturally led to the study of the mapping

WP Q) 5 ¢ — f(¥)

for “reasonable” functions f (e.g. f(x) = e!* — 1), where Q is either a smooth bounded
domainor Q =R"and s > 1.

In a forthcoming paper [12], we will apply Theorem 1.1 to settle the above mentioned
questions about W*7?(2; S') when s > 1.

Another motivation for analysing composition and products in fractional Sobolev spaces
comes from the study of nonlinear evolution equations (e.g. Schrodinger equation) in H*
spaces; see e.g. T. Kato [20] and the references therein. In fact, the Appendix in [20]
contains a result which is a special case of the Runst-Sickel lemma about products: it
coincides with Lemma 4.1 below when g = 2.

REMARK 1.2. The reader may wonder why we impose the additional condition ¥ €
WLsP_ At least for the case we are interested in, i.e. f(x) = ¢'* — 1, this condition is also
necessary in order to conclude that f(y) € WP (R").

Indeed, assume that v € W*? and (¢/¥ — 1) € WSP. Then (/¥ — 1) € WP N
L® = (¢!¥ —1) € W!*P (by Gagliardo-Nirenberg, see Corollary 3.2 below). Therefore,
ie'Y Dy € L*P, so that Dy € L*P. Thus ¢ € WP,

REMARK 1.3. There is a vast literature about composition, starting with the result of
Moser [26] asserting that f () € W™P wheny € W"PNL®, f € Randm is an integer.
(See the historical comments at the end of Section V). Unfortunately, for the application
we have in mind, the lifting ¢ of an arbitrary u € W*?(2; S') need not belong to L.
However, if s > 1 and if the lifting ¢ exists in W* 7 (€2; R), it must belong to wlsp, by the
above remark.

Surprisingly, Theorem 1.1 is new, but it is closely related and implies two earlier results
having a similar flavour; see Adams-Frazier [1] and Runst-Sickel [32], Theorem 1.1, p. 345
and Remark 1, p. 348.
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REMARK 1.4. When s is an integer, the proof of Theorem 1.1 is very easy via the
standard Gagliardo-Nirenberg inequality [27] (e.g. WXP N L>® < W44, with ¢ < k,
g = kp). When s > 1, s is not an integer, our proof is quite involved. The standard form
of the Gagliardo-Nirenberg inequality (e.g. WP N L>® C W4, witho < s, 09 = sp)
does not suffice. We rely on a “microscopic” improvement (due to T. Runst [31]) of the
Gagliardo-Nirenberg inequality, in the Triebel-Lizorkin scale, namely W*? N L™ C F, i
for every v. We present in Section III a more general form of the Gagliardo-Nirenberg
inequality due to Oru [28]; see also P. Gérard, Y. Meyer and F. Oru [17] for a special case.
‘We combine this with an important estimate on products of functions in the Triebel-Lizorkin
spaces, due to T. Runst and W. Sickel (see [32] and Section IV).

It would be interesting to find a more elementary argument which avoids this excursion
into the F 1.q Scale.

The paper is organized as follows. In Section II we recall the definition of the Triebel-
Lizorkin spaces F 1,4 their connection with the classical function spaces and some results
needed in the proof of Theorem 1.1. In Section III we recall the general form of the
Gagliardo-Nirenberg inequality, due to Oru [28]. Section IV deals with the Runst-Sickel
lemma. This beautiful result contains all the usual statements about products in fractional
Sobolev spaces: e.g. it implies that if u, v € WP N L* then uv € WP N L*, and if
s > 1, thenuDv € WP, More consequences of the Runst-Sickel lemma are presented

in Section VI. Theorem 1.1 is proved in Section V.

II. Triebel-Lizorkin spaces and maximal inequalities

We start by recalling the Littlewood-Paley decomposition of temperate distributions.
Let ¢ € CSO(R”)be such that 0 < vyg < 1, y9(§) = 1 for |&] < 1, Yo(§) = Ofor |&| > 2.
Set ¥ (£) = Y0(277E) — Yo7/ F1E), j > 1,and ; = F~(y)), j > 0.

Thus

0j(x) =2y (2 x) = 2" V277, j = 1, M)
and

Y o) =2Y¢(27x), j = 0. ©)

k<j

For f € §',set fj = f + ¢;. Wehavef:ij in$’.
j=0

DEFINITION. ([34],2.3.1) For —oo < s < 00,0 < p < 00,0 < g < 00, set

Fpy=1r €8 1f g, = M2 f;0)llerllrqen) < 00).
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For0 < p < oo or p = g = 00, these are the standard Triebel-Lizorkin spaces F IS, q
[34]. We have added the ~ to avoid confusions in the exceptional cases where they do not
coincide. When 0 < p < oo, different choices of v yield equivalent quasi-norms ([34],
2.3.5). The usual function spaces are special cases of these Triebel-Lizorkin spaces ([34]):

a) LP:IT“S,%, 1 <p<oo;
b) mepzfgfz, m=12,...,1 < p<o0;
¢ WhP =F; ,, 0<s <oo0,snon-integer, 1 < p < 00;

d) LSP :F;’z,s eR, 1< p<oo;

e) L® c FY

0,000 €45

sup | £ ()] < CIl . 3
JsX

In this list, when 1 < p < 00, 0 < 5 < 00, s non-integer, the W*'? are the Sobolev-
Slobodeckij spaces. An equivalent norm on these spaces may be obtained as follows: let
s =k + o, kinteger,0 < o < 1. Then

D f@x) = DEFO)IP
1y ~ WAL, + IDEFIE, + / / e yper XAy @)

([34], 2.6.1). These spaces also coincide with the Besov spaces B;’,’ » (recall that s is not
an integer). We warn the reader that, for p # 2, the spaces W*? do not coincide with the
Bessel potential spaces L*7.

We will often use the trivial fact that, for fixed s and p, the space F ;’ q increases with g.

The following result is well-known:

LEMMA 2.1. ([35]) Let0 < s <00, 1 < p <00, 1 < g < 0o. Forevery j > 0, let
f7 € S’ be such that supp F(f/) C Byj+2. Then

oA =Y £l @ny. ©)
/ F P

In the H*-spaces (p = g = 2), this result is proved in [14], p. 21. We postpone the

proof of Lemma 2.1 after the discussion of some maximal inequalities. Recall that, for any

f e L] ,the maximal function M is defined by

loc?

Mf(x) = sup

dy.
e ATREST MRRAS]
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Fort > 0, set, for ¢ : R* — R,

o' (x)=t"(x/1), xeR"

We recall some classical inequalities

LEMMA 2.2. We have:
a) ([33],p. 13) for 1 < p < oo and any function f,
IMfllze ~ I1flles
b) ([33],p. 55) for1 < p < 00, | < g < oo, and any sequence of function (f7),
HMFT ) leallzr@ny < CHLF )lles Lo ceny:
¢) ([33], p. 57) for any fixed ¢ € S and any function f,
If «o'(x)| <CMf(x), Vt>0, VxeR"
By (1), (2) and (9) we obtain the following
COROLLARY 2.3. Forevery f € L}OC we have
Ifi =CMf(x), j=0, xeR",
d | =CMf(x), k=0, xeR"
j<k

‘We now return to the

Proof of Lemma 2.1. With f =) f/, we have
j

=X = X ) =)
J

EAVE S R T

391

(6)

(N

®)

(€))

(10)

an
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Therefore
o= |l][2%% J
1f17, 2 G
jzk=3 el L wm)
g\ /4
= [[D_2 | Y-
k jZk—3 Lp(]R")
1/q
< D22 T 1@ —k+ 4™ :
k j=k=3 Lo@n

by the Holder inequality with exponents g and ¢’ = % applied to the inner sum. We
obtain, using (10), that

1/q
5 < C 250K (j — k + 42| MfI (x)|
117, ;g; G PMF! ()] .
1/q
< C|[ D 29 mfi )
J LP(R™)
= CIII2Y Mf7 )l eall Lrn,- (12)

The desired conclusion is a consequence of (8) and (12).

II1. A “microscopic” improvement of the Gagliardo-Nirenberg inequality

The main result of this section is that, in the Gagliardo-Nirenberg type inequalities for
the spaces F), ,, there is a gain in the “microscopic” parameter ¢; this gain is also called
sometimes “precised” or “improved” Sobolev inequalities. Let us explain what we mean.

In the context of Besov spaces, a typical Gagliardo-Nirenberg inequality asserts that
B;‘,’,HLOOCB;Q%, for0<s<oo, 0<p<oo, 0<r<oo
(see, e.g. [31], Lemma 2.2, p. 331).
Here, the value 2r of the microscopic parameter is optimal in general. By contrast, in
the scale of F—spaces we have, given ) < s <00, 0 < p <00, 0 <r < o0,

K /2
Fs, NL® C Fy)

P for every 0 < g < o0

([31], Lemma 2.1, p. 329).
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A more general version of this phenomenon, due to Oru [28], is the following. Let
—00 < s <83 <00,0<q1,q2 <00,0 < py, pp <00,0 <8 < 1, and define

s = Os1+(1—=0)s,
1 (2] 1-06
- = — 4 .
p P1 p2

LEMMA 3.1. Under the above hypotheses we have, for every 0 < q < oo,

Il = CIIflleﬁ;ll’ql A1 13)

1-6
0
Fpaa

where C depends on s;, pi, 6 and q.

For the convenience of the reader, we reproduce the proof of Oru, since it is not yet

published.
Before proving Lemma 3.1, we state some interesting consequences:

COROLLARY 3.2. We have

a) for0<s; <sy <oo, 1 <p;y <00, 1< py<oo

1 0 1-6
s=051+0—-06)s2, —=—+ ,
p P1 p2
1 lwse < CUFWysrimn 1 iysaorn (14)
b) ([31], Lemma 2.1, p. 329) for0 <s <00, 1 < p < 00,0 < g < 00,
0 1-6
||f||ﬁ;?;61q < ClfMwsp I fll oo - (15)

In particular, we have
c) forO<s<oo l<p<oo0<b<l,

I £ llwes.oe < CllF ISl FIIT - (16)

REMARK 3.3. Inequality (14) is a special case of (13), with ¢ = 2 when s is an integer,
q = p otherwise, and similarly for g; and g». Inequality (15) is a consequence of (13) for
s1 =0, 6 replacedby 1 — 6, p1 = g1 = 00, 52 = s, go = 2 if s is an integer, g = p
otherwise. Here one uses in addition the fact that || f|| S Cll fllLe (inequality (3)
above). Finally, (16) is a special case of (15).

REMARK 3.4. There is something intriguing about inequality (16). It is trivial when
s < 1(with C = 1)if one takes the usual Gagliardo norm (4). Itis also straightforward when
both s and s are integers. We do not know any elementary (i.e. without the Littlewood-
Paley machinery) proof when s = 1. It would be of interest to establish (16) with control
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of the constant C, in particular when s 7 1. In view of the results in [8], one may expect
an inequality of the form

1/2 1/2
1f lwsrzze < CPYA = )V2PUFIE A2 ass /1,

if we take the Gagliardo norms (4).

REMARK 3.5. Inequality (15) may be viewed as an improvement of (16), since for
0 < g < min{2, p/6} we have Ng;g’q c wosp/o, Fg;ggq#wes,p/e. This improvement
seems microscopic, however in our situation it is magnified and it plays a central role. A
similar (microscopic) improvement of the Sobolev embeddings in the framework of Lorentz
spaces which is magnified by the Trudinger inequality is presented in [13], [9].

REMARK 3.6. We call the attention of the reader to the fact that some inequalities a la
Gagliardo-Nirenberg are wrong, e.g. W11 N L™ is not contained in W% /9 for0 < 6 < 1;
see [7], Remark D.1.

We now turn to the proof of Lemma 3.1. It relies on the following inequality:

LEMMA 3.7. Let —00 < s1 < 55 < 00,0 < q < 00,0 <60 < 1, and set s =
0s1 + (1 — 6)sp. Then for every sequence (a;) we have

12ajller < ClIZVajllGeo 12 a3 an

REMARK 3.8. A special case of (17) is implicit in the proof of Theorem 1.1, p. 328,
in [31]. For similar inequalities, see also [34], Theorem 2.7.1 or [19].

Proof of Lemma 3.7. Let Cy = sup 2%V |a;|, C; = sup 2%/ |a ], so that C; < Cp. We
may assume C| > 0. Since s; < 57, there is some jy > 0 such that

c s
. { i } w7 J =0
min = =
2851) " §52J

C . .
52 J > Jo-

&) C

Since 251]jo < 52jo and 1G0T < zngol-kl) we find that

Cy ~ €2t (18)
Therefore

127 ajf 12 aj " ~ €126270 00, (19)
On the other hand, we have a; < min i 2€11 <, ;5—22] } so that

aj < 2(;11]' for0 < j <jo, aj< ijj for j > Jjo. (20)
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It then follows that

1/q
||2Sjaj leg < Z Cilz(s—ﬂ)jq + Z ng(S—Sz)jq
Jj<jo J>Jo
1/q
<C Z Clqz(sfsl)jq + Z Cqu*(')(SZ*Sl)jq+(52*3‘1)]'0q
Jj<jo J>Jo
so that
||2Sjaj lea <C C]2(52—51)j0(1—9)
1/q
Z 2= (1=0)(s2=s1)o—J)q + Z 9—0(s2—=s51)(j—Jjo)q
Jj<jo J>Jo
Finally, we find that
||2Sjaj lea < C C12(52—51)j0(1—9)’ Q1

and (17) follows from (19) and (21).
Proof of Lemma 3.1. Since ||ajll¢~ < |lajlles, 0 < g < 00, we find that the r.h.s. of (13) is
6 1-6
> Cllfllﬁls)ip<> IIfIIﬁ;;OO

On the other hand, || fllzs < I fllz .0 < g < oco. It therefore suffices to prove (13) in
P, pP.q

the special case 0 < g < 00, g1 = g2 = o0.
In this case, we have

r* 1125 £ G lea [l Ly < (by (17))
p.q
CII2 £ 01227 £ Gy Nl L .- (22)
Using the Holder inequality, (22) yields
17y, = CIIZY £ e Ny gy MI2 £ O e N o e

9 1-6
C”f”F;ill,oc 1A 252

p2,00

A

A

The proof of Lemma 3.1 is complete.
REMARK 3.9. While talking about microscoping improvements in the F-scale, we call
the attention of the reader to the following “improved” Sobolev embedding:
WP s qu forevery) < g < o0
1 s—o

if0<o <sand — = — —
r p

> 0 (see ([19] or [32], p. 31).
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IV. The Runst-Sickel lemma

For the convenience of the reader, we split the statement into two parts; the first one
contains the fundamental estimate, the other one deals with the continuity of the product.

Let0 <s <o0,l <g<oo,l<p <00, l<pr<oo,l<r<ool<r<oo
be such that

1 1 1 1 1
0O<—=—4+—=—+4+—<1. (23)
P P1 rn P2 ri

LEMMA 4.1. ([32], p. 345) We have, for f € F N L"and g € F3,  NL™,
187y, < CUAMII2Ygj (e llLr )
M2 £ llea | Lo @) (24)
and
1£8ll7;, = CUFNg Nghira+lghz, 1flLr. (25)

Proof. We start by noting that (25) follows from (24). Indeed, using the Holder inequality
we find

IMf N2 g () leallLreny + IMgCON2Y £5G0) llea Il Lo )
< 1112 g (O llea Il L2 omy IMF GOl 21 ey
+ 112% £ ) lea | o1 gy | Mg () 1| L2 gy
< CUIfligy glin +lglhzy I,

by (7).
We turn to the proof of (24). It relies on Lemma 2.1 which is valid since 1 < p < oo
and 1 < g < co. We have

fg=2 Get ) Fj.
k J
where Gk = (3. fi)&k» Fj = (Xy-; &) fj. Since supp F(F;) C B+ and supp
F(Gg) C Byi+2, Lemma 2.1 yields
”fg”ﬁﬁq <C(A+B), (26)
with

A = 125G llea | Lr .
B = |12 F; ()llea o -
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We estimate, e.g. A:

A= 127 D0 fi | a)lle < by (11)
CIM ;)12 g (¥ llea | Lo ey - 27)

‘We obtain (24) by combining (26), (27) and the similar estimate for B.

We state the continuity part of this result in the three possible situations:

COROLLARY 4.2. We have that:

a)forl < g <00, 0<s <00 1l <p <00 1<p<ool<r <o

1 1
l<rm<ool<—=—+4+—=—+— <1, themap
p P1 r p2 T

s r IS r ~¢
(Fp g VL) X (Fp, ,NL?)>(f,8) > fgeF,,

is continuous;
b) forl <g<o00,0<s <00 1<p<ooif

[l finFs o lff> <C
gt—>ginFy,, |glle <C

p.q’
L S AR
then f°g" — fgin Fy ,;
c)forl <g<oo,0<s<oo l<p<ool<r<ool< p < oosuchthat
+
p pr T
ff— finFs . If < C
gt—>ginFy NL,
then ftgt — fgin Fz’q

Proof. a) follows directly from (25).
Some care is needed when one of the rj’s is co. We treat, e.g. case c¢). It clearly suffices

to prove the following two assertions:

(i) if f* - 0in F3 , and || f*[z~ < C, then f‘g — O foreach g e F5 NL'.
(i) if g* > 0in F$ , NL" [ f*lz < C.[f > < C, then ffg¢ — 0.
’ P19
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Assertion (ii) is clear from (25). We prove (i) using (24). We have

18l = CUS Mgy gl + IMF 127 &) (Ol ll o)

o(1) + CIMFE 2% g5 () llea ll r ey

A

IA

Set
F') = MfE@)N12Y g5 (0l ea.
Then clearly

|FE) < ClI2% g (x)llea € LP.

J.evol.equ.

(28)

(29)
O

On the other hand, F};uq — LP1 (see, e.g. [34], 2.3.2, or [32], Proposition 2.2.1, p. 29).
It follows from the maximal inequality (7) that M f¢ — 0in L”' and, up to a subsequence,
that M f ¢ s 0 a.e. Then (i) follows from (28) and (29) by dominated convergence.

V. Proof of Theorem 1.1

The conclusion is well-known when s is an integer (this uses the standard Gagliardo-

Nirenberg inequalities).
Assume s non integer. Clearly, the map

WSPNAWYSP 54> f(u) e LP

is well-defined and continuous, since f(0) = 0, f is Lipschitz and W*? «— LP.

Thus it suffices to prove that the map
WSP WP s u e D(fw) = f'(w)Du € W7

is well-defined and continuous.
With m = [s] + 1 > 2, we obtain, using (14), that the inclusion

WP N Wl,sp s Wm—l,% N Wl,sp

is continuous. Applying Theorem 1.1 to the integer s = m — 1 > 1, we find that

. . . ~ _1.3P
if u — win WH? AW then f'(u®) — f'(u) in F7y ) = wmhn

m—1"

and || f'(u®) || L~ < C.
On the other hand, we clearly have that

ifu® - uin WP N WP then Du® — Du in WP 0 LP
_ ps—1 sp
=FInLe.

(30)

€29}

(32)
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Using (31) and the Gagliardo-Nirenberg type inequality (15) (withg = p,s =m — 1,

0= ,‘;1__11, p = £5), we obtain

ifu® > uin WP N WP then f' ') — f'(u) in ﬁ*;jp and

s—17

If' @l < C. (33)

Finally, by (32), (33), the Runst-Sickel Lemma 4.1 and Corollary 4.2c), we obtain that
f'(w)Du € F57! = W*!7 and that

if u® > uin W2 AW then f'w®)Du® — f'(u)Du in W12,

REMARK 5.1. The same proof yields the following variant of Theorem 1.1.

THEOREM 5.2. Assume 1 < s < 00, s non integer, 1 < p <00, 1 < q < oo. Then,
forevery f € R, the map

s 1,sp 'S
F,,NW Y= f(Y)eF,,
is well-defined and continuous.

REMARK 5.3. There is a natural strategy for proving Theorem 1.1: assume, e.g. that

1 <s < 2 and try to prove that f'(u)Du € WS~ Set s = 1 + . On the one hand,

we have Du € WP N L{1+9)P_ On the other hand, since u € W1U+9P we find that

f'(u) e wh(+0)P A [° By the “standard” Gagliardo-Nirenberg inequality, we obtain

() e wn Eal N L°°. The conclusion of Theorem 1.1 would follow if we can prove that
U e weornLiror

Vewr e } — UV ewn?. (34)

Using the Gagliardo norm (4), we have to estimate

/ / [UGx +h)V(x+h) —Ux)V@)|P
dx

|h|n+c7p dh

|h|n+ap

§C</ / VO +h) U@,

+// [U@IPIV(x+h) - V)P

nep dx dh)

p _ p
sc(llvll’zwIIU||’Cw,p+// WDV +h) = V)l dxdh). 35)
Rn n

|h|n+(rp
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It is natural to estimate the last integral in (34) using the Holder inequality with exponents
1+ 0 and % We find

UV lljyor < (IIVIILoollUII np+||V|I’;/U’1ﬂp

1
(140)p T+o
// |U(x)] WO an '
R JR? ||

Unfortunately, the last integral diverges, but we are “close” to convergence. In fact, we
suspect that (34) is wrong.

It is here that the microscopic improvement of the Gagliardo-Nirenberg inequality
Lemma 3.1, combined with the Runst-Sickel Lemma 4.1, magically saves the proof. We
make use, in an essential way, of the additional information that V = f'(u) € FY Lo,

We conclude this section with a brief survey of earlier results dealing with comp051ti0n.

a) if0<s<1,1 < p<oo, f(0) =0, f Lipschitz, then

ue WP — f(u) e WH? (trivial for s < 1; see [21] and [22] for s = 1);

b) ifs=n/p,1 < p <oo, f € R, where m = {‘ES] Ll :)ft;;;ir;emteger7

thenu € WP — f(u) € WP,

This result is explicitely stated in [11]; G. Bourdaud has pointed out that it may also
be derived from a result of T. Runst and W. Sickel, see p. 345 in [32], combined with
a result in [19] which asserts that, when s = n/p, WP — ﬁgfe,q for0 <6 <1
and every 0 < g < oo (see Remark 3.9 above);

c)ifs >n/p,1 <p<oo, f(O)=0and f € C", thenu € WP — f(u) € W57,
see [25] for p = 2 and [29] for the general case;

d) if 1 <s < n/p, we have to impose additional restrictions on u. Indeed,if 1 +1/p <
s < n/p, the only C?f’s that act on W*? are of the form f(¢) = ct; see [15]
for s integer and [31], Theorem 3.2, p. 319, for a general s. For 1 < s < n/p,
it follows from Remark 1.2 in the Introduction that R does not act on W57, since
WP ¢ WhsP_ A standard additional condition on u is u € L*: if f(0) = 0 and
feC™ thenu e WP NL>® — f(u) € W*P; see [29], [16];

e) an improvement is that, for f as above and 0 < ¢ < 1 we have u € W%? N
WospP/o — f(u) € W%P; see [11]. This result implies the previous one, since
WP N L™ < WP/ (by Corollary 3.2);
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f) a finer result asserts that, for f as above, we have u € W7 N I:*YIP q (withg < 2
sufficiently small depending on s and p) = f(u) € W*?; see [32], Theorem 1.1,
p.345. This hypothesis on u is weaker than the previous one, since WP NW?$P/%
ﬁ Ylp’ q for all ¢ > 0, by Lemma 3.1. This result is contained in Theorem 1.1, since
ﬁslp’q — Wb = F~‘slp,2 as soon as ¢ < 2 (recall that F}  increases with ¢).
However, when p <2 or 1 < s < 2, Runst and Sickel point out in Remark 1, p. 348
that the above smallness condition on g is precisely ¢ < 2. This means that Runst
and Sickel had established Theorem 1.1 when p <2orl <s < 2.

g) in the framework of Bessel potential spaces
L ={f=Gyvg: g L".G,(&) = 1+ 5P %) = FS 5,

there are various similar results about composition, starting with [23], [24] when
s > n/p,[30], [2] and [14] for H* N L* when s > 1. The ultimate result for s > 1
was obtained by Adams-Frazierin [1]: if 1 < s < 00,1 < p < 00, f € R, then
uelSPNLYP — f(u) € L>P. Thisis a special case (g = 2) of Theorem 5.2
since L1157 = wl-p,

h) Other questions concerning composition in Sobolev spaces have been investigated
e.g. in [5], [6], [32].

VI. More about products

In this last section, we state some natural results about products which may be derived
from the Runst-Sickel lemma.
Letl < p<o00,0<s<oo,l<r<oo,0<6<1,1 <t < oobesuch that

LEMMA 6.1. FOVf € Ws’t n LOO, g € W@S,p N Lr, we have fg c W(?S,P and

£ lwosr < CULFILolighwoss + Mgl £ Ul £l (36)

In the special case s > 1,0 = S;—l, we have r = sp and we obtain the following
COROLLARY 6.2. Ifl <s <00,1 < p <ooand f € WHPNL®, g € ws=Lpnpsp,
then fg € WS=Lr and

1-1 1
1£glws—10 < CA LN lghys—ro + Uglse | Fllyer 1 11)- 37
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In particular, if f, g € WP N L*, then Dg € WS~1'P N L’P, so that Corollary 6.2
contains as a special case the following result

COROLLARY 6.3. ([7], Lemma 2.2) If 1 < s < oo, 1 < p < oo and f,g €
WSP N L™, then f Dg € WS™LP,

REMARK 6.4. Clearly, Corollary 6.3 implies the well-known assertion that W* 7 N L
is an algebra.

Proof of Lemma 6.1. Let ¢ = 2 if Os is an integer, ¢ = p otherwise. By (15), we find
that f € Ft%’ q and

1o = CIF I A1 (38)

From the Runst-Sickel lemma, we deduce that fg € F gfq and

Ifglwes.r = 1f8lzes 4 = C(IIfIILooIIgIIﬁgfq + IIgIILrIIfIIﬁto/sM)
< CUIflizeliglwesr + 1l 15y £ 1110
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