COMPOSITION IN FRACTIONAL SOBOLEV SPACES

HAIM BREZIS⁽¹⁾⁽²⁾ AND PETRU MIRONESCU⁽³⁾

1. Introduction

A classical result about composition in Sobolev spaces asserts that if $u \in W^{k,p}(\Omega) \cap L^{\infty}(\Omega)$ and $\Phi \in C^k(\mathbb{R})$, then $\Phi \circ u \in W^{k,p}(\Omega)$. Here Ω denotes a smooth bounded domain in \mathbb{R}^N , $k \geq 1$ is an integer and $1 \leq p < \infty$. This result was first proved in [13] with the help of the Gagliardo-Nirenberg inequality [14]. In particular if $u \in W^{k,p}(\Omega)$ with kp > N and $\Phi \in C^k(\mathbb{R})$ then $\Phi \circ u \in W^{k,p}$ since $W^{k,p} \subset L^{\infty}$ by the Sobolev embedding theorem. When kp = N the situation is more delicate since $W^{k,p}$ is not contained in L^{∞} . However the following result still holds (see [2],[3])

Theorem 1. Assume $u \in W^{k,p}(\Omega)$ where $k \geq 1$ is an integer, $1 \leq p < \infty$, and

$$(1) kp = N.$$

Let $\Phi \in C^k(\mathbb{R})$ with

(2)
$$D^{j}\Phi \in L^{\infty}(\mathbb{R}) \quad \forall j \leq k.$$

Then

$$\Phi \circ u \in W^{k,p}(\Omega)$$

The proof is based on the following

Lemma 1. Assume $u \in W^{k,p}(\Omega) \cap W^{1,kp}(\Omega)$ where $k \geq 1$ is an integer and $1 \leq p < \infty$. Assume $\Phi \in C^k(\mathbb{R})$ satisfies (2). Then

$$\Phi \circ u \in W^{k,p}(\Omega).$$

Acknowledgment: The first author (H.B.) is partially supported by a European Grant ERB FMRX CT98 0201. He is also a member of the Institut Universitaire de France. Part of this work was done when the second author (P.M.) was visiting Rutgers University; he thanks the Mathematics Department for its invitation and hospitality. We thank S. Klainerman for useful discussions.

Proof of Theorem 1. Since $u \in W^{k,p}$ we have

$$Du \in W^{k-1,p} \subset L^q$$

by the Sobolev embedding with

$$\frac{1}{q} = \frac{1}{p} - \frac{k-1}{N}.$$

Applying assumption (1) we find q = N = kp and thus $u \in W^{1,kp}$. We deduce from Lemma 1 that $\Phi \circ u \in W^{k,p}$.

Proof of Lemma 1. Note that if $u \in W^{k,p} \cap L^{\infty}$ with $k \geq 1$ integer and $1 \leq p < \infty$ then $u \in W^{1,kp}$ by the Gagliardo - Nirenberg inequality [14]. Thus, Lemma 1 is a generalization of the standard result about composition. In fact, it is proved exactly in the same way as in the standard case (when $u \in W^{k,p} \cap L^{\infty}$). When k = 2 the conclusion is trivial.

Assume, for example that, k = 3, then

$$W^{3,p} \cap W^{1,3p} \subset W^{2,3p/2}$$

by the Gagliardo - Nirenberg inequality. Then

$$D^{3}(\Phi \circ u) = \Phi'(u)D^{3}u + 3\Phi''(u)D^{2}uDu + \Phi'''(u)(Du)^{3},$$

and thus $\Phi \circ u \in W^{3,p}$ since

$$\int |D^2 u|^p |D u|^p \le \left(\int |D^2 u|^{3p/2} \right)^{2/3} \left(\int |D u|^{3p} \right)^{1/3}$$

$$\le C \|u\|_{W^{3,p}}^{p/2} \|u\|_{W^{1,3p}}^{3p/2}.$$

A simular argument holds for any $k \geq 4$.

Starting in the mid-60's a number of authors considered composition in various classes of "Sobolev spaces" $W^{s,p}$, where s>0 is a real number and $1\leq p<\infty$. The most commonly used are the Bessel potential spaces $L^{s,p}(\mathbb{R}^N)=\{f=G_s*g;g\in L^p(\mathbb{R}^N)\}$ where $\widehat{G}_s=(1+|\xi|^2)^{-s/2}$ and the Besov spaces $B^{s,p}_p(\mathbb{R}^N)$ (who's definition is recalled below when s is **not** an integer). It is well-known (see e.g. [1],[19] and [20]) that if k is an integer, $L^{k,p}$ coincides with the standard Sobolev space $W^{k,p}$; also if p=2, the Bessel potential spaces $L^{s,2}$ and the Besov spaces $B^{s,2}_2$ coincide for every s non-integer and they are usually denoted by H^s . When $p\neq 2$ the spaces $L^{s,p}$ and $B^{s,p}_p$ are distinct.

The first result about composition in fractional Sobolev spaces seems to be due to Mizohata [12] for H^s , s > N/2. In 1970 Peetre [15] considered $B_p^{s,p} \cap L^{\infty}$ using interpolation

techniques; a very simple direct argument for the same class, $B_p^{s,p} \cap L^{\infty}$, was given by M. Escobedo [10] (see the proof of Lemma 2 below).

Starting in 1980 techniques of dyadic analysis and Littlewood-Paley decomposition à la Bony [5] were introduced. For example, Y. Meyer [11] considered composition in $L^{s,p}$ for sp > N; see also [16],[4],[9] for H^s with s > N/2 or for $H^s \cap L^{\infty}$, any s > 0. We refer to [17],[6],[7],[18] and their bibliographies for other directions of research concerning composition in Sobolev spaces.

In what follow we denote by $W^{s,p}(\Omega)$ the restriction of $B_p^{s,p}(\mathbb{R}^N)$ to Ω when s is not an integer. Our main result is the following

Theorem 2. Assume $u \in W^{s,p}(\Omega)$ where s > 1 is a real number, 1 , and

$$(3) sp = N.$$

Let $\Phi \in C^k(\mathbb{R})$, where k = [s] + 1, be such that

(4)
$$D^{j}\Phi \in L^{\infty}(\mathbb{R}) \quad \forall j \leq k.$$

Then

$$\Phi \circ u \in W^{s,p}(\Omega)$$
.

The proof of Theorem 2 relies on a variant of Lemma 1 for fractional Sobolev spaces.

Lemma 2. Let $u \in W^{s,p}(\Omega)$, where s > 1 is a real number and $1 . Assume, in addition, that <math>u \in W^{\sigma,q}$ for some $\sigma \in (0,1)$ with

$$(5) q = sp/\sigma.$$

Let $\Phi \in C^k(\mathbb{R})$, where k = [s] + 1, be such that (4) holds. Then

$$\Phi \circ u \in W^{s,p}$$

Proof of Theorem 2. By the Sobolev embedding theorem we have

$$W^{s,p} \subset W^{r,q}$$

with r < s and

$$\frac{1}{q} = \frac{1}{p} - \frac{(s-r)}{N}.$$

In view of assumption (3) we find

$$q = N/r$$
.

In particular,

$$u \in W^{\sigma,q}$$

for all $\sigma \in (0,1)$ with

$$q = \frac{N}{\sigma} = \frac{sp}{\sigma}.$$

Thus we may apply Lemma 2 and conclude that $\Phi \circ u \in W^{s,p}$.

Remark 1. Theorem 2 is known to be true when the Sobolev spaces $W^{s,p}$ are replaced by the Bessel potential spaces $L^{s,p}$ with sp = N; see D. Adams and M. Frazier [3]. Even though the two results are closely related it does not seem possible to deduce one from the other. Their argument relies on a variant of Lemma 2 for Bessel potential spaces:

Let $u \in L^{s,p} \cap L^{1,sp}$ where s > 1 is a real number and $1 . Let <math>\Phi$ be as in Lemma 2. Then $\Phi \circ u \in L^{s,p}$.

Remark 2. The assumption in Lemma 2, $u \in W^{s,p} \cap W^{\sigma,q}$, with $q = sp/\sigma$ for some $\sigma \in (0,1)$, is **weaker** than the assumption $u \in W^{s,p} \cap L^{\infty}$ but it is **stronger** than the assumption $u \in W^{1,sp}$; this is a consequence of Gagliardo - Nirenberg type inequalities (see e.g. the proof of Lemma D.1 in the Appendix D of [8]). It is therefore natural to raise the following:

Open Problem. Is the conclusion of Lemma 2 valid if one assumes only $u \in W^{s,p} \cap W^{1,sp}$ where s > 1 is a (non-integer) real number?

Before giving the proof of Lemma 2 we recall some properties of $W^{s,p}$ when s is not an integer.

When $0 < \sigma < 1$ and $1 the standard definition of <math>W^{\sigma,p}$ is

$$W^{\sigma,p}(\Omega) = \{ f \in L^p(\Omega); \int \int \frac{|f(x) - f(y)|^p}{|x - y|^{N + \sigma p}} dx dy < \infty \}.$$

If s > 1 is not an integer write $s = [s] + \sigma$ where [s] denotes the integer part of s and $0 < \sigma < 1$. Then

$$W^{s,p}(\Omega) = \{ f \in W^{[s],p}(\Omega), D^{\alpha} f \in W^{\sigma,p} \text{ for } |\alpha| = [s] \}.$$

There is a very useful characterization of $W^{s,p}$ in terms of finite differences (see Triebel [20], p.110). Here it is more convenient to work with functions defined on all of \mathbb{R}^N and to consider their restrictions to Ω . Set

$$(\delta_h u)(x) = u(x+h) - u(x), \ h \in \mathbb{R}^N,$$

so that

$$(\delta_h^2 u)(x) = u(x+2h) - 2u(x+h) + u(x)$$
, etc...

Given s > 0 not integer, fix **any** integer M > s. Then

$$W^{s,p} = \{ f \in L^p; \int \int \frac{|\delta_h^M f(x)|^p}{|h|^{N+sp}} dx dh < \infty \}.$$

Proof of Lemma 2. It suffices to consider the case where s is not an integer. For simplicity we treat just the case where 1 < s < 2. The same argument extends to general s > 2, s noninteger, using the same type of computations as in Escobedo [10].

The key observation is that $\delta_h^2(\Phi \circ u)$ can be expressed in terms of $\delta_h^2 u$ and $\delta_h u$. This is the purpose of our next computation.

Set

$$X = u(x + 2h)$$
$$Y = u(x + h)$$
$$Z = u(x).$$

Since $\Phi'' \in L^{\infty}(\mathbb{R})$ we have

(6)
$$\Phi(X) - \Phi(Y) = \Phi'(Y)(X - Y) + 0(|X - Y|^2)$$

and since $\Phi' \in L^{\infty}(\mathbb{R})$ we also have

(7)
$$\Phi(X) - \Phi(Y) = \Phi'(Y)(X - Y) + 0(|X - Y|).$$

Combining (6) and (7) we find

$$\Phi(X) - \Phi(Y) = \Phi'(Y)(X - Y) + O(|X - Y|^a)$$

for any $1 \le a \le 2$ (we will choose a specific value of a later) Similarly

$$\Phi(Z) - \Phi(Y) = \Phi'(Y)(Z - Y) + 0(|Z - Y|^a)$$

Since

$$\delta_h^2(\Phi \circ u)(x) = (\Phi(X) - \Phi(Y)) + (\Phi(Z) - \Phi(Y)),$$

one finds

(8)
$$|\delta_h^2(\Phi \circ u)(x)| \le C(|\delta_h^2 u(x)| + |\delta_h u(x+h)|^a + |\delta_h u(x)|^a).$$

This yields

$$(9) \qquad \int \int \frac{|\delta_h^2(\Phi \circ u)(x)|^p}{|h|^{N+sp}} dx dh \le C \int \int \frac{|\delta_h^2 u(x)|^p}{|h|^{N+sp}} dx dh + C \int \int \frac{|\delta_h u(x)|^{ap}}{|h|^{N+sp}} dx dh.$$

The first integral on the right-hand side of (9) is finite since $u \in W^{s,p}$. To handle the second integral we argue as follows. From the assumption $u \in W^{s,p} \cap W^{\sigma,q}$ with $\sigma \in (0,1)$ and q given by (5) we know that

(10)
$$\int \int \frac{|\delta_h^2 u(x)|^p}{|h|^{N+sp}} dx dh < \infty \text{ and } \int \int \frac{|\delta_h^2 u(x)|^q}{|h|^{N+sp}} dx dh < \infty.$$

From (10) and Hölder's inequality we derive that

(11)
$$\int \int \frac{|\delta_h^2 u(x)|^r}{|h|^{N+sp}} dx dh < \infty$$

for all $r \in [p,q],$ i.e., $u \in W^{\tau,r}$ with $\tau = sp/r.$ We now choose

$$a = min\{2, s/\sigma\}$$
, so that $a \in [1, 2]$

and $r = ap \in [p, q]$. It follows that

$$\int \int \frac{|\delta_h u(x)|^{ap}}{|h|^{N+sp}} dx dh < \infty,$$

which is the desired in equality.

Remark 3. There could be another natural proof of Theorem 2 by induction on [s]. One might attempt to prove that

$$D(\Phi \circ u) = \Phi'(u)Du \in W^{s-1,p}.$$

Note that $u \in W^{(s-1),N/(s-1)}$ and thus (by induction) we would have $\Phi'(u) \in W^{(s-1),N/(s-1)}$. On the other hand $Du \in W^{s-1,p}$. In order to conclude we need a lemma about products, but we are not aware of any such tool.

Remark 4. When s (or equivalently p) is a rational number, and $\Phi \in C^{\infty}$ with $D^{j}\Phi \in L^{\infty} \forall j$, there is a simple proof of Theorem 2 based on trace theory and Theorem 1. Assume for simplicity that $\Omega = \mathbb{R}^{N}$. Suppose that s is not an integer, but that $s_{1} = s + 1/p$ is an integer. Then u is the trace of some function $u_{1} \in W^{s_{1},p}(\mathbb{R}^{N+1})$. Then $s_{1}p = N+1$ and by Theorem 1 we deduce that $\Phi \circ u_{1} \in W^{s_{1},p}(\mathbb{R}^{N+1})$. Taking traces we find $\Phi \circ u \in W^{s,p}(\mathbb{R}^{N})$. If s_{1} is not an integer we keep extending u_{1} to higher dimensions and stop at the first integer k such that $s_{k} = s + k/p$ is an integer (this is possible since p is rational and s + k/p = (N + k)/p becomes an integer for some integer k). We have an extension $u_{k} \in W^{s_{k},p}(\mathbb{R}^{N+k})$ of u. Then $\Phi \circ u_{k} \in W^{s_{k},p}(\mathbb{R}^{N+k})$ by Theorem 1. Taking back traces yields $u \in W^{s,p}$.

References

- 1. R. Adams, Sobolev spaces, Acad. Press, 1975.
- 2. D.R. Adams, On the existence of capacitary strong type estimates in \mathbb{R}^n , Ark. Mat. 14, (1976), 125-140.
- 3. D.R. Adams and M. Frazier, Composition operators on potential spaces, Proc. Amer. Math. Soc., 114, (1992), 155-165.
- 4. S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, Interéditions, 1991.
- 5. J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles nonlinéaires, Ann. Sc. Ec. Norm Sup. 14, (1981), 209-246.
- 6. G. Bourdaud, Le calcul fonctionnel dans les espaces de Sobolev, Invent. Math., 104, (1991), 435-446.
- 7. G. Bourdaud and Y. Meyer, Fonctions qui opèrent sur les espaces de Sobolev, J. Funct. Anal., 97, (1991), 351-360.
- 8. J. Bourgain, H.Brezis and P.Mironescu, Lifting in Sobolev spaces, J. d'Analyse 80, (2000), 37-86.
- 9. J.-Y. Chemin, Fluides parfaits incompressibles, Astérisque 230, 1995.
- 10. M. Escobedo, Some remarks on the density of regular mappings in Sobolev classes of S^M -valued functions, Rev. Mat. Univ. Complut. Madrid, 1, (1988), 127-144.
- 11. Y.Meyer, Remarques sur un théorème de J.-M. Bony,, Suppl. Rend. Circ. Mat. Palermo, Series II 1, (1981), 1-20.
- 12. S. Mizohata, Lectures on the Cauchy problem, Tata Inst., Bombay, 1965.
- 13. J. Moser, A rapidly convergent iteration method and non-linear differential equations, Ann. Sc. Norm. Sup. Pisa **20**, (1966), 265-315.
- 14. L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Sup. Pisa, 13, (1959), 115-162.
- 15. J. Peetre, Interpolation of Lipschitz operators and metric spaces, Mathematica (Cluj) 12, (1970), 1-20.
- 16. J. Rauch and M. Reed, Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension, Duke Math J. 49, (1982), 397-475.
- 17. T. Runst, Mapping properties of non-linear operators in spaces of Triebel-Lizorkin and Besov type, Analysis Mathematica, 12, (1986), 313-346.
- 18. T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, Walter de Gruyter, Berlin and New York, 1996.
- 19. H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam, 1978.
- 20. H. Triebel, Theory of function spaces, Birkhäuser, Basel and Boston, 1983.
 - (1) ANALYSE NUMÉRIQUE UNIVERSITÉ P. ET M. CURIE, B.C. 187 4 PL. JUSSIEU 75252 PARIS CEDEX 05
 - (2) RUTGERS UNIVERSITY
 DEPT. OF MATH., HILL CENTER, BUSCH CAMPUS
 110 FRELINGHUYSEN RD, PISCATAWAY, NJ 08854

 $E ext{-}mail\ address: brezis@ccr.jussieu.fr; brezis@math.rutgers.edu}$

(3) DEPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ PARIS-SUD 91405 ORSAY

E-mail address: : Petru.Mironescu@math.u-psud.fr