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Introduction.

J. Rubinstein and P. Sternberg established in [9] the following result. Let Ω be a solid
3-dimensional torus, i.e., Ω = S1 × Λ where Λ is the unit disc in R2. Let u ∈ H1(Ω;S1).
For a.e. λ ∈ Λ the map

x ∈ S1 7→ u(x, λ) ∈ S1

belongs to H1(S1, S1); thus it is continuous and has a degree. Conclusion:

deg(u( · , λ)) is independent of λ.

This result is somewhat surprising because H1 functions in 3-d need not be continuous,
and not even in VMO. If Ω were a 2-d annulus, Ω = S1 × (0, 1), instead of a 3-d torus the
conclusion would still be surprising; however, in this case one can give a straightforward
proof via the H1/2(S1, S1) degree theory of L. Boutet de Monvel and O. Gabber (see [4]
and also [5]). Indeed, by standard trace theory, the map

λ ∈ (0, 1) 7→ u( · , λ) ∈ H1/2(S1, S1)

is continuous. We recall that any map ϕ ∈ H1/2(S1, S1) has a degree which depends
continuously on the H1/2 norm. Therefore deg(u( · , λ)) is well-defined for every λ ∈ (0, 1)
and is independent of λ.

By contrast, in 3-d, there is no similar argument since a general H1 function does not
have trace on every line.

In this paper we first give, in Section 1, a direct generalization with simple proof. We
then present in Section 2 a still more general result which holds in fractional Sobolev
spaces.
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Section 1.

Let X and Y be compact, oriented, n-dimensional smooth manifolds without boundary,
Y is connected. Let Λ be a domain in Rk. Let u be a map from Ω = X × Λ into Y which
belongs to W 1,n+1(Ω, Y ), i.e., if Y is smoothly embedded in some RN then u is a map from
Ω into RN having each component in W 1,n+1 and such that u(x, λ) ∈ Y a.e. in Ω. For a.e.
λ ∈ Λ, u( · , λ) belongs to W 1,n+1(X,Y ); so it is continuous and therefore deg(u( · , λ)) is
well defined.

Theorem 1. deg(u( · , λ)) is independent of λ and we call it simply deg u. Moreover,
deg u is stable under convergence in W 1,n(Ω), i.e., if a sequence (uj) in W 1,n+1(Ω) con-
verges in the W 1,n norm to some u ∈ W 1,n+1(Ω), then deg uj = deg u for sufficiently
large j.

Remark 1. The result need not hold if u is merely in W 1,p(Ω, Y ) with p < n+ 1. Here is
an example. Let X = Y = Sn and let Ω = (0, 2)k

u(x, λ) =
x− λ1e1
|x− λ1e1|

It is easily seen that u ∈ W 1,p(Ω, Y ) for every p < n + 1. On the other hand
deg(u( · , λ)) = 0 for λ1 > 1 and deg(u( · , λ)) = 1 for λ1 < 1.

The proof of the theorem uses a standard representation of the degree of a C1 map ϕ
as an integral. If ω is a smooth n-form on Y with∫

Y

ω = 1

then
degϕ =

∫
X

ω ◦ ϕ

where ω ◦ϕ is the pull-back of ω by ϕ (see e.g. [8]). That formula still holds (by density) if
ϕ ∈ C0∩W 1,n. (In fact, it suffices that ϕ ∈W 1,n since it is then in VMO and VMO-maps
have a degree, see [5]).

Proof of Theorem 1. It is convenient to work with a special form ω on Y having small
support. For then we can use one fixed local coordinate system near a point. Assume
0 ∈ Y ⊂ RN ; we may also choose the embedding e of Y into RN in such a way that, in a
neighborhood V of 0 in RN ,

e(Y ) =
{
y; yn+1 = yn+2 = yN = 0

}
.

Let ζ be a smooth function with support in V such that∫
ζ(y1, y2, . . . yn, 0, . . . 0)dy1 . . . dyn = 1.
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We consider the n-form ω̃ on RN ,

ω̃ = ζ(y1, y2, . . . , yN )dy1 ∧ · · · ∧ dyn

and take as w on Y , the pull back of ω̃ under e; in our local coordinates it has the form

ω = ζ(y1, y2, . . . yn, 0, . . . , 0)dy1 ∧ · · · ∧ dyn

and thus
∫

Y
ω = 1.

We have to prove that

(1)
∫

X

ω ◦ u( · , λ)

is independent of λ, a.e. in Λ. The natural argument would be to differentiate the integral
with respect to the parameter λ. However, the integrand in (1) already involves first order
derivatives of u and λ-differentiation introduces second-order derivatives. We get rid of
these by integration by parts. To carry this out we use approximation by smooth functions.

Let uε be a family of smooth maps from Ω into RN converging, as ε→ 0, to u in W 1,n+1.
Note that, in general, the uε’s do not map into Y (and not even into a neighborhood of
Y , see [2]). Set

ψε(λ) =
∫

X

ω̃ ◦ uε( · , λ)

and differentiate ψε with respect to one of the λ’s, still denoted by λ.
We find, with ui

ελ = ∂
∂λu

i
ε,

∂

∂λ
ψε(λ) =

∫
X

N∑
1

∂ζ

∂yj
(uε)u

j
ελdu

1
ε ∧ . . . ∧ dun

ε

+
∫

X

ζ(uε)du1
ελ ∧ du2

ε ∧ . . . ∧ dun
ε(2)

+ · · ·+
∫

X

ζ(uε)du1
ε ∧ · · · ∧ dun−1

ε ∧ dun
ελ.

Now ∫
X

ζ(uε)du1
ελ ∧ du2

ε ∧ · · · ∧ dun
ε =

∫
X

d
[
ζ(uε)u1

ελdu
2
ε ∧ · · · ∧ dun

ε

]
−

∫
X

N∑
1

u1
ελ

∂ζ

∂yj
(uε)duj

ε ∧ du2
ε ∧ · · · ∧ dun

ε

= −
∫

X

u1
ελ

∂ζ

∂y1
(uε)du1

ε ∧ du2
ε ∧ · · · ∧ dun

ε

−
∫

X

N∑
n+1

u1
ελ

∂ζ

∂yj
(uε)duj

ε ∧ du2
ε ∧ · · · ∧ dun

ε .
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Similar expressions hold for the term after this one in (2). Inserting these expressions into
(2), we find

∂

∂λ
ψε(λ) =

∫
X

N∑
n+1

∂ζ

∂yj
(uε)u

j
ελdu

1
ε ∧ · · · ∧ dun

ε

−
∫

X

N∑
n+1

∂ζ

∂yj
(uε)

[
u1

ελdu
j
ε ∧ du2

ε ∧ · · · ∧ dun
ε(3)

+ u2
ελdu

1
ε ∧ duj

ε ∧ du3
ε ∧ · · · ∧ dun

ε + · · ·+ un
ελdu

1
ε ∧ · · · ∧ dun−1

ε ∧ duj
ε

]
.

Next we claim that, as ε→ 0,

(4)
∫

Ω

|∂ψε

∂λ
| → 0.

Indeed by (3) we have

|
∂ψε(λ)

∂λ
| ≤ C

N∑
n+1

∫
X

∣∣∣∣ ∂ζ∂yj
(uε)

∣∣∣∣ |Duj
ε||Duε|n

where D denotes the full gradient (in x and λ).

Thus ∫
Λ

|∂ψε

∂λ
| ≤ C

N∑
n+1

[∫
Ω

| ∂ζ
∂yj

(uε)|n+1|Duj
ε|n+1

]1/(n+1)

‖uε‖n
W 1,n+1(Ω).

Since uε → u in W 1,n+1(Ω) we have

∫
Λ

|∂ψε

∂λ
| ≤ C

N∑
n+1

[∫
Ω

| ∂ζ
∂yj

(uε)|n+1|Duj
ε|n+1

]1/(n+1)

.

Next observe that (passing to a subsequence)

| ∂ζ
∂yj

(uε)||Duj
ε| → | ∂ζ

∂yj
(u)||Duj | a.e. on Ω

and, for j > n, ∂ζ
∂yj (u)Duj = 0 a.e. on Ω (since on the set {(x, λ);u(x, λ) ∈ V }, uj = 0 for

j = n+ 1, . . . , N and hence Duj = 0). On the other hand (passing to a subsequence) we
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may assume that |Duj
ε| is bounded by a fixed function in Ln+1(Ω) and hence, by dominated

convergence, ∫
Ω

| ∂ζ
∂yj

(uε)|n+1|Duj
ε|n+1 → 0, for j > n,

which yields (4).

Finally we claim that

(5) ψε(λ) → ψ(λ) =
∫

X

ω̃ ◦ u( · , λ) =
∫

X

ω ◦ u( · , λ) in L(n+1)/n(Λ)

Indeed the integrand in ψε can be estimated pointwise by

|ω̃ ◦ uε| ≤ C|Duε|n

and thus (passing to a subsequence)

|ω̃ ◦ uε − ω̃ ◦ u| ≤ f

where f is a fixed function in L(n+1)/n(Ω).

Therefore
|ψε(λ)− ψ(λ)|(n+1)/n ≤ C

∫
X

|f(x, λ)|(n+1)/ndx

and the right-hand side is a fixed function in L1(Λ). The claim (5) follows, again by
dominated convergence, since ψε(λ) → ψ(λ) a.e.

Combining (4) and (5) we see that ψ ∈W 1,1(Λ) and

∂ψ

∂λ
= 0.

Hence ψ is independent of λ.

The last assertion in the theorem, i.e., stability of degree underW 1,n convergence follows
easily from the formula

deg u = �
∫

Λ

∫
X

ω ◦ u

and the fact that the integrand in the right-hand side involves n-products of derivatives of
u.

Remark 2. The above computation for computing the λ-derivative of a pull back can be
expressed globally, and more succinctly, in terms of differential forms.
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Namely, consider X and Λ as above and a smooth map u from Ω = X × Λ into an
oriented manifold Z (in the case above, Z = RN ). Let ω̃ be a smooth n-form on Z. The
λ-derivative of the pullback ω̃ ◦ u( · , λ) is simply

(6) ∂λω̃ ◦ u( · , λ) = dA+B

where A and B are (n− 1) and n-forms respectively on X. They are expressed using the
tangent vector uλ which is defined at points of Z in the image of u( · , λ). A and B are
given by

(7) A = (ω̃ y uλ) ◦ u

(8) B = (dω̃ y uλ) ◦ u.

Here uλ is the λ-derivative (say with respect to one of the λ coordinates) of u. The symbol
y denotes contraction of a differential form and a vector (see [7]).

Formula (6) holds for a smooth map. It still holds for maps in W 1,n+1, provided one
interprets (6) in the distribution sense. In fact, the coefficients of ω̃ ◦ u and of A are n
products of functions in Ln+1, the coefficients of B are n+1 products of functions in Ln+1.
To justify (6) in such generality one smoothes u by uε as above, mapping however into a
high dimension Euclidean space in which Z is embedded.

In the special case that dim Z = dim X (for example if Z = Y as above) then dω̃ = 0
and thus B = 0.

Warning: The reader might think that in this case (6) holds with B = 0 assuming only
that u ∈W 1,n. This is not true as the counterexample in Remark 1 shows.

When using degree theory one often considers X, the domain space with a boundary,
Y connected and open. One wishes to compute the degree of u : X → Y at some point
y ∈ Y which is not in the image of the boundary (if the map u ∈ C(X), Theorem 1 easily
extends to such a situation). Here is one form of such a result:

Let X be an open subset of an n-dimensional smooth oriented manifold X̃ with X,
the closure of X, compact in X̃ and ∂X smooth. Let Y be an open oriented, connected,
n-dimensional smooth Riemannian manifold. Let Λ be a domain in Rk. Let u be a map
from Ω = X × Λ into Y which belongs to W 1,n+1(Ω, Y ). For a.e. λ ∈ Λ, u( · , λ) belongs
to W 1,n+1(X,Y ) so it is continuous in X. Assume that y ∈ Y is such that for some δ > 0
and for a.e. λ as above,

dist (y, u(∂X, λ)) ≥ δ

Then the degree of u at y, deg(u( · , λ), X, y) is well defined.
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Theorem 1′. deg(u( · , λ), X, y) is independent of λ.

The proof is just the same as that of Theorem 1. We may suppose that y is the origin
in RN and that Y near 0 is flat. Then we take the forms ω̃ and w as above, with supp
ω lying in a δ/2 neighborhood (with respect to the metric on Y ) of y. Then proceed as
before.

Section 2.

Let X,Y and Λ be as in Theorem 1 and let u be a map from Ω = X × Λ into Y which
belongs to W s,p(Ω, Y ) with s > 0 and 1 < p < ∞. Recall that for a.e. λ ∈ Λ, u( · , λ)
belongs to W s,p(X,Y ). This is clear if s is an integer; when 0 < s < 1 such property is an
easy consequence of the equivalence of two W s,p norms in Rm:

‖f‖p
W s,p = ‖f‖p

Lp +
∫

Rm

∫
Rm

|f(x)− f(y)|p

|x− y|m+sp
dxdy

and

‖|f‖|pW s,p = ‖f‖p
Lp +

m∑
i=1

∫ 1

0

∫
Rm

|f(x+ tei)− f(x)|p

tsp
dxdt

(see e.g. Adams [1], p. 208-214 or Triebel [10]). The case of a general s > 0 follows easily.

Assuming further that

(9) sp ≥ n+ 1

we find that for a.e. λ ∈ Λ, u( · , λ) ∈ W s,p(X,Y ) ⊂ C0(X,Y ); therefore deg(u( · , λ)) is
well defined for a.e. λ ∈ Λ.

Theorem 2. Assume that u ∈W s,p(Ω, Y ) and that (9) holds. Then

deg(u( · , λ)) is independent of λ.

Moreover, this degree is stable under convergence in any W s′,p′
norm provided s′p′ ≥ n.

Proof. We may assume that 0 < s ≤ 1 and the case s > 1 is handled with minor modifica-
tions. In this generality there is no integral representation for the degree and the argument
is quite different from the proof of Theorem 1. Clearly it suffices to prove that the degree
is locally constant a.e. Hence it suffices to consider the case where Λ = (0, 1)k. We assume
first that k = 1 and the general case will be done by reduction to k = 1 as in Bethuel and
Demengel [3] (Lemma A.1).

Case where Λ = (0,1). By the standard trace theory a map u ∈ W s,p(X × (0, 1), Y )
can be identified with a map u ∈ C([0, 1],W s−1/p,p(X,Y ). Since (s− 1/p)p = sp− 1 ≥ n,
W s−1/p,p(X) ⊂ VMO (X) (see e.g. [5]); we also recall that there is a degree theory on
VMO(X,Y ) and that this degree is stable under small VMO perturbation. In this case
deg(u( · , λ)) is well defined for every λ ∈ [0, 1] and it is independent of λ.
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Case where Λ = (0,1)k. We start with two lemmas:

Lemma 1. The map λ 7→ deg(u( · , λ)) = ψ(λ) is measurable.

Proof. Consider a sequence (uj) of smooth functions on X × Λ → RN (Y is embedded in
RN ) such that

uj → u in W s,p(X × Λ)

Passing to a subsequence (and using the equivalence of norms mentioned above) we may
assume that for a.e. λ ∈ Λ

uj( · , λ) → u( · , λ) in W s,p(X).

In particular for a.e. λ ∈ Λ,

(10) uj( · , λ) → u( · , λ) uniformly in X.

Let δ > 0 be sufficiently small so that in the closed δ-neighborhood Nδ(Y ) of Y in RN the
projection PY onto Y is well defined.

For every j = 1, 2, . . . and every λ ∈ Λ set

γj(λ) = Sup
x∈X

dist (uj(x, λ), Y ),

(so that each γj is continuous–even Lipschitz–in λ) and

ψj(λ) =

{
deg(PY (uj( · , λ)) (δ−γj(λ))

δ if γj(λ) ≤ δ

0 if γj(λ) > δ.

In view of (10) it is clear that

ψj(λ) → ψ(λ), as j →∞, a.e. in λ ∈ Λ.

On the other hand, it is easy to check that for every j, the function λ 7→ ψj(λ) is continuous
on Λ. Thus ψ is measurable on Λ.

The second lemma is purely measure theoretical.
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Lemma 2. Let Λ = (0, 1)k and let ψ be a measurable function on Λ such that for each
1 ≤ i ≤ n and for a.e. (λ1, . . . λi−1, λi+1, . . . λk) in (0, 1)k−1, the function

a ∈ (0, 1) 7→ ψ(λ1, . . . λi−1, a, λi+1, . . . λk)

is constant a.e. on (0, 1). Then ψ is constant a.e. on Λ.

Proof. We may always assume that ψ is also bounded (and thus integrable) since otherwise
we may replace ψ by Arctan ψ. By the triangle inequality, with

λ = (λ1, . . . λk) and µ = (µ1, . . . µk),

we have

|ψ(λ)− ψ(µ)| ≤ |ψ(λ1, λ2, . . . λk−1, λk)− ψ(λ1, λ2, . . . λk−1, µk)|
+ |ψ(λ1, λ2, . . . λk−1, µk)− ψ(λ1, λ2, . . . µk−1, µk)|
+ · · ·+ |ψ(λ1, µ2, . . . µk−1, µk)− ψ(µ1, µ2, . . . µk−1, µk)|

It follows from the assumption that∫
(0,1)k

∫
(0,1)k

|ψ(λ)− ψ(µ)|dλdµ = 0.

Consequently, ψ(λ)−ψ(µ) = 0 a.e. on (0, 1)k × (0, 1)k which implies that ψ(λ) is constant
a.e. on (0, 1)k.

We now return to the proof of the theorem and, in view of the Λ = (0, 1) case, apply
Lemma 2 to ψ(λ) = deg (u(· , λ)) to conclude that deg (u(· , λ)) is constant a.e. in (0, 1)k.

To establish the stability under W s′,p′
convergence with s′p′ ≥ n we argue as follows.

Consider a sequence (uj) in W s,p converging in the W s′,p′
norm to some u ∈ W s,p with

sp ≥ n+1. As in Lemma 1, passing to a subsequence we may assume that, for a.e. λ ∈ Λ,

uj(· , λ) → u(· , λ) in W s′,p′
(X).

Since s′p′ ≥ n, W s′,p′
is contained in VMO, and we may infer from the result of [5] that,

for a.e. λ ∈ Λ,
deg (uj(· , λ)) → deg (u(· , λ)).

The conclusion follows by picking any λ outside a countable union of sets of measure zero.
The uniqueness of the limit implies the convergence of the full sequence.

Remark 3. The above argument extends to the case where X and Y need not have the
same dimension, and degree is replaced by homotopy classes. More precisely we have
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Theorem 2′. Assume that u ∈W s,p(Ω, Y ) and that (9) holds with n = dimX, then there
is a homotopy class C in C0(X,Y ) such that

u( · , λ) ∈ C for a.e. λ ∈ Λ.

Proof. When Λ = (0, 1) we may invoke Lemma A.20 in [5] to assert that two continuous
maps which are homotopic within VMO are also homotopic in C0(X,Y ).

In the general case we denote by (Ck), k = 1, 2, . . . , the homotopy classes of C0(X,Y )
(the connected components of C0(X,Y ) are countable since C0(X,Y ) is separable). For
every v ∈ C0(X,Y ) we set

deg v = k provided v ∈ Ck.

and the above argument remains unchanged.

We conclude with a similar question in the VMO framework. Let X,Y and Λ be as in
Section 1 and let

u ∈ VMO (Ω, Y ),

Open Problem: Is it true that for a.e. λ ∈ Λ

u( · , λ) ∈ VMO (X,Y )

and if so, is deg (u( · , λ)) constant a.e. in Λ?

This question is also related to a question of H. Amann and result in [6] (p.332-333).
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