C. R. Acad. Sci. Paris, t. 331, Série I, p. 365-370, 2000 Équations aux dérivées partielles/Partial Differential Equations (Topologie/Topology)

Topology and Sobolev spaces

Haïm BREZIS a, Yan Yan LI b

- ^a Analyse numérique, Université Pierre-et-Marie-Curie, B.C. 187, 4, place Jussieu, 75252 Paris cedex 05, France E-mail: brezis@ccr.jussieu.fr
- Department of Mathematics, Rutgers University, Hill Center, Busch Campus, 110 Frelinghuysen Rd,
 Piscataway, NJ 08854-8019, USA
 E-mail: vvli@math.rutgers.edu

(Recu et accepté le 19 juin 2000)

Abstract.

Let M and N be compact manifolds and consider the Sobolev space $W^{1,p}(M,N)$. Our main concern is to determine whether or not $W^{1,p}(M,N)$ is path-connected and, if not, what can be said about its path-connected components, i.e., its $W^{1,p}$ -homotopy classes. © 2000 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Topologie et espaces de Sobolev

Résumé.

Étant donné deux variétés compactes M et N on considère l'espace de Sobolev $W^{1,p}(M,N)$. Notre objectif est de déterminer si $W^{1,p}(M,N)$ est connexe par arc et, sinon, d'analyser ses composantes, c'est-à-dire les classes d'homotopie relatives à $W^{1,p}$. © 2000 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

Version française abrégée

Soient M et N deux variétés. Les classes d'homotopie usuelles correspondent aux composantes connexes par arc de l'espace $\mathrm{C}^0(M,N)$. Si l'on remplace l'espace des fonctions continues par l'espace de Sobolev $\mathrm{W}^{1,p}$ il est essentiel de comprendre comment les composantes connexes par arc de $\mathrm{W}^{1,p}(M,N)$ dépendent de p. Curieusement, cette question à l'interface entre l'Analyse et la Topologie reste en grande partie à défricher. Voici quelques résultats et conjectures frappants :

Théorème $1.-Si\ p\geqslant \dim M$, alors $\mathrm{W}^{1,p}(M,N)$ possède la même topologie que $\mathrm{C}^0(M,N)$.

THÉORÈME 2. – Si p < 2 et $\dim M \geqslant 2$, alors $\mathrm{W}^{1,p}(M,N)$ est connexe par arc $(\forall M, \forall N)$.

Théorème $3.-Si \ p\geqslant 2$ et $N=S^1$, alors $\mathrm{W}^{1,p}(M,N)$ et $\mathrm{C}^0(M,N)$ possèdent la même topologie.

CONJECTURE 1. – Dans toute composante connexe par arc de $W^{1,p}(M,N)$ il existe au moins une fonction régulière $(\forall p, \forall M, \forall N)$.

Conjecture 2. – Soient $u, v \in W^{1,p}(M,N)$; si $u \sim v$ dans $W^{1,[p]}$, alors $u \sim v$ dans $W^{1,p}$.

Note présentée par Haïm BREZIS.

H. Brezis, Y.Y. Li

La conjecture 2 exprime que les changements de structure topologique de $W^{1,p}(M,N)$ ont lieu seulement pour des valeurs entières de p. Au vu de ces résultats il est extrêmement intéressant d'analyser par quel mécanisme certaines classes d'homotopie « fusionnent » alors que d'autres persistent, lorsque p décroît depuis $p = \dim M$ jusqu'à p = 2 et de trouver les valeurs de p où un changement de topologie apparaît.

Let M and N be compact connected oriented smooth Riemannian manifolds with or without boundary. Throughout this note we assume that $\dim M \geqslant 2$ but $\dim N$ could possibly be one, for example $N = S^1$ is of interest. Our functional framework is the Sobolev space $W^{1,p}(M,N)$ which is defined by considering N as smoothly embedded in some Euclidean space \mathbb{R}^K and then

$$W^{1,p}(M,N) = \{u \in W^{1,p}(M,\mathbb{R}^K); u(x) \in N \text{ a.e.}\},\$$

with $1 \leqslant p < \infty$. $\mathrm{W}^{1,p}(M,N)$ is equipped with the standard metric $\mathrm{d}(u,v) = \|u-v\|_{\mathrm{W}^{1,p}}$. Our main concern is to determine whether or not $\mathrm{W}^{1,p}(M,N)$ is path-connected and if not what can be said about its path-connected components, i.e., its $\mathrm{W}^{1,p}$ -homotopy classes. We say that u and v are $\mathrm{W}^{1,p}$ -homotopic if there is a path $u^i \in \mathrm{C}\big([0,1],\mathrm{W}^{1,p}(M,N)\big)$ such that $u^0 = u$ and $u^1 = v$. We denote by \sim_p the corresponding equivalence relation. Let \sim denote the equivalence relation on $\mathrm{C}^0(M,N)$, i.e., $u \sim v$ if there is a path $u^i \in \mathrm{C}([0,1],\mathrm{C}^0(M,N))$ such that $u^0 = u$ and $u^1 = v$.

First an easy result:

THEOREM 1. – Assume $p \ge \dim M$, then $W^{1,p}(M,N)$ is path-connected if and only if $C^0(M,N)$ is path-connected.

Theorem 1 is basically known (and relies on an idea introduced by Schoen and Uhlenbeck [7] when $p = \dim M$; see also Brezis and Nirenberg [5]).

Since, in general, $C^0(M,N)$ is not path-connected, this means that $W^{1,p}(M,N)$ is not path-connected when p is "large". On the other hand if p is "small", we expect $W^{1,p}(M,N)$ to be path-connected for all M and N. Indeed we have:

THEOREM 2. – Let $1 \le p < 2$ (and recall that dim $M \ge 2$). Then $\mathrm{W}^{1,p}(M,N)$ is path-connected.

Our proof of Theorem 2 is surprisingly involved and requires a number of technical tools (see [3]).

Remark 1. – Assumption $1\leqslant p<2$ in Theorem 2 is sharp (for general M and N). For example if Λ is any open connected set (or a connected Riemannian manifold) of dimension $\geqslant 1$, then $W^{1,2}(S^1\times\Lambda,S^1)$ is not path-connected. This may be seen using the results of B. White [9] or Rubinstein–Sternberg [6]. This is also a consequence of the result in [4] which we recall for the convenience of the reader. Let Λ be a connected open set (or Riemannian manifold) of dimension $\geqslant 1$ and let $u\in W^{1,p}(S^n\times\Lambda,S^n)$ with $p\geqslant n+1$ ($n\geqslant 1$). Then for a.e. $\lambda\in\Lambda$ the map $u(\cdot,\lambda):S^n\to S^n$ belongs to $W^{1,p}$ and thus it is continuous. So $\deg(u(\cdot,\lambda))$ is well-defined. In this setting, the result of [4] asserts that this degree is independent of λ (a.e.) and that it is stable under $W^{1,n}$ convergence. Clearly, this implies that $W^{1,p}(S^n\times\Lambda,S^n)$ is not path-connected for $p\geqslant n+1$.

Our next result, proved in [3], is a generalization of Theorem 2.

THEOREM 3. – Let $1 \le p < \dim M$, and assume that N is [p-1]-connected, i.e.,

$$\pi_0(N) = \cdots = \pi_{[p-1]}(N) = 0.$$

Then $W^{1,p}(M,N)$ is path-connected.

An immediate consequence of Theorem 3 is:

COROLLARY 1. – For $1 \le p < n$, $W^{1,p}(S^n, S^n)$ is path-connected.

Remark 2. – If $1 \le p < 2$ (i.e., the setting of Theorem 2) then the hypothesis on N in Theorem 3 reads $\pi_0(N) = 0$, i.e., N is connected (which is always assumed), and thus Theorem 3 implies Theorem 2. Assumption $p < \dim M$ is sharp. Just take $M = N = S^n$ and p = n, and recall (see, e.g., [5]) that $W^{1,n}(S^n, S^n)$ is not path-connected since a degree is well-defined.

Corollary 1 may also be derived from the following general result.

PROPOSITION 1. – For any $1 \le p < n$ and any N, $W^{1,p}(S^n, N)$ is path-connected.

In the same spirit we also have:

PROPOSITION 2. – For any $m \ge 1$, any $1 \le p < n+1$ and any N, $W^{1,p}(S^n \times B_1^m, N)$ is path-connected.

Here B_1^m is the unit ball in \mathbb{R}^m .

Remark 3. – As in Remark 1, assumption p < n+1 is optimal since $W^{1,p}(S^n \times B_1^m, N)$ is not path-connected when $p \ge n+1$ and $\pi_n(N) \ne 0$. This is again a consequence of a result in [4] (Section 2, Theorem 2').

An interesting problem which we have not settled is the following:

CONJECTURE 1. – Given $u \in \mathrm{W}^{1,p}(M,N)$ (any $1 \leqslant p < \infty$, any M, any N), there exists a $v \in \mathrm{C}^{\infty}(M,N)$ and a path $u^t \in \mathrm{C}([0,1],\mathrm{W}^{1,p}(M,N))$ such that $u^0 = u$ and $u^1 = v$.

We have strong evidence that the above conjecture is true. First, we know that if $p \ge \dim M$, Conjecture 1 holds. Next, it is a consequence of Theorem 2 that the conjecture holds when $\dim M = 2$. Indeed if p < 2, any u may be connected to a constant map; if $p \ge 2 = \dim M$ we are again in the situation just mentioned above. Conjecture 1 also holds when $M = S^n$ (any p and any N); this is a consequence of Proposition 1 when p < n.

Here are two additional results, proved in [3], in support of Conjecture 1.

THEOREM 4. – If dim M=3 and $\partial M \neq \emptyset$ (any N and any p), Conjecture 1 holds.

THEOREM 5. – If $N = S^1$ (any M and any p), Conjecture 1 holds.

Next, we analyze how the topology of $W^{1,p}(M,N)$ "deteriorates" as p decreases from infinity to 1. We denote by [u] and $[u]_p$ the equivalence classes associated with \sim and \sim_p . It is not difficult to see that if $u, v \in W^{1,p}(M,N) \cap C^0(M,N)$, $1 \le p < \infty$, with $u \sim v$, then $u \sim_p v$. As a consequence we have a well-defined map

$$i_p:[u]\longmapsto [u]_p$$

going from $C^1(M,N)/\sim$ to $W^{1,p}(M,N)/\sim_p$.

The following definition is natural:

DEFINITION 1. – If i_p is bijective, we say that $W^{1,p}(M,N)$ and $C^0(M,N)$ have the same topology (or more precisely the same homotopy classes).

We know that:

PROPOSITION 3. – For $p \ge \dim M$, $W^{1,p}(M,N)$ and $C^0(M,N)$ have the same topology.

Another, much more delicate, case where $\mathrm{W}^{1,p}(M,N)$ and $\mathrm{C}^0(M,N)$ have the same topology is:

THEOREM 6. – For any $p \geqslant 2$ and any M, $W^{1,p}(M,S^1)$ and $C^0(M,S^1)$ have the same topology.

H. Brezis, Y.Y. Li

Remark 4. – On the other hand, $W^{1,p}(M, S^1)$ and $C^0(M, S^1)$ do not have the same topology for p < 2 if $C^0(M, S^1)$ is not path-connected; this is a consequence of Theorem 2.

For $q \geqslant p$ we also have a well-defined map

$$i_{p,q}: W^{1,q}(M,N)/\sim_q \longrightarrow W^{1,p}(M,N)/\sim_p$$
.

It is then natural to introduce the following:

DEFINITION 2. – Let 1 . We say that a change of topology occurs at <math>p if for every $0 < \varepsilon < p-1$, $i_{p-\varepsilon,p+\varepsilon}$ is not bijective. Otherwise, we say that there is no change of topology at p. We denote by $\mathrm{CT}(M,N)$ the set of p's where a change of topology occurs.

Note that if p>1 is not in CT, then there exists $0<\bar{\varepsilon}< p-1$ such that i_{p_1,p_2} is bijective for all $p-\bar{\varepsilon}< p_1< p_2< p+\bar{\varepsilon}$. Consequently, CT is closed. In fact we have the following property of $\mathrm{CT}(M,N)$ which relies on Theorem 2.

PROPOSITION 4. – CT(M, N) is a compact subset of $[2, \dim M]$.

Remark 5. – Assuming that Conjecture 1 holds, then $i_{p,q}$ is always surjective. As a consequence, a change of topology occurs at p if for every $0 < \varepsilon < p-1$, $i_{p-\varepsilon,p+\varepsilon}$ is not injective, i.e., for every $0 < \varepsilon < p-1$, there exist u_{ε} and v_{ε} in C^1 such that $[u_{\varepsilon}]_{p-\varepsilon} = [v_{\varepsilon}]_{p-\varepsilon}$ while $[u_{\varepsilon}]_{p+\varepsilon} \neq [v_{\varepsilon}]_{p+\varepsilon}$.

Another consequence of Theorem 2 is:

PROPOSITION 5. – If $CT(M, N) = \emptyset$, then $C^0(M, N)$ and $W^{1,p}(M, N)$ are path-connected for all $p \ge 1$.

Remark 6. - Assuming that Conjecture 1 holds, then the following statements are equivalent:

- a) $CT(M, N) = \emptyset$;
- b) $C^0(M, N)$ is path-connected;
- c) $W^{1,p}(M,N)$ is path-connected for all $p \geqslant 1$.

Here is another very interesting conjecture:

CONJECTURE 2. -

$$CT(M,N) \subset \{2,3,\ldots,\dim M\}.$$

A stronger form of Conjecture 2 is:

Conjecture 2'. – For every integer $j \ge 1$ and any p, q with $j \le p \le q < j + 1$, $i_{p,q}$ is bijective.

Remark 7. – If Conjecture 1 holds, then Conjecture 2' can be stated as follows: assume $u, v \in W^{1,p}(M,N)$ (any p, any M, and any N) are homotopic in $W^{1,[p]}(M,N)$, then they are homotopic in $W^{1,p}(M,N)$.

In connection with Conjecture 2 we may also raise the following:

OPEN PROBLEM. – Is it true that for any $n \ge 2$ and any $\Gamma \subset \{2, 3, ..., n\}$, there exist M and N such that $\dim M = n$ and

$$CT(M, N) = \Gamma$$
?

We list some more properties of CT(M, N) discussed in [3]: 1) for all N.

$$\mathrm{CT}\big(\mathrm{B}^n_1,N\big)=\varnothing;$$

2) for all N,

$$\mathrm{CT}(\mathrm{S}^n,N) = \begin{cases} \{n\} \text{ if } \pi_n(N) \neq 0, \\ \\ \varnothing \text{ if } \pi_n(N) = 0. \end{cases}$$

In particular,

$$CT(S^n, S^n) = \{n\};$$

3) for all M,

$$\mathrm{CT}(M,\mathrm{S}^1) = \left\{ \begin{array}{l} \{2\} \ \ \mathrm{if} \ \mathrm{C}^0(M,\mathrm{S}^1) \ \mathrm{is} \ \mathrm{not} \ \mathrm{path\text{-}connected}, \\ \\ \varnothing \ \ \mathrm{if} \ \mathrm{C}^0(M,\mathrm{S}^1) \ \mathrm{is} \ \mathrm{path\text{-}connected}; \end{array} \right.$$

4) if CT(M, N) is non-empty and $\pi_0(N) = \cdots = \pi_k(N) = 0$ for some $k \ge 0$, then

$$\min \big\{ p; \; p \in \mathrm{CT}(M,N) \big\} \geqslant \min \big\{ k+2, \dim M \big\};$$

5) if Λ is compact and connected with dim $\Lambda \geqslant 1$, then

$$\min \big\{ p; \ p \in \mathrm{CT} \big(\mathbf{S}^n \times \Lambda, \mathbf{S}^n \big) \big\} = n+1, \quad n \geqslant 1.$$

It would be interesting to determine CT(M, N) in some concrete cases, e.g., M and N are products of spheres. We plan to return to this question in the future.

In [3] we have investigated the structure of the path-connected components of $\mathrm{W}^{1,p}(M,N)$, i.e.,

$$\pi_0(\mathbf{W}^{1,p}(M,N)).$$

It would be interesting to analyze $\pi_k(W^{1,p}(M,N))$ for $k \ge 1$, starting from $\pi_1(W^{1,p}(M,N))$. Of course it is natural to consider first the case where $1 \le p < 2$ since we already know that $W^{1,p}$ is path-connected.

Warning

People have also considered several other spaces of maps closely related to $\mathrm{W}^{1,p}(M,N)$, for example

$$Z^{1,p}(M,N) =$$
the closure in $W^{1,p}$ of $C^{\infty}(M,N)$,

or the weak sequential closure in $W^{1,p}$ of $C^{\infty}(M,N)$ (see, e.g., White [8] and [9]). $Z^{1,p}(M,N)$ is a subset of $W^{1,p}(M,N)$ and in general a strict subset (see Bethuel [1]). One may ask the same questions as above (i.e., path-connectedness, etc.) for $Z^{1,p}(M,N)$. We warn the reader that the properties of $Z^{1,p}(M,N)$ may be quite different from the properties of $W^{1,p}(M,N)$. For example, if $1 \le p < 2$, then $W^{1,p}(S^1 \times \Lambda, S^1)$ (Λ connected, $\dim \Lambda \geqslant 1$) is path-connected by Theorem 2. On the other hand $Z^{1,p}(S^1 \times \Lambda, S^1)$ is not path-connected. Indeed, note that if $u \in C^{\infty}(S^1 \times \Lambda, S^1)$ then

$$\psi(u) := \int_{\Lambda} \int_{S^1} (u \times u_{\theta}) \, \mathrm{d}\theta \, \mathrm{d}\lambda \in \mathbb{Z}$$

(and $\psi(u)$ represents the degree of the map $u(\cdot,\lambda)$ for any $\lambda\in\Lambda$). By density $\psi(u)\in\mathbb{Z}$ for all $u\in Z^{1,p}(\mathrm{S}^1\times\Lambda,\mathrm{S}^1)$ and since ψ can take any integer value it follows that $Z^{1,p}$ is not path-connected.

H. Brezis, Y.Y. Li

F. Bethuel [1] (see also [2]) has been mostly concerned with the question of density of smooth maps in $W^{1,p}(M,N)$. B. White [9] deals with the question of how much the topological properties are preserved by $W^{1,p}$ (or $Z^{1,p}$, etc.). We have tried to analyze how much of the topology "deteriorates" when passing to $W^{1,p}$, i.e., whether two smooth maps $u, v \in C^{\infty}(M,N)$ in different homotopy classes (in the usual sense) can nevertheless be connected in $W^{1,p}$ for appropriate p's. Roughly speaking our concerns complement those of B. White as well as those in [4]. However, some of our techniques resemble those of B. White and F. Bethuel.

References

- [1] Bethuel F., The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (1991) 153-206.
- [2] Bethuel F., Zheng X., Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988) 60-75.
- [3] Brezis H., Li Y.Y., Topology and Sobolev spaces, Preprint.
- [4] Brezis H., Li Y.Y., Mironescu P., Nirenberg L., Degree and Sobolev spaces, Topol. Methods in Nonlin. Anal. 13 (1999) 181-190.
- [5] Brezis H., Nirenberg L., Degree theory and BMO, Part I: Compact manifolds without boundaries, Selecta Math. I (1995) 197-263; Part II: Compact manifolds with boundaries, Selecta Math. 2 (1996) 309-368.
- [6] Rubinstein J., Sternberg P., Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents, Commun. Math. Phys. 179 (1996) 257-263.
- [7] Schoen R., Uhlenbeck K., Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom. 18 (1983) 253-268.
- [8] White B., Infima of energy functionals in homotopy classes of mappings, J. Differ. Geom. 23 (1986) 127-142
- [9] White B., Homotopy classes in Sobolev spaces and the existence of energy minimizing maps, Acta Math. 160 (1988) 1-17.