Communications in
Commun. Math. Phys. 107, 649-705 (1986) Mathematical
Physics

© Springer-Verlag 1986

Harmonic Maps with Defects

Haim Brezis', Jean-Michel Coron?, and Elliott H. Lieb*

! Département de Mathématiques, Université P. et M. Curie, 4 pl. Jussieu,

F-75252 Paris Cedex 05, France

2 Département de Mathématiques, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
3 Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France

Abstract. Two problems concerning maps ¢ with point singularities from a
domain QCIR3 to S? are solved. The first is to determine the minimum energy
of ¢ when the location and topological degree of the singularities are
prescribed. In the second problem Q is the unit ball and ¢ =g is given on 0Q; we
show that the only cases in which g(x/|x|) minimizes the energy is g = const or
g(x)= 1+ Rx with R a rotation. Extensions of these problems are also solved,
e.g. points are replaced by “holes,” R3,$? is replaced by RN, S¥! or by
RN, IRP¥~1, the latter being appropriate for the theory of liquid crystals.

I. Introduction

Suppose U CIR?is open and a e U. Consider maps ¢ : U—S? which are continuous
except (possibly) at a. If S is a sphere in U centered at a, ¢ restricted to S defines a
map from S to $? and so has a topological degree in Z (also known as winding or
covering number). By continuity this number is independent of S and we shall
denote it by d. If ¢ is also continuous at a, then d=0.

Suppose now that ¢ € C*(U\{a}; S?) and consider its energy

E((p)=l§]|l7<pl2 (1.1)

possibly finite or infinite. The fact that E(p)<oo does not imply that ¢ is
continuous at a or even that d=0. An example with d=1, U bounded and a=01is
o(x)=x/|x|. However if U =IR3 and E(¢) < 00, then d must be zero (since ¢ goes to
a constant at infinity).

A natural problem is to minimize E(¢) given the degree, d, of ¢ at a (assuming
U +IR?). We shall prove that the minimum energy is

E=8znL, (1.2)
where L is |d| times the distance of a to 0U.
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Another simple case is to consider two points a,, a, € R® and maps

peC(R\{ay,a,};8%).
As above, one can define deg(p,q;), i=1,2, by restricting ¢ to small spheres
around a;, i=1,2. Assuming that ¢ € C*(R?\{a,,a,};5?) and E(¢)< o0, then we
must have d=deg(p, a,)= —deg(¢, a,). A natural problem is to minimize E(¢p)
given d. We shall prove that the minimum energy is given by (1.2) with
L=la,—a,||d|. The infimum is not achieved; however if ¢" is a minimizing
sequence, we shall prove that ¢" tends to a constant a.e. and |F¢"|? tends to a
uniform measure on the segment [a,,a,] (after passing to a subsequence if
necessary).

There are various generalizations of the two-point problem just mentioned,
and they all give rise to the same formula (1.2) provided L is interpreted
appropriately. We shall discuss four examples of increasing generality. Let U be an
open set in IR3, Let H, ..., H, be k disjoint compact subsets of U, which will be

k
called the holes. Let Q= U\( UH i). If o € C(Q2; S?), then it is possible to define
i=1

deg(o, H,), the degree of ¢ around H,. If H, is a point, deg(¢p, H,) is the usual
topological degree, as above. For general H; the degree can also be defined, but a
bit of analysis is required; this is carefully discussed in Appendix B. Essentially,
deg(p, H)) is the degree of ¢ restricted to a surface surrounding H,.

Given integers d,, ..., d; € Z (possibly including zero), consider the class

&= {go e C(Q; $?)|deg(p, Hy)=d; and [ |Vo|*< oo} . (1.3)
Q
Set E=inf [ Vo[> (1.4
Qeé Q
[Note that E is unchanged if C(Q2; $?) is replaced by C*(Q2; $); this is explained in
Appendix A.]
Example 1. U=IR? and the H; are points g; in R3.
Example 2. U=IRR? and the H; are not necessarily points.
Example 3. U+IR? and the H; are not necessarily points.
Example 4. This is the same as Example 3, except that we consider the smaller class
&' ={peC(U\(VH)); $?)|p €& and ¢p=const on oU}.
and let )
E=inf [|Vo|?. (1.5)
9eé’ Q
In Examples 1, 2 (respectively 4), & (respectively &) is empty unless Y d;=0.
Our main result concerning this problem is
Theorem 1.1. In all four examples,
E=38zL, (1.6)
where L is defined in Sect. I1.
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L is a quantity which has the dimension of a length and depends on U, on the
relative distances between the holes and on the d;’s. It is easiest to visualize L in
Example 1 and when d;= 1 for all i. We shall say that a;is a positive (respectively
negative) point if d; = + 1 (respectively — 1). Since " d; =0 we can pair the positive
points with the negative points. This pairing, or connection as we call it in Sect. II,
has a length which is the sum of the distances between the paired points. L is
defined to be the minimum possible length. If the d;’s are not + 1, then simply
repeat the point g, |[d;| times.

In Example 2 the rule is the same as for Example 1, except that one has to use
the following reduced distance between holes. Given two holes H;, H; we let dist
(H;, H)) be the usual Euclidean distance between the holes. Then we define the
reduced distance to be

) 4
m=1

m- 17
where iy, ..., i, is a finite sequence with i, =i, i,=j and the above minimum is over
all such sequences.

In Example 3 just pretend that H,=IR*\U is a hole of degree dy= — Y d, and
use the above rule to compute L.

The rule in Example 4 is the same as in Example 2 except that dist(H;, H)) is
replaced by the geodesic distance in U.

The proof of Theorem 1.1 has two steps. In Sect. III we show that E <8xL by
an explicit construction of an almost minimizer, which is obtained by gluing
together “dipoles,” i.e. almost minimizers for the two-point problem which are
concentrated near the lines joining paired points. The lower bound E>8xnL is
more delicate. For this purpose, we introduce in Sect. IV a useful vector field D
associated to ¢ € &, with components

D=((P'¢yA§0,,¢‘¢zA(Px,¢'¢xA(Py)- (17)

In all examples divD=0 in Q and 2|D|<|V|*>. We sketch the essence of the
argument for Example 1. In that case,

k
divD=4rn 3 d;6,,=4ng in 2R3, 1.8)
i=1
so that
Egsninf{j |D||divD=Q}. 1.9)
]R3

By duality, as explained in Appendix C,

inf{ | lDlldivD=Q}=max { [} CdQICeK},

where R3 R
K={{:R*>R||{lp<1} and |{llLy,=supll(x)—L/Ix—yl.
We conclude by showing that

max{j CdQlCeK} =L (1.10)

R3

with the help of a theorem of Kantorovich [20] and Birkhoff’s theorem [2, 26] on
doubly stochastic matrices.
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In general, there is no minimizer for the ¢ problem (1.4) [or (1.5)] and thus we
are led in Sect. VI to investigate the behavior of minimizing sequences. However,
the D problem defined by (1.9) and its analogue for the other examples does have a
minimum as a vector-valued measure. Some properties of these D minimizers are
described in Sect. V; for example we prove that suppDCG, the union of the
minimal connections. Our main result, in the context of Example 1, is that a
minimizing sequence ¢" tends (modulo a subsequence) to a constant a.e. and |V ¢"|?
tends to a uniform measure distributed on a minimal connection. This is a striking
fact since, if there is more than one minimal connection, a D minimizer can be
supported by the union of two (or more) connections. This quantization
phenomenon is based on the analysis in Appendix E.

A very different problem, one with a more classical flavor, is the subject of
Sect. VIL. Instead of specifying singularities we investigate the problem of
minimizing E(¢) on a domain U CIR3 when ¢ =g is specified on dU and we allow
as admissible functions all H* maps from U into $2. Clearly,

E(g)=min{lf] IVol*lo e HY(U;S?), p=g on GU}

is achieved and it is known from the work of Schoen and Uhlenbeck [31, 32] that
any minimizing ¢ has only point singularities and there are only finitely many of
these. Our main result is

Theorem 1.2. These singularities always have degree +1 and more precisely, near a
singularity x,,

@(x) = £ R(x —x0)/|x— X0l
where R is a rotation.

This is a consequence of another result proved in Sect. VII, that if U is a ball,
then g(x/|x|) is a minimizer if and only if +g¢ is a rotation.

It is obvious that in the foregoing results one can replace the domain of ¢ by
three dimensional manifolds other than R3, but we have not investigated these
extensions. However other extensions are considered in Sect. VIII, for example we
have replaced R3, S by RY, $¥ 1 and by R¥, RP¥ !, This replacement does not
change the conclusions in any significant way. The IR P? extension is important for
liquid crystals as explained below. We also touch upon a minimization problem
where the minimum energy is proportional to an area (and not a length). A simple
example of this kind of problem is to consider a closed Jordan curve I'CIR* and
@ e C(IR*\I'"; S*) having unit circulation around I'. The energy to be minimized is
E(@)={|V¢|. We conjecture that the minimum E is 214, where A4 is the area of a
minimal area surface spanning I".

In order not to interrupt the main thread of the paper, we have placed many of
the technical facts in appendices. Some of these are of independent interest. For
example, Appendix D contains a proof of the uniqueness of a divergence free
vector-field supported on a curve. In Appendix E we present some noteworthy
properties of certain nonlinear expressions involving weakly convergent
sequences.

The mathematical analysis in this paper, summarized above, may be relevant
to certain problems in physics.



Harmonic Maps with Defects 653

A. Liquid Crystals

A nematic liquid crystal can be described by a vector field ¢ on a domain U in R3
(the container). The direction (optic axis) of the rod-like molecules at x is ¢(x)
(called the director), so |p(x)| =1, and therefore we can view ¢(x) as a point in S2.
Normally, the ends of the molecules cannot be distinguished, so ¢(x) should really
take values in RP?, i.e. the quotient of S? by the equivalence relation ¢ ~ —¢.
Except for defects, which are points or curves in 2, ¢(x) varies continuously.
Frequently the liquid crystal energy is taken to be [7, 9, 13, 14, 17, 18, 21]:

Ep)=K, g}(divqo)2+K2 if}((p -curlp)* + K5 i‘; |¢ Acurlg|?. (1.11)

A special case that has been frequently studied is the one-constant approximation
K,=K,=K;=K. Then the integrand on the right side of (1.11) is

K{(divp)® +|curlg|?*} =K{|Vo|*+2D - ¢} =K{|[Vo* +diviW}  (1.12)
with D given by (1.7) and
W=¢pdivp—(¢-V)p=pdivp+¢p Acurle. (1.13)

Both (1.12) and (1.13) hold in the sense of distributions for all ¢ with V¢ e L2.
Taking K=1, and integrating (1.12) we find

E((p)—E((p)=!]div W=an W-n. (1.14)

It is easy to check that W-n depends only on ¢ and its tangential derivatives on
0U. Therefore, in all problems in which ¢ is prescribed on the boundary (such as
Example 4 or the problems in Sect. VII) the boundary integral, | W-n, plays no
role; the minimization of £ and E are the same problem. However, in Example 3, ¢
is not prescribed on the boundary and the two minimization problems are
different. We shall discuss only the E(p) problem in this paper. It would be
interesting to analyze the £ problem.

It is to be noted that ¢p—|V ¢|? is SO(3) invariant, namely if R € SO(3) and ¢'(x)
=Ro(x), then |V ¢’'|> = |V p|2. Also, D is SO(3) invariant, i.e. D(x) = D’(x), where D’
is the D field of ¢’. On the other hand, H(p)=(dive)*+|curlgp|? is not SO(3)
invariant; it is only invariant under the simultaneous action of SO(3) on ¢ and on
x, i.e. (x)—Rp(Rx). From these observations one can conclude that E<E in
Example 3. Indeed, let du be Haar measure on SO(3) so that { du(R)D - Rp =0.
Thus, for all ¢

fdﬂ(R)tj,H(R¢)=£]|V(P|2, (1.15)
so | HRp) <[ |V¢)?* for some R.

Long lived point singularities are observed in nature [6] and have degree one,
consistent with our Theorem 1.2.

B. The Classical O(3) Nonlinear Sigma Model
The Euler-Lagrange equation corresponding to (1.1) is

—do=09|Vo|?, (1.16)
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which is the equation of harmonic maps. It is also the equation of the classical
nonlinear sigma model, but in the physics literature this is usually studied in R?,
namely ¢ :RR?2—S82. Our analysis suggests that the O(3) nonlinear sigma model
from R3—S2 may be interesting, when singularities are included, although it is
known that the quantized version of such a field theory is non-renormalizable. In
any event, the expression for the energy needed to create two singularities
separated by a distance L, namely 8zL, is amusing. This is precisely the energy
expression used in the semiclassical theory of quark confinement. Also, the fact
that supp|V ¢"| converges to a “string” is consistent with some pictures of quark-
quark interactions.

Previously, Parisi [28] described a classical, relativistic field theory having
some features in common with our ¢ field. In the static limit it reduces to
monopoles embedded in a superconductor. However, to obtain strict linearity for
the effective monopole-monopole interaction potential it seems to be necessary to
take the limit of infinite critical field for the superconductor. For our Example 1,
on the other hand, no limits are needed.

II. Minimal Connections

This section is concerned with defining some geometric quantities associated with
a configuration of points or holes (disjoint compact subsets of R") in certain
domains in R, From this construction we derive a number (with the dimension of
a length) which, it will turn out, is proportional to the minimum energy.

A common feature of all the cases of interest to us is that we are given k disjoint
holes in R", H,,...,H,. According to the case, a certain distance function
D(H;, H;) will be defined between pairs of holes. D will satisfy the usual properties
of a metric (D(H;, H;)+ D(H;, Hy) 2 D(H;, Hy) and D(H;, H;)>0 for i+j and =0
for i=j). The different choices of D will be defined subsequently.

Associated with each H; is a degree d; € Z. We assume that

k
2 4;=0. (2.1)
i=1
The holes with d; >0 (respectively d; <0) are called positive (respectively negative)
holes. Let
0=3% d=-% d; 22
di>0 di<0

be the total positive degree.

Definition of a Connection and Its Length. List the positive holes with each H;
repeated d; times in the list. Write thislist as Py, ..., Py, with each P; being some H;.
Likewise, list the negative holes, with each one repeated |d;| times. Write this as
Ny, ..., Ny. Note that the holes of degree zero are omitted from these two lists. A
connection, C, is a pairing of the two lists (P, N,;), (P2, N,3) ... (Pg, N o), where o
is a permutation in S,

The length of this connection is defined to be

LO)= 5 D(P,N.). 03
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The minimal length is
L= mcin L(C), (24)

and a minimal connection is a connection (which may not be unique) such that
L(C)=L.

Example 1. The holes are k distinct points, a,, ..., 4 in RY. D(a; a;)=|a;—a;|
=FEuclidean distance. Note that in this case, holes of degree zero play no role
whatsoever. We denote the minimal length by L(RY, {a}, {d}).

Example 2.H,, ..., H, are k disjoint compact subsets of R". (H; could be a point or
an object of any “dimension” from 1 to N.) D(H;, H;) is defined as follows. First, let
dist(H;, H;) be the usual Euclidean distance (ie. min{|x—y||xe H; yeH}}).
Consider a chain K =(iy, iy, ...,i,) with each 1=<i, <k and iy=i, i,=j and let

AK)= ¥ dist(H,,_H, ). Then
m=1

im-1

D(H;, H)=min A(K). 2.5)

Note that holes of degree zero that are not points may now play a role in the
definition of D since their presence may reduce D (see Fig. 1). Also, one only has to
consider chains K without repetition, so the minimum in (2.5) is over a finite set of
chains. We denote the minimal length by L(R¥, {H}, {d}). If all the H, are points
this notation is consistent with Example 1.

Example 3. Let U +RY be an open set in RY. Let H,, ..., H, be disjoint compact

subsets of U with degrees d,, ..., d;, but we do not assume (2.1). Introduce one more

hole, Hy=IRMU (which is closed but not necessarily bounded), and let
k

do=— Y d,. We repeat the construction of D and L in Example2 (on
i=1

H, H,,...,H). Note that even though H, may not be compact, D(H,, H;) >0 for
i+ 0. Also note that even if d, =0, the presence of H influences D and therefore L.
We call the minimal length L(U, {H}, {d}).

Example 4. Let U +IR" be a connected open set in R". Let H,, ..., H, be disjoint
compact subsets of U with degrees satisfying (2.1). For x, y € U let distg(x, y) be the
geodesic distance within U, which will be defined in a moment. Dists(H;, H)) is
defined as in Example 2, but with the Euclidean distance |x — y| being replaced by
distg(x, y). Then D(H;, H;) is given by (2.5), using dists in A(K). The minimal

+1

Fig. 1
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length in this case will be denoted by Lg(U, {H}, {d}). The geodesic distance
distg(x, y) is defined as follows. Let k ={x,, ..., X,,}, with x;eU and x,=x, x,,=y
be a chain with the property that every line segment [x;, x;, ;] C U. Note that such
chains always exist since U is connected and hence arcwise connected. Let

Am)= X Ix;—1—x;| and
i=1
distg(x, y)=inf A(x). (2.6)

Note that there exists a function X : [0, 1]— U with the properties that X(0)=x,
X(1)=y,and | X(t) — X(s)| £ |t —s| distg(x, y) for allt,se [0, 1]. This follows easily
from Ascoli’s theorem. Furthermore the length of the curve X([0,1]) equals

1
distg(x, y) (thc length is | |X (t)|dt>.
0

If U is convex then distg(x,y)=|x—y| and therefore Lg(U,{H},{d})
=L(R", {H}, {d}).

Properties of Minimal Connections. In each example we introduce a distance
D(H;, H)). It is to be noted that this distance can be realized as the length of a finite
union of continuous paths (which may or may not be unique). In Example 1 the
path is the line segment [a;, a;]. In Examples 2 and 3, there is always a certain
minimizing chain K in (2.5) and the paths are just line segments which realize
dist(H;,_,,H; ). In Example 4 the line segments are replaced by curves in U of
length distg(H; _, H; )

Im-1°

Definition. A string is a continuous curve X(¢):[0,1]—U with the following
properties:
i) X(0) belongs to some hole H, X(1) belongs to some hole H'.

ii) The length of the curve is D(H, H').

iii) For t€(0,1), X(¢) belongs to none of the holes. The string carries an
orientation from H to H'.

In Examples 1-3 a string is just a directed line segment running from H to H'.
Given an arbitrary pair (H, H’) there need not be a string from H to H’, but
D(H,H’) can always be realized as a finite chain of strings with the obvious
consistent sequence of orientations.

Let C be a minimal connection: it has a pairing of the positive and negative
holes and a length L given by (2.3). In an obvious way we can associate a finite
union of strings with C, namely, first realize D(P;, N,;) as a union of strings as
above, and then take the union of all those strings including multiplicity. The sum
of the lengths of all the strings is just L.

For descriptive purposes we can think of putting an arrow on each string in the
direction of the orientation of the string. Some properties of the strings are the
following:

a) For each hole H; the number of arrows pointing out minus the number of
arrows pointing in is just d;.

b) If more than one string runs between H and H’, all these strings are oriented
in the same direction.
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¢) Given two strings in a minimal connection in Examples 1, 2 or 3, either

1) they are identical, or

2) they do not intersect, or

3) they intersect precisely at one point x with x in some hole.

The reason for this is the triangle inequality. Suppose S, (respectively S,) is a
string running from H, to H’ (respectively H, to H%). Possibly some of these four
holes are identical. Suppose z € §; NS, and z does not belong to a hole. We claim
that S, =S,. Let x,, y, (respectively x,, y,) be the end points of S, (respectively S,)
on H,, H (respectively H,, H%). Consider the two paths T, =[x,,z]u[z, y,] and
T,=[x,,z]ulz,y,]. S, (respectively S,) is part of a path joining some P,
(respectively P,) to some N, (respectively N,). If we replace S, (respectively S,) by
T, (respectively T,) we obtain a new connection in which P, (respectively P,) is
paired with N, (respectively N,). The length is the same since |T;]|+|T3|
=|8,|+1S,|. But T; and T, are not line segments unless §; =S,.

In Example 4 the situation is more complicated. Two different strings can have
a non-empty intersection.

1I1. Upper Bound to the Energy

For simplicity we restrict our attention to IR3. In each of the four examples we
have:

Theorem 3.1. E<8rnL with L given by (2.4).

The proof requires a construction, which we call the basic dipole. Take two
distinct points a,,a_ in R3 and some positive integer d. Given any >0 we
construct a function ¢ € C(R3\{a,,a_};S8?) such that:

a) E(p)<8ndla,—a_|+s. (3.1)

b) ¢ is constant outside some set N,(a.,a_), which we will henceforth call the
support of ¢, and which will be defined later.

c) deg(p, {a.})=+d. (3-2)

Without loss of generality take a, =(0,0, £1). Given £>0 we fix a smooth map
:R?*-5? such that:

{Vol?<8nd+¢/2, (3.3)

]RZ
w=const=e outside the unit disc, 3.4
degow=—d. (3.5)

Here, degw is defined to be the degree of w considered as a map from
S2~IR2U{o0} (by stereographic projection) to S2. The existence of such a map is
standard (see e.g. [4, proof of Theorem 2, Part C] used with u = const). The idea for
constructing o is the following:

@) Let v(x,y)=Re(x+iy)™% Im(x+iy)~9. (i) Let w(x,y)=I1-v)(x,y),
where I1 is stereographic projection from R? to S2, One finds that (3.3) and (3.5) are
satisfied with £¢=0. (iii) Replace v by yv=7, where 0<x<1 and y has compact
support and y=1 on a large disc D. Equations (3.3) and (3.5) are satisfied if D is
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chosen large enough. (iv) Now replace #(x, y) by #(Ax, Ay)=7 with A large enough
so that supp # Cunit disc. The left side of (3.3) is independent of A.
Next, define ¢ :IR*—S? by

if |z|=]

e
o(x,y,2)= x y ) (3.6)
‘“(z—_z—ﬁ) i<l
and then set
@u(x,y,2)=(nx,ny,z) . 3.7

®, is smooth on R3\{a,,a_} and satisfies (3.1) (if n is large enough) and (3.2).
Finally, ¢,=e outside the set where z2+n(x?+ y*)'/2< 2. This set (for n large
enough)is the N, in (b) above. Note that the opening angle of N, at a, and a_ goes
to zero as ¢—0.

Proof of Theorem 3.1 for Examples 1-3. Let C be a minimal connection. As
explained in Sect. I, C can be thought of as a finite collection of strings, each of
which is a directed line segment running between pairs of holes and which carries
some multiplicity, m. Suppose a string runs between xe H and ye H” and has
length . Then the open ball of radius / centered at y does not intersect H and,
similarly, the open ball of radius I centered at x does not intersect H’. Thus, for
small enough ¢, we can insert a basic dipole (of degree m) between H and H'. If two
or more different strings intersect at a common point x€ H we can insert the
required number of disjoint dipoles if ¢ is small enough. Inside each N, we take ¢ to
be given by (3.7), and we take p=e outside (UN,). Then E(¢)<8nL+¢-(the
number of strings in C). O

Proof of Theorem 3.1 for Example 4. The difference with the previous case is that
the strings are now curves instead of line segments and, moreover, they can
intersect each other outside of the holes. However, any string between H and H’
can be approximated (in length) by a polygonal path in U\(UH,) (not U).
Moreover, we can also assume that any two such polygonal paths intersect at most
only at their end points. To imitate the above construction we have to find the
analogue of the basic dipole construction for a polygonal path, I', with end points
a.. That is, we want to construct a function ¢ satisfying (a) E(¢) <8nd|I'| +¢; (b)
o=e outside N,(I'); (c) deg(p,a,)=+d. Here, N(I') is contained in an &
neighborhood of I" and has an ¢ opening angle at a,. Let I" be the union of line
segments [x;_,, x;] with xo=a., x,=a_ and all x;e U. We can, by passing to a
refinement if necessary, assume that all |x;_, — x;| are equal and have the common
value 2I. Think of the points x;,i=1, ..., p—1 as holes of degree zero and construct
the function ¢ as in the end of the above proof, i.e. construct disjoint basic dipoles
of degree d, one for each segment [x;_,, x;]. Use the same n in (3.7) for all the
intervals. Unfortunately, this function ¢ is not continuous at the points Xx;,
i=1,...,p—1. However, ¢ has degree zero ateach x;,i=1, ..., p—1. To remedy the
lack of continuity we proceed as follows. Let B;, i=1,...,p—1 be balls of radius
R < at the x; and with R small enough so that there are only two basic dipoles in
each B;. We shall modify ¢ inside the B;. On 0B, there are two disjoint circular caps
in which ¢ +e. These are the intersections with dB; of the two N,’s of the two
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dipoles that intersect at x;. Call the caps K, and K ,. There is a unique cylinder, C,
with elliptical cross-section, whose intersection with 0B, is precisely K, UK ,. If 1 is
a line in C parallel to the axis of C, then ¢(AnK;)=¢@(AnK,). The function @,
which is the modification of ¢ and which is continuous, is defined by G(ANB;)
=@(AnK,). Outside UB;, ¢ =¢. It is easy to see E(¢)—E(p) as R—0. [

IV. Lower Bound to the Energy

Again, as in Sect. IIL, we restrict our attention to IR3. In each of the four examples
we have:

Theorem 4.1. E = 8rnL with L given by (2.4).

Proof. Let H= U H; and Q=U\H. Let ¢ satisfy the appropriate conditions,

namely @€ C(Q S2) Voe LX), deg(p,H)=d; and, in Example4 only,
@€ C(U\H) and ¢ =constant=e on 0U. As explamed in Appendix A, we can also
assume that ¢ € C*(Q). We shall show that E(¢)=8zL.

Construct the vector field D e C*(2;R?) as in Appendix B, namely

D=((P'(py,\¢z,(p'(PzA(pxa(P'(pr(py)

with ¢, =0¢/0x, etc.
We claim that a.e. on Q:
IDI<3Vol*. @4.1)

Tosee thiS, suppose that o= (0’ 03 1)’ Q= (al’ bla 0)’ (py = (a2a b2a 0)’ Q.= (a39 b37 O)s
using the fact that ¢-¢,=0, etc. Then D=AAB with A=(a,,a,,a;) and
B=(b,,b,, bs). Therefore |D| < |4||B|<3(4% + B*)=4|V ¢|*. Equality in (4.1) holds
if and only if 4- B=A4%-—-B?=0. Let { € C(U) with |V{|<1 (in 2) and {={(;is a
constant on each H;. In Example 3 we also assume that { € C(U) and {=0o0n dU.
By (B.16) in Appendix B,

E(q))gZ};lD[g —Z‘j;D- V{=8n .Zk; {d; . 4.2)

Our goal is to show that with I({) =3 {d;, I =sup I({) = L, where Z denotes the
{eZ

appropriate above-mentioned class. We only require I > L, but it is easily seen that
I(Q)< L. Indeed, in Examples 1-3 (respectively 4), [{(x)—{(y)|<|x—y|, [respec-
tively distg(x, y)]forallx,ye U and { e Z,since |V{| < 1. Consequently, in all cases

I(;—C{l=D(H;, H)). Since 3. {d;= Z {(P;)—{(N ) for any pairing (see Sect. II for

notation), I({) £ L. Therefore we need only construct some { € Z with I({)=L.
First, suppose there are k numbers {{;} such that, with {, =0 (for Example 3),

Ii—{i<DH, Hy), foralli,j. 4.3)
Then we can construct { € Z such that {={; on each H,. One choice is
{(x) =max {¢;~—dist(x,H;)}, Examples 1-3
=max {¢;~disty(x, H,)}, Example 4. 4.4
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Here  dist(x,H) [respectively distg(x, H)]=inf, z|x—y| [respectively
inf,y dists(x, y)]. To see that this { € Z, note that f(x) =dist(x, H,) [respectively
distg(x, H;)] satisfies |F'f] <1, and hence |F{| < 1. Clearly {(H,) = {;, so we have to
check that {; = {;—dist(x, H;) [respectively dist(x, H;)] for all jand all x € H;. But
{;—C;=<D(H;, H) <dist(x, H)) [respectively dist(x, H;)].

To summarize, we merely have to find k numbers satisfying (4.3)and " {;d;=L.
Since D(H;, H)) satisfies the triangle inequality, the following lemma establishes
the existence of 2Q numbers {o;} and {B;} such that o; =o; (respectively ;= B;) if
D(P;, P;)=0 [respectively D(N;, N;)=0]. With the P’s and N’s corresponding to
holes repeated according to multlphclty, as in Sect. I, we can simply take ; to be
the common value of «; (or ;) on that hole. [

Lemma 4.2. Let P, P,, ..., Py and N, N,, ..., N, be 2Q points and let X be their

union. Let D be a semi-metric on X (i.e. a metric without the condition that

D(x,y)=0 = x=y).Let L= Mgnz D(P;, N,;), where S, is the set of permutations.
GESQ

Then there exist real numbers o, ... 0y and B, f, ... o such that

2
3 @—p)=L. 9

and for all i,j
loy—a| SD(P;, Pj),  |oy—Bj|<D(P;, Ny, |Bi—BI=D(N;N). (4.6)

Proof. This is a consequence of the Kantorovich theorem (see [10, 15, 20, 29]) and
the Birkhoff theorem on doubly stochastic matrices (see [2, 26]). The Kantorovich
theorem states that if X is a compact metric space with metric D and y, v are two
non-negative measures on X such that { du={dv. Then

Max (I fdu—{ fdv)=Min ] D(x, y)dm(x, y), 4.7

where Z={f:X->R||f(x)—f(y)|=D(x,y)}, and where m is a non-negative
measure on X x X whose marginals are yand v. We apply this to our X and D with

Q Q
ll= ‘=21 5}7‘ and V= .=Zl 5Ni'
The measures m whose marginals are u and v are precisely of the form
m= Zl auéP.®6N ’
i,j

where A =(a;;) is a doubly stochastic matrix (denoted by DS), ie. a;;=0 and
Q
% 0= 3,0

Jj=1

for all i, j. The left side of (4.7) is Max Z‘, (o;— fB;), where o, f§ satisfy (4.6). The right

side of (4.7) is 114\/111; >a;D(P, N ) B1rkhoﬁ’s theorem states that every Ae DSisa
eD.

convex combination of permutation matrices. Therefore the right side of (4.7) is

Min> D(P,N,)=L. O

05Q
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V. The D Problem

If we look back at Sect. IV we see that the lower bound for E was obtained by
analyzing a problem that, in principle, is different from the original ¢ problem
about $%-valued vector fields. In this section we shall explore that auxiliary
problem — which will be called the D problem — in more detail. Although the two
problems give rise to the same minimal energy E in various cases (Which
fortunately include the cases of interest to us), the vector fields involved are
different. At the end of this section we shall remark about the interrelation of ¢ of
D.

The D problem is defined as follows. It will be defined in RY instead of just R®
because the analysis is independent of N. As before we are given anopenset U CRRY

and k holes H; (disjoint compact subsets of U). Let H= U H; and Q=U\H.

Associated with each H, is a real number d; (which now need not be an integer). We
shall be concerned w1th L! vector fields, D, on Q and distinguish two cases which
we call 4 and B. Let Q, denote the linear space of all functions ¢ e C(U) with
V¢ e L*(U),{=0o0n U (no condition if U =R") and { is constant on each H,. Let
Qp denote the linear space of all functions { e C(U) with V{e L*°(U) and ( is
constant on each H;.

Let o/, (respectively o/5) denote the class of all vector fields D e L'(Q;RY)
satisfying A
—-_f D.-Vl{=oy Z d{(H;) for all {eQ, (respectively Qp). 5.1

Here oy denotes the area of SV~! in R¥(05=4n).
Note that if U=IR¥, then </, is not empty if and only if Z d;=0.If U+RY

i=1
then o/, is always non-empty (even if }: d; =t=0) oy is non-empty (for any U) if

and only if Z d;=0. In this section we shall be concerned with minimizing the
energy =1
E(D) E:}; |D]. (5.2

Let E, (respectively Eg) denote the infimum of E(D) with D in the class </,
(respectively «/5). Formally, Case A consists of minimizing | |D| over vector fields D
such that divD=0in Qand | D-v=ayd; for each i, where v is the normal to the

O0H;
surface 0H;. Case B consists of minimizing | |D| over vector fields D such that
divD=0in Q, D-v=0 on 0U and | D-v=oyd; for each i. (If the holes H; are

OH;
points a;, we have, as in Remarks B.2 and B.3, divD=0y3 d,0,,)

Case A is relevant for Examples 1-3 of Sect. IT while Case B is relevant for
Example 4. In the following we shall refer to the distance between holes D(H, H")
and we shall adopt the convention that for Case A (respectively Case B), D(H, H)
is defined as in Examples 1-3 (respectively 4) of Sect. II. If N=3 and the d,’s are
integers, the analysis of Sects. IT and IV shows that

E, p=max{oy 2 dL(H)||V{|L-=1, {€Q, (respectively Qg)}.  (5.3)
In fact, (5.3) is always correct for all N and d,.
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Theorem 5.1. Equation (5.3) holds in all cases. Moreover, if d,,...,d,>0 and
dyits...,d,<0 and 3. d; =0, then

EA,B=aNinf{§, i aijD(H,-,Hj)}, 54

i=1 j=p+1
. q )4
with a;;20 and . Z+1a;,-=d,-, _21 a;;=\dy.
J=pP 1=

Proof. Equation (5.3) follows from the duality principles given in Appendix C.
Equation (5.4) follows from (5.3) as in Lemma 4.2. 0O

It is intuitively evident from the variational construction in Sect. I, that a
minimizing D for (5.2) often does not exist as an L! function. This will be clarified
later. However, a minimizing sequence {D,} for (5.2) does have a limit in the sense
of measures on Q. More precisely there is a subsequence (which we continue to
denote by D,) such that D,—D in the weak * topology of measures on Q. This
measure D satisfies ‘% IDISE, 5. (5.5)

Moreover D satisfies (5.1) except that we have to change the linear spaces Q,
(respectively Qjp) into

Q4,5={{€Q, (respectively e Qp)V{ € CU)},

so that, in particular, the expression | D-V{ makes sense. We denote by 74
(respectively .o/g) the class of all vector valued measures on Q, D= (D, ..., Dy) such
that | |D|<oo and

k
—{D-V{=0y ¥ d{(H;) for all {eQ), (respectively Q). (5.6)
Q i=1
Our problem is twofold: to establish equality in (5.5) and to identify these limiting
measures.
Definition. An open set U is said to be regular if the following holds. Let
U,=U+B,={x+ylxeU, |y|<¢}.

We suppose that for any two points x, y € U, their geodesic distance relative to U,
tends to their geodesic distance relative to U as £¢—0.

Theorem 5.2.
min{[ |D|lDe.sz¢j,} =E,. (5.7
Q

If Uis regular then
min D||D € /3l =Eg. 5.8

Proof. In view of (5.5) it suffices to prove = in (5.7) [or (5.8)]. Let De</,; we have

1101z ~] D-P{=oy 3. dd(H) (59



Harmonic Maps with Defects 663

for all { € Q, with ||V {| .~ <1. Therefore we have to show that the supremum of the
right side of (5.9) with { € @/, and || V'{]| -~ <1 is given by (5.3). We note in passing
that, in general, the supremum is not achieved in the class Q’,. The situation here is
“dual” to that of Theorem 5.1 where E , is not achieved while the right side of (5.3)
is achieved. We recall (see Lemma B.5) that given any { € Q , with || V(|| .. <1 there
is a sequence {, such that {, e C*(U), {, is constant on every H,, | V{,| .~ <1 and
{,—{ uniformly on every compact subset of U. This completes the proof of (5.7).

We turn now to the proof of (5.8). Let U,=U + B, and let H; ,=H;+ B,. Let Ep_
be the right side of (5.3) for this ¢ problem. Since U is regular Ez —Ejy as ¢—0 by
Remark 5.1. Let {, be a maximizer of (5.3) for the ¢ problem. Without loss of
generality we may assume that {, € L®(U,) (otherwise truncate {,). Let {'=J,, * (..
Clearly ('eC'(U), V(| =@y=1 and ((H)=((H;,). Finally consider
L=+ C/n)~ 1y, L', where x,(x) = x(x/n) and y € C*(IR") is any function such that
x(x)=1 for |x|<1 with ||x|l;»<1 and C=|Vyl| =|{'|.». Note that {,e Qx(U),
1Vl Loy =1 and {,—{’ uniformly on every compact subset of U. [

Remark 5.1. Case B of Theorem 5.2 may fail if U is not regular. Take for example
U=R3{(x,,0)x20, yeR}.

For this U, the requirement that V{ e C(U) implies that Q3(U)=Qx(R3), and
therefore the supremum of the right side of (5.5) can be less than the right side of
(5.3).

We now turn to properties of the minimizing D measures.

1. Properties of the Support

Theorem 5.3. Let D be any one of the following vector valued measures
i) a weak * limit of an L' minimizing sequence for (5.2),
ii) one of the minima referred to in (5.7) or (5.8).

Let G be the union (which is closed) of all geodesics running between holes (see
Sect. I1). Then
suppDCG. (5.10)

Moreover, if all the d;’s are integers, then suppD CG', where G' C G is the union of
all minimal connections. Note that the definition of G’ depends on the {d;}.

Proof. Let B be a closed set in U such that BnG and BnH are empty. Consider
V= U\B. The geodesic distance between holes for the ¥ problem is obviously the
same as for the U problem. Consider D restricted to V (respectively the D, e L*
restricted to V) and call it D (respectively D,). These vector fields satisfy all the right
conditions (for V), so

{ IDIZE(V)=EU)={ID|= | |D|+[|D|,
2W) Q aw) B
and thus D=0 on B, which proves (5.9). Note that E(U) = E(V) by virtue of (5.4). A

similar reasoning works for the sequence D, as well as for the case of integral d’s
(see Lemma 4.2). O

Remark 5.2. Note that i) holds even if U is not regular.
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Remark 5.3. Consider Case A and assume D is a minimizer in (5.7). Then the |D|
measure of (UH,) is zero.

Indeed
Diz—- | )D~VC=0~Zd,-C(H.-)

RN\(UH3) RN\(VH;
for all {e C'(RY) with |[F{|<1, {=0 on 0U and { is constant near each H,.
Therefore
) lDlgffNS‘ClPZdiC(Hi),

RN\(UH))
where { runs in the above mentioned class. It follows that
[ IDIZE,= | ID|.
) RN

RN\(VH;

Remark 5.4. We conjecture that, for any U (regular or not) we have

min {f_ |D||D € £, suppDCG} =Ey. (5.11)
2

2. The Two Hole Problem

We investigate here two simple cases:

a) Case A with U=RY and two disjoint holes H, and H, with d, +d,=0.

b) Case B with U+R" and again two disjoint holes H, and H, with
d,+d,=0.

In both cases D(H,,H,)=L.

Let us first analyze the case where there is precisely one geodesic, g, between H
and H,. Let D be as in Theorem 5.3 so that supp D Cg. By Appendix D we know
that D must be a measure of the form

D=cD,. (5.12)
On the other hand,
[ID|=0yld4|L, (5.13)
where L is the length of g. On the other hand,
§iD,=L, (5.14)

so that c=a,ld,|. In particular |D| is the uniform Hausdorff measure on g and the
“direction of D is tangent to g.”” We shall establish similar properties in the general
case where there are many geodesics between H, and H,. As before we denote by G
the union of all geodesics. In Case A, G is simply a union of line segments of length
L which are disjoint except possibly for the end points. In particular every point, x,
in G\(H,UH,) has precisely one geodesic passing through it. We denote its
direction (going from H, to H,) by n(x).

In Case B the situation can be much more complicated. Many geodesics can
pass through a single point and the tangent need not be defined at every point of a
geodesic. There could also be many geodesics connecting two points.

Theorem 5.4. Under the assumptions of Theorem 5.3 and in Case A, the vector-
valued measure D and the scalar-valued measure |D| are related by

D=n|D|. (5.15)
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Note that Eq. (5.12) relied only on the fact that divD=0. But in Theorem 5.4
we really need the fact that D is minimizing. Consider, for example, the case where
H, and H, are two cubes with parallel faces so that G is a cylinder, C, with a square
base. Let g be any curve going from H, to H, in G. Then divD,=0, but (5.15) fails.
The requirement that D is minimizing forces the “integral curves” of D to be
geodesics.

We believe that a similar result holds in Case B.

Conjecture 5.1. Under the assumptions of Theorem 5.3, and in Case B, D is such
that n(x) is well defined a.e. |D] and D =n(x)|D)|. Here n(x) is the common tangent —
when it exists — to all geodesics through x.

Proof of Theorem 5.4. Let H, ;={x|dist(x, H,;)<6}, and similarly for H,, with
6>0 and small. Note that dist(H, ; H, ;)=L—2d. Let

f(x)=min{dist(x, H, ,), L—26}. (5.16)

Let g be a nonnegative C* function with support in a ball of radius one around 0
and [g=1. Let g,(x) =& Vg(x/e). Set

fi=g.*f for e<d, (5.17)

so that f, is a smooth function which is zero on H, and f,=L—2J on H,. We claim
that

Vf.(x)-n(x) everywhere on G\(H, ,uH, ;). (5.18)

Assuming that (5.18) holds, (5.15) follows easily. Indeed, since f is Lipschitz with
constant one, [Vf,|<1 and hence

oxL={|D|= [ D Vf,=(L—28)cy. (5.19)

From (5.18), and dominated convergence, we have

D-Vfi—5 D-n, (5.20)
G\(H1,5VH32, ) i G\(H1,5VH32, )

and thus, combining (5.19) and (5.20) we obtain

D-n=(L—20)oy— ] |D] (5.21)
G\(H1,5VH2, ) (Hy,6UH, s)\(H1UH>)
(note that f=0 near H, and H,). Passing to the limit in (5.21) as 6—0 we find
D-nz=zLoy.
G\(H1UH>)

By Radon-Nikodym, we may write D=F|D| for some function Fe L*(|D|) and
[F|=1 a.e. |D|. Thus we have F-n=1 a.e. |D|, and so F=n a.c. |D]. We turn now to
the proof of (5.18). Let e be any unit vector in IR¥. We have

0+ 19— ko)1 = 050~ [ 0 +16)—f )]y

1 . .
= ;I g.(xo—y) [dist(y + te, H,) —dist(y, H,)]dy



666 H. Brezis, J.-M. Coron, and E. H. Lieb

for xo, e G\(H,,;uH, ;) and ¢ small enough. Given a point z we denote by a(z) any
measurable projection of z on H,. We have

dist(y+te, H,)—dist(y, H) 2|y +te—a(y+te)|—|y—a(y+te)|,
and thus

L0+ 10— fGe012 3 g.50—y-+16) [y —a)l Iy~ te—a()].

On the other hand

ly—te—a(y)|=[ly —a()—2te - (y—a(y) + 1"
L e =a) | .
<y a(y)l{l T }+Ct :

Therefore as t—0 (and fixed ¢) we have

e-y—aQ)) ,

4 e" e= \Xo— .
.62 g.(x0—) T
Finally we observe that
tim 279y,
y=xo [y—a(y)l

since a(y)—a(x,) because x, has a unique projection on H,. We conclude that

limioan];-egem(xo).

Changing e into —e we obtain (5.18). O

As we remarked earlier, when there is only one geodesic g between H, and H ,,
then |D| is a uniform measure on g. The analogue of this when there are many
geodesics is the following

Theorem 5.5. Let D be a measure as in Theorem 5.3 (for either Case A and Case B).
For 0<a<B=ZL consider the slice

S(a, B)={x|la <dist(x, H,) <} (5.22)
(with dist=geodesic distance in Case B). Then
[ IDl=0yld;|(B—0a). (5.23)
S(a, f)

Proof. Replace H, by H, US(0, o). For this new problem E’'=oy|d,|(L— o). But we
can use D restricted to U\S(0,x) as a variational measure for E’ and obtain

E’'< | |D|. Likewise, replacing H, by H,uS(a, L),
S(a, L)

oyldi|=E"< | |D|.

5(0,%)
Adding these inequalities we obtain:
oxldJLE | DI+ [ |D|=0pld,|L.
5@, L) 500,
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Therefore
[ IDI=oyldslo. O

0,a)

3. The Many Hole Problem

We now turn to the description of all minimizing D fields in the general case with
many holes.

Suppose there are k holes H,, ..., H, with degrees d, ..., d, (not necessarily
integral). Some of these may be zero. We assume Y d;=0 because, in Case A, we
can assume that the complement of U is also a hole with the appropriate degree.
First, let us consider the minimal energy E, . If d,, ..., d,>0 are the positive d’s
andd,,, ...,d, <0 are the negative d’s, (5.4) gives us E 4 pin terms of a p x r matrix
A={a;;} (Withr =g~ p). The set of minimizing A’s (call it /) is convex, as is the set
of minimizing D’s.

Recall that D(H;, H;) is the geodesic distance (different for Cases A and B). It is
realized by a finite sequence of strings (see Sect. II) running between a sequence of
holes. More than one sequence may be possible. To be more specific, let y;;=1 if
there exists a string between H; and H; and y;;=0 otherwise. For y;;=1, define 4;;
to be the set of all strings between H; and H;, and L;; their common length.
Likewise, for y;;=1, let Z;; be the set of minimizing D fields (with d;=1, d;= —1)
constructed in the preceding section (the two-hole problem). If y;=0, 4
(respectively 2;;) is a union (respectively sum) of the strings (respectively
minimizing D fields) connecting H; to H; (respectively with d;= +1, d;= —1).

Now given an 4 € &/ we can construct a minimizing D field as follows:

P 9 .
D=3% > a;DY, (5.24)
i=1 j=p+1

where DV e 9;;. Recall that when the d;’s are integral the extreme elements of < are
given by Birkhoff's theorem, namely by a minimal connection in which each
a;eZ”.

Theorem 5.6. For Case A, every minimizing D field is given by (5.24).
We conjecture that the same is true for Case B.

Proof. Let M ={(i,j)|x;;=1}. A little thought shows that we can rewrite (5.4) as
follows:

E, =30y min 3% |4y lLsj (5.25)

where the minimum is over ;= —p;; and 3 p;;=d; for i=1, ..., k. Pictorially, y;

J
can be thought of as the flux from i to j; it is not required that y;; has any definite
sign.

Suppose that (a,b)e M and (c,d)e M (all points being distinct) and that
geodesics g, € Dy 9oq € Yq (these are line segments). Suppose also that g, and g4
intersect at a point P. In this case, we claim that either u,, =0 or p.,=0. If not, we
can assume that p.,=pu,>0. Clearly, D(H,, H,;) <dist(H,, P)+dist(P, H;) and
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D(H,, H,)<dist(H,, P)+dist(P, Hy). If (a,d) and (c,b)e M, then D(H,, Hj)=L,,
and D(H,, H,)=L,,, and we can replace the four numbers ug, fog Lod> Kep DY O,
Hea— Paps Bag + Uaps Pap + U and thereby strictly lower the energy. This construction
has to be modified in an obvious way if (@, d) or (¢, b) ¢ M. The conclusion we reach
is that whenever 4,19, is not empty, then every minimum of (5.25) has y,, =0 or
U.2=0. The choice [(a,b) or (c,d)] is universal; if p,,=+0 in one minimum and
40 in another, then by taking the mean (which is still a minimum) we would
have a contradiction.

Let NCM be the set of (i, ) such that y;;4 0 for some minimizer in (5.25). The
families of geodesics {%,,} for (a,b)e N are disjoint except possibly for the
endpoints. Let G={J %,,. Now let D be a minimizer. We claim that supp D C G. The

N

proof of this is the same as the earlier proof (5.10) that suppD is contained in the
geodesics between the positive and negative holes. If x ¢ G then remove a small ball
around x (thereby creating a degree zero hole). If the ball is small enough nothing
changes in (5.25) (recall the strict inequality of the preceding paragraph). Thus E ,
does not change, but D’= (1 — yg)D, with y being the characteristic function of the
removed ball, is an allowed vector field for the new problem, whence iIDI =0.

For (a,b) € N, consider D, =F D, where F, is the characteristic function of
Y If e C*(RM) and {=1 on H,, {=0 on H, then, as is easily seen

—.[ Dab . VC= ON%gp > (526)

where o, is some constant that is independent of {. From the defining condition
(5.1) on D we see that o, = —ay, and Y o =d,. By (5.25), <30y X |¢wlLa-
b a

(a,b)eN
On the other hand, [ |D|=% X [|D,| [since the |D| measure of the holes is zero
(a,b)eN

(see Remark 5.3)]. Thus [ |D|=1oy bZ NlocablLa,, [by (5.26)]. O
(a,b)e
Remark 5.5 on the Relation of ¢ to D. Let Q be an open set in R3, In Sect. IV, to
every ¢ € C(Q; §?) with V¢ € L?*(Q) we have associated a D field with the property
that divD =01n 2’ [for the generalization to R, see (B.7)]. It is a natural question
whether any vector field D with divD =0 comes from a ¢. The answer is no, as the
following, based on a remark of D. Sullivan, shows. Let S be a smooth closed
surface in Q. Let D a smooth vector field with the property that some integral curve
of D is dense in § (for example S could be a two-torus, and D restricted to S is an
irrational twist of the torus). Then this D can not come from a ¢, as we shall now
show.
From the definition of D in Sect. IV it follows that

(D-V)p=0, (5.27)

since |p|>=1 [and thus det(¢,, ¢,, 9,)=0]. It follows that ¢ is constant on the
integral curves of D and in particular ¢ is constant on S. Therefore D=0 on S since
D =0whenever V¢ vanishes in two orthogonal directions. This contradicts the fact
that D0 on S.
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VI. Behavior of Minimizing Sequences for the ¢ Problem
As before we are given an open set U CR? and k holes H; (disjoint compact subsets
of U). Let H= Lk) H;and Q= U\H. Associated with each H; is an integer d;. We are
concerned witi1=t1he behavior of minimizing sequences for the problem

E=inf{ |V o|? 6.1)

under the appropriate conditions on ¢, namely @eC(2;S5%), VoeL*Q),
deg(¢, H;)=d,; and, in Example 4 only, ¢ € C(U\H) and ¢ =constant on dU. In
Example 4 we also assume that U is regular.

Let ¢" be a minimizing sequence for (6.1) and let D" be the field corresponding
to ¢". By passing to a subsequence we may assume that D"—D weakly in the sense
of measures. We claim that 7 o"P—21D| 62)

weakly in the sense of measures. Indeed we have |D"| <3|V ¢"?; let us assume that
|@"|>—~vweakly in the sense of measures. Then we have

2|D|<y. (6.3)
On the other hand, by Theorem 5.2
fIDIZ3E. (6.4)

Since | v=E, we conclude that v=2|D|. Again, by Theorem 5.2, D is a minimizer for
E, or Eg, and thus we have the description of D given in Sect. V.

The conclusion of all this is that any minimizing sequence for the ¢ problem
inherits all properties of minimizing sequences for the D problem that we studied in
Sect. V. In particular, since D is supported on G, the union of all geodesics running
between holes, (6.2) implies that ¢" converges strongly in H* to a constant on each
connected component of the complement of G. However, the fact that D comes
from a D", which comes from a ¢", leads to some additional properties for D
beyond those implied by the fact that D is a minimizer for the D problem. To derive
these additional properties, Appendix E will play an essential role.

For simplicity we shall restrict our investigation to Examples 1-3 and with the
additional assumption that there are only finitely many strings between any two
holes.

Theorem 6.1. There is a minimal connection, C, which we write C = Ug;, where the
g;’s are strings (which are repeated according to their multiplicity in C), such that

D=4n3D,,. (6.4)

D, is defined in Appendix D. In particular,
|D|=4n3d,,, (6.5)

where 0, is the one-dimensional Hausdorff measure on g. Consequently [by (6.2),

(6.5)1,
Vo' P—8n %5, (6.6)
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Remark 6.1. The point of this theorem is the following. If there is only one minimal
connection, then the D problem has a unique minimizer and Theorem 6.1 does not
give any additional information beyond that contained in (6.2). The interesting
case is where there are several minimal connections, say C, and C, for example.
Let D, (respectively D,) be a minimizer with support in C, (respectively C,). Any
convex combination of D, and D, is also a minimizer, but this cannot happen for
the ¢ problem. |V ¢"|> must converge either to 2|D, | or 2|D,| but cannot converge to
[Dy|+|D,|, for example. This is a consequence of the quantization condition of
Appendix E.

Proof. We recall that
suppDC U 9ij>

@i,j)eN

where g;; is a string running between H; and H; (i.. it is a line segment). The set N is
described in the proof of Theorem 5.6. N has the property that two distinct strings
in N can intersect only at a common endpoint. We can write D as

D (2)47'5( Z vl] gij?
i,j)e
where g;; is oriented from H; to H; and v;;= —v;;. By Theorem E.5 we know that
v;;€Z. Moreover the dwergence condmon 1mphes that Zvu—d for each
1—1 2, ..., k. The energy is given by
§ID|=34n Z vyl L;

@i,j)eN

ijo

where L;; is the length of g;;. Since the energy is minimal, it follows that v;; is a
m1n1m1zer for (5.25). We claim that this set of v;; defines a connection (which must
be minimal since the energy is minimal). Take any positive hole, say H;. By the
divergence condition there must be at least one v;;>0. Go to H;. If this is a negative
hole, then stop and replace v;; by v;;—1. If H; is a Zero or posmve hole, then keep
going until a negative hole is reached Along this path replace all the v’s by v—1. By
repeating this construction Q times (where Q is the sum of the positive degrees), we
obviously have a connection. We claim that the remaining v’s are all zero. This
follows from the fact that v is a minimizer for (5.25) and that replacing the residual
v’s by zero would lower the energy in (5.25) and preserve the divergence
condition. [

VII. Minimizing the Energy with Specified Boundary Conditions

A problem that we have so far not addressed in this paper is the minimization of
the energy when ¢ is specified on the boundary of a domain (except for the special
case where ¢ is constant on the boundary). Our analysis of the D problem in
Sect. V is a useful guide to understanding the solution to certain open problems of
this genre. In particular we shall answer the following questions.

Let B be the open unit ball in R? and let

C,={peH'(B;$%)|p(x)=x on 0B} . (7.1)
Let E(@)={IVol, (7.2)
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and
E,= inf E(p). (7.3)
@eCy

Question 1. Is yp(x)=x/|x| a minimizer for E,?
Answer. Yes (see Theorem 7.1).
Next, let
C,={pe H'(B;5?)lp(x)=¢g(x) on 0B},
where g:S?—S? is a given smooth map. Let
E,= inf E(p).

@eCy

Question 2. Is g(x/|x|) a minimizer for E,?

Answer. No, unless g is an isometry (i.e. +g or —g is a rotation) or g is a constant
(see Theorems 7.3 and 7.4).

In other words, if g is any smooth map from S? to $2, and if g is extended
radially to B, the extension is unstable unless g happens to be the constant map
(degree zero) or g is the identity map modulo an isometry (degree +1).

We recall that a (smooth) map g from S? to $2 is called harmonic if it satisfies
the equation, —Ag=g|Vg|*, where 4 is the Laplace-Beltrami operator on §2.
Harmonic maps from S2 to S? have been classified (see .g. [22, 35]) and their form
is given in the proof below of Theorem 7.4. They all have the property that they

minimize Iz [Vg|* subject to the condition that the degree d of g is prescribed. In
N

particular this integral is 8|d|.

We also recall a result of Schoen-Uhlenbeck [31, 32] that if we take an
arbitrary domain Q and minimize E(¢) in H'(Q;S?) with specified boundary
condition, then any minimizing ¢ has at most finitely many point singularities.
Our result implies that these singularities always have degrees +1 (see
Corollary 7.12). In an earlier work Hardt et al. [19] showed that the degrees of
these singularities are bounded by some universal constant. This confirms the
observations on liquid crystals that stable point singularities have degree +1 [6].
It also confirms numerical studies by Cohen et al. [8] showing that singularities of
degree two or more are unstable. Our first result is the following:

Theorem 7.1. v(x)=x/|x| is a minimizer for E,; in fact, it is the unique minimizer.
An obvious consequence of Theorem 7.1 is the following:

Corollary 7.2. Suppose g(x) = Rx, where R is arotation in SO(3). Then p(x)= Rx/|x|
uniquely minimizes E,.

Our second result is:

Theorem 7.3. If g has degree +1, then g(x/|x|) is not a minimizer for E, unless
g(x)=Rx, where R is a rotation in SO(3).

Our last main result is:

Theorem 7.4. If g has degree d with |d| =2, then g(x/|x|) is not a minimizer for E,.



672 H. Brezis, J.-M. Coron, and E. H. Lieb

Proof of Theorem 7.1. Clearly we have
E,SE(x/|x|)=8=. (7.4)

In order to show that (x) = x/|x| is the unique minimizer for E, it suffices to show

that
E(p)>8n for every peCy, o+v. (7.5)

This leads us to the question of finding lower bound for the energy.

A. Lower Bounds for the Energy

There is always a minimizer for E, and, if ¢, is a minimizer, we know from [32]
that @ is smooth on B except at most at a finite number of points in B. Therefore it
suffices to prove (7.5) for ¢ in the class

C={peC,|p is continuous on B, except at a finite number of points in B} .

This will be achieved using the D field associated to ¢. [An alternative to using the
result of [32] about minimizers is to use a theorem of Bethuel-Zheng (in
preparation) which states that C is dense in C, for the H* norm.]

Let ¢ € H'(B; S?) be smooth on B except at a finite number of points in B (we
do not assume that ¢(x)=x on 0B). Let D be the D field associated with ¢ as in
Sect. IV.

We have

3§ WolP2fIDIZ{D- VC=afB(D~n)C—1fg(divD)C
for every { € C(B) with | V'{|| .« < 1. Recall that D - n depends only on the values of ¢

restricted to 0B and, more precisely, D - n=¢ - ¢, A ¢,, where x, y are orthonormal
coordinates on S2. On the other hand

divD=dn ¥ dJ,,
with d;eZ and g; € B. Consequently -
] (0-my=dndeg(p.5) and ._il d,=deg(0,5?).
Therefore we have i
§ |V I* 2 8n max {% aIB (D-n)l— i::“.l d{(a)Il € C(B) with |[V{|| < 1} - (7.6)

A basic lower bound for the right side of (7.6) is given by the following
Theorem 7.5. Let M be a compact metric space with distance 3(x,y), let u be a
p P
probability measure on M and let v= Y. d;0,, where d;eZ and . d;=1.
i=1 i=1

Then
1(v)=max {J {dpu— | Ldv] |{llnip <1} élcﬂginr} §8(x, O)du(x), (7.7

where ||{|vip= ililz [8(x) = C)I/6(x, y).
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Note that the right side in (7.7) is independent of v and that (7.7) is obvious if
p=1, namely v=4, [take {(x)=4d(x, a)]. It follows that
min max {§ ¢du—§ {av} =min | 8(x, c)du(x) .

Combining (7.6) and Theorem 7.5 we obtain

Corollary 7.6. Assume ¢ restricted to 0B has degree one and satisfies D -n=>0 on 0B,
then
| |l7<p|222mi11’1 { lo—c|(D-n)do . (7.8)
ceB 0B

A generalization of (7.8) is given in Remark 7.5 below.

Proof of Theorem 7.5. An easy approximation argument shows that it suffices to

prove (7.7) in the case that u= Z a;0p, With o;=0, Z o;=1, and b,e M. Write
k—1

v= Z 0p— Z Op, (some pomts are repeated accordmg to their multiplicity d,).

We shall use 1nduct10n on k. As we have already indicated, the conclusions is
obvious for k=1.
As in Sect. IV and V it follows from the Kantorovich theorem [see (5.4)] that

I= mm{

k
the minimum being taken over the set of constraints ¢;; _>_ 0,5;=0, ¥ t;;=1forallj
i=1

||M=-

5 136un)+ 3, 55,0005}, 19

15jgk—1, Z t”+ Z s;;=1for all i,1<i<k and Z s;j=a;for all j, 15j<q.

Fixing the matrlx S= (sl ;;)> consider the set 7 of all matnces T=(t;;) satisfying the
above constraints. The set 7 is compact and convex, therefore

min Y3 t,8(p, ) (7.10)

is achieved by some extremal point of 7. The following lemma, which is a variation
of Birkhoff’s theorem, gives a useful property of the extremal points of 7.

Lemma 7.7. Let y=(cq,...,c,) and ¢=(rq,...,t,) be n+m given nonnegative
numbers satisfying 3" c;=Y.r;. Assume m=<2n and let M,, (7, 0) be the set of mxn
matrices with nonnegative entries and havmg the c; and r; as column and row sums.

Le. Te M,, ,(y,0) means T={t;;},t;;20, Z ti=c;, Z tij=ri. M,, (v, 0) is clearly

a closed convex subset of (R*Y™. If T is an extreme pomt of M, ,(y,0), then some
column of T has m—2 zeros, i.e. for some je{1,...,n}, t;;=0 for at least m—2
different i’s.

Proof. We can assume that m=2n simply by adding 2n—m rows of zeros. The
lemma is trivially true for n=1, m=2 and we shall use induction on n. Let n=>2. If
T does not satisfy the lemma then each column of T has at least 3 positive entries.
Since T is extremal, it is obvious that every submatrix, 4, of T must be extremal
(with respect to fixed row and column sums for 4). Our goal will be to show that T
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has a k x n submatrix, 4, that is not extremal, for some k=2. Let R denote the
number of rows of T having n— 1 zeros. The total number of positive elements of T,
call it X, satisfies 2 >3n. Then R+ (2n—R)n= X =3n. This implies that R<2n
—[n/(n—1)]1<2n—1,s0 R<2n—2. Hence T has k=2 rows with the property that
there are at least 2 positive elements in the row. A will be the submatrix of T
consisting of those k rows.

We claim that each column of 4 has at least 2 positive entries. Let je {1, ..., n}
label some column of T. Suppose there are 2 rows of T with the property that each
row has one positive entry and that entry occurs at a common position j. If this is
true we are done, for it suffices to consider the (2n—2) x (n— 1) submatrix, B, of T
obtained by deleting those 2 rows and the j* column. By induction, B is extremal
and thus has a column with at most 2 positive entries. If s labels this column then
column s in T has the same property (because column s had zeros in the 2 deleted
rows). This contradicts our assumption that every column of T has =3 positive
entries.

Thus, we have found a k x n submatrix, A, of T with the property that every row
and column of A4 has at least 2 positive entries. This matrix cannot be extremal as
we now show. Pick some positive entry of 4, walk along the row to another
positive entry, walk along that column to another positive entry, and so on until a
point (I, J) that has been previously visited is reached. We thus obtain a closed
path, starting at (I, J) through positive entries of 4. Let F be the matrix thatis + 1
at (I,J), (—1) at the next point in the path and so on. Off the path, F;;=0. Clearly
all the row and column sums of F are zero. Moreover, for small
e, Ty=T+eFeM,, (y,0),s0 T=5(T,+T.). O

Proof of Theorem 7.5 Completed. Let T=(t;;) be an extreme point of t that
achieves the minimum in (7.10). By Lemma 7.7, there is some j, 1<j<k—1 such
that t;;#0 for at most two values of i. Suppose, for example, j=1, t; ;=0 when
i%1,2,and t,, <t,,. Nowfix T and S in (7.9), but replace the point n, by p,. By the
triangle inequality, (7.9) is not increased by this replacement. This means that
I(v) 2 I(v), where v is the measure with n, replaced by p,, namely v has only k—1
positive terms and k—2 negative terms. The conclusion follows by induction.

Remark 7.1. One may give an alternative proof of Theorem 7.5 using Graph
Theory — more specifically a result of Hamidoune-Las Vergnas [16]. By
approximation, we can always assume that y= Zoc 0p, With 0; 20, Za =1,b;e M,

and also «; € Q. Therefore, it suffices to consider the case where = ‘—1 Z 0y, (Where
Jj=
k-
the points b; are not necessarily distinct). As above, write v = Z O, _Z 0y, so that
the left side of (7.7) becomes Fei
1
amax{f Ldp'—§ Lav il =13,

q k-1 k
where y'= 3’ 6,,+q Y. 6,,andv'=q ¥ J,. Using the Kantorovich and Birkhoff
j=1 i=1 i=1

theorems as in Sect. IV we find that this maximum equals

kq
min Y} 6(P, N,),
¢ =1
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where the system (P;) consists of the points (p;); <; <, €ach repeated g times, and the
system (V) consists of the points (n;); <;<x—; €ach repeated g times together with
the points (b,); <<, (counted with multiplicity one). It follows from the result of
[16], that in any connection o, there exists some point p;  which is joined to every
(b1 <j<q by disjoint paths. (Two paths are disjoint if they have no strings in
common.) In particular we have

kg q
IZI (P, N2 _21 3(ip b)) =4[ 8(x, pi)dp(x) 2 q min §8(x, c)du(x),
= Jj= ce
which leads to (7.7). O

Remark 7.2. Suppose M = B (the unit ball). It is easy to see by going back to the
proof of Theorem 7.5 that (7.7) is a strict inequality if Supp u is not contained in a
single line and v has at least three atoms.

Proof of Theorem 7.1. From Corollary 7.6 we obtain

E,22min | |6—c|do=8n
lel=1 B
(the minimum is achieved when c¢=0). Next we claim that y is the unique
minimizer. Let ¢, be a minimizer for (7.3) and let D, be the corresponding D field.
In view of Remark 7.2 we know that div D, consists of a single Dirac §, and ¢ must
be zero (otherwise 2 | |6 —cl|do > 87). Therefore, ¢, has only one singularity with
oB

a nonzero degree, and that singularity is at x=0. Finally, we have d¢,/0r=0
because )

990
or

(since @, restricted to every sphere, rS2, has degree one). [

8n={ |V ool*={ |Vreol* +

00
or

2
gSn+I|

Corollary 7.8. Assume ¢ : B—S? has the following properties:

¢(—x)=—¢(x) ondB, (7.11)
D-n=J,=¢-0,A0,20 ondB, (712)

and
deg(p,8%)=1. (7.13)

Then § |V ¢|* = 8.
Proof. We already know, by Corollary 7.6 that
31 IVol? 2653 lo—c|(D-n)do (7.14)

for some c e B. Thus, we also have [by (7.11)]
%le(p]zgafBl—-o——cl(D~n)(—a)dt)':afB]a+c|(D~n)(a)do‘. (7.15)

By adding (7.14) and (7.15) we find
1 \Vel*z | (D-nydo=dn. O
0B
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Remark 7.3. We conjecture that the conclusion of Corollary 7.8 holds without
assumption (7.12).

Corollary 7.9 (Extension of Theorem 7.1). Let Q be any bounded domain in R3, then
p(x)=x/|x| is the unique minimizer for | |Vep|? under the constraint that ¢ =1 on Q.
Q

Proof. Let By be any large ball containing 2 and consider the problem of
minimizing E(¢) subject to ¢(x) =x/|x| on 0Bg. By Theorem 7.1, the minimizing ¢
for By is uniquely x/|x]. Now let ¢ be the minimizer for the Q problem. If ¢ differs
from v in Q, then there would be an alternative minimizer for the B problem,
namely f(x)=@(x) for xe Q and f(x)=x/|x| for x¢ Q. This would contradict
uniqueness. []

Theorem 7.10 (Extension of Theorem 7.5). Let M be a compact metric space and let

)4
u be a positive measure with total mass de N, and let v= 3" d0,,, where d;e Z and
i=1

P
Z di= d.
i=1 Let
e
I(v)=max{§ {du—§ {av| ¢l 1}
Then infI(v) (where the infimum runs over all p’s, a;’s, and d;’s) is achieved by a
measure v of the form

k+d k
V=23 0p, On,
i=1 1

j:
Jor some 0<k<d—1.
Proof. Follow the same argument as in the proof of Theorem 7.5. [

Remark 7.4. For the purpose of Theorem 7.5, it would suffice to have Lemma 7.7
only for the case m=n+1. The reason we proved it for m<2n was that this
extended version is needed for Theorem 7.10.

Remark 7.5. Theorem 7.10 gives us a way to compute a lower bound for the
problem
min _{|Vof?,

@¢=¢oondB B

provided D - n>0 on 0B, but without the assumption that ¢, has degree 1. Asfar as
the D problem is concerned, it can happen that when d=2, for example, the
minimum of I(v) occurs for three plus points and one minus point (i.e. k=1). Just
take D - n to be three Dirac masses of strength % placed in an equilateral triangle
around the equator. The minimizing v consists of three positive unit masses at the
vertices of the triangle and one negative unit mass at the origin.

B. Proof of Theorem 7.3

First note that if v(x)=g(x/|x|) is a minimizer for E,, then g must be harmonic.
Indeed v satisfies the equation — Av=1v|Vv|?in B and since v is independent of r, we
have — Ag = g|Vg|®. We shall construct explicitly a map, u, which coincides with g
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on JB and whose energy is less than 8z. Let 0<a<1 and let 4=(0,0,a). We
introduce polar coordinates centered at A with the direction (0,0, 1) as the pole.
Thus a point x in B has coordinates (r, 8, @), where r is the distance to 4, 0 is the
polar angle and ¢ is the azimuthal angle. For a given angle 6 [0, ], let R(6)
denote the maximum allowed radius (in B). The points (R(6), 0, ¢) with 0 fixed and
¢ €[0,2x) all have a common polar angle y(0) relative to the origin 0. We easily
compute that

R(@)sin0=sin[y(0)], tanb=sin[y(H)](cos[w(@)]—a) !. (7.16)
Our choice for u is

u(r, 0, 9)=g(w(0), ¢), (7.17)

so that its energy is
T 2n R(6)
E(u)={sin0d0 | do j r2dr{r 2|V, Jul?}, (7.18)
0 0 0

where ¥, ,=(8/00, (sinf) " '8/0¢). The r integration gives R(f) sinf which equals
sin[(0)1, so (7.18) becomes
n 2z
E(u) =(5) sin[y(6)]d0 (f) do{lg(p(6), 9)*[sin 012 +lg,(w(6), P)* 1w (O)1*} .
(7.19)

Here g, and g, mean derivatives with respect to the first and second arguments.
Using (7.16) it is easy to compute

v(0)=[1—-2acosyp(0)+a*1/[1—acosy(9)], (7.20)
sin? [y(0)]/sin?6=1—2acosy(0) +a>. (7.21)

Inserting this in (7.19) and changing variables from 6, ¢ to v, ¢ (with Jacobian
[w’|" 1), we have

Bw=] sinp dp [ do{lga(w, 9)P[siny] (1 ~acosy)

+1g1(p, P)I*[(1 —2acosy +a?)/(1 —acosy)]} . (7.22)

If we set a=0 in (7.22) we obtain E(g(x/|x[))=28n. To prove the theorem, it
therefore suffices to show that E(u)<8r for small a. Expanding (7.22) in a near
a=0, we need to show that

T 2
[sinpdy (5) do{lg,(p, @)P(siny) > +|g,(w, @)1} cosp 0. (7.23)

However, (7.23) can be expressed in coordinate free form as follows. Let e(o)
=1|Vrg(o)>, where o € S? and V, is the tangential gradient. Then the left side of

(7.23) is
()= sz e(0) (a-o)da, (7.24)

where a =(0,0, 1) and do is the uniform measure on §2 with | do =4n. Itis now clear
that I(d) is the change of E if we replace A =aa by A= ad, & € $*. Thus, to complete
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the proof we must show that every harmonic map g:S?—S?, other than
g(x)= =+ Rx, has the property that, for some « € S?, I(«)+0. In other words, we
have to show that for some i€ {1, 2, 3},

N,=] e(6)odo+0. (7.25)

Equation (7.25) means that the center of mass of e(o) is not at the origin.
Let IT denote stereographic projection from €C—82. If z=x+iy,

Oi)=1+z*)"'(2x, 2y, 1—|z]?). (7.26)
Clearly we have _
do=4(1+|z*) " %dxdy, (7.27)
and if h:S?>C and H=hoII :C—-C, then
Prhi* =4V HI*(1+12%). (7.28)
If g:S*>->8%? and f=I"'ogoI1:C—C, then
WVrgl> =1V P+ 1) 720 +1217). (7.29)
If f happens to be holomorphic, then
P =2lf@)*; (7.30)
g is harmonic of degree one if and only if
f@=T YogoI)(2)=(az+b)/(cz+d) (7.31)

fora,b,c,d e C,seee.g. [22, 35]. By a rotation of S we can assume that 0o — 00, i.e.
¢=0,d=1. By afurther rotation, z—ze'*, we can assume a = b with 4> 0. Thus we
may assume f(z) =b(z+ A).

From the above formulas

N;=8[dxdy|f' @’[1 +|f@IP17[1 +121*1" ' Wi(z) (7.32)

with

Wi(2)=2x, Wy(2)=2y, W@2)=1~l>.
By symmetry, N,=0. If A>0 then N,+0. To see this, let K(x, y) denote the
integrand, and note that for x >0, K(x, y) <K(—x, y) for all y when 1>0. Thus,
N, =0 implies A=0. Finally, it is easy to see that N; =0 if and only if |b|=1. But
f(z)=¢""z corresponds to g(x) = Rx with R being a rotation by the angle w about
the north pole. 0O

Remark 7.6. The proof of Theorem 7.3 shows something about harmonic maps
generally (even those of degree =+ +1). If g(x), for |x| =1, is given on the boundary,
then g(x/|x|) can never be a minimizer if the center of mass of e(o) is not at the
origin, x=0. Here, e=|Vyg|*.

C. Proof of Theorem 7.4

Let d be the degree of g and assume v(x)=g(x/|x|) is a minimizer for E,. As we
remarked, g must be harmonic, and this is the case if and only if f(=II"'ogo IT)is
P(2)/Q(z) if d=0 or P(2)/Q(2) if d <0, with P and Q being polynomials and with
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|dj=max {deg P, degQ}. By assumption we have
IWwoP <[ Vel*, VeeC,. (7.33)
B B

We have clearly FI7ol?={ |Vpg>=8nld). (7.34)
B §2

In order to prove that [d]|<1 we shall choose special functions ¢ of the form
described below. Let e (0, 1) and let 6: [0, 1] [0, c0) be any smooth function such
that 6(1)=1, 6(t)=0 for t€[0,¢] and 6(t)>0 for te (e, 1]. Let

1
—— [~ (x/|x }
ey T /e

(with the convention that 0/0=o0). Note that ¢ equals N=(0,0,1) on the ball
B(0,&). Moreover ¢ is smooth on B except at the points ex; with g(x;)=S
=(0,0, —1). Also ¢(x)=g(x) for |x|=1. We claim that

O OPrrd dy

o(x)=I11 {

1
E(p)=8nld|(1—¢)+16) dr , 7.35
(o) =8nldlt =) +16r | o+ rorrarar 0
where (=& +in.
Indeed we have
op|? dpl?
E(p)= | (IVTW + a—"’[ ) =8mldl(1—o)+ | |2} . (7.36)
r>e¢ r r>e|OF
A direct computation shows that
dol> _ A0MPIFOP
— = 7.37
or| = @0 +1/OP? i
2
where { =IT~(x/|x|) and r = |x|. In order to compute | o Ve change variables
and instead of x=(x,, x,, X3) we use the new variables (r, £, ), i.e.
1/ a2 = _ %2
r=l/xi+x3+x3, ¢ —— n —
Therefore we obtain
2 2
} 99| dx,dx,dx;= | dr | % Jdédy, (7.38)
r>e or r>g R2 or
where J is the Jacobian determinant, i.e.
g Howxaxs) A (7.39)

oar&m A+ +IP?

Combining (7.36), (7.37), (7.38), and (7.39) we obtain (7.35). Going back to (7.33)
and (7.34) with (7.35) we obtain

1 10121 1Pr*dé dn
87ld| <8nld|(1—2)+16dr | O+ P+
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[for simplicity we write f instead of f({)] that is

n t |6°(r)|1f 1r*dE dn
2 ldlgé.gdrlgz (02(7')+|f]2)2(1 +'CI2)2 :

(7.40)

We change variable and set t=¢/r, oc(t)=0<§>, te[e,1]. From (7.40) we have
ldl _t l' @)1 12dE dn
wy Sl L @+ ma + .40

Note that (7.41) holds for any function a : [¢, 1]—[0, c0) such that a(e) =1, (1) =0.
Passing to the limit in (7.41) we find

ol cha g WOPYPdedn 04

r (020 +1 A+
for any function «:[0,1]—[0, c0) such that a(0)=1, a(1)=0. Set
: |f1*d¢ dn }1’ g
F(s)=)d .
(S) g a{l!z (a2+ |f|2)2(1 ¥ Mlz)2
(It will follow from later computations that F<oo.) We choose now

a(t)=F~'(F(1) (1 —t)) and so we obtain from (7.42), ngﬂgF (1)%, and thus
m 1/2 —1 { lflzdédn }1/2
[ |"sro=losl i, (49

Let ReSO(3) be a rotation. Set gg=Rog:82—82, fr=I1"'oggoIl. Since u(x)
=g(x/|x|) is a minimizer, it follows that uz(x) = g(x/|x|) is also a minimizer for the
boundary condition gg, and therefore we have [from (7.34)]

EI_ 1/2 1 { Ifklzdﬁdn }1/2
[1(7 2] égds 11‘1‘2 (Sz+|fRI2)2(1 +|£l2)2 (7.44)

for every R e SO(3).
We shall average (7.44) over all rotations in SO(3). Let m be the Haar measure
left invariant on SO(3). We have by (7.44)

@]“2 1 { ful?de dn }‘/2

[" 7| =18, B L ey
: \ful?dm(R) }“2
égds{l{’dédnso{s) CETA R S

Note that for every function k:S?—IR and every ae S, we have

| k(Ra)dm(R)= L | k(o)do (7.46)
50(3) 47 g2

[clearly the left side of (7.46) is independent of a and so it equals its average on S2,
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e { dm(R) | k(Ra)da]. Also note that by changing variables we have
4n 50(3) 52

1 dx dy
e Sf k(a)da— j K@) 7y (7.47)
az)y 4

recall that the Jacobian determinant

(7.47) with

AX.Y) +|Z|2)2>‘ We use (7.46) and

[T~ (o)]?
(s> +T~ Y (0)1?)?
and we obtain, for every (,

feQdm®) 1 |ZPdXdY
500 (> +1fRQP)?  mwe (P +1ZP)’(A+IZ1P)*

A direct computation shows that the right side of (7.48) equals

(s +1)
( *-1?
Going back to (7.45) we obtain

A2 et
[nf] <n'?[[G(s)]"ds,
0

k(o)= and a=II-f(),

(7.48)

(Ins)— ——— =G(s). (7.49)

2
(s*—1)

and thus 1 2
|d|=2 {g G(s)”zds} .

We conclude with the next lemma that [d|<2. O
Lemma 7.11. With G(s) defined by (7.49),

i G(s)?%ds<1. (7.50)

Proof. Note that " .
roof. Note tha [ G(s)"2ds= | G(s)"2ds
0 1

[since G(1/s)=s*G(s)]. Set
s? 12
b(s)= { +1lns— } for s>1,

so that, for s>1,
G(s)!2 = Jz/_iib(s). (1.51)
We claim that the function s

s—b(s)/(Ins) is decreasing on (1, c0). (7.52)
Letting t=s* we have to check that

< 2((tt+ )) Int— 1) / (Int)? is decreasing,
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that is
25, (=19 2
(nt)’z2~——-+ % Int+ - (t—1) (7.53)
Differentiating both sides of (7.53) it suffices to verify that
3(t*—1)
>~ 7
Int= t*+4t+1°

which holds since

o 3D a=n*
P4+ | (P +4+1)2 T

Thus we have proved (7.52). In particular, we deduce from (7.52) that

bs) <b()= 1 for all s>1
Ins V§

[since b(1)=0] and also that

b(s) 1 b(a)
L ——|—=—--= - .54

Ins = l/§ <l/§ Ina H(s—a) (7.59)
for all s>1 and all a> 1, where H is the Heaviside function [H(t)=1 for t =0 and
H(t)=0 for t <0]. It follows from (7.54) that, for all a>1,

©  b(s) © Ins 1 b(a) Ins
& é—'{ ds_(f/g_ 1na>5(s 2y %
1 @ Ins 1 b(a) \ © Ins
<71 ds‘(ﬁ‘m)is‘zds
=_1_<}° Ins ds—( 1 b(a)>(1+lna)
1

a

‘/§ Ina

Finally, we recall that

© Ins n?
{ (s2-1) ds= 8
[which may be obtained by applying Fubini to T T __dx_d;;___] . Thus we find,
00 (1 +y)(x +y)

for all a>1,

| ’ 1 bla)\(1+]
{G(S)1/2d8§l/%1t8_—l/§<—l/—§—ﬁ>< ana>’

and we conclude that [ G(s)'/2ds<1 by choosing for example a=¢?. [
1
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Remark 7.7. Theorem 7.4 shows that if g has degree |d| =2, then u(x)=g(x/|x]) is
not a minimizer. In fact the construction above shows that it is not even a local
minimizer.

Corollary 7.12. Let u be a minimizer for E(¢) in a domain Q with specified boundary

condition. Then each point singularity of u has degree +1. Moreover, for every
singularity x, in Q we have

li_I)% u(e(x — x0)) = + R(x—xo)/Ix— X0l ,

where R is a rotation.

Proof. Without loss of generality we may assume that u has a singularity at x=0.
We know from [31, Theorem IIT] and [33, Sect. 8] that u(ex)—uy(x) in H*(B) and
uniformly on every compact subset of B\{0}, where uy(x)=g(x/|x|]) is a non-
constant minimizer for E,. It follows from Theorems 7.3 and 7.4 that g has degree
+1 and that +g is a rotation.

Remark 7.8. The fact that x/|x| is a minimizer for E, (but not uniqueness) could also
be deduced from Theorems 7.3 and 7.4 and the Schoen-Uhlenbeck result. Indeed
let u be any minimizing harmonic map that happens to have a singularity, say at
x=0. By [31] we know that u(ex) converges (modulo a subsequence) as e—0 to a
map ¢@(x) with the properties that: (i) ¢ is a minimizing harmonic map with a
singularity at x=0, (i) @(x)=g(x/|x|) for some g. Our Theorems 7.3 and 7.4
eliminate all possibilities except g(x)= +Rx. This shows that Rx/|x| is a
minimizing harmonic map and therefore so is x/|x|.

VIII. Various Extensions

A. The N-Dimensional Case

A natural generalization is to replace R? by RN with N>2 and S by S¥ 1. The
quantity which has the homogeneity of a length is now

E(@)=[IVo/" ! @.1)

(and not |V ¢|?) where ¢ is a map defined on a subset of RY with values into S¥ !
and

Vol*= Zj(g—i’;)z 8.2)
The analogue of Theorem 1.1 is
Theorem 8.1. In all four examples
E=0y(N—1)®-b2L, (8.3)
where
oy=2n"2I(N/2)~! (8.4)
is the area of S¥ ™! in RY. L is defined in Sect. II.
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Proof. As before we construct upper and lower bounds for E. For the lower bound
we define D as in (B.7) and note that

IDIS(N—1)" @027V =1, 8.5

Indeed, suppose that ¢ =(0,0, ..., 1), then ¢, =(0t; 3, %; 5 ... %; y—3,0)’, since @, is
orthogonal to ¢. The matrix

((pX1’ (pxp A (pXN)

has its last row zero. Replace the last row by (o, a,, ..., %y), and call M this new
(N x N) matrix. We have detM =a- D, so that

|D|= sup |detM].
On the other hand =
dethI el TT .
where f7 = I:g__‘,: a? j, and thus

1 N

N-1 -1 N—1 1
|det M|* <|o)? J_I;Il B} <lo? [(N—l) ,-;1 ﬁ}] =|°<I2(T_—1717_—1)|V<p|2(”“>,

In dimension N, inequality (8.5) replaces the IR inequality |D| < 1|V ¢|?, and for the
remainder of the proof of the lower bound we proceed as in Sect. IV.

For the upper bound we imitate the dipole construction of Sect. IIL. Let
IT:R¥~ 15 8V~1 be stereographic projection, namely

I(x)=(I1(x), ..., I y(x)),
O(x)=2x1+x|)"! for i=1,..,.N—1 and IIyx)=(1—|x|?>)(1+|x[>)" .

A straightforward computation yields

VI =2(N—-DY2(1 +|x|»)"!. (8.6)
Recalling (8.4) we obtain from (8.6)
mz!_llVHI"“=aN(N—-1)‘N‘”/2. 8.7)

Given &>0 we first construct a smooth map w:RRV~!—-S$V~1 such that

| Vol 1<op(N—1D)F D24 ¢ (8.8)

]RN- 1
w=Const=e outside the unit ball, (8.9)
degw=1. (8.10)

The idea for constructing w is the following. Let v(x) = x/|x|* so that IT - v satisfies
(8.8) with ¢=0 and (8.10). Next, replace v by yv=19, where 0<y<1 and x has
compact support and y=1 on a large ball. Finally, replace #(x) by #(Ax) with 4
large enough. In the general case, d > 1, we glue together d maps w as above (with
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disjoint supports) and then rescale x. Analogously, for degree —1 we take v(x)
=|x|"%(—xy, X5, ..., Xy ). Finally, having constructed w, the basic dipole is
constructed as in (3.6) and (3.7).

Another consequence of the construction in the proof of Theorem 8.1 is the
following striking fact.

Theorem 8.2. For maps ¢ :S¥ " 1—S¥"1 et
E(p)= sf Vrol* 1.

Then
inf E(p)=|dloy(N—1)®~ 12 (8.11)
degp=d

When N = 3, the behavior of minimizing sequences for (8.1) is the same as for
N =3 as given in Sect. VI, namely if there are only finitely many strings between
any two holes and if ¢" is a minimizing sequence then, for a subsequence, |Vo"|¥ !
converges in the sense of measures to ay(N—1)W~V/25., where C is a (single)
minimal connection. However when N =2 the situation is different, as shown by
the following example.

Consider four points

al=(1’ 1, a2=(1’0)9 a;=(0,0), a4=(0’ 1

with the degrees d;=(—1)". Here, we have E=2nL=4n and two minimal
connections C;,C, given by C,=[a,,a,]ula,,a;] and C,=[a,,a;]ula,,a,].
There exist minimizing sequences ¢" such that, for example, [V ¢"| — 2n(d¢, + dc,)-
Such a sequence can be obtained as follows. Let @, : IR —S* be any two maps such
that @, (—00)=(=%1,0), 0, (+ ©0)=(F1,0), w, constant far out and | |[Vw ;| =m.
With w, we can associate “half dipoles” which we glue in an appropriate way on
each of the intervals [a,,a,], [a,,a3], [as,a4], [as,a,]. The corresponding
sequence ¢" has the property that " —(1,0) outside the square [0,1] x[0,1] and
¢"—(—1,0) inside [0,1] x [0, 1]. This lack of quantization in two dimensions is
also discussed at the end of Appendix E.

B. Replacing S"~* by RPV !

For physical reasons as explained in Sect. I, it is interesting to replace S¥~1 by
IRP¥~! which is the quotient of S¥~! by the equivalence relation x~ —x. The
metric on RPY~1 is that induced by S¥~!. The energy is still given by (8.1).

The problem we face is to define the degree of a continuous map ¢ : Q—»RP¥ !
(with Q CIRM) around a hole in Q. Unfortunately, RPY ! is orientable if and only if
N is even and therefore the problem will be more difficult when N is odd. The
orientability of a manifold implies that the degree can be defined as an integral of a
Jacobian. However, the degree for N even (as we shall define it) is in 1Z, and we
shall be able to solve the minimum energy problem only when the given d;’s are
integral, except for N =2 in which case RP" is homeomorphic to S* and a special
trick allows us to handle all d,’s.
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a) N even. Suppose 2CIRY and S is a smooth surface in Q without boundary. Let
@ be C' in a neighborhood of S with values in RPY !, The vector field D can be
defined as in (B.7). Note that D in (B.7) is uniquely defined for N even because D is
not changed by ¢— — ¢. We define.

d=oy'fD-n. (8.12)
S

Since D - n is the Jacobian, | D-n must be an integer times the area of RPY ™!,
S

which is $ay. Therefore de1Z.
Thus, given ¢ € C(2; RPY~ 1) and Vo e LN~ 1(Q), with Q=U\(UH,), we can
(by modifying the analysis in Appendix B) define the D field and deg(o, H;) e 1Z.
For the lower bound to E the D field analysis goes through as before and hence

E(p)2 30y(N—1)N"V2L(U, {H}},{2d}), (8.13)

where L is the length of a minimal connection (with d; replaced by 2d;). Note the
factor  in (8.13).

For the upper bound we can reproduce the dipole construction of Sect. ITT
when all the d; € Z as will be explained. In this case (8.13) becomes an equality for
the infimum, and our problem is solved. Also, the obvious analogue of the results in
Sect. VI go through. If some d;¢ Z the problem is open.

The reason that d; e Z is special is the following topological fact.

Fact. Lety be a continuous map from X -—RPY !, where X is a simply connected
topological space. Then there exists a map 9 : X —»S" ! such that y = P o (5, where
P is the canonical projection of S¥ ! —-IRP"~1, (See the lifting theorem in [34,
p- 76].) If X is also connected, there are exactly two choices for ¢ related by
Pi=—9,.

To construct the dipole when deZ, first construct the S¥~! dipole as in
Sect. ITI and then compose this with P. However, if d ¢ Z we cannot do this because
by taking X=S""! in the above, we would end up with a continuous map
P:SV"18SN"1 of degree d¢ Z; this is impossible.

The topological fact also allows us to conclude that if a hole H; has a
neighborhood w CU such that w\H, is simply connected then necessarily d; e Z.
Simply take X =w\H;. In particular, if H, is a point and if N=>4, d;e Z.

b) N=2. In this case every hole, even a point hole, can have d; ¢ Z. However RP!
is homeomorphic to S* and we can take advantage of this fact to solve the problem
in all cases. We identify S with {ze C||z|=1}. Define Q:S'—RP! as follows:

Q(z)=P(z)), where z?*=z (8.14)

with P being the canonical projection as before.
Clearly Q(z) is independent of the choice of z’. Define R: RP*—S* to be

R(P(2)) =22 (8.15)

(again, R is well defined). Note that R=Q .
Let ¢ : S*>RP! be a continuous map. We have

degp=1deg(Ro ). (8.16)
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Given a map ¢ from Q into RP?! (respectively S') we have

IP(Rep)|=2\Vo| (respectively [V(Q°p)l=3IVol). (8.17)
Given reals d,,d,, ...,d,€3Z, then
E=nL(U,{H},{2d;}). (8.18)

¢) N odd. Here we shall confine our attention to cases in which Q= U\(UH)) is
connected and simply connected. This includes the case in which all H; are points.
Given a continuous ¢: Q—RP"~1, there exists a continuous ¢ : Q—SV~! with
@=Po . Since there are exactly two choices for ¢ (¢, = — @,), we can define

deg(o, H)=|deg(¢, H)|e N. (8.19)

(The need for the absolute value is that deg(¢,, H;)= —deg(@,, H;) when N is
odd.) We also have that [V@|=|V¢|.
Given nonnegative integers d, ..., d,, we easily conclude from the above that

the infimum satisfies -
E=cy(N—-1)¥-Y2[ (8.20)

where L is to be computed as follows:
L= Hgi;l L(U,{H},{ed:}), (8.21)

where ¢;= 41, all i. In particular, we emphasize that (8.21) solves the minimum
energy problem for liquid crystals with point defects and with the simplified energy
given by (8.1).

C. Energies with the Homogeneity of an Area

Let I'cIR? be an oriented, rectifiable Jordan curve. Consider the class of maps
@ : R3\I'>S* (not §?) which are continuous. Associated with each ¢ in this class is
an integer d € Z defined as follows. Let C be any small circle which links with I'. On
C thereis a natural orientation which is consistent with the orientation of I'. Define

d=deg(p, ') =deg(¢p restricted to C).

The right side is the usual degree of a map from S* to S*. Note that deg(¢p, I') is
independent of the choice of C. The energy

E@@)= | Vol (8.22)
R3\I'

now has the homogeneity of an area (and not a length).
By analogy with the results of Sects. III and IV we expect that given deZ
inf E(p)=2mn|d|A4, 8.23
cenlS s (¢)=2nld| (8.23)
where A is the area of a minimal area surface spanned by I
More generally, if M is an oriented manifold without boundary, of dimension
m, imbedded in R¥, and ¢ : RM\M—S¥ ™! is a continuous map, then one can
define (in the same way as above) deg(p, M). The energy

Eg)= [ Vol 6:24)
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has homogeneity (m+ 1) and we expect that given deZ,
inf  E(p)=c(N,m)|d|V, (8.25)

deg(p, M)=d

where V is the volume of a “minimal” manifold of dimension (m+1) whose
boundary is M. Note that the case m =0 corresponds to two point holes and (8.25)
reduces to (8.3). We could also consider a finite number of such manifolds
M,, ..., M, and maps ¢ : RM\(UM,) into S¥ ™! which are continuous except on
M;. It is a natural question to look for inf E(¢) in the class of maps ¢ such that
deg(@, M;)=d, is prescribed. Presumably, the answer is a formula similar to (8.25)
where V is a kind of “minimal volume connection” associated with the M;’s and
the d;’s.

We have not investigated the validity of (8.23) (or (8.25)) in full generality, and
we shall discuss here only the case of a planar curve I' =90U, where U is some open
setin R% Again, we split the argument in two parts: the upper bound and the lower
bound.

1. The Upper Bound. Let w be any continuous map from R to S! such that

[ |o'|=2nld], (8.26)

R
degw=d, 8.27)
w=e outside [—1,+1]. (8.28)

Let ¢,: R3\I'>S* be defined as follows:
@u(x,y,2)=0(nz/l) if (x,y)eU,

Ou(x, y,2)=e if (x,»)e¢U,

where I denotes the distance of (x, y) to dU. Clearly deg(¢,,I)=d and ||V,
—2nA|d|, where A is the area of U.

(8.29)

2. The Lower Bound. The divergence-free vector field D is now replaced by a curl-
free vector field H as follows. To every map ¢ we associate H defined by

H=(0A 0@ APpOAD,).

An easy computation shows that if ¢ is smooth on R3\I, then curl H=0 on R3\I"
and, moreover, if | [V'p| < oo, then

curlH=27dD; in PR3, (8.30)

where Dy is the basic divergence-free vector field over the curve I' defined in
Appendix D. The proof of (8.30) is similar to that of the analogous formula (B.10)
for the D field. Moreover, (8.30) extends (by density) to maps ¢ which are
continuous on R3\I" and with { [V'¢|< co. Evidently, we have the inequality

[HI=Vol, (8.31)
which plays the same role as 2|D| < |V ¢|>. Therefore we have
[WVolz | HIZ— | H-curl{=2nd|Dy-{ (832
]RS R3 R3



Harmonic Maps with Defects 689

for every smooth { such that |curl{|<1. On the other hand, by Stokes’ theorem
§ Dp-C=§curll-ndo (8.33)
R3 z

for any surface X spanned by I', where n is the unit normal to X. Choosing
2 =U x {0} and {(x, y, z) = +(0, x, 0) we obtain curl{ = +(0, 0, 1) and from (8.32),
(8.39) and the fact that n=(0,0, 1),
[ Vol=2n|d|4, (8.34)
]RS
where A is the area of U. O

Remark 8.1. The upper bound construction presumably extends to nonplanar I,
at least if the minimal area surface has no self-intersection. M. Gromov has
suggested that the lower bound construction might also extend by using Whitney’s
duality theorem [37].

Appendix A: Approximation by Smooth Functions

Let QCRY be any open set. For the purpose of this paper we are interested in
knowing whether we can approximate continuous S*-valued functions on Q with
derivatives in L? by C* S*-valued functions, both for the uniform norm and energy
norm. We present here a result more general than we need.

Lemma A.1. Assume ue C(Q2; R). Then for any ¢>0 there is some ge C*(2; R)
such that
lg—ullL-<e. (A1)

Moreover if we also assume Vu e LP{(LQ) for some finiteset 1 <p, <p,<...<p,, <
(in the distribution sense), then the above g can also be chosen to satisfy

ol 17(g—les, < (A2)
or alt 1.

Proof. This is essentially the same as the Meyers-Serrin theorem (see [25] or [1,
p- 52]). The only variation is to note, in the notation of [1], that yp,ue C(Q) and,
therefore, we may choose ¢, such that

1o * (i) — Wil L < 6/2°. OO

Lemma A.2. Assume u satisfies the hypotheses of Lemma A.l and, moreover,
ue C(Q; S*). Then there is a g e C*(Q; S*) satisfying (A.1) and, if appropriate, (A.2).

Proof. By Lemma A.1 (applied to each component of u) there is a sequence {h,} in
C*(Q; R¥*1) such that

Ay —ullLo—0 [and [V (h,—u)ll.,,—0].

Assume that ||h, —u .- <1/2, all n. Let F : R** ! - S* be the radial projection, that
is F(x)=x/|x|. Note that F is smooth for x+0. Let g,(x)=F(h,(x)). Since h,—>u
uniformly, so does g, [and Vg,=F'(h,) - Vh,—F'(u)- Vu in L?, since F'(h,)—F'(u)
uniformly and Vh,—»Vuin L?]. O
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Remark. In Lemma A.2 it is essential that u is continuous. Suppose that

Q={xeR3?||x|<1}and k=2 and u(x)= l;xl . This u has Vu e L*>. However, there is
no sequence {g,} with g,e C(Q; S2)nH(Q; $?) such that g,—~u a.e. and Vg,—Vu
in L2. See [32].

Appendix B: Generalities About Degrees of Maps

Let UCIRY be an open set and let HCU be a compact subset (called a hole). Let
¢ : U\H—IRY be a continuous map such that ¢(x)=+0, all x e U\H. We shall define
deg(p, H) as follows. Let

H,={x|dist(x, H)<t}, (B.1)
and assume ¢ is small enough so that H,,CU.

First, let y be any function in C(U; R¥) such that p=¢ on U\Hj;,. <Such
functions certainly exist. For example let y € C(U) be such that

_J0 on H,
=W on U\Hs,,

then take p= xrp) .

From the general theory of degrees of maps (see e.g. Nirenberg [27] or Lloyd
[24]) the integer
d=deg(y, H;,,0) (B.2)

is well defined. Part of this general theory is that d depends only on  restricted to
0H ,,, but this is independent of the choice of y (by construction). Conceivably d
could depend on ¢. However, it does not depend on ¢ (because if ¢, <¢, and y,
corresponds to &; we may take p,=1v,).

Hence we are entitled to define

deg((pa H) = deg(w’ H3e:’ O) . (B‘3)

It follows from standard properties of degrees of maps that if ¢,— ¢ uniformly
on every compact subset of U\H, then deg(¢p,, H)—deg(¢p, H).
Let us note some explicit formulas for d in (B.2). We can easily construct i such
that e C'(H,,; R") and v=+0 in U\H,. For such v,

d= I! SN (x)dx, (B.4)

where f: RV is any continuous function with compact support contained in
the connected component of 0 in RM\y(0H,) and such that | f(y)dy=1. Here
]RN

J (%) =det(8y,/6x;) (B.5)

is the Jacobian determinant of y. Another formula for d can be obtained if one
chooses p with the aforementioned properties and additionally =0 at only
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finitely many points x;, ..., x,, in H, and J,,#0 at these points. (Such a y exists by
Sard’s lemma.) Then

= -i sgnJ (x). (B.6)

Examples. U={x/|x|<1} and H={0}. Let ¢,(x)=x and ¢,(x)=x/|x|. Then
deg(¢y, {0})=deg(p,, {0})=1.

Now suppose that ¢ € C(U\H; RY) and Vo € LN "*(U\H) (in 2’). To such a ¢
we associate a vector field D e L'(U\H; R"), with components D;, as follows.

_ 0o 0p op op
Dj—det<ax1, SRF N o, B, b)) (B.7)

which is obviously in L'(U\H). If, in addition, we assume that V¢ € LN(U\H), then
J,, given by (B.S), is in L'(U\H) and

divD=NJ, in 2(U\H). (B.8)

(This is clear when ¢ is C?; the general case follows by density, using Appendix A.)
Now suppose that ¢ € C(U\H; S¥~ 1) and Ve LN~ (U\H), but we do not
assume V¢ e LN(U\H). Then

divD=0 in 9/(U\H). (B.9)

[Reason: By Appendix A, we can approximate ¢ by C? functions ¢, with
l@n—@llL=—0, IV(0,— @)l v-1—0and ¢,(x) € S¥ 1. Note that J, =0, since ¢ -
=1 = ¢ 0¢/0x;=0 = the N vectors d¢/0x; are linearly dependent. By (B.8),
divD(¢,)=0, but D(¢,)—D(p)=D in L*.]

Theorem B.1. Assume ¢ € C(U\H; S¥~*) and Vo e LN"Y(U\H), (in 9’). Then
~ | D-V{=0ydeg(p, H) (B.10)
W\H
for every { € Lip(U) with compact support in U and { =1 on some neighborhood of
H. Here oy denotes the area of S¥~* in RY (0,=4n).

Proof. By Lemma A.2 we can assume that ¢ € C°(U\H; S¥ !). Clearly we may
also assume that { € C*(U). With I({) denoting the left side of (B.10) we first prove
that I({) is independent of {, and thus that it suffices to prove (B.10) for one (.
Indeed,

IC)—-1(,)=— U{HD- Vi —0)= U{H divD)(¢,—{)=0  (B11)

(because {; —{, has compact support in U\H).
Now observe that for all 6 e C*(U\H)

NJoy=D-V6"+NO"J,=D-Vo", (B.12)
which follows from a trivial calculation. Hence
Nif]J(l_w= lf}D- vaa=ov
= 51)-7[(1—()N—(1—C)]+ !}D- ra—-0=- U{HD-VC, (B.13)
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where we have used that (1 —{) — (1 —{) is a C* function of compact support in

U\H [cf. (B.9)]. Take { with the properties that 0<{<1 and {=0 on U\H,. Then

the left side of (B.13) is I=ay | f(y)J,, where y=(1—{)¢ and f(x)=N/oy for
H.

[x|<1and f(x)=0for |x|>1. (Recall that J,=0 on U\H,.) Since { f=1 and |p|=1

on 0H,, we can apply (B.4) together with an approximation argument using
dominated convergence, to conclude that =0y deg(p, H). O

Remark B.1. Let U CRY be open, let HC U be compact and let o € C'(U\H; S¥ ).
Let V be open with ¥ C U and with H C V. Assume that V is bounded and that 0V is
(piecewise) smooth. Then

§ D-v=0ydeg(o, H), (B.14)
ov

where v is the outward normal to V. [To prove this, apply (B.10) to any { € C>(U)
with {=1 on V. Integrate by parts and use (B.9).] Equation (B.14) is the classical
formula for the degree. Note that

D-v=det(Q, Px;s s Py _,)> (B.15)

where x 1, ..., Xy _, are orthonormal coordinates in the tangent space to V. On the

other hand, we can think of ¢ restricted to 0V as a map from the N — 1 dimensional

manifold M =9V to S¥ 1. This map has a Jacobian determinant, which is nothing

other than the right side of (B.15). Thus | D - v can be identified as the right side of

(B.4) [with f(yp)=1 for |p| < 1] with the integrating being over M, and not over V.

Alternatively, | D - v/ay is the number of times (including sign) that ¢ covers SV ™1,
Here are some consequences of Theorem B.1:

Theorem B.2. Let UCRY beopenandlet H,, H,, ..., H, be disjoint holes in U and let
k
H=\) H,. Let pe C(U\H; S"~*) with Vo € L "(U\H). Then
i=1

k
— | D-Vl=0y ¥ {(H)deg(p, H)) (B.16)
U\H i=1

for every { € C(U) with V{ e L*(U) (in the distributional sense), {=0 on dU and
{={(H}) is a constant on each H,.

Theorem B.3. Let U, H;, and H be as in Theorem B.2. Let ¢ € C(U\H; SV 1) with
Ve LN~ Y(U\H). Assume also that ¢ is constant on 0U. Then (B.16) holds for every
{e C(U) with V{ e L*(U) (in the distributional sense) and { = {(H,) is a constant on
each H;. Note that here we do not assume that {=0 on 0U.

The proofs rely on the following lemma.

Lemma B4. Let VCRY be open and let F CRY be closed with F CV. F need not be
compact. Let o € C(V\F; SY~Y) with V¢ € LN~ Y(V\F). Assume that ¢ is constant on
oV (no assumption is made if V=IRY). Then

§ D-v{=0 (B.17)
V\F

for every { € C(V) with V{e L*(V) and {=0 on F.
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Proof. The intuitive reason that (B.17) holds is clear. Indeed, set 2 = V\F; we write
ID-¥{= | (D-w){— [(divD),
2 o2 Q

where v denotes the outward normal on 0Q. However, 022 consists of two disjoint
parts, namely 0V and 0F. On 0V we have D - v=0 (since ¢ is constant on 0V), while
on JF we have {=0. On the other hand, divD=0 on Q [by (B.9)].

Since, in general, we do not assume that 0V and JF are regular, the integration
by parts is not justified and the proof becomes more delicate. First, without loss of
generality, we can assume that { € L*(V). Otherwise, consider

I I(E)) if [{(x)=n

L= it Ko

Clearly [ D-V¢,— | D-V{ (by dominated convergence).
Q o

Second, we can also assume that { vanishes outside a large ball. Otherwise,
consider a sequence {,=a,{, where a,(x)=1 for |x|<n, a,(x)=2—(|x|/n) for
n<|x|£2n and o, (x)=0 for |x|=2n. Again, [ D-V{,— [ D-V{ since D e L*(Q).

Q Q

Next, we can also assume that {=0 on a neighborhood of F and that ¢ is
constant on a neighborhood of dV. Indeed let g : R— IR be a smooth function such

that g(t)=0 for |t| <1 and g(t) =t for |t| = 2. Consider {,(x)= % g(nf(x)). It is clear

that {,e C(V)nL*(V), {, vanishes outside a large ball, [|[V'{,|| .« < C|V{| L, {,=0
on some neighborhood of F (namely {x||{(x)|<1/n}) and V{,—V{ ae. on V. We
proceed in the same way with ¢. Let G : RY R be defined by G(v);= g(v;) for all i

(g as above). Let e be the value of ¢ on dV. Consider y,(x) = % G(n(p(x)—e))+e. It

is easy to check that y,e C(V\F; R"), p,=e in a neighborhood of 8V [namely
{x|lp(x)—el<1/n}], |Ya—@l L=< C/n and Vyp,—V¢ in L'~ (V\F).

Finally, we choose ¢, =v,/|p,| (for nlarge enough), so that ¢, satisfies the same
properties as v, and, moreover, ¢, takes its values in S¥~*. Clearly D,=D(¢,)
—-D(p)=D in LYV\F) and therefore ID ve,— j D-v{ (by dominated
convergence).

In conclusion, it suffices to establish (B.17) with the additional assumptions
that {=0 outside a large ball, (=0 on a neighborhood of F and D=0 on a
neighborhood of dV. Since K =Supp DnSupp( is a compact subset of Q2 we may fix
a function a € C2(Q) such that =1 on some neighborhood of K. By (B.9) we have
{D-V(a{)=0, and on the other hand, D-V(a{)=D-V{ ae. on Q (from the
Q

definition of ). [

Proofs of Theorems B.2 and B.3. If {; and {, are two admissible functions with the

same values {(H,) for every i, then by Lemma B.4, applied to {={, —{, we have
f D-vi{,= | D-¥{, [choose V=IR? and F=Hu(°U) for Theorem B.2 and
\H U\H

U

V=U,F=H for Theorem B.3]. Thus, it suffices to prove (B.16) for one admissible
. Take {= Z {; with each {;={(H,) near H; and Supp(; is contained in a small
nelghborhood of H;. Then apply Theorem B.1. [
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Remark B.2. Let U CRY be open. Assume that all the holes H; are points a; in U.
Let D be any vector field in LY(U; R¥). Let d; be any real numbers. Then the
relation

~(D-V=0y 3. di(@) (B.18)

for every { € C(U) with V{e L*(U) (in the distributional sense), {=0 on U, is
equivalent to the relation

k
divD=oy ¥ dd, in D(U), (B.19)
i=1

where 8, is the Dirac measure at a € R". [In particular the D field in (B.16) satisfies
(B.19) for point holes.] Equation (B.19) looks weaker than (B.18) because the class
of testing functions for (B.19) is more restrictive, namely C*(U). The equivalence of
(B.18) and (B.19) follows from the following general density lemma.

Lemma B.5. Suppose { is a function in C(U) with V{ e L°(U) (in 2'(U)), {=0o0n
0U and { is a constant on each H;. Then there exists a sequence {, in C2(U) such that
{,—{ uniformly on every compact subset of U, |V{,|| 10 S V| 1o, VE,—V{ae.onU
and {, is a constant on each H;,.

The proof uses the same techniques as in the proof of Lemma B.4 and therefore
we shall omit it.

Remark B.3. Assume the same conditions as in Remark B.2 except that (B.18)
holds for every { € C(U) with V{ € L*(U), as in the setup of Theorem B.3. Then, the
analogue of Remark B.2 is that (B.18) is equivalent to

k
divD=0y ¥ dd, in 2(U), D-v=0, on U, (B.20)
i=1

where v is the normal to 0U. The relation D - v=0 has to be interpreted in a formal
sense since dU need not be smooth and since D is only L.

Appendix C: Duality for Vector Fields
We recall a classical abstract duality principle (see [12, 30, 36]).

Theorem C.1. Let E be a Banach space and E* its dual. Let MCE be a linear
subspace (not necessarily closed) and let ® be a convex function from E into
(— 00, + 00] such that $(0)+ + oo and P is continuous at 0. Let &* be the conjugate
function on E*, namely

O*(f)=sup{{f, up—P(u)|ueE}. (C1)
Then
inf @ = — min &*, (C2)
M M1
where
M*t={feE*|{f,uy=0 for all ue M}. (C3)

The following lemma will also be used.
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Lemma C.2. Let E be a separable Banach space and let N be a linear subspace in E*
that is sequentially closed in the weak * topology. Let

Nt={ueE|{f,uy=0 for all fe N}. (C4)
Then (N*)*=N.

Proof. It follows easily from the Hahn-Banach theorem that (N+)* is the weak *
closure of N. To prove the lemma, therefore, it suffices to show that N is weak *
closed. In view of the theorem of Banach, Dieudonné, Krein, and Smulian (see e.g.
[11, Theorem V.5.7]) we have only to check that N = NN B is weak * closed, where
B is the unit ball in E*. But N is metrizable for the weak * topology (see e.g. [3,
Theorem II1.25]) so it suffices to note that N is sequentially weak * closed. [

Theorem C.1 will be applied in the following two cases (4 and B). In the
notation of Sect. V, we take

E=L'(Q;RY), E*=L”(Q;RV"), (C5)
and .
M, z={De€E|[D-V{=0 for all {€Q, (respectively Qp)}. (C.6)
Fix any D° € o/, (respectively /) and let
&(D)= [ |D+D°. (C.7)
Q
Clearly,
E, p=inf{®(D)|D e M 4 (respectively M)}, (C8)

and, for every fe E¥*,

—f-D° if |fll.=1
* —_— . 0 . — =
*(f)= 1 f-D°+ sup{{ f-D—{ D} {M i a1, €9
Lemma C.3.
My g={V{|{eQ, (respectively Qp)}. (C.10)

Proof. We shall omit the A4, B subscript. Let N C E* be the right side of (C.10). By
the definition of M, N* = M so that (N*)* = M*. We claim that N is sequentially
weak * closed, whence, by Lemma C.2, N =(N*)* = M*, which is precisely (C.10).
To check that N is sequentially weak * closed, let {, be a sequence in Q such that
V{,—f € E* in the weak * topology. We want to prove that f=V{ for some { € Q.
By the uniform boundedness principle we know that ||V{,| .. < C. We can always
assume {,(x,) =0 for some fixed x, € U. By Ascoli’s theorem {,, —{ uniformly on
compact subsets of U (respectively U) in case A4 (respectively B). Clearly, { € Q and
f=v( ad

Applying Theorem C.1 and Lemma C.3, we find that
E, p=max{J V{-D°| V(| »=<1, {€Q, (respectively Qp)}
=max{oy X d{(H)||V{l|L-<1, {€Q, (respectively Qp)}. (C.11)

This is precisely the statement of Theorem 5.1.
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Appendix D: The Basic Divergence-Free Vector Field on a Curve

Let g be a rectifiable curve in R¥ with no self-intersection and end points a and b,
a=+b. Let L be its length. To be more precise the curve can be parametrized by a
Lipschitz function X(£):[0,1]-IR" and we can always assume that X(t)+0 a.e.
Among the choices for X(¢) there is a canonical constant speed choice denoted by
X,(t), so that |X(f)|=L a.e.

Now consider the problem of finding an RN-valued measure, D, on R" such
that

suppDCyg, (D.1)
divD=4,—-6, in 2'(RY). (D.2)

Theorem D.1. There is precisely one solution to the above problem, namely

Dy 9> = | DX () X0t (D3)

for all p e C(RN;RN). Here X(t) denotes any parametrization of g and (D.3) is
independent of the choice of the parametrization. Moreover, |D,| is the one-
dimensional Hausdorff measure of g, denoted by d,. In particular

§ ID,|=L. (D4
]RN

Proof. It is obvious that D, given by (D.3) is independent of parametrization and
satisfies (D.1).
Let us check that D, satisfies (D.2). Choose { € C°(R"). We have
1

(D, V)= (Il) ViX(®)- X(Hdt= g ‘%C(X (®)dr={(b)—{(a). (D.5)

The last equality follows from the fact that Lipschitz functions are absolutely
continuous. Next, we establish uniqueness. Consider D — D, and call it D, so that D
satisfies

suppDCyg, (D.6)
divD=0 in 2'(RY). (D.7)

We have to show that D=0. It follows from (D.6) that there is an R"-valued
measure, m, on [0, 1], such that

(D,0>= ] p(X(0) dm(t) (D3)

for all p € C,(R¥; R"). The existence of m follows from the fact that for any
continuous function, «, on [0, 1] there exists some ¢ € C(RY; R¥) with ¢(X(t))
=o(t) and @] =|«|. Thus, D can be viewed as an element of the dual of
C([0,1]; RY), but these are measures.

Next, we claim that

?]i V(X () - dm(t)=0 DY)
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for every { e C®(RY; R) and a.e. T. Assuming that (D.9) holds we conclude easily
that m=0 (and so D=0). Indeed, by differentiating (D.9) in the sense of
distributions we find

VX)) -m@)=0 in 20,1).
Choosing {(x) = x;0(x), where 6 e C°(IR¥) and 6 =1 on some neighborhood of g,

we see that m=0.
To establish (D.9) we fix Te(0, 1) such that

m({T}) =0, (D.10)
and X(T) existsand X(T)=+0. (D.11)

For any ¢>0 (small enough) let A=X([0,T]) and B,=X([T+¢,1]). Set
d.=dist(4, B,). There exists a function F,e C°*(R") such that

F,=1 near A, F,=0 near B, (D.12)
[VF,|=C/d,, (D.13)

where C is a constant independent of ¢. By (D.7) we have
0=<{D,V({F))=<D,(VFy+<{D,FV{>=I,+1, (D.14)

with

I, =<{D,{VF )= Tf LK @)PF LX) dm()

T

=} O~ LX) EX @) dm@)+ LK (T | T dm().

T

The last -integral is {D,VF_ >=0. We claim that I, -0 as ¢—0. Indeed

+&

IISC | X - XD PFX@) dm()| < C

T (3

T+e

i ldm(®)].

&]m

T+e
Since [ |dm(t)]—0 as e—0 (by dominated convergence) it suffices to check that
T

&/d, remains bounded as e—0. Suppose not. Then there exists a sequence &,—0 such
that d, /e,—0. Thus, there are sequences t,=2T+¢, and s,<T such that
|X(t,)—X(s,)l/e,—0. Clearly t,—~ T and s,— T since X is one to one. Observe that
X(t,)—X(T)=(t,— T)X(T)+o(t,— T) and similarly X(s,) — X(T) =(s,— T)X(T)
+0o(T—s,). Thus,

Ly— Sy

Lo -xen="(x(+

€n

o(t,—T)+o(T— s,,))
=T+ (T-s,) )

Since t,—s,>¢, and X(T)+0 we have a contradiction. Therefore I, —0.
Next,

L=(D, FPLy= [ VUX@)- dm() + | FX@)WLX@)-dm).
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T+e
The last integral is bounded by C | |dm(f)| which goes to zero. This establishes
T
(D.9) and hence (D.3). To prove (D.4) we use X(t) in (D.3). First, we have

1
[KDg, @ )|= g lp(X o(E)ILdt =, |0l
and hence |D,|<6,. On the other hand, | |D,|=L. Indeed we have
1 . .
§ID,)=Sup {(f) P(Xo(®)- Xo(t)dt| g € C(RY; RY) with |lo] < 1} .
Let Y, e C([0, 1]; R¥) be a sequence of functions such that || Y, ]| .- < Land Y,—» X,

in L2(0,1). There exists a sequence of functions, y, e C(R¥; R¥) such that
Yu(Xo())=Y,(t) and |y,[ - =< L. Letting ¢,=(1/L)y, we have

1 1
(f) PuXo(1) - Xo()dt=(1/L) g Y,(0) Xo(t)dt—L,

and therefore | [D,|2L. O

Corollary D.2. Let everything be as in Theorem D.1 except that hypothesis (D.2) is
replaced by

divD=0 in 2'(RM{a,b}). (D.15)
Then, there exists a constant ¢ and two vectors A and B in RY such that
D=cD,+Ad,+Bd, in Z'(R"). (D.16)

Proof. From (D.15) and a standard result about distributions with support on a
point we have

divD= ¥ ¢, 0%,+ ¥ c,0%, in 2'(RY), (D.17)
where the sums are finite. Since D is a measure, the right side of (D.17) contains only

zeroth and first order derivatives. Since | divD =0, the zeroth order terms have to
be equal and opposite, namely ¢(d,— ;). Therefore,

div(D—cD,)=div(A43,)+div(B3,) (D.18)

for some vectors 4 and B. Transposing the right side of (D.18) to the left side and
then using the uniqueness part of Theorem (D.1) we derive (D.16). L1

Finally, we mention another corollary which will be used in Appendix E. Let g
be a rectifiable curve in R¥ without self-intersection and end points a and b, a=+b.
Let Q be an open set such that g\{a,b}CQ. Let D be an R¥-valued bounded
measure on Q such that suppD Cg, and divD=0 in 2'(Q).

Corollary D.3. Under the above assumptions there exists a constant ¢ such that

D=cD, in 9(9Q).

Proof. Extend D to all of RY by 0 outside Q. Let D be the extension. We claim that
divD=0in 2'(RM{a, b}). Let { € C*(RM\{a, b}) and let O € C*(Q) with §=1 on a



Harmonic Maps with Defects 699

neighborhood of gnSuppl. We have
§D-v{=[D-¥V{=[D-7(60)=0,
Q2 2

since 0 € C2(2). We may now apply Corollary D.2 to D. [

Appendix E: Quantization and Weak Limits of Vector Fields

Let V be an open set in R¥ with N >1. Let ¢ be a map from V into SV such that
VoeL¥(V). Set

A=det(Q, Prps-.er Prp) - (E.1)
Similarly let ¢" be a sequence of such maps and set
A" =det(¢", 95, .., 9% - (E2)

We are concerned with the following situation. Suppose ¢"— ¢ a.e. and V¢" is
bounded in LY¥(V). Then 4" is bounded in L'(V) so that, by passing to a
subsequence, we can assume that 4" tends to some measure u in the weak *
topology of measures. In general u= 4 unless V¢"—V¢ strongly in LY.

If one merely assumes that ¢"— ¢ a.e. and V" is bounded in L¥(V) and if one
replaces 4" by |V¢"|", for example, then we may still assume that |[Vo"|" tends
weakly to some measure v. However, in this case one can say virtually nothing
about v—|V¢|". It is a striking fact that despite the lack of strong convergence it is
possible to say something precise about u— 4. This is due to the fact that 4 has a
geometric significance. Lions [23] considered maps ¢ with values in R¥*! instead
of S¥ and proved that yu— 4 is a sum (possibly infinite) of Dirac masses but with
arbitrary weights. Our result, Theorem E.1, uses the geometry of SN and shows that
there can only be finitely, many Dirac masses and that they have integer weights.
Our proof is completely different from that of Lions.

A typical example is the following. Let y be a smooth map from IRY into SV
which is a constant C far out. Let ¢"(x) =y(nx) so that ¢"—»¢@=C a.e. and V" is
bounded in L. Note that 4"—ad,, where a= [ det(y,p,,,-.., Prdx and

]RN

o/ay . 1 belongs to Z, since a/ay . , is the degree of p (cf. Appendix B). This example
displays a quantization feature which holds in the general setting,

Theorem E.1. Assume ¢"— ¢ a.e., V" is bounded in LN(V) and A" — p. Then there
exist p integers dy,d,, ...,d,€Z and p points a,,a,, ...,a, in V such that
p
pU—A=0y,q ;1 d0,,. (E.3)
The proof relies on three lemmas.

Lemma E.2. Assume Q is a cube in RN and let ¢, @ be two maps from Q to S" such
that Vo,V e LN(Q) and ¢, restricted to dQ belong to W N(0Q), so that, in
particular, @ and @ € C(0Q). Then there is an integer d such that

£(A—Z)“0'N+1d écll(o_(ﬁ“Lw(aQ)a (E4)

where C depends only on the norms of ¢ and @ in W:N~"1(8Q).
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Proof. Consider the cylinder Q x (0,1) in R¥~! and its boundary I'. I' consists of
three pieces [ =0 x {0}, [, =0 x {1}, and I, = 8Q x [0, 1]. We recall that it follows
from the density result of [32] that if 0 WM, SV), then

1 | det(8,6,,,....0, ) €Z, (E.5)

ON+1 T

where x, x,, ..., Xy are orthonormal coordinates in the tangent space to I' [cf.
(B.14)]. Let O(x, t) =to(x)+ (1 —t)@(x), x € @, t € [0, 1], and let 0= 0/|9]. Note that
0 is well defined, at least if || ¢ — @ || L5y < 1/2; otherwise, the conclusion is trivial.
Also, |0]>1/2 everywhere on I'. Clearly,

[ det(0,6,,...0, )= (4—2).
Q

Ioul;

Now we estimate | det(6,0,,,...,0,,). Observe that
I

~

det(0,0,,...,0,,)= l-althldet(g, 0.0,

and f,=¢—@. Since we are now on I, one of the x; may be taken to be t.
Therefore,

Ij det(ea pr (R} GxN) § C”(D“(I-’”Lw(ag),
2

where C depends only on Wh¥~1(9Q). O

Remark E.I. Clearly, Lemma E.2 extends to domains other than cubes under
appropriate assumptions on the regularity of the boundary.
For every h>0, set

0,={xeR¥||x|<h/2, i=1,...,N}.

Lemma E.3. Let f, be a sequence of functions on V which is bounded in L*(V'). Let
h>0. Then, for a.e.ac R there is a subsequence f,_(depending on a) such that f,,
restricted to (a+3Q,)NV is bounded in L*((a+38Q,)NV).

Proof. We consider only the case where N =2 since the argument is the same in the
general case. Extend f, by zero outside V and for a.e. yeR set

9.(y) = ]J; (G P+ fux, y + B)ydx

Note that N
g gy < i |fu(x, Yldxdy £ C.

Applying Fatou’s lemma we deduce that lim inf g,(y) < oo for a.e. y € R. Similarly,
if we reverse x and y. Therefore, for a.e. acR?, there is a subsequence -
(depending on a) such that f,_restricted to a+ 0@, is bounded in L'(a+8Q,). O

Lemma Ed. Let A, be a sequence of measures on V such that A,— A and |4,|—v
weakly in the sense of measures. Let Q be an open cube such that Q CV and v(0Q) =0.

Then 1,(Q)—A(Q).
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The proof is straightforward; approximate characteristic functions by con-
tinuous functions. [

Proof of Theorem E.I. Without loss of generality we may assume that [4"| —v
weakly in the sense of measures. We shall say that an open cube Q is a good cube if
QCV and Q satisfies the following properties:
(i) thereis asubsequence ¢™ (depending on Q) such that Vo™ restricted to 0Q

is bounded in LN(8Q),

(i) v(0Q)=0,

(iii) ¢"—¢ a.e. on 9Q.

The proof consists of three steps.

Step 1: For every good cube Q one has

p— (u(Q) IA)GZ

Indeed, Vo™ is bounded in LM(0Q) and therefore ¢™—¢ in L*(3Q) (by the
Morrey-Sobolev imbedding theorem). Applying Lemma E.2 we see that there
exists a sequence of integers d; such that

lg(A"k—A)—O'N+ ldk‘ -0.

The conclusion follows since, by Lemma E.4, we have | 4™— pu(Q).
]

1
Step 2: -~ p({a}) e Z for every ae V. Let Q; be a sequence of good cubes such

that ae Q; g for all j and |Q;|—0. Such a sequence exists by Lemma E.3 applied to
f,=IVo"|" [for (ii) and (iii) the argument is standard]. We know from Step 1 that,
for all j,

ON+1

(u(Q,)— [ 4)=deZ.

Finally, we let j— oo and conclude, using the fact that f 4-0.
It follows from Step 2 that whas only finitely many atoms The atomic part of u
will be denoted by oy, Z d0,, with d;eZ and g;e V.
i=1

p
Step 3. Let m=pu—A—oy,, 3 did,. We claim that m=0.
i=1

Indeed, by Step 1, we know that gy + ;m(Q) € Z for every good cube Q. Let V' be
an open set with compact closure in V. Since m has no atoms there is some ¢>0
such that m(Q) =0 for every good cube, Q, with |Q| <e and QN V' 4 (the argument
is by contradiction). Let h>0 be such that h¥<¢ and h<dist(V’,0V). Then
Xo, *m=01in 2'(V’), since m(x—Q,)=0 for a.e. xe V’ (note that x—Q), is a good
cube for a.e. xe V’, by Lemma E.3).

On the other hand, h™Vy,, * m—~m as h—0 and therefore m=0in V. O
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Corollary E5. Let ¢" be a sequence of maps from S" into S¥ satisfying the same
assumptions as in Theorem E.1. Then the same conclusion, (E.3), holds. (In(E.1) and
(E.2) one has to interpret the x; as orthonormal coordinates on SV.)

Proof. Use two stereographic projections (for example north and south poles) and
note that the measure Adx is invariant under diffeomorphisms. [

Finally, we consider the situation in which there is a sequence of continuous
maps ¢" from QCIR¥ to SV~ (N = 3) with V¢" e LN~ 1(Q). Associated with each ¢"
is a vector field D" given by (B.7). Let us suppose that V¢" remains bounded in
LN~ Y(Q) so that D" is bounded in L'(2), and thus we may assume that D"— D
weakly in the sense of measure. Let us suppose that

suppDCyg, (E.6)

where g is a rectifiable curve in Q without self-intersections. Le. there is a Lipschitz
map X :[0,1]—Q which is injective and such that X((0,1))C Q. Since divD"=0
[see (B.9)] it follows that divD =0 in 2(Q) and thus, by Corollary D.3,

D=cD,, (E.7)

where D, is given by (D.3). Appendix D only tells us that c in (E.7) is some constant,
but the fact that " takes values in S¥ ! leads to the following

Theorem E.5. Under the conditions on @" just stated, the constant c in (E.7) is an
integer multiple of oy.

Proof. Without loss of generality we may assume that |D"| — v weakly in the sense
of measures (in general, suppv need not be contained in g). Consider, as in
Appendix D, the canonical parametrization, X(t), of g and fix some T'€(0, 1) such
that X(T) exists, v=X(T) =0 and also v({X(T)})=0. Set a=X(T).

We wish to find a hyperplane IT through a with the following properties:

(@) v¢l—a,

(ii) |V " restricted to IT is uniformly bounded in LN~ Y(ITnQ),

(iil) v(I1)=0.

This construction is possible — indeed (i), (ii), and (iii) hold for almost every II.
Using (i) we can find r>0 (small enough) so that

gnIlnB(a,r)={a}. (E.8)

Indeed suppose not; then there exists a sequence ¢, (0, 1) such that X(t,) eIl,
X(t,)*+a, and X(t,)—a. We may always assume that t,—t € [0, 1] and, since X is
injective, we must have t = T. On the other hand, (t,— T) ™ *(X(t,)—X(T)) e Il —a,
and at the limit we find v € IT — a; this contradicts (i). Further, we may also assume
that B(a, r) CQ. Let { be a smooth function such that { =1 on B(a, r/2) with support
in B(a, r). Let H be the open half-space determined by IT and which contains a —v,
and let v be the outward normal to H. We have

i‘l D" V(= IfI(D" ) (E9)

Using (ii) and Theorem E.1, we know that (for some subsequence still denoted D")
D" 3—f+oy X did,, (E.10)
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with fe L*(IInQ) and d; e Z. The reason that we can apply Theorem E.1 is the
following. Since |V ¢"| restricted to IT is bounded in LN~ Y(ITnQ) and N=3, it
follows that, for some subsequence, ¢" converges a.e. (on IINQ) to some limit
and Vy e LN Y(IInQ). Note that this may fail when N=2. (The case N=2 is
special and will be examined subsequently.) We may always choose r so small that
B(a, r) contains at most one a;, namely a. Let d be the coefficient of §, in (E.10).
From (E.9) we have

D" V{->ayd+ | fC. (E.11)
H n
On the other hand, by (iii) and Lemma E.4 we see that
fD"v(=§D-V¢(. (E.12)
H H
We claim that
ID-Vi{=c, (E.13)
H

where c is the constant introduced in (E.7). To prove this, let us assume there exists
a 0< T, <T and a radius r such that

1] X@t)eH for T=t<T,
(ii) X()¢B(a,r)nH if t¢[T,,T).

If this is so then, with = {t| X(¢) € B(a,r)nH}, it is easy to see that

(E.14)

[ D-V=cIPiX@)- Xt
=c Tf PLX®) X@dt=c[(X(T)—{(X(T)]=c.  (E15)

The theorem follows from (E.15) and (E.11) by letting r—0, so that the integral in
(E.11) goes to zero.

Now to prove that (E.14) can be satisfied observe that X is differentiable at T so
that X(£)=X(T)+v(t—T)+o(t—T), so that (i) is satisfied for t<T and T—t<a
for some o. Likewise, if f>t— T>0 then X(t)¢ H. The curve X(t)for 1 =t =8+T
is closed and therefore has a positive distance from the point a. Callit § .. Likewise
[ X(t)—a|=6_>0 for 0<t<T—a. Choose r<min(d,,d_). For t=T either
X(t)¢ H or |[X(t)—a|>r. For t<T, either X(t)e H or |X(t)—a|>r. This accom-
plishes (E.14). O

We turn now to the case N =2 which is not covered by Theorem E.5. Suppose
@" is a sequence of continuous maps from QCIRR? to S* with V¢"e L'(Q). Let us
suppose that V¢" remains bounded in L*(Q2) so that D" is bounded in L!(£2), and
thus we may assume that D" — D weakly in the sense of measures. Let us suppose,
as above that SuppD Cg, and therefore, for some constant, ¢, we have

D=cD,. (E.16)

Theorem E.6. Under the conditions on @”" just stated, and also that ¢"—C a.e. on Q,
where C is a constant, then the constant ¢ in (E.16) is an integer multiple of ¢,=2x.



704 H. Brezis, J.-M. Coron, and E. H. Lieb

The proof is the same as the proof of Theorem E.5 and we shall omit it. The
assumption ¢"—C a.e. is essential, as the following simple case shows. Let Q be the
disk {xeR?||x|<1} and let g={(x;,X,)|x; =0, |x,/<1} be a diameter. Let
f:R->R be any smooth function with f“e L*(IRR). The sequence ¢"((x,,X,))
=(cos f(nx,),sin f(nx,)) has all the right properties except that ¢" converges to
two different constants for x, >0 and x, <0 [provided f(+ c0)—f(— 00)is not an
integer multiple of 2n]. On the other hand, the limiting D field is cD, with

c=f(+00)—f(—0).

Acknowledgements. The authors are grateful to J. Ericksen for suggesting the problem which we
call Example 1 and which led us to undertake this study. They are also grateful to D. Kinderlehrer
for useful discussions and especially for drawing our attention to the problems considered in
Sect. VII. Thanks are also due to C.Berge, P.Cladis, R. Dudley, M. Gromov, R. Gulliver,
R.Hardt, M. Las Vergnas, G. Strang, and D. Sullivan. EH.L. gratefully acknowledges the
hospitality of LH.E.S. as does H.B. for the hospitality of the IMA at the University of Minnesota
and of MIT, where part of this work was carried out.
The main results of this paper were announced in [5].

References

—

. Adams, R.A.: Sobolev spaces. New York: Academic Press 1975

2. Birkhoff, G.: Tres observaciones sobre el algebra lineal. Univ. Nac. Tucuman Revista A. 5,
147-151 (1946); Math. Rev. 8, 561 (1947)

3. Brezis, H.: Analyse fonctionnelle. Paris: Masson 1983

4. Brezis, H., Coron, J.-M.: Large solutions for harmonic maps in two dimensions. Commun.
Math. Phys. 92, 203-215 (1983)

5. Brezis, H., Coron, J.-M., Lieb, E.H.: Estimations d’énergie pour des applications de R> a
valeurs dans S2. C.R. Acad. Sci. Paris 303, 207-210 (1986)

6. Brinkman, W.F., Cladis, P.E.: Defects in liquid crystals. Phys. Today, May 1982, pp. 4854

7. Chandrasekhar, S.: Liquid crystals. Cambridge: Cambridge University Press 1977

8. Cohen, R., Hardt, R,, Kinderlehrer, D., Lin, S.-Y., Luskin, M.: Minimum energy configur-
ations for liquid crystals: Computational results, to appear in ref. [14]

9. De Gennes, P.G.: The physics of liquid crystals. Oxford: Clarendon Press 1974

10. Dudley, R.M.: Probabilities and metrics. Aarhus Universitet, Matematisk Institut Lecture
Notes Series n° 45 (1976)

11. Dunford, N., Schwartz, J.T.: Linear operators, Vol.1. New York: Interscience 1964

12. Ekeland, I, Temam, R.: Analyse convexe et problémes variationnels. Paris: Dunod, Gauthier-
Villars 1974

13. Ericksen, J.L.: Equilibrium theory of liquid crystals. In: Advances in liquid crystals, Vol.2.
Brown, G.H. (ed.). New York: Academic Press 1976, pp. 233-299

14. Ericksen, J.L., Kinderlehrer, D. (ed.): Proceedings I.M.A. workshop on the theory and
applications of liquid crystals (to appear)

15. Fernique, X.: Sur le théoréme de Kantorovitch-Rubinstein dans les espaces polonais. In: Sem.
Probabilités XV. Lecture Notes in Mathematics, No. 850, Azema-Yor (ed.). Berlin, Heidelberg,
New York: Springer 1981

16. Hamidoune, Y.O., Las Vergnas, M.: Local edge-connectivity in regular bipartite graphs (to
appear)

17. Hardt, R., Kinderlehrer, D.: Mathematical questions of liquid crystal theory. To appear in
ref. [14]

18. Hardt, R., Kinderlehrer, D., Lin, F.H.: Existence and partial regularity of static liquid crystal

configurations. Commun. Math. Phys. 105, 541-570 (1986)



Harmonic Maps with Defects 705

19.
20.
21.
22.
23.
24,
25.
26.
27.

28.
29.

30.
31.
32.
33.
34.
35.
36.

37.

Hardt, R., Kinderlehrer, D., Lin, F.H.: In preparation

Kantorovich, L.V.: On the transfer of masses. Dokl. Akad. Nauk SSSR 37, 227-229 (1942)
Kléman, M.: Points, lignes, parois, Vol. I and II. Orsay: Les editions de physique 1977
Lemaire, L.: Applications harmoniques de surfaces Riemanniennes. J. Differ. Geom. 13, 51-78
(1978)

Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit
case. Riv. Mat. Iberoamericana 1, 45-121 and 145-201 (1985)

Lloyd, N.G.: Degree theory. Cambridge: Cambridge University Press 1978

Meyers, N., Serrin, J.: H=W. Proc. Nat. Acad. Sci. USA 51, 1055-1056 (1964)

Minc, H.: Permanents, Encyclopedia of Math. and Appl., Vol. 6. Reading, MA: Addison-
Wesley 1978

Nirenberg, L.: Topics in nonlinear functional analysis. New York: New York University
Lecture Notes 1974

Parisi, G.: Quark imprisonment and vacuum repulsion. Phys. Rev. D 11, 970-971 (1975)
Rachev, S.T.: The Monge-Kantorovich mass transference problem and its stochastic
applications. Theory Probab. Appl. 29, 647-676 (1985)

Rockafellar, R.T.: Extension of Fenchel’s duality theorem for convex functions. Duke Math. J.
33, 81-90 (1966)

Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17,
307-335 (1982)

Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic
maps. J. Differ. Geom. 18, 253-268 (1983)

Simon, L.: Asymptotics for a class of non-linear evolution equations, with applications to
geometric problems. Ann. Math. 118, 525-571 (1983)

Spanier, E.H.: Algebraic topology. New York: McGraw-Hill 1966

Springer, G.: Introduction to Riemann surfaces. Reading, MA: Addison-Wesley 1957
Strang, G.: L' and L® approximation of vector fields in the plane. In: Lecture Notes in Num.
Appl. Anal. 5, 273-288 (1982)

Whitney, H.: Geometric integration theory. Princeton, NJ: Princeton University Press 1957

Communicated by A. Jaffe

Received July 14, 1986








