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Abstract. Two problems concerning maps φ with point singularities from a
domain ΩcR 3 to S2 are solved. The first is to determine the minimum energy
of φ when the location and topological degree of the singularities are
prescribed. In the second problem Ω is the unit ball and φ=gis given on dΩ; we
show that the only cases in which g(x/\x\) minimizes the energy is g = const or
g(x) = ±Rx with R a rotation. Extensions of these problems are also solved,
e.g. points are replaced by "holes," R 3 , S 2 is replaced by ]RN,SN~1 or by
RJV,]RjPiv~1, the latter being appropriate for the theory of liquid crystals.

I. Introduction

Suppose U c R 3 is open and aeU. Consider maps φ: U-+S2 which are continuous
except (possibly) at a. If S is a sphere in U centered at α, φ restricted to S defines a
map from S2 to S2 and so has a topological degree in Έ (also known as winding or
covering number). By continuity this number is independent of S and we shall
denote it by d. If φ is also continuous at a, then d = 0.

Suppose now that φ e C1(l/\{α}; S2) and consider its energy

E{ψ) = \\Vφ\2 (1.1)
u

possibly finite or infinite. The fact that E(φ)<co does not imply that φ is
continuous at a or even that d=0. An example with d=ί,U bounded and a = 0 is
φ(x) = x/\x\. However if U=]R3 and E(φ) < oo, then d must be zero (since φ goes to
a constant at infinity).

A natural problem is to minimize E(φ) given the degree, d, of φ at a (assuming
U φR 3 ) . We shall prove that the minimum energy is

(1.2)

where L is \d\ times the distance of a to 317.
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Another simple case is to consider two points al9 a2 e R 3 and maps

φeC(K"\{a1,a2};S2).

As above, one can define degCφ,^), z = l,2, by restricting φ to small spheres
around ah i = 1,2. Assuming that φ e C1(R3\{α1> a2} S2) and E(φ) < oo, then we
must have d=deg(φ?α1)= —deg(φ,α2) A natural problem is to minimize E(φ)
given d. We shall prove that the minimum energy is given by (1.2) with
L=\aί—a2\\d\. The infimum is not achieved; however if φn is a minimizing
sequence, we shall prove that φn tends to a constant a.e. and \Vφn\2 tends to a
uniform measure on the segment [aί,a2] (after passing to a subsequence if
necessary).

There are various generalizations of the two-point problem just mentioned,
and they all give rise to the same formula (1.2) provided L is interpreted
appropriately. We shall discuss four examples of increasing generality. Let U be an
open set in R 3. Let Hl9 ...,Hk be k disjoint compact subsets of U, which will be

if k \
called the holes. Let Ω=U\[ \J H( lϊϊφe C(Ω; S2), then it is possible to define

\V=i /

deg(φ,Hf), the degree of φ around Ht. If Hi is a point, deg(φ,iίί) is the usual
topological degree, as above. For general Jff the degree can also be defined, but a
bit of analysis is required; this is carefully discussed in Appendix B. Essentially,
deg(φ, H^ is the degree of φ restricted to a surface surrounding Ht.

Given integers dl9 ...,dkeZ (possibly including zero), consider the class

ίφeC(Ω;S)|deg(φ,iί ί) ^ a n d f |Fφ| 2 <αol. (1.3)
I Ω J

Set E=inΐS\Vφ\2. (1.4)

[Note that E is unchanged if C(Ω; S2) is replaced by CX(Ω\S2); this is explained in
Appendix A.]

Example 1. U=R3 and the Ht are points at in RA

Example 2. C7=R3 and the Ht are not necessarily points.

Example 3. l/=|=R3 and the Ht are not necessarily points.

Example 4. This is the same as Example 3, except that we consider the smaller class

£'={φeC(U\(κjHi);S2)\φe£> and φ = const on dU} .

and let
E=mϊj\Vφ\2. (1.5)

In Examples 1, 2 (respectively 4), δ (respectively $*) is empty unless ^dt = 0.
Our main result concerning this problem is

Theorem 1.1. In all four examples,

E = SπL, (1.6)

where L is defined in Sect. II.
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L is a quantity which has the dimension of a length and depends on U, on the
relative distances between the holes and on the df's. It is easiest to visualize L in
Example 1 and when dt = ± 1 for all i. We shall say that ax is a positive (respectively
negative) point if d{ = + 1 (respectively — 1). Since Σ d{ = 0 we can pair the positive
points with the negative points. This pairing, or connection as we call it in Sect. II,
has a length which is the sum of the distances between the paired points. L is
defined to be the minimum possible length. If the d?s are not ± 1 , then simply
repeat the point at \dt\ times.

In Example 2 the rule is the same as for Example 1, except that one has to use
the following reduced distance between holes. Given two holes Ht, Hj we let dist
(Hi9 Hj) be the usual Euclidean distance between the holes. Then we define the
reduced distance to be

D(Hi9Hj)=min £ d i s t i l , H J ,
m = l

where ΐ0,..., ip is a finite sequence with i0 = i9 ip =j and the above minimum is over
all such sequences.

In Example 3 just pretend that H0 Ξ R 3 \ [ J is a hole of degree do= — £ d; and
use the above rule to compute L.

The rule in Example 4 is the same as in Example 2 except that dist(ifi? Hj) is
replaced by the geodesic distance in U.

The proof of Theorem 1.1 has two steps. In Sect. Ill we show that E^SπL by
an explicit construction of an almost minimizer, which is obtained by gluing
together "dipoles" i.e. almost minimizers for the two-point problem which are
concentrated near the lines joining paired points. The lower bound E^SπL is
more delicate. For this purpose, we introduce in Sect. IV a useful vector field D
associated to φ e S, with components

D = (φ'(pyΛφz,φ-φzΛφx,φ'φxΛ φy). (1.7)

In all examples divZ)=0 in Ω and 2\D\^\Vφ\2. We sketch the essence of the
argument for Example 1. In that case,

divD = 4π Σ dA, = ̂ Q in ^ ' ( R 3 ) > (1 8)
i= 1

so that
E^βπinfΠ |D||divD=βJ. (1.9)

By duality, as explained in Appendix C,

infΠ |D||divi)=ρ}=maxf J ζdρ\ζeK],
where I* 3 J 1 R 3 J

X = { ζ : R 3 ^ R | | K | | L i p ^ l } and | | ί | |Up = sup|C(x)-C(y)|/|x-y|.

We conclude by showing that

maxΠ ζdρ\ζeK] = L (1.10)

V 3 J
with the help of a theorem of Kantorovich [20] and Birkhoffs theorem [2,26] on
doubly stochastic matrices.
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In general, there is no minimizer for the φ problem (1.4) [or (1.5)] and thus we
are led in Sect. VI to investigate the behavior of minimizing sequences. However,
the D problem defined by (1.9) and its analogue for the other examples does have a
minimum as a vector-valued measure. Some properties of these D minimizers are
described in Sect. V; for example we prove that suppDcG, the union of the
minimal connections. Our main result, in the context of Example 1, is that a
minimizing sequence φn tends (modulo a subsequence) to a constant a.e. and | Vφn\2

tends to a uniform measure distributed on a minimal connection. This is a striking
fact since, if there is more than one minimal connection, a D minimizer can be
supported by the union of two (or more) connections. This quantization
phenomenon is based on the analysis in Appendix E.

A very different problem, one with a more classical flavor, is the subject of
Sect. VII. Instead of specifying singularities we investigate the problem of
minimizing E(φ) on a domain U CR3 when φ = g is specified on dU and we allow
as admissible functions all H1 maps from U into S2. Clearly,

tt \Vφ\\φeHι(U;S2), φ = g on dU\

is achieved and it is known from the work of Schoen and Uhlenbeck [31, 32] that
any minimizing φ has only point singularities and there are only finitely many of
these. Our main result is

Theorem 1.2. These singularities always have degree ± 1 and more precisely, near a
sinqularity xG,

where R is a rotation.

This is a consequence of another result proved in Sect. VII, that if U is a ball,
then g(x/\x\) is a minimizer if and only if ±g is a rotation.

It is obvious that in the foregoing results one can replace the domain of φ by
three dimensional manifolds other than R3, but we have not investigated these
extensions. However other extensions are considered in Sect. VIII, for example we
have replaced R3, S2 by R*, SN~~* and by RN, R P N " *. This replacement does not
change the conclusions in any significant way. The R P 2 extension is important for
liquid crystals as explained below. We also touch upon a minimization problem
where the minimum energy is proportional to an area (and not a length). A simple
example of this kind of problem is to consider a closed Jordan curve F c R 3 and
φ G C(R3\Γ; S1) having unit circulation around Γ. The energy to be minimized is
E(φ) = J \Vφ\. We conjecture that the minimum E is 2πA, where A is the area of a
minimal area surface spanning Γ.

In order not to interrupt the main thread of the paper, we have placed many of
the technical facts in appendices. Some of these are of independent interest. For
example, Appendix D contains a proof of the uniqueness of a divergence free
vector-field supported on a curve. In Appendix E we present some noteworthy
properties of certain nonlinear expressions involving weakly convergent
sequences.

The mathematical analysis in this paper, summarized above, may be relevant
to certain problems in physics.
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A. Liquid Crystals

A nematic liquid crystal can be described by a vector field φ on a domain U in R 3

(the container). The direction (optic axis) of the rod-like molecules at x is φ(x)
(called the director), so \φ(x)\ = 1, and therefore we can view φ(x) as a point in S2.
Normally, the ends of the molecules cannot be distinguished, so φ(x) should really
take values in RP 2 , i.e. the quotient of S2 by the equivalence relation φ~—φ.

Except for defects, which are points or curves in Ω, φ(x) varies continuously.
Frequently the liquid crystal energy is taken to be [7, 9, 13, 14, 17, 18, 21]:

E(φ) = Kx J (divφ)2 + K2 J (φ curlφ)2 + K3 J \φ Λ curlφ|2. (1.11)
u u u

A special case that has been frequently studied is the one-constant approximation
K1=K2 = K3==K. Then the integrand on the right side of (1.11) is

(1.12)

with D given by (1.7) and

W= φ divφ — (φ V)φ = φ divφ + φ Λ curltp. (1.13)

Both (1.12) and (1.13) hold in the sense of distributions for all φ with VφeL2.
Taking K = ί, and integrating (1.12) we find

= J Wn. (1.14)
dϋ

It is easy to check that W- n depends only on φ and its tangential derivatives on
dU. Therefore, in all problems in which φ is prescribed on the boundary (such as
Example 4 or the problems in Sect. VII) the boundary integral, J W- n, plays no
role; the minimization of £ and E are the same problem. However, in Example 3, φ
is not prescribed on the boundary and the two minimization problems are
different We shall discuss only the E(φ) problem in this paper. It would be
interesting to analyze the E problem.

It is to be noted that φ-+\Vφ\2 is SO(3) invariant, namely iϊRe SO(3) and φ'(x)
= Rφ(x), then | Vφ'\2 = | Pφ|2. Also, D is SO(3) invariant, i.e. D(x) = D\x\ where D'
is the D Reid of φ'. On the other hand, H(φ) = (divφ)2 + \cuήφ\2 is not SO(3)
invariant; it is only invariant under the simultaneous action of SO(3) on φ and on
x, i.e. φ(x)-+Rφ(Rx). From these observations one can conclude that E^E in
Example 3. Indeed, let dμ be Haar measure on SO(3) so that f dμ(R)D Rφ = 0.
Thus, for all φ

( φ ) \ φ \ (1.15)
v u

so jH(Λφ)^J \Vφ\2 for some R.
Long lived point singularities are observed in nature [6] and have degree one,

consistent with our Theorem 1.2.

B. The Classical 0(3) Nonlinear Sigma Model

The Euler-Lagrange equation corresponding to (1.1) is
2 (1.16)
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which is the equation of harmonic maps. It is also the equation of the classical
nonlinear sigma model, but in the physics literature this is usually studied in R2,
namely φ:]R2->S2. Our analysis suggests that the 0(3) nonlinear sigma model
from ]R3->S2 may be interesting, when singularities are included, although it is
known that the quantized version of such a field theory is non-renormalizable. In
any event, the expression for the energy needed to create two singularities
separated by a distance L, namely 8πL, is amusing. This is precisely the energy
expression used in the semiclassical theory of quark confinement. Also, the fact
that supp|Fφ"|2 converges to a "string" is consistent with some pictures of quark-
quark interactions.

Previously, Parisi [28] described a classical, relativistic field theory having
some features in common with our φ field. In the static limit it reduces to
monopoles embedded in a superconductor. However, to obtain strict linearity for
the effective monopole-monopole interaction potential it seems to be necessary to
take the limit of infinite critical field for the superconductor. For our Example 1,
on the other hand, no limits are needed.

II. Minimal Connections

This section is concerned with defining some geometric quantities associated with
a configuration of points or holes (disjoint compact subsets of JRN) in certain
domains in WiN. From this construction we derive a number (with the dimension of
a length) which, it will turn out, is proportional to the minimum energy.

A common feature of all the cases of interest to us is that we are given k disjoint
holes in RN, Hu...,Hk. According to the case, a certain distance function
D(Hi9 Hj) will be defined between pairs of holes. D will satisfy the usual properties
of a metric (D(Hi9 Hj)+D(Hp Hk) ̂  D(Ht9 Hk) and D(Hb Hj) > 0 for i +j and = 0
for i=j). The different choices of D will be defined subsequently.

Associated with each H( is a degree dt e Έ. We assume that

1 = 1
(2.1)

The holes with dt > 0 (respectively di < 0) are called positive (respectively negative)
holes. Let

Q=Σd,= -Σd, (2.2)
di > 0 di < 0

be the total positive degree.

Definition of a Connection and Its Length. List the positive holes with each Ht

repeated d{ times in the list. Write this list as Pl9..., PQ, with each Pj being some JET,-.
Likewise, list the negative holes, with each one repeated \d^ times. Write this as
Nl9. ..9NQ. Note that the holes of degree zero are omitted from these two lists. A
connection, C, is a pairing of the two lists (P1 ? Nσl), (P2, Nσ2)... (PQ, NσQ), where σ
is a permutation in SQ.

The length of this connection is defined to be

L(C)=ΣD(PbNσi). (2.3)
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The minimal length is

L=minL(C), (2.4)

c

and a minimal connection is a connection (which may not be unique) such that

L(C) = L.

Example 1. The holes are k distinct points, al9...9ak in R N . D(ahaJ) = \ai — aj\
=Euclidean distance. Note that in this case, holes of degree zero play no role
whatsoever. We denote the minimal length by L(RN, {a}, {d}).

Example 2.Hu...,Hka.rek disjoint compact subsets of RN. (Hf could be a point or
an object of any "dimension" from 1 to JV.) D(Hh Hj) is defined as follows. First, let
dist(Hi5Hj) be the usual Euclidean distance (i.e. min{|x—y\\xeHiyyeHj}).
Consider a chain K = (i0Ju...Jp) with each ί^im^k and io = ί, ip=j and let

A(K)=Σ dist(Hίm_1Hίw).Then
m = l

D(Hh Hj)=mmA(K). (2.5)

Note that holes of degree zero that are not points may now play a role in the
definition of D since their presence may reduce D (see Fig. 1). Also, one only has to
consider chains K without repetition, so the minimum in (2.5) is over a finite set of
chains. We denote the minimal length by L(W, {H}, {d}). If all the Hi are points
this notation is consistent with Example 1.

Example 3. Let l/ΦRN be an open set in R*. Let Hl9..., Hk be disjoint compact
subsets of U with degrees dl9..., dk but we do not assume (2.1). Introduce one more
hole, H0=WLN\U (which is closed but not necessarily bounded), and let

k

do=—Σ &v We repeat the construction of D and L in Example2 (on

Ho, Hu ..., Hk). Note that even though Ho may not be compact, D(Hθ9 H() > 0 for
j'=t=O. Also note that even if d0 = 0, the presence of Ho influences D and therefore L.
We call the minimal length L(l/, {H}, {d}).

Example 4. Let U Φ R* be a connected open set in R*. Let Hu ..., Hk be disjoint
compact subsets of U with degrees satisfying (2.1). For x,yeU let distG(x, y) be the
geodesic distance within I/, which will be defined in a moment. DistG(JΪ),Hj) is
defined as in Example 2, but with the Euclidean distance \x—y\ being replaced by
distG(x,y). Then D(HbHj) is given by (2.5), using distG in A(K). The minimal

Fig.1
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length in this case will be denoted by LG(U, {if}, {d}). The geodesic distance
distG(x, y) is defined as follows. Let κ = {xu ..., xm}, with xteU and xo = x, xm~y
be a chain with the property that every line segment [xb xi+ί] C U. Note that such
chains always exist since U is connected and hence arcwise connected. Let

m

Λ(κ)=
t = l

distG(x,3;)=inf Λ(κ). (2.6)
K

Note that there exists a function X: [0, l]-» £7 with the properties that X(0) = x,
X(ί) = y9and |X(ί)-X(s)\£\t-s\ distG(x, y) for all t, se [0,1]. This follows easily
from Ascoli's theorem. Furthermore the length of the curve X([0,1]) equals

/ 1 \

distG(x,);) the length is J \X(t)\dt .
V 0 )

If U is convex then distG(x,j/) = |x —j/| and therefore LG(U, {H}, {d})
= L(RN,{fί}, {<*}).

Properties of Minimal Connections. In each example we introduce a distance
D(i/ί5 Hj). It is to be noted that this distance can be realized as the length of a finite
union of continuous paths (which may or may not be unique). In Example 1 the
path is the line segment [aha^\. In Examples 2 and 3, there is always a certain
minimizing chain K in (2.5) and the paths are just line segments which realize
dist(H i w_ l 5iί i w). In Example 4 the line segments are replaced by curves in £7 of
length dϊstG(Him_ί9Him).

Definition. A string is a continuous curve X(t):[0, l]-*ί7 with the following
properties:

i) X(0) belongs to some hole H, X(ί) belongs to some hole H'.
ii) The length of the curve is D(H,Hr).

iii) For ίe(0,1), X(i) belongs to none of the holes. The string carries an
orientation from H to H'.

In Examples 1-3 a string is just a directed line segment running from H to H'.
Given an arbitrary pair (H, H*) there need not be a string from H to H\ but
D(H, W) can always be realized as a finite chain of strings with the obvious
consistent sequence of orientations.

Let C be a minimal connection: it has a pairing of the positive and negative
holes and a length L given by (2.3). In an obvious way we can associate a finite
union of strings with C, namely, first realize D(Ph Nσi) as a union of strings as
above, and then take the union of all those strings including multiplicity. The sum
of the lengths of all the strings is just L.

For descriptive purposes we can think of putting an arrow on each string in the
direction of the orientation of the string. Some properties of the strings are the
following:

a) For each hole Ht the number of arrows pointing out minus the number of
arrows pointing in is just dt.

b) If more than one string runs between H and H\ all these strings are oriented
in the same direction.
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c) Given two strings in a minimal connection in Examples 1, 2 or 3, either
1) they are identical, or
2) they do not intersect, or
3) they intersect precisely at one point x with x in some hole.
The reason for this is the triangle inequality. Suppose Sx (respectively S2) is a

string running from Hx to H\ (respectively H2 to H'2). Possibly some of these four
holes are identical. Suppose z e SxnS2 and z does not belong to a hole. We claim
that St = S2. Let xl9 y± (respectively x2, y2) be the end points oϊSι (respectively S2)
on Hl9 H\ (respectively H2, H2). Consider the two paths Tx = [xl9 z]u[z, y2] and
T2 = [x 2,z]u[z,y 1]. Sx (respectively S2) is part of a path joining some Px

(respectively P2) to some Nt (respectively N2). If we replace Sx (respectively S2) by
Tx (respectively T2) we obtain a new connection in which Px (respectively P2) is
paired with N2 (respectively N±). The length is the same since |Ti| + |T2 |
= |5 1 | + |S2 |. But Tx and T2 are not line segments unless S1 = S2.

In Example 4 the situation is more complicated. Two different strings can have
a non-empty intersection.

ΠI. Upper Bound to the Energy

For simplicity we restrict our attention to R 3 . In each of the four examples we
have:

Theorem 3.1. E^SπL with L given by (2.4).

The proof requires a construction, which we call the basic dipole. Take two
distinct points a+,a- in R 3 and some positive integer d. Given any ε>0 we
construct a function φ e C(R3\{β+, a _ } 52) such that :

a) E(φ)^$πd\a+-a-\ + ε. (3.1)

b) φ is constant outside some set Nε(a+, α_), which we will henceforth call the
support of φ9 and which will be defined later.

c) deg(φ,{α±})=±d. (3.2)

Without loss of generality take α± =(0,0, ±0- Given ε>0 we fix a smooth map
ω:R 2 ->S 2 such that:

f |Γω| 2^8πd + ε/2, (3.3)

ω = const = e outside the unit disc, (3.4)

d e g ω = - d . (3.5)

Here, degω is defined to be the degree of ω considered as a map from
S2 :~R2u{oo} (by stereographic projection) to S2. The existence of such a map is
standard (see e.g. [4, proof of Theorem 2, Part C] used with u = const). The idea for
constructing ω is the following:

(i) Let v(x,y)={Re(x + iyyd, Im(x + z»-d). (ii) Let ω(x,y) = (Πoυ)(x,y)9

where Π is stereographic projection from R 2 to S2. One finds that (3.3) and (3.5) are
satisfied with ε = 0. (Hi) Replace v by χv = v, where O ^ χ ^ l and χ has compact
support and χ = 1 on a large disc D. Equations (3.3) and (3.5) are satisfied if D is
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chosen large enough, (iv) Now replace ϋ(x, y) by v(λx, λy) = v with λ large enough
so that suppίCunit disc. The left side of (3.3) is independent of λ.

Next, define φ:R 3 -»S 2 by

(3.6)

| ω ( ~ , ^ l if \z\<l

and then set
φπ(x, y, z) = φ(nx, ny, z). (3.7)

φn is smooth on R3\{α+,α_} and satisfies (3.1) (if n is large enough) and (3.2).
Finally, φn = e outside the set where z2 + n(x2 + y 2 ) 1 / 2 ^/ 2 . This set (for n large
enough) is the Nε in (b) above. Note that the opening angle of Nε at a+ and α_ goes
to zero as ε->0.

Proof of Theorem 3.1 for Examples 1-3. Let C be a minimal connection. As
explained in Sect. II, C can be thought of as a finite collection of strings, each of
which is a directed line segment running between pairs of holes and which carries
some multiplicity, m. Suppose a string runs between xeH and yeW and has
length I. Then the open ball of radius I centered at y does not intersect H and,
similarly, the open ball of radius / centered at x does not intersect H'. Thus, for
small enough ε, we can insert a basic dipole (of degree m) between H and H'. If two
or more different strings intersect at a common point x e H we can insert the
required number of disjoint dipoles if ε is small enough. Inside each Nε we take φ to
be given by (3.7), and we take φ = e outside (uJVε). Then £((p)^8πL + ε (the
number of strings in C). D

Proof of Theorem 3.1 for Example 4. The difference with the previous case is that
the strings are now curves instead of line segments and, moreover, they can
intersect each other outside of the holes. However, any string between H and H'
can be approximated (in length) by a polygonal path in U\{KJH^) (not Ό).
Moreover, we can also assume that any two such polygonal paths intersect at most
only at their end points. To imitate the above construction we have to find the
analogue of the basic dipole construction for a polygonal path, Γ, with end points
a±. That is, we want to construct a function φ satisfying (a) E(φ)^$πd\Γ\ + ε; (b)
φ = e outside Nε(Γ); (c) deg(φ,a±)= ±d. Here, Nε(Γ) is contained in an ε
neighborhood of Γ and has an ε opening angle at α±. Let Γ be the union of line
segments [xi-uxi~\ with xo = α+, xp = <z_ and all x fe U. We can, by passing to a
refinement if necessary, assume that all \xi^1—xi\ are equal and have the common
value 21. Think of the points xh i = 1,..., p — 1 as holes of degree zero and construct
the function φ as in the end of the above proof, i.e. construct disjoint basic dipoles
of degree d, one for each segment [Xf-^xJ. Use the same n in (3.7) for all the
intervals. Unfortunately, this function φ is not continuous at the points xi9

/ = l,...,p — 1. However, φ has degree zero at each xi9i = ί9...9 p—ί. To remedy the
lack of continuity we proceed as follows. Let Bh i=ί, ...,p— 1 be balls of radius
R < I at the xt and with R small enough so that there are only two basic dipoles in
each Bt. We shall modify φ inside the Bt. On dBt there are two disjoint circular caps
in which φ + e. These are the intersections with dBt of the two Nεs of the two
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dipoles that intersect at jcf. Call the caps Kί and K2. There is a unique cylinder, C,
with elliptical cross-section, whose intersection with dBt is precisely K1κjK2Λiλ is
a line in C parallel to the axis of C, then φ(λnKί) = φ(λnK2). The function φ,
which is the modification of φ and which is continuous, is defined by φ(λnBi)
= <p(λnKί). Outside uBi9 φ=φ. It is easy to see E(φ)-+E(φ) as R-+0. D

IV. Lower Bound to the Energy

Again, as in Sect. Ill, we restrict our attention to KA In each of the four examples
we have:

Theorem 4.1. £^8πL with L given by (2.4).

k

Proof. Let H=\J Hi and Ω=U\H. Let φ satisfy the appropriate conditions,

namely_ φeC(Ω;S2), VφeL2(Ω% deg(φ,fίi) = ίίi and, in Example 4 only,
φ s C(U\H) and φ = constant = e on dU. As explained in Appendix A, we can also
assume that φeC°°(Ω). We shall show that E(φ)^$πL.

Construct the vector field D e C°°(Ω; R3) as in Appendix B, namely

D = {ψ'ψyAφz,φ'φzAφx,ψ'φxA φy)

with φx = dφ/dx, etc.
We claim that a.e. on Ω: m ύ ψ ? ( 4 1 }

To see this, suppose that φ = (0,0,1), φx = (al9bl9 0), φy = (α2, b2,0), φz = (α3,63,0),
using the fact that φ-φx=0, etc. Then D = AΛB with ^4==(α1,α2,α3) and
B=(bub2,b3). Therefore | D | ^ | ^ | | 5 | ^ | ( ^ 2 + 5 2 ) = | | F φ | 2 . Equality in (4.1) holds
if and only if A JB = A2 - B2 = 0. Let ζ e C(C7) with | Fζ| ̂  1 (i^^O and ζ = ζ, is a
constant on each Ht. In Example 3 we also assume that ζ e C(U) and ζ=0 on dU.
By (B.16) in Appendix B,

E(φ)Z2l \D\^-2\D Vζ = U Σ W, (4.2)

β β /=i

Our goal is to show that with I(ζ)=Σ ζidi91=sup I(ζ) = L, where Z denotes the

appropriate above-mentioned class. We only require / ̂  L, but it is easily seen that7(0 ^L. Indeed, in Examples 1-3 (respectively 4), |ζ(x)-ζ(y)|^|x—y|, [respec-
tively distG(x, y)] for all x, y e U and ζ e Z, since |FCI ̂  l Consequently, in all cases

|Cι - Cil ̂  β(^ι» Hj). Since Σ CΛ = Σ ζ(Pj) - C W for any pairing (see Sect. II for

notation), I(ζ)^L. Therefore we need only construct some ζeZ with /(Q = L.
First, suppose there are k numbers {ζt} such that, with ζ0 = 0 (for Example 3),

\ζt-ζ^D(Hi9Hj)9 for all ij. (4.3)

Then we can construct ζeZ such that C=d on each i/,-. One choice is

ζ(x)=max {ζt—dist (x, H^}, Examples 1-3

=max {Cf - distG (x, Jί t)}, Example 4. (4.4)
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Here dist (x, H) [respectively distG(x, H)~\ = infj,eH |x—y\ [respectively
inϊyeH distG(x, yj]. To see that this ζeZ, note that ffa) = dist(x, Hj) [respectively
distG(x,Hj)] satisfies |Pf f |^l, and hence |Vζ\<;i. Clearly ζ(H^ζi9 so we have to
check that ζt ^ ζj—dist (x5 Hj) [respectively distG(x, H,)] for all j and all x e Ht. But
ζj-ζt^IKHkH^distOcHj) [respectively d i s t a f f , ) ] .

To summarize, we merely have to find k numbers satisfying (4.3) and Σ ίAi = L.
Since D(Hh Hj) satisfies the triangle inequality, the following lemma establishes
the existence of 2Q numbers {αj and {&} such that 0̂  = 0/ (respectively βi = βj) if
D(Pi9Pj) = 0 [respectively D(JVi,iVJ) = 0]. With the P's and JVs corresponding to
holes repeated according to multiplicity, as in Sect. II, we can simply take ζt to be
the common value of 0Lt (or jβf) on that hole. D

Lemma 4.2. Let Pl9 P 2,. . ., PQ and Nl9 ΛΓ2,..., NQ be 2Q points and let X be their
union. Let D be a semi-metric on X (i.e. a metric without the condition that
D(x, y) = 0 => x = y). Let L = Min Σ D{Pi> Nσι), where SQ is the set of permutations.

σeSQ

Then there exist real numbers α l 5 α 2 ... αQ and β1,β2~>βQ such that

Σ(*t-fid=L, (4.5)

and for all ij

|α, - α,| S D(PU Pj), fa - βj\ S D(Pb Nj), \βt - βj\ S D(Nb Nj). (4.6)

Proof This is a consequence of the Kantorovich theorem (see [10,15,20,29]) and
the Birkhoff theorem on doubly stochastic matrices (see [2,26]). The Kantorovich
theorem states that if X is a compact metric space with metric D and μ, v are two
non-negative measures on X such that $dμ=$dv. Then

Max (J fdμ - ί fdv) = Min f f D(x, y)dm(x, y), (4.7)
/ J S ?

where cέf = {/:Z->R||/(x)— f(y)\^D(x,y)}, and where m is a non-negative
measure on X x X whose marginals are μ and v. We apply this to our X and D with

Q Q

μ=Σ <5Piandv=Σ δN,
i=ί i=l

The measures m whose marginals are μ and v are precisely of the form
Q

m= Σ

where A = {a^ is a doubly stochastic matrix (denoted by DS), i.e. aυ^0 and

Q Q

7 = 1 i = l

Q

for all i J . The left side of (4.7) is Max Σ Oi - βd> where α, jS satisfy (4.6). The right
a,β i=l

side of (4.7) is Min Σ <*iP(Pi9 Nj). BirkhofFs theorem states that every A e DS is a
ΛeDS

convex combination of permutation matrices. Therefore the right side of (4.7) is
Nσi) = L. D
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V. The D Problem

If we look back at Sect. IV we see that the lower bound for E was obtained by
analyzing a problem that, in principle, is different from the original φ problem
about S2-valued vector fields. In this section we shall explore that auxiliary
problem - which will be called the D problem - in more detail. Although the two
problems give rise to the same minimal energy E in various cases (which
fortunately include the cases of interest to us), the vector fields involved are
different. At the end of this section we shall remark about the interrelation of φ of

The D problem is defined as follows. It will be defined in K* instead of just R 3

because the analysis is independent of N. As before we are given an open set U C R N

k

and k holes iί£ (disjoint compact subsets of U). Let H= (J Ht and Ω=U\H.

Associated with each Ht is a real number d{ (which now need not be an integer). We
shall be concerned with L1 vector fields, D, on Ω and distinguish two cases which
we call A and B. Let QA denote the linear space of all functions ζ e C(U) with
Vζ e LT{U\ ζ = 0 on dU (no condition if U=K*) and ζ is constant on each Ht. Let
QB denote the linear space of all functions ζeC(U) with VζeU°(U) and ζ is
constant on each H{.

Let siA (respectively sίB) denote the class of all vector fields D e L ^ Ω R*)
satisfying k

- J D Vζ = σN Σ d£(Hd for all ζ e QA (respectively QB). (5.1)
Ω » = 1

Here σN denotes the area of S*" 1 in R j v(σ 3=4π).

Note that if U=ΈLN, then siA is not empty if and only if Σ ^ = 0. If

then sίA is always non-empty even if Σ ^ΦO . stfB is non-empty (for any U) if
k \ ί=i /

and only if Σ ^ = 0 . In this section we shall be concerned with minimizing the
energy ί = 1

$\D\. (5.2)
β

Let EA (respectively EB) denote the infimum of E(D) with D in the class s/A

(respectively jtfB). Formally, Case A consists of minimizing J |D| over vector fields D
such that divD = 0 in Ω and J D v = σNdt for each i, where v is the normal to the

dHi

surface dHt. Case B consists of minimizing J \D\ over vector fields D such that
divD = 0 in Ω, D v = 0 on dU and f D v = σNdt for each i. (If the holes i i f are

dH i

points ai9 we have, as in Remarks B.2 and B.3, i
Case A is relevant for Examples 1-3 of Sect. II while Case B is relevant for

Example 4. In the following we shall refer to the distance between holes D(H, /f)
and we shall adopt the convention that for Case A (respectively Case B), D(H, ff)
is defined as in Examples 1-3 (respectively 4) of Sect. II. If JV = 3 and the d/s are
integers, the analysis of Sects. II and IV shows that

||Loo^l, ζeQA (respectively QB)}. (5.3)

In fact, (5.3) is always correct for all N and dt.
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Theorem 5.1. Equation (5.3) holds in all cases. Moreover, if dl9 ...,dp>0 and
dp+u...,dq<0 andΣdi = 0, then

\ } (5.4)

with a^O and Σ *y = 4 Σ *y = K/l

Proof. Equation (5.3) follows from the duality principles given in Appendix C.
Equation (5.4) follows from (5.3) as in Lemma 4.2. D

It is intuitively evident from the variational construction in Sect. II, that a
minimizing D for (5.2) often does not exist as an L 1 function. This will be clarified
later. However, a minimizing sequence {£>„} for (5.2) does have a limit in the sense
of measures on Ω. More precisely there is a subsequence (which we continue to
denote by Dn) such that Dn-^D in the weak * topology of measures on Ω. This
measure D satisfies

Moreover D satisfies (5.1) except that we have to change the linear spaces QA

(respectively QB) into

QU.B = {CeQA (respectively ζ e QBψζ e CC(U)},

so that, in particular, the expression J D Vζ makes sense. We denote by sf'A
(respectively jtfB) the class of all vector valued measures on Ω, D = ( D l 5 . . . , DN) such
that J \D\ < oo and

-S_D Vζ = σNΣidiζ(Hi) for aΆζeQU (respectively β j ) . (5.6)

Our problem is twofold: to establish equality in (5.5) and to identify these limiting
measures.

Definition. An open set U is said to be regular if the following holds. Let

Uε = U+Bε={x+y\xeU,\y\ίε}.

We suppose that for any two points x9yeU9 their geodesic distance relative to Uε

tends to their geodesic distance relative to U as ε->0.

Theorem 5.2.

EA. (5.7)

// U is regular then

Π J £ B . (5.8)

Proof. In view of (5.5) it suffices to prove ^ in (5.7) [or (5.8)]. Let Dej/'Λ; we have

(5-9)
i=X
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for all ζ G QA with || Vζ\\Lao ^ 1. Therefore we have to show that the supremum of the
right side of (5.9) with ζ e QA and || Vζ\\Loo ^ 1 is given by (5.3). We note in passing
that, in general, the supremum is not achieved in the class QA. The situation here is
"dual" to that of Theorem 5.1 where EA is not achieved while the right side of (5.3)
is achieved. We recall (see Lemma B.5) that given any ζ e QA with || Vζ\\LO0 ^ 1 there
is a sequence ζn such that ζn e CC°°(L/), ζn is constant on every Hh || Fζn||Loo ^ 1 and
ζn-*ζ uniformly on every compact subset of U. This completes the proof of (5.7).

We turn now to the proof of (5.8). Let Uε = U + Bε and let Hu ε = Ht+Bε. Let EBε

be the right side of (5.3) for this ε problem. Since U is regular EBε-+EB as ε->0 by
Remark 5.1. Let ζε be a maximizer of (5.3) for the ε problem. Without loss of
generality we may assume that ζε e L°°(l7ε) (otherwise truncate Q. Let ζ'=Jεj2 * ζε

Clearly ζ'eC\Ό)9 HPC'IIL-OO^ 1 and ζ\Hί) = ζε{HUε). Finally consider
ζn = (l + C/ή) ~ 1χnζ\ where χn(x) = χ(x/n) and χ e C?(RN) is any function such that
χ(x) = l for | x | < l with | | χ | | r ^ l and C = | | F Z | | L O O | K : Ί I L « . Note that ζn

L°°(u) = l a n d ζn~*ζ' uniformly on every compact subset of U. D

Remark 5.1. Case B of Theorem 5.2 may fail if U is not regular. Take for example

For this 17, the requirement that VζeC(U) implies that QB(U) = QB(ΊR3\ and
therefore the supremum of the right side of (5.5) can be less than the right side of
(5.3).

We now turn to properties of the minimizing D measures.

1. Properties of the Support

Theorem 5.3. Let D be any one of the following vector valued measures
i) a weak * limit of an L1 minimizing sequence for (5.2),

ii) one of the minima referred to in (5.7) or (5.8).

Let G be the union (which is closed) of all geodesies running between holes (see
Sect. II). Then

suppDcG. (5.10)

Moreover, if all the d?s are integers, then suppDcG', where G'CG is the union of
all minimal connections. Note that the definition of G' depends on the

Proof. Let B be a closed set in U such that BnG and BnH are empty. Consider
V= U\B. The geodesic distance between holes for the V problem is obviously the
same as for the U problem. Consider D restricted to V (respectively the Dn e L 1

restricted to V) and call it D (respectively Dn). These vector fields satisfy all the right
conditions (for V), so

J_\D\^E(V) = E(U) = [\D\= f |D|
Ω(V) Ω Ω(V)

and thus D = 0 on B, which proves (5.9). Note that £([/) = E(V) by virtue of (5.4). A
similar reasoning works for the sequence Dπ, as well as for the case of integral d's
(see Lemma 4.2). D

Remark 5.2. Note that i) holds even if U is not regular.
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Remark 5.3. Consider Case A and assume D is a minimizer in (5.7). Then the |D|
measure of (ufl^ is zero.

Indeed
J \D\^- J DVζ = σNΣdiζ(Hi)

\(H) N \ H )

for all ζeC\WLN) with \Vζ\£l, ζ = 0 on dU and ζ is constant near each Ht.
Therefore

JBLN\(vHi) ζ

where ζ runs in the above mentioned class. It follows that

f \D\ZEΛ=S \D\.
JBN\(H) N

Remark 5.4. We conjecture that, for any U (regular or not) we have

min f[ |D| \D e st'* suppD C G\ = EB. (5.11)

2. The Two Hole Problem

We investigate here two simple cases:
a) Case A with 11 = 18^ and two disjoint holes H1 and H2 with d1 + d2 = 0.
b) CaseB with ί/φR^ and again two disjoint holes H1 and H2 with

1 2

In both cases D(Hί,H2) = L.
Let us first analyze the case where there is precisely one geodesic, g, between H1

and H2. Let D be as in Theorem 5.3 so that suppDcg. By Appendix D we know
that D must be a measure of the form

D = cDg. (5.12)
On the other hand,

\ = σN\dt\L9 (5.13)

where L is the length of g. On the other hand,

= L, (5.14)

so that c = σjyldj. In particular \D\ is the uniform Hausdorff measure on g and the
"direction of D is tangent to #." We shall establish similar properties in the general
case where there are many geodesies between H1 and H2. As before we denote by G
the union of all geodesies. In Case A, G is simply a union of line segments of length
L which are disjoint except possibly for the end points. In particular every point, x,
in G\(H1\JH2) has precisely one geodesic passing through it. We denote its
direction (going from H1 to H2) by n(x).

In Case B the situation can be much more complicated. Many geodesies can
pass through a single point and the tangent need not be defined at every point of a
geodesic. There could also be many geodesies connecting two points.

Theorem 5.4. Under the assumptions of Theorem 5.3 and in Case A, the vector-
valued measure D and the scalar-valued measure \D\ are related by

D = n|D|. (5.15)
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Note that Eq. (5.12) relied only on the fact that div£> = 0. But in Theorem 5.4
we really need the fact that D is minimizing. Consider, for example, the case where
H1 and H2 are two cubes with parallel faces so that G is a cylinder, C, with a square
base. Let g be any curve going from H1 to H2 in G. Then divDg = 0, but (5.15) fails.
The requirement that D is minimizing forces the "integral curves" of D to be
geodesies.

We believe that a similar result holds in Case B.

Conjecture 5.L Under the assumptions of Theorem 5.3, and in Case B, D is such
that n(x) is well defined a.e. |D| and D = n(x) \D\. Here n(x) is the common tangent -
when it exists - to all geodesies through x.

Proof of Theorem 5.4. Let H i ό = {x\dist(x, H J^δ}, and similarly for H2, with
<5>0 and small. Note that dist(Hίδ,H2iδ) = L-2δ. Let

/(x)=min{dist(x,H l ta), L-2δ}. (5.16)

Let g be a nonnegative C00 function with support in a ball of radius one around 0
and ίg = t. Let gΛ(x) = ε'Ng(x/e). Set

/,=&•/ for ε<δ, (5.17)

so that fε is a smooth function which is zero on H1 and fε = L—2δ on H2. We claim
that

F/β(x)->n(x) everywhere on G\(HlδκjH2>δ). (5.18)

Assuming that (5.18) holds, (5.15) follows easily. Indeed, since / is Lipschitz with
constant one, |F/ ε |^ l and hence

(5.19)

From (5.18), and dominated convergence, we have

ί D'vfe-^? f β ' n > (5.20)

and thus, combining (5.19) and (5.20) we obtain

ί Dn^(L-2δ)σN-
G\(Hί>δuH2,δ) (H1

(note that / = 0 near H1 and H2). Passing to the limit in (5.21) as δ->0 we find

ί Dn^(L-2δ)σN- J |D| (5.21)
G\(Hί>δuH2,δ) (H1,δuH2,δ)\(HίuH2)

ί N
G\(HiuH2)

By Radon-Nikodym, we may write D = F\D\ for some function FeL°°(|D|) and
|F| = 1 a.e. |D|. Thus we have F n = 1 a.e. |D|, and so F = n a.e. |D|. We turn now to
the proof of (5.18). Let e be any unit vector in RΛ We have

\ C/.(χo+fc) -/.(χo)] = \ ί Λ(*o - y) Uiy+Λ) -f(y)ldy
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for x0 G G\(HίδuH2>δ) and ε small enough. Given a point z we denote by a(z) any
measurable projection of z on H1. We have

and thus

^ιy.(*o+te)-/β(^^

On the other hand

\y-te-a(y)\ = ί\y-a(y)\2 -2ίe (y-a(y)) + tψ2

Therefore as ί->0 (and fixed ε) we have

)

Finally we observe that

lim 1 —rr =n(x 0),

since a(^)->^(x0) because x0 has a unique projection on H1. We conclude that

lim inf VI' e ̂  e n(x0).
ε-»0

Changing e into — e we obtain (5.18). D

As we remarked earlier, when there is only one geodesic g between H1 and Jfί2,
then \D\ is a uniform measure on g. The analogue of this when there are many
geodesies is the following

Theorem 5.5. Let Dbea measure as in Theorem 5.3 (for either Case A and Case B).
For 0 ̂  α < β ̂  L consider the slice

S(α, β) = {x|α < dist (x, Hx) ̂  β} (5.22)

(with dist=geodesic distance in Case B). Then

i CB-α). (5.23)

Proo/. Replace H1 by Hi uS(0, α). For this new problem E' = σ^ldi | (L — α). But we
can use D restricted to f/\S(O, α) as a variational measure for E' and obtain

Ef^ J |D|. Likewise, replacing H2 by H2uS(α,L),
S(α,L)

^ i N f ί ί PI-
S(O,α)

Adding these inequalities we obtain:

i \D\+ J \D\ = σN\d±\L.
S(a,L) S(O,a)
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Therefore

J \D\ = σN\dx\a. D
S(O,α)

3. The Many Hole Problem

We now turn to the description of all minimizing D fields in the general case with
many holes.

Suppose there are k holes Hl9 ...,Hk with degrees dl9 ...,dk (not necessarily
integral). Some of these may be zero. We assume £ ^ = 0 because, in Case A, we
can assume that the complement of U is also a hole with the appropriate degree.
First, let us consider the minimal energy EAtB.lϊdl9...,dp>0 are the positive d's
and dp+1?..., dq < 0 are the negative d% (5.4) gives us EAB in terms of a p x r matrix
A = {ai3) (with r = q—p). The set of minimizing A's (call it s/) is convex, as is the set
of minimizing D's.

Recall that D(Hi9 Hj) is the geodesic distance (different for Cases A and B). It is
realized by a finite sequence of strings (see Sect. II) running between a sequence of
holes. More than one sequence may be possible. To be more specific, let χ^=1 if
there exists a string between if, and Hj and χtJ = 0 otherwise. For χu = 1, define 9^
to be the set of all strings between Ht and Hj9 and Li} their common length.
Likewise, for χ y = i , let 3)Vj be the set of minimizing D fields (with di = l9dj=—ϊ)
constructed in the preceding section (the two-hole problem). If &;=(), ^tj

(respectively ^ y ) is a union (respectively sum) of the strings (respectively
minimizing D fields) connecting H{ to Hj (respectively with d t= + 1 , dy= — 1).

Now given an A e si we can construct a minimizing D field as follows:

D=Σ Σ ΉjDV, (5.24)
i = l j = P + l

where DίJ e S>ir Recall that when the d/s are integral the extreme elements of si are
given by BirkhofFs theorem, namely by a minimal connection in which each

Theorem 5.6. For Case A, every minimizing D field is given by (5.24).

We conjecture that the same is true for Case B.

Proof. Let M = {(/,/)|χy=l}. A little thought shows that we can rewrite (5.4) as
follows:

0., (5.25)
M

where the minimum is over μtj = — μn and Σ faj = ̂  for ΐ = 1 ,...,&. Pictorially, μiJ
j

can be thought of as the flux from i toy; it is not required that μtj has any definite
sign.

Suppose that (a,b)eM and (c,d)eM (all points being distinct) and that
geodesies gab e @ab, gcd e @cd (these are line segments). Suppose also that gab and gcd

intersect at a point P. In this case, we claim that either μab = 0 or μcd = 0. If not, we
can assume that μcd^μab>0. Clearly, D(Ha,Hd)<dist(Ha,P) + dist(P,Hd) and
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D(Hc,Hb)<dist(Hc,P) + dist(P,Hb). If (a9d) and (c9b)eM, then D(Ha,Hd) = Lad

and D(Hc,Hb) = Lbc, and we can replace the four numbers μab, μcd, μad, μcb by 0,
Vcd—ft*> μ«d + V>ab> Vab + AUan(* thereby strictly lower the energy. This construction
has to be modified in an obvious way if (a, d) or (c, b) φ M. The conclusion we reach
is that whenever ^abn^cd is not empty, then every minimum of (5.25) has μab = 0 or
μCd=0. The choice [(α,fc) or (c,d)] is universal; if μΛ& + 0 in one minimum and
μ c d+0 in another, then by taking the mean (which is still a minimum) we would
have a contradiction.

Let NcM be the set of (ij) such that μί7 =|=0 for some minimizer in (5.25). The
families of geodesies {&ab} for (a,b)eN are disjoint except possibly for the
endpoints. Let G = (J ^α d. Now let D be a minimizer. We claim that suppί) C G. The

N

proof of this is the same as the earlier proof (5.10) that suppD is contained in the
geodesies between the positive and negative holes. lϊxφG then remove a small ball
around x (thereby creating a degree zero hole). If the ball is small enough nothing
changes in (5.25) (recall the strict inequality of the preceding paragraph). Thus EA

does not change, but D'=(1 — χB)D, with χB being the characteristic function of the
removed ball, is an allowed vector field for the new problem, whence f |D| = 0.

B

For (α, b) e ΛΓ, consider Dab = FabD, where Fab is the characteristic function of
^α b. If ζe&QR") and ζ = ί on Hω ζ = 0 on Hb then, as is easily seen

-SDab.Vζ = σNaab, (5.26)

where <xφ is some constant that is independent of ζ. From the defining condition
(5.1)onZ)weseethatαflί,= -α b α and Σααb=rfα.By(5.25), ASjσN Σ I«JAΛ.

b (a,b)eN

On the other hand, J \D\ = \ X J \Dab\ [since the \D\ measure of the holes is zero
{a,b)eN

(see Remark 5.3)]. Thus f |D |£ |σ w Σ k*IA* [by (5.26)]. •
(a,b)eN

Remark 5.5 on the Relation of φ to D. Let Ω be an open set in R 3. In Sect. IV, to
every φ e C(Ω; S2) with Vφ e L2(Ω) we have associated a D field with the property
that divD = 0inS^/ [for the generalization to ΊR.N, see (B.7)]. It is a natural question
whether any vector field D with divD = 0 comes from a φ. The answer is no, as the
following, based on a remark of D. Sullivan, shows. Let S be a smooth closed
surface in Ω. Let D a smooth vector field with the property that some integral curve
of D is dense in S (for example S could be a two-torus, and D restricted to S is an
irrational twist of the torus). Then this D can not come from a φ, as we shall now
show.

From the definition of D in Sect. IV it follows that

(DV)φ = 0, (5.27)

since M 2 = l [and thus d e t ^ , φy, <pz) = 0]. It follows that φ is constant on the
integral curves of D and in particular φ is constant on S. Therefore D = 0 on S since
D = 0 whenever Vφ vanishes in two orthogonal directions. This contradicts the fact
that/)φ0on5.
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VI. Behavior of Minimizing Sequences for the φ Problem

As before we are given an open set U CR 3 and k holes Ht (disjoint compact subsets
k

of U). Let H = U Ht and Ω = U\H. Associated with each Ht is an integer dt. We are
ί = l

concerned with the behavior of minimizing sequences for the problem

£ = inff |Fφ| 2 (6.1)

under the appropriate conditions on φ, namely φeC(Ω;S2), VφeL2(Ω),
deg(φ,/ί i) = rfi and, in Example 4 only, φeC(U\H) and φ = constant on dU. In
Example 4 we also assume that 17 is regular.

Let φn be a minimizing sequence for (6.1) and let Dn be the field corresponding
to φn. By passing to a subsequence we may assume that Dn-^D weakly in the sense
of measures. We claim that ψ n ? m ( 6 2 )

weakly in the sense of measures. Indeed we have \Dn\ ^\Vφn\2; let us assume that
|φπ|2-^vweakly in the sense of measures. Then we have

2\D\£v. (6.3)

On the other hand, by Theorem 5.2

i\D\*±E. (6.4)

Since f v = £, we conclude that v = 2\D\. Again, by Theorem 5.2, D is a minimizer for
EA or EB, and thus we have the description of D given in Sect. V.

The conclusion of all this is that any minimizing sequence for the φ problem
inherits all properties of minimizing sequences for the D problem that we studied in
Sect. V. In particular, since D is supported on G, the union of all geodesies running
between holes, (6.2) implies that φn converges strongly in H1 to a constant on each
connected component of the complement of G. However, the fact that D comes
from a D", which comes from a φn, leads to some additional properties for D
beyond those implied by the fact that D is a minimizer for the D problem. To derive
these additional properties, Appendix E will play an essential role.

For simplicity we shall restrict our investigation to Examples 1-3 and with the
additional assumption that there are only finitely many strings between any two
holes.

Theorem 6.1. There is a minimal connection, C, which we write C = vgt, where the
gt

9s are strings (which are repeated according to their multiplicity in C), such that

β (6.4)

Dg is defined in Appendix D. In particular,

,f (6.5)

where δg is the one-dimensional Hausdorff measure on g. Consequently [by (6.2),
(6.5)],

(6.6)
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Remark 6.1. The point of this theorem is the following. If there is only one minimal
connection, then the D problem has a unique minimizer and Theorem 6.1 does not
give any additional information beyond that contained in (6.2). The interesting
case is where there are several minimal connections, say Cί and C2 for example.
Let Dγ (respectively D2) be a minimizer with support in C1 (respectively C2). Any
convex combination of Dγ and D2 is also a minimizer, but this cannot happen for
the φ problem. | Vφn\2 must converge either to 2\D1 | or 2\D2\ but cannot converge to
l^il + l^l? f°r example. This is a consequence of the quantization condition of
Appendix E.

Proof. We recall that
suppDc U gij9

(UJ)eN

where gtj is a string running between Ht and Hj (i.e. it is a line segment). The set N is
described in the proof of Theorem 5.6. N has the property that two distinct strings
in N can intersect only at a common endpoint. We can write D as

where gtj is oriented from Ht to Hj and vu= -vfi. By Theorem E.5 we know that
VijtZ. Moreover the divergence condition implies that Σ,vij=di for each
i = 1,2,..., k. The energy is given by J

where Ltj is the length of g{y Since the energy is minimal, it follows that vtj is a
minimizer for (5.25). We claim that this set of v(j defines a connection (which must
be minimal since the energy is minimal). Take any positive hole, say Ht. By the
divergence condition there must be at least one vo > 0. Go to Hj. If this is a negative
hole, then stop and replace vί7 by v^ —1. If Hj is a zero or positive hole, then keep
going until a negative hole is reached. Along this path replace all the v's by v — 1. By
repeating this construction Q times (where Q is the sum of the positive degrees), we
obviously have a connection. We claim that the remaining v's are all zero. This
follows from the fact that v is a minimizer for (5.25) and that replacing the residual
v's by zero would lower the energy in (5.25) and preserve the divergence
condition. D

VII. Minimizing the Energy with Specified Boundary Conditions

A problem that we have so far not addressed in this paper is the minimization of
the energy when φ is specified on the boundary of a domain (except for the special
case where φ is constant on the boundary). Our analysis of the D problem in
Sect. V is a useful guide to understanding the solution to certain open problems of
this genre. In particular we shall answer the following questions.

Let B be the open unit ball in R 3 and let

Cί = {φeH1(B;S2)\φ(x) = x on dB} . (7.1)

Let E{φ) = \\Vφ\\ (7.2)
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and

£ 1 = inf E(φ). (7.3)

Question 1. Is ψ(x) = x/\x\ a minimizer for EXΊ

Answer. Yes (see Theorem 7.1).
Next, let

C2 = {φ e H\B; S2)\φ(x) = #(x) on 3B},

where #: S2->S2 is a given smooth map. Let

£ 2 = inf

Question 2. Is #(x/|x|) a minimizer for £ 2?

Answer. No, unless g is an isometry (i.e. +g or — # is a rotation) or # is a constant
(see Theorems 7.3 and 7.4).

In other words, if g is any smooth map from S2 to S2, and if g is extended
radially to B, the extension is unstable unless g happens to be the constant map
(degree zero) or g is the identity map modulo an isometry (degree ±1).

We recall that a (smooth) map g from S2 to S2 is called harmonic if it satisfies
the equation, — Ag = g\Vg\2, where A is the Laplace-Beltrami operator on S2.
Harmonic maps from S2 to S2 have been classified (see e.g. [22, 35]) and their form
is given in the proof below of Theorem 7.4. They all have the property that they
minimize J \Vg\2 subject to the condition that the degree d of g is prescribed. In

s2

particular this integral is 8π|d|.
We also recall a result of Schoen-Uhlenbeck [31, 32] that if we take an

arbitrary domain Ω and minimize E(φ) in Hι(Ω,S2) with specified boundary
condition, then any minimizing φ has at most finitely many point singularities.
Our result implies that these singularities always have degrees ±1 (see
Corollary 7.12). In an earlier work Hardt et al. [19] showed that the degrees of
these singularities are bounded by some universal constant. This confirms the
observations on liquid crystals that stable point singularities have degree ± 1 [6].
It also confirms numerical studies by Cohen et al. [8] showing that singularities of
degree two or more are unstable. Our first result is the following:

Theorem 7.1. ψ(x) = x/|x| is a minimizer for Eί; in fact, it is the unique minimizer.

An obvious consequence of Theorem 7.1 is the following:

Corollary 7.2. Suppose g(x) = Rx, where Risa rotation in SO(3). Then ψ(x) = JRx/|x|
uniquely minimizes E2.

Our second result is:

Theorem 7.3. // g has degree + 1 , then gf(x/|x|) is not a minimizer for E2 unless
g(x) = Rx, where R is a rotation in SO(3).

Our last main result is:

Theorem 7.4. // g has degree d with \d\^29 then 0(x/|x|) is not a minimizer for E2.
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Proof of Theorem 7.1. Clearly we have

£1^£(x/|x|) = 8π. (7.4)

In order to show that ψ(x) = x/\x\ is the unique minimizer for Ex it suffices to show
that

E{φ) > 8π for every φeCu φ + ψ- (7.5)

This leads us to the question of finding lower bound for the energy.

A. Lower Bounds for the Energy

There is always a minimizer for Et and, if φ0 is a minimizer, we know from [32]
that φ0 is smooth on B except at most at a finite number of points in B. Therefore it
suffices to prove (7.5) for φ in the class

φ is continuous on B, except at a finite number of points in B}.

This will be achieved using the D field associated to φ. [An alternative to using the
result of [32] about minimizers is to use a theorem of Bethuel-Zheng (in
preparation) which states that C is dense in Cγ for the H1 norm.]

Let φ e HX{B\ S2) be smooth on B except at a finite number of points in B (we
do not assume that φ(x) = xon dB). Let D be the D field associated with φ as in
Sect. IV.

We have

dB B

for every ζ e C(B) with || Vζ \\ Loo S1 Recall that D n depends only on the values of φ
restricted to dB and, more precisely, D'n = φ-φxAφy, where x, y are orthonormal
coordinates on S2. On the other hand

with dt e Z and a{ e B. Consequently

f (D. n) = 4π deg(φ, S2) and £ dt = deg(φ, S2).
dB i=ί

Therefore we have

^ j ^ M e C(F> with HFζH^lJ. (7.6)

A basic lower bound for the right side of (7.6) is given by the following

Theorem 7.5. Let M be a compact metric space with distance δ(x, y), let μ be a
p p

probability measure on M and let v= Σ *Ά > where dteZ and Σ dt = \.
i = l l i=ί

Then
J(v)=max{J ζdμ-j ζdv\ \\ζ\\Llp£ 1} ^min J δ(x, c)dμ(x), (7.7)

ceM

where \\ζ\\uP = snp\ζ(x)-ζ(yWδ(x,y).
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Note that the right side in (7.7) is independent of v and that (7.7) is obvious if
p = l, namely v = <5Λ [take ζ(x) = <5(x,α)]. It follows that

min max {J ζdμ—\ ζdv} = min J δ(x, c)dμ(x).
V ζ C

Combining (7.6) and Theorem 7.5 we obtain

Corollary 7.6. Assume φ restricted to dB has degree one and satisfies D-n^Oon dB,
then

\σ-c\(D- ή)dσ. (7.8)
ceB

A generalization of (7.8) is given in Remark 7.5 below.

Proof of Theorem 7.5. An easy approximation argument shows that it suffices to

prove (7.7) in the case that μ= Σ «A, with α^O, Σ ^ = 1, and b^M. Write
k fc-l i = l l i = l

v= Σ <$,.— Σ <V (some points are repeated according to their multiplicity dt).
ί = l * i = l *

We shall use induction on k. As we have already indicated, the conclusions is
obvious for k = ί.

As in Sect. IV and V it follows from the Kantorovich theorem [see (5.4)] that

J=min{£ kΣtijδ(pi9nj)+ £ Σ stJδ(pi9bji9 (7.9)

k

the minimum being taken over the set of constraints ttj ^ 0, stj ^ 0, Σ Uj=1 f°Γ ^J
fc-l « k ί = 1

l^J^fc-1, Σ ίί/+ Σ Sί/ = 1 for all U^i^fc and Σ /̂ = α, for all;, l^j^q.
j= l j=l ί=l

Fixing the matrix S = (5y), consider the set τ of all matrices T=(ttJ) satisfying the
above constraints. The set τ is compact and convex, therefore

m m Σ Σ ί Λ * ; ) (7.10)

is achieved by some extremal point of τ. The following lemma, which is a variation
of BirkhofΓs theorem, gives a useful property of the extremal points of τ.

Lemma 7.7. Let y = (c1? ...,cπ) and ρ = (ru ...,rm) be n + m given nonnegative
numbers satisfying Σ c i = Σ r i - Assume m^2n and let Mm n(y,ρ) be the set of mxn
matrices with nonnegative entries and having the ct and rt as column and row sums.

I.e. TeMmin(γ,ρ)meansT=={tij},tij^O,Σίtij = cp Σ ίιV = rf. Mw>M(7,ρ) is clearly

a closed convex subset of (R+)m / l. If T is an extreme point of Mm>n(γ, ρ), then some
column of T has m — 2 zeros, i.e. for some je{ l , ...,w}, ίy = 0 for at least m—2
different Γs.

Proof. We can assume that m = 2n simply by adding 2n—m rows of zeros. The
lemma is trivially true for n = 1, m = 2 and we shall use induction on n. Let n ̂  2. If
T does not satisfy the lemma then each column of T has at least 3 positive entries.
Since T is extremal, it is obvious that every submatrix, A, of T must be extremal
(with respect to fixed row and column sums for A). Our goal will be to show that T
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has a kxn submatrix, A, that is not extremal, for some k^2. Let R denote the
number of rows of Γhaving n — ί zeros. The total number of positive elements of T,
call it Σ9 satisfies Σ^3n. Then R + (2n-R)n^Σ^3n. This implies that R^2n
- ln/(n -1)] < In - 1 , so R ̂  In - 2. Hence T has k ̂  2 rows with the property that
there are at least 2 positive elements in the row. A will be the submatrix of T
consisting of those k rows.

We claim that each column of A has at least 2 positive entries. Letj'e {1,..., n}
label some column of T. Suppose there are 2 rows of T with the property that each
row has one positive entry and that entry occurs at a common position j . If this is
true we are done, for it suffices to consider the (2n—2) x (n — 1) submatrix, B, of T
obtained by deleting those 2 rows and the/ h column. By induction, B is extremal
and thus has a column with at most 2 positive entries. If s labels this column then
column s in T has the same property (because column s had zeros in the 2 deleted
rows). This contradicts our assumption that every column of T has ^ 3 positive
entries.

Thus, we have found a k x n submatrix, A, of T with the property that every row
and column of A has at least 2 positive entries. This matrix cannot be extremal as
we now show. Pick some positive entry of A, walk along the row to another
positive entry, walk along that column to another positive entry, and so on until a
point (/, J) that has been previously visited is reached. We thus obtain a closed
path, starting at (/, J) through positive entries of A. Let F be the matrix that is +1
at (/, J), (— 1) at the next point in the path and so on. Off the path, Fi}=0. Clearly
all the row and column sums of F are zero. Moreover, for small

w(y,ρ), so Γ=i(Γ + + Γ_). D

Proof of Theorem 7.5 Completed. Let T— (ίy) be an extreme point of τ that
achieves the minimum in (7.10). By Lemma 7.7, there is some j , 1 gj^.fc —1 such
that ίy φO for at most two values of i. Suppose, for example, j= 1, tu 1 = 0 when
i φ 1,2, and ί 2 I = * I I Now fix T and S in (7.9), but replace the point nίbypί.By the
triangle inequality, (7.9) is not increased by this replacement. This means that
/(v)^/(v), where v is the measure with n± replaced by pl9 namely v has only k—1
positive terms and k — 2 negative terms. The conclusion follows by induction.

Remark 7.1. One may give an alternative proof of Theorem 7.5 using Graph
Theory - more specifically a result of Hamidoune-Las Vergnas [16]. By
approximation, we can always assume that μ=Σ ctjδbj with α,.^ 0, Σ «/=1 > bj e M,

3 1 β

and also α, e Q. Therefore, it suffices to consider the case where μ = - Σ <V (where
k fc-l

the points bj are not necessarily distinct). As above, write v = Σ δPi — Σ ^ s o that
the left side of (7.7) becomes i==ί ί=1

q k-ί k

where μ'= Σ ^ + β Σ <5K.andv'=# Σ δ

Pi Using the Kantorovich and Birkhoff

theorems as in Sect. IV we find that this maximum equals
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where the system (Pt) consists of the points (Pi)i^i^k each repeated q times, and the
system (JVZ) consists of the points (n^i£*gk-1 e a c ^ repeated q times together with
the points (bj)ι^j^q (counted with multiplicity one). It follows from the result of
[16], that in any connection σ, there exists some point pίo which is joined to every
(bj)i^j^q by disjoint paths. (Two paths are disjoint if they have no strings in
common.) In particular we have

^ £
1=1 j=l ceM

which leads to (7.7). D

Remark 7.2. Suppose M=B (the unit ball). It is easy to see by going back to the
proof of Theorem 7.5 that (7.7) is a strict inequality if Suppμ is not contained in a
single line and v has at least three atoms.

Proof of Theorem 7.1. From Corollary 7.6 we obtain

Ei^min J \σ-c\dσ = Sπ
kl^i dB

(the minimum is achieved when c = 0). Next we claim that ψ is the unique
minimizer. Let φ0 be a minimizer for (7.3) and let Do be the corresponding D field.
In view of Remark 7.2 we know that divD0 consists of a single Dirac δc and c must
be zero /otherwise 2 J |σ — c\dσ > 8π\ Therefore, φ0 has only one singularity with

V ** /
a nonzero degree, and that singularity is at x = 0. Finally, we have dφo/dr = 0
because

dr

2 dφ0

2

dr

(since φ0 restricted to every sphere, rS2, has degree one). D

Corollary 7.8. Assume φ: B-*S2 has the following properties:

φ(-χ)=- φ(x) ondB, (7.11)

D'n = Jφ = φ-φxAφy^0 on dB, (7.12)

and
2 ) = l . (7.13)

Proof We already know, by Corollary 7.6 that

\φ.ή)dσ (7.14)
dB

for some cεB. Thus, we also have [by (7.11)]

^ ί | - σ - c | ( D n)(-σ)dσ= J \σ + c\(D ή)(σ)dσ. (7.15)
dB dB

By adding (7.14) and (7.15) we find

^ f (2) tt)dσ = 4π. •(
dB
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Remark 7.3. We conjecture that the conclusion of Corollary 7.8 holds without
assumption (7.12).

Corollary 7.9 (Extension of Theorem 7.1). Let Ω be any bounded domain in R 3 , then
ψ(x) = x/\x\ is the unique minimizer for J | Vφ\2 under the constraint that φ — ψon dΩ.

Ω

Proof. Let BR be any large ball containing Ω and consider the problem of
minimizing E(φ) subject to φ(x) = x/\x\ on dBR. By Theorem 7.1, the minimizing φ
for BR is uniquely x/\x\. Now let φ be the minimizer for the Ω problem. If φ differs
from ψ in Ω, then there would be an alternative minimizer for the BR problem,
namely f(x) = φ(x) for xeΩ and f(x) = x/\x\ for xφΩ. This would contradict
uniqueness. D

Theorem 7.10 (Extension of Theorem 7.5). Let Mbea compact metric space and let
P

μbe a positive measure with total mass d e N, and letv= Σ df<5α., where d{eΈ and
p i=ί

Σ dt=d.
i = l

U t J(v) = max{f ζdμ-i ζdv\ | | ζ | | L i p ^ 1}.

Then inf/(v) (where the infimum runs over all p's, α('s, and d{s) is achieved by a
measure v of the form

for some 0^fc<^d — 1 .

Proof Follow the same argument as in the proof of Theorem 7.5. D

Remark 7.4. For the purpose of Theorem 7.5, it would suffice to have Lemma 7.7
only for the case m = n + l. The reason we proved it for m^ln was that this
extended version is needed for Theorem 7.10.

Remark 7.5. Theorem 7.10 gives us a way to compute a lower bound for the
problem

min ί
φ = ψo on dB β

provided D n ̂  0 on 3J8, but without the assumption that φ0 has degree 1. As far as
the D problem is concerned, it can happen that when d = 2, for example, the
minimum of/(v) occurs for three plus points and one minus point (i.e. k = 1). Just
take D n to be three Dirac masses of strength f placed in an equilateral triangle
around the equator. The minimizing v consists of three positive unit masses at the
vertices of the triangle and one negative unit mass at the origin.

B. Proof of Theorem 7.3

First note that if v(x) = g(x/\x\) is a minimizer for E2, then g must be harmonic.
Indeed v satisfies the equation —Δv = v\ Vv\2 in B and since v is independent of r, we
have —Ag = g\ Vg\2. We shall construct explicitly a map, w, which coincides with g
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on dB and whose energy is less than 8π. Let 0<a<ί and let A = (0,0,ά). We
introduce polar coordinates centered at A with the direction (0,0,1) as the pole.
Thus a point x in B has coordinates (r, θ, φ), where r is the distance to A, θ is the
polar angle and φ is the azimuthal angle. For a given angle θ e [0, π], let R(θ)
denote the maximum allowed radius (in B). The points (R(θ), θ, φ) with θ fixed and
φ e [0,2π) all have a common polar angle ψ(θ) relative to the origin 0. We easily
compute that

#(0) sin 0=sin [>(#)], tenθ = sin[ιp(θ)'](cos[ψ(θ)']-a)-ί. (7.16)

Our choice for u is

u(r9θ,φ) = g(tp(θ)9φ)9 (7.17)

so that its energy is

( φ2dr{r-2\Vθtφu\2}, (7.18)
0 0 0

where Vθφ = (d/dθ,(sinθ)~ιd/dφ). The r integration gives R(θ)sinθ which equals
sin[φ(0)], so (7.18) becomes

£ ( ι ^ s i n [ φ ( 0 ) ] r f 0 ? ^ ^ ^
0 0

(7.19)

Here gγ and g2 mean derivatives with respect to the first and second arguments.
Using (7.16) it is easy to compute

ψ'(0) = [1 - 2a cosφ(0) + α2]/[l - a cosφ(0)], (7.20)

sin2 [>(0)]/sin2 θ = 1 - 2a cosφ(0) + a2. (7.21)

Inserting this in (7.19) and changing variables from θ,φ to ψ,φ (with Jacobian
IφΊ""1), we have

J ίίφ{|gr2(φ,φ)|2[sinφ]~2(l-αcosφ)
o

)I2[(1 ~ 2a c°s</> + a 2)/(l - Λ cost/?)]}. (7.22)

If we set α = 0 in (7.22) we obtain E(g(x/\x\)) = iπ. To prove the theorem, it
therefore suffices to show that E{u)<%π for small a. Expanding (7.22) in a near
α = 0, we need to show that

2π

J dφ{\g2(ψ,φ)\2(simp)-2 + \gί(ψ,φ)\2}cosψ*0. (7.23)
o o

However, (7.23) can be expressed in coordinate free form as follows. Let e(σ)
= \Vτg(σ)\2, where σeS2 and Vτ is the tangential gradient. Then the left side of
(7.23) is

I(a)=$ e(σ)(aσ)dσ, (7.24)
s2

where α = (0,0,1) and dσ is the uniform measure on S2 with J" do = 4π. It is now clear
that J(α) is the change of E if we replace A = aa by A = ad, α e S2. Thus, to complete
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the proof we must show that every harmonic map g:S2-*S2

9 other than
g(x)= ±Rx, has the property that, for some oceS2, 7(α)φO. In other words, we
have to show that for some i e {1,2,3},

(7.25)

Equation (7.25) means that the center of mass of e(σ) is not at the origin.
Let Π denote stereographic projection from C->S2. If z =

Π(z) = (1 + \z\2)~\2x, 2y, 1 - \z\2). (7.26)

Clearly we have „ „

dσ = 4(ί + \z\2)~2dxdy, (7.27)

and if h:S2->C and iϊ = /ι°i7 :C-»C, then

\Vτh\2=i\VH\2(l + \z\2)2. (7.28)

If g: S2-+S2 and f=Π~x o g o J7: C->C, then
I M 2 = |F/|2(i + I/I2)"2(i + M2)2 (7.29)

If / happens to be holomorphic, then

\Vf\2(z) = 2\f'(z)\2; (7.30)

g is harmonic of degree one if and only if

f(z) = (Π-1ogoΠ)(z) = (az + b)/(cz + d) (7.31)

for α, b,c,de C, see e.g. [22, 35]. By a rotation of S2 we can assume that oo -> oo, i.e.
c = 0, d = 1. By a further rotation, z-*zeiw, we can assume α = λb with λ > 0. Thus we
may assume f(z) = b(z + λ).

From the above formulas

|z|2] "? ̂ ( z ) (7.32)

with
W1(z) = 2x, W2(z) = 2y9 W3(z) = ί-\z\2.

By symmetry, N2 = 0. If Λ>0 then Λ^φO. To see this, let K(x9y) denote the
integrand, and note that for x>0, K(x, y) < K(—x, y) for all y when λ>0. Thus,
JVi = 0 implies λ = 0. Finally, it is easy to see that JV3 = 0 if and only if \b\ = 1. But
/(z) = eiwz corresponds to g(x)=iίx with Λ being a rotation by the angle w about
the north pole. D

Remark 7.6. The proof of Theorem 7.3 shows something about harmonic maps
generally (even those of degree Φ ± 1). Iίg(x), for |x| = 1, is given on the boundary,
then g(x/\x\) can never be a minimizer if the center of mass of e(σ) is not at the
origin, x = 0. Here, e = \Vτg\2.

C. Proof of Theorem 7.4

Let d be the degree of g and assume v(x) = g(x/\x\) is a minimizer for E2. As we
remarked, g must be harmonic, and this is the case if and only if / ( = Π ~1 o g o Π) is
P(z)/Q(z) if d^O or P(£)/β(z) if d<0, with P and Q being polynomials and with
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|d|=max{degP,degg}. By assumption we have

J |Ft? | 2 gJ |Fφ| 2 , VφeC 2 .
B B

We have clearly J \yΌγ> —
B S2

679

(7.33)

(7.34)

In order to prove that \d\ g 1 we shall choose special functions φ of the form
described below. Let ε e (0,1) and let θ: [0,1] -»• [0, oo) be any smooth function such
that 0(1) = 1, 0(ί)=O for ίe[0,ε] and 0(ί)>O for ίe(β,l]. Let

φ(x)=Π
1

θ(\x\)

(with the convention that 0/0 = oo). Note that φ equals N = (0,0,1) on the ball
.6(0, ε). Moreover φ is smooth on B except at the points εxt with g(xt) = S
= (0,0,-1). Also φ(x)=g(x) for |x| = l. We claim that

(7.35)

(7.36)

(7.37)

we change variables

where ζ =
Indeed we have

E{φ)= J (\Vτφ\2 +

A direct computation shows that

dφ

- β ) + J
\dφ

δr

~dr (02W+I/(OI2)2\2 '

where C = |) and r = |x|. In order to compute f
,δφ

dr
and instead of x = (xl9 x2, x$) we use the new variables (r, ξ, η), i.e.

* r — X ,

Therefore we obtain

ί
\dφ

dxίdx2dx3= f dr J
r>ε R2

\dφ_
dr

Jdξdη,

where J is the Jacobian determinant, i.e.

a(x 1 ;x 2,x 3) =

d(r,ξ,η)

4r2

2\2

(7.38)

(7.39)

Combining (7.36), (7.37), (7.38), and (7.39) we obtain (7.35). Going back to (7.33)
and (7.34) with (7.35) we obtain
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[for simplicity we write / instead of /({)] that is

f \θ'(r)\2\f\2r2dξdη

U m^w (7 40)

We change variable and set t = ε/r9 oc(t) = θl - I, ί e [ε, 1]. From (7.40) we have

\2dξdn

Note that (7.41) holds for any function α: [β, 1] -+ [0, oo) such that α(ε) = 1, α(l) = 0.
Passing to the limit in (7.41) we find

\d\ Λ . . \a'{t)\2\f\2dξdηπ H d t U (7 42)

for any function α: [0, l]->-[0, oo) such that α(0) = 1, α(l)=0. Set

(It will follow from later computations that ί'<oo.) We choose now

x(t)=F'\F(l)(l - 0 ) and so we obtain from (7.42), π ^ F ( l ) 2 , and thus

Let ReSO(3) be a rotation. Set gR = Rog:S2-+S2, fR = Π~1ogRoΠ. Since u(x)
=g(x/\x\) is a minimizer, it follows that uR(x)=gR(x/\x\) is also a minimizer for the
boundary condition gR, and therefore we have [from (7.34)]

nW<\dS{ f MΛdξdη V'2 (744)

for every ReSO(3).
We shall average (7.44) over all rotations in S0(3). Let m be the Haar measure

left invariant on S0(3). We have by (7.44)

Γ \d\Ύ12 ι

(

(,tt£aj
 (X45)

so(3) (s2 + 1/Γ) C1 + ICI ) J
Note that for every function fc:S2-^R and every aeS2, we have

f k(Ra)dm(R)=^$k(σ)dσ (7.46)
4π 2

clearly the left side of (7.46) is independent of a and so it equals its average on S2,
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Le. — J dm(R) f k(Rά)da . Also note that by changing variables we have
4π soo) s2 J

dXdY
4π SV

V^~" ~ % ^ ' v v " v ~ " ( l + |Z|2)
- J k(σ)dσ= - J_k(Π(Z))ίΛ . | t y l 2 . 2 (7.47)

recall that the Jacobian determinant = —— 2 2 I. We use (7.46) and

( 7 4 7 ) W h h 117-iMI*

JJ°L,2 and α=i
and we obtain, for every £

. ΛfflώKit) l f \z\2dxdY
m (s2 + \fR(ζ)\2)2 π I (s2 + |Z|2)2(1 + |Z | 2 ) 2 ' l ' ]

A direct computation shows that the right side of (7.48) equals

(7.49)

Going back to (7.45) we obtain

[ IΛlΊl/2 1

and thus

We conclude with the next lemma that \d\ <2. D

Lemma 7.11. With G(s) defined by (7.49),

SG(s)ίJ2ds<l. (7.50)
o

Proof. Note that J «
J G(s)1/2ds= j G(s)1' ds
o l

[since G(l/s)=s4GCs)]. Set

Ins—1> for s > l ,J. - 1

so that, for s>ί,

We claim that the function

s-+b(s)/(lns) is decreasing on (1, oo). (7.52)

Letting t = s2 we have to check that

V P 1 " ^ 2 i s d e c r e a s i n 8 '
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that is

( l n O 2 ^ ( 1 ~ * ) l n t + - ( ί - 1 ) 2 . (7.53)

Differentiating both sides of (7.53) it suffices to verify that

which holds since

Thus we have proved (7.52). In particular, we deduce from (7.52) that

^ - ^ foral ls>l
/

Ins j/3

[since 2?(l) = 0] and also that

1 ( 1 »MWβ ) (7.54)
Ins ]β ψϊ In

for all s > 1 and all a > 1, where H is the Heaviside function [H(ί) = 1 for ί Ξ> 0 and
H(t)=0 for ί<0] . It follows from (7.54) that, for all a>\,

lns & (x b{aΛl lns

1 f Ins /I

Finally, we recall that

°? Ins , π 2

[ oo oo dxdy Ίj
which may be obtained by applying Fubini to J ί — -—^ . Thus we find,

o o (l+y){x +y)J
for all α > l ,

00

and we conclude that f G(s)ί/2ds<l by choosing for example a = e2. D
1
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Remark 7.7. Theorem 7.4 shows that if g has degree |d|2j2, then u{x)=g{x/\x\) is
not a minimizer. In fact the construction above shows that it is not even a local
minimizer.

Corollary 7.12. Let ubea minimizer for E(φ) in a domain Ω with specified boundary
condition. Then each point singularity of u has degree ± 1. Moreover, for every
singularity x0 in Ω we have

lim u(ε(x - x0)) = ±R(x- xQ)/\x - xQ\,
ε-»0

where R is a rotation.

Proof Without loss of generality we may assume that u has a singularity at x = 0.
We know from [31, Theorem III] and [33, Sect. 8] that u(εx)^>uo(x) in Hι(B) and
uniformly on every compact subset of 2?\{0}, where uo(x) = g(x/\x\) is a non-
constant minimizer for E2. It follows from Theorems 7.3 and 7.4 that g has degree
±1 and that ±g is a rotation.

Remark 7.8. The fact that x/\x\ is a minimizer for E1 (but not uniqueness) could also
be deduced from Theorems 7.3 and 7.4 and the Schoen-Uhlenbeck result. Indeed
let u be any minimizing harmonic map that happens to have a singularity, say at
x = 0. By [31] we know that u(sx) converges (modulo a subsequence) as ε->0 to a
map φ(x) with the properties that: (i) φ is a minimizing harmonic map with a
singularity at x = 05 (ii) φ(x) = g(x/\x\) for some g. Our Theorems 7.3 and 7.4
eliminate all possibilities except g(x)=±Rx. This shows that Rx/\x\ is a
minimizing harmonic map and therefore so is x/\x\.

VIΠ. Various Extensions

A. The N-Dimensional Case

A natural generalization is to replace R 3 by ΈLN with N^2 and S2 by S*"1. The
quantity which has the homogeneity of a length is now

E(φ) = ̂  \Vφ\N~1 (8.1)

(and not \Vφ\2) where φ is a map defined on a subset of RN with values into SN~1

and

| P > | 2 = Σ ( ^ M . (8.2)

The analogue of Theorem 1.1 is

Theorem 8.1. In all four examples

E=σN(N-ί)(N~1)/2L, (8.3)

where

σ N = 2π Λ Γ / 2 Γ(iV/2)- 1 (8.4)

is the area of S*"1 in KΛ L is defined in Sect. II.
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Proof. As before we construct upper and lower bounds for E. For the lower bound
we define D as in (B.7) and note that

{D^iN-iyW-^ψφf-1. (8.5)

Indeed, suppose that φ = (0,0,..., 1)', then φx. = (αίt l9 <xu 2 «*,#-1> 0)'* s i n c e ψXi is
orthogonal to <ρ. The matrix

(φXl>φχ2>--,φXN)

has its last row zero. Replace the last row by (α 1 ?α 2,...,%), and call M this new
(N x JV) matrix. We have detM = α D, so that

|D| = sup |detAf|.

On the other hand

|detM|g|α|Tπ A,
N - 1

where j8j= Σ α?j, and thus

In dimension iV, inequality (8.5) replaces the R 3 inequality \D\ <̂  \\Vφ\2, and for the
remainder of the proof of the lower bound we proceed as in Sect. IV.

For the upper bound we imitate the dipole construction of Sect. III. Let
77 R * " 1 - ^ " 1 be stereographic projection, namely

2 ) - 1 for i=l,...,iV-l and | | )

A straightforward computation yields

|Fi7| = 2(iV-l)1/2(l-f-|x|2)-1. (8.6)

Recalling (8.4) we obtain from (8.6)

f IFΠΓ-^σ^JV-iy*- 1 */ 2 . (8.7)

Given ε>0 we first construct a smooth map ω:lRN~ί-+SN~1 such that

J I F ω Γ - ^ σ ^ J V - l ^ - ^ + ε, (8.8)

ω = Const = e outside the unit ball, (8.9)

degω = l . (8.10)

The idea for constructing ω is the following. Let v(x) = x/|x|2 so that Π o v satisfies
(8.8) with ε = 0 and (8.10). Next, replace v by χv = ϋ, where O^^^l and χ has
compact support and χ= 1 on a large ball. Finally, replace v(x) by v(λx) with λ
large enough. In the general case, d> 1, we glue together d maps ω as above (with
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disjoint supports) and then rescale x. Analogously, for degree —1 we take v(x)
= \x\~2(—xux2, ..,xN-ι). Finally, having constructed ω, the basic dipole is
constructed as in (3.6) and (3.7).

Another consequence of the construction in the proof of Theorem 8.1 is the
following striking fact.

Theorem 8.2. For maps φ:SN~ί^SN~1, let

E(φ)= i \Vτφ\N-'.

SN-1

Then

inf E(φ) = \d\σN(N-ί)iN-1)l2. (8.11)

When JV^ 3, the behavior of minimizing sequences for (8.1) is the same as for
N = 3 as given in Sect. VI, namely if there are only finitely many strings between
any two holes and if φn is a minimizing sequence then, for a subsequence, \Vφn\N~x

converges in the sense of measures to σN(N — ί){N~l)/2δc, where C is a (single)
minimal connection. However when N = 2 the situation is different, as shown by
the following example.

Consider four points

with the degrees'^ = (—1)'. Here, we have £ = 2πL=4π and two minimal
connections CUC2 given by C1 = [α 2 5 α 1 ]u[α 4 ,α 3 ] and C2 = [α 2 ,α 3 ]u[α 4 ,α 1 ].
There exist minimizing sequences φn such that, for example, | Vφn\ —* 2π(δCί + δCl).
Such a sequence can be obtained as follows. Let ω ± : R-+S1 be any two maps such
thatω±(—oo) = (± 1,0), ω±(+oo) = (+ 1,0), ω± constant far out and f |Pω ± | = π.
With ω± we can associate "half dipoles" which we glue in an appropriate way on
each of the intervals [al9a2'], \β2,aϊ\, [«3,fl4]5 [α4,«i]. The corresponding
sequence φn has the property that φn-+(ί9 0) outside the square [0,1] x [0,1] and
φn->(—1,0) inside [0,1] x [0,1]. This lack of quantization in two dimensions is
also discussed at the end of Appendix E.

B. Replacing SN~X by

For physical reasons as explained in Sect. I, it is interesting to replace SN~1 by
WLPN'X which is the quotient of SN~X by the equivalence relation x~—χ. The
metric on R P * " 1 is that induced by S*"1. The energy is still given by (8.1).

The problem we face is to define the degree of a continuous map φ: Ω^>ΈLPN~1

(with Ω C R*) around a hole in Ω. Unfortunately, RP N " x is orientable if and only if
N is even and therefore the problem will be more difficult when N is odd. The
orientability of a manifold implies that the degree can be defined as an integral of a
Jacobian. However, the degree for N even (as we shall define it) is in \Έ, and we
shall be able to solve the minimum energy problem only when the given d/s are
integral, except for N = 2 in which case R P 1 is homeomorphic to S1 and a special
trick allows us to handle all df's.
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a) N even. Suppose Ω CIR^ and S is a smooth surface in Ω without boundary. Let
φ be C1 in a neighborhood of S with values in R P N " *. The vector field D can be
defined as in (B.7). Note that D in (B.7) is uniquely defined for N even because D is
not changed by φ-> — φ. We define.

d = σ - 1 J l ) . n . (8.12)
s

Since Dn is the Jacobian, f D n must be an integer times the area of 1RJ>N~ *,
s

which is ^σN. Therefore de\TL.
Thus, given φ e C(Ω; ΈLPN~ *) and VφeLN~ \Ω\ with Ω = U\(uHύ, we can

(by modifying the analysis in Appendix B) define the D field and deg(<p, H^e\Έ.
For the lower bound to E the D field analysis goes through as before and hence

, {Ht}, {2d;}), (8.13)

where L is the length of a minimal connection (with dt replaced by 2^). Note the
factor i in (8.13).

For the upper bound we can reproduce the dipole construction of Sect. Ill
when all the d{ e Έ as will be explained. In this case (8.13) becomes an equality for
the infimum, and our problem is solved. Also, the obvious analogue of the results in
Sect. VI go through. If some d{φTL the problem is open.

The reason that dt e Έ is special is the following topological fact.

Fact. Let ψ be a continuous map from X-^1BJPN~ \ where X is a simply connected
topological space. Then there exists a map tp: X-*SN~* such that ψ = Poψi where
P is the canonical projection of SN~1-^WLPN~1. (See the lifting theorem in [34,
p. 76].) If X is also connected, there are exactly two choices for ψ related by

Vl=-V>2
To construct the dipole when deΈ, first construct the SN x dipole as in

Sect. Ill and then compose this with P. However, if d φ TL we cannot do this because
by taking X = SNί in the above, we would end up with a continuous map
ψ:SN~ί-*SN~ί of degree dφZ; this is impossible.

The topological fact also allows us to conclude that if a hole Hi has a
neighborhood ω C U such that ωVίίj is simply connected then necessarily dt e Έ.
Simply take X = ω\jffί. In particular, if Hf is a point and if N^4,

b) N = 2. In this case every hole, even a point hole, can have dx φ TL. However R P 1

is homeomorphic to S1 and we can take advantage of this fact to solve the problem
in all cases. We identify S1 with {z e <C | \z\ = 1}. Define Q: S1 -+RP1 as follows:

β(z) = P(zO, where z'2 = z (8.14)

with P being the canonical projection as before.

Clearly Q(z) is independent of the choice of z'. Define R: R P 1 -•S1 to be

R(P(z)) = z2 (8.15)

(again, R is well defined). Note that R = Q~*.
Let φ: S1-^RP1 be a continuous map. We have

degφ = ideg(# o φ). (8.16)
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Given a map φ from Ω into R P 1 (respectively S1) we have

\V(Roφ)\ = 2\Vφ\ (respectively \V(Qoφ)\ = i\Vφ\). (8.17)

Given reals dΐ,d2, ...,dke^Z, then

E = πL(U,{Hi},{2di}). (8.18)

c) N odd. Here we shall confine our attention to cases in which Ω=U\(uHi) is
connected and simply connected. This includes the case in which all Ht are points.
Given a continuous φ:Ω->tLPN"1

9 there exists a continuous φ .Ω-^S^"1 with
φ = Poφ. Since there are exactly two choices for φ {φx = — φ2), we can define

deg(φ, Hd = |deg(φ, Hd\ e N . (8.19)

(The need for the absolute value is that deg(φ l 5iί i)= —deg(φ2,Hi) when N is
odd.) We also have that |Fφ| = |Fφ|.

Given nonnegative integers dl9...,dk, we easily conclude from the above that
the infίmum satisfies x 4 w -

E = σN(N-ίYN~1)/2L, (8.20)
where L is to be computed as follows:

(8.21)

where ε f= +1, all i. In particular, we emphasize that (8.21) solves the minimum
energy problem for liquid crystals with point defects and with the simplified energy
given by (8.1).

C. Energies with the Homogeneity of an Area

Let Γ c R 3 be an oriented, rectifiable Jordan curve. Consider the class of maps
φ: IR^XΓ-^S1 (not S2) which are continuous. Associated with each φ in this class is
an integer d e ΊL defined as follows. Let C be any small circle which links with Γ. On
C there is a natural orientation which is consistent with the orientation of Γ. Define

d = deg(<p,Γ) = deg(φ restricted to C).

The right side is the usual degree of a map from S1 to S1. Note that deg(φ, Γ) is
independent of the choice of C. The energy

E(φ)= J \Vφ\ (8.22)
R3\Γ

now has the homogeneity of an area (and not a length).
By analogy with the results of Sects. Ill and IV we expect that given d e ΊL

inf E(φ) = 2π\d\A, (8.23)
deg(φ,Ω) = d

where A is the area of a minimal area surface spanned by Γ.
More generally, if M is an oriented manifold without boundary, of dimension

m, imbedded in RN, and φ: R^M-^S^"" 1 " 1 is a continuous map, then one can
define (in the same way as above) deg(φ,M). The energy

E(φ)= J | F φ | " - ' w - 1 (8.24)
WLN\M
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has homogeneity (m+1) and we expect that given deZ,

inf E(φ) = c(N,m)\d\V, (8.25)
άeg(φ,M) = d

where V is the volume of a "minimal" manifold of dimension (m + 1) whose
boundary is M. Note that the case m = 0 corresponds to two point holes and (8.25)
reduces to (8.3). We could also consider a finite number of such manifolds
Ml9..., Mk and maps φ: R ^ u M j ) into SN~m~1 which are continuous except on
Mf. It is a natural question to look for inf E(φ) in the class of maps φ such that
deg(φ, Mt) = dt is prescribed. Presumably, the answer is a formula similar to (8.25)
where V is a kind of "minimal volume connection" associated with the Mt

9& and
the df's.

We have not investigated the validity of (8.23) (or (8.25)) in full generality, and
we shall discuss here only the case of a planar curve Γ=dU, where U is some open
set in R 2. Again, we split the argument in two parts: the upper bound and the lower
bound.

1. The Upper Bound. Let ω be any continuous map from R to S1 such that

J|ω' | = 2π|</|, (8.26)
JR.

degω = d, (8.27)

ω = e outside [ - 1 , + 1 ] . (8.28)

Let ftjRV-^S1 be defined as follows:

φn(x,y,z) = ω(nz/l) if (x,y)eU,

φn(x,y,z) = e if (x,y)φU,

where / denotes the distance of (x,y) to dU. Clearly deg(φM,Γ) = d and J \Vφn\
-+2πA\d\, where A is the area of 17.

2. 77ιe Lower Bound. The divergence-free vector field D is now replaced by a curl-
free vector field H as follows. To every map φ we associate H defined by

H = (φΛφx,φΛφy,φΛφz).

An easy computation shows that if φ is smooth on R3\Γ, then curlfί = 0 on R3\Γ
and, moreover, if J \Vφ\< oo, then

cuήH=2πdDΓ in ^ 7 ( R 3 ) , (8.30)

where DΓ is the basic divergence-free vector field over the curve Γ defined in
Appendix D. The proof of (8.30) is similar to that of the analogous formula (B.10)
for the D field. Moreover, (8.30) extends (by density) to maps φ which are
continuous on R3\Γ and with f \Vφ\ < oo. Evidently, we have the inequality

(8.31)

which plays the same role as 2|D|^|Pφ| 2. Therefore we have

J \Vφ\£ J \H\^- J H-cuήζ = 2πd$Drζ (8.32)
]R3 K 3 R 3
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for every smooth ζ such that |curl£| ̂  1. On the other hand, by Stokes' theorem

f D Γ .ζ=Jcurlζ ndσ (8.33)
R 3 Σ

for any surface Σ spanned by Γ, where n is the unit normal to Σ. Choosing
Σ = U x {0} and ζ(x, y,z)=±(0,x, 0) we obtain curlC= ±(0,0,1) and from (8.32),
(8.39) and the fact that n = (0,0,1),

f \Vφ\^2π\d\A, (8.34)
R3

where A is the area of U. D

Remark 8.1. The upper bound construction presumably extends to nonplanar Γ,
at least if the minimal area surface has no self-intersection. M. Gromov has
suggested that the lower bound construction might also extend by using Whitney's
duality theorem [37].

Appendix A: Approximation by Smooth Functions

Let ΩcWLN be any open set. For the purpose of this paper we are interested in
knowing whether we can approximate continuous Sk-valued functions on Ω with
derivatives in L2 by C00 Sk-valued functions, both for the uniform norm and energy
norm. We present here a result more general than we need.

Lemma A.l. Assume u ε C(Ω; R). Then for any ε>0 there is some ge C°°(Ω; R)
such that

Moreover if we also assume Vu e LPi(Ω) for some finite setί^pί<p2<. .<pm<oo
(in the distribution sense), then the above g can also be chosen to satisfy

\\r(g-u)\\LPi<ε (A.2)
for all ί.

Proof. This is essentially the same as the Meyers-Serrin theorem (see [25] or [1,
p. 52]). The only variation is to note, in the notation of [1], that ψku e CC(Ω) and,
therefore, we may choose εk such that

\\JεkHψjcU)-ψku\\L^ε/2k. D

Lemma A.2. Assume u satisfies the hypotheses of Lemma A.I and, moreover,
u e C(Ω; Sk). Then there is age C°°(Ω; Sfe) satisfying (A.I) and, if appropriate, (A.2).

Proof. By Lemma A.I (applied to each component of u) there is a sequence {hn} in
C°°(Ω;Rk+1) such that

II*»-K|IL--»0 [and

Assume that \\hn- u\\LOO < 1/2, all n. Let F: R k + x ->Sk be the radial projection, that
is F(x) = x/\x\. Note that F is smooth for x+0. Let gn(x) = F(hn(x)). Since hn-+u
uniformly, so does gn [and Vgn = F'(hn) Vhn-+F'(u) Vu in If, since F'(hn)->F'(ύ)
uniformly and Vhn-+Vu in ί/'j. D
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Remark. In Lemma A.2 it is essential that u is continuous. Suppose that

Ω = {x e R 3 I |x| < 1} and k = 2 and u(x) = — . This u has Vu e L2. However, there is
\x\

no sequence {gn} with gne C(Ω; S2)nfί1(Ω; S2) such that gn-+u a.e. and Vgn-*Vu
in ίA See [32].

Appendix B: Generalities About Degrees of Maps

Let TJcWLN be an open set and let HC U be a compact subset (called a /zo/e). Let
φ: U\H-*W* be a continuous map such that φ(x) φ 0, all x e U\H. We shall define
deg(φ,H) as follows. Let

tff = {;c|dist (*,#)<*}, (B.I)

and assume ε is small enough so that H4ε C U.

First, let ψ be any function in C(U; M.N) such that φ = φ on U\H3ε. I Such
functions certainly exist. For example let χeC(U) be such that ^

Γθ on Hε

\

then take ψ = χφ

_
X~\ί on U\H3ε,

From the general theory of degrees of maps (see e.g. Nirenberg [27] or Lloyd
[24]) the integer

d d(H3ε,0) (B.2)

is well defined. Part of this general theory is that d depends only on ψ restricted to
δi/3ε, but this is independent of the choice of ψ (by construction). Conceivably d
could depend on ε. However, it does not depend on ε (because if ε1<ε2 and ψ1

corresponds to εx we may take ψ2 = Ψi)
Hence we are entitled to define

deg(φ,/ί) = deg(φ,iΪ3ε,0). (B.3)

It follows from standard properties of degrees of maps that if φn-+φ uniformly
on every compact subset of U\H, then deg(φπ,iί)-*deg((p,ίf).

Let us note some explicit formulas for d in (B.2). We can easily construct ψ such
that ψ e C\H2ε\ TR.N) and φφO in U\Hε. For such ψ,

d= ί f(ψ(x))Jψ(x)dx, (B.4)

where / : R -̂̂ IR is any continuous function with compact support contained in
the connected component of 0 in RN\i/;(δfίδ) and such that j f(y)dy = l. Here

Jψ(x) = det(dψj/dxi) (B.5)

is the Jacobian determinant of ψ. Another formula for d can be obtained if one
chooses ψ with the aforementioned properties and additionally ψ = 0 at only
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finitely many points x l 5 ...,xm in Hε and J^ + O at these points. (Such a ψ exists by
Sard's lemma.) Then m

d=ΣsgnJψ(xi). (B.6)
ί = l

Examples. U = {x/\x\<ί} and H = {0}. Let φ1(x) = x and φ2(x) = x/\x\. Then

Now suppose that φ e C(U\H; ΊR.N) and Vφ e LN~X(U\H) (in ̂ ' ) . To such a φ
we associate a vector field DeLx(U\H; 1R.N\ with components Dp as follows.

B.7

which is obviously in ̂ (UXH). If, in addition, we assume that Fφ e LN(U\H% then
Jφ, given by (B.5), is in L\U\H) and

div D = NJφ in ®'{V\H). (B.8)

(This is clear when φ is C2; the general case follows by density, using Appendix A.)
Now suppose that φeC(U\H; S*"1) and VφeLN~\U\H), but we do not

assume VφeLN(U\H). Then

divD = 0 in 9\U\H). (B.9)

[Reason: By Appendix A, we can approximate φ by C2 functions φn with
ll<P»-^llL-^O,||F(φπ-φ^
= 1 => φ-dφ/dx—O => the iV vectors dφ/dxi are linearly dependent. By (B.8),
divD(φM) = 0, but D(φn)-*D(φ) = D in L1.]

Theorem B.l. ŝswm^ φeC(U\H; S^"1) am/ VφeLN-\U\H\ (in 2'). Then

J ) (B.IO)

for every ζ e Lip([7) wzί/ί compact support in U and ζ = ί on some neighborhood of
H. Here σN denotes the area of SN~X in ΈLN (σ 3 = 4π).

Proof By Lemma A.2 we can assume that φ e C^{U\H\ SN'X). Clearly we may
also assume that ζ e C°°(C/). With I(ζ) denoting the left side of (B.IO) we first prove
that I(ζ) is independent of ζ, and thus that it suffices to prove (B.IO) for one (.
Indeed,

I(ζi)-I(ζ2)=- ί D P(Ci-C2)= f (divD)(Cx-C2) = 0 (B.ll)
U\H U\H

(because ζχ — ζ2 has compact support in U\H).
Now observe that for all

NJθφ = D VΘN + NΘNJφ = DVΘN

y

which follows from a trivial calculation. Hence

- O = - ί Z> PC(B.13)
V\H



692 H. Brezis, J.-M. Coron, and E. H. Lieb

where we have used that (1 — ζ)N — (1 — Q is a C00 function of compact support in
U\H [cf. (B.9)]. Take ζ with the properties that O^ζ^ 1 and ζ = 0 on U\Hε. Then
the left side of (B.I3) is I = σN f f(ψ)Jψ, where φ = (l — Qφ and f(x) = N/σN for

|x| ^ 1 and /(x) = 0 for |x| > 1. (Recall that Jφ=0 on U\Hε.) Since f / = 1 and |φ| = 1
on dHε, we can apply (B.4) together with an approximation argument using
dominated convergence, to conclude that I = σNdεg(φ,H). D

Remark B.I. Let U cR^ be open, let HC U be compact and let φ e C^UXH; SN~ *).
Let Fbe open with VcU and with H C F". Assume that Fis bounded and that dVis
(piecewise) smooth. Then

dV

where v is the outward normal to dV. [To prove this, apply (B.10) to any ζ e C™(U)
with ζ = 1 on V. Integrate by parts and use (B.9).] Equation (B.I4) is the classical
formula for the degree. Note that

where x1,...,xN-1 are orthonormal coordinates in the tangent space to dV. On the
other hand, we can think of φ restricted to d V as a map from the N — l dimensional
manifold M = dV to SN~ *. This map has a Jacobian determinant, which is nothing
other than the right side of (B.I 5). Thus | D v can be identified as the right side of
(B.4) [with f(ψ) = 1 for |φ| ̂  1] with the integrating being over M, and not over V.
Alternatively, f D v/σN is the number of times (including sign) that φ covers SN~1.

Here are some consequences of Theorem B.I:

Theorem B.2. Let UcTR.Nbe open and letHuH2,...,Hk be disjoint holes in U and let

H= U Hu LetφeC(U\H; SN'1) with VφsLN-\U\H). Then

- f D Vζ = σN Σ ζ(Hd deg(φ, Ht) (B.16)
U\H i = 1

for every ζeC(U) with VζeL^iU) (in the distributional sense), ζ = 0 on dU and
ζ = ζ(Hi) is a constant on each Ht.

Theorem B.3. Let U, Hh and H be as in Theorem B.2. Let φ e C(U\H; SN'ί) with
Vφ E LN~\U\H). Assume also that φ is constant on dU. Then (B.16) holds for every
ζ 6 C(U) with Vζ e L°°(C/) (in the distributional sense) and ζ = C(Ht) is a constant on
each H^ Note that here we do not assume that ζ = 0 on dU.

The proofs rely on the following lemma.

Lemma B.4. Let VcRN be open and letFcW* be closed with FcV.F need not be
compact. Let φ e C(V\F; SN~ *) with Vφ e LN~1(V\F). Assume that φ is constant on
dV (no assumption is made if F=R N ) . Then

J DVζ = 0 (B.17)
V\F

for every ζeC(V) with VζeL"(V) and ζ = 0 on F.
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Proof. The intuitive reason that (B.I7) holds is clear. Indeed, set Ω = V\F; we write

ίDVζ= J ( D v)ί-J(divZ>X,
Ω dΩ Ω

where v denotes the outward normal on dΩ. However, dΩ consists of two disjoint
parts, namely dV and dF. On dV we have D v = 0 (since φ is constant on dV), while
on dF we have ζ = 0. On the other hand, divD = 0 on Ω [by (B.9)].

Since, in general, we do not assume that dV and dF are regular, the integration
by parts is not justified and the proof becomes more delicate. First, without loss of
generality, we can assume that ζeL°°(V). Otherwise, consider

x ) i f I C W I = n

nsgnC(x) if |C(x)|>n.

Clearly f D VζH-+ f D Vζ (by dominated convergence).
β β

Second, we can also assume that ζ vanishes outside a large ball. Otherwise,
consider a sequence ζn — ccnζ, where αw(x) = l for | x |^n, αB(x) = 2 —(|x|/n) for
n S |x| ύ 2n and αn(x) = 0 for |x| ^ In. Again, f D Vζn-+ J D F£ since D e LX(Ω).

β β

Next, we can also assume that ( = 0 on a neighborhood of F and that φ is
constant on a neighborhood of dV. Indeed let g: R-»]R be a smooth function such

that g(i) = 0 for |ί| ^ 1 and g(t) = t for |ί| ^ 2. Consider ζn(x) = -g(nζ(x)). It is clear

that ζn G C(V)nL™(VX ζn vanishes outside a large ball, || Vζn\\LOO S C\\ Vζ\\LO0) ζn = 0
on some neighborhood of F (namely {x | |ζ(x)| < 1/n}) and Vζn-+ Vζ a.e. on V. We
proceed in the same way with φ. Let G: R ^ I R * be defined by G(v)i = g{v^ for all i

(g as above). Let e be the value of φondV. Consider ψn(x) = - G(n(φ(x) — e)) + e. It
n

is easy to check that ψneC(V\F; R N ), t/?Λ = e in a neighborhood of dV [namely
{x\\φ(x)-e\<l/n}l \\ψn-φ\\L^C/n and Vψn^Vφ in L * " ^ .

Finally, we choose <pw = ψj\ψn\ (for π large enough), so that φn satisfies the same
properties as ψn and, moreover, ψn takes its values in SN~ι. Clearly Dn=D(φn)
-+D(φ) = D in L\V\F) and therefore $ DnVζn-> $ DVζ (by dominated
convergence). Ω Ω

In conclusion, it suffices to establish (B.I 7) with the additional assumptions
that ζ = 0 outside a large ball, ζ = 0 on a neighborhood of F and D = 0 on a
neighborhood of d V. Since K = Supp D n Supp ζ is a compact subset of Ω we may fix
a function α e CC°°(Ω) such that α = 1 on some neighborhood of K. By (B.9) we have
fD F(αC) = 0, and on the other hand, D V(aζ) = DVζ a.e. on Ω (from the
β

definition of α). D

Proofs of Theorems B.2 and B.3. lΐζί and ζ2 are two admissible functions with the
same values ζ{H^ for every j , then by Lemma B.4, applied to C = Ci — ίi w e h a v e

J D ΓCi= ί DVζ2 [choose F = R 3 and F = Hu(cU) for Theorem B.2 and
U\H U\H

V=U,F = H for Theorem B.3]. Thus, it suffices to prove (B.16) for one admissible
k

ζ. Take ζ = Σ ζi with each ζt = ζ{H^ near H; and Suppζ f is contained in a small

neighborhood of Ht. Then apply Theorem B.I. D
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Remark B.2. Let UcΊR.N be open. Assume that all the holes Ht are points a{ in 17.
Let D be any vector field in 1/(17; JRN). Let dt be any real numbers. Then the
relation k

for every ζeC(U) with VζeU°{U) (in the distributional sense), ζ = 0 on 317, is
equivalent to the relation

σNΣdiδai in

where δa is the Dirac measure at a e KΛ [In particular the D field in (B.16) satisfies
(B.I9) for point holes.] Equation (B.I9) looks weaker than (B.I8) because the class
of testing functions for (B.19) is more restrictive, namely C™(U). The equivalence of
(B.I8) and (B.I9) follows from the following general density lemma.

Lemma B.5. Suppose ζ is a function in C(U) with Vζ e L°°(C7) (in ®'(U)), ζ = 0on
dU and ζ is a constant on each H^ Then there exists a sequence ζn in C?(U) such that
ζn-+ζ uniformly on every compact subset of E7, || FζJL O O S II ^CIIL00? ^C«"^ ̂ C a.e. on U
and ζn is a constant on each H^

The proof uses the same techniques as in the proof of Lemma B.4 and therefore
we shall omit it.

Remark B.3. Assume the same conditions as in Remark B.2 except that (B.I8)
holds for every ζ e C(U) with Vζ e L°°(C7), as in the setup of Theorem B.3. Then, the
analogue of Remark B.2 is that (B.I8) is equivalent to

ί = l
in 9'(U), D v = 0, on dU, (B.20)

where v is the normal to dU. The relation D v = 0 has to be interpreted in a formal
sense since dU need not be smooth and since D is only L1.

Appendix C: Duality for Vector Fields

We recall a classical abstract duality principle (see [12, 30, 36]).

Theorem C.I. Let E be a Banach space and £* its dual. Let McE be a linear
subspace (not necessarily closed) and let Φ be a convex function from E into
(— oo, + oo] such that Φ(0) φ + oo and Φ is continuous at 0. Let Φ* be the conjugate
function on £*, namely

Φ*(/) = sup{</,W>-Φ(u)|W6£}. (C.I)

Then
infΦ=-minΦ*, (C.2)
M M1

where

M1 = {feE*\<f,u} = 0forallueM}. (C.3)

The following lemma will also be used.
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Lemma C.2. Let Ebea separable Banach space and let Nbea linear subspace in £ *
that is sequentially closed in the weak * topology. Let

JV1 = {u e EI </, w> = 0 for all feN}. (C.4)

Then(N±)1 = N.

Proof. It follows easily from the Hahn-Banach theorem that (JV1)1 is the weak *
closure of JV. To prove the lemma, therefore, it suffices to show that JV is weak *
closed. In view of the theorem of Banach, Dieudonne, Krein, and Smulian (see e.g.
[11, Theorem V.5.7]) we have only to check that JV = JVnJ3 is weak * closed, where
B is the unit ball in £*. But JV is metrizable for the weak * topology (see e.g. [3,
Theorem 111.25]) so it suffices to note that JV is sequentially weak * closed. D

Theorem C.I will be applied in the following two cases (A and B). In the
notation of Sect. V, we take

E = L\Ω; ΈLN), £ * = L°°(Ω; R * ) , (G5)

a Π MA>B = {D e EIJ D Vζ = 0 for all ζ e QA (respectively QB)}. (C.6)

Fix any D° e sίA (respectively sdB) and let

0 . (C.7)

Clearly,
EAB = 'mί{Φ{D)\DeMA (respectively MB)}, (C.8)

and, for every fe £*,

°+8up{f/ D-ίiDi}=ίτ ί / β l ) 0 ί
DeE (.+ 00 if

Lemma C.3.

eQA (respectively QB)}. (CIO)

Proof We shall omit the A, B subscript. Let JVc£* be the right side of (CIO). By
the definition of M, Nλ = M so that (JV1)1 = M 1 . We claim that JV is sequentially
weak * closed, whence, by Lemma C.2, JV = (JV1)1 = M 1 , which is precisely (CIO).
To check that JV is sequentially weak * closed, let ζn be a sequence in Q such that
Vζn-*fe E* in the weak * topology. We want to prove that / = Vζ for some ζ e Q.
By the uniform boundedness principle we know that || F C J L 0 0 S C. We can always
assume Cn(xo) = 0 for some fixed x0 e U. By Ascoli's theorem ζnk~+ζ uniformly on
compact subsets of U (respectively 17) in case A (respectively B). Clearly, ζ e Q and
f=Vζ. D

Applying Theorem C.I and Lemma C.3, we find that

£^, B =max{ί Vζ-D°\ | |ΓCIL-^1. f ^QA (respectively QB)}

= m a x K Σ d & H d 1 1 | V ζ \ \ L ~ £ l , ζ e Q A (respectively QB)}. (C.I 1)

This is precisely the statement of Theorem 5.1.
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Appendix D: The Basic Divergence-Free Vector Field on a Curve

Let g be a rectifiable curve in RN with no self-intersection and end points a and b,
a^rb. Let L be its length. To be more precise the curve can be parametrized by a
Lipschitz functioi} X(t): [0,1]->RN and we can always assume that X(ί)φO a.e.
Among the choices for X(t) there is a canonical constant speed choice denoted by
X0(t), so that |X0(ί)| = L a.e.

Now consider the problem of finding an Revalued measure, D, on RN such
that

suppDC0, (D.I)

divD = δa-δb in ®'(W). (D.2)

Theorem D.I. There is precisely one solution to the above problem, namely

<Dβ9φy=iφ(X(t)) X(t)dt (D.3)
o

for all φ e C^R^ R^). Here X(t) denotes any parametrization of g and (D.3) is
independent of the choice of the parametrization. Moreover, \Dg\ is the one-
dimensional Hausdorjf measure of g, denoted by δg. In particular

J \Dg\ = L. (D.4)
JBLN

Proof. It is obvious that Dg given by (D.3) is independent of parametrization and
satisfies (D.I).

Let us check that Dg satisfies (D.2). Choose ζ e C^IR*). We have

<D,, Vζ> = } Vζ(X(ή) X(i)dt = J ^ ζ(X(t))dt = ζ(b) - ζ(a). (D.5)
o o at

The last equality follows from the fact that Lipschitz functions are absolutely
continuous. Next, we establish uniqueness. Consider D — Dg and call it D, so that D
satisfies

suppDC0, (D.6)

divD = 0 in Φ'(R*). (D.7)

We have to show that D = 0. It follows from (D.6) that there is an Revalued
measure, m, on [0,1], such that

(D,φy=]φ(X(t)) dm(t) (D.8)
o

for all φeC/R*; R*). The existence of m follows from the fact that for any
continuous function, α, on [0,1] there exists some φ e CC(RN; RN) with φ(X(t))
= α(ί) and | |φ|| = ||α||. Thus, D can be viewed as an element of the dual of
C([0,1]; RN), but these are measures.

Next, we claim that

]vζ(X(t)).dm(t) = 0 (D.9)
o
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for every ζ e CfilR*; R) and a.e. T. Assuming that (D.9) holds we conclude easily
that m=0 (and so D = 0). Indeed, by differentiating (D.9) in the sense of
distributions we find

= 0 in

Choosing ζ(x) = xίθ(x), where θe C^°(RN) and 0 = 1 on some neighborhood of g,
we see that m = 0.

To establish (D.9) we fix T E ( 0 , 1) such that

and X{T) exists and Z(Γ)φO. (D.ll)

For any ε>0 (small enough) let A=X([0, Γ]) and J5ε = Z([Γ+ε,l]). Set
dε=dist(A,Bε). There exists a function FεeC?(ΈLN) such that

Fε = \ near ,4, Ffi = 0 nearB, (D.12)

where C is a constant independent of ε. By (D.7) we have

0 = (D, V(ζFε)} = <D, CFFe> + <D,FεVζ)=h

with

h = <D, CFFε> = T ζ(X(t)WFε(X(t)) • dm(t)
T

= TΓ(ζ(X(t))-ζ(X(T))WFε(X(t)) • dm(t) + ζ(X(T)) TΓ VFε(X(t)) dm(t).
T T

The last integral is <Z>5 VFε} = 0. We claim that 7 1 ^0 as ε-^0. Indeed

\IX\^CT\X{t)-X(T)\ \VFε(X(t))\ \dm(t)\^C-J- 7'\dm(t)\.
T aε T

T + ε

Since J \dm(t)\->0 as ε->0 (by dominated convergence) it suffices to check that
T

ε/dε remains bounded as ε->0. Suppose not. Then there exists a sequence εn-+0 such
that dεjεn-+θ. Thus, there are sequences tn^T+εn and sn^T such that
\X(tn)-X(sn)\/εn-+0. Clearly tn-+T and sn-*T since X is one to one. Observe that
X(tn)-X(T) = (tn- T)X{T) + o{tn- T) and similarly X(sn)-X(T) = (sn- T)X(T)
+ o(T-sn). Thus,

Since tn—sn^εn and X(Γ)=)=0 we have a contradiction. Therefore J ^ O .
Next,

Γ Γ + ε

I2 = φ, FeVζ> = J FC(X(0) dm(t) + ί Fe(Z(ί))Fζ(X(ί)) dm(t).
0 Γ
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T + ε

The last integral is bounded by C J \dm(i)\ which goes to zero. This establishes
T

(D.9) and hence (D.3). To prove (D.4) we use X0(t) in (D.3). First, we have

KAP φ>| ύ f \φ(X0(t))\Ldt = (δg, |φ|>,

and hence \Dg\^δg. On the other hand, f \Dg\ = L. Indeed we have

J \Dg\ = Sup I j φ(X0(t)) X0(t)dt I φe CC(R»; R") with || φ||L β β £ 1 j .

Let 7Π 6 C([0,1]; RN) be a sequence of functions such that || YJLoo ^Land Yn->X0

in L2(0,1). There exists a sequence of functions, t/^eQOR*; IR*) such that
ψn(X0(t)) = Yn(t) and ||φM||Lco^L. Letting φn = (ί/L)ψn we have

J φn(X0(t)) * 0 (ί)Λ = (1/L) J YH(t) X0(t)dt^L,
o o

and therefore J |Dβ| ̂ L. D

Corollary D.2. Lei everything be as in Theorem D.I except that hypothesis (D.2) is
replaced by

divD = 0 in 0'(R"\{α, &}). (D.I 5)

, ίfeere x̂z*5ί5 a constant c and two vectors A and B in RN such that

in

Proof. From (D.I5) and a standard result about distributions with support on a
point we have

divD=ΣcΛd«δa+Σc'ad"δb in ^(R"), (D.I 7)
α α

where the sums are finite. Since D is a measure, the right side of (D.I 7) contains only
zeroth and first order derivatives. Since J divD = 0, the zeroth order terms have to
be equal and opposite, namely c(δa — δb). Therefore,

for some vectors A and B. Transposing the right side of (D.18) to the left side and
then using the uniqueness part of Theorem (D.I) we derive (D.16). D

Finally, we mention another corollary which will be used in Appendix E. Let g
be a rectifiable curve in ΊR.N without self-intersection and end points a and b,aφb.
Let Ω be an open set such that g\{a,b}cΩ. Let D be an Revalued bounded
measure on Ω such that suppDc#, and divD = 0 in Θ\Ω).

Corollary D.3. Under the above assumptions there exists a constant c such that

D = cDg in

Proof. Extend D to all of RN by 0 outside Ω. Let D be the extension. We claim that
divD = 0 in @'(RN\{a, &}). Let ζ e C?(RN\{a9 b}) and let θ e CC°°(Ω) with θ = 1 on a
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neighborhood of gnSuppζ. We have

Ω

since θζeC?(Ω). We may now apply Corollary D.2 to D. D

Appendix E: Quantization and Weak Limits of Vector Fields

Let V be an open set in ΈLN with JV ̂  1. Let φ be a map from V into SN such that
VφeLN(V). Setφ ( )

J=det(φ,φ J C l , . . . ? φ J C J .

Similarly let φw be a sequence of such maps and set

Δ" = dQt(φ",φ"Xl,...,φlJ.
(E.2)

We are concerned with the following situation. Suppose φw-»φ a.e. and Vφn is
bounded in LN(F). Then Δn is bounded in L\V) so that, by passing to a
subsequence, we can assume that Δn tends to some measure μ in the weak *
topology of measures. In general μ + Δ unless Vφn^Vφ strongly in LN.

If one merely assumes that φn^κp a.e. and Vφn is bounded in LN(V) and if one
replaces Δn by JF^"!*, for example, then we may still assume that \Vφn\* tends
weakly to some measure v. However, in this case one can say virtually nothing
about v — I Vφ\N. It is a striking fact that despite the lack of strong convergence it is
possible to say something precise about μ — Δ. This is due to the fact that Δ has a
geometric significance. Lions [23] considered maps φ with values in WLN+1 instead
of SN and proved that μ — Δ is a sum (possibly infinite) of Dirac masses but with
arbitrary weights. Our result, Theorem E.I, uses the geometry of SN and shows that
there can only be finitely, many Dirac masses and that they have integer weights.
Our proof is completely different from that of Lions.

A typical example is the following. Let ψ be a smooth map from ΊHN into SN

which is a constant C far out. Let φ\x) = xp(nx) so that φn-+φ = C a.e. and Vφn is
bounded in LN. Note that Δn-^aδ0, where α= f det(ψ,ψXl, ...,ψXN)dx and

1SLN

a/σN+ί belongs to Z, since cc/σN+ί is the degree of ψ (cf. Appendix B). This example
displays a quantization feature which holds in the general setting.

Theorem E.l. Assume φn-+φ a.e., Vφn is bounded in LN(V) and Δn-^μ. Then there
exist p integers dl9d2, ...,dpeΈ and p points aί,a2, ...,apίn V such that

μ-Δ^σn^ΣdAr (E.3)
i=ί

The proof relies on three lemmas.

Lemma E.2. Assume Qisa cube in ΈLN and let φ, φ be two maps from Q to SN such
that Vφ,VφeLN(Q) and φ,φ restricted to dQ belong to WίtN(dQ), so that, in
particular, φ and φ e C(dQ). Then there is an integer d such that

\UΔ-Δ)~σN+1d (E.4)

where C depends only on the norms of φ and φ in W1'N~ι{dQ).
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Proof Consider the cylinder Q x (0,1) in R^" x and its boundary Γ. Γ consists of
three pieces Γo = Q x {0}, Γx = Q x {1}, and Γ2 = dQx [0,1], We recall that it follows
from the density result of [32] that if θe WUN{Γ,SN), then

idβt(θ9θXi9...9θXH)eΈ, (E.5)

where xl9x29...,% are orthonormal coordinates in the tangent space to Γ [cf.
(B.14)]. Let 8(x, t) = tφ(x) + (1 - ί)φ(x), x e β, ί e [0,1], and let θ = θ/\θ\. Note that
0 is well defined, at least if || φ — φ \\ LOoidQ) < 1/2 otherwise, the conclusion is trivial.
Also, \β\>ί/2 everywhere on Γ. Clearly,

Now we estimate J det(0,0Xl, ...,0,,,). Observe that

det(0, θXί9..., 0^) = i^pxdet(ff9 ffXl9..., ^ )

and §t = φ — φ. Since we are now on Γ2, one of the Xj may be taken to be L
Therefore,

If det(0,0x l,...,0xJ ύ

where C depends only on WUN~1(dQ). D

Remark E.I. Clearly, Lemma E.2 extends to domains other than cubes under
appropriate assumptions on the regularity of the boundary.

For every /ι>0, set

Qh={xe1RN\\xi\<h/2,i=ί,...,N}.

Lemma E.3. Let fn be a sequence of functions on V which is bounded in L1(F). Let
h>0. Then, for a.e. a eTR.N there is a subsequence fnk (depending on a) such that fnjc

restricted to (a + dQh)r\V is bounded in L\(a

Proof We consider only the case where N=2 since the argument is the same in the
general case. Extend fn by zero outside V and for a.e. y e 1R set

g«(y) = ί (IΛ(χ, y)\ + l/.(χ, y+h)\)dx.

Note that h

0

Applying Fatou's lemma we deduce that lim inf gn(y) < oo for a.e. y e IR. Similarly,
if we reverse x and y. Therefore, for a.e. α e R 2 , there is a subsequence fnk

(depending on a) such that fΛk restricted to a + dQh is bounded in Lγ(a + dζ)h). D

Lemma E.4. Let λn be a sequence of measures on V such that λn—±λ and \λn\-* v
weakly in the sense of measures. Let Q be an open cube such that Q C Vand v(dQ) = 0.
Then λn(Q)-+λ(Q).
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The proof is straightforward; approximate characteristic functions by con-
tinuous functions. D

Proof of Theorem E.I. Without loss of generality we may assume that |zlw|—^ v
weakly in the sense of measures. We shall say that an open cube Q is a good cube if
QcV and Q satisfies the following properties:

(i) there is a subsequence ψnk (depending on Q) such that Vφnk restricted to dQ
is bounded in LN(dQ\

(ii) v(Sβ)=0,
(iii) φn^φ a.e. on dQ.
The proof consists of three steps.

Step 1: For every good cube Q one has

OJV+1

Indeed, VφΛk is bounded in LN(βQ) and therefore φnk^φ in L°°(δβ) (by the
Morrey-Sobolev imbedding theorem). Applying Lemma E.2 we see that there
exists a sequence of integers dk such that

\$(Ank-A)-σN+ίdk^0.

The conclusion follows since, by Lemma E.4, we have f A"k^>μ(Q).
Q

Step 2: μ({#}) e TL for every aeV. Let β ; be a sequence of good cubes such
σN+ί

that α G β, for all and |(y->0. Such a sequence exists by Lemma E.3 applied to
fn = \Vφn\N [for (ii) and (iii) the argument is standard]. We know from Step 1 that,
for all j ,

1
σN+ί\ Qj

Finally, we let j^oo and conclude, using the fact that J A^O.
Qj

It follows from Step 2 that μ has only finitely many atoms. The atomic part of μ
p

will be denoted by σN+ί Σ ^Af with d{eΈ and ate V.

p

Step 3. Let m = μ — A—σN+1 Σ diδa.. We claim that m = 0.

Indeed, by Step 1, we know that σ>+ ̂ ( β ) e Έ for every good cube Q. Let F' be
an open set with compact closure in F. Since m has no atoms there is some β>0
such that m(Q) = 0 for every good cube, Q, with \Q\ < ε and β n V φ 0 (the argument
is by contradiction). Let h>0 be such that /ιN<ε and /ι<dist(F^δF). Then
χQh*m=0 in ®'(F'), since m(x — βΛ)=0 for a.e. xeV (note that x — Qh is a good
cube for a.e. x e V\ by Lemma E.3).

On the other hand, h~NχQh*m^m as h-+0 and therefore m = 0 in V. D
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Corollary E.5. Let φn be a sequence of maps from SN into SN satisfying the same
assumptions as in Theorem E.I. Then the same conclusion, (E.3), holds. (In (E.I) and
(E.2) one has to interpret the xt as orthonormal coordinates on SN.)

Proof. Use two stereographic projections (for example north and south poles) and
note that the measure Δdx is invariant under diffeomorphisms. D

Finally, we consider the situation in which there is a sequence of continuous
maps φw from ΩcK* to S*"1 (ΛΓ^3)with VφneLN~ί(Ω). Associated with each φn

is a vector field Dn given by (B.7). Let us suppose that Vφn remains bounded in
LN~ί(Ω) so that Dn is bounded in L\Ω\ and thus we may assume that Dn-^D
weakly in the sense of measure. Let us suppose that

suppDC^, (E.6)

where g is a rectifiable curve in Ω without self-intersections. I.e. there is a Lipschitz
map X: [0,1]->Ω which is injective and such that X((0,1))CΩ. Since divDw = 0
[see (B.9)] it follows that divD = 0 in Q)\Ω) and thus, by Corollary D.3,

D = cDg, (E.7)

where Dg is given by (D.3). Appendix D only tells us that c in (E.7) is some constant,
but the fact that φn takes values in S^"1 leads to the following

Theorem E.5. Under the conditions on φn just stated, the constant c in (E.7) is an
integer multiple of σN.

Proof. Without loss of generality we may assume that \Dn\ —̂  v weakly in the sense
of measures (in general, suppv need not be contained in g). Consider, as in
Appendix D, the canonical parametrization, X(t), of g and fix some Te(0,1) such
that X(T) exists, ϋ=X(Γ)Φ0 and also v({Z(T)}) = 0. Set a=X(T).

We wish to find a hyperplane Π through a with the following properties:
(i) vφΠ-a,

(ii) \Vφn\ restricted to Π is uniformly bounded in LN~ί(ΠnΩ),
(iii) v(17) = 0.
This construction is possible - indeed (i), (ii), and (iii) hold for almost every Π.

Using (i) we can find r > 0 (small enough) so that

gnΠnB(a,r) = {a}. (E.8)

Indeed suppose not; then there exists a sequence ίMe(0,1) such that X(tn)eΠ,
X(tn) + a, and X(tn)^a. We may always assume that tn-^t e [0,1] and, since X is
injective, we must have t = T. On the other hand, (tn -T)~ ι(X(tn) -X(T))eΠ- a,
and at the limit we find veΠ — a; this contradicts (i). Further, we may also assume
that B(a, r) C Ω. Let ζ be a smooth function such that ζ = 1 on B(a, r/2) with support
in B(a, r). Let H be the open half-space determined by 77 and which contains a — v,
and let v be the outward normal to H. We have

P) (E.9)
H Π

Using (ii) and Theorem E.I, we know that (for some subsequence still denoted Dn)

(E IO)
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with fel}{Πc\Ω) and d feZ. The reason that we can apply Theorem E.I is the
following. Since \Vφn\ restricted to Π is bounded in LN~1(ΠnΩ) and N ^ 3 , it
follows that, for some subsequence, φn converges a.e. (on ΠnΩ) to some limit ψ
and VψeLN~1{Πr\Ω). Note that this may fail when ΛΓ = 2. (The case JV = 2 is
special and will be examined subsequently.) We may always choose r so small that
B(a,r) contains at most one αί5 namely a. Let d be the coefficient of δa in (E.10).
From (E.9) we have

H Π

On the other hand, by (iii) and Lemma E.4 we see that

ilT Vζ^iD Vζ. (E.12)
H H

We claim that

where c is the constant introduced in (E.7). To prove this, let us assume there exists
a 0 < Tx < T and a radius r such that

(i) X(t)eH for T^t<T,
(ii) X(i)φB(a,r)nH if tφ\TuT). { ' }

If this is so then, with τ = {ί | X(t) e B(a, r)nH}9 it is easy to see that

= c ] Vζ(X(t)) X(t)dt=clζ(X(T))-ζ(X(Tim = c.

The theorem follows from (E.I5) and (E.ll) by letting r->0, so that the integral in
(E.ll) goes to zero.

Now to prove that (E.I4) can be satisfied observe that X is differentiable at T so
that X(t)=X(T) + v(t -T) + o(t - T), so that (i) is satisfied for t < T and T-t«x
for some α. Likewise, if β > t - T > 0 then X(t) φ H. The curve X(t) for 1 ̂  t ̂  β + T
is closed and therefore has a positive distance from the point a. Call it δ+. Likewise
|X(£)-α|^<5_>0 for 0<Ξί^Γ-α. Choose r<min(<5 + ,<5_). For t^T either
X(i)φH or μr(t)-α|>r. For t<T, either X(ί)eiί or |Jf(ί)-α|>r. This accom-
plishes (E.14). D

We turn now to the case N = 2 which is not covered by Theorem E.5. Suppose
φn is a sequence of continuous maps from Ω c R 2 to S1 with VφneL1{Ω). Let us
suppose that Vφn remains bounded in LX(Ω) so that Dn is bounded in L1(Ω), and
thus we may assume that Dn-^D weakly in the sense of measures. Let us suppose,
as above that SuppDCg, and therefore, for some constant, c, we have

Theorem E 6. Under the conditions on φn just stated, and also that φn-+C a.e. on Ω,
where C is a constant, then the constant c in (E.I6) is an integer multiple of σ2 = 2π.
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The proof is the same as the proof of Theorem E.5 and we shall omit it. The
assumption φn->C a.e. is essential, as the following simple case shows. Let Ω be the
disk { X G R 2 | | X | < 1 } and let g = {(χuχ2)\χί = 0, \χ2\<*l} be a diameter. Let
/:1R->]R be any smooth function with / ' e L ^ R ) . The sequence φn((xι9X2))
= (cos/(nx1),sin/(nx1)) has all the right properties except that φn converges to
two different constants for xx >0 and x t <0 [provided /( + oo)— /(— oo) is not an
integer multiple of 2π]. On the other hand, the limiting D field is cDg with
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