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SOME PROPERTIES
OF HIGHER ORDER SOBOLEV SPACES

By Haim BREZIS and Felix E. BROWDER

Introduction

Assume Qisanopensetin R",m>1isanintegerand 1 <p<oo. Let ubeafunctionin the
Sobolev space W 7(Q2) and let T be a distribution in LL Q) » W™™7(Q). In the present
paper we are concerned with the following question: Under what conditions is the function

T (x)u(x) integrable on Q (for the Lebesgue measure) and if so does J T (x)u(x)dx equal
Q

{T,u) (where {.,.)> denotes the scalar product in the duality of W™™7(Q) with
Wa P (Q))?

In earlier work ([3], [4]) the authors have considered the case of first order Sobolev spaces
(i.e. m=1). Such results have had applications to the study of singular elliptic equations,
singular either because ora strong nonlinearity or because of singularities in the coefficients as
for example in Schrodinger operators with singular potentials (see [2], [5]).

The techniques we use in the present paper differ considerably from the technique we used
in our previous work. The main reason is that there is no obvious truncation operation
within the space W' ?. Instead we must rely on the delicate truncation procedure
introduced by L. Hedberg [11]for W™ ? spaces. The usefulness of Hedberg’s technique in
the study of strongly nonlinear elliptic equations has been originally pointed out by
J:R.L. Webb [15].

The plan of our paper is the following: In section 1 we discuss Hedberg’s truncation

* method and we prove:

THeOREM 1. — Assume TeLl (RY)AW ™7 (RY) and ue W™P(R™). Suppose
T(x)u(x)2f(x) a.e. on R" for some feL' (RY). Then TueL!(R") and:

jT(x)u(x)dx=<T, ud.
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In section 2 we deal with various extensions of Theorem 1, in particular with the case
where QRN and the case where T is a measure.

In section 3 we present an application to the solvability of a strongly nonlinear elliptic
equation. ‘

In section 4 we consider the connection between our results and earlier work of
J. Deny [8] dealing with the case where T=0. We thank F. Murat and A. Ancona for
stimulating discussions concerning paragraph 4.

1. Hedberg’s truncation method for Q= RN

We start with a self contained exposition of some of Hedberg’s devices [10], [11] which are
relevant for our study. We follow essentially the presentation given in [15]. Throughout
section 1 we shall deal only with the case where Q=R". For simplicity we write W™ ?
instead of W™ ?(RY), etc. and we denote by C various constants depending only on m, p
and N.

The following result plays a central role.

THEOREM 2. — Given u in W™ ? there exists a sequence {u, } such that:

-

1) . u,e W"?nL®, suppu, is compact;
) lu, (x)| S| u(x)] and /u,,(x)/u(x)_Z_O a.e. on RY;
3) ' u,—>u in Wm? as n-— .

We first deduce Theorem 1 as a simple consequence of Theorem 2.

Proof of Theorem 1. — Let {u, } be the sequence defined in Theorem 2. It follows easily
from (1) (using convolution with mollifiers) that: ‘

) JT(X)un(X)dx=<T, Uy -

By Theorem 2 the right hand side in (4) converges as n — oo to { T, u). On the other
hand, we have Tu,2 —|f| a.e. We deduce from Fatou’s Lemma that Tuel'. We

conclude by dominated convergence that JTun dx - JTu dx and thus JTu dx={T,u).

Proof of Theorem 2. — We distinguish two cases:
(i) The case mp>N;
(ii)) The case mp<N.
(i) The case mp> N.

We fix a function {,eCy such that 0<(,<1 and (,(x)=1 near x=0. Let
Ca(x)=C; (x/n). Then u,(x)=C,(x)u(x) satisfies all the required properties (since ue L®
by Sobolev’s Theorem). :

(i1) The case mp<N. »
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We may always assume that u has compact support (otherwise we apply the following
construction to {,uinstead of u). Since ue W™ for every 1 <p, <p we may represent u as
a Riesz potential:

(5) u=L,x¢
(seee.g.[14], Chap. V) where I (x)=|x|""N and @ eL” for every 1 <p, <p with:
(6) el =Cllullwn:.

We recall that by the Hardy-Littlewood-Sobolev Theorem (see e.g. [14], Theorem 1,
p. 119) the convolution I, % ¢ is. well defined provided @eL?: for some p, such that
1=p,<N/m(and then I,, xoeL?% if p, >1 and 1/q,=(1/p,)—(m/N)).

Let:

(7) , v=L,x|o|

Let He C*(R) be a function such that 0SH<1 and:

1
H(r)= 1 when |t|§§,
0 when |¢]=1.
Set.:
8) u,,(x)=H<%v(x)>u(x).

We shall now verify that u, satisfies all the required properties in Theorem 2. The
argument relies heavily on the following Lemma due to Hedberg [10] which we prove in the
Appendix for the convenience of the reader.

LemMa 1. — Let e LP withp, <N/m. Let M\ be the maximal function of (). Then
there is a constant C depending only on m and N such that:

IDE(,, * ) [SCMY)B/m (@, *|y|)-'B/m  ge in RN,

for every multi-integer B with 0Z|B|<m—1.

Proof of Theorem 2 continued. — Itisclear that|u(x)|=Sv(x),|u,(x)|=nr,u, > uin L?. In
order to prove (3) it suffices to check that D*u, - D*u in L? for every a with [o|=m. An
easy computation based on Lemma 1 shows that:

) ‘DBHGU)
n

(*) M) (x)=Supr=™ j s V()| dy.

r>0 |

SCnIB/m| M@ [BVm a.e. on RV,
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for every p with 0Z|B|=m—1 and:

(10) l D*H (% v)

for every a with |a|=m.

sCn '(Me+|D"v|)

-On the other hand we have by the Leibnitz rule:

(11) <Cc Y

[Bl+{Y|=m

au" |: | <lv>:|u <1v> uu
n n
IBI21, |yl21

Combining (9), (10), (11) and Lemma 1 we find a.e.:

| D ul.

D"H(1 v)
n

SCn '!(Mo+|D*v|)v+Cn~mpt/m M o.

(12) ’D“u,,—H(lv)D“u
n

It follows that D*u, -» D%u a.e.

Also we have:
(13) [D*u,|SCMe+|D*v|+|D*ul).

Recall that by the theory of singular integrals D*ve L? (see e. g. [14], Chap. II). Recall
also (see e. g. [14], Chap. I) that MeeL?. We conclude that D*u, —» D*u in L”.
Remark 1. — The same proof shows that if we define: ’

u, (x)=H<% E(x)>u(x) where v(x)=I, %V
and \ is any function such that ye L? n L?* (p; <N/m)and | @ |V a.e., then u,, satisfies (1),

(2) and (3).

Remark 2. — The proof of Theorem 2 shows that the sequence u, defined by (8) has the
additional property that ||u, ||y, <C||u||y~, where C depends only on m, p and N.

2. Various extensions of Theorem 1

We shall first be concerned with the extension of Theorem 1 to domains Q< RY. More
precisely the question we shall investigate is the following:

Assume Q< RN is an arbitrary open set. Suppose:

Tell. Q)W ™" (Q), ueWpr(Q)
and suppose:
T u(x)=f(x) a.e. on Q for some feL!(Q).

Question (Q,). — Can one conclude that TueL'(Q) and that:
J Tudx=<{T, u)?
Q
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The answer to Q, is positive when m =1 (see [4]); however the answer seems to be unknown
in general.

We shall prove that the answer to Q, is positive under various kinds of additional
assumptions.

In section 2.1 we prove that if in addition J | T(x)|dx < oo for every R < oo where
QN Bgp

By ={xeR"; |[x|<R}, then the answer to Q, is positive.

In section 2.2, we prove that if 0Q is regular (locally) then the answer to Q, is
positive. In fact using a result of Hedberg [11] it suffices to assume very little regularity
for 0Q.

In section 2.3 we consider the case where T is a measure (instead of a function in L)
and also the case of multiple T, and u; such that Y T,u;> f for some feL*.

2.1. THE CASE WHERE ( IS ARBITRARY AND:

J | T(x)|dx< o0 for every R< 0.
Qn By

Throughout section 2.1 we assume that Q is arbitrary. We shall prove the
following.

THEOREM 3. — Let TeLl

loc

Q)N W™7(Q) be such that:
(14) J |T(x)|dx<oo  for every R<oo.
QnBp

Assume ue Wi 2(Q) and T (x)u(x)2 f(x) a. e. on Q for some fe L' (Q).
Then TueL!(Q) and:
J Tudx=<{T, u).
Q

Proof. — The proof is straightforward when mp>N; therefore we may assume that
mp=N. Using{,uin place of u we may always reduce to the case where supp u is bounded.

Set:
© 7 (x) = u(x) if xeQ,
Y=Y 0 if xeRM\Q.

Then u lies in W™ ?(R") and also ue W™ (RN) for every 1 <p, <p. Thus we may write:
u=I_%¢

for some peL*(R™) and e L for 1<p, <p.
As in the proof of Theorem 2 set:

v=I,%|@|,

u"=H<lv>u.
n
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Since ue W ?(Q), there is a sequence u'eC¥(Q) such that u/—»u in W™P?(Q)
(and a.e.). For each j we perform the above construction and we set:

w=I,%q,
/=L, x| @],
u{;=H<lvj>uj.
n
Fix {e CT (RY). We clearly have:
(15) f TCujdx=<T, Lu}).
Q

As we keep n fixed and let j — oo we see that:

jTCu{ldx—»J TCu,
Q Q

by dominated convergence [and assumption (14)].
On the other hand, by Remark 2 we have:

”u{;“w"'-v(n)éc”Ej”wwml\')éc
(where C is independent of j and n).

Therefore u) converges weakly in Wi ?(Q) to u, as j » oo; and thus {u) — Cu, as
j— o0. Passing to the limit in (15) as j —» oo we find:

J TCu,=<T,Lu,).
Q .

We conclude easily (by the same argument as in the proof of Theorem 1) that Tue L! (Q)
and: ’

J Tudx=<{T, u).

~ 2.2. THE CASE WHERE 0€) IS LOCALLY SMOOTH. — Throughout section 2.2 we assume
that 0Q is locally smooth — but Q is not necessarily bounded. We shall prove the following.

THEOREM 4. — Assume TeLl (Q)n W™ ™7 (Q) and ue W2 * (Q) are such that:

loc
T(x)u(x)=f(x) a.e. on RN
Sfor some fe L' (Q).
Then Tuel!(Q) and:
j Tudx=<T, u).
Q
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Proof. — We may always assume that supp(u) is bounded. Using the smoothness
of 0Q nsuppu and a standard technique (see e. g.[12], Theorem 11.8 in Chapter 1) one
constructs a sequence (,eCg (Q) such that 0=(,<1 and {,u—>u in W ?(Q). By
Theorem 1 or 3 we know that T{,ueL! (Q) and:

JTCnudX=<C,,T, up.

The conclusion follows easily as n — 0.

2.3. T1s A MEASURE-MULTIPLE T AND u. — In order to simplify matters we start again
with the case where Q= R"; similar results hold when Q = R™ (under additional assumptions
of the kind introduced in Theorem 3 and 4; see e. g. Corollary 6). We recall some basic
notions about capacities (see e. g.[13]). For a compact set K = RN we define:

cap K=Inf{ || o|[fm,; aeCT(RY), 21 on K}.

For an arbitrary set A< RN we define:

cap, A=Sup { cap K; K compact, KA}
and:
cap* A=Inf{ cap, G: G open, AcG }.

We recall that if u, e C3 (R™) is a Cauchy sequence in W™ ? then there is a subsequence u,
which converges everywhere to a function u exceptfor aset A withcap* A=0. Besides if we
pick another subsequence u,, of the original sequence in a similar manner we would obtain a
pointwise limit 4’ which equals u except on a set A’ with cap* A’=0. In this way a
function u in W™? can be defined pointwise except possibly on a set A with
cap*A=0. Let M denote the space of all regular Borel measures on R™ (not necessarily
bounded measures or non-negative measures); M consists of all non-negative
measures. Let pe M* be a measure satisfying:

(16) For every set A=R™ with cap* A=0 then |p|(A)=0 (?).

Let g, g5, - - ., g€ L} (RY; du) and consider the measures:

T,=g;p for 1=isk.
We assume that:

T,eW™™?  for all 1=isk.
Letu,, upy, ..., u, e W™P,
We shall prove the following.

) IuI(A)=Ld|uI-
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THEOREM 5. — Assume:

K
17) g.u=) gu=fp-ae on RN
i=1
for some fe L1 (RY; du) (note that each u; is defined p a.e.).
Then g.ueL*(RY; du) and:

. k
Jg.udp.=(T, uy=Y (Tyu.
i=1
Remark 3. — Choosing p to be the Lebesgue N-measure and k=1 we recover Theorem 1.

k

Remark 4. — Assume T,,T,, ..., T, are givenelementsof M n W~™” andsetp= ) |T,|.
i=1

Then p satisfies (16). This is a consequence of the following.

LEMMA 2. — Assume TeM AW"™7. Let AcRN be a set such that cap* A=0. Then A
is T-measurable and | T|(A)=0.

When m=1, Lemma 2 is proved in [9]; the argument given in [9] extends readily to the
case m=1.

Since T,; is absolutely continuous with respect to p we can write T;=g;p be some
g:€Li (RN, dp). Therefore Theorem 5 applies provided (17) holds.

Proof of Theorem 5. — Set u=(uy, Uy, ..., U). ,
We may always assume that supp u is bounded and that mp<N. We write u=1I,, ¢ for
some ge(L? nL7)*(1<p, <p). Set:

o (x)=l9(x)|
and:
v(x)=I,* 9)(x),
u, (x)=H<%v(x)> u(x)

where | €| denotes the euclidean norm of €.

By Theorem 2 (see Remark 1) we know that u, — u in (W™ ?)* as n— co. In addition
lu,(x)|<n a.e. onRN. Let (eCP(RY) with 0=<{<1; then the function
{g.u,eL'(RY; dp). In addition:

(18) fc§.ﬁndu=<iz;a,,>.
l:Indeed let p, be a sequence of mollifiers;
pex (L) > L, in [W™ 7] as £ -0
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and thus —extracting an infinite subsequence — we may assume that p, x ({1,) — {u, as & — 0
everywhere except on a set A with cap* A=0. We have:

(19) F-[Pe*(cﬁn)] dp=<T, p* Gu,)>.

Passing to the limit in (19) as € — 0 using dominated convergence we obtain (18)]. Next we

pass to the limit in (18) as n — oo and as { — 1 using Fatou and dominated convergence.

We now indicate briefly how Theorem 5 extends to the case where Q< RN, for example
under the additional assumption that dQ is locally smooth [Q not necessarily bounded].

Let peM™ (Q) be a non-negative measure on Q —possibly unbounded — such that:

(16") for every set AcQ such that cap*A=0, then |nl(A)=0. Let
81,825 ---» &€LL.(Q; d p) and consider the measures:

T,=gn, 1Sisk.
We assume that T,e W7 (Q) for 1<i<k. Letu,,u,, ..., u, lic in W2 (Q).
COROLLARY 6. — Assume:
17") g.uxf, p—a.e. on Q,
Sfor some fe L' (Q; dp).
Then g.ueL!(Q, dp) and:

Jg.udu=<T, ud.
Q

Proof. — We may always reduce to the case where supp u is bounded. Since 9Q is locally
smooth there is a sequence {, € C§ (Q) such that 0<¢,<1,{,u > uin W2 asn— co. By

Theorem 5 we know that J g.ul,du=<{C,T, u) and we pass easily to the limit as n —» co.
Q

3. An application to a strongly nonlinear elliptic equation

Let Q be an arbitrary open subset of RN. Let g(x, u): QxR - R be a Caratheodory
function such that:

(20) for each s>0,  Sup|g(x, u)|Sh,(x)eL(Q).
|lulss

Assume:

(21) glx, u).u=20 a.e. xeQ, VueR.
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Assume A: W™ 7 (Q) » W™ (Q) is a pseudomonotone operator which maps bounded sets
into bounded sets and which is coercive i.e€.:

CAu,uy

lim =+

Wttll, = + ¢ Il wm.»
(For general examples of such nonlinear elliptic operators see e. g. [6].)
THEOREM 7. — For eve;yfe W7 (Q) there exists a ue Wg" ?(Q) such that:

g(x, w)eL'(Q), g(x, u)uel'(Q)
(22) and:

(Au,u>+Jg(x, wvdx={f,v), VveWgnL® and for v=u.

Furthermore if g is nondecreasing in u and u,, u, are two solutions corresponding to f, and f,
then:

@3) (Auy— Aty g~y >+ j (g Ce, ) —g (6, )] (g =) dx =< fy = for g~y

Remark 5. — The existence part in Theorem 7 is due to J. L. Webb [15] under some (mild)
additional regularity assumptions on 9Q.

Remark 6. — If 8Q is (locally) smooth, (20) may be weakened. Instead of (20) we assume
(20") for s>0, Sup|g(x, u) | Sh,(x)€ Ly (Q).

fulss

Then for every fe W7 (Q), there exists a ue Wg* 7(Q) such that:

glx, WeLi(Q), glx, wuel'(Q)

and:
(22')
(Au,u}—i—jg(x, wodx={f,vy, VYveC¥(Q) and for v=u.

Q

Furthermore (23) holds.

The proof is similar to the proof of Theorem 7 except that we use Theorem 4 in place of
Theorem 3. '

Proof of Theorem 7. — Set g, (x, u)=C, (x/n) P, g(x, u) where £, € C® (RY) with 0=, 1,
¢, (x)=1 near x=0 and:
3 if |&]<n,
P.E=178 it jg>n

{1&l
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It follows easily from the theory of pseudo-monotone operators that there exists
u,e W3 ?(Q) such that:
Au,+g,(x, u,)=/.

In addition:
”unllwm"’gc and Jv gn(x’ un)undxéc‘
Q

Without loss of generality we may assume that u, converges weakly in W{" ?(Q) and also
a.e. to some u, and Au, converges weakly to some y in W™™7(Q). A standard measure
theoretic argument shows that g, (x, #,) = g(x, u) in L' (Q) and that (22) holds.

On the other hand we have by Fatou’s Lemma that:

im ¢ Au,, u,.>§<f,u>—jg(x, uyuds.

Q

Set T=g(x, u)=f—xy.
We have TeL! (Q)n W=7 (Q), and by Theorem 3 we conclude that:

J g(x, wyudx={f—y, u).
Q

Therefore lim < Au,, u,><{x, u)> and consequently Au=y. The conclusion follows
readily. Property (22) is again a direct consequence of Theorem 3.

4. Connection with a Theorem of J. Deny

We assume first that Q=RY. When p=2, the following result is a special case of a
theorem of J. Deny [8] (Th. 1, p. 138).

THEOREM 8. — Assume TeM*t A W""? and ue W™ ».
Then:

ueL!(RY; dT) and JudT=(T, ud.

Proof. — We may write u asu=u, —u, withu,, u,e W™ ? u, 20and u,>0. Indeed we
may represent u as u=G,, x @ where G,, is a Bessel potential and peL? (see e.g. [14],
Chap. V); weset u; =G, x¢" and u, =G, %@ . Next we apply Theorem 5 with p=T,
g=1, u=u, and u=u,. The conclusion follows readily.

Remark 7. — One can give a direct and elementary proof of Theorem 8 which does not
make use of Hedberg’s approximation technique. Indeed set:

=G, xT.
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Note that ¢ (x) makes sense as a-measurable function —which possibly equals + co.
We shall prove that:

(24) e’ (RY),

(25) G, xfeL*(RY; dT)  for every feL’(RY),

(26) J@(x)f(x)dx=J(Gm *f)dT={T, G, xf> for every fel? (RN).

The conclusion of Theorem 8 follows readily since every function u € W™ P can be represented
asu=G,, xfforsomefeL?. Let{e 2, andletfeZ,:weclearly have[since G, e L' (R")]:

@7) j (Gm*z;T)fdx=J(Gm /)CdT=CT, {(G#f)>.

Choose {(x)=C{,(x)={, (x/n) where {, e CZ (RN) is fixed with 0=(, <1 and {, (x)=1 near
x=0.

Since ||£,(Gp*f)llwm><C||G,, *f|lw-» we conclude from (27) and the monotone
convergence Theorem that (G, x T) fe L' (RY), that (G,, xf)e L' (R"; dT) and:
[CRRES [Gurrrr=1, x>

Since:

|<T, Gpkf Y| SCIIGp &/ llymr SCIIfII17-

We also conclude that ¢ =G, * Te L” (R"). Properties (25) and (26) follow immediate-
ly —first for a function fe L” with =0 and then for a general feL”.

We turn now to the case of a domain Q< RY.

THEOREM 9. — Assume Q< R is bounded and smooth.  Suppose Te W=7 (Q) and T 20
(so that T is a measure). Let ue Wg"?(Q).

Then ueL* (Q; dT) andj‘ udT={T,ud.
Q

The proof of Theorem 9 relies on the following Lemma due to Ancona [1].

LeEMMA 3. — Assume Q< R is bounded and smooth. Given any functionue W§ P (Q) there
exist two functions u,, u,€ Wi ?(Q) such that u; 20, u, 20 and u=u, —u,.

Proof of Theorem 9. — We apply Corollary 6 with k=1, g=1 respectively to u,
and u,. Note that (16’) holds by Lemma 2 and (17’) holds with f=0. We deduce that

u, €L} (Q; dT), u,eL'(Q:dT)
and:

Juldr=<T,u1>, Ju2ﬂ=<T,u2>.
Q Q

Remark 8. — Assume Q<R is an arbitrary open set. Let Te W™ (Q) with T=0 and
let ue W2 ?(Q). Then ueL] (Q; dT)—this a direct consequence of Theorem 8.

loc
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When m= 1, we may even conclude that u lies in L (Q; dT)— this follows from the main
result in [4] and the fact that every function u in W} 7(Q) can be written asu=u* —u~ with
ut, uTeWiP(Q).

However when m =2 and Qis not smooth, u does not necessarily liein L! (Q; dT). Hereis
an example suggested to us by Ancona and which is based on a construction due to Coffman-
Grover [7]. LetQ={xeR?*0<|x|<1}. Letu(x)=x,{(x)where {denotes any smooth
function with support in { xe R?; |x|<1} and such that {(x)=1 near x=0. Let T=Af
where f(x)=| x| "' (1-log | x| )~!. Itis easy to check that u € HZ (Q):

TeH ?2(Q)n L., (Q), T=20 and Jlu|T=oo
Q
Note that such a function u can not be written as a difference of two nonnegative functions
in HZ(Q).
APPENDIX

Proof of Lemma 1. — We have | DP(L, x )| C(I,_ 5 % [ V]).
Let & be a positive real number, to be chosen later. We write:
Im—lﬁl*l‘jI|=El +E,,
where:
Elzj Im-|p|(x_J’) [V (v)|dy;
|ly—x|<d

E2=J Im—|B|(x_Y)|‘~|/(Y)]d,V-
ly—x|28
Next, we consider the following estimates:

E, =) J L_ip (x=y) [V (y)|dy
278 <|y—x|S27"8

n=0
)

éCM\LJ(x)S"‘"B' Z 2—n(m—|B]) §CM\JJ(x)5'""B'

n=0

E, =8P, x W) ().

We conclude by choosing & such that:
8" =L x | W]) (x) (M (x)) ™"
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ADDENDUM 1

(Dec. 5,1980) One of the authors (F. B.) has been informed by his colleague Peter Jones at
the University of Chicago that L. I. Hedberg has just sent the latter a statement and outline
proof of a new result concerning properties of the space Wg- 7(Q) for arbitrary open sets
in R™ which answers in large part the question (Q, ) posed in Section 2 above. As in [11],
Hedberg treats the characterization of elements of the class W2 ?(Q) in W™ ?(RY) by their
trace properties on the boundary of Q, i.e. each derivative DPu for | B | <m must vanish on
the boundary of Q, in the sense of (m—| B |, p) —capacity, but with the sole restriction that
p>2—1/N. The techniques of proof are relatively complex but involve the construction of
a sequence {{ j} of functions with compact support in Q and with 0<¢ ;=1 such that {;u
converges to u in W™ ?(RY). If we apply Hedberg’s procedure to a given u which we
already know to lie in W' ?(Q), we can conclude that the conclusion of Theorem 1 holds for
any T in L. (Q W ™”(Q) and any u in WP P?(Q) under the sole restriction
that p>2—1/N.
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ADDENDUM 2

Hedberg’s result mentioned in the previous Addendum has appeared in L. I. Hedberg,
““Spectral synthesis in Sobolev spaces and uniqueness of solutions of the Dirichlet problem”,
Acta Math., Vol. 147,.1981, pp. 237-264. The technical problems restricting the result to
the case p>2—(1/N) have been removed by some new results in nonlinear potential theory
obtained by L. I. Hedberg and T. H. Wolff, ““Thin sets in nonlinear potential theory”

(preprint).
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