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Symmetry in Nonlinear PDE’s

Häım Brezis

The question of symmetry in nonlinear partial differential equations has been
the subject of intensive investigations over the past 25 years. The general theme
is the following. Suppose the domain Ω, as well as the boundary condition on ∂Ω,
has some symmetry, for example radial symmetry, axial symmetry or symmetry
with respect to some hyperplane. Do solutions of nonlinear partial differential
equations in Ω inherit these symmetries? In a related direction, one may consider
overdetermined problems on a general domain Ω, for example the solution of a
second order PDE satisfying both a constant Dirichlet and a constant Neumann
condition on ∂Ω. Does this imply that the domain Ω is a ball or the complement
of a ball?

Remarkable progress has been achieved through the work of Louis Nirenberg
and his collaborators, especially on the first question. I will review some of their
basic results. They are concerned with positive solutions of a single PDE. Related
questions may be asked for systems. Some suggestive partial results have been
obtained but the general situation is still far from satisfactory. I will describe some
outstanding open problems.

1. Symmetry via moving planes.

The main result in the celebrated paper by B. Gidas, W. M. Ni and L. Nirenberg
[GNN1] from 1979 is the following:

Theorem 1. Let Ω = B be the open unit ball in Rn. Assume u ∈ C2(Ω)
satisfies

(1)


−∆u = f(u) in Ω

u > 0 in Ω
u = 0 on ∂Ω

where f is C1. Then u is radially symmetric and the radial derivative u′(r) is
negative for 0 < r < 1.
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2 HAÏIM BREZIS

As we will see the method of proof relies on the maximum principle used in
conjunction with the method of moving planes due to A. D. Alexandroff [Al]. This
type of argument had been initiated by J. Serrin [S] in 1972 in proving the radial
symmetry of the domain for overdetermined problems. The paper of B. Gidas,
W. M. Ni and L. Nirenberg [GNN1] has become enormously popular for several
reasons:

a) It established radial symmetry of the solution for a large class of problems.
It became an incentive for investigating symmetry in numerous other situ-
ations.

b) The method is very flexible.

In fact, it has been adapted with success to a large variety of questions arising
in concrete problems. For example, C. J. Amick and L. E. Fraenkel [AF] have used
it in connection with vortex rings. W. Craig and P. Sternberg [CS] have used it to
settle an open problem on water waves. H. Berestycki and L. Nirenberg [BN2] have
used it in connection with problems arising in combustion.

A beautiful generalization of Theorem 1 is the following

Theorem 2 [BN1]. Let Ω be a general bounded convex set in Rn which is
symmetric about some hyperplane, say x1 = 0. Assume u ∈ C2(Ω)∩C(Ω) satisfies

(1) with f locally Lipschitz. Then u is symmetric with respect to x1 and
∂u

∂x1
< 0

for 0 < x1 in Ω.

Theorem 2 was originally proved in [GNN1] under additional assumptions, for
example ∂Ω had to be of class C2; in particular, the simple case of a cube could
not be handled. These restrictions were lifted by H. Berestycki and L. Nirenberg
[BN1] who also gave a very elegant proof. I cannot resist the pleasure of describing
their argument which deserves to become part of the classical literature.

The proof uses Stampacchia’s version of the maximum principle. The standard
form of the maximum principle asserts that if a function w satisfies

(2) −∆w + c(x)w ≤ 0 in ω

(3) w ≤ 0 on ∂ω

with

(4) c(x) ≥ 0 in ω,

then
w ≤ 0 in ω.

In Stampacchia’s form assumption (3) is weakened. One merely assumes that c− =
max(−c, 0) is small in some appropriate Lp norm. Suppose, for simplicity, that
n ≥ 3 and let Sn be the best Sobolev constant in Rn, i.e.,

Sn = Inf
ϕ∈H1

0 (ω)
‖∇ϕ‖22/‖ϕ‖22n/(n−2).

This number, which is independent of ω (and depends only on n), can be computed
explicitly (see e.g. [Au]).
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Lemma 1. Assume w satisfies (2)-(3) with

(5) ‖c−‖n/2 < Sn.

Then w ≤ 0 in ω.

In particular (5) always holds in small domains provided the sup-norm of c− is
bounded. For example the maximum principle is valid whenever

(6) ‖c−‖∞|ω|2/n < Sn.

Another formulation suggested by S.R.S. Varadhan may be found in [BN1].

Proof of Lemma 1. Multiplying (2) by w+ = max(w, 0) and integrating by
parts yields ∫

|∇w+|2 +
∫
c+(w+)2 −

∫
c−(w+)2 ≤ 0.

Thus

Sn‖w+‖22n/(n−2) ≤
∫
c−(w+)2 ≤ ‖c−‖n/2‖w+‖22n/(n−2).

Applying (5) we find that w+ = 0, i.e., w ≤ 0 in ω.

Proof of Theorem 2. Write x = (x1, y) with y = (x2, x3, . . . , xn) and set

a = max{x1; (x1, y) ∈ Ω}.

We will prove that

(7) u(x1, y) < u(x′1, y) ∀x = (x1, y) ∈ Ω with x1 > 0 and ∀x′1 with |x′1| < x1.

Inequality (7) yields

(8) u(x1, y) ≤ u(−x2, y),

and applying (8) to ũ(x1, y) = u(−x1, y), which is also a solution of (1) one finds
that u(−x1, y) = u(x1, y), i.e., u is symmetric with respect to x1. The fact that
∂u
∂x1

< 0 for 0 < x1 in Ω is an easy consequence of (7).

For 0 < λ < a, set

Σ(λ) = {x = (x1, y) ∈ Ω; x1 > λ}

and
wλ(x) = u(2λ− x1, y)− u(x1, y) for x ∈ Σ(λ).

Note that wλ is well defined on Σ(λ) since Ω is convex and symmetric about the
hyperplane x1 = 0.

Inequality (7), to be proved, is equivalent to

(9) wλ(x) > 0 ∀x ∈ Σ(λ), ∀λ ∈ (0, a).

The function wλ satisfies

−∆wλ + cλ(x)wλ = 0 in Σ(λ)
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where

cλ(x) =


f(u(x1, y))− f(u(2λ− x1, y))

wλ(x)
if wλ(x) 6= 0

0 if wλ(x) = 0.
Clearly ‖cλ‖∞ ≤ L where L is the Lipschitz constant of f on the interval

[−‖u‖∞,+‖u‖∞]. Moreover

wλ ≥ 0 on ∂Σ(λ),

wλ 6≡ 0 on ∂Σ(λ).

For λ near a, Σ(λ) has small measure and we deduce from Lemma 1 that wλ ≥ 0
in Σ(λ).

Let
Λ = {λ ∈ (0, a); wλ ≥ 0 in Σ(λ)},

so that Λ is not empty. Clearly Λ is closed in (0, a). We claim that Λ is open.

Fix some λ ∈ Λ. By the strong maximum principle applied to wλ in Σ(λ) we
see that

wλ > 0 in Σ(Λ).
Let K be any (smooth) compact set in Σ(λ) such that |Σ(µ)\K| is sufficiently
small for all µ near λ. Sufficiently small refers to Lemma 1 applied in Σ(µ)\K with
‖c‖∞ ≤ L (the Lipschitz constant of f).

Since
wλ(x) ≥ δ > 0 in K

we have, by continuity,
wµ(x) ≥ 0 in K

for all µ near λ. In particular

wµ(x) ≥ 0 on the boundary of Σ(µ)\K.

Applying Lemma 1 to wµ in Σ(µ)\K we see that wµ ≥ 0 in Σ(µ)\K and thus
wµ ≥ 0 in Σ(µ). Hence µ ∈ Λ for all µ near λ, i.e., Λ is open.

Remark 1. The assumption that Ω is convex is essential. For example if Ω
is an annulus, radial symmetry may fail. (In fact, nonradial solutions can have
lower energy than the radial ones.) We have constructed in [BrN1] (see also [D])
nonradial positive solutions of{ −∆u = up + λu in Ω = annulus

u = 0 on ∂Ω.

Radial symmetry of solutions of (1) when Ω is all of Rn (with u(x) → 0 as
|x| → ∞) has been originally studied in [GNN2]; important extensions may be
found in [CGS], [Li], [LN], [CL] and [Z]. In particular, the radial symmetry is
useful in order to give a complete description of all positive solutions of −∆u =
u(n+2)/(n−2) in Rn. These functions are the extremals for the Sobolev inequality∫
|∇ϕ|2 ≥ S‖ϕ‖22n/(n−2). This classification plays an important role—after blow-

up—in the study of the Yamabe problem, in particular in the work of R. Schoen
[Sc].
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In the case where Ω is a half-space Ω = {x ∈ Rn;xn > 0}, with zero Dirich-
let condition, H. Berestycki, L. A. Caffarelli and L. Nirenberg [BCN] have estab-
lished symmetry (i.e., u = u(xn)) and monotonicity provided u is bounded and
f(supu) ≤ 0. The case of a half-space Ω with a nonlinear Neumann condition has
been investigated in [CFS], [E], and [LZ] and [T]. Such results have applications to
prescribed curvature problems on manifolds with boundary.

Symmetry and monotonicity in infinite cylindrical domains has been studied by
H. Berestycki and L. Nirenberg [BN2] in connection with travelling front solutions
arising in combustion. The case where Ω is the exterior of a ball has been considered
in [AB]. The interested reader will find further variations on this theme in the
expository paper [Be].

The moving plane method has also been applied to establish symmetry of so-
lutions for some classes of systems of PDE’s; see [Ba], [DF], and [Tr]. In particular,
for the Liouville system,

−∆ui = exp(Σnj=1aijuj) in R2, 1 ≤ i ≤ n,

with ui > 0. M. Chipot, I. Shafrir and G. Wolansky [CSW] have proved under mild
assumptions, that each ui is radially symmetric and decreasing about some point
xi in R2. (An interesting earlier approach by S. Chanillo and M. Kiessling [CK],
based solely on an isoperimetric inequality and the Pohozaev identity, led to similar
conclusions under stronger assumptions.) However, the application of the moving
plane method to systems has been, so far, very limited. I would like to describe
next, two types of systems where other techniques have been successful.

2. Questions of symmetry for the Ginzburg-Landau system.

The Ginzburg-Landau system consists of a coupled system of 2 equations in
R2,

(10) −∆u = u(1− |u|2) in R2.

Here u takes its values in R2 and it is also convenient to view u as a complex
number. Despite its simple appearance, problem (10) has a rich structure, which is
not yet fully understood. It is an interesting laboratory for testing new methods.

One is concerned with solutions of (10) satisfying

(11) |u(x)| → 1 as |x| → ∞.

It is easy to construct solutions of (10)–(11) in polar coordinates, using separation
of variables. Given any integer q ∈ Z the function

(12) u = u(r, θ) = eiqθf(r)

is a solution of (10)–(11) provided the real valued function f satisfies the ordinary
differential equation

(13)

 −f ′′ − 1
r
f ′ +

q2

r2
f = f(1− f2) on (0,∞)

f(0) = 0 and f(∞) = 1.

It is not difficult to see that for every integer q problem (13) has a unique solution
fq (see e.g. Appendices II, III in [BBH] and also [HH]). Hence, we obtain a family of



6 HAÏIM BREZIS

special solutions uq = eiqθfq(r) for q ∈ Z. An outstanding open problem is whether
these are the only solutions of (10)–(11):

Open Problem 1. Let u be any solution of (10)–(11). Is u = uq for some q ∈ Z,
modulo translation and rotation?

An unusual quantization phenomenon takes place for solutions of (10) having
the property that |u(x)| → 1 as |x| → ∞, fast enough so that

(14)
∫

R2
(|u|2 − 1)2 <∞.

Remark 2. It is easy to show that if u is any solution of (10) satisfying (14)
then |u(x)| → 1 as |x| → ∞. The converse is not known:

Open Problem 2. Suppose u is a solution of (10) such that |u(x)| → 1 as |x| → ∞.
Does (14) hold?

Theorem 3 ([BMR]). Let u be a solution of (10) satisfying (14). Let q =
deg(u,∞) be the degree of u at infinity, i.e., the winding number of the map

x ∈ S1 7→ u(Rx)
|u(Rx)|

∈ S1 for large R.

Then

(15)
1
2π

∫
R2

(|u|2 − 1)2 = q2.

The “radial” solution uq = eiqθfq(r) described above satisfies (15). It is not
known, for general q, whether the only solution of (10) satisfying (15) is uq, modulo
translation, rotation and complex conjugation. The answer is positive for q = 0
and q = 1. The case q = 0 is an easy consequence of Liouvile theorem. The case
q = 1 is a remarkable result of P. Mironescu ([M2]) described in Theorem 4 below.

Sketch of the proof of Theorem 3. The main ingredient is the Pohozaev identity
applied to (10). It asserts that

(16)
∫
BR

(|u|2 − 1)2 =
R

2

∫
SR

(|u|2 − 1)2 +R

∫
SR

(|ut|2 − |un|2).

Here BR = {x ∈ R2; |x| < R}, SR = {x ∈ R2; |x| = R}, ut and un denote
respectively the tangential and normal derivatives of u along SR. Identity (16) is
obtained, as usual, through the multiplication of (10) by xux + yuy = rur and
integration on BR. Using (14) one shows (see e.g. [Sh1] and [Br]) that, as R→∞,

R

∫
SR

(|u|2 − 1)2 → 0 and R
∫
SR

|un|2 → 0.

The important term in (16)—the one which “carries” the degree—is ut. More
precisely one shows that, as R→∞,

R

∫
SR

|ut|2 → 2πq2.

Now, to the result of Mironescu:
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Theorem 4. Let u be a solution of (10) satisfying (15) with q = 1. Then u
has radial symmetry, i.e., u = eiθf1(r) modulo rotation, translation and complex
conjugation.

Sketch of the proof of Theorem 4. Let f(r) = f1(r) be the unique solution of
(13) corresponding to q = 1. Since deg(u,∞) 6= 0 the function u must have at least
one zero. After translation we may assume that u(0) = 0. Set v = u/f . Using (10)
and (13) it is easy to derive a PDE satisfied by v:

(17) −∆v − 2f ′

f
vr −

v

r2
= f2v(1− |v|2)

where vr is the radial derivative of v, i.e., vr = 1
|x| (x · ∇v).

Applying the Pohozaev identity to (17) yields

(18)
∫
BR

[
2rf ′

f
|vr|2 +

1
2
(f2 + rff ′)(|v|2 − 1)2

]
=

∫
SR

[· · · ]

where [· · · ] is a lengthy expression involving v, vr, f and f ′. The solution f of
(13) is known to be monotone increasing (see e.g. [HH]), so that the integrand on
the left-hand side of (18) is nonnegative. A careful asymptotic analysis of u(x) as
|x| → ∞ (see [Sh1] and [Br]) combined with Theorem 3 shows that the right-hand
side in (18) tends to 0 as r → ∞. Thus vr ≡ 0 and |v| ≡ 1. Going back to (17)
we obtain vθθ + v = 0, i.e., v = ei(θ+θ0) or v = e−i(θ+θ0). Returning to u we find
u = eiθf(r) or u = e−iθf(r), modulo a rotation.

Remark 3. The Pohozaev identity seems to play a distinguished role in prov-
ing symmetry for 2-dimensional problems. P. L. Lions [Lio] has given a proof of
Theorem 1 in 2-d which does not make use of the moving plane method. It relies
on a clever combination of the Pohozaev identity with an isoperimetric inequality.
Related ideas may be found in [Ba], [CK1] and [CK2]. Unfortunately the method
seems to be restricted to 2-dimensional problems. One may consider the analogue
of (10) in higher dimension and there no symmetry result is known:

Open Problem 3. Let u : Rn → Rn be a solution of

−∆u = u(1− |u|2) on Rn, n ≥ 3

with |u(x)| → 1 as |x| → ∞ (possibly with a “good” rate of convergence). Assume
deg(u,∞) = ±1. Does u have the form

u(x) =
x

|x|
f(r)

(modulo translation and isometry), where f : R+ → R+ is a smooth function, such
that f(0) = 0 and f(∞) = 1?

Remark 4. The proof of Theorem 4 provides some information for general
values of q. Let u be a solution of (10) satisfying (15) with q ≥ 2. Assume that u
has only one zero (of degree q). Then u = eiqθfq(r). This result raises an interesting
variant of Problem 1:

Open Problem 4. Let u be a solution of (10) with |u(x)| → 1 as |x| → ∞. Can
u have more than one zero?

Theorem 4 has important implications, for example
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Theorem 5 ([M2]). Let u be a solution of (10) which is a local minimizer of
the energy

E(v,Ω) =
1
2

∫
Ω

|∇v|2 +
1
4

∫
Ω

(|v|2 − 1)2

in the sense that for every bounded domain Ω ⊂ R2,

E(u,Ω) ≤ E(v,Ω), ∀v such that v = u on ∂Ω.

Then either u is a constant or u = eiθf1(r) (modulo translation, rotation and
complex conjugation).

The proof of Theorem 5 uses Theorem 4 in conjunction with a result of E.
Sandier [Sa2] and I. Shafrir [Sh1] (u a local minimizer ⇒ 1

2π

∫
R2(|u|2 − 1)2 = 1).

Theorem 5 is very useful in analyzing the structure of the Ginzburg-Landau
vortices near the vortex core. Let Ω be a bounded domain in R2 and let g : ∂Ω → S1

be a smooth boundary condition of degree d > 0. Let uε be a minimizer of the
Ginzburg-Landau energy

Eε(v) =
1
2

∫
Ω

|∇v|2 +
1

4ε2

∫
Ω

(|v|2 − 1)2

with boundary condition v = g on ∂Ω. One of the main results in [BBH] asserts that
for ε small, uε has exactly d zeroes a1

ε, a
2
ε, . . . , a

d
ε and that (along a subsequence)

(19) uε(z) → u?(z) = eiψ(z)
d∏
i=1

z − ai

|z − ai|

where ai = limε→0 a
i
ε and ψ is a real-valued harmonic function in Ω. The con-

vergence in (19) holds in Ckloc(Ω\{a1, a2, . . . , ad}), for every k. However, there
was no information in [BBH] about the mode of convergence of uε to u? near its
singularities. As a consequence of Theorem 5 we now have

Theorem 6 ([Sh2], [M2]). Let U(z) = z
|z|f1(z) where f1 is the solution of

(13) with q = 1. Then

(20) lim
ε→0

∥∥∥uε(z)− eiψ(z)
d∏
i=1

U(
z − aiε
ε

)
∥∥∥
L∞(Ω)

= 0

The product
∏d
i=1 in (20) denotes the product of complex numbers. Theorem

6 is derived from Theorem 5 via a blow-up argument. One shows that, as ε → 0,
uε(εz + aiε) converges to a solution of (10) which is a local minimizer of the energy
in the sense of Theorem 5 and we may now identify this blow-up limit as U(z)
(modulo a rotation).

One may ask similar questions on the disc but the situation is widely open.
Consider, for example, the equation

(21)
{ −∆u = au(1− |u|2) in B = the unit disc in R2

u(x) = x on ∂B

where a > 0 is a constant and u : B → C = R2. It is easy to construct a “radial”
solution

u = u(r, θ) = eiθf(r)
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where f satisfies the ordinary differential equation{ −f ′′ − 1
rf

′ + 1
r2 f = af(1− f2) in (0, 1)

f(0) = 0 and f(1) = 1.

This f is uniquely determined (see [BBH] and [HH]).

Open Problem 5. Is the radial solution eiθf(r) the only solution of (21)?

If a ≤ λ1 (the first eigenvalue of −∆ on B with zero Dirichlet condition) the
answer is positive since the energy functional

E(v) =
1
2

∫
B

|∇v|2 +
a

4

∫
B

(|v|2 − 1)2

is strictly convex and thus (21) has a solution.

Remark 5. The argument described in the proof of Theorem 4 is still valid
provided u/f makes sense at 0, i.e., u(0) = 0. Thus, another formulation of Open
Problem 5 is

Open Problem 5′. Does any solution u of (21) vanish at 0?

A weaker form of Open Problem 5, which I find quite intriguing is

Open Problem 6. Is the radial solution u = eiθf(r) a minimizer of the energy
E? More generally, if B is the unit ball in Rn, n ≥ 2 and u : B → Rn, is there a
minimizer of E of the form x

|x|f(|x|)?

P. Mironescu [M1] (see also [LL]) has given a partial answer. He proves that
the radial solution u is a local minimizer in the sense that E(u) ≤ E(v) for all
v ∈ H1 such that v(x) = x on ∂B and ‖v − u‖H1 is small. In the scalar case
rearrangement techniques (see e.g. [Ba]) are often used to prove that minimizers
have radial symmetry. But in the vector-valued case no such method is available
(see, however, the discussion after Theorem 9 below). Therefore it would be very
interesting to settle Open Problem 6.

3. Questions of symmetry for minimizing harmonic maps.

Another simple nonlinear PDE system which has received much attention in
recent years is the system of harmonic maps. Since we are interested in questions
of symmetry we will assume that the target space is a sphere, say Sk−1, k ≥ 2. The
unknown u is a map from a domain Ω ⊂ Rn with values into Rk satisfying

(22)


−∆u = u|∇u|2 in Ω

|u| = 1 in Ω
u = g on ∂Ω

where g : ∂Ω → Sk−1 is a given (smooth) boundary condition. The solutions of
(22) arise as critical points of the Dirichlet integral

E(v) =
∫

Ω

|∇v|2
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subject to the constraint

v ∈ H1
g (Ω;Sk−1) = {v : Ω → Rk;

∫
Ω

|∇v|2 <∞, |v| = 1 in Ω and v = g on ∂Ω}.

Of particular interest are minimizing harmonic maps, i.e., minimizers of E in
H1
g (Ω;Sk−1). Minimizing harmonic maps seem to inherit some symmetry proper-

ties of the data. However, general harmonic maps, i.e., arbitrary (weak) solutions
of (22) usually break symmetry. Here are some results.

Theorem 7. Let Ω = B be the unit ball in Rn, n ≥ 3. Assume k = n and
g(x) = x. Then u(x) = x/|x| is a minimizing harmonic map; in fact it is the unique
minimizer of E in H1

g (Ω;Sn−1).

This result was originally proved by W. Jäger and H. Kaul [JK] when n ≥ 7
(they even show that x/|x| is a minimizer in H1

g (Ω;Sn), where Sn−1 is identified
with an equator of Sn). Theorem 7 is due to H. Brezis, J. M. Coron and E. Lieb
[BCL] when n = 3 and to F. H. Lin [Lin] for general n ≥ 3. The proof of F. H. Lin
is especially ingenious and elegant. The restriction n ≥ 3 is needed. When n = 2
the class of testing functions H1

g (Ω;S1) is empty; this is a consequence of the fact
that there is a degree theory for maps in H1/2(S1;S1) (see [BBH] and [BrN2]).

Remark 6. There is no hope to prove that general (i.e., nonminimizing) har-
monic maps inherit the radial symmetry of the boundary condition. In fact, T.
Rivière [R] has constructed an abundance of weird solutions of (22) when Ω is the
unit ball in R3, k = 3 and g is any nonconstant boundary condition (in particular
g(x) = x).

Remark 7. F. Almgren and E. Lieb [AL] have pointed out that natural notions
of symmetry may be broken, even for minimizing harmonic maps. Consider, for
example in 3-d the notion of mirror symmetry through the xy plane, i.e.,

u1(x, y,−z) = u1(x, y, z)
u2(x, y,−z) = u2(x, y, z)
u3(x, y,−z) = −u3(x, y, z).

They have constructed an example where Ω is the unit ball in R3, k = 3, the
boundary condition g has mirror symmetry, but no minimizer has mirror symmetry.

When Ω is a 2-dimensional domain and k ≥ 3 there seems to be a better chance
for symmetry. Here are some situations where symmetry holds.

Let Ω be the unit disc in R2 and consider maps u : Ω → S2. We say that u has
radial symmetry if it can be written in the form

u(x, y) = (a(r)x, a(r)y, b(r))

where r = (x2 + y2)1/2, a(r) and b(r) are real valued functions such that a2(r) +
b2(r) = 1.
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Theorem 8 ([BC]). Let Ω be the unit disc in R2 and let

g(x, y) = (Rx,Ry,
√

1−R2) for (x, y) ∈ ∂Ω with 0 < R ≤ 1.

Then any minimizer of E in H1
g (Ω;B2) has radial symmetry. (In fact, there are

precisely two minimizers.)

Open Problem 7. Is the same conclusion true for general (nonminimizing) solu-
tions of (22)?

Theorem 9. Let 0 < ρ < 1 and consider the annulus

Ωρ = {(x, y) ∈ R2; ρ2 < x2 + y2 < 1}.

Consider the boundary condition

g(x, y) = (x, y, 0) on ∂Ωρ.

Then any minimizer of E in H1
g (Ωρ;S

2) has radial symmetry.

Theorem 9 was originally proved by E. Sandier [Sa1] in connection with results
of F. Bethuel, H. Brezis, B. Coleman and F. Hélein [BBCH]. A new proof was given
by S. Kaniel and I. Shafrir [KS]. It relies on a very interesting symmetrization
device, which could possibly be useful for other vector-valued problems. It is also
quite unexpected to have radial symmetry in the annulus since there are examples
of broken symmetry for the annulus even in the scalar case (see Remark 1).
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1994.

[Br] H. Brezis, Lectures on the Ginzburg-Landau Vortices, Scuola Normale Superiore, Pisa,

1998.

[BC] H. Brezis and J. M. Coron, Large solutions for harmonic maps in two dimensions,

Comm. Math. Phys. 92 (1983), 203–215.

[BCL] H. Brezis, J. M. Coron and E. Lieb, Harmonic maps with defects, Comm. Math. Phys.

107 (1986), 649–705.

[BMR] H. Brezis, F. Merle and T. Rivière, Quantization effects for −∆u = u(1− |u|2) in R2,

Arch. Rat. Mech. Anal. 126 (1994), 123–148.

[BrN1] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving
critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477.

[BrN2] , Degree theory and BMO, Selecta Math. 1 (1995), 197–263; and 2. (1996), 1–60.

[CGS] L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of

semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42
(1989), 271–297.

[CK1] S. Chanillo and M. Kiessling, Conformally invariant systems of nonlinear PDE’s of

Liouville type, Geom. Funct. Anal. 5 (1995), 924–947.

[CK2] , Curl-free Ginzburg-Landau vortices, Nonlinear Analysis, TMA (to appear).

[CL] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,
Duke Math. J. 63 (1991), 615–623.

[CFS] M. Chipot, M. Fila and I. Shafrir, On the solutions to some elliptic equations with

nonlinear Neumann boundary conditions, Adv. Diff. Eq. 1 (1996), 91–110.

[CSW] M. Chipot, I. Shafrir and G. Wolansky, On the solutions of Liouville systems (to

appear).

[CS] W. Craig and P. Sternberg, Symmetry of solitary waves, Comm. PDE 13 (1988), 603–

633.

[D] E. N. Dancer, Global breaking of symmetry of positive solutions on two dimensional

annuli, Diff. Int. Eq. 5 (1992), 903–913.

[DF] D. G. DeFigueiredo and P. L. Felmer, A Liouville-type theorem for elliptic systems,

Ann. Sci. Norm. Sup. Pisa 21 (1994), 387–397.

[E] J. F. Escobar, Uniqueness theorems on conformal deformation of metric, Sobolev in-

equalities, and eigenvalue estimates, Comm. Pure Appl. Math. 43 (1990), 857–883.

[GNN1] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maxi-
mum principle, Comm. Math. Phy. 68 (1979), 209–243.

[GNN2] , Symmetry of positive solutions of nonlinear elliptic equations in Rn, Math.
Anal. Appl.; Part A, Advances in Math. Suppl Studies 7A (L. Nachbin, ed.), Acad.

Press, New York, 1981, pp. 369–402.
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