Applied Mathematics and **Optimization**

©1984 Springer-Verlag New York Inc.

Semilinear Equations in \mathbb{R}^N Without Condition at Infinity

H. Brezis

Université Paris VI, 4, place Jussieu, 75230 Paris Cedex 05, France

Communicated by D. Kinderlehrer

Abstract. In this paper we establish that some nonlinear elliptic (and parabolic) problems are well posed in all of \mathbb{R}^N without prescribing the behavior at infinity. A typical example is the following: Let $1 . For every <math>f \in L^1_{loc}(\mathbb{R}^N)$ there is a unique $u \in L^1_{loc}(\mathbb{R}^N)$ satisfying

$$-\Delta u + |u|^{p-1}u = f(x) \quad \text{on } \mathbb{R}^N.$$

1. Introduction

The purpose of this paper is to point out that some nonlinear elliptic (and parabolic) problems are well-posed in all of \mathbb{R}^N without conditions at infinity. A typical example is the following:

Theorem 1. Let $1 . For every <math>f \in L^1_{loc}(\mathbb{R}^N)$ there exists a unique $u \in L^p_{loc}(\mathbb{R}^N)$ satisfying

$$-\Delta u + |u|^{p-1}u = f(x) \quad \text{in } \mathscr{D}'(\mathbb{R}^N). \tag{1}$$

Moreover, if $f \ge 0$ a.e. then $u \ge 0$ a.e.

Remark 1. It was previously known that for every $f \in L^1(\mathbb{R}^N)$ there exists a unique $u \in L^p(\mathbb{R}^N)$ satisfying (1) (see [3], Theorem 5.11). However, we emphasize that in Theorem 1 there is no limitation on the growth at infinity of the data f and the solution u is unique without prescribing its behavior at infinity.

2. Proof of Theorem 1

Existence

Let $B_R = \{x \in \mathbb{R}^N; |x| < R\}$. We start with some local estimate:

Lemma 1. Let R < R' and assume $u \in L^p_{loc}(B_{R'})$ satisfies

$$-\Delta u + |u|^{p-1}u = f(x) \quad \text{in } \mathscr{D}'(B_{R'})$$
 (2)

with $f \in L^1(B_{R'})$. Then

$$\int_{B_R} |u|^p \leqslant C \left(1 + \int_{B_{R'}} |f| \right) \tag{3}$$

where C depends only on p, R and R'.

Remark 2. The conclusion of Lemma 1 is a rather unusual localization property. Indeed, let Ω and Ω' be bounded open sets in \mathbb{R}^N such that $\overline{\Omega} \cap \overline{\Omega}' = \emptyset$ and let u be the solution of (1). On the one hand the values of f in Ω' "affect" the solution u in Ω : for example, if f > 0 in Ω' and $f \equiv 0$ outside Ω' it follows from the strong maximum principle that u > 0 in Ω . On the other hand the values of f in Ω' affect only "mildly" u in Ω : in view of (3) $u|_{\Omega}$ may be estimated independently of $f|_{\Omega'}$; even if $f \to \infty$ on Ω' , $\int_{\Omega} |u|^p$ still remains bounded.

Proof of Lemma 1. We use a device introduced by P. Baras and M. Pierre [2]. By Kato's inequality (see [10]) and (2) we have

$$-\Delta|u|+|u|^p\leqslant |f|\quad \text{in } \mathscr{D}'(B_{R'}). \tag{4}$$

Let $\zeta \in \mathcal{D}(B_{R'})$ be such that $0 \leq \zeta \leq 1$ and $\zeta \equiv 1$ on B_R . Multiplying (4) through by ζ^{α} where α is an integer, and integrating we find

$$\int |u|^p \zeta^{\alpha} \leqslant \int |f| + C \int |u| \zeta^{\alpha-2} \leqslant \int |f| + C \int |u| \zeta^{\alpha/p}, \tag{5}$$

provided $\alpha - 2 \ge \alpha/p$, i.e., $\alpha \ge 2p/(p-1)$ and we fix any such α . The conclusion of Lemma 1 follows easily from (5).

Proof of Theorem 1. Existence

Let

$$f_n(x) = \begin{cases} f(x) & \text{if } |x| < n \\ 0 & \text{if } |x| \geqslant n. \end{cases}$$

Semilinear Equations 273

Let $u_n \in L^p(\mathbb{R}^N)$ be the unique solution of

$$-\Delta u_n + |u_n|^{p-1}u_n = f_n \quad \text{in } \mathscr{D}'(\mathbb{R}^N)$$
(6)

(see [3], Theorem 5.11).

We deduce from Lemma 1 that there is a constant C such that

$$||u_n||_{L^p(B_p)} \leqslant C$$

where C depends only on p, R and f, and thus we also have

$$\|\Delta u_n\|_{L^1(B_R)} \leqslant C.$$

It follows that (for some subsequence still denoted by u_n) we have

$$u_n \to u$$
 in $L^1_{loc}(\mathbb{R}^N)$

$$u_n \to u$$
 a.e. on \mathbb{R}^N .

We claim that

$$|u_n|^{p-1}u_n \to |u|^{p-1}u$$
 in $L^1_{loc}(\mathbb{R}^N)$.

It suffices to verify that $|u_n|^{p-1}u_n$ is a Cauchy sequence in $L^1(B_R)$ for any R. By Kato's inequality and (6) we have

$$-\Delta |u_n - u_m| + ||u_n|^{p-1}u_n - |u_m|^{p-1}u_m| \le |f_n - f_m|.$$

Let $\zeta \in \mathcal{D}(\mathbb{R}^N)$ be such that $0 \le \zeta \le 1$ and $\zeta = 1$ on B_R . We have

$$\int ||u_n|^{p-1}u_n - |u_m|^{p-1}u_m|\zeta \le \int |f_n - f_m|\zeta + \int |u_n - u_m|\Delta\zeta$$

and the RHS tend to zero as $m, n \to \infty$. Passing to the limit in (6) we obtain (1).

Uniqueness

We shall need the following:

Lemma 2. Assume $u \in L^p_{loc}(\mathbb{R}^N)$ satisfies

$$-\Delta u + |u|^{p-1}u \leq 0 \quad \text{in } \mathscr{D}'(\mathbb{R}^N). \tag{7}$$

Then $u \leq 0$ a.e. on \mathbb{R}^N .,

Remark 3. Lemma 2 is closely related to the results of J. Keller [11] and R. Osserman [13] (see also the earlier works quoted in these papers).

Proof. We use a comparison function of the same type as in Osserman [13] (see also C. Loewner and L. Nirenberg [12]). Set

$$U(x) = \frac{CR^{\alpha}}{\left(R^2 - |x|^2\right)^{\alpha}} \quad \text{in } B_R$$

where R > 0, $\alpha = 2/(p-1)$ and $C^{p-1} = 2\alpha \max\{N, \alpha + 1\}$. A direct computation shows that

$$-\Delta U + U^p \geqslant 0 \quad \text{in } B_R \tag{8}$$

and thus

$$-\Delta(u-U) + |u|^{p-1}u - U^p \leqslant 0 \quad \text{in } \mathcal{D}'(B_R). \tag{9}$$

Using a variant of Kato's inequality (see Lemma A.1 in the Appendix) we deduce from (9) that

$$-\Delta(u-U)^{+} + (|u|^{p-1}u - U^{p})\operatorname{sign}^{+}(u-U) \leq 0 \quad \text{in } \mathscr{D}'(B_{R})$$
(10)

and therefore

$$-\Delta(u-U)^{+} \leq 0 \quad \text{in } \mathscr{D}'(B_{R}). \tag{11}$$

From Lemma A.1 and (7) we deduce that

$$-\Delta u^+ + (u^+)^p \le 0 \quad \text{in } \mathscr{D}'(\mathbb{R}^N)$$

and therefore

$$-\Delta u^+ \leqslant 0$$
 in $\mathscr{D}'(\mathbb{R}^N)$,

i.e., u^+ is subharmonic and in particular $u^+ \in L^{\infty}_{loc}(\mathbb{R}^N)$. It follows that for some $\delta > 0$ we have

$$(u-U)^{+} = 0 \quad \text{for } R - \delta < |x| < R \tag{12}$$

(since $U(x) \to +\infty$ as $|x| \to R$, $x \in B_R$). Combining (11) and (12) we obtain that $(u-U)^+=0$ a.e. on B_R , i.e., $u \le U$ a.e. on B_R .

Keeping x fixed and letting $R \to \infty$ we see that $u \le 0$ a.e. on \mathbb{R}^N .

Semilinear Equations 275

Proof of Theorem 1. Uniqueness

Let u_1 and u_2 be two solutions of (1) and let $u = u_1 - u_2$. By Kato's inequality we have

$$-\Delta |u| + \left| |u_1|^{p-1} u_1 - |u_2|^{p-1} u_2 \right| \le 0 \quad \text{in } \mathcal{D}'(\mathbb{R}^N). \tag{13}$$

On the other hand, there is a constant $\delta > 0$ —depending only on p— such that

$$||a|^{p-1}a - |b|^{p-1}b| \ge \delta |a-b|^p \quad \forall a, b \in \mathbb{R}.$$
 (14)

From (13) and (14) we deduce that

$$-\Delta|u|+\delta|u|^p\leqslant 0\quad\text{in }\mathscr{D}'(\mathbb{R}^N).$$

Using Lemma 2 we conclude that u = 0.

3. Miscellaneous Remarks and Generalizations

A. Monotone Nonlinearities

The proof of Theorem 1 extends easily to the case where $|u|^{p-1}u$ is replaced by a more general function g(u). Assume $g: \mathbb{R} \to \mathbb{R}$ is a C^1 function such that

$$g'(u) \geqslant a|u|^{p-1} \quad \forall u \in \mathbb{R},$$

for some constants a > 0 and $1 (for example, <math>g(u) = \sinh u$, etc...).

Theorem 1'. For every $f \in L^1_{loc}(\mathbb{R}^N)$ there exists a unique $u \in L^p_{loc}(\mathbb{R}^N)$ with $g(u) \in L^1_{loc}(\mathbb{R}^N)$ satisfying

$$-\Delta u + g(u) = f(x) \quad \text{in } \mathscr{D}'(\mathbb{R}^N). \tag{16}$$

B. Nonmonotone g's

Let $g(x, u): \mathbb{R}^N \times \mathbb{R}$ be measurable in x and continuous in u. We assume that:

$$g(x, u) \operatorname{sign} u \ge a|u|^p - \omega(x)$$
 for a.e. $x \in \mathbb{R}^N$, for all $u \in \mathbb{R}$ (17)

where $\omega \in L^1_{loc}(\mathbb{R}^N)$ and a > 0, 1 and also

$$h_M(x) = \sup_{|u| \le M} |g(x, u)| \in L^1_{loc}(\mathbb{R}^N) \text{ for all } M > 0.$$
 (18)

Theorem 2. There exists $u \in L^p_{loc}(\mathbb{R}^N)$ such that $g(\cdot, u) \in L^1_{loc}(\mathbb{R}^N)$ satisfying

$$-\Delta u + g(x, u) = 0 \quad \text{in } \mathscr{D}'(\mathbb{R}^N). \tag{19}$$

Sketch of the Proof. First we consider the case of a smooth bounded domain $\Omega \subset \mathbb{R}^N$.

Claim. There exists $u \in W_0^{1,1}(\Omega)$ such that $g(\cdot, u) \in L^1(\Omega)$, satisfying

$$-\Delta u + g(x, u) = 0 \quad \text{on } \Omega. \tag{20}$$

This type of result is closely related—but not quite contained in [6]. Here it suffices to assume (17) with a = 0.

For $r \in \mathbb{R}$ and $n \in \mathbb{N}$ we set

$$\tau_n r = \left\{ \begin{array}{ll} r & \text{if } |r| \leqslant n \\ n & \text{if } r \geqslant n. \\ -n & \text{if } r \leqslant -n. \end{array} \right.$$

By the Schauder fixed point theorem there exists $u_n \in W_0^{1,1}(\Omega)$ satisfying

$$-\Delta u_n + g(x, \tau_n u_n) = 0 \quad \text{on} \quad \Omega. \tag{21}$$

Using the fact that $-\int_{\Omega} \Delta u_n \operatorname{sign} u_n \ge 0$ we find

$$\int_{\Omega} |g(x,\tau_n u_n)| \leq 2 \int_{\Omega} |\omega|.$$

Therefore

$$\int_{\Omega} |\Delta u_n| \leq 2 \int_{\Omega} |\omega|. \tag{22}$$

After extracting a subsequence we may assume that

$$u_n \to u \quad \text{in } W_0^{1,1}(\Omega)$$

$$u_n \to u \quad \text{a.e.}$$

$$g(x, \tau_n u_n) \to g(x, u) \quad \text{a.e.}$$

To show that $g(x, \tau_n u_n) \to g(x, u)$ in $L^1(\Omega)$ we use a new device introduced in [8] by Th. Gallouet and J. M. Morel (with an observation of L. Boccardo). Set

$$p_{M}(r) = \begin{cases} 1 & \text{if } r > M \\ 0 & \text{if } -M \le r \le M \\ -1 & \text{if } r < -M \end{cases}$$

where $r \in \mathbb{R}$ and M > 0. It is well known that

$$-\int_{\Omega} \Delta u \cdot p_{M}(u) \geqslant 0 \quad \forall u \in W_{0}^{1,1}(\Omega), \, \Delta u \in L^{1}(\Omega).$$

Therefore we have

$$\int_{\Omega} g(x, \tau_n u_n) p_M(u_n) \leqslant 0,$$

That is,

$$\int_{|u_n| \ge M} g(x, \tau_n u_n) \operatorname{sign}(u_n) \le 0$$

and hence

$$\int_{|u_n|>M} |g(x,\tau_n u_n)| \leq 2 \int_{|u_n|>M} |\omega|.$$
 (23)

From (22) we see that $||u_n||_{I^1} \le C$ and thus M meas $[|u_n| > M] \le C$.

Given $\varepsilon > 0$ we may $fix\ M$ large enough so that $2\int_{|u_n| > M} |\omega| < \varepsilon$. Next, for any measurable $A \subset \Omega$, we have

$$\begin{split} \int_{A} |g(x,\tau_{n}u_{n})| & \leq \int_{A \atop |u_{n}| \leq M} |g(x,\tau_{n}u_{n})| + \int_{|u_{n}| > M} |g(x,\tau_{n}u_{n})| \\ & \leq \int_{A} h_{M}(x) + \varepsilon \leq 2\varepsilon \end{split}$$

provided meas $A < \delta$ and δ is small enough. In other words, we have established that

$$\forall \varepsilon > 0$$
 $\exists \delta > 0$ s.t. $\int_A |g(x, \tau_n u_n)| < 2\varepsilon$ when meas $A < \delta$.

We conclude that $g(x, \tau_n u_n) \to g(x, u)$ in $L^1(\Omega)$.

We turn now to problem (19). For each n let

$$\Omega_n = \left\{ x \in \mathbb{R}^N; |x| < n \right\}.$$

By the previous step there exists $u_n \in W_0^{1,1}(\Omega_n)$ such that $g(\cdot, u_n) \in L^1(\Omega_n)$ satisfying

$$-\Delta u_n + g(x, u_n) = 0 \quad \text{on } \Omega_n. \tag{24}$$

From Kato's inequality and (24) we obtain

$$-\Delta |u_n| + g(x, u_n) \operatorname{sign} u_n \leq 0 \text{ in } \mathscr{D}'(\Omega_n).$$

And therefore we also have

$$-\Delta |u_n| + a|u_n|^p \leqslant \omega \quad \text{in } \mathcal{D}'(\Omega_n)$$
 (25)

$$-\Delta|u_n| + |g(x, u_n)| \le 2|\omega| \quad \text{in } \mathcal{D}'(\Omega_n). \tag{26}$$

Using the same device as in the proof of Theorem 1 we deduce from (25) that

 u_n is bounded in $L^p_{loc}(\mathbb{R}^N)$.

It follows from (26) that

$$g(\cdot, u_n)$$
 is bounded in $L^1_{loc}(\mathbb{R}^N)$

and thus

 Δu_n is bounded in $L^1_{loc}(\mathbb{R}^N)$.

Hence we may assume that

$$u_n \to u$$
 in $L^1_{loc}(\mathbb{R}^N)$
 $u_n \to u$ a.e. on \mathbb{R}^N
 $g(x, u_n) \to g(x, u)$ a.e. on \mathbb{R}^N .

Finally we prove that $g(x, u_n) \to g(x, u)$ in $L^1_{loc}(\mathbb{R}^N)$. By a variant of Kato's inequality (see Lemma A.2) we have

$$-\Delta P_{M}(u) + g(x, u_{n}) p_{M}(u_{n}) \leq 0 \quad \text{in } \mathscr{D}'(\Omega_{n})$$

where

$$P_{M}(t) = \int_{0}^{t} p_{M}(s) ds.$$

Therefore we have

$$\int_{|u_n|>M} |g(x,u_n)|\zeta \leqslant 2\int_{|u_n|>M} |\omega|\zeta + \int_{|u_n|>M} |u_n|\Delta\zeta \quad \forall \zeta \in \mathcal{D}_+(\Omega_n).$$

It follows easily that $g(x, u_n)$ is equi-integrable on bounded sets of \mathbb{R}^N and thus $g(x, u_n) \to g(x, u)$ in $L^1_{loc}(\mathbb{R}^N)$.

C. Measures or More General Distributions as Right Hand Side Data

Let T be a distribution of the form $T = f + \Delta \phi$ where $f \in L^1_{loc}(\mathbb{R}^N)$ and $\phi \in L^p_{loc}(\mathbb{R}^N)$. Then the problem

$$-\Delta u + |u|^{p-1}u = T \quad \text{in } \mathscr{D}'(\mathbb{R}^N)$$
 (27)

has a unique solution $u \in L^p_{loc}(\mathbb{R}^N)$.

Indeed it suffices to consider the new unknown $v = u + \phi$ and to apply the result of Section B to v (see also [8] for similar questions on bounded domains).

Suppose now that T is a measure on \mathbb{R}^N (not necessarily a bounded measure). Suppose 1 (no restriction when <math>N=1,2). Then there exists a unique solution $u \in L^p_{loc}(\mathbb{R}^N)$ for (27). Related questions for bounded measures are considered in [5] and [8].

D. Nonlinearities with Growth Close to Linear

Suppose $g: \mathbb{R} \to \mathbb{R}$ is continuous and g(u) behaves like $u|\log u|^k$ as $|u| \to \infty$ with k > 2. Then for every $f \in L^1_{loc}(\mathbb{R}^N)$ there exists $u \in L^1_{loc}(\mathbb{R}^N)$ with $g(u) \in L^1_{loc}(\mathbb{R}^N)$ satisfying

$$-\Delta u + g(u) = f \quad \text{in } \mathscr{D}'(\mathbb{R}^N).$$

As before, we use Kato's inequality to find

$$-\Delta|u|+g(u)\mathrm{sign}\,u\leqslant|f|.$$

We multiply (28) through by $\eta = e^{-1/3^{\beta}}$ where $\beta > 2/(k-2)$. Then we estimate $\int |u| |\Delta \eta|$ with the help of Young's inequality. Recently Gallouet and Morel have proved the following result. Suppose $g: \mathbb{R} \to \mathbb{R}$ is continuous, nondecreasing, odd, convex, and $\int_{1}^{\infty} [G(x)]^{-1/2} dx < \infty$ where G is a primitive of g. Then for every $f \in L^1_{loc}(\mathbb{R}^N)$ there exists a unique function $u \in L^1_{loc}(\mathbb{R}^N)$ with $g(u) \in L^1_{loc}(\mathbb{R}^N)$ satisfying $-\Delta u + g(u) = f$ in $\mathscr{D}'(\mathbb{R}^N)$.

E. Unbounded Domains

Let $\Omega \subset \mathbb{R}^N$ be any domain (bounded or unbounded) with smooth boundary. Using the same principles as in the proof of Theorem 1 one can show that for every $f \in L^1_{loc}(\overline{\Omega})$ and $\phi \in L^1_{loc}(\partial \Omega)$ there exists a unique $u \in L^p_{loc}(\overline{\Omega})$ satisfying

$$\begin{cases} -\Delta u + |u|^{p-1}u = f & \text{in } \Omega \\ u = \phi & \text{on } \partial\Omega. \end{cases}$$

where 1 and the boundary condition is understood in some appropriate sense.

F. Local Regularity

Let $\Omega \subset \mathbb{R}^N$ be any domain. Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous and nondecreasing function.

Theorem 3. Suppose $u \in L^1_{loc}(\Omega)$ is such that $g(u) \in L^1_{loc}(\Omega)$ and satisfies

$$-\Delta u + g(u) = f(x) \quad \text{in } \mathscr{D}'(\Omega)$$
where $f \in L^q_{loc}(\Omega)$ and $1 < q < \infty$.
Then $u \in W^{2,q}_{loc}(\Omega)$.

Proof. We may assume that g(0) = 0. We have

$$-\Delta |u| + g(u)\operatorname{sign} u \leq |f| \quad \text{in } \mathscr{D}'(\Omega)$$

and thus

$$-\Delta |u| \leq |f| \quad \text{in } \mathscr{D}'(\Omega).$$

It follows that $u \in L^q_{loc}(\Omega)$. Set

$$g_n(r) = g(\tau_n r)$$
 and $P_n(r) = \operatorname{sign} r \int_0^r |g_n(s)|^{q-1} ds$

so that

$$|P_n(r)| \leq |r| |g_n(r)|^{q-1} \quad \forall r \in \mathbb{R}.$$

By Lemma A.2 and (29) we have

$$\Delta P_n(u) \geqslant |g_n(u)|^{q-1} \text{sign } u[g(u)-f] \geqslant |g_n(u)|^q - |f| |g_n(u)|^{q-1}.$$
 (30)

Let $\zeta \in \mathcal{D}(\Omega)$ with $0 \leqslant \zeta \leqslant 1$; from (30) we see that

$$\begin{split} \int |g_n(u)|^{q} \zeta^{\alpha} &\leq C \int |P_n(u)| \zeta^{\alpha-2} + \int |f| |g_n(u)|^{q-1} \zeta^{\alpha} \\ &\leq C \int |u| |g_n(u)|^{q-1} \zeta^{\alpha-2} + \int |f| |g_n(u)|^{q-1} \zeta^{\alpha} \end{split}$$

where C is independent of u.

Fix any integer $\alpha \ge 2q$; by Hölder's inequality we have

$$\int |g_n(u)|^q \zeta^{\alpha} \leqslant C \int_{\text{supp}} (|u|^q + |f|^q).$$

As $n \to \infty$ we see that $g(u) \in L^q_{loc}(\Omega)$.

G. Parabolic Equations

Consider the problem

$$\begin{cases} u_t - \Delta u + |u|^{p-1}u = 0 & \text{on } \mathbb{R}^N \times (0, +\infty) \text{ with } 1
(31)$$

Using the same principles as in the proof of Theorem 1 one can show that for every $u_0 \in L^1_{loc}(\mathbb{R}^N)$ there is a unique function $u \in C^2(\mathbb{R}^N \times (0, +\infty)) \cap C([0, +\infty); L^1_{loc}(\mathbb{R}^N))$ satisfying (31).

Results of the same nature for the problem

$$\begin{cases} u_t - \Delta \left(|u|^{m-1} u \right) = 0 & \text{ on } \mathbb{R}^N \times (0, \infty) \\ u(x, 0) = u_0(x) & \text{ on } \mathbb{R}^N \end{cases}$$

have been obtained by M. Herrero-M. Pierre [9] when 0 < m < 1. When m > 1 the situation is totally different; see [1, 4, 7].

Appendix: Some Variants of Kato's Inequality

Let $\Omega \subset \mathbb{R}^N$ be any open set.

Lemma A.1. Let $u \in L^1_{loc}(\Omega)$ and $f \in L^1_{loc}(\Omega)$ be such that

$$\Delta u \geqslant f$$
 in $\mathscr{D}'(\Omega)$.

Then

$$\Delta u^+ \geqslant f \operatorname{sign}^+ u \quad \text{in } \mathscr{D}'(\Omega).$$

Lemma A.2. Let $p: \mathbb{R} \to \mathbb{R}$ be a monotone, nondecreasing function such that p is continuous except at a finite number of jumps and $p(\mathbb{R})$ is bounded.

Let
$$P(r) = \int_0^r p(s) ds$$
 and let $u \in L^1_{loc}(\Omega)$ with $\Delta u \in L^1_{loc}(\Omega)$.

Then

$$\Delta P(u) \geqslant (\Delta u) p(u)$$
 in $\mathcal{D}'(\Omega)$.

The proofs are easy modifications of Kato's original argument in [10], and we shall omit them.

Acknowledgments

This paper was written during a visit at the University of Minnesota. I thank the Mathematics Department and the Institute for Mathematics and its Applications for their invitation and hospitality. I thank D. Aronson, C. Kenig, and H. Weinberger for valuable conversations.

References

- Aronson D, Caffarelli L (in press) The initial trace of a solution of the porous medium equation.
 Trans. Am Math Soc
- 2. Baras P, Pierre M (1982) Singularités éliminables d'équations elliptiques semilinéaires, C.R.A.S. Paris 295:519-522; see also Ann Inst Fourier to appear
- Bénilan Ph, Brezis H, and Crandall M (1975) A semilinear equation in L¹(R^N), Ann Sc Norm Sup Pisa 2:523-555
- Bénilan Ph, Crandall M, and Pierre M Solutions of the porous medium equation under optimal conditions on initial values. Indiana Univ Math J 33:51-87

- Brezis H (1980) Some variational problems of the Thomas-Fermi type. In: Cottle, Giannessi, and Lions (eds) Variational Inequalities and Complementarity Problems. Wiley, New York: 53-73
- Brezis H, Strauss W (1973) Semilinear second-order elliptic equations in L¹. J Math Soc Japan 25:565-590
- 7. Dahlberg B, Kenig C (in press) Non-negative solutions of the porous medium equation
- 3. Gallouet Th, Morel JM (in press) Resolution of a semilinear equation in L^1
- 9. Herrero M, Pierre M (in press) Some results for the Cauchy problem for $u_t = \Delta u^m$ when 0 < m < 1
- 10. Kato T (1972) Schrödinger operators with singular potentials. Israel J Math 13:135-148
- 11. Keller JB (1957) On solutions of $\Delta u = f(u)$. Comm Pure Appl Math 10:503-510
- Loewner C, Nirenberg L (1974) Partial differential equations invariant under conformal or projective transformations. In: Contributions to Analysis. Acad. Press, New York: 245-272
- 13. Osserman R (1957) On the inequality $\Delta u \ge f(u)$. Pacific J Math 7:1641-1647

10 March 1984