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1. Introduction

Most of the ideas in this paper are coming from a series of recent collaborations
with J. Bourgain, Y. Li, P. Mironescu and L. Nirenberg (see J. Bourgain, H. Brezis and
P. Mironescu [1], [2], [3], [4], H. Brezis and L. Nirenberg [1], H. Brezis, Y. Li, P. Mironescu
and L. Nirenberg [1]). However we will adopt here on slightly different presentation and
provide some simplified proofs.

The starting point is the following

Proposition 1. Let Ω be a connected open set in RN and let f : Ω → R be a measurable
function such that

(1)
∫

Ω

∫
Ω

|f(x)− f(y)|
|x− y|N+1

dx dy <∞,

then f is a constant.

The original motivation for such a proposition was twofold:

(i) Uniqueness of lifting. Given a (measurable) function u : Ω → C such that |u| = 1
a.e., there are many liftings ϕ, i.e., u = eiϕ. If ϕ1, ϕ2 are 2 liftings then

k(x) =
1
2π

(ϕ1(x)− ϕ2(x)) : Ω → Z.

Under further assumptions one may hope to prove that k is a constant function. For
example, if ϕ1, ϕ2 are continuous and Ω is connected, then k is constant. The message
I wish to convey is that the continuity assumption can be replaced by a different type of
condition, such as (1), which is much more natural in the framework of Sobolev spaces
(see Remark 3).

(ii) A degree theory for classes of discontinuous maps. The possibility of defining a
degree for maps in Sobolev spaces (see H. Brezis and J.M. Coron [1], H. Brezis, Y. Li,
P. Mironescu and L. Nirenberg [1]), is based on the fact deg ht(·) remains constant along
a homotopy ht(·), as t varies in [0, 1] (or more generally in a connected parameter space
Λ). Such a conclusion holds possibly in situations where the dependence in t need not be
continuous.

Remark 1. The conclusion of Proposition 1 is easy to state, but I do not know a direct,
elementary, proof. Our proof is not very complicated but requires an “excursion” via the
Sobolev spaces.
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Remark 2. The connectedness assumption is of course needed. The conclusion of Propo-
sition 1 still holds if in (1) N + 1 is replaced by q ≥ N + 1. Indeed, it suffices to prove
Proposition 1 when Ω is a ball B (and complete the general case via connectedness); then

1
|x− y|N+1

≤ C

|x− y|q
∀x, y ∈ B.

(However the conclusion still holds in some non connected domains, for example Ω = G\Σ
where G is connected and Σ is closed with meas Σ = 0. It would be interesting to study
non connected domains where the conclusion of Proposition 1 holds).

On the other hand, if in (1) N + 1 is replaced by q < N + 1, then the conclusion fails.
Indeed, for any Lipschitz function on B one has∫

B

∫
B

|f(x)− f(y)|
|x− y|q

dx dy ≤ C

∫
B

∫
B

dx dy

|x− y|q−1
<∞

since q < N + 1.

There are many consequences and variants of Proposition 1. Here are a few.

Corollary 1. Assume Ω is a connected open set in RN , and let f : Ω → Z be a measurable
function such that

(2)
∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|N+1
dx dy <∞,

for some 1 ≤ p <∞, then f is a constant.

Proof. Observe that
|f(x)− f(y)|p ≥ |f(x)− f(y)|

since f(x)− f(y) ∈ Z.

Remark 3. When p > 1, condition (2) says that f belongs to the fractional Sobolev space
W s,p (see e.g. Adams [1]) with s = 1/p. Therefore, we may assert that any function in
W s,p(Ω; Z) with sp ≥ 1 is a constant. Note that the condition sp ≥ 1 is considerably
weaker than the condition sp > N which implies (via the Sobolev embedding theorem)
that f is continuous. Corollary 1 is originally due to R. Hardt, D. Kinderlehrer and F.H.
Lin [1] (Lemma 1.1) when p = 2 and s = 1/2 (they attribute it to Wiener when N = 2).
Bethuel and Demengel [1] had obtained a similar conclusion under the stronger assumption
sp > 1.

Corollary 2. Assume Ω is a connected open set in RN and A is any measurable subset
such that

(3)
∫

A

∫
cA

dx dy

|x− y|N+1
<∞

then either meas(A) = 0 or meas(Ω\A) = 0.
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It suffices to apply Proposition 1 to f = χA, the characteristic function of A. Note
that in (3), (N + 1) is again optimal. If A is any subset of Ω with smooth boundary, then
(3) holds if (N +1) is replaced by any q < N +1 (it suffices to consider the case where ∂A
is flat and to make an explicit computation).

Now some variants of Proposition 1.

Proposition 2. Assume Ω is a connected open set in RN and f : Ω → R is a measurable
function such that

(4)
∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|N+p
dx dy <∞,

for some 1 ≤ p <∞, then f is constant.

[Proposition 1 corresponds to the case p = 1].

Still a further generalization

Proposition 3. Assume Ω is a connected open set in RN and f : Ω → R is a measurable
function such that

(5)
∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ψ(|x− y|)dx dy <∞,

where p ≥ 1 and ψ ∈ L1
loc(0,∞), ψ ≥ 0 satisfies

(6)
∫ 1

0

ψ(r)rN−1dr = ∞,

then f is a constant.

[Proposition 2 corresponds to the case ψ(r) = r−N ].

Here is one important generalization of Proposition 2.

Proposition 4. Assume Ω is a connected open set in RN and f : Ω → R is a measurable
function such that

(7)
∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|N+p−ε
dx dy = o

(
1
ε

)
as ε→ 0,

i.e.,

(7′) lim
ε→0

ε

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|N+p−ε
dx dy = 0

for some p ≥ 1, then f is a constant.

Remark 4. Assumption (7) is clearly much weaker than (4) (when Ω is bounded) which
says that ∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|N+p−ε
dx dy = 0(1) as ε→ 0,

3



On the other hand (7) is optimal since for any Lipschitz function f on Ω

(8)
∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|N+p−ε
dx dy = 0

(
1
ε

)
because ∫ 1

0

1
rN−ε

rN−1dr =
1
ε
.

Here is a final generalization, which brings us closer to the connection with Sobolev
spaces.

Theorem 1. Assume Ω is a connected open set in RN and f : Ω → R is a measurable
function. Let (ρε)ε>0 be a sequence of radial mollifiers, i.e.

(9) ρε ∈ L1
loc(0,∞), ρε ≥ 0,

(10)
∫ ∞

0

ρε(r)rN−1dr = 1 ∀ε > 0,

(11) for every δ > 0, lim
ε→0

∫ ∞

δ

ρε(r)rN−1dr = 0.

Assume that, for some p ≥ 1,

(12) lim
ε→0

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε(|x− y|)dx dy = 0.

Then f is a constant.

Note that Proposition 4 is a consequence of Theorem 1 when choosing

ρε(r) =

{
εr−N+ε, r < 1
0 , r > 1.

And Proposition 3 is also a consequence of Theorem 1 when choosing

ρε(r) =


0 if r < ε

aεψ(r) if ε < r < 1
0 if r > 1,

where

(13) aε =
(∫ 1

ε

ψ(r)rN−1dr

)−1

→ 0 as ε→ 0.
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Note that, in view of (5),∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε(|x− y|)dx dy ≤ Caε → 0 as ε→ 0, by (13).

The proof of Theorem 1 involves an excursion into Sobolev spaces which we will now
describe.

2. A new characterization of Sobolev spaces
For simplicity, we start with the case of all of RN . Let f ∈ Lp(RN ), 1 < p <∞. It is

well-know (see e.g. H. Brezis [1], Proposition IX.3) that if f ∈W 1,p(RN ) then

(14)
∫

RN

|f(x+ h)− f(x)|pdx ≤ |h|p
∫

RN

|∇f |pdx for every h ∈ RN .

And conversely, if f ∈ Lp(RN ) and if there exists a constant C such that

(15)
∫

RN

|f(x+ h)− f(x)|pdx ≤ C|h|p as h→ 0,

then f ∈W 1,p(RN ).
When p = 1, W 1,1 should be replaced by BV , the space of functions in L1 who’s

derivatives (in the sense of distributions) are bounded Radon measures; thus f ∈ BV if
and only if

(16)
∫

RN

|f(x+ h)− f(x)|dx ≤ C|h| as |h| → 0,

and then (16) holds for all h ∈ RN with C =
∫
|∇f |dx. In particular, if ρε satisfies (9),

(10) and f ∈W 1,p, we have

(17)
∫

RN

ρε(|h|)dh
∫

RN

|f(x+ h)− f(x)|p

|h|p
dx ≤ C as ε→ 0,

since ∫
RN

ρε(|h|)dh = σN

∫ ∞

0

ρε(r)rN−1dr = σN

where σN = |SN−1|.
Changing variables in (17) yields

(18)
∫

RN

∫
RN

|f(x)− f(y)|p

|x− y|p
ρε(|x− y|)dx dy ≤ C as ε→ 0.

Similarly, if f ∈ BV , we have

(19)
∫

RN

∫
RN

|f(x)− f(y)|
|x− y|

ρε(|x− y|)dx dy ≤ C as ε→ 0.
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The heart of the matter is that (18) (resp. (19)) gives a characterization of W 1,p when
p > 1 (resp. BV ).

Theorem 2. Assume f ∈ Lp(RN ) satisfies (18) with p > 1. Let (ρε) be as in (9)-(10)-(11).
Then f ∈W 1,p and

(20) lim
ε→0

∫
RN

∫
RN

|f(x)− f(y)|p

|x− y|p
ρε(|x− y|)dx dy = Kp,N

∫
RN

|∇f |pdx

where Kp,N depends only on p and N .

Similarly for p = 1 we have

Theorem 3. Assume f ∈ L1(RN ) satisfies (19). Let (ρε) be as in (9)-(10)-(11). Then
f ∈ BV and

(21) lim
ε→0

∫
RN

∫
RN

|f(x)− f(y)|
|x− y|

ρε(|x− y|)dx dy = K1,N

∫
RN

|∇f |dx

where the right-hand side denote the total mass of the measure ∇f .

An interesting consequence of Theorem 3 is the following

Corollary 3. Let A be a bounded measurable set in RN . Then A has finite perimeter (in
the sense of De Giorgi) if and only if∫

A

∫
cA

1
|x− y|

ρε(|x− y|)dx dy ≤ C as ε→ 0

and then

(22) lim
ε→0

∫
A

∫
cA

1
|x− y|

ρε(|x− y|)dx dy = K1,NPer(A).

Proof of Theorem 2. The original proof of Theorem 2 is to be found in Bourgain, Brezis
and Mironescu [3]. We present here a simpler argument suggested by E. Stein [1]. Assume
f ∈ Lp satisfies (18) an let (γδ) be any sequence of smooth mollifiers. Set

fδ = γδ ? f.

Note that (18) still holds when f is replaced by its translates (τhf)(x) = f(x + h). Also,
(18) is stable under convex combinations and thus fδ satisfies (18) with the same constant
C, i.e., we have

(23)
∫

RN

∫
RN

|fδ(x)− fδ(y)|p

|x− y|p
ρε(|x− y|)dx dy ≤ C

where C is independent of ε and δ.
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Next, let g ∈ C2(RN ) be such that

(24)
∫

RN

∫
RN

|g(x)− g(y)|p

|x− y|p
ρε(|x− y|)dx dy ≤ C as ε→ 0,

where ρε satisfies (9), (10), (11). We claim that

(25)
∫

RN

|∇g(x)|pdx ≤ C/Kp,N ,

with C taken from (24) and

(26) Kp,N =
∫

SN−1
|(σ · e)|pdσ, e ∈ SN−1.

Proof of (25). Let K be any compact subset of RN . For x ∈ K and |h| ≤ 1 we have

(27) |g(x+ h)− g(x)− h · ∇g(x)| ≤ CK |h|2.

From (24) we have

(28)
∫

K

dx

∫
|h|≤1

|g(x+ h)− g(x)|p

|h|p
ρε(|h|)dh ≤ C.

By (27) we have
|h · ∇g(x)| ≤ |g(x+ h)− g(x)|+ CK |h|2

and therefore, for every θ > 0

|h · ∇g(x)|p ≤ (1 + θ)|g(x+ h)− g(x)|p + Cθ,K |h|2p.

Combining this with (28) yields

(29)
∫

K

dx

∫
|h|≤1

|(h · ∇g(x))|p

|h|p
ρε(|h|)dh ≤ (1 + θ)C + Cθ,K |K|

∫
|h|≤1

|h|pρε(|h|)dh.

But, for any vector V ∈ RN ,∫
|h|≤1

|(h · V )|p

|h|p
ρε(|h|)dh = Kp,N |V |p

∫ 1

0

ρε(r)rN−1dr.

On the other hand, it is clear from (10) and (11) that

lim
ε→0

∫
|h|≤1

|h|pρε(|h|)dh = 0.
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Passing to the limit as ε→ 0 in (29) we find

(30) Kp,N

∫
K

|∇g(x)|pdx ≤ (1 + θ)C.

Since (30) holds for every θ > 0 and every compact set K (with C independent of θ and
K) we obtain (25), that is,

(31) Kp,N

∫
RN

|∇g(x)|pdx ≤ lim inf
ε→0

∫
RN

∫
RN

|g(x)− g(y)|p

|x− y|p
ρε(|x− y|)dx dy.

On the other hand, if g ∈ C2
0 (RN ) we have, as above,

|g(x+ h)− g(x)| ≤ |h · ∇g(x)|+ C ′|h|2 ∀x ∈ RN , ∀h ∈ RN .

Hence
|g(x+ h)− g(x)|p ≤ (1 + θ)|h · ∇g(x)|p + C ′θ|h|2p.

We multiply this by ρε(|h|)/|h|p and integrate over the set {(x, h) ∈ R2N : x or x + h ∈
supp g} to obtain∫

RN

dx

∫
RN

|g(x+ h)− g(x)|p

|h|p
ρε(|h|)dh ≤

(1 + θ)
∫

RN

Kp,N |∇g(x)|pdx+ 2C ′θ|supp g|
∫

RN

|h|pρε(|h|)dh.

We first let ε→ 0 and then θ → 0. This yields

(32) lim sup
ε→0

∫
RN

dx

∫
RN

|g(x+ h)− g(x)|p

|h|p
ρε(|h|)dh ≤ Kp,N

∫
RN

|∇g(x)|pdx.

Combining (31) and (32) yields, for every g ∈ C2
0 (RN ),

lim
ε→0

∫
RN

∫
RN

|g(x)− g(y)|p

|x− y|p
ρε(|x− y|)dx dy = Kp,N

∫
RN

|∇g(x)|pdx.

Since C2
0 (RN ) is dense in W 1,p(RN ), it is easy to conclude (using (14)) that (20) holds for

every f ∈W 1,p(RN ).

We may now complete the proof of Theorem 2. Assuming f ∈ Lp(RN ) satisfies (18)
and applying Claim (25) to g = fδ we see that

(33)
∫

RN

|∇fδ|pdx ≤ C/Kp,N ,

where C comes from (18). Finally, we pass to the limit in (33) as δ → 0 and obtain
f ∈W 1,p.
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Proof of Theorem 3. If f ∈ L1(RN ) and satisfies (19) and we proceed as above we are led
to ∫

RN

|∇fδ|dx ≤ C/K1,N .

Therefore f ∈ BV and ∫
RN

|∇f |dx ≤ C/K1,N .

In other words we have proved that

(34) K1,N

∫
RN

|∇f |dx ≤ lim inf
ε→0

∫
RN

∫
RN

|f(x)− f(y)|
|x− y|

ρε(|x− y|)dx dy.

On the other hand it is easy to see, using (16), that for f ∈ BV

(35)
∫

RN

∫
RN

|f(x)− f(y)|
|x− y|

ρε(|x− y|)dx dy ≤ K̃N

∫
RN

|∇f |dx.

Unfortunately the constant K̃N in (35) is not the same as K1,N . It is also clear that
(21) holds when f ∈ C2

0 (RN ). However we cannot conclude easily that (21) holds for every
f ∈ BV since C2

0 (RN ) is not dense in BV .
It remains to be shown that, for every f ∈ BV (RN )

lim sup
ε→0

∫
RN

∫
RN

|f(x)− f(y)|
|x− y|

ρε(|x− y|)dx dy ≤ K1,N

∫
RN

|∇f |dx.

This has been established by J. Davila [1] using new ideas which are not presented here.

Remark 5. There are statements similar to Theorem 2 and Theorem 3 when RN is replaced
by a smooth bounded domain Ω in RN . However the same conclusion fails for a general
bounded domain Ω if ∂Ω is not smooth. It is still true (for a general Ω) that

(36) Kp,N

∫
Ω

|∇f |p ≤ lim inf
ε→0

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε(|x− y|)dx dy.

However, it may happen for p > 1 that f ∈ W 1,p(Ω) (so that the left hand side in (36) is
finite) while the right-hand side in (36) is infinite. Here is such an example. Let Ω = D\Σ
where D is a disc (in R2) and Σ is a slit. Let f be a smooth function in Ω which is
discontinuous across the slit (for example two different constants on each side of the slit).
Clearly f ∈W 1,p(Ω), but the RHS in (36) is infinite. This is so because∫

Ω

∫
Ω

... =
∫

D

∫
D

...

and if the RHS in (36) were finite we would conclude that f ∈ W 1,p(D) (by Theorem 2),
which is obviously wrong. This example suggests the following
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Open problem 1. Let Ω ⊂ RN be a bounded connected set (not necessarily smooth). Let
δ(x, y) denote the geodesic distance in Ω. Let f ∈ Lp(Ω) be such that∫

Ω

∫
Ω

|f(x)− f(y)|p

δ(x, y)p
ρε(δ(x, y))dx dy ≤ C as ε→ 0.

Does it follow that f ∈W 1,p and if so, does one have

lim
ε→0

∫
Ω

∫
Ω

|f(x)− f(y)|p

δ(x, y)p
ρε(δ(x, y))dx dy = Kp,N

∫
Ω

|∇f |pdx?

Remark 6. The characterization of W 1,p (resp. BV ) given by Theorem 2 (resp. 3) suggests
a definition of Sobolev spaces for maps f : M → M̃ between metric spaces, where M is
equipped with a measure µ, namely∫ ∫

d̃(f(x), f(y))p

d(x, y)p
ρε(d(x, y))dµ(x)dµ(y) ≤ C as ε→ 0.

Note that assumptions (10) and (11) involve the notion of a dimension N but this can
be done easily by considering lim

r→0
|log µ(Br(x))|/|log r|. It would be interesting to study

the properties of such maps (Sobolev imbeddings, etc...) and to compare this notion with
other definitions (see Korevaar and Schoen [1], P. Hajlasz and P.Koskela [1], L. Ambrosio
and P.Tilli [1] and the numerous references in these works).

Remark 7. There are variants of Theorems 2 and 3 when Ω is a smooth bounded domain
in RN . For example, we have

Theorem 2’. Assume f ∈ Lp(Ω) satisfies

(37)
∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε(|x− y|)dx dy ≤ C as ε→ 0,

with ρε as in (9), (10), (11). Then f ∈W 1,p(Ω) and

(38) lim
ε→0

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε(|x− y|)dx dy = Kp,N

∫
Ω

|∇f |p.

Sketch of proof. First assume that (37) holds. By a standard technique of reflection across
the boundary and multiplication by a cut-off one constructs a function f̃ on RN , with
compact support, such that f̃ = f on Ω and satisfying

(39)
∫

RN

∫
RN

|f̃(x)− f̃(y)|p

|x− y|p
ρε(|x− y|)dx dy ≤ C ′ as ε→ 0,

By Theorem 2 we conclude that f̃ ∈W 1,p(RN ) and thus f ∈W 1,p(Ω).
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Next one shows that if f ∈ C2(Ω), then

(40)
∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε(|x− y|)dx dy ≤ C(Ω)

∫
Ω

|∇f |pdx.

Finally one proves that if f ∈ C2(Ω)

(41) lim
ε→0

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|p
ρε(|x− y|)dx dy = Kp,N

∫
Ω

|∇f |pdx.

The conclusion of Theorem 2’ follows from an easy density argument.

Remark 8. There are several choices for ρε which are of interest. Here are a few

A) Choice 1

ρε(r) =


ε

rN−ε
0 < r < 1

0 r > 1.

This choice yields

Corollary 4. Assume Ω is a smooth bounded domain in RN . Let f ∈ Lp(Ω) be such that

ε

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|N+p−ε
dx dy ≤ C as ε→ 0,

then f ∈W 1,p(Ω) and

(42) lim
ε→0

ε

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|N+p−ε
dx dy = Kp,N

∫
Ω

|∇f |p.

Recall that the standard fractional Sobolev space W s,p, 0 < s < 1, 1 < p < ∞, is
equipped with Gagliardo (semi) norm

(43) ‖f‖p
W s,p =

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|N+sp
dx dy.

It is well-known that ‖f‖W s,p does not converge to ‖f‖W 1,p as s ↑ 1; in fact it converges
to ∞ (unless f is constant) by Proposition 2. However in view of Corollary 4 we may now
assert that

(44) lim
s↑1

(1− s)‖f‖p
W s,p =

Kp,N

p

∫
Ω

|∇f |p.

This “reinstates” W 1,p as a continuous limit of W s,p as s ↑ 1 provided one uses the norm
(1− s)1/p‖f‖W s,p on W s,p.
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B) Choice 2

ρε(r) =


N

εN
if r < ε

0 if r > ε

This choice yields

(45) lim
ε→0

1
εN

∫
Ω

∫
Ω

|x−y|<ε

|f(x)− f(y)|p

|x− y|p
dx dy =

Kp,N

N

∫
Ω

|∇f |p.

A variant is

ρε(r) =


(N + p)rp

εN+p
r < ε

0 r > ε

and then we have

(46) lim
ε→0

1
εN+p

∫
Ω

∫
Ω

|x−y|<ε

|f(x)− f(y)|pdx dy =
Kp,N

(N + p)

∫
Ω

|∇f |p.

Still another choice yields

(47) lim
ε→0

1
εN+p

∫
Ω

∫
Ω

ε<|x−y|<2ε

|f(x)− f(y)|pdx dy = K̃p,N

∫
Ω

|∇f |p.

C) Choice 3

ρε(r) =


0 r < ε

1
|log ε|rN

ε < r < 1

0 r > 1.

This choice yields

(48) lim
ε→0

1
|log ε|

∫
Ω

∫
Ω

|x−y|>ε

|f(x)− f(y)|p

|x− y|N+p
dx dy = Kp,N

∫
Ω

|∇ f |p.

D) Choice 4

Let γ ∈ L1
loc(0,+∞), γ ≥ 0, be such that∫ ∞

0

γ(r)rN+p−1dr = 1.

Choosing

ρε(r) =
1

εN+p
γ

(r
ε

)
rp
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yields

lim
ε→0

1
εN+p

∫
Ω

∫
Ω

|f(x)− f(y)|p γ
(
|x− y|
ε

)
dx dy = Kp,N

∫
Ω

|∇f |p,

for every f ∈W 1,p (with p > 1) and for every f ∈ BV (with p = 1). Applying this in the
BV case with f = χA we obtain a new characterization of sets of finite perimeter. Namely
a measurable set A ⊂ Ω has finite perimeter if and only if

1
εN+1

∫
A

∫
cA

γ

(
|x− y|
ε

)
dx dy ≤ C as ε→ 0,

and then

lim
ε→0

1
εN+1

∫
A

∫
cA

γ

(
|x− y|
ε

)
dx dy = K1,NPer(A).

3. Back to constant functions
All the results of Section 1 are immediate consequences of the statements of Section

2 applied in a ball B ⊂ Ω. One concludes that f is constant on B and then that f is
constant on Ω since Ω is connected.

Note that the assumption

(49) lim
ε→0

∫
B

∫
B

|f(x)− f(y)|
|x− y|

ρε(|x− y|)dx dy = 0

implies first that f ∈ BV and then that ∇f = 0, so that f is a constant.
By contrast, when p > 1, and f takes its values into Z it suffices to assumes that

(50)
∫

B

∫
B

|f(x)− f(y)|p

|x− y|p
ρε(|x− y|)dx dy ≤ C as ε→ 0.

Indeed, (50) implies that f ∈W 1,p (attention when p = 1, (50) only implies that f ∈ BV ).
Then, one may use the fact that f takes its values into Z to conclude that f is constant.
The argument is the following: write

Ω =
⋃
k∈Z

Ak

where Ak = {x ∈ Ω; f(x) = k} and use a well-known result of Stampacchia (see e.g.
Lemma 7.7 in Gilbarg–Trudinger [1]) asserting that ∇f = 0 a.e. on Ak. Hence ∇f = 0
a.e. on Ω.

Alternatively, one may deduce from (50) and assumption f : Ω → Z, that∫
Ω

∫
Ω

|f(x)− f(y)|
|x− y|

ρε(|x− y|)
|x− y|p−1

dx dy ≤ C.

13



This yields easily

lim
ε→0

∫
Ω

∫
Ω

|f(x)− f(y)|
|x− y|

ρε(|x− y|)dx dy = 0

and thus f is a constant.
There are interesting extensions of some of the above results where the ratio

|f(x)− f(y)|p

|x− y|p

is replaced by a more general expression

ω

(
|f(x)− f(y)|

|x− y|

)
.

Here are two results due to R. Ignat, V. Lie and A. Ponce [1].

Theorem 4. Assume ω : [0,∞) → [0,∞) is a continuous function such that ω(0) = 0,
ω(t) > 0 ∀t > 0 and

(51)
∫ ∞

1

ω(t)
t2

dt = ∞.

Assume f ∈ L1(Ω) satisfies∫
Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
dx dy

|x− y|N
<∞,

then f is a constant.

Theorem 5. Assume ω : [0,∞) → [0,∞) is a continuous function such that ω(0) = 0 and

lim
t→∞

ω(t)
t

= α > 0.

Assume f ∈ L1(Ω) satisfies∫
Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
ρε(|x− y|)dx dy ≤ C as ε→ 0.

Then f ∈ BV and

lim
ε→0

∫
Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
ρε(|x− y|)dx dy =

∫
Ω

ω(|∇fac|)dx+ αK1,N

∫
Ω

|∇fs|dx,

where ω(t) =
∫

SN−1
ω(t|σ · e|)dσ and ∇f = ∇fac +∇fs is the Radon–Nikodym decompo-

sition of ∇f .
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Here is still another open problem:

Open problem 2. Let Ω be a (smooth) connected, bounded domain in RN . Let f : Ω → R
be a continuous (or even Hölder continuous) function. Let ω : [0,∞) → [0,∞) be a
continuous function such that ω(0) = 0 and ω(t) > 0 for t > 0.(Here (51) might fail).
Assume that ∫

Ω

∫
Ω

ω

(
|f(x)− f(y)|

|x− y|

)
1

|x− y|N
dx dy <∞.

Can one conclude that f is a constant?

4. Another approach. Connection with VMO
We first recall the definition of VMO(Ω; R) (= vanishing mean oscillation). We say

that a function f ∈ VMO(Ω; R) if f ∈ L1
loc(Ω; R) satisfies

lim
ε→0

1
|Bε(x)|2

∫
Bε(x)

∫
Bε(x)

|f(y)− f(z)|dy dz = 0 uniformly for x ∈ Ω.

Let Ω be a connected (smooth) open set in RN and let f ∈ VMO(Ω; Z). Then f is a
constant. This was already observed in Brezis–Nirenberg [1] (Section I.5, part 2). Indeed
if we set

fε(x) =
1

|Bε(x)|

∫
Bε(x)

f(y)dy

then dist(fε(x),Z) → 0 uniformly in Ω (see Brezis–Nirenberg [1], Section I.1) and thus
there is some constant kε ∈ Z such that |fε(x) − kε| → 0 uniformly in Ω. Hence f is a
constant.

Functions in W s,p(Ω) belong to VMO(Ω) provided sp ≥ N (see Brezis–Nirenberg
[1], Section I.2). Therefore one cannot apply directly this argument in our setting which
corresponds roughly speaking to sp ≥ 1. However one may use an argument of reduction
to dimension one already used in Bourgain–Brezis–Mironescu [2].

Assume for simplicity that Ω is a square in R2. Let f ∈W s,p(Ω). Then, the restrictions
f(x1, ·) and f(·, x2) still belong to W s,p(I) for a.e. x1 and a.e. x2 (where I is an interval)
(see e.g. Brezis, Li, Mironescu and Nirenberg [1], Section 2).

This observation is very useful when combined with the following measure theoretical
tool:

Lemma (see e.g. Brezis, Li, Mironescu and Nirenberg [1], Lemma 2). Assume that
f : Ω → R is measurable. Suppose that for a.e. x1, f(x1, ·) and for a.e. x2, f(·, x2) are
constant functions. Then f is a constant.

The considerations above yield an alternative proof of Corollary 1 when p > 1. Indeed,
if p > 1, (2) says that f ∈ W s,p(Ω) where s = 1/p. The restrictions of f to almost every
line still belong to W s,p with s = 1/p. Hence these restrictions are VMO.

Therefore, if f : Ω → Z one may conclude that the restrictions of f to almost every
line are constant. The above lemma allows to conclude that f is constant.
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The preceding argument also gives

Theorem 6. Assume Ω ⊂ RN is connected and let f : Ω → Z be a measurable function
such that f = f0 + f1 + f2 + ... + fk where f0 ∈ W 1,1(Ω; R) and fi ∈ W si,pi(Ω; R) with
sipi ≥ 1 for i = 1, 2, ..., k. Then f is a constant.

Open problem 3. Is there a simple intrinsic assumption on f which can replace the decom-
position assumption f = f0 + f1 + f2 + ...+ fk? Is there an elegant way to unify Theorem
6 with the results of Section 1?

Another interesting direction of research is

Open problem 4. Find estimates for

‖f− 6
∫
f‖

in terms of the quantities appearing throughout the paper and which would imply that
f is constant in various situations. The reader may find some results in that direction in
Bourgain, Brezis and Mironescu [4] (see also Maz’ya and Shaposhnikova [1]).
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