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1. Existence of a degree and optimal estimates.

Let 0 < s < ∞, 1 ≤ p < ∞ and set X = W s,p(SN ; SN). We say that there is a
(topological) degree in X if

a) C∞(SN ; SN ) is dense in X;

b) the mapping g 7→ deg g, defined on C∞(SN ; SN ), extends by continuity to X.

We recall the following result, which is part of the folklore:

Lemma 1.1. There is a degree in X if and only if sp ≥ N .

Proof. Property a) holds for each s and p. When s is not an integer and sp < N , this
was proved in [15]. When s = 1 and p < N , this assertion can be found in [4]; the same
argument holds when s ≥ 2 is an integer and sp < N .

When sp > N , property a) follows immediately from the embedding W s,p ↪→ C0.
Finally, property a) when sp = N is essentially established in [13].

We next turn to property b). When sp > N , it is easy to see that the usual Brouwer
degree of the (continuous) maps in W s,p has the required properties. When sp = N , we
have W s,p ↪→ V MO; in this case, the degree of VMO maps (studied in [13]) is the desired
extension. Finally, we prove that b) does not hold when sp < N .

We fix a map g ∈ C∞(RN ; SN ) such that g(x) ≡ P when |x| ≥ 1 and deg g = 1; here,
P is the North pole of SN . Let π : SN → RN be the stereographic projection and set
gk(x) = g(kπ(x)), x ∈ SN . Then deg gk = 1, ∀k. However, it is easy to see that gk → P

strongly in W s,p and, therefore, the degree is not preserved in the strong limit.
In view of Lemma 1.1, it is natural to ask whether, for sp ≥ N , there is a control of the

form

(1.1) | deg g| ≤ F (|g|s,p), ∀g ∈ W s,p(SN ; SN ).

It follows from Theorem 0.6 and the Sobolev embeddings that the answer is yes. Indeed,
if sp ≥ N and (s, p) 6= (1, 1), then there is some q > N such that W s,p(SN ; SN ) ↪→
WN/q,q(SN ; SN). On the other hand, if s = p = N = 1, we have the estimate

| deg g| =

∣
∣
∣
∣

1

2iπ

∫

S1

ġ

g

∣
∣
∣
∣
≤

1

2π
|g|1,1.
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We next examine the optimality of the estimates in Theorem 0.6, which we restate in a
slightly more general form.

Theorem 1. Let 1 ≤ p < ∞ and g ∈ W N/p,p(SN ; SN ). Then

(1.2) | deg g| ≤ Cp,N |g|pN/p,p.

Proof. When p > N , this is the content of Theorem 0.6. When p = N , estimate (1.2) is
an immediate consequence of the Kronecker formula

(1.3) deg g =
1

|SN |

∫

SN

det(∇g).

Finally, when 1 ≤ p < N , (1.2) follows from (1.3) and the Gagliardo-Nirenberg type
inequality

(1.4) |g|1,N ≤ |g|
p/N
N/p,p‖g‖

1−p/N
L∞ .

Estimate (1.2) is optimal in the following sense:

Lemma 1.2. For 1 ≤ p < ∞, there is a sequence (gk) ⊂ W N/p,p(SN ; SN ) such that

|gk|N/p,p
k
→ ∞ and deg gk ≥ C ′

p,N |gk|
p
N/p,p.

Proof. Let h : RN → SN be such that h(x) ≡ P for |x| ≥ 1. Then, clearly, |h ◦
π|N/p,p(SN) ∼ |h|N/p,p(RN ). In view of this remark, it suffices to construct a sequence (hk) ⊂
.

WN/p,p(RN ; SN ) such that |hk|N/p,p
k
→ ∞, hk ≡ P for |x| ≥ 1, deg hk ≥ C ′

p,N |hk|
p
N/p,p.

Fix a map g ∈ C∞(RN ; SN ) such that deg g = 1 and g(x) ≡ P for |x| ≥ 1. For k ≥ 1, we
fix k distinct points a1, . . . , ak ∈ B1. Let

gλ,k(x) = P +
k∑

j=1

(g − P )

(
x − aj

λ

)

, λ > 0.

It is easy to see that

|gλ,k|
p
N/p,p

λ→0
−→ k|g|pN/p,p.

In addition, for sufficiently small λ, the map gλ,k is SN -valued, has degree k, and equals
P for |x| ≥ 1. If we set, for sufficiently large λk, hk = gλk,k, then |hk|

p
N/p,p ∼ k and

deg hk = k.
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2. Existence of a distributional Jacobian.
As in the previous section, we discuss whether, given 0 < s < ∞, 1 ≤ p < ∞, there

is a notion of a distributional Jacobian in W s,p(SN+1; SN ). As noted in the discus-
sion before Theorem 0.8, the answer is yes in W N/p,p(SN+1; SN), and therefore also in
W s,p(SN+1; SN ) if sp ≥ N (via the Sobolev embeddings). On the other hand, there is no
natural notion of distribution Jacobian if sp < N . Indeed, in this case C∞(SN+1; SN ) is
dense in W s,p(SN+1; SN ) (this follows from [4] and [5]). Let g : SN+1 → SN , g(x′, xN+1) =
x′

|x′|
, for which Det(∇g) 6= 0. Consider a sequence (gk) ⊂ C∞(SN+1; SN) such that gk → g

in W s,p. If a natural Det(∇) would exist, this would yield

0 = lim
k

Det (∇gk) = Det (∇g) 6= 0, impossible .

However, the answer given by Theorem 0.8 is not completely satisfactory. Indeed,
the perfect analogs of a), b) in Section 1 are, for 0 < s < ∞, 1 ≤ p < ∞ such that
N ≤ sp < N + 1:

a′) that the class Rs,p = {g ∈ W s,p(SN+1; SN ); g ∈ C∞ except a finite set, g ∈ W 1,N}
is dense in W s,p(SN+1; SN );

b′) that Det(∇) extends by continuity from Rs,p to W s,p.

The proof of Theorem 0.8 combined with the Sobolev embeddings shows that b′) holds,
provided a′) holds. However, we established a′) only for 0 < s < 1; when s = 1, a′) holds
also, see [4]. It is plausible that a′) holds for any s.

Concerning the estimate

(2.1) ‖ Det (∇g)‖(W 1,∞)∗ ≤ C|g|pN/p,p, g ∈ W N/p,p(SN+1; SN ), p > N,

Theorem 2.4 implies its optimality.

3. The closure of C∞(SN+1; SN ).
As we have already noted, C∞(SN+1; SN ) in dense in W s,p(SN+1; SN ) if sp < N or

sp ≥ N + 1. It is easy to see that this is not true if N ≤ sp < N + 1.
We mention the following straightforward generalization of a result due to Bethuel [19]

when p = N .

Theorem 2. Let N < p < ∞. For g ∈ W N/p,p(SN+1; SN ), the following are equivalent:

a) g ∈ C∞(SN+1; SN )
W N/p,p

;
b) Det (∇g) = 0.

A proof is presented in [20].
It is plausible that the assumptions s < 1, sp = N are irrelevant here.
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Question. Let 0 < s < ∞, 1 ≤ p < ∞ be such that N ≤ sp < N + 1. It is true that

g ∈ C∞(SN+1; SN )
W N/p,p

⇔ Det (∇g) = 0?

4. An Alternative proof of Theorem 0.1.
In this section, we present another argument that yields the estimate

(4.1) |ϕ|BMO(I) ≤ Cp(|e
iϕ|p1/p,p(I) + |eiϕ|1/p,p(I)), 1 < p < ∞, ϕ ∈ W 1/p,p(I).

We start with some preliminary results.

4.1. Basic estimates.

If ϕ ∈ L1(I), with I ⊂ R interval, we set ϕI =
1

|I|

∫

I

ϕ.

Lemma 4.1. Let ϕ ∈ C0((−ρ, ρ)). Assume that

(4.2) |eiϕ|1/p,p(−ρ,ρ) ≤ C1

and

(4.3) |ϕ|BMO(−ρ,0) + |ϕ|BMO(0,ρ) ≤ C2.

Then

(4.4) |ϕ(−ρ,0) − ϕ(0,ρ)| ≤ C(1 + C
p
1 )(1 + C2).

Proof. We start by introducing some notations. For 0 < l1 < l2 ≤ ρ, set

f(l1) = ϕ(0,l1) − ϕ(−l1,0),

h(l1, l2) = ϕ(l1,l2) − ϕ(−l2,−l1).

Let C3 = 2 + 2C2. If |f(ρ)| ≤ 103C3, there is nothing to prove. Otherwise, assume, e.g.,

f(ρ) > 0 and set t =
f(ρ)

C3
> 103. Let J =

[
t

2

]

− 1. For j = 1, . . . , J, we will construct

inductively 0 < ρ1 < . . . < ρJ < ρ such that, for j = 1, . . . , J − 1,

(4.5) f(ρj+1) − f(ρj) ∈ [C3, 2C3];

(4.6) ρj+1 ≥ 2ρj;

(4.7) dist (h(ρj, ρj+1), 2πZ) >
1

2
.
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Assume the ρj’ s constructed, for the moment. By Corollary A.5, it follows that

|eiϕ|p1/p,p((ρj,ρj+1)∪(−ρj+1,−ρj))
≥ C, j = 1, . . . , J − 1,

and thus
|eiϕ|p1/p,p(−ρ,ρ) ≥ C(J − 1) ≥ C ′f(ρ),

from which the conclusion of the lemma follows.
It remains to construct the ρj ’s. Let ρ1 be the first l > 0 such that f(l) = C3. Assuming

ρ1, . . . , ρj constructed (j < J), let a be the largest l > 0 such that f(l) = f(ρj) + C3 and
let b be the smallest l > a such that f(l) = f(ρj) + 2C3.

We claim that

(4.8) a ≥ 4ρj

(4.9) for at least one l ∈ [a, b], it holds that dist (h(ρj, l), 2πZ) >
1

2
.

Properties (4.5) - (4.7) follow immediately from (4.8) - (4.9); it suffices to take ρj+1 = l,
where l ∈ [a, b] is such that (4.9) holds. It is also clear from our construction that the ρj’s
exist up to j = J .

Proof of (4.8).
By Lemma A.1, we have

C3 = |f(a)− f(ρj)| ≤|ϕ(0,a) − ϕ(0,ρj
)| + |ϕ(−a,0) − ϕ(−ρj ,0)

| ≤
ρj

a

(
|ϕ|BMO(−ρ,0) + |ϕ|BMO(0,ρ)

)
≤

ρj

a
C2,

and (4.8) follows from our choice of C3.

Proof of (4.9). Argue by contradiction and assume that

dist (h(ρj , l), 2πZ) ≤
1

2
, ∀ l ∈ [a, b].

Since l 7→ h(ρj , l) is continuous, there is some fixed d ∈ Z such that

|h(ρj, l) − 2πd| ≤
1

2
, ∀ l ∈ [a, b].

In particular, |h(ρj, a) − h(ρj , b)| ≤ 1. By Lemma A.2, we have

h(ρj , a) =
a

a − ρj
f(a) −

ρj

a − ρj
f(ρj) = f(ρj) + C3

a

a − ρj
,

and similarly

h(ρj , b) = f(ρj) + 2C3
b

b − ρj
.

Thus

C3

∣
∣
∣
∣
2

b

b − ρj
−

a

a − ρj

∣
∣
∣
∣
≤ 1.

Since 2
b

b − ρj
−

a

a − ρj
≥

1

2

a

a − ρj
, we find that C3

a

a − ρj
≤ 2, which is impossible, since

C3 ≥ 2.
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Corollary 4.2. Let J, K be two adjacent intervals and ϕ ∈ C0(J ∪ K). Assume that

(4.10) |eiϕ|1/p,p(J∪K) ≤ C1

and

(4.11) |ϕ|BMO(J) + |ϕ|BMO(K) ≤ C2.

Then

(4.12) |ϕ|BMO(J∪K) ≤ C(1 + C
p
1 )(1 + C2).

Proof. Let L ⊂ J ∪ K be an interval. We have to prove that

1

|L|

∫

L

|ϕ − ϕL| ≤ C(1 + C
p
1 )(1 + C2).

If L ⊂ J or L ⊂ K, this is clear. Otherwise, assume, e. g., L = (−a, b), with (−a, 0) ⊂ J

and (0, b) ⊂ K. By Lemma A.3, we have

1

|L|

∫

L

|ϕ − ϕL| ≤ 3(|ϕ| BMO(−a,0) + |ϕ|BMO(0,b) + |ϕ(−a,0) − ϕ(0,a)|),

and the conclusion follows from Lemma 4.1.

We will also need the following variant of Lemma 4.1

Lemma 4.3. Let 0 < ρ′ ≤
1

4
ρ and ϕ ∈ C0((ρ′, ρ) ∪ (−ρ,−ρ′)).

Assume that

(4.13) |eiϕ|1/p,p((4ρ′,ρ)∪(−ρ,−4ρ′)) ≤ C1

and

(4.14) |ϕ|BMO((ρ′,ρ)∪(−ρ,−ρ′)) ≤ C.

Then

(4.15) |(ϕ(ρ′,ρ) − ϕ(−ρ,−ρ′)) − (ϕ(ρ′,4ρ′) − ϕ(−4ρ′,−ρ′))
∣
∣ ≤ C(1 + C

p
1 )(1 + C2).

Proof. Let C3 = 2 + 3C2. We may assume, e. g., that

tC3 =
(
ϕ(ρ′,ρ) − ϕ(−ρ.−ρ′)

)
−
(
ϕ(ρ′,4ρ′) − ϕ(−4ρ′,−ρ′)

)
≥ 103C3.
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Let J =

[
t

4

]

− 1. We construct inductively ρj, j = 1, . . . , J , as follows: set ρ1 = 4ρ′.

Assume ρ1, . . . , ρj already constructed such that

(4.16)
(
ϕ(ρ′,ρk) − ρ(−ρk,−ρ′)

)
−
(
ϕ(ρ′,ρk−1) − ϕ(−ρk−1,−ρ′)

)
∈ [C3, 2C3];

(4.17) ρk ≥ 2ρk−1;

(4.18) dist
(
ϕ(ρk−1,ρk) − ϕ(−ρk,−ρk−1), 2πZ

)
>

1

2
,

k = 1, . . . , j.
Let a be the largest l > ρj such that

(
ϕ(ρ′,l) − ϕ(−l,−ρ′)

)
−
(
ϕ(ρ′,ρj) − ϕ(−ρj ,−ρ′)

)
= C3,

and let b be the smallest l > a such that

(
ϕ(ρ′,l) − ϕ(−l,−ρ′)

)
−
(
ϕ(ρ′,ρj) − ϕ(−ρ,−ρ′)

)
= 2C3.

As in the proof of Lemma 4.1, we claim that

(4.19) a ≥ 2ρj ;

(4.20) there is some l ∈ [a, b] such that dist
(
ϕ(ρj ,l) − ϕ(−l,ρj), 2πZ

)
>

1

2
.

Proof of (4.19). We have, by Lemma A.1,

C3 =
∣
∣(ϕ(ρ′,a) − ϕ(ρ′,ρj)) − (ϕ(−a,−ρ′) − ϕ(−ρj ,−ρ′))

∣
∣

≤
∣
∣ϕ(ρ′,a) − ϕ(ρ′,ρj)

∣
∣+
∣
∣ϕ(−a,−ρ′) − ϕ(−ρj ,ρ′)

∣
∣

≤
a − ρ′

ρj − ρ′
|ϕ|BMO(ρ′,ρ) +

a − ρ′

ρj − ρ′
|ϕ|BMO(−ρ,−ρ′) ≤

a − ρ′

ρj − ρ
C2,

so that

a ≥
C3

C2
ρj −

C3 + C2

C2
ρ′ ≥ 2ρj;

the last inequality follows from the inequalities C3 ≥ 3C2 and ρj ≥ 4ρ′.

Proof of (4.20). Argue by contradiction. As in the proof of Lemma 4.1, it follows that

∣
∣
(
ϕ(ρj ,a) − ϕ(−a,−ρj)

)
−
(
ϕ(ρj ,b) − ϕ(−b,−ρj)

) ∣
∣ ≤ 1.

8



Starting from the identity

ϕ(ρj ,a) =
a − ρ′

a − ρj
ϕ(ρ′,a) −

ρj − ρ′

a − ρj
ϕ(ρ′,ρj),

we obtain, as in the proof of Lemma 4.1, that

C3

∣
∣
∣
∣
2

b − ρ′

b − ρj
−

a − ρ′

a − ρj

∣
∣
∣
∣
≤ 1.

As in the proof of Lemma 4.1, this implies that C3
a − ρ′

a − ρj
≤ 2, which is impossible, since

C3 ≥ 2.
The remaining part of the proof of Lemma 4.3 is identical to the one of Lemma 4.1 and

will be omitted.

Proof of Theorem 0.1. We may assume that ϕ ∈ C0 ∩ W 1/p,p. As explained in the main
paper, when |eiϕ|1/p,p is sufficiently small, (4.1) follows from the inequality |g|BMO(I) ≤
C|g|1/p,p(I) combined with

Lemma 4.4 ([14]). Let ϕ ∈VMO(I). There are constants C > 0, δ > 0 such that

(4.21) |ϕ|BMO(I) ≤ C|eiϕ|BMO(I) if |eiϕ|BMO(I) ≤ δ.

Let γ = min(δ1/p, δ). It suffices to establish (4.1) when |eiϕ|p1/p,p(I) ≥ δ. Let N be

the smallest integer ≥
|g|p1/p,p

γ
. We consider a partition of I with N successive intervals

I1, . . . , IN chosen such that |eiϕ|p1/p(I1∪···∪Ij)
= jγ, j = 1, . . . , N − 1. Thus |eiϕ|p1/p,p(Ij)

≤

γ, ∀ j.
It suffices to establish the estimate

(4.22)
1

|I|

∫

I

|ϕ − ϕI | ≤ C|eiϕ|p1/p,p(I).

In view of lemmas A.6 and 4.4, we have

1

|I|

∫

I

|ϕ − ϕI | ≤ Cγ +
1

|I|2

∑

j,k

|Ij||Ik||ϕIj
− ϕIk

|,

so that (4.22) bounds to proving

(4.23)
1

|I|2

∑

j,k

|Ij ||Ik||ϕIj
− ϕIk

| ≤ C|eiϕ|p1/p,p(I).

The remaining part of the proof is devoted to estimating the differences
|ϕIj

− ϕIk
|. Without any loss of generality, we will assume j = 1.
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Lemma 4.5. Assume that |I1| = |Ik| ≥
1
2 max |Il|. Let l0 be such that |Il0 | = max{|Il|; 2 ≤

l ≤ k− 1} and set J = I2 ∪ · · · ∪ Ik−1. Assume that |I1| ≤ 4|J |, and consider the following
intervals

picture
(with |Ī1| = |Īl0 | = |Ĩl0 | = |Ĩk| = 1

2 |Il0 |). Then

(4.24) |ϕI1 − ϕIk
| ≤ |ϕĪ1 − ϕĪl0

| + |ϕĨl0
− ϕĨk

| + C

(

1 + log
|I|

|Il0 |
.

)

Proof. We have

(4.25) |ϕI1 − ϕIk
| ≤ |ϕI1 − ϕĪ1 |+ |ϕĪ1 − ϕĪl0

|+ |ϕĪl0
− ϕĨl0

|+ |ϕĨl0
− ϕĨk

|+ |ϕĨk
− ϕIk

|.

By Lemma A.7, we have

(4.26) |ϕI1 − ϕĪ1 | + |ϕĪl0
− ϕĨl0

| + |ϕĨk
− ϕIk

| ≤ C

(

1 + log
|I|

|Il0|

)

,

and the conclusion follows.

Lemma 4.6. Same hypotheses as above, except that we assume |I1| > 4|J |. Let I∗
1 , I∗

k be
as below.

picture
(with |I∗

1 | = |I∗
k | = 4|J |). Then

(4.27) |ϕI1 −ϕIk
| ≤ |ϕI −ϕĪl0

|+ |ϕĨl0
−ϕĨk

|+C

(

1+log
4|J |

|Il0 |
+ |eiϕ|p1/p,p((I1\I∗

1 )∪(Ik\I∗

k))

)

.

Proof. We have

(4.28) |ϕI1 − ϕIk
| ≤ |ϕI∗

1
− ϕI∗

k
| +
∣
∣(ϕI1 − ϕI∗

1
) − (ϕIk

− ϕI∗

k
)
∣
∣.

By Lemma 4.5, we have

(4.29) |ϕI∗

1
− ϕI∗

k
| ≤ |ϕĪ1 − ϕĪl0

| + |ϕĨl0
− ϕĨk

| + C

(

1 + log
4|J |

|Il0 |

)

.

On the other hand, Lemma 4.3 (with (−ρ′, ρ′) replaced by J and (−ρ, ρ) replaced by
I1 ∪ J ∪ Ik) yields

(4.30) |(ϕI1 − ϕI∗

1
) − (ϕIk

− ϕI∗

k
)| ≤ C

(

1 + |eiϕ|p1/p,p((I1\I∗

1 )∪(Ik\I∗

k ))

)

,

and the conclusion follows.
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Corollary 4.7. If |I1| = |Ik| ≥
1
2 max
2≤l≤k−1

|Jl|, then (with l0 as above)

(4.31)

|ϕI1 − ϕIk
| ≤|ϕĪ1 − ϕĪl0

| + |ϕĨl0
− ϕĨk

|+

C

(

1 + log
min{4|J |, |I1|}

|Il0 |
+ |eiϕ|p1/p,p((I1\I∗

1 )∪(Ik\I∗

k
))

)

.

(Here, I1 \ I∗
1 and Ik \ I∗

k could be empty).

Lemma 4.8. Assume that |I1| = |Ik| ≥
1
2

max
2≤l≤k−1

|Jl|. Then

(4.32) |ϕI1 − ϕIk
| ≤ C(k + |eiϕ|p1/p,p(I)).

Proof. We start by applying Corollary 4.7. We note that, by construction, we may ap-
ply again Corollary 4.7 to the consecutive intervals Ī1, I2, . . . , Il0−1, Īl0 , respectively to

Ĩl0 , Il0+1, . . . Ik−1, Ĩk; next we iterate this procedure.
We find that

(4.33) |ϕI1 − ϕIk
| ≤

2(k−1)
∑

l=1

|ϕJl
− ϕKl

| + 2C(k − 1) + Σ1 + Σ2.

Here, Jl, Kl are adjacent intervals of equal length, each one contained into one of the
original Ij ’s; Σ1 is the sum of the logarithmic terms, while Σ2 is the sum of the | |p1/p,p

terms. Lemma 4.1 implies that

(4.34)

2(k−1)
∑

l=1

|ϕJl
− ϕKl

| ≤ C(k − 1) ≤ Ck.

On the other hand, the | |p1/p,p terms we consider appear on disjoint intervals, and thus

(4.35) Σ2 ≤ C|eiϕ|p1/p,p(I).

Therefore,

(4.36) |ϕI1 − ϕIk
| ≤ Ck + C|eiϕ|p1/p,p(I) + Σ1.

Claim We have Σ1 ≤ Ck. In order to prove the claim, we give a formal description of
how Σ1 is computed.
Let Zφ = {2, . . . , k − 1} and let sφ ∈ Zφ be such that |Isφ

| = max |Is| (with the notations
used up to now, we have s∅ = l0). Let Z(0) = {2, . . . , sφ−1}, Z(1) = {sφ+1, . . . , k−1} if sφ
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is closer to 2 than to k− 1; otherwise, let Z(0) = {sφ +1, . . . , k− 1}, Z(1) = {2, . . . , sφ − 1}.
We have

|Zφ| = 1 + |Z(0)| + |Z(1)|, |Z(0)| ≤ |Z(1)|.

Assuming Zc constructed, we proceed to constructing Z(c,0) and Z(c,1) as above. More
specifically, if Zc 6= φ, we pick sc ∈ Zc such that |Isc

| = max
s∈Zc

|Is|. We next write Zc \{sc} =

Z(c,0) t Z(c,1), with Z(c,0), Z(c,1) intervals of integers and |Z(c,0)| ≤ |Z(c,1)|. If Zc = ∅, we
stop.

If Zc = {m, m + 1, . . . , n}, then the corresponding term in Σ1 is of the form

(4.37) log
min{|K|, 4

∑

s∈Zc
|Is|}

|Isc
|

;

here, K is an interval contained in Im−1 and of length ≤ min{|Im−1, |In+1|}.
Assume c 6= ∅. If ĉ is the predecessor of c, we have either m − 1 ∈ Zĉ, or n + 1 ∈ Zĉ,

and thus |K| ≤ |Isĉ
|.

In conclusion,

(4.38) Σ1 ≤ C log
min{4|J |, |I1|}

|Il0 |
+ C

∑

c6=∅

log 4
min{|Isĉ

|,
∑

s∈Zc
|Is|}

|Isc
|

︸ ︷︷ ︸

Rc

.

Setting R∅ =
min{|J |, |I1|}

|Il0 |
, the claim amounts to proving that

(4.39)
∑

c

log(4Rc) ≤ Ck.

This is an immediate consequence of the two following

Lemma 4.9. We have

(4.40)
∑

c

log Rc ≤ Ck +
∑

c

log |Z(c,0)|.

Lemma 4.10. We have

(4.41)
∑

c

log |Z(c,0)| ≤ Ck.

Proof of Lemma 4.9. Let t be the largest integer such that Z
(1, 1, . . . , 1
︸ ︷︷ ︸

t times

, 0) 6= φ. Set

a0 = Z(0), a1 = Z(1,0), . . . , at = Z
(1, 1, . . . , 1
︸ ︷︷ ︸

t times

, 0), x0 = Rφ, x1 = R(1), . . . , xt = R(1, . . . , 1)
︸ ︷︷ ︸

t times

.
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Writing

Zφ = (Z(0) ∪ {sφ}) ∪ (Z(1,0) ∪ {s(1)}) ∪ (Z(1,1,0) ∪ {s(1,1)}) ∪ . . . ,

we find that

Rφ ≤

∑

s∈Zφ
|Is|

|Isφ
|

=
∑

s∈Z(0)∪{sφ}

|Is|

|Isφ
|
+

∑

s∈Z(1,0)∪{s1}

|Is|

|Isφ
|
+

∑

s∈Z(1,1,0)∪{s(1,1,0)}

|Is|

|Isφ
|
+ . . . ,

so that

Rφ ≤ 2|Z(0)| + 2|Z(1,0)|
|Is(1)

|

|Isφ
|

+ 2|Z(1,1,0)|
|Is(1,1)

|

|Isφ
|

+ . . . .

Since
|Is(1)

|

|Isφ
|
≤

1

R(1)
,
|Is(1,1)

|

|Isφ
|

=
|Is(1,1)

|

|Is(1)
|
·
|Is(1)

|

|Isφ
|
≤

1

R(1)R(1,1)
, . . . ,

we obtain

(4.42)
1

2
x0 ≤ a0 +

a1

x1
+

a2

x1x2
+ · · · +

at

x1x2 . . . xt

and similarly

(4.43)







1

2
x1 ≤ a1 +

a2

x2
+ · · · +

at

x2 . . . xt

...
1

2
xt−1 ≤ at−1 +

at

xt
.

Noting that xt = 1, we find from (4.42) - (4.43) by backward induction on j that

xj . . . xt ≤

t−j
∑

m=1

2m
∑

J⊂{j,...,t}
|J|=m

∏

l∈J

al.

In particular, since aj ≥ 1, ∀j, we obtain

(4.44) x0 . . . xt ≤
t∑

m=1

2m
∑

J⊂{0,...,t}|J|=m

∏

l∈J

al ≤
t∑

m=1

2m

(
t + 1
m

) t∏

0

al ≤ 3t+1
t∏

0

al.

Similarly, for any fixed c̄ we have

(4.45)
∏

c contains
only 1’s

R(c̄,c) ≤
∏

c contains
only 1’s

(3|Z(c̄,c,0)|).

13



Since each c can be uniquely written as c = (c̄, 0, ¯̄c) where ¯̄c contains only 1’s, by
multiplying the inequalities of type (4.45) we find that

∏

c

Rc ≤ 32k
∏

c

|Z(c,0)|,

from which the conclusion of the lemma follows.

Proof of Lemma 4.10. Let, for l ≥ 0, Sl = {c ; |Z(c,0)| ∈ [2l, 2l+1)}. We claim that

[c 6= c′, c, c′ ∈ Sl] ⇒ Z(c,0) ∩ Z(c′,0) = φ.

Argue by contradiction and assume that Z(c,0) ∩ Z(c′,0) 6= φ.
Then, for example, we have Z(c,0) ⊂

6=
Z(c′,0), so that Zc ⊂ Z(c′,0), by construction. Thus

|Z(c,0)| ≤
1

2
|Zc| ≤

1

2
|Z(c′,0)|, which is impossible if c, c′ ∈ Sl. Therefore,

∏

|Z(c,0)| =

[log2 k]+1
∏

l=1

∏

c∈Sl

|Z(c,0)| ≤

[log2 k]+1
∏

l=1

2l|Sl| ≤
∏

l≥1

2lk/2l

= 2Ak,

where A =
∑

l≥1

l2−l.

Lemma 4.11. Assume that |I1| ≥ |Il|, l = 2, . . . , k. Then

(4.46) |ϕI1 − ϕIk
| ≤ C

(

k + |eiϕ|p1/p,p(I1∪···∪Ik) + log
|I1|

|Ik|

)

.

Proof. Let l0 = 1 and define inductively lj such that |Ilj | = max
lj−1<l≤k

|Il|. Then

|ϕI1 − ϕIk
| ≤

∑

j≥1

|ϕIsj−1
− ϕIsj

|.

Let Īsj−1
be as follows:

picture
(such that |Īsj−1

| = |Isj
|). We may apply Lemma 4.7 to the sequence of intervals Īsj−1

, . . . , Isj
,

and find that

(4.47) |ϕĪsj−1
− ϕIsj

| ≤ C(sj − sj−1 + |eiϕ|p1/p,p(Isj−1
∪···∪Isj

)).

On the other hand, Lemma A.7 yields

(4.48) |ϕIsj−1
− ϕĪsj−1

| ≤ C

(

1 + log
|Isj−1

|

|Isj
|

)

.

By summing up all the inequalities of type (4.47)-(4.48), we find that (4.46) holds.
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Lemma 4.12. For each j, k we have

(4.49) |ϕIj
− ϕIk

| ≤ C

(

|k − j| + |eiϕ|p1/p,p(I) + log
|I|2

|Ij ||Ik|

)

.

Proof. Assume j = 1. If I1 (or Ik) is the largest among the intervals I1, . . . , Ik, the
conclusion follows from Lemma 4.11. Otherwise, let l ∈ {2, . . . , k − 1} be such that
|Il| ≥ |It|, t = 1, . . . , k. By Lemma 4.11, we have

(4.50) |ϕI1 − ϕIl
| ≤ C

(

(l − 1) + |eiϕ|p1/p,p(I1∪···∪Il)
+ log

|Il|

|I1|

)

and

(4.51) |ϕIk
− ϕIk

| ≤ C

(

(k − l) + |eiϕ|p1/p,p(Il∪···∪Ik) + log
|Il|

|Ik|

)

,

from which the lemma follows.

Corollary 4.13. We have

(4.51) |ϕIj
− ϕIk

| ≤ C

(

N + |eiϕ|p1/p,p(I) +
|I|

√
|Ij||Jk|

)

.

Proof of Theorem 0.1. We have to estimate the r.h.s. of (4.23). In view of Corollary 4.13,
we have

1

|I|2

∑

j,k

|Ij ||Ik||ϕIj
− ϕIk

| ≤C
(

N + |eiϕ|p1/p,p(I)

)

+
C

|I|

∑

j,k

|Ij |
1/2|Ik|

1/2

≤C
(

N + |eiϕ|p1/p,p(I)

)

≤ C|eiϕ|p1/p,p(I),

since N ≤ C|eiϕ|p1/p,p(I).

5. An improvement of Theorem 0.1 and the answer to OP2 when N = 1.
If I ⊂ R is an interval and g : I → C, we set, for δ > 0,

J(g, δ, I) =

∫∫

{(x,y)∈I2;|g(x)−g(y)|≥δ}

1

|x − y|2
.

In this section, we prove the following generalization of Theorem 0.1.

Theorem 3. For sufficiently small δ > 0, we have

(5.1) |ϕ|BMO(I) ≤ C(δ + J(eiϕ, δ, I)), ∀ϕ ∈ C0(I; R).

An immediate consequence is the following
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Theorem 4. Let g ∈ C0(S1; S1). Then, for sufficiently small δ > 0, we have

(5.2) | deg g| ≤ CJ(g, δ, S1).

This answer OP 2 when N = 1.

Proof of Theorem 4. By Lemma A.8, we have |g|BMO(S1) ≤ δ + 2J(g, δ, S1). Recall that
deg g = 0 provided |g|BMO(S1) is sufficiently small (see [13]). Thus (5.2) holds (for small

δ > 0) provided J(g, δ, S1) is sufficiently small.
When J(g, δ, S1) is not to small, estimate (5.2) is obtained from (5.1) in the same way

(0.6) follows from Theorem 0.1.

Proof of Theorem 3. The proof is the same as the one of Theorem 0.1, except that | |p1/p,p

has to be replaced by J(g, δ, I). The only two places where | |p1/p,p comes into the picture

are the inequality

(5.3) |g|BMO(I) ≤ |g|1/p,p(I)

and Lemma A.4 (together with Corollary A.5). The substitute of (5.3) is Lemma A.8.
The analog of Lemma A.4/Corollary A.5 are Lemma A.9/Corollary A.10 presented into
the appendix.

Appendix. Elementary properties of averages.

Lemma A.1. Let J ⊂ K. Then |ϕJ − ϕK | ≤
|K|

|J |
|ϕ|BMO(K).

Proof. We have

|ϕJ −ϕK | =
1

|J |

∣
∣
∣
∣

∫

J

(ϕ−ϕK)| ≤
1

|J |

∫

K

|ϕ−ϕK

∣
∣
∣
∣
=

|K|

|J |

1

|K|

∫

K

|ϕ−ϕK | ≤
|K|

|J |
|ϕ|BMO(K).

The following identities are trivial:

Lemma A.2. Let J, K be two adjacent intervals. Then

(A.1) ϕJ − ϕJ∪K =
|K|

|J | + |K|
(ϕJ − ϕK), ϕJ =

|J | + |K|

|J |
ϕJ∪K −

|K|

|J |
ϕK

and

(A.2) ϕJ∪K =
|K|

|J | + |K|
ϕK +

|J |

|J | + |K|
ϕJ .
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Lemma A.3. Let 0 < a ≤ b. Then

1

a + b

∫ b

−a

|ϕ − ϕ(−a,b)| ≤ 3
(
|ϕ|BMO(−a,0) + |ϕ|BMO(0,b)

)
+ |ϕ(−a,0) − ϕ(0,a)|.

Proof. We have

M =

∫ b

−a

|ϕ − ϕ(−a,b)| ≤

∫ 0

−a

|ϕ − ϕ(−a,0)| +

∫ 0

−a

|ϕ(−a,0) − ϕ(−a,b)|+

∫ b

0

|ϕ − ϕ(0,b)| +

∫ b

0

|ϕ(0,b) − ϕ(−a,b)|

≤a|ϕ|BMO(−a,0) + b|ϕ|BMO(0,b) + a|ϕ(−a,0) − ϕ(−a,b)| + b|ϕ(0,b) − ϕ(−a,b)|.

By Lemma A.2, we further obtain

M ≤ (a + b)
(
|ϕ|BMO(−a,0) + |ϕ|BMO(0,b)

)

︸ ︷︷ ︸

N

+
2ab

a + b
|ϕ(−a,0) − ϕ(0,b)|

≤ N +
2ab

a + b
|ϕ(−a,0) − ϕ(0,a)| +

2ab

a + b
|ϕ(0,a) − ϕ(0,b)|,

and Lemma A.1 implies that

(A.3) M ≤ N +
2ab

a + b
|ϕ(−a,0) − ϕ(0,a)| +

2b2

a + b
|ϕ|BMO(0,b).

Dividing (A.3) by a + b, we find that

1

a + b

∫ b

−a

|ϕ − ϕ(−a,b)| ≤|ϕ|BMO(−a,0) + |ϕ|BMO(0,b)+

2ab

(a + b)2
|ϕ(−a,0) − ϕ(0,a)| +

2b2

(a + b)2
|ϕ|BMO(0,b)

≤3
(
|ϕ|BMO(−a,0) + |ϕ|BMO(0,b)

)
+ |ϕ(−a,0) − ϕ(0,a)|.

Lemma A.4. Let L ≥ 2l > 0 and ϕ ∈ C0 ((l, L) ∪ (−L,−l)). There is some γ > 0 such
that

[

dist
(
ϕ(l,L) − ϕ(−L,−l), 2πZ

)
>

1

2
and |ϕ|BMO(l,L) + |ϕ|BMO(−L,−l) < γ

]

⇒

∫ L

l

∫ −l

−L

|eiϕ(x) − eiϕ(y)|p

(x − y)2
≥ C;
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here, γ and C depend only on l, L, ϕ.

Proof. We have, with I = (l, L), J = (−L,−l),

1

L − l

∫

I

|ϕ − ϕI |
p ≤ C|ϕ|pBMO(I),

with C independent of I (this is the scale invariant form of the John-Nirenberg inequality).
Thus

(A.4)
1

L

∫ L

l

|eiϕ − eiϕI |p ≤
1

L − l

∫

I

|ϕ − ϕI |
p ≤ C|ϕ|pBMO(I);

a similar inequality holds for J .
Since, for x ∈ I, y ∈ J , we have

(A.5) |eiϕI − eiϕJ |p ≤ 3p
(

|eiϕ(x) − eiϕI |p + |eiϕ(x) − eiϕ(y)|p + |eiϕ(y) − eiϕJ |p
)

,

we find that
∫

I

∫

J

|eiϕI − eiϕJ |p ≤ 3p

∫

I

∫

J

(

|eiϕ(x) − eiϕI |p + |eiϕ(x) − eiϕ(y)|p + |eiϕ(y) − eiϕJ |p
)

,

so that

(A.6)

|eiϕI − eiϕJ |p ≤
C

L

(∫

I

|eiϕ(x) − eiϕI |p +

∫

J

|eiϕ(y) − eiϕJ |p
)

+

C

L2

∫

I

∫

J

|eiϕ(x) − eiϕ(y)|p

≤C ′
(

|ϕ|BMO(I) + |ϕ|pBMO(J)

)

+ C ′′

∫

I

∫

J

|eiϕ(x) − eiϕ(y)|p

(x − y)2
.

Thus

(A.7)

∫

I

∫

J

|eiϕ(x) − eiϕ(y)|p

(x − y)2
≥ C ′′′

(

|eiϕI − eiϕJ |p − |ϕ|pBMO(I) − |ϕ|pBMO(J)

)

,

from which the lemma follows immediately.

Corollary A.5. Let L ≥ 2l > 0 and ϕ ∈ C0((l, L) ∪ (−L,−l)).
Then

dist
(
ϕ(l,L) − ϕ(−L,−l), 2πZ

)
>

1

2
⇒ |eiϕ|1/p,p((l,L)∪(−L,−l)) ≥ C,

for some C independent of l, L, ϕ.

Proof. If |ϕ|BMO(l,L) + |ϕ|BMO(−L,−l) < γ, the conclusion follows from Lemma A.4. Other-

wise, Lemma 4.4 combined with the embedding W 1/p,p ⊂VMO implies that |eiϕ|1/p,p(l,L)+

|eiϕ|1/p,p(−L,−l) ≥ C for some C depending only on γ, and the conclusion follows again.
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Lemma A.6. Let ϕ ∈ BMO(I) and consider a partition I =
⋃

j Ij of I with intervals. If

|ϕ|BMO(Ij) ≤ C2, ∀j, then

1

|I|

∫

I

|ϕ − ϕI | ≤ C2 +
1

|I|2

∑

j,k

|Ij||Ik||ϕIj
− ϕIk

|.

Proof. We have

1

|I|

∫

I

|ϕ − ϕI | =
1

|I|

∑

j

∫

Ij

|ϕ − ϕI | ≤
1

|I|

∑

j

(
∫

Ij

|ϕ − ϕIj
| +

∫

Ij

|ϕI − ϕIj
|

)

=
1

|I|

∑

j

|Ij |
1

|Ij|

∫

Ij

|ϕ − ϕIj
| +

1

|I|

∑

j

∫

Ij

∣
∣
∣
∣

∑

k

|Ik|

|I|
ϕIk

− ϕIj

∣
∣
∣
∣

≤
C2

|I|

∑

j

|Ij| +
1

|I|2

∑

j,k

∫

Ij

|Ik||ϕIk
− ϕIj

| ≤ C2 +
1

|I|2

∑

j,k

|Ij | |Ik| |ϕIj
− ϕIk

|.

Lemma A.7. Let J ⊂ K be intervals. Then

|ϕJ − ϕK | ≤ C

(

1 + log
|K|

|J |

)

|ϕ|BMO(K).

Proof. If |J | ≥ 1
2
|K|, the conclusion follows from Lemma A.1. Otherwise, let l ∈ N be

such that
|J |

|K|
∈ [2−l−1, 2−l) and consider a sequence of intervals J1, . . . , Jl+2, such that

J1 = J, Jk ⊂ Jk+1, Jl+2 = K, |Jk| = 2k−l−2, k = 2, . . . , l + 1. Then

|ϕJ − ϕK | ≤
l+1∑

j=1

|ϕJj+1
− ϕJj

| ≤ |ϕ|BMO(K)

l+1∑

j=1

|Jj+1|

|Jj |

≤2(l + 1)|ϕ|BMO(K) ≤ C

(

1 + log
|K|

|J |

)

|ϕ|BMO(K);

here, we use again Lemma A.1.

Lemma A.8. We have, for g ∈ C0(I; S1), |g|BMO(I) ≤ δ + 2J(g, δ, I).

Proof. Let K ⊂ I be an interval. Then

1

|K|2

∫

K

∫

K

|g(x) − g(y)| ≤
δ

|K|2

∫∫

{(x,y)∈K2;|g(x)−g(y)|<δ}

dxdy+

2

|K|2

∫∫

{(x,y)∈K2;|g(x)−g(y)|≥δ}

dxdy

≤δ + 2J(g, δ, K) ≤ δ + 2J(g, δ, I).
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Lemma A.9. Let L ≥ 2l > 0 and ϕ ∈ C0 ((l, L) ∪ (−L,−l)). There is some γ > 0 such
that

[

dist
(
ϕ(l,L) − ϕ(−L,−l), 2πZ

)
>

1

2
and |ϕ|BMO(l,L) + |ϕ|BMO(−L,−l) < γ

]

⇒

∫∫

{x∈(l,L),y∈(−L,−l);|g(x)−g(y)|≥δ}

1

(x − y)2
≥ C;

here, γ and C depend only on l, L, ϕ and δ is small.

Proof. We start from (A.6). With g = eiϕ, we have

C1 ≤ |eiϕI − eiϕJ |p ≤C ′(|ϕ|pBMO(I) + |ϕ|pBMO(J)) +
C

L2

∫

I

∫

J

|eiϕ(x) − eiϕ(y)|p

≤C ′(|ϕ|pBMO(I) + |ϕ|pBMO(J))+

Cδ

L2

∫∫

{|g(x)−g(y)|≤δ}

dxdy +
2C

L2

∫∫

{|g(x)−g(y)|>δ}

dxdy,

so that

(A.8) C1 ≤ C ′(|ϕ|pBMO(I) + |ϕ|pBMO(J)) + Cδ + C ′′

∫∫

{|g(x)−g(y)|>δ}

1

(x − y)2
dxdy,

and the lemma follows.

Corollary A.10. Let δ > 0 be sufficiently small, L ≥ 2l > 0 and ϕ ∈ C0 ((l, L) ∪ (−L,−l)).
Then

dist
(
ϕ(l,L) − ϕ(−L,−l), 2πZ

)
>

1

2
⇒

∫∫

{l≤|x|,|y|≤L;|g(x)−g(y)|>δ}

1

(x − y)2
dxdy ≥ C,

for some C independent of l, L, ϕ.

Proof. If |ϕ|BMO(l,L) + |ϕ|BMO(−L,−l) < γ, the conclusion follows from Lemma A.9. Oth-
erwise, Lemma A.8 combined with Lemma 4.4 imply that

J(eiϕ, δ, (l, L)) + J(eiϕ, δ, (−L,−l)) ≥ C

for C independent of l, L, ϕ, and the lemma follows.
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(4) DÉPARTEMENT DE MATHÉMATIQUES
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