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0 Introduction

Letg : I = (0,1) — S'. If g € VMO, we may write g = ¢'¥ for some
@ € VMO; this ¢ is unique modulo 27 (see [13] and the earlier work [14]). There
is no control of |p|gmo in terms of |g|gmo, since we always have |g|pmo < 2 and
lo|smo can be arbitrarily large; recall, however, that, when |g|gmo is sufficiently
small, there is a linear estimate |¢|gmo < C|g|smo (see [13, theorem 4], [14], and
Remark 0.2 below).

We are going to establish that a norm slightly stronger than |g|gmo does control
|olsmo- Consider, for 1 < p < 00, 0 < s < 1, the fractional Sobolev space
W*-P(I), equipped with its standard seminorm

_ P 5
|g|w,:<f dedy»
11

|x — y[t+sp

Set
WP (I3 Sh) = (g € WP(I;RY); gl = 1ae).
Recall (see [6]) that, if g € WVPP(I;S"), then g = e'¥ for some ¢ €
W1/P:P(I;R); this ¢ is unique modulo 277. Again, there is no estimate of l@l1/p.p
in terms of |g|1,p, p. The canonical example (see [6]) is the following: let

0 if 0<x<%
ou(x) = {2nw(x — %) if t<x<i4l
27 if x>1415

Then |@,|1/p,, — 00, while ||/, , < C.
In view of the injection

WP (I) = VMO(I), 1< p < oo,
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(see, e.g., [13, 18]), it is natural to ask whether a control of |g]y/,,, yields a control
of |¢|gmo. This is indeed true:

THEOREM 0.1 Let 1 < p < 00. Let o € W'/P-P(I; R) and g = e'¢. Then

0.1 lolemo < Cp(1g17),., + 1811/p.p) -

Remark 0.2. The p™ power growth in (0.1) is optimal when |g|;,,., is large. This
is easily seen by choosing ¢, (x) = nx. When |g|i/,,, is small, the linear growth
in (0.1) is a special case of a result of [14], namely,

0.2) lelemo < Clglemo  1f [glBmMo <4,
where § is a sufficiently small constant.

Remark 0.3. When p = 2, estimate (0.1) can be derived from [9, theorem 3]
(announced in [7]; see also [5]), which asserts that, if g € H 172(1: S, then we
may write g = /@12 with

(0.3) loili22 < Clglin
and

(0.4) lalwin < Clglina-
Since

lo1 + @2lBmo < C(l@1l122 + |@2lwr1) ,
estimate (0.1) for p = 2 follows from (0.3)—(0.4).

Note that if Theorem 0.1 holds for some p, it also holds for every ¢ € (1, p);
this follows from (0.1) and (0.2). Hence Theorem 0.1 for 1 < p < 2 is a conse-
quence of (0.3) - (0.4). The main novelty concerns the case p > 2; our argument
relies on a completely different approach. In fact, we do not know whether (0.3)—
(0.4) still hold when 2 is replaced by p:

OPEN PROBLEM 1 Let ¢ € C®(I;R), g = ¢'%, and p > 2. Does there exist a
decomposition ¢ = ¢ + o, with

0.3) lotli/p.p < Clgli/p.p
and
0.4) @2lwrr = Clgli), , ?

We are also interested in the same question when I is replaced by (0, 1)".

An immediate consequence of Theorem 0.1 is the following:

COROLLARY 0.4 Set Q = (0, DN. Let N < p < oo, ¢ € WN/P-P(Q; R), and
g =e'Y. Then

(0.5) lelemo < Cp,N(|g|Z/p,p + |g|N/p,p) .
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We now turn to similar questions for the degree. If g € VMO(S'; S!), then
g has a well-defined degree; see [13]. Clearly, there is no estimate of the degree
in terms of |g|gmo; however, deg g = 0 provided |g|gmo is sufficiently small; see
[13]. An easy consequence of Theorem 0.1 asserts that deg g can be controlled in
terms of |g1/p,p:

COROLLARY 0.5 Let1 < p < ocand g € WV/PP(S'; SY). Then
0.6) deg gl < Cylgll), -

When p = 2, estimate (0.6) was well-known: it may be easily deduced from
the degree formula

1 0 |

0.7) degg =~ [ 5= (g &hmepr,
2im ) g 2im
St

which implies that

|deg g| < Clgl3 s, -

Estimate (0.6) can be obtained from Theorem 0.1 as follows: set h(t) = g(e'’),
t € R, and write & = ¢'¢. Note that
21
o) lp(r +2m) — p(®)]dt < Clelsmo,47)
T Jo

and apply Theorem 0.1 on (0, 47).

0.8) ldeg g| =

Corollary 0.5 extends to higher dimensions:
THEOREM 0.6 Let p > N and g € WN/P-P(SN; SN). Then
(0.9) deg gl < Cphlgl,. -

Although the conclusions of Theorems 0.1 and 0.6 are different in nature, the
proofs we present below bear some similarities.

Remark 0.7. For g € WV (SN; SV), the estimate

0.9) deg g] < Ci f VgV
SN

is well-known and follows from Kronecker’s formula

(0.10) deg g =fdet(Vg) =fdet(Vg, g)

SN SN
(in the first integral, g is regarded as a map from SV into itself and “det” denotes
the determinant of an N x N matrix; in the second integral, g is considered as an

RN+!_valued map, and “det” denotes the determinant of an (N + 1) x (N + 1)
matrix).
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In fact, we will use (0.10) in the proof of Theorem 0.6. It is presumably possible
to rederive (0.9) as a limiting case of (0.9) via a careful analysis of C, y as p \( N,
in the spirit of [8].
Estimate (0.9), which asserts that for every p > N,
_ p
gl = o [ [ LD

) J |x — |2V
SV S

suggests the following stronger estimate:

OPEN PROBLEM 2 Is it true that, for every g € CO(SV; SV),

degg| = Cy I/ % — 9|2 dxdy?
{(x,) €SN xSN3 g (1) =g (1) > 15}
The answer to Open Problem 2 is positive when N = 1; the proof is given in [10],

where we also present an improvement of Theorem 0.1 in the same spirit.

We next discuss the distributional Jacobian of maps g € WN/P-P(SN+1; SV,
Recall that if g is a smooth map from S¥*+! into RV*!, its distributional Jacobian is
defined through its action on smooth functions ¢ € C®(S¥*!; R) by the formula

(0.11) (Det(Vg), ) =

N+1
1 Z
- N—_H / ;)C/ det(gxlv"'vng',lvgy ng+17"'agXN+1);
J=leny1

here, the derivatives are computed pointwise in an orthonormal frame such that
(X1, ..., Xn41, 1) is direct, where n is the outward normal to S¥*! (this integrand
is frame invariant).

Note that formula (0.11) still makes sense when

g c WLN(SNJ'_I; RN+1) N LOO

and ¢ € WH(S¥+1; R). Observe also thatif g € C'(SV*!; SV), then its Jacobian
determinant vanishes pointwise. By density, it follows that Det(Vg) = 0 for every
g € WHNHI(SN+1: SNy On the other hand, it is standard to construct maps in
WLN(SN+ SNy (and even in W9, Vg < N + 1), e.g., with point singularities,
such that Det(Vg) # 0; see, e.g., [11].

One of the main goals of this paper is to give a meaning to the distribution
Det(Vg) for maps g : S¥*!' — SV that do not necessarily belong to W'V,
It has been observed in [7] (see also [9]) that it is possible to define Det(Vg)
for g € H'Y?(S* S'). The construction there was painless (using the fact that
H'/? is the trace space of H'). The same technique allows us to define Det(Vg)
for g € WN/WNFD.N+L@QN+L. §VY - Consequently, Det(Vg) makes sense for g €
WN/p.p(SN+1.SNY N < p < N + 1. In this paper, we are able to define Det(Vg)
for g € WN/P-P(SN*1: SN in the more delicate case where N + 1 < p < oo. The
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new idea involves an adaptation of the method (and the estimates) introduced in
the proof of Theorem 0.6.
Our main result is the following:

THEOREM 0.8 Let N < p < oo. There exists a (unique) strongly continuous map
T : W%ﬁp(SNﬂ'];SN) — (Wl,OO(SN'F]))*
such that, for every { € W (SNTLR),

(0.12) (T (@). )| < Cpnlglhy, , IVEle Vg e W
and
(0.13) (T(g),¢) = (Det(Vg),£) Vge W'Nawr?,

For each g € WN/P-P(SN*T1. SNY there are sequences (P;), (N;) C SV*! such
that

(0.14) Y IR = Nil 2 ColglR)pp

and
(0.15) (T(8),¢) =wnn Z(((Pi) —Z(N) Vi e WheEMTLR).
If g € WN/P-P(SN+L SNy N COSN*! \ A), where A is a finite set, then we may

choose P;, N; € A.
Moreover, we have

0.16) (T(g), ¢) = wnsn / deg(g: T,)dh V¢ € C¥(SV:R).
R

Here, wy is the volume of the unit ball in RV*! and, for each regular value
rof ¢, I is the level set I';, = {x : {(x) = A}, positively oriented with respect to
the outward normal of the open set {x € S¥*! : ¢(x) > A}.

Note that, for a.e. A, g|r, € WV/PP(I';; S¥) C VMO(T;; SV) so that deg(g; ')
makes sense (by [13]).

Remark 0.9.

(i) Since WLV (SNFL: SNy N WN/P-P js dense in WN/P-P SN+, SV) N < p <
oo (see the appendix), it follows that T is the unique extension of the distributional
Jacobian restricted to W5V (SN, SVy N wN/pp,

(i) f N > 2, we have W¥N N L>® c WN/Pr N < p < oo (see, e.g., [17]),
and thus WLV SN+, SNy NWN/pp = WLN(SN+1: SV). However, this conclusion
fails when N = 1.

(iii)) We will establish in Section 2 that 7'(g) is “intrinsic”’; more precisely, if
g € WN/P-P then g € WN/44 for every ¢ > p, and the two definitions of 7' (g)
(relative to p and to g) coincide.
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(iv) We have reached here the “largest” Sobolev classes to which one can ex-
tend the distributional Jacobian; when sp < N, there is no good definition of the
distributional Jacobian in the class W*?(S¥*!; SV); see [10].

(v) Formula (0.15) has its source in [11] for special maps (having a finite num-
ber of singularities); the general case (0.15) is an extension of theorem 1 in [9].

1 Proofs of Theorems 0.1 and 0.6
Let g € VMO(SY;S") and let u be its harmonic extension to BN*! (with
values into BN*!). Let v(x, &) = u((1 —&)x), x € S¥,0 < & < 1. We have

(1.1) lv(x,e)] = 1 uniformlyinxase — 0,

C
(1.2) |IVu(x,e)] < — Vx € SY where C is an absolute constant
&

(for the proof of (1.1), see [13]).
Set, for every x € SV,

1

dx)y=12 X . :
Min{e € (0, 5] : [v(x,&)| < 5} otherwise.

if [v(x, &)| > % for every ¢ € (0, %]

In other words, d(x) = min(£(x), %), where £(x) is the length of the largest radial
interval coming from x € SV on which |u| > %
Clearly,

(1.3) G={yeB"" :luyl <3 c [J10. 1 —dx)x].
xeSN

We start with the following ingredient, which is of interest in itself:

THEOREM 1.1 For g € C'(SV; SV), we have

1
deg g] < CI(g) Mmuwzf@@w.
SN

The proof of Theorem 1.1 relies on the following:

LEMMA 1.2 We have

(1.4) /|Vu|N+1 <CI(g).
G

PROOF: By (1.2) and (1.3), we have

IVuNldy < C T\
= o (TN
G SN
1—d(x) 1
([ et

SN
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PROOF OF THEOREM 1.1: Set, for y € BN*!,

_ e if u(y)| >
— ) lunl
) {2u<y> if lu(y)| <

1
2
1
3

Note that # = g on SV and thus, by Kronecker’s formula (0.10), we have

deg g =fdet(Vg) =% det(Vn).
SN BN+1
(To prove the last equality, consider the vector field
D= (Dy,...,Dy+1)

where
Dj = det(ity, .oy Uy Uy U gy ees Uy )
Clearly, we have
div D = (N + 1)det(Va)

—1
det(Va) = M/D-v,

| By 41l
BN+ SN

where v is the outward normal to SV. On the other hand, it is easy to see that
D -v = det(Vg), where the N x N Jacobian determinant det(Vg) is computed
with respect to any orthonormal frame in the tangent space to SV at x and in the
tangent space to SV at g(x).)

Since |i(y)| = 1 on B¥N*!\ G we have det(Vii) = 0 on BN*! \ G and thus

1 _ 2N+1
degg = W/det(vw = 1BV / det(Vu).
G G

and thus

Hence
|deg g| < Cf |[VulN*! < C'I(g) by Lemma 1.2.
G

(There is an alternative proof of the first inequality above using differential forms.
As is well-known

deg g = deg(u, B"*',0).
The latter can be given as the integral of the pullback, under the map u, of any
smooth (N + 1)—form p, with compact support in the open ball BN*!, and whose
integral is 1. Take u = h(z)dz, where h is any smooth function with support in
{ze RV 17| < %} and whose integral is 1. Then we find

deg g = deg(u, BY*!, 0) = / h(u(y)) det(Vu(y)dy,
BN+1

which yields the desired estimate.) U
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In the proof of Theorem 0.6 we will also use the following:

LEMMA 1.3 Let p > N, g € WN/P-P(SN; SN). Then

1.5 ! 1
() | oy = Clethny + ).

SN

PROOF: It suffices to consider only the x’s such that d(x) < % For any such
x, we have

N
< |u((@ —dx)x) —gx)| =dx)» |U|CO,N/1J({X}><(0,%))

l\)l>—‘

N
< 2
=Cd(x): |U|NT+1,p({x}><(0,%)) )

by the embedding W57 (0, 1) C C%*(0, 1) where sp > l and o = 5 — %. Thus

(1.6) AN = CIIN+1/p.p 01120

Let, for f defined on B¥*! and x € SV, f*(r) = f(rx), 3 < r < 1. Recall the
Besov-type inequality (see, e.g., [1, pp. 208-214])

(1.7) f'f 15 pajpydx < CIfIY vy VS E WweP(BNH.

Inequality (1.5) follows by combining (1.6) and (1.7) with the standard estimate
I/ 0¥ <0172 = Clutlvenp.p = Cl8Inyp.p- O

PROOF OF THEOREM 0.6: We want to show that for everyg € WV/P-7(SV; SV)

By density of C!(SV; S¥) in WN/P-P(SV; SV) and continuity of the degree under
VMO convergence, it suffices to prove (1.8) for g € C'(SV; SV). When |g|y Ip.p
is sufficiently small, we have degg = 0, once more by continuity of the degree
under VMO convergence, and thus (1.8) holds. Otherwise, (1.8) follows from
Theorem 1.1 and Lemma 1.3. O

PROOF OF THEOREM 0.1: We will prove that

(1.9) lplBmo) = C(|g|f/,,,,7 +18l1/p.p) -

As above, we may assume that g is smooth. When |g|;/,,, is sufficiently small,
(1.9) follows from the estimate

lelemo < Clglemowy if |glemomy < 6
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(6 a small constant) of Coifman and Meyer [14]. In view of this and scale invari-
ance, it suffices to establish the following weaker form of (1.9)

(1.10) f o) — )l < Cligll), , +1).

Extending g by symmetry, we may always assume g and ¢ are periodic and thus
defined on a circle (with g of degree 0). We will prove that

(1.11) /f|¢(xl) — p(x)ldxidxa < C(lglf, , + 1),
st st

where ¢ € W/PP(S1; R) and g = ¢'“. As in the proof of Lemma 1.2, and by
Lemma 1.3, we have
(1.12) / \Vul*dy < C(lglf,, , +1).
{y=rx:r<l—d(x)}
By the co-area formula, (1.3), and (1.12), we have

J

3

1

< [ W)dt: [

{yeBX:u(y)l=1} {yeB2:{ <|u(y)| <3

f|W| <C(gll,,,+1).
Thus we may find some regular value ¢t € (5, 5) of |u| such that
(1.13) /|Vu| <C(lglf),, + 1),

where I' = {y : |u(y)| = t}. Let y1, y, ..., be the connected components of I'.
By (1.13), we have

(i Y destypl = 5= 3 [ 19l = C(ally,, + 1)

j Iy

On the other hand, if j # k, then the domains enclosed by y; and y; have disjoint
interiors, by the maximum principle.
Let now x, y € S! and consider the domains

={z:|u(z)| >1t}, VasinFigure l.landW =0UnNV.

Let W be the connected component of W whose boundary contains x and y. Since
dU is a finite union of analytic curves, d W will generically be a finite union of
segments and curves contained in I':
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FIGURE 1.1

Let y be the arc from x to y as in Figure 1.1. Let
_u(2)
lu(z)|

Since u € W*7-? we have h € W?/P:P_ Next we note that, since g€ wl/p-pAL>,
it suffices to establish (1.10) for p > 2. Assuming p > 2, we have |h|y/, , <
Clulyp,p < Clgli)p,p- Clearly, it suffices to prove that

h:U—S', h(z)

(1.15) // lp(x) — () |dxdy < C(Ivlg/p,p(SNx(oﬁl/z)) +lglf,, + 1)
St st

Let ¢ be the lifting of 4 on y such that ¥ (x) = ¢(x). Then

P() — () =Y () — Y (x) 27 Y deg(u, ),
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where the above summation is done over the j’s such that y; C W. By (1.14), we
have

(1.16) P — @ < 1Y) =¥ @I +C(1gl]),, +1)-

We next note that if ¢ is an arc on y N " with endpoints a and b, then

1
(1.17) [ (b) = ¥ (a)| < ;/IVMI.
1

We write
)/211U]71U12U~--U1n,

where [, ..., I, are line segments, i, ..., y,—1 are on y N I[', I; has endpoints
a; = x and by, 7, has endpoints b; and a,, etc. By (1.13), (1.16), and (1.17), we
find that

(1.18) W) — vl < C(18l],, + 1) + Y [Wb) =yl
1

We estimate the terms |y (b;) — ¥ (a;)| and | (b,) — ¥ (a,)]| in (1.18) with the help
of the following lemma:

LEMMA 1.4 Let ¥ € C%%((0,1); R) withO < o < 1 and seth = e'V. Then
(1.19) W) — WO < 4(11h1 Y5 +1%1h]coe) .
PROOF OF LEMMA 1.4: After scaling, we may always take / = 1. Suppose
first that |i|co« < 1. Then, clearly,
Y (1) — ¥ (0)] < 2|h(1) — h(0)| = 2|h]coa
and the desired conclusion follows.

1/a

When |h|coe« > 1, let n be the integer part of |A] .,

+1.For j =0,...,n,set

a; = ﬁ Since
1 o
|h(aj+1) — h(a))| < lhlcoﬂ(;) =1,

we deduce as above that
¥ (aj1) — ¥(a))| < 2|h(aj1) — h(a))|

1 o
§2|h|co.a(—) . j=0,...,n—1.
n

Summing these inequalities for j =0, ...,n — 1, we find

[y (1) — ¥ (0)] < 2/h|coan'"" < 4|h|

CO,a ’

since n < |h|lc/0‘f‘a +1< 2|h|lc/(f‘a; this is again the desired conclusion. O
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Now, using Lemma 1.4, the one-dimensional embedding W?/7-? < C%1/7,
and the inequality

1
(1.20) IVu(y)| < C if |y| < 3
we find that

121 [ b)) — ¥ @] + ¥ (by) — ¥(an)] =

p p
CUvlyp paxy<0.1/2) T 10y piiyix12) + D

The ingredient for estimating the terms [ (b;) — ¥ (a;)|, j = 2,...,n — 1, is the
inequality

(1.22) [ b)) — (@)l =‘ / E%‘ =c [ v,
laj.bj] laj,b;]
Estimate (1.22), used in conjunction with (1.20), yields
n—1
(1.23) > 1Y (b)) —¥(ap| < C( / |Vl + / |Vu|+1).
2

{rx:}<r<1-d(x)} {ry:s<r<1-d(»)}

By (1.18), (1.21), and (1.23), we find that

lp(x) =] =< C( / |Vu|

{rx:%fril—d(x)}

P P
(1.24) + / IVul + 18115, p + 1012 pxix0.1/2)
{ry:3<r<i—d()

P
+ 10l pyix.1/2) T 1) :

The conclusion follows, with the help of (1.7) and (1.12), by integrating (1.24). [

PROOF OF COROLLARY 0.4: Recall that we want to obtain the estimate

(1.25) elemo < C (1815, + 181N /pp) -

When |g|y/p,, is small, the conclusion follows from [13, theorem 4]. Otherwise,
assume, e.g., N = 2. It suffices (after scaling) to prove that

(1.26) J = // lp(x) —pI < C(1gl5),, +1)-
0,1)2x(0,1)2

This follows from

A.27)  le(x) =W < le(x1, x2) — @(x1, y2)| + lo(x1, y2) — @(y1, y2)I,



LIFTING, DEGREE, AND JACOBIAN 541

which, combined with Theorem 0.8, yields

P b4
(1.28) J=C (1 T / 1811/p.pisy 10,1 45 + _/ 181/ p. p0.11x101) df)

<C(lgly,, , +1).

O
2 Proof of Theorem 0.8

We want to prove that the distribution Det(V g), initially defined in (0.11) for
g € WLV (SNTL: SNy makes sense for g € WN/P-P(SN+L SV) N < p < o0, and
satisfies (0.12)—(0.16). The strategy of the proof is the following:

(i) we define (T (g), ¢) for a general g € WV/P-P(SN+1; SN) via an integral
formula;
(i) with T defined in (i), we prove that (0.12) holds and that the map g +—
T (g) is strongly continuous from WN/P-7 into (W1>)*;
(iii) we establish (0.13);
(iv) we note that (0.14)—(0.16) hold for some special g’s; for a general g €
WN/P:P_(0.14)—(0.16) will be obtained by density.

2.1 Step 1: Definition of 7'(g), Continuity of 7' (g), and Proof of (0.12)

The definition of 7'(g) relies on a formula that is in the same spirit as the
one presented in [9] for maps in H'/?(S?*; S'). Let us start with a smooth map
g : SV — RN*! and a Lipschitz function ¢ : S¥+! — R. Let F be any smooth
extension of g to BN*2 (with values into RV*!), and let £ be any Lipschitz exten-
sion of ¢ to BN*2. Set

N+2
@1 x(Fo =3 [ e,
j=IBN+2
where H = (H,, ..., Hyy,) and
(2.2) Hi=(—D"YF A AF  ANFy Ao AFey,.

It is easy to see that div H = 0, that X depends only on g and ¢, and (after a
number of integration by parts) that

(2.3) X(F,§) = (Det(Vg), ).

In the case N = 1 and g € H'?(S* S"), we took in [9] an arbitrary exten-
sion F € H'(B* R?) of g; then the corresponding H given by (2.2) belongs to
L'. Consequently, formula (2.3) allows to define Det(Vg) € (W!">)* for every
g € H'2(S*;S"). We may still use the same technique when g € WN/(N+D.N+1
(SM*1; SV). However, this method does not seem to work when g € WN/P-p
(SM*1; SNy and p > N + 1. In this case, we are going to choose a special exten-
sion F of g such that:

(1) F ¢ COO(BN+2; RNJrl)’
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(i) F € WWN+D/p.p(BN+2) "and

(iii) H (defined by (2.2)) belongs to L'.

For every g € WN/P:P(SN+1: SN) let u be the harmonic extension of g to BN +2
(with values into BV *1).

(Warning: Here, g need not be VMO, in contrast with the situation we encoun-
tered in the proofs of Theorems 0.1 and 0.6. In general, |u(y)| does not tend to 1 as
|y| — 1 and the set {y € BN+2 . lu(y)| < %} is not a compact subset of the open
ball BN*2, This will become particularly transparent later on at the points of S¥+!
where g has topological singularities.)

Fix any map ® € C®(RN*!; RV*1) such that ®(X) = X/|X|if | X| > % The
special F we will use is defined by
(2.4) F(y)=®u(y)) VyeB"".

Note that F € C®(B¥*2; BN*!) and that F(y) € SV when |u(y)| > 3. Consider
the vector field H defined by (2.2) for this ' and observe that H = 0 in the open
set {y € BN Ju(y)| > 1}.

For every £ € WH°(BN*2; R), define

2.5) Y(&) =X(F.,§)

as in (2.1)—(2.2). This requires a justification, since it is not clear that H € L!. A
key ingredient in the proof of Theorem 0.8 is the following:

LEMMA 2.1 Foreach g € WN/P-P(SN+1: SN) we have H € L'(BN*t2; RN*2), 50
that the quantity Y (§) is well-defined . Moreover:
(i) Y(&) =Y (&) when & = & on SV,

(i1) Set (T (g),¢) = Y (&), where & is any Lipschitz extension of a given { €
Whoo SN+ R). Then

26 T (©.0)] <Clglh, IVele Ve e WSSV R).

(iii) The map g + T(g) is strongly continuous from WN/PP into
(WI,OO(SN-FI))*'

PROOF: We start by proving that H € L!. Assume firstthat N < p < N + 1.
Then u (the harmonic extension of g) belongs to WV +D/p-P(BN+2) > and thus
to WN+1 Therefore, with our choice of F, we have H € L'. Moreover, in this
case, the map g — H e L' is clearly continuous, so that (iii) follows (provided
we establish (1)).

Assume next that p > N + 1. In the open set {y € BV*? : |u(y)| > 1}, F is
SN -valued, and thus H = 0 pointwise. Therefore,

/|H|= f |H|.

BN+2 i<y
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Clearly, [VF| < C|Vu| and therefore |H| < C|Vu|"*!. By the proof of
Lemma 1.2, we have

/ H < C f |Vu|N“sc/#,
@)~

ilu(<3} :lu()I<i) SN+

where d(x) is defined as in Section 1. [l

By the proof of Lemma 1.3, we further obtain that

1
| G = €+ 1),

SN+

and thus
/ |H| < C(lgly,p, +1)-

ilui=3)
Hence H € L' and consequently Y (£) is well-defined.

We now turn to the proof of (i). Let &,& € W!'*°(BN*2; R) be such that
£ = & on SVt and set n = & — & € W, (B¥*?). Consider a sequence
(n;) C C>°(BN*2) such that Vn; — Vnae.and || Vy;|lp~ < C. Since div H = 0,
we clearly have [y, H - Vi; =0V, and thus [y, H - Vi =0.

We next establish (ii). It suffices to estimate (7' (g), ) when

@.7) / £=0.

SN+1

In view of (2.7), we may find an extension £ of ¢ to B¥*+? such that

2.38) IVElle < CIIVE e
and
S 1
2.9) Suppé C {y e BV |yl > —} .
For such a &, we have
2.10)  |(T(g).¢)] < / H|[VE| < CIVE 1 / V.
BN+2 {(y:lyl= 4 and ju(y)<1}

Going back to the proofs of Lemmas 1.2 and 1.3, we see that

N+1 14
@11) [ v =cii,,.
{(v:ly1=1 and ju(y)< 1)

so that (ii) is a consequence of (2.10) and (2.11).
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Finally, we prove (iii). As we already observed, it suffices to consider the case
p > N-+1. Letg,, g € WN/PP(SN+1: SN) be such that g, — g in WV/P-P and
let H, and H be the corresponding vector fields. We claim that
(2.12) / |H, — H| — 0.
BN+2

By the uniqueness of the limit, it suffices to establish (2.12) for a subsequence.
With u,, and u the corresponding harmonic extensions, we have u, — u in
C>®(BN*?) and in WWN+V/P.P Forx e SN andt e I = (0, %), set

v, (x,t) =u, (1 —t)x) and v(x,t) =u((l —1t)x).
In view of (1.7), we know that
v, = v in LP(SVTY WHP(1))

where s = (N + 1)/p. Passing to a subsequence (still denoted by v,) we obtain a
function K € L'(S¥*!) such that

(2.13) [va(x, )I? ) < K(x) Vnandae. x e SV

As in the proof of Lemma 1.3 we find, using (2.13),

TN <CK(x) Vnandae.x e SV,
(X

(where d,, corresponding to g,, is defined as in Section 1). Next we have (using
(1.2) and (1.3))

(2.14)

0 ifl —d,(x) <r <1
(2.15) |H,(rx)| < c )

m if 0 <r< 1.
Combining (2.14) and (2.15), we obtain
(2.16) |H,(y)| < M(y) Vye B"*?

for some M e L'. Since clearly H, — H in C®(B"N*?), (2.12) follows from
inequality (2.16).

2.2 Step 2: Proof of (0.13)

As we already observed, we may still define T(g) if g € WN/(V+D.N+I
(SN RN+ (note that here g need not be SV-valued). Indeed, for such a g,
we have u € WHNTI(BN+2, RV+1) and thus H e L'. Similarly, the definition
(0.11) of Det(Vg) still makes sense for g € WHN SN+, RVT1) 0 L An easy
adaptation of the proof of lemma 1 in [9] yields, in (W!>°)*, the equality

(2.17) Det(Vg) = T(g) Vg e WHV SN RNy A wwiN+Hq e

This completes the proof of (0.13) when N > 2. Indeed, if N > 2 we have
WHLN SN+ SNy ¢ WN/PP ¥p > N, so that (0.13) is a special case of (2.17).
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We now turn to the proof of (0.13) when N =1, i.e.,
(2.18)  Det(Vg)=T(g) Vp>1, Vge Wh'(sHnwr?,

It is useful to introduce the class
R = {g e Wha( SNt sy forevery 1 <g < N + I;
g € C®(SV*!\ A) for some finite set A} .

Note that every g € R belongs to WY and also to WN/(N+D-N+1 - Thyg (2.17)
holds for every g € R.
Equality (2.18) follows from

Lemma 2.2 below,

(2.17) applied to g € R,

the continuity of g > T'(g) from W!/7-7(S?; S!) into (W!*)*, and

the continuity of g > Det(Vg) from W!!(S?; S!) into (W!>)* (which is
obvious from (0.11)).

LEMMA 2.2 Let p > 1. For every g € W''(S*; S N WYP-P, there is a sequence
(gn) C R such that g, — g in W' and in W'/P-»,

The proof of Lemma 2.2 is given in the appendix.

2.3 Step 3: Proof of (0.14)—(0.16)

The proof of (0.14)—(0.15) is a straightforward adaptation—Ieft to the reader—
of the proof of theorem 1 in [9]. It relies on four facts:

e R is dense in WN/P-P(SN+1: SV) (see the appendix).
e g — T(g) is continuous from WN/P-P(SN+1: SNy into (W1-°)*,
e The following equality holds:

(2.19) Det(Vg) = T(g) = w41 ) daba Vg €R.

finite

where wy,; is the volume of the unit ball in R¥*! and d, denotes the
degree of g restricted to a small sphere around a in S¥*! (with appropriate
orientation). Equality (2.19) is proven as in [9, lemma 2].

e If g, h € R and we write

(2.20) Det(Vg) — Det(Vh) = w1 Y . daba .
acA

then (see [11])

where
k

(2.22) L = Min ; d(P;, No@iy) ;
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here P; and N; are the points a € A repeated according to their multiplicity
and d is the geodesic distance on SN*!.

The proof of (0.16) relies on the following variant of [12, theorem 4]:

LEMMA 2.3 Let g, h € R. Then, for t € C®(SV*!; R), we have

/ |deg(g; Ts) — deg(h; I'y)ldA < IVl IDet(Vg) — Det(VA) | w1y -

WN+1

PROOF: Let g, h € R. Assume that

I J
T(g) = wny1 Z((SP,- =dn), T(h)=wyn Z((Sﬁj —d5,)-

i=1 j=1

If A is a regular value of ¢ such that {(P;) # A, (N;) # A, ;(i’j) # A, and
{(1\7]-) # A, for every i and j, then

deg(g; I'y) =card{l <i <1 :¢(P) > A} —card{l <i <1 :¢(N;) > A},

so that, clearly,

1 1
(2.23) deg(g: ) = 3 D (sgn(@(P) — 2) — sgn(Z(N;) = 1)) .

i=1
It follows from (2.23) that

I+J

(224) deg(g: Ty) — deg(h; Ty) = = ) (sgn(€(PY) = 2) = sgn(C (V) = 1))
k=1

where the sets {P;} U {1\~/j} and {N;} U {Isj} are now labeled as {P;} and {N/},
respectively. Assume, e.g., that the length of the minimal connection in (2.22) is
givenby L = Z,ﬁ:lj d(P}, N;), and let y; be a geodesic from P to N;* Vk. Since
clearly

1
§|(Sgn(€(1’;§k) —A) —sgn({(NY) — V)| < card{x € y; : ¢(x) = A},
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we find, using the area formula and (2.22), that

f deg(g: T,) — deg(h; T)|dx

< Z/card{x € Yk 1 C(x) = A}dA
k

(2.25) = /
k Yk

< L|VE|lLe

a¢
ot

IV2 [l IDet(Vg) — Det(VA) | gyi.oo)-
N+1
PROOF OF (0.16): Asin [9], we have

(2.26) (Det(Vg), ) = f deg(g; T,)dr V¢ e C¥@SVTLR), Vg e R.
R
Let g € WN/P-P(SN+1. SN and let (g,) C R be such that g, — g in WV/P-? and

D IDet(Vgyi1) — Det(Vgn) oy < 0.
n
By Lemma 2.3 we have, for a fixed { € C®°(SV*!; R),

2.27) 3 [ deg(gnri 1) — deg(eni TIdi < 0.
" R

On the other hand, passing to a subsequence, we have, for a.e. A, gur, = gr, in
WN/P.P and thus in VMO. Therefore,

(2.28) deg(g,; I',) — deg(g; I',) forae. A.
From (2.27) and (2.28) we obtain
(2.29) deg(gn; ) — deg(g; To) in L'(R).

Property (0.16) follows by combining (2.26), (2.29), and the continuity of 7. [J

We conclude this section by showing, in the spirit of [9, 11, 12], that, given
points (P;) and (N;) in S¥*!, the minimal “energy” (in the W"/P:? sense) required
to produce topological singularities at the P;’s and N;’s is of the same order as the
length of a minimal connection connecting the P;’s to the N;’s.

Let P = (P;) and N' = (N;) C S¥*! be such that )", |P; — N;| < oo. We
define the length of a minimal connection to be

L(P,N) = Inf{ D (PN Y (Bp =) =) (85 — 8,9,)} :
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As observed in [9], if
T == wN-‘rl Z(SP,' - SNI) )
then

(2.30) 1Tl wi.ooy = @y 41 L(P, N) .
THEOREM 2.4 Given P and N, we have, for N < p < 00,
(2.31) L(P,N) ~
inf {Igl3,, : g € WNPPEHHLSY), T(9) = onn Y (n —x)].
(The equivalence in (2.31) is up to constants depending on p and N.)

PROOF: In view of (0.12) and (2.30), it suffices to find, for P and \ as above,
amap g € WV/P-P(SN+1: SV) such that T (g) = wyy1 Y. (8p, —8y,) and |g|1’:,/p’p <
CL(P,N). We rely on [2, theorem 5.6], which asserts that, given P = (P;) and
N = (N;) ¢ S¥*!suchthat }_ | P;—N;| < oo, there is some g € WV (SV+1; SV)
such that

(2.32) Det(Vg) = wy11 Y _(8p, — 8y,)
and
(2.33) IVgl¥y < CL(P,N).

If N > 2, we have the inclusion WV (SV*1; SV) < WN/P.P(SN*TLSN) N <
p < 00, and Theorem 2.4 follows from the inequality

(2.34) 1g1%/p.p < ClIVEI}N < CL(P,N).

The above inclusion is false when N = 1. However, in this case we rely on
the proof of lemma 16 in [9]. More specifically, given 1 < p < oo, and given
points (P;), (N;) C S? such that > |P; — N;| < oo, we constructed in [9] a map
g € WVPP($2; Sh N W such that Det(Vg) = 7 > (8p. — 8y,) and (2.34) holds.
Estimate (2.34) is established in [9] only for p = 2, but the argument there can be
easily adapted to every p, 1 < p < oo. For this purpose, one needs to generalize
lemma 17 in [9] with the help of the obvious inequality

|la +bI? = lal” = |bI”| < Cp(lal”~"|b| + lallb]”™") Va,beC, Vp > 1.
The proof of Theorem 2.4 is complete. n

Appendix: Density of the Class R

The appendix is devoted to density results for classes of SV -valued maps. Re-
call that, if 0 < s < 1,1 < p < 00, and sp > N + 1, then C®(SV*!; SV) is
dense in W57 (S¥*1: SV) (see, e.g., [3] or [13, lemma A.12]). We now turn to the
remaining case: sp < N + 1.
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LEMMA A.1 Assume 0 <s < 1,1 < p < o0, and sp < N + 1. Then the class
R={ge WhiS";SY) forevery1 <qg < N+1
g € C¥(SNTI\ A) for some finite set A}

is dense in WP (SN*1, SV,

ForN =1,s = %, and p = 2, the above result is due to T. Riviere [16] (follow-
ing earlier works of F. Bethuel [3], F. Bethuel and X. Zheng [4], and M. Escobedo
[15]). A different proof is presented in [9, lemma 23]. We explain below how to
adapt the proof of [9] to the general case.

Let g € WSP(SN+1; SV) and let g, be an e-smoothing of g. Then g, satisfies

(A.D lge — gllr < Cé,
(A2) 8els.p = C,
(A.3) IVgellr < Ce™'.

Given a point a € RV*! with |a| < &, let m,: RV \ {a} — S be the radial
projection onto SV with vertex a. Using (A.1)—(A.3), we find, with exactly the
same proof as in [9, lemma 23], that there is a family (a.) such that |a.| < % and
he = 1., (g:) — g in WP, Moreover, as explained in [9], we may choose a, to be

a regular value of g., and for such a choice we have h, € R Vn.
COROLLARY A.2 For N < p < oo, the class WHN (SN, SV N WN/P-P s dense
in WN/P-P(SNHL SV,

PROOF OF LEMMA 2.2: Let g, be as above. Then g, satisfies (A.1)—(A.3)
(with s = %) and, in addition,

(A4) Vgl = C.

On the other hand, we have

(A5) / IVt 0 8l da < ClIVgellie
{azlal <15}

(this is inequality (5.34) in [9]). By combining (A.1)-(A.5), we find, exactly as
in [9], that there is a family (a.) such that |a.| < 11—0 and h, = 7, (g:) — gin
WP and ||Vhe||;1 < C. In order to prove that, in addition, h, — g in W!!,
one may adapt the argument in [9]. Convergence in W!/7-? is obtained there with
the help of the property (5.43). To establish convergence in W1, it suffices to note
that the analogue of (5.43) also holds in W'!; this is easily obtained by dominated
convergence. O
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