H'/2 MAPS WITH VALUES INTO THE
CIRCLE: MINIMAL CONNECTIONS, LIFTING,
AND THE GINZBURG-LANDAU EQUATION
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1. Introduction

Let G C R? be a smooth bounded domain with @ = AG simply connected. We are
concerned with the properties of the space

HY2(Q; 1Y) = {g € HY?(Q;R?); |g| = 1 a.e. on Q}.

Recall (see [12]) that there are functions in H'/2(; S') which cannot be written in the
form g = e*¥ with ¢ € H/2(Q;R). For example, we may assume that locally, near a point
on (2, say 0, ) is a disc Bi; then take

(1.1) g(x,y) = (,9)/ (&> +v*)/* on B

Recall also (see [25]) that there are functions in H'/2(; S') which cannot be approximated
in the H'/2-norm by functions in C°°(Q; S'). Consider, for example, again a function g
which is the same as in (1.1) near 0.

It is therefore natural to introduce the classes
X ={ge HY*(Q;S1); g = " for some ¢ € H'/?(Q;R)}

and

Clearly, we have

X cY c HY?(Q;8h).
Moreover, these inclusions are strict. Indeed, any function g € H'/2(Q; S') which satisfies
(1.1) does not belong to Y. On the other hand, the function

@
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with 7 = (22 4+ 92)'/2 and 1/2 < a < 1, belongs to Y, but not to X (see [12]).

To every map g € H'/?(Q; R?) we associate a distribution T = T(g) € P’ (2;R). When
g € H'/2(Q; S1), the distribution T'(g) describes the location and the topological degree
of its singularities. This is the analogue of a tool introduced by Brezis, Coron and Lieb
[19] in the framework of H'(G;S?) (see the discussion following Lemma 2 below). In the
context of H'/2(Q; S1), the distribution T'(g) and the corresponding number L(g) (defined
after Lemma 1) were originally introduced by the authors in 1996 and these concepts were
presented in various lectures.

Given g € H'/?(Q;R?) and ¢ € Lip (Q;R), consider any U € H'(G;R?) and any
® € Lip (G;R) such that

(1.2) Uq=gand Qg =9

Set
H=2U,NU,,U, NU,,U, A Uy);

this H is independent of the choice of direct orthonormal bases in R? (to compute deriva-
tives) and in R? (to compute A-products). Next, consider

(1.3) /H V.

It is not difficult to show (see Section 2) that (1.3) is independent of the choice of U and
®; it depends only on g and p. We may thus define the distribution T'(g) € D'(Q;R) by

:/H-Vcb.
G

If there is no ambiguity, we will simply write 7" instead of T'(g).

When ¢ has a little more regularity, we may also express 7' in a simpler form:

Lemma 1. If g € HY?(Q;R?) n WH1(Q; R?) N L>(Q; R?), then

(T(g). ¢) = / (9 A go)oy — (9 A gy)es), Vo € Lip(%R).
Q

The integrand is computed pointwise in any orthonormal frame (z,y) such that (x,y,n)
is direct, where n is the outward normal to G — and the corresponding quantity is frame-
invariant.

By analogy with the results of [19] and [6] we introduce, for every g € H'/2(Q;RR?), the
number

L(g) = 5= Sup {(T(9). ¢} ¢ € Lib (%) lpluip < 1} = 5— Max {...}



where |p|Lip = Sup |@(x) — ¢(y)|/d(x,y) refers to a given metric d on 2. There are three
TFy
(equivalent) metrics on €2 which are of interest:
dR3 (xvy) = |IL' - y|7

(1.4) dg(x,y) = the geodesic distance in G,
do(z,y) = the geodesic distance in 2.

When dealing with a specified metric, we will write Lgs, Lg or Lg. Otherwise, we will
simply write L (note that all these L’s are equivalent). It is easy to see that

(1.5) 0<L(g) < Cllg|%12 Vg€ HY*Q;R?)
and
(1.6) IL(g) — L(h)| < Cllg — hllgr2(lgl ez + Rl g1r2), Vg, h € HY2(Q;R?).

When ¢ takes its values into S' and has only a finite number of singularities, there are
very simple expressions for T'(g) and L(g):
Lemma 2. If g € HY/2(Q;S') N H}

loc

(Q\ U, {a;};S"), then

k

T(g) =21 d;da,,

Jj=1

where d; = deg(g,a;). Moreover L(g) is the length of the minimal connection associated
to the configuration (a;,d;) and to the specific metric on § (in the sense of [19]; see also

[27]).

Remark 1.1. Here, deg(g, a;) denotes the topological degree of g restricted to any small
circle around a;, positively oriented with respect to the outward normal. It is well defined
using the degree theory for maps in H'/2(S'; S1) (see [17] and [22]).

By the definition of T'(g), we see that (T'(g),1) = 0. Therefore, if ¢g is as in Lemma
2, then ) d; = 0. Thus we may write the collection of points (a;), repeated with their
multiplicity d;, as (P1,..., Pk, N1,... ,Ni), where k = 1/2> " |d;| (we exclude from this
collection the points of degree 0). A point a; is counted among the P’s if it has positive
degree and among the N’s otherwise. Then L(g) = Iglf > d(Pj, Ny(jy). Here, the Inf is

taken over all the permutations o of {1,...,k} and d is one of the metrics in (1.4).

The conclusion of Lemma 2 is reminiscent of a concept originally introduced by Brezis,
Coron and Lieb [19]. There, u is a map from G C R? into S? with a finite number of
singularities a; € G. To such a map u, one associates a distribution 7'(u) describing
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the location and the topological charge of the singular set of u. More precisely, if u €
HY(G; S?), set
D= (u-uy Ay, U-UsAUg, U-Ug AUy)

and T'(u) = divD.

If w is smooth except at the a;’s, it is proved in [19] that

T(u) = 4w Zdjéaj.
Here, d; is the topological degree of u around a;.

Using a density result of T. Riviere (see [38] and Lemma 11 in Section 2; see also the
proof of Lemma 23, Remark 5.1 and Appendix B), we will extend Lemma 2 to general
functions in H'/2(Q; S1):

Theorem 1. Given any g € H'/?(2; S1), there are two sequences of points (P;) and (N;)
in €2 such that

(17) Z |PZ — NZ| < 00
and
(1.8) (T(g),9) =2m Z (o(P) — o(N;)), Ve € Lip (%R).

In addition, for any metric d in (1.4)
L(g) = Iﬂfzd(Pi, N;),

where the infimum is taken over all possible sequences (P;), (N;) satisfying (1.7), (1.8).
If the distribution T' is a measure (of finite total mass), then

T(g) =2r > d;da,
finite
with dj € Z and a; € Q.
Remark 1.2. There are always infinitely many representations of 7'(g) as a sum satisfying
(1.7)-(1.8) and such representations need not be equivalent modulo a permutation of points.

For example, a dipole 6p — dq may be represented as dp — dg, +>_;5,(dq; — dq,,,) for
any sequence (@);) rapidly converging to Q.

The last assertion in Theorem 1 is the H'/?-analogue of a result of Jerrard and Soner
28, 29] (see also Hang and Lin [28]) concerning maps in W1 1(Q; S1).

Maps in Y can be characterized in terms of the distribution 7'
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Theorem 2 (Riviere [38]). Let g € H/?(Q;S"). Then T(g) = 0 if and only if g € Y.

This result is the H'/2-counterpart of a well-known result of Bethuel [3] characterizing
the closure of smooth maps in H*(B3;5?) (see also Demengel [24]).

The implication g € Y = T'(g) = 0 is trivial, using e.g. (1.6). The converse is more
delicate; it uses the “dipole removing” technique of Bethuel [3] and we refer the reader to
[38]; for convenience we present in Section 4 a slightly different proof.

As was mentioned earlier, functions in Y need not belong to X, i.e., they need not have
a lifting in H'/2(Q;R). However, we have

Theorem 3. For every g € Y there exists o € H/?(Q;R) + W11 (€; R), which is unique
(modulo 27), such that g = e*¢. Conversely, if g € H/?(Q; S') can be written as g = e*?
with ¢ € HY/? + W theng €Y.

The existence will be proved in Section 3 with the help of paraproducts (in the sense of
J.-M. Bony and Y. Meyer). The heart of the matter is the estimate

(1.9) [l /2w < Calle | s (1 + [[€]| grr2),

which holds for any smooth real-valued function ¢; here C depends only on €.

Using Theorem 3 and the basic estimate (1.9), we will prove that, for every g €
H'2(Q; S1), there exists ¢ € HY/2(Q;R) + BV(Q;R) such that g = € (see Section
4). Of course, this ¢ is not unique. There is an interesting link between all possible liftings
of g and the minimal connection of g:

Theorem 4. For every g € H'/?(Q; S) we have
Inf {|@2|pv;g = e P 201 € HY? and ¢y € BV} = dnLal(g),
where |p2|py = fQ | Dpa].

Another useful fact about the structure of H'/2(Q; S') is the following factorization
result:

Theorem 5. We have
HY2(;81) = (X) - (H'2nwhh,

ie., every g € HY/?(Q;S') may be written as g = €*?h, with ¢ € H'/?(Q;R) and h €
H'Y2(Q; SHY nWh1(Q; S). Moreover we have the control

el /2 + lhllwra < Callgllye-

5



The interplay between the Ginzburg-Landau energy and minimal connections has been
first pointed out in the important work of T. Riviere [37] (see also [34] and [38]) in the
case of boundary data with a finite number of singularities. We are concerned here with a
general boundary condition ¢ in H/2.

Given g € H'/2(Q; S1), set

(1.10) €eg =€ = H;I\(/IGi;rﬂl%z)Eg(u),

where

1 1
P = 5 [ Vel gz [ =12

and
1.2y — 1. w2y, —
H,(G;R*) ={u € H (G;R*);u = g on Q}.

Theorem 6. For every g € H'/2(Q; S) we have, as ¢ — 0,

(1.11) ee =mLa(g)log(1/e) + o(log(1/e)).

This result and some variants are proved in Section 5. For special ¢’s (namely ¢’s with
finite number of singularities), formula (1.11) was first proved by T. Riviére in [37]. For a
general g € H'/2(; S1), it was established in [12] that

e < C(g)log(1/e)

where C'(g) = C(G)||g||§{1/2(m; another proof of the same inequality is given in [38].

Using Theorem 6, we may characterize the classes X and Y in terms of the behavior of
the Ginzburg-Landau energy as ¢ — 0. Indeed, Theorem 6 implies that

Y ={ge H7?(Q;5Y); e. =o(log(1/e))}.

On the other hand, it is easy to see that

X = {ge HY2(Q;8"); e. = O(1) }.

Next, we present various estimates for minimizers u. in (1.10). In Section 6, we discuss
the following theorem (originally announced in [13] and subsequently established with a
simpler proof in [5]):



Theorem 7. For every g € H'/?(Q; S) we have

(1.12) lucllwro) < Cp, V1<p<3/2.

In fact, we will prove the following slight generalization of Theorem 7:

Theorem 7'. For every g € H'/?(Q; S"), the family (u.) is relatively compact in WP
for every p < 3/2.

Remark 1.3. It is very plausible that Theorem 7 still holds when p = 3/2. However, the
conclusion fails for p > 3/2; see the discussion in Section 9.

In Section 7, we will establish stronger interior estimates:
Theorem 8. For every g € H'/?(Q; S'), we have
(1.13) |uellwiv (k) < Cpx, V1<p<2, VK compactinG.
Consequently, (u.) is relatively compact in Wli’cp for every p < 2.

Remark 1.4. The conclusion of Theorem 8 fails for p = 2. Here is an example, with
G = By, the unit ball in R?, and g(x1,22,23) = (21,22)/y/21 + 23. T. Riviere [37] (see
also F.H. Lin and T. Rivitre [34]) has proved that in this case u. — u = (21,22)/v/27 + 23,
and clearly this u does not belong to Hl (G).

loc

Finally, we have a very precise result concerning the limit of u. when g € Y:

Theorem 9. For every g € Y, write (as in Theorem 3) g = €*?, with o € HY/? + Wbl
Then we have i
Ue — Uy = P in WHP(G) N C™(G), Vp<3/2,

where @ is the harmonic extension of .

Theorem 9 and some of its variants are presented in Section 8. In Section 9 we prove
some partial results about estimates in WP when p = 3/2. In Section 10 we list some
open problems.

Most of the results in this paper were announced in [13].

The paper is organized as follows:

1. Introduction

2. Elementary properties of the minimal connection. Proof of Theorem 1



3. Lifting for g € Y. Characterization of Y. Proof of Theorem 3

4. Lifting for a general g € H'/2. Optimizing the BV part of the phase. Proof of Theorems
4 and 5

5. Minimal connection and Ginzburg-Landau energy for g € H'/2. Proof of Theorem 6
6. WP(G) compactness for p < 3/2 and g € H'/?. Proof of Theorem 7’

7. Improved interior estimates. Wli’cp (G) compactness for p < 2 and g € H'/2. Proof of
Theorem 8

8. Convergence for g € Y. Proof of Theorem 9
9. Further thoughts about p = 3/2
10. Some open problems
11. Appendices
A. The upper bound for the energy
B. A variant of the density result of T. Riviere
C. Almost Z-valued functions
D. Sobolev imbeddings for BV

12. References

2. Elementary properties of the minimal connection. Proof of Theorem 1

To every g € H'/?(Q;R?) we associate a distribution T(g) € D'(Q;R) in the following
way: consider any U € H'(G;R?) such that

U|Q =4g.
Given ¢ € Lip ({;R), let ® € Lip (G;R) be such that
q)m = @.

Set
H=2U,NU,,U, NU, Uz \NUy).



Lemma 3. The quantity [ H - V® depends only on g and ¢.
G

Proof. We first claim that [ H - V® does not depend on the choice of ®. Observe that,
- G
if U € C*°(G;R?), then
div H = 0.

By density, we find that
divH =0 in D'(G)

for any U € HY(G;RR?). Tt follows easily that

/H-V\I/:0, YW € Lip (G;R) with ¥ =0 on Q.
G

This implies the above claim.
Next, we verify that [ H - V® does not depend on the choice of U. Let V be another
G
choice in H'(G;R?) such that Vi = g. Set W =V — U € Hj. Then, with obvious

notation,
/HV-V(ID:/HU-V(I)+/R1-V(I>+/R2-V(I>,
G G G G

with Ry = Wy AU, + Uy AW,,...), Ra= Wy, AW,,...).

We complete the proof of Lemma 3 with the help of

Lemma 4. For each U € H'(G;R?) and W € H}(G;R?) we have

/Rl-V(P:O, V® € Lip (G;R).
G

Proof of Lemma 4. By density, it suffices to prove the above equality for U € C ©(G;R?),
W € C5°(G;R?) and & € C°(G;R). For such U and W, note that

Wy AU, + Uy AW, = (W AUy + (Uy AW)...

Therefore,

/Rl-V(I):—/[(W/\UZ)(I)xy-i—(Uy/\W)(I)m+---]:0.
G G



As a consequence of Lemma 3, the map
P — / H-Vo
G

is a continuous linear functional on Lip (£2;R). In particular, it is a distribution. Again
by Lemma 3, this distribution depends only on g € H'/?(Q; R?). We will denote it T(g).

Remark 2.1. It is important to note that T" has a “local” character. More precisely, if
g1, 92 € H'/2(Q;R?) are such that g; = g in w (where w is an open subset of ), then

(T'(91),0) = (T(g2), ), Vo € Lip (;R), with supp ¢ C w.

This is an easy consequence of Lemma 3 and of the fact that, if supp g N supp
then one may extend g to U € H! and ¢ to ® € Lip such that supp U N supp

Thus, one may define a local version of T' as follows: if g € H 11{)3 (w; R?), set

(T(g),¢) = (T(h),9), Vo€ Cyw;R),

where h is any map in H'/?(€; R?) such that h = g in a neighborhood of supp .

o =10,
® = ().

Remark 2.2. Another important property is the invariance under diffeomorphisms. More
precisely, let 2, G, g, p be as above and let £ : 2 — () be an orientation-preserving diffeo-
morphism. Then

(T'(g), ) =(T(9), ),
where g = go§ and ¢ = po¢&. Clearly, { extends as an orientation-preserving diffeo-

morphism (still denoted ) from a small tubular neighborhood of © in G to a tubular
neighborhood of Q in G (as in the proof of Lemma 5 below).

We have
(T(g),¢) = /H-V(ID = 2/ Jac (®,U),
G G
since

H =2(U, ANU.,U. AUy, Uy AU,).

We may choose U and ® supported in a small tubular neighborhood of € and set U=
Uo&and ® = ®o&. Then, with obvious notation,

(T(3),?) :/ﬁf-wi:z/ Jac (®,0) :2/ Jac (®,U) = (T(q), o).
&

a G

Similarly, if w is an open subset of {2 and £ : ©® — w is an orientation-preserving diffeomor-
phism, then (using Remark 2.1) we have



1/2

(w;R?) and ¢ € C}(w;R). This is extremely useful because we can

for every g € H

always choose a local diffeomorphism with Q flat near a point. More precisely, let (w;) be
a finite covering of Q with each w; diffeomorphic to a disc D via & : D — w;. Let (a;) be
a corresponding partition of unity. Then, V¢ € Lip (Q;R),

(T(9). ) = 3 (T(g), i)

and we may compute each term (T'(g), ;) in D using the fact that
(T'(g), i) = (T(g 0 &), (rip) 0 &i).
Here is a noticeable fact about T'(g):

Lemma 5. Let g € H'/?(Q;R?). Then there exists an L'-section F' of the tangent bundle
T(QY) such that

(T(9), ) = / F.Vy, VpeLip(@R).

Q

Proof of Lemma 5. For 3 > 0, let
Gp={X€eG; 6X)<p}, Q={XeG iX)=7}

where 6(X) = dist (X,Q). Assuming that 3 is sufficiently small, say 8 < [, for every
X € Gp there exists a unique point o(X) € € such that 6(X) = |X — o(X)|. Let
IT: Gg — (0,5) x Q be the mapping defined by II(X) = (§(X),o(X)). This mapping is a
(O2-diffeomorphism and its inverse is given by

It o) =0 —tn(o), V(t,o) € (0,5) x £,

where n(c) is the outward unit normal to Q at 0. For 0 < t < [y, let K; denote the
mapping I171(¢,-) of Q onto Q.

Since n(c) is orthogonal to Q; = I171(¢,Q) at o — tn(o), it follows that, for every
integrable non-negative function f in Gpg,

B B
/f: /dt/fdat :/dtQ/f(Kt(a))(Jac K,)do,

where do, do, denote surface elements on 2, €2, respectively.

We now make a special choice of U and ®. Let



where ¢ € C*(€;R) is the given test function and

B 1, for 0 <t < By/2
C()_{O,fortzﬂo. )

We take U to be any H! extension of g such that U(X) = 0 if §(X) > (/2. Hence

Bo/2
21)  (T(g),0) = /H VD = / H-Vo = / dt/H V(K (o)) (Jac Ky )do.

G Gpo /2 0o Q
For every o € (), fix a frame F, = (z,y) as in Lemma 1. We already observed that H - V&
can be computed (pointwise) in any direct orthonormal frame of R3. We choose, at any

points X € Gg, /2, the special frame (F,(x),n(o(X)). Then, we have, Vt € (0,80/2),Vo €
Q

Y

(2.2) (H - V®)(Ki(0)) = 2(Uy AU-)(K(0))pz(0) + 2(Uz A Uz )(K1(0)) @y (9)-

We now insert (2.2) into (2.1) and obtain the conclusion of Lemma 5 with F(o) =

0 0
Fl(U)% +F2(U)@,

where

Bo/2
Fi(o) =2 / (U, A U)K (0)) (JacK, )dt
0

and
Bo/2

Fy(o) = 2 / (U. AU (K (o) (JacK, )dt.
0

We now turn to the

Proof of Lemma 1. It suffices to prove that

/H Vo = /[(9 A ga)oy — (9N gy)pz)
e Q

when U € C*°(G;R?) and ® € C*°(G;R). We write
H=(UANU.)y+ Uy AU).,(UNUyz)z+ Uz ANU)o, (UNAUy)z + (Us AU)y).
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Integration by parts yields

/H-V(I):/U/\ det (VU,V®, n).
G Q

0 0P
By Lemma 3, we may assume further that — =0 and — = 0.
on on

For each o € Q, we compute det(VU, VO, ﬁ) in the frame given by Lemma 1. We have

- oUu 0® oU 0
det (VU, VO, n) = — — — — — = §2y — 9yPa>

and the conclusion follows.

Here are some straightforward variants and consequences of Lemma 1 and Remarks 2.1
- 2.2

Lemma 6. Let w be an open subset of 2. Let

ge H'?(w;R2) nWhi(w) N L®(w).

(2.3) (T(g). ¢) = / (9 A ge)oy — (9 Ag)eal, Ve € ChwiR).

w

Lemma 7. Let w be an open subset of Q. Let g € H'/?(w; S') NV MO(w; S'). Then

(T(g),go> = 07 V(:O € C&(va)

Proof of Lemma 7. In view of Remark 2.2, we may assume that w is a disc. There is a

sequence (g,) € C°(w; S1) such that g, — g in Hllo/f(w) (see [22]). Hence (T'(gn), ) —

(T(g9),¢), Vo€ Ci(w;R), by (2.5) below. On the other hand, by Lemma 6,

(T'(gn),p) = /[(gn A Gnz)Py — (Gn A gny)eu]

w

= 2/(gnx /\gny)‘:p =0

w

since |gn| =1 on w.

There is yet another representation formula for 7'
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Lemma 8. Let g = (g1,92) € HY/?(Q;R?). Then if w C Q is diffeomorphic to a disc & as
in Remark 2.2, we have, Vo € C§°(w;R),

(2.4) (T'(9), ) = (91, (92Py)z — (G2Pz)y) sz, 172 — (92, (G1Py)e — (G1P2)y) Hr/2 H-1/2-
Observe that, e.g. Gag, € HY/?(@), so that (§2@,). € H™Y/2(@).
Proof of Lemma 8. When g is smooth, (2.4) coincides with (2.3). The general case is

obtained by approximation.

We now describe some elementary but useful facts about T" and L:

Lemma 9. We have, for g, h € H'/?(Q;R?), ¢ € Lip(Q; R),
(2.5) [(T(g) = T(h), @)l < Clg = hlgr2(lglgiz + [l g2)|elLip,

(2.6) [L(g) — L(h)| < Clg — hlgr/2(lg 1z + (Rl 1s2)
and, in particular,

L(g) < Clgl31/2-
If, in addition, g and h are S'-valued, then

(2.7) T(gh) =T(g) +T(h),

(2.8) L(gh) < Clg — hlga/2(lgl gz + bl grs2)
and

(2.9) L(gh) < L(g) + L(h).

Here, we have identified R? with C and gh denotes complex multiplication, while | | 1,2
denotes the canonical seminorm on H'/2 :

s lg(z) — g(y)|?
|9|H1/2—/ —d(a:,y)3 dxdy.
Q Q

The constant C' in this lemma depends only on €.

Proof. Let U,V € H'(G;R?) be the harmonic extensions of g, respectively h. Then
clearly, V® € Lip (G;R),

[ Vo< [ Hy V04 CIVU = V(19012 + [9V]12) [V,
G G
so that (2.5) follows. Moreover, we find that
L(g) < L(h) + Clg = hlgr/2(lg| g2 + [hlgas2).

Reversing the roles of g and h, yields (2.6).
The proof of (2.7) — (2.9) relies on the following
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Lemma 10. For g,h € H'Y?(Q;R?) N L, we have, Vo € C°(w;R), with the same
notation as in Lemma 8,

(T(gh), o) = (|hfPg1, (328)0 — (200)y) rrr/2, 12
— (1h[*G2, G18y)e — (G162)y) /2172
+{|g° R, (hapy)e — (h2@a)y) /e 1o
— (|3Pha, (I @y)e — (M1 @2)y) e gr-1/2-

Note that the above equality makes sense since H'/2 N L™ is an algebra.

Proof of Lemma 10. When g and h are smooth, the above equality is clear by Lemma
8. The general case follows by approximation, using the fact that, if g, — ¢ in H'/2,
hy — hin HY? ||gnl|ze < C, ||hnl|z < C, then gnh, — gh in H'/? (this is proved using
dominated convergence).

Proof of Lemma 9 completed. When |g| = |h| = 1, we find that T'(gh) = T(g9) + T'(h),
by combining Lemma 8 and Lemma 10. Also in this case, we have

T(gh) =T(g) +T(h) = T(g) — T(h).
Using (2.5), we find that

L(gh) = | |SUP<1<T(9) —T(h), ) < Clg—hlgi/z (I9|g1/2 + |hlg1/2).
LlLip>

Finally, inequality (2.9) is a trivial consequence of (2.7).

Remark 2.3. There is an alternative proof of (2.7) - (2.9), which consists of combining
Lemma 2 (proved below) with the density result of T. Riviere [38]; see Lemma 11.

We now consider the special case where g € H'/2(Q; 1) is “smooth” except at a finite
number of singularities:

Proof of Lemma 2. The proof consists of 3 steps:
Step 1. Supp T'(g9) C U;?:l{aj}

This is a trivial consequence of Lemma 7.

Step 2. T(g) = >_,_; ¢j0a;-

In view of Remark 2.2 we may assume that € is flat near each a;. We first note that, by a
celebrated result of L. Schwartz, T'(g) is a finite sum of the form T'(g) = >_; , ¢j,aD%da;.

We want to prove that c;, = 0 if & # 0. For this purpose, it suffices to check that
(T'(g9),¢) = 01if ¢(a;) = 0,Vj. Let ¢ be any such function. Then, clearly, there is a
sequence (p,) C C§(Q\ UY_,; {a;}) such that Vo, — Vg a.e. and ||V~ < C. Using
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Lemma 5, we obtain, by dominated convergence, that (T'(g),vn) — (I'(g9),). On the
other hand, (T'(g), ¢n) = 0 by Step 1.

Step 3. We have ¢; = 2md; where d; = deg(g, a;).

Let ¢ be a smooth function on €2 such that

1, for |z —a;| < R/2
p(r) =
0, for |x —aj| > R

Y

where R > 0 is sufficiently small.

Note that V¢ = 0 outside the annulus A = {x € Q; |z — a;| € [R/2, R]} and, moreover,
that g € H' on the same annulus. By Lemma 8 we find that

<ﬂmw:/@mm%n—@%m—/mmeewwmm

A A

Integration by parts yields

/gyAg Yo+ (9 N ga)pyl-
A

If g is smooth on A, and if we integrate by parts once more, we find that

<ﬂmw=—/@mm%—/@mm%
> >

where > = {z € Q; |z — a;| = R/2} and v is the inward normal to A on > . With 7 the
direct tangent vector on ), we have

—(gy Ng)Ve — (9N Ga)Vy = g N Gr.

Since g is S'-valued, we find that
(T'(g), ) = 2mdeg(g, a;).

For a general g € H'(A; S1), we use the fact that C°°(A; S1) is dense in H!(A; S!) (see
[41], [10] and [22]) and the stability of the degree under H'/2-convergence (see [17] and
[22]), to conclude that (T'(g), ) = 2w deg(g, a;).

We now recall a useful density result due to T. Riviere, which is the H'/? analogue of
a result of Bethuel and Zheng [10] concerning H! maps from B? to S? (see also a related
result of Bethuel [4] concerning fractional Sobolev spaces).
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Lemma 11 (Riviere [38]). Let R denote the class of maps belonging to W1P(€Q; S1),

Vp < 2, which are C*° on ) except at a finite number of points. Then R is dense in
H'2(Q; S1).

Remark 2.4. The above assertion does not appear in Riviere [38] but it is implicit in his
proof; for the convenience of the reader we present a simple proof in Remark 5.1 - see also
Appendix B for a more precise statement.

Remark 2.5. Similar density results hold in greater generality. Let 2 C R? be a smooth
bounded domain. Let 0 < s < 00,1 < p < 0o and

RSP = {u € WSP(Q; S1);u is C™ except at a finite number of points}.
Then R*? is dense in W*P(Q; S1) for all values of s and p (see [16]); this extends earlier
results in [10], [25] and [4].

The density result combined with Lemma 2 yields “concrete” representations of the dis-
tribution T'(g) and of the length of a minimal connection L(g) for a general g € H'/?(Q; S1);
this is the content of Theorem 1.

Proof of Theorem 1. We start by recalling a result of Brezis, Coron and Lieb [19] (see
also [18]).

Lemma 12 (Brezis, Coron and Lieb [19]). Let (X, d) be a metric space. Let Py, ... , P,
and Nq,..., N be two collections of k points in X. Then

L= Min Y d(P;, No(j)) = Max{ > (P = o(N))); leluip < 1}7

oESK -
J

where Sy denotes the group of permutation of {1,2,... ,k}.
The analogue of Lemma 12 for infinite sequences, which we need, is

Lemma 12'. Let (X,d) be a metric space. Let (P;),(N;) be two infinite sequences such
that > d(P;, N;) < 0.

Let
(2.10) L= Su { T(e(R) = o) el iy < 1.

¥ i

Then

L= tut { ST ar R S0 - 65) = (on - o)}

(N:) i i

17



Here, and throughout the rest of the paper, the equality

> (0p —65,) = _(0p —6n,)

7 7

for sequences (P;), (IV;), (FP;), (N;) such that
Zd(ﬁuﬁz) < o0 and Zd(Pz:Nz) < 0

means that

> (p(P) = o(N:) =Y (¢(Ps) — ¢(N:)), Ve € Lip.

7 7

Remark 2.6. A slightly different way of stating Lemma 12’ is the following. Given
sequences (P;), (IN;) in a metric space X with ). d(P;, N;) < oo, then

= _Inf {ZdPZ,N Z(a 5Ni)=2(5pi—5wi)}

(Pi),(Ny) i
(2.10")

= Sup { Y (e(R) = ¢V € Lip(XiR) and folusp < 1.

¥ i

It is easy to see that the supremum in (2.10") is always achieved. (Let (¢,,) be a maximizing
sequence. By a diagonal process, we may assume that ¢, (P;) and ¢, (N;) converge for
every 4 to limits which define a function ¢y on the set {P;, N;,i = 1,2,... } with |9 |rip < 1.
Next, 1 is defined on all of X by a standard extension technique preserving the condition
|9|Lip < 1). A natural question is whether the infimum in (2.10’) is achieved. The answer
is negative. An interesting example, with X = [0, 1], has been constructed by A. Ponce
[36].

Proof of Lemma 12'. Let (N;) be such that

> (6p, —65,) =Y (O —6n,).

Then
S (oP) — o (V) < 3 d(P, B

and thus

18



Conversely, given € > 0, we will construct a sequence (]Vl) such that ) . d(P;, Nl) < L+e
and ZZ(CSP'L - 5f\71) = Z’L((SP'L - 5Nz)

Let ng be such that >,
{1,2,... ,n0} which achieves

d(Pj,Nj) < ¢/2. Let op be a permutation of the integers

no
h@nZd(Pj, N,(j)-
j=1

Set

~ [ Nyy), for 1<j<mng
N; for j>no '

Clearly,

Z <5Pj - 5Nj) = Z (5Pj - 5Nj) :

Jjz1 Jjz1
By definition of L, we have
L= Sup > (o(P;) —@(N;))
|<P|Lip§1j21

o

> Max 3 (o(B) — o) - /2

no
= d(P;,N;) — /2,
j=1

by Lemma 12. Thus
Zd(Pj,Nj) <L+¢e/2+¢/2.

Jj=21

Proof of Theorem 1 continued. For g € R we have

k
L(g) = d(P;, N;)
j=1
and
k
(T(g9),) =21 (p(P;) — p(N;))
j=1
for some suitable integer k£ depending on g and suitable points Py, ... , Py, N1,... , N in .

Let now g € H'/2(Q; S') and consider a sequence (g,,) C R such that |g, — g|z1/2 < 1/2™.
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By Lemma 2, T'(gn+1) — T(g») is a finite sum of the form 27 ) (dg, — ds;). By Lemma
12, after relabeling the points (Q);) and (S;), we may assume that

k1
T(g1) =2r > (0p, — dn,)
j=1
and
k}n+1
T(gns1) = T(ga) =27 Y (6p, —0n,),Yn > 1
j=kn+1
with
k}n+1
21 > d(P;,N;) = Sup {(T(gn+1) = T(gn), ¢);¢ € Lip(4R), ¢l < 1}
kn+1

< Clgn+1 = gnlgrrz(Ignt1l gz + |gnlgiz) < C/2"( by (2.5)).

We find that T'(g,) = 27 Z?zl(épj —0n;) and that >~ ., d(P;, N;) < oco.

Then for every ¢ € Lip (€;R), the sequence ((I'(gy), ¢)) converges to 2 > is1(p(P) =
¢(N;)). By Lemma 9, we find that T'(g) = 27,5, (0p, — dn;).

The second assertion in Theorem 1 is an immediate consequence of Lemma 12’ and
Remark 2.6.

The last property in Theorem 1, namely the fact that, if T'(g) is a measure, then T'(g)
may be represented as a finite sum of the form 27 ) y (0p; — 0, ), was originally announced
in [13] and established using a technique of Jerrard and Soner [31], [32], which was based
on the (Jacobian) structure of T'(g). We do not reproduce this argument since Smets [43]
has proved the following general result:

Theorem 10 (Smets [43]). Let X be a compact metric space and let (P;),(N;) C X
be infinite sequences such that ) d(Pj, N;) < co. Assume that

> (v(P) - ‘P(Nj))‘ < C Suplp(a)], V€ Lip(X).

Then one may find two finite collections of points (Q1,...,Qy) and (M, ..., M), such
that i
> (@(P) = o(N;) =Y (9(Qi) — (M;)), Vi € Lip(X).

j=1 =1
We refer to [43] and to [36] for more general results.
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Remark 2.7. A final word about the possibility of defining a minimal connection L(g)
when g € W5P(;S), for 0 < s < oo and 1 < p < co. Recall (see [16] and Remark
2.5) that R*P is always dense in W*P?(£2; S1) and note that we may always define L(g) for
g € R®P. A natural question is whether there is a continuous extension of L to W*P:

a) When sp < 1, the answer is negative. Indeed, let g € R*P be a map with singularities
of nonzero degree, so that L(g) > 0. There is a sequence (g,) in C°°(Q;S!) such that
gn — g in W*P (see Escobedo [25]). Clearly, L(g,) = 0, Vn, and L(g,) does not converge
to L(g).

b) When sp > 2, the answer is positive since L(g) = 0, Vg € R®P (any singularity in
WP must have zero degree since WP C VMO).

c) When 1 < sp < 2, the answer is positive. For s > 1/2 the proof is easy (indeed
if s € (1/2,1), then W*P?(Q; S*) ¢ HY2, while if s > 1, then WP c W' and we may
apply the result of Demengel [24] which asserts the existence of a minimal connection in
Wh1). The case where s < 1/2 is delicate and studied in [16].

3. Lifting for g € Y. Characterization of Y. Proof of Theorem 3

The main ingredient in this Section is the following estimate, whose proof has already
been presented in Bourgain-Brezis [11]. We reproduce it here for the convenience of the
reader.

Theorem 3'. Let 1) be a smooth real-valued function on the d-dimensional torus T and
set g = e*¥. Then

(3.1) | gz pwra < CWd)(1+ |9l grr2)|gl g

Here, | | denotes the canonical seminorm on H'/? (respectively HY? 4 Wh1).

Proof of Theorem 3'. Write g — fg as a Fourier series,

g-fo= Y Qe

£eZ\{0}

The H'/2-component in the decomposition of ¢ will be obtained as a paraproduct of g—fg
and g — [g. Let

(3.2) P=Z{;Ak<|sz|>@e—“@” > g@l)e“'&],

k 2k <€ | <2kt
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where, for each k, we let 0 < Ay < 1 be a smooth function on R as below:

O}

k—2 2k—1
We claim that
(3.3) [Pz < Cllglloolgl gz
and
1 2
(3.4) ¥ =~ Plwa < Clgfipe

Proof of (3.3). This is totally obvious from the construction since, with || ||, standing
for the LP-norm, we have

PR~ 328 [Zwsznme—”fﬂ 2. 9@6“"‘”]
k &2

2k Jgq [<2RF1L

J > o]

|€]~2%

2

2

< 324 S Ae(leE)e
k

< Cligllzelglzse-

Proof of (3.4). We estimate, for instance,
1
(3.6) |01 — ;51P||L1-

Thus, letting & = (¢1,... , &%) € Z4, we have
1 R T oz (61—
(3.7) O =—ghig= D &1§(€)g(E) e
£1,62€24
and, by (3.2), we find

3. Lap=Y Y € - nlledie)iEen e
k

2k <[y | <Mt
£,e7
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and

1 A ~ 1Tr-\g1—G62
(3.9) O — —OLP = S ma(&,£)a(6)g(E)e ),
k 2kz§|€1|<2k+1
NV
Here, by definition of Ag,
S%v if |§2| < 2k_2
3.10 =& -2 1 — &)= :
310 me) -d-aedd - -{ 5 2S00

Estimate

1

1
(3811) [l = ~01 Pl < >

k1,k2

Z My (51762)57(51)@6”'(51_52)

|€1]~2k1,|€o|~2F2

We split the right-hand side of (3.11) as

S+ Y+ Y =(312)+(3.13) + (3.14).

ki~ko  ki<ke—4  ki>ko+4

Clearly, 27%my(&1,&2) restricted to [|€1] ~ 2F] x [|€2] ~ 2F] is a smooth multiplier
satisfying the usual derivative bounds. Therefore,

> e

[§1]~2F

(3.15) (312) <C) 2
k

| = s

[E2]~2F

~ |Q|§11/2-
2

If k1 < ko — 4, then |&] > 2% and my, (€1, &) = &5, by (3.10). Therefore

(313)= )

ki1<ko—4

Y d@)i@en e

|€1[~2k1 ,[£2|~2k2

3.16) < Y | Y aeee

1

P

ki<kz—4 e |~2k 2 W ea|n2na 2

1/2 1/2
<Y (X wer) (X k) <Clo
k1<ks |€1]<2k1 |€2]~2k2

If k1 > ko + 4, then |&] < 28172 and my, (&1, &2) = €2 and the bound on (3.14) is similar.

We now derive a consequence of Theorem 3’:
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Corollary 1. Let G be a smooth bounded domain in R4+ such that Q) = 0G is connected.
Let 1) be a Lipschitz real-valued function on € and set g = e*¥. Then

V|2 pwra < Co(l + gl gi2)|gl g

Proof of Corollary 1. It is convenient to divide the argument into 4 steps.
Step 1. The conclusion of Theorem 3’ still holds if ¢ is Lipschitz. This is clear by density.

Step 2. The conclusion of Theorem 3’ holds if T¢ is replaced by a d-dimensional cube Q
and 1 € Lip (Q). This is done by standard reflections and extensions by periodicity.

As a consequence, we have

Step 3. The conclusion of Step 2 holds when (@) is replaced by a domain in €2 diffeomorphic
to a cube.

Step 4. Proof of Corollary 1. Consider a finite covering (U,,) of Q2 by domains diffeomor-
phic to cubes. Note that, if Uy, NUg # 0, then

[l pwrs waoug) ~ 1l cwiiwyy 1 H 2w wy)-

Using the connectedness of €2, we find that
Wlrrerwia@) ~ 218l wiaw,)-

The conclusion now follows from Step 3.

Proof of Theorem 3. First, let ¢ € Y and consider a sequence (g,) C C°(£;S?1)
such that g, — ¢ in H'/2. Since  is simply connected, we may write g, = e'¥», with
U € CP(;R).

Applying Corollary 1 to g, Gm, we find

|¢n - ¢m|H1/2+W1’1 < C(l + |gngm|H1/2)|gngm|H1/2'

Since g, — g in H/? and |g,,| = 1, we have |gnGm |12 — 0 as m,n — oo (see the proof
of Lemma 10). Therefore, (¢, — f,%n) converges in H'2 + W11 to a map ¢. Then, with
C' an appropriate constant, ¢ = ( +C € H'/2 + Wbl g = ¥ and 1 satisfies the estimate

[l ez pwia < O+ glg2)|9| e
The uniqueness of ¢ is an immediate consequence of the following
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Lemma 13. Let Q be a connected open set in RY. Let f : Q — Z be such that f =
fo+>2; f;, with fo € Wli’cl(Q;]R) and f; € WP (5 R), where 0 < s; < 1, 1 < pj < o0,
sjp; > 1. Then f is a constant.

The proof of Lemma 13 is given in [12], Appendix B, Step 2. The argument is by
dimensional reduction, observing that the restriction of f to almost every line is Z-valued
and VMO; thus it is constant (see [22]). This implies (see e.g. Lemma 2 in [20]) that f
is locally constant in 2.

We now prove the last assertion in Theorem 3. Let g € H'/?(Q; S') be such that g = *¥
for some ¢ € HY/? + WHH(Q;R). Let ¢ = 11 + 1, with ¢o; € HY? and 1, € WL Set
g; = eWi,j=1,2. Clearly, g1 € X, so that g; € Y and thus T(¢g1) = 0. On the other
hand, g» € H/2N W', since g = gg1 € H'/?. Therefore, we may use the representation
of T'(g2) given by Lemma 1 and find, after localization, as in Remark 2.2,

(T(g2), ) = / (Y2ay — Y2g0a) =0, Vi € Ch(w;RR).

w

Hence T'(g2) = 0. By (2.7) in Lemma 9, we obtain that T'(g) = 0. Using Theorem 2, we
derive that g € Y.

Remark 3.1. Theorem 3 is not fully satisfactory since, whenever 1 € W', the function
e need not belong to H'Y/? (but “almost”, since e’ € W' N L>, which is almost
contained in H'/2, but not quite). Here is an example: take some ¢ € W1 N L> with
Y & H'/2. We may assume || < 1. Then

eV — W]~ (z) — 9 (y)],

so that
€| 12 ~ | g1/2 = +00.

4. Lifting for a general ¢ € H'/2. Optimizing the BV part of the phase. Proof
of Theorems 4 and 5

Assume ¢ is a general element in H'/2(Q; S'). This ¢ need not be in Y and thus need
not have a lifting in H'/2 + W', However, ¢ has a lifting in the larger space H'/? + BV
This is an immediate consequence of Theorem 3 (and estimate (1.9)) and of the following
result of T. Riviere [38] (which is the analogue of a similar result of Bethuel [3] for H*
maps from B? to S?).

25



Lemma 14 (Riviere [38]). Let g € H'/?(Q;S'). Then there is a sequence (g,) C
C>(Q; S') such that g, — g weakly in H'/2.

Remark 4.1. Lemma 14 implies that g — T'(g) and g — L(g) are not continuous under
weak H'/? convergence.

Here is a refined version of Lemma 14 which will be proved at the end of Section 4.2:

Lemma 14'. Let g € HY/?(Q; S). Then there is a sequence (g,) C C*(Q; S') such that
gn — g weakly in H'/? and

limsup|gn|§{1/z < |g|§{1/2 + CaL(g),

n—oo

for some constant C depending only on ). Moreover, for every sequence (g,) in'Y such
that g, — g a.e., we have

lim inflgn| 1 /2 > |gl371/2 + CaL(g).
for some positive constant C¢, depending only on §).

Existence of a lifting in H'/? + BV

Let ¢ € HY?(Q;S'). For g, as in the above Lemma 14, write, using Corollary 1,
gn = € with ¢, € C>°(Q; S!) and

[nl e pwin < Callgnl iz + Ignlie)-

Then, up to a subsequence, there is some ¢ € H'/2 + BV such that ¢, — f¢,, — ¢ a.e. We
find that g = e*¥, with ¢ = ( + C and C some appropriate constant. Moreover, we may
write ¢ = @1 + @2, With

(4.1) [1] 12 + o2l BV < Callglmire + 19|7)2)-

An additional information about the decomposition is contained in Theorem 4. On
the other hand note that estimate (4.1) implies that every g € H'/?2 may be written as

g = 9192, with
g1 =e% € X and gy = €2 € HY/2 N BV, ie., H/? = (X) - (H'?>nBV).
A finer assertion is H'/2 = (X) - (HY? N W), which is the content of Theorem 5.

The proofs of Theorems 4 and 5 require a number of ingredients:

a) the dipole construction (see Section 4.1). This is inspired by the dipole construction in
the H'(B3;5?) context (see [19] and [3]);
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b) the construction of a map g € H'/2(Q; S1) N W having prescribed singularities (with
control of the norms). This is done in Section 4.2;

c) lower bound estimates for the BV part of the phase, which are presented in Section
4.3, in the spirit of [19], [2], [27]. This is a typical phenomenon in the context of relaxed
energies and/or Cartesian Currents. More precisely, if one considers the Sobolev space
X = W*P(U;S*), U c R¥, and if smooth maps are not dense in X for the strong
topology, then the relaxed energy is defined by

E(g) = Inf {lim inf || gn[$y+.0 (9n) € C%(U;8%), 9 — g ae.}.

The gap E(g) — |lg|l%y-» > 0 has often a geometrical interpretation in terms of the
singular set of g. For example, in the H'(B3;5?) context, the gap is 87L(g), where L(g)
is the length of a minimal connection associated with the singularities of g (see [19]). We
will consider, in Section 4.3, similar lower bounds for S!'-valued maps on €.

4.1. The dipole construction

Throughout this Section, the metric d denotes the geodesic distance dg in Q2 and L(g) =
La(g).

Lemma 15. Let PN € Q, P # N. Given any € > 0 there exists some g(= g.) such that

(4.2) g € Wi (Q\{P, N} SH) nWhe(Q;8Y),vp € [1,2),
(4.3) T(g) = 2m(6p — 0n),

(4.4) |glwir < 27d(P,N) +e,

(4.5) 9/31/2 < Cad(P,N)  where Cq depends only on 2,

(4.6) { there is a function (= 1.) € BV (;R) such that g = e*¥,

with supp ¢ C A = {x € Q;d(x,v) < e} and |¢|py < 4nwd(P,N) + ¢,
where v is a geodesic curve joining P and N,
(4.7) g = 1 outside A.
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Proof. Extend 7 smoothly beyond P and N; denote this extension by 4. For g > 0
sufficiently small (depending on %), the projection IT of

I'={z e Q;d(x,y) <eo}

onto v is well-defined and smooth. Let z; be the arclength coordinate on 7, such that
xl(P) = 0, a:l(N) = d(P,N) =L.

For x € T, let 1 = z1(Il(x)) be the arclength coordinate of II(z) on %4 and let x5 =
+d(z,7), where we choose “+” if the basis formed by the (oriented) tangent vector at
II(z) to 4, the (oriented) tangent vector at II(z) to the geodesic segment [II(z),x] and
the exterior normal n at II(z) to G is direct in R3; we choose “~” otherwise. Define the

mapping
r €l ®(x) = (x1,22) € R?.

Let 0 < § < o and consider the domain in R?

~ 20
I's = {(tl,tg) € RQ;O <t; < L and |t2| < f min(tl,L — tl)}.

and the corresponding domain I's in €2,
Is = {zel;®) els}.

Set, on R?,

exp(1p(Lta/20 min(ty, L — t1)), onf‘,
§(t)=§(t1,t2):{ p(up(Ltz/ (t1 1)) 5

1, outside f(;,

m(s+1)T, ifs<1

where ¢ is defined by ¢(s) = { 5 551"
T, if s

An easy computation shows that

G e WL R\ {P,N};SHNWEP(R?SY), V1<p<?2,

loc loc
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where P = ®(P) = (0,0) and N = ®(N) = (L,0). More precisely, we have

2 p/2
<(%S) +1> ds.

L/2 I p—1 +1
=D _ p
0 0
In particular, we find
(4.8) 19wy < 2w (L +6)

and, for every 1 < p < 2,

1 1
q 1
(4.9) |9|W1,p(f‘5) < Cp(L9) /p (S + f) )

For later purpose, it is also convenient to observe that, for any 1 < ¢ < oo,

(4.10) g — 1||L4(1:‘5) < 2(L5)1/q-
We now transport the function g on €2 and define

o(z) = { g(®(x)), ifxelys

N 1, outside T's

It is not difficult to see that ® is a C2-diffeomorphism on I' and
(4.11) |Jac®(z) — 1| < C,d on s,
where () is a constant depending on 7.

Combining (4.8) - (4.11) yields

(4.12) |g|W1,1(Q) <2m(L+6)(1+ C40),
e (1,1
(4.13) lglwiw o) < Cp(L6)™P 5T (1+C,6), 1<p<2,
and
(4.14) lg = 1 race) < 2(L8)9(1 + C40).
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i From a variant of the Gagliardo - Nirenberg inequality (see e.g. [21] and the references
therein) we know that, if 1 < p < oo and

1 1
(4.15) L
p q
then
(4.16) |9|§11/2(Q) < C(p, DlglwrrllgllLa)-

We now check properties (4.2) - (4.7): (4.2), (4.3) and (4.7) are clear. Estimate (4.4)
(resp. (4.5)) follows from (4.12)(resp. (4.16) applied e.g. with p = 3/2) provided § is
sufficiently small (depending on € and 7).

Construction of ¢ and estimate (4.6)

In the region where § = 1, we take ¢ = 0. In the region T's where g lives, we take

Pty t2) = { Ptz 2omin(t, 1= 1) if £ <0
DRI o(Lty /26 min(t, L — 1)) — 27, ifte >0

Set
{ P(®(x)), ifzels
0, outside T’y

Then |Dvy| = |Dg| + 276, where 6., is the 1 — d Hausdorff measure uniformly distributed
on . Thus

Y| By = / |Dy| = / |Dg| 4+ 2nL < 47L +«.
Q Q

4.2. Construction of a map with prescribed singularities

Let (P;),(N;) be two sequences of points in Q2 = OG such that > dq(F;, N;) < oo.
Define

T =21 (5p, — 0N,

and .
L=1Lg= %sup{m ¢);p € Lip (% R), |olLip < 1}
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Lemma 16. a) For every g € Wh1(Q; SY) N HY/2(Q; S') such that T(g) = T, we have
/|Dg| > 2nLand |g|31,2 > ColL,
Q

where Cq is a positive constant depending only on §2.

b) For every € > 0, there is some g(= g.) € WH1(Q; SY) N H'/2(Q; S') such that

(4.17) T(g) =T,

(4.18) |glwa < 27(L +¢),

(4.19) 19131/ < Cal,

(4.20) { there is a function ¢(= 1) € BV (Q;R) such that |
g=e¢e"¥, and |¢|py < 4n(L +¢€)

(4.21) meas (Supp ¥) = meas (Supp (g — 1)) < e.

In the proof of Lemma 16 we will use:

Lemma 17. Let (u,) be a bounded sequence in H'/?(Q; C) N L*> such that u,, — 1 a.e.
Then for every v € H'/?(Q;C) N L we have

2

Un (T) — up,

|n 0310 = //|v(a:)|2| (d)(a: y)3(y)| + 0|31 +o(1)  asn — oo.
Q Q ’

Proof of Lemma 17. We have

Q Q Q Q
2
Un () — uUp (Y
= [ [ e PG R ol 20+ o),
Q Q
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where

_ (v(@) (un (2) = un(y))) - (un(y)(v(z) = v(y)))
]

so that it suffices to prove that

B [un (z) — un()|v(z) —v()]
In = // d(z,y)3 0

Q Q

Fix some € > 0. Then

O ua(®) — un(@)le() — o(y)| (&) — wn()l0(@) — v(y)
%‘// Az, y)? *// Az, y)?

d(z,y)>e d(z,y)<e
_ |un(x) — un(y)||v(z) —v(y)|
=oll)+ // d(z,y)?
d(z,y)<e
v\xr) —v 2\ 1/2
<o)+l [ HEZHIE) T
d(z,y)<e

so that J,, — 0.

Proof of Lemma 16. a) By Lemma 1, we have

(T(g),p) = /g N (gzpy — gypz), Vo € Lip (5 R),
Q

so that
Iﬁ@wﬂgﬂMWMWMS/WM
Q Q

if |p|Lip < 1. Taking the Sup over all such ¢’s yields the first inequality.

The second inequality in a), namely L < Cgq)| g|%[1 /2, was already established in Lemma

9.
b) Let € < L. By Lemma 12/, we may find a sequence (]V]) such that
(4.22) TZQ’/TZ((SR _5Ni) ZQWZ((SPj —5Nj)
i J
and
(4.23) > d(P;,N;) < L +e/4n.

J
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By the dipole construction (Lemma 15), for each j and for each ¢; > 0, there is some
gj = gj,e; such that

(4.24) T(gj) = 2m(0p; — Ox,),
(4.25) / |Dg;| < 2md(P;, N;) + &5,
Q
(4.26) 1951371/2 < Cad(P;, N),
(4.27) there is a function v¢; € BV such that g; = eVi,
with
(4.28) |¢j|BV §47Td(Pj,Nj)+€j
and
(4.29) meas(Supp ;) = meas(Supp (g; — 1)) < ;.

We claim that g = H g; and ¢ = Z;; 1; have all the required properties if we choose
j=1
the ¢;’s appropriately.

Fix €1 < ¢/2 and let g1 = g1,¢,. By Lemma 17, we have

lim suplgig2,c /312 < |91)31,2 + lims(l)lp|92,s|§{1/2-

e—0 E—

Thus, we may choose €2 < £/4 and g2 = g2, such that (using (4.5))
19192031/ < Ca(d(Pr, N1) + d(Pa, N2)) +¢/2.

Using repeatedly Lemma 17, we choose €3,¢&4, ..., such that

(4.30) g; <277 VWj>1,

and, for every k > 2,

k 2 k k—1
9j <Cq) d(Pj,Nj)+e) 277
(4.31) ]1:[1 H1/? ; ;



since € < L.

k
We claim that (H gj) converges in W1, Indeed, set H = > ;>11Dgj]. Then clearly
j=1

H e L' and

(1) <

On the other hand, for ky > k1 > 1, we have, by (4.25),

ko
/‘D( H gj)‘ < Z /|ng| <2 Z d(Pj, Nj) 4 g2~ F1+1,
Q Jj=ki1

Jjzki Jjzki
Thus
k k+¢ k+¢ N
IT9 119 < H‘l— IT 9| +27 > d(p;Nj)+e27F
j=1 j=1 1wl j=k+1 j>k+1

S =Ly

IN

H+2r Y d(P;,N;)+e27".

Ujsk{z;g; (x)#1} Jzktl

Since meas (Uj>k Supp (g; — 1)) < €27% and Zd(Pj,Nj) < oo, we conclude that

k
(H gj) is a Cauchy sequence in Wl (note that it is clearly a Cauchy sequence in
j=1

L', by (4.29)).

Set g = H g;j. By construction
j=1

gl < [ H <203 d(P, Ny +
Q j=1
<on(L + 43) e (by (4.23) <2n(L+e).
T
This proves (4.18).

k
On the other hand, by (4.31), the sequence (ng) is bounded in H'/?, so that
j=1
g€ H'Y? and 1913;1/2 < CGL Ly this proves (4.19).
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We now turn to (4.17). By (2.7) and (4.24), we have

r(f1) =50 s

By Lemma 1 and the convergence of (H?Z1 gj) to g in Wh1 as k — oo, we have

k
@ (ILs)-0) — @), voe Lip@R)

Thus,

(T'(g), ) = 2m i(‘ﬂ(Pj) —@(N;)), Vpe Lip (%R).
j=1
From (4.22) we conclude that
T(g) =2m Z((Spi —InN,)-
Properties (4.20) and (4.21) are immediate consequences of (4.23), (4.28) and (4.29).

We now derive some consequences of the above results. We start with a simple

Proof of Theorem 2. Let g € H'/2(Q;S') be such that L(g) = 0. We must show that

H1/2
geY =(C>(0;81) . By Lemma 11 there exists a sequence (g,,) in R such that g, — ¢

in H'/2, and thus L(gn) — 0. Since each g,, has only finitely many singularities, it follows
from the dipole construction there exists a sequence (h,,) such that

hn € Wi (0\S0; 81 NWHP(Q;.8%),¥p € [1,2), T(hn) = T(ga),

loc

where ¥, is the singular set of g, (%, is a finite set), and moreover

|hn|§{1/2 < CQL(hn) — 0,

h, — 1 a.e. on €.
Clearly kn = gnhn € WE(Q\X,; 81 N WHP(Q; 81),Vp € [1,2) and T(k,) = T(gn) —
T(h,) = 0. By Lemma 2, we have deg(k,,a) = 0 Va € X,. Therefore k, admits a
well-defined lifting on Q, k,, = ™", with ¢,, € W%&?(Q\ZR;R) NWLP(Q;R),Vp € [1,2).

In particular, k, € X C Y. In order to prove that g € Y it suffices to check that k,, — ¢
in H'/2. Write
kn — glare = lgnhn — glaie = [(gn — 9)hn + g(hn — 1)|g1/2
< |(gn — 9)hnl gz + |9(hn — 1) | grs2.
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But o
|(9n - g)hn|H1/2 < |gn - 9|H1/2 + 2|hn|H1/2 — 0

and

9 — VP < C / / 9= (@) = 12dady + Clhnf2,. 0 — 0.

Corollary 2. Givenany g € HY?(Q;S'), there existh € Y,k € H'/2(Q; SHnWw1(Q; S1)
and ¢ € BV (;R) such that
g = hk and k = "%

Moreover, for every € > 0, one may choose h, k,1 such that

/ Dk < 27L(g) + &, kP < CaL(g),
Q
\h|20,2 < |gl3,2 + CaL(g)

and
[Y|pv < 4mL(g) +e.

Proof. By Lemma 16 there exists a sequence (k) in H'/2(Q; S*) N W1 such that
T(kn) = T(g)v vn:

lim sup|ky, w11 < 2wL(g),

|kn|i’1/2 S CQL(g), vn,

and
k, —1 a.e. on (.

Set h,, = gk,, so that T'(h,) = 0, Vn, and thus h,, € Y. By Lemma 17 we have

limsupl|ha|3/2 < 9|72 + CaL(g).

n—oo

The conclusion of Corollary 2 is now clear with k£ = k,,h = h,, and n sufficiently large.

Proof of Theorem 5. As in the proof of Corollary 2 write ¢ = hypk,. Since h,, € Y,
we may apply Theorem 3 and write h,, = e*(¥»+¥») with o, € H'/? and ¢, € Wh!. An
inspection of the proof of Theorem 3 shows that

\onlgr2 < Calhn| gz < CS/)|9|H1/2
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and
|¢n|W1’1 < Cﬂ|hn|§{1/2 < Cs/)|g|§{1/2-

Thus
g =P (k).

which is the desired decomposition since e'¥k, € Wb! and

eV knlwra < [$nlwrs + Jknlwia < Colgli e

Proof of the upper bound in Theorem 4. We have to show that, for every g €
HY2(0; 8Y),
Inf{|¢|BV7g = 61(90-1-1/1)’(10 S H1/27¢ € BV} < 47TL(9)7

i.e., for every € > 0, we must find ¢, € H/? and 1. € BV such that g = e"¥=T%<) and

[Ve|By < 4mL(g) +e.

Going back to the proof of Corollary 2 and Theorem 5, we may write, by (4.20), k,, =
e with n,, € BV and
limsup |n,|py < 4wL(g).

n—oo

On the other hand, since C*°(Q;R) is dense in W11(Q; R), we may choose U € C>®(;R)
such that

[0 — Pnllwrs < 1/n.

Finally, we may write
with Pn +’l;n S H1/2:¢n - ,‘;n +nn € BV and

lim sup |y, — @En + BV < 4mL(g),

which is the desired conclusion.

We now turn to the

Proof of Lemma 14’. For the first assertion, we proceed as in the proof of Corollary 2.

Since h,, € Y, Vn, we may find a sequence (h,) in C*°(€; S!) such that
| — hnll31/2 — 0 as n — oo.
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Recall that B
hn = gk, — g a.e.

Thus, by Lemma 17, we find
limsup |An 312 < |gl7,2 + Cal(g)
and (passing to a subsequence)

h, — g a.e., h, — g weakly in HY?,

To prove the second assertion, let (g,) be any sequence in Y such that g, — g a.e.
Writing g, = (9,g)g and observing that g,g — 1 a.e., we deduce from Lemma 17 that

(9nl312 = 1913r1/2 + 19nglF1/2 +0(1) as n — oo.
On the other hand (see Lemma 9),
L(gng) < Cﬂ|gn§|§{1/2-
But L(g,g) = L(g), since L(g,) = 0, and thus

|Gnl3r12 = 191512 + CHL(g) + o(1).

Remark 4.2. We have now at our disposal two different techniques for lifting a general
g € H'/2(Q; 8') in the form

g ="t with ¢ € H'/? and ¢ € BV.

The first method, described at the beginning of Section 4, yields some ¢ € HY? and
1) € BV such that

g= el(cerw)’
with the estimate
(4.32) Pl a2 < Calglpe
and
(4.33) [Wlsv < Calgl?e-

The second method, described in the proof of Theorem 4 (upper bound), yields, for
every € > 0, some ¢, € H/? and 1. € BV such that

g= e'L((Pe'i"‘/Je)’
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with
(4.34) Vel < 4mL(g) +¢

and no estimate for ¢, in H'/2.

A natural question is whether one can achieve a decomposition of the phase in the form

g = e?f+vl)
with the double control

|§0f|H1/2 < Cle,|glgirz)
and

1W# v < 4nL(g) +¢?

The answer is negative even with g € Y. To see this, we may use an example studied in
[15]. Assume that, locally, near a point of €, say 0, the square Q = I*, with [ = (—1,+1),
is contained in ). Consider the function ~s(x) defined on I by

0, if —1l<x<0
vs(x) =< 2mx/d, if O<z<d |
2m, if d<x<l1

where § i1s small.

On Q, set
gé(xvy) = 6175(1,) for («'L',y) € Q

Clearly, we have g5 € Y, so that L(gs) = 0. We claim that
(4.35) 195l 172y < €, V9,

and that there exist absolute positive constants c, and C, such that, if

(4.36) gs = e P3tVs) o5 € H'2(Q), b5 € BV(Q),
with

(4.37) [Vs|Bv (@) < Cx,

then

(4.38) |‘P5|§11/2(Q) > cilog(1/6) as 6 — 0.

39



The verification of (4.35) is easy. Indeed, by scaling we have
|95('7y)|H1/2(I) SC: ‘v’5,‘v’y,
and recall (see e.g. [1], Lemma 7.44) that

(4.39) J 156 By + [ 17 agde ~ sy
I I

so that (4.35) follows.

We now turn to the proof of (4.38) under the assumptions (4.36) and (4.37). By Theorem
2 in [15] we know that, for a.e. y € I,

(4.40) | 05( ) + $s (- y) me 1) > clog(1/6))"/?

for some absolute constant ¢ > 0, where

(4.41) 25 =1— (log1/6) "

On the other hand, it is easy to see that

(1.42) Bty < 75 flavn ¥F€BV(D), Yo <1/2
and

(4.43) 1) < Clf Ly, Ve HY? Vo<1/2,

with constants C' independent of 0. Combining (4.40), (4.41), (4,42) and (4.43) yields, for
aeyel,

(4.44) (@5 9) 12 () + (log(1/6)) 2|95 (-, y) By (1) = e(log(1/8))'/2.

Integrating (4.44) in y and using the inequalities
1/2
J ey < (2 [ 1860R0d) < Clflasar V1 € B2
T T

and

E/V@QMWﬂMQSCVhV@w VieBV(Q).
I

together with (4.37), we obtain
|slrr1r2(q) + Cu(log 1/6)'? > c(log 1/6)'/2,
and (4.38) follows, provided C, is sufficiently small.

4.3. Lower bound estimates for the BV part of the phase

We start with a simple lemma about maps from S*! into S*.
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Lemma 18. Let (g,) C BV (S';SY) nC%St;S) be such that g, — g a.e. for some
g € BV (8, SH) NSt 8Y) and || gn|lpvy < C. Then

liminf(/|gn| —27r|deggn—degg|) 2/ 9]
n— 00 S1
S1

9]
Here, g denotes the measure 79

00
Proof. (We thank Augusto Ponce for simplifying our original proof). For g € BV (S!; S1)n
CO(S1;81), let f € C°[0,27];R) be such that g(exp(:0)) = exp(1f(6)). Then degg =
1
2—(f(27r) — f(0)). Moreover, we have f € BV and
™

(4.45) 7|f’| - 13l
0 S1

df
where f’ is the measure I Indeed, since g is continuous, we have
T

=1

[ 131 = sup {Z 9(exp(ity1)) — glexp(ut; )0 <t < -+ <t < zw}
(4.46) %

n—1
= Sup { > lglexp(itiy)) — glexp(t;));0 <ty < -+ <ty < 271’}
j=1

(with the convention t,11 = t1).

For a given § > 0, we have

(4.47) (L= )If(t+1) — f(E)] < lglexp(etjs1)) — glexp(ety))| < [f(tj41) — ()],
provided the partition (¢;) is sufficiently fine. We obtain (4.45) by combining (4.46) and
(4.47).

Let f, € BV(]0,2x];R) N C°([0,27];R) be such that g,(exp(:6)) = exp(2f,(#)) and
| fllBv < C. Up to a subsequence, we may assume that f,, — h a.e. and in L! for some
h € BV.

Since g = " = ¢/, we find that h = f + k, where k € BV([0, 27]; 27Z). Thus k must
be of the form

P
k= QWZan[j a.e.,

Jj=1
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where o € Z,I; = (aj,a;41),0 = a1 < --- < ap1 = 2m. Therefore
p
(4.48) Wo=f+) b,
j=2

We have to prove that

2m 2m
(4.49) it ([ 1721~ | [0z 1)
0 0

It suffices to show that

27
) z/lf’l-
0

27 27 27
(4.50 imint ([1720+ [w2-10) = [1r1.

0 0 0
Indeed, (4.50) applied to g, gives

27 27 o
(4.51) imint (1521 [trn-10) = [T1
0 0

and the combination of (4.50) and (4.51) is equivalent to (4.49). We may rewrite (4.50) as
2 2

(4.52) mmﬁ/ﬁp+z/mﬁ.

0

0

Let ¢ € C§°(0,27),0 < ¢ < 1. Then

27 27 27
—!hdz!ﬂméj%ﬁ

and thus
27 27
—/hgp’ < liminf/(f;)Jr.
0 0

Taking the supremum over such ¢’s yields

27 27 27
liminf [ (f)" > [()F = [(F+D ajda,)t by (4.48).
= for=]

We conclude with the help of the following elementary
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Lemma 19. Let f € BV ([0,2x]) N C°([0,27]). Then

/ '+ 3 aydn,)t = / U+ Y (o)t
0 finite 0

for any choice of distinct points a; € (0,27) and of a; in R.

Proof of Lemma 19. It suffices to consider the case of a single point a € (0,27). Let
¢n = C((n(z—a)), where ( is a fixed cutoff function with ¢(0) = 1,0 < ¢ < 1. For any fixed
(NS Cl([O, 27r]), we claim that

27
/ F(Ctt) — 0.
0
Indeed,
27 27
[ ey = [ (7= r@) Gy
0 0
so that

‘ 0/ (Gt

since f is continuous at a.

Let € > 0. Fix some v € C&((O,QW)),O <1 < 1, such that

- [z [y -e
0

0

27
< /|f—f(a)| (G| 25 0,
0

Then, with 0 <t <1,

27 27 27
/ (' + 08)[(1 = Gt + ] = — / FI0 = G+ Gl + tar ™ — / o' + ta
0 0 0

Since 0 < (1 — ()Y + t¢, < 1, we find that

27 27
/(f’+a<5a)+2/(f’)++toz—5, Ve >0,Vtelo1],
0 0
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and thus

The opposite inequality

27 27
/ (' + o) < / (f)F +at
0 0

being clear, the proof of Lemma 19 is complete.

Remark 4.3. The assumption ||gn|| gy < C in Lemma 18 is essential (A. Ponce, personal
communication).

Corollary 3. Let I' ¢ RY be an oriented curve. Let (g,) C BV (I';SY) N C%(T;S!) be
such that g, — g a.e. and ||g,|| By < C, where g € BV (I'; S1)n C°(T'; S1). Then

liminf(/|gn| —27r|deggn—degg|) 2/|9|-
r r

In particular, if deg g, = 0,Vn, then

liminf/ |Gn| > 47| deg ¢
I

(the assumption ||g,|| vy < C' is not required here).

Here, I' need not be connected. If I' = | i Vi with each v, simple, we set
degg =Y _ deg(g;v;),
J

where v; has the orientation inherited from that of .

Remark 4.4. It can be easily seen that the constants 27 in Lemma 18 and 47 in Corollary
3 cannot be improved.

We now prove a coarea type formula (in the spirit of [2]) used in the proof of the lower
bound in Theorem 4.

Lemma 20. Let g € H/?(€; S") and ¢ € C®(;R). If X € R is a regular value of (, let
Iy ={z € Q;((z) = AL
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We orient T'y such that, for each x € Ty, the basis (7(z), D{(x),n(z)) is direct, where
n(z) is the outward normal to §) at x. Then

(T(g9),¢) = QW/deg(g;FA)d)\.
R

Remark 4.5. For a.e. A we have gr, € H'/2 ¢ VMO. Therefore, deg(g; T'y) makes sense
for a.e. A\ (see [22]). In general, I'y is a union of simple curves, I'y = |J~;. In this case,
we set

deg(g;T) = > deg(g; 7)),

where on each vy; we consider the orientation inherited from I'y.

Proof of Lemma 20. We write g = g1h, with g1 € X and h € WH1(Q; SY)NnH/2(Q; S1).
For a.e. A, we have hjp, € Wh! and g1, € HY/2,

Since g1 = €*** for some @1 € HY/2(Q;R), for a.e. A we have deg(g1;T») = 0, so that
deg(g; ') = deg(h;T'y) for a.e. X\. Moreover, we have T'(g) = T'(h). It suffices therefore
to prove the statement of the lemma for h € W11 (Q; S1) N H'/2(Q; S1). In this case, we

have ¢
h hoA S
/ Dl A(D A|D<|)

We recall the coarea formula (see, e.g., Federer [26], Simon [42])

(see Lemma 1 in the Introduction).

(4.53) Q/f|D<,p| :R/(w_/A fds)d)\, 0 e C®(R), fe LY (QR).

D
Applying (4.53) with ¢ = (,f = h A (Dh A ﬁ) = hA % (where 7 is the oriented

tangent unit vector to I'y) we find

(T(h),¢) = / (/h/\ %d )d)\: 27r/deg(h;l“>\)d)\.
R

R '

The final ingredient in the proof of Theorem 4 is the lower bound given by

Lemma 21. Let g € HY?(Q;8). If g = ¥+¥) with ¢ € H'Y/?2(Q;R) and ¢ € BV
(4 R), then

/ Dy| > 4rL(g).
Q
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Proof. Let h = e g € HY2(Q;S'). Let (¢,) be a sequence of smooth real-valued
functions such that ¢,, — ¥ a.e. and

1061~ [ 1Dvl.
Q Q

Fix some ¢ € C*°(;R) and let, for A a regular value of ¢, I'y = {z € Q;{(x) = A}. Let
h, = €%, For a.e. \ we have hn|pA — h|pA a.e. and h|pA € HY2 N BV. For any such
A we have hip, € BV N C°. Indeed, since k = hir, € BV, k has finite limits from the

left and from the right at each point. These limits must coincide, since H'/2 ¢ VMO

in dimension 1 (see e.g. [17] and [22]) and non-trivial characteristic functions are not in
VMO.

By the second assertion in Corollary 3, we find that, for a.e. A,

n—oo

liminf/ |\hn| > 4| deg(h; Ty)|.
'

Thus, if |[D(| < 1, we have by the coarea formula,

liminf/|Dhn| 21iminf/|Dhn| | D¢| :liminf/ (/|Dhn|ds)d)\2
Q Q R '

> liminf/ (/|hn|ds)d)\247r/|deg(h;1“>\)|d)\ > d4n /deg(h;FA)d)\}.
Iy R R

R

On the other hand, by Lemma 20, we have

A7

/ deg(h;mdx\ —oT(h), Ol
R

Thus, if ( € C*°(Q;R) is such that |D{| < 1, we have

@st) [ 1pu|=tmint [ D6, =timint [ Dh,| = 2ATE).0 = 2T (). ).
Q Q Q

We conclude by taking in (4.54) the supremum over all such (’s.

5. Minimal connection and Ginzburg-Landau energy for ¢ € H'/2. Proof of
Theorem 6
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Throughout this Section, the metric d denotes dg, the geodesic distance (on ) relative
to G, and L = Lg.

Proof of Theorem 6. We start by deriving some elementary inequalities. For g €
H'Y2(Q;R?), let
€c,g = Min{E.(u);u € H;(G; R?)}.

Let g1, g2 € HY?(€;S') and let u; € H;j (G; B?) be such that e. 4, = E.(uj), j = 1,2.
Then ujus € H! , (G;R?). We find that, for each § > 0, we have

g192

1 1
e < Eelunuz) < 5 [ (9l + Vsl + 175 [ (1= furuaf)?

G G

1+9 »  C(9) 2, 1 2 21\2

vl 52 (19l + (- )+ (- )
G G G

(5.1) < (14 6)ecg, +C(0)ee,g,-

IN

Similarly, we have

(5.2) €c,g192 = (1- 5)66,91 - 0(5)66,92-

The upper bound e, , < 7L(g)log(1/¢) + o(log(1/¢)).
We will use Lemma A.1 in Appendix A, which asserts that, if g € R, then

(5.3) ec.g < mL(g)log(1/¢) + o(log(1/¢)) as e — 0.
The class Ry, which is dense in H'/?(Q;S'), is defined in Appendix A. Inequality (5.3)

was essentially established by Sandier [40].

Another ingredient needed in the proof is the following upper bound, valid for g €
H'/2(Q; 81), and already mentioned in the Introduction (see [12], Theorem 5 and Remark
8; see also [38], Proposition II.1 for a different proof):

(5.4) ee,g < Clglfn (1 + log(1/e)),

for some C = C(G).

We now turn to the proof of the upper bound. Let ¢ € H/?(Q; S'). By Lemma B.1 in
Appendix B, there is a sequence (gx) in R such that g, — g in H'/2. On the one hand,
since H'/2 N L™ is an algebra, we find that |g/gk|g1/2 — 0. On the other hand, recall that
L(gx) — L(g). Fix some 6 > 0. By (5.4) applied to ¢/gx, we find that

(5.5) Ceg/gn < dlog(1/e)  for e sufficiently small,

47



if k is sufficiently large. Using (5.3) for gi, where k is sufficiently large, we obtain
(5.6) ee.g. < T(L(g) +6)log(1/e).
The upper bound follows by combining (5.1), (5.5) and (5.6).

The lower bound e, ; > 7L(g)log(1/¢) + o(log(1/¢)).

We rely on the corresponding lower bound in [40] (Theorem 3.1, part 1): if g € Ro
(where the class R, dense in H'/2(Q; S'), is defined in Appendix A), then

(5.7) ee.qg > mL(g)log(1/e) + o(log(1/e)) for e sufficiently small

(no geometrical assumption is made on €2 or g). We fix some § > 0. Applying (5.7) to gi
for k sufficiently large, we find that

(5.8) €c.g. > m(L(g) — d)log(1l/e) for e sufficiently small.
The lower bound is a consequence of (5.2), (5.5) and (5.8).

There is a variant of Theorem 6 when the boundary condition depends on e. Let
g€ HY2(Q;8') and let g. € H/?(Q;R?) be such that

(5.9) ge —gin H'/?,
(5.10) 9:| <1,
(5.11) l1ge] = 12 < Ce.
Set

ecg. = Min{E.(u);u € H) (G;R?)}.
Theorem 6. Assume (5.9), (5.10) and (5.11). Then we have

(5.12) ec.g. = mL(g)log(1/e) + o(log(1l/e)) ase — 0.

The main ingredients in the proof of (5.12) are the following Lemmas 22 and 23.
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Lemma 22. Let ¢ € H'/2(Q;R?) and let u(= u.) be the solution of the linear problem

1
(5.13) —Au+ U= 0 inG,
(5.14) u=¢ onf)=0G.
Then, for sufficiently small € > 0,
1 1
G G Q

Proof of Lemma 22. Let ® be the harmonic extension of ¢ and fix some ¢ € C§°(R)
with ¢(0) = 1. Set
v(z) = ¢(x)((dist (z,Q)/e).
Using, for 0 < 6 < do(G), the standard estimate
< C / %,
{z;dist (x,Q2)=6} Q

it is easy to see that, for 0 < e < g¢(G), we have

1 1
19+ % [0 < oot + 1 [162),
G G G

and the conclusion follows, since u is a minimizer so that,
1 1
/|Vu|2 1 / uf? < /|W|2 1 / o]2..
€ €
G G G G

For later use, we mention a related estimate, whose proof is similar and left to the
reader:

Lemma 22’. For 0 < ¢ < g9(G), set
G.={zcR*\G;dist (z,Q) <e}.
Let ¢ € HY?(Q;R?) and let u(= u.) be the solution of the linear problem

1
(5.16) ~Au+t Zu=0 inG.,
(5.17) u=¢ onf)=090G,
(5.18) u=0 ondG.\JG.
Then

1 1
(5.19) J19ur+ 5 [ < o (lef+ < [ 168):
Ge G- Q
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Lemma 23. Let (g.) in H'/2(Q;R?) satisfy (5.10), (5.11) and
(5.20) 1912 < C.

Then there is (h.) in H'/2(Q; S') such that

(5.21) hell gz < C
and
(5-22) ||9€ - h€||L2 < C\/E-

Moreover if, in addition,

(5.23) g — ¢ in H'/?,
then

(5.24) he — g in H'/?
Proof.

We divide the proof in 4 steps

Step 1.
Let g1 = ge * P be an e-smoothing of g..
Clearly

(5.25) lge = gelle2 < Vellgell s < CVeE

and from (5.11), (5.25) we have

(5.26) 11— lgelllz2 < CVe.

Also

(5.27) gl grire < C,

and

(5.28) lgi |z < Ce™ 2N\ gellgrire < Ce™V/2.
Step 2.
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Given a point a € R? with |a| < 1/10, let 7, : R?\ {a} — S! be the radial projection
onto S! with vertex at a, i.e.,

ma(€) = a+ A —a), £ €R?\ {a}

where A € R is the unique positive solution of
la+ A€ —a)| =1.

It is also convenient to note that

Ta(€) = jit (ﬂ) for € #a

€ — a
where j, : ST — S1,j.(2) = |Z — a| , is a smooth diffeomorphism.
z—a
In particular,
c 2
(5.29) D70 (8)] < —— V& e R\ {a},

€ —al
and 7, is lipschitzian on {|¢| > 1/2} with a uniform Lipschitz constant (independent of a).

We claim that
(5.30) hae=ma0gr : Q2 — S*
satisfies all the required properties for an appropriate choice of a = a., |a:| < 1/10.

For this purpose, it is useful to introduce a smooth function ¢ : [0,00) — [0, 1] such

that 0 ift<1/4
if ¢ ,

t) = .
V() {1 if t >1/2,

and to write

(5.31) ha,e = Ta(92)0(192]) + Ta(92) (1 = ¥(|g2])) = ta,e + vae.

Note that, in general, h, . is not well-defined since g! may take the value a on a large set.
However, if a is chosen to be a regular value of g!, then

e = {.’E € Q,g;(x) :a}
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consists of a finite number of points and h, . is smooth on Q \ X., and we have, using
(5.29),

[Vg!]
5.32 V(ma(gd))] < O—=5
(5.32) [V (ma(g2))] 9l —d

Moreover, near every point o € Y., we have |gl(z) — a| > c|z — o|,c¢ > 0, and thus

n Q\ X..

C.
|z — o

V(ma(92))] <

In particular h, . € W1P(Q; S1) Vp < 2.

Clearly, the function 7, (2)%(|z|) is well-defined and lipschitzian on R? for any a, |a| <
1/10, with a uniform Lipschitz constant independent of a. Therefore, (5.27) yields

(5.33) 1waell e < Cllgellgire < C.

where C' is independent of a and ¢.

Next, we turn to v, e, which is well-defined only if a is a regular value of gl. On Q\ X,
we have

Vgl
Vel < L (1= 0)(lg2 ) + v/ (1) 92
V!
<C £
=gl = a|X[|9§|<1/2]’

with C' independent of a and e.

We now make use of an averaging device due to H. Federer and W. H. Fleming [FF] and
adapted by R. Hardt, D. Kinderlehrer and F. H. Lin [29] in the context of Sobolev maps
with values into spheres. Recall that, by Sard’s theorem, the regular values of g! have full
measure and thus

(5.34) / /|Vva,€|pda:da <, / |Vgi|Pdz, for any p < 2.

Bi/10 llgll<1/2]

By Holder, (5.34), (5.26) and (5.28) we find

1-3

[lgel < 1/2]

(5.35) / / VoacPdeda < [|g} |7
Q

Bi/10
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Next, fix any 1 < p < 2 and estimate (see e.g. [21])

(5.36) 1va.cllerre < Cllvaellt? va.cll -
From the definition of ¥ we have

[Va.el < Xg21<1/2]
and, using (5.26), we obtain
(5.37) [Vaell o < CEVP'
Substitution of (5.37) and (5.35) in (5.36) yields
(5.38) / [Va,e |37, j2da < CeP~lel P < C.

Bi/10
In view of (5.38) we may now choose a = a. € By /19, a regular value of g}, such that
(5.39) [Vac el 12 < C.
Returning to (5.31), and using (5.33) and (5.39), we obtain (5.21) with h. = hq_.

Step 3.
Write Z. = [|g}] > 1/2]. For any regular value a of g we have

lha,e — 951||%2(Q) = [|ha,e — 9§||%2(|g;|§1/2) + [[hae — 9;”%2(25)
< C¢ +[lha,e — g2ll72(z.) by (5.26).

Next we estimate

g:
ha,€ - 1
|92 L2(Z.)

1
g

molgz) = o (I9i|>
g

Since 7, () is lipschitzian on [|] > 1/2] we obtain

1
g 1
+H i|_
>

g ©

[ha,e — 951||L2(Z€) < ‘
L2(Zc)

1
-+
2z Nlgzl

L2(Z€).

gt — 9;
= g2l

Vrae — Iz, < o\

< C|1 - |g2lllr2(z.) < Cv/e, by (5.26),
L2 (Z.)
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Therefore

(5.40) 1hae = g2llL2(e) < OVe

with C' independent of a and e.
Combining (5.25) and (5.40) yields

[hae = gellz2(o) < Ce,
which is (5.22) when choosing a = a..
Step 4.
Suppose now, in addition, that g. — ¢ in H'/2. We claim that h. — g in H/2.

Indeed, we have
lgellen < 1l(9e = 9) * Pellmn + llg * Pell

< Ce ?|\ge = gllgrsz + llg * Pl

Returning to (5.35) and (5.38) we now find

/ / |Vvge|Pdeda — 0 as e — 0.
Bi,10 ©
and we may choose a. so that
|Va. || gr1/2 — 0 as e — 0.
It remains to show that

(5.41) Ug, . — g in HY/? as e — 0.

Recall that
Uq, e = Ta, (92)0(92]) = Le(g2),

where L. : R? — R? are lipschitzian maps with a uniform Lipschitz constant.
p

We have )
lg: — gllgrz = |(ge — 9) * P + (g % P:) — gl g2

< Cllge — gllgrrz + (g * Pe) — gl /2,
so that

(5.42) lg: = gll 12 — 0.
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Finally we use the following claim:

If (k,) is a sequence in H'/2(Q;R?) such that k, — k in H'/? and
(5.43) L, : R? — R? satisfy a uniform Lipschitz condition, then
Ly (kp) — L (k) — 0 in HY/2,

Proof of (5.43). It suffices to argue on subsequences. Since

o — B[00 = // | (2) — k(a;)(;;)g(y) RGP gy 0

Q Q

there is, (modulo a subsequence), some fixed h(z,y) € L*(2 x Q) such that

|kn () — kn(y)|?
d(z,y)?

< h(z,y), Vn.

We have

L (k) = Lo (K) |21 :// Lo (kn(2)) — Ly (k(2)) — L (kn (y)) + Lu(k(y))|
Q Q

and the integrand I,,(z,y) satisfies

(|En(z) = ka(W)]? + [k(z) = k()|?)
d(z,y)?

In(l',y) S C

< Ch(z,y),

and also,

([ () — k()" + kn(y) — k()[*)

<

Therefore, by dominated convergence,
|Ln(k’n) — Ln(k)|H1/2 — 0.

This proves (5.43).

We now return to the proof of (5.41). Applying (5.43) to L, (§) = ma., (§)¥(|¢]) and to
kn, = g;n — ¢ in HY? by (5.42), we find that

Ln(g},) = Ln(g) — 0 in H'/2,
But L,,(9) =g Vn since |g| = 1. Thus we are led to Ly, (gl ) — g in H*/2, which is (5.41).
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This completes the proof of Lemma 23.

Remark 5.1. It is interesting to observe that the construction used on the proof of Lemma
23 gives a simple proof of Riviere’s Lemma 11. In fact, we have a more precise statement.
Fix any element g € H'/?(Q; S') and apply the construction described above with g. = g.
The sequence

he = ma, (g * Pe)

satisfies the following properties:

(5.44) he € WHP(Q; SY),  Vp < 2,Ve,
(5.45) he — gin HY? ase — 0,

he is smooth except on a finite set . C 2 and

Ce
[Vhe ()

(5.46) < — ’
dist (z, X¢)

Ve e Q\ X,

(5.47)
for each o € ¥, there is a smooth diffeomorphismy = ~, ,, from the

unit circle in T, () onto S!, such that, assuming 2 flat near o (for simplicity),

we have ‘hg(a:) —y ( —

| < C.|z — o] for z € Q near o.
|z — 0]

Here, T,(£2) denotes the tangent space to 2 at o. Note that (5.47) implies that
deg(g, o) = 1 for each singularity o.

All the above properties are clear from the proof of Lemma 23, except possibly (5.47).
Taylors’s expansion near o € Y. gives

9: () = g2(0) + M(z — 0) + O(|lz — of?)

where g!(0) = a. and M = M., = Dgl(c) is a bounded invertible linear operator from
T,(€) onto R? (since a. is a regular value of g!). Thus

gi(x)—a.  M(x—o) o
i) —ar] ~ Moy T Ol

and therefore



§-a S1 — S1. This proves (5.47) with

where o, (€) = oy

Clearly, v is a smooth diffeomorphism from the unit circle in 7, (Q) onto S!. We will
present in Appendix B a more precise statement.

Remark 5.2. The averaging process over a in the proof of Lemma 23 can be done on
any ball B,,0 < p <1/10, with p possibly depending on e. In particular, when g. — ¢ in
H'/2_ one may choose some special p. — 0 and obtain a corresponding a. with a. — 0.
Then

B _ g; — Q¢
s |951 — Qe

has all the desired properties without having to consider

ha€,€ = jasli:lxas’g-
The argument is similar, with a minor modification in Step 3.

Proof of Theorem 6'. Let k. € H'/?(Q;R?) with |k.| < 1. We claim that

1
(5.48) e k. < CQ(|’€5|§11/2 + g”ks - 1||%2)-

Indeed, let u = u. be the solution of (5.13), (5.14) corresponding to ¢ = k. — 1. Using
the function (u. + 1) as a test function in the definition of e, _, we find

1 1
(5.49) eor. < —/|w€|2 + —/(|u€ 12 —1)
2 4e?
G G
From (5.15), we have

1
(5.50) /|VU5|2 < C(Ufsﬁ{l/z + g”ks - 1”%2)
G

On the other hand, by the maximum principle, we have
[uellLe= (@) < lke = 1L (o) <2,
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and thus, by (5.15)

/(|u5+1|2 —1)* = /(|u5+1| — 1) (Jue +1]+1)* < 16/|u€|2
G G

G

1
(5.51) < 052(|k€|§{1/2 + g”ks - 1”%2)

Combining (5.49), (5.50) and (5.51) yields (5.48).
Next, we write, using h. from Lemma 23,
e = (gsﬁs)(hsg)g
and apply (5.1) to find

(5.52) Ceg. < (14 0)ecg +C(0)(ee ng + €z g.h.)-

We deduce from (5.48) (applied to k. = g-h.) that

_ 1 -
€egohe = C(|g€h5|§{1/2 + g”gshs - 1”%2)

(5.53) 1
< C(|g€|§{1/2 + |hs|§11/2 + g”gs - hs”%?) <C.

Applying (5.4) (with g replaced by h.g) yields

(5.54) eeheg < Clheglf/2 (1 +1log(1/e)).
Recall that |h.g|g1/2 — 0 as € — 0 (by (5.24)). By Theorem 6, we know that
(5.55) ee.g = mL(g)log(1/e) + o(log(1/e)).

Combining (5.52) - (5.55) we finally obtain

e
li —_ < wL(g)(1 :
1rg,gplog(1/8) <7mL(g)(1+4), Vé>0

The lower bound

e
lim inf €,9c > .
im in Tog(1/2) = mL(g)(1 —=6), Vdé>0,

is deduced in the same way via (5.2). This completes the proof of Theorem 6'.
6. W'P(G) compactness for p < 3/2 and g € H'/2. Proof of Theorem 7’

Proof of Theorem 7’. The estimate
uellwrr@ < Cp, V1<p<3/2,

was established in [5]. We will now show that a simple adaptation of the argument there
yields compactness. We rely on the following
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Lemma 24. The family (ue A du.) is compact in LP(G), 1 < p < 3/2.

Proof of Lemma 24. Let X. = u.Adu.. Since div (X;) = 0, we may write X; = curl H..
As explained in Section 3 of [5], we may choose H. of the form H. = H! + H?. Here
H? ¢ WHP(G), 1 < p < 3/2, depends only on g, while H! is a linear operator acting on
X, satisfying the estimate

1 1
IH [wrea) < CplldXc||wraey- 1< p<3/2 » + p =1.

Therefore, it suffices to prove that (dX.) is relatively compact in [Wh9(G)]*.

1 1 3
For1<p<3/2and —+- =1,let 0 < 8 < a =1——. Then the imbedding W4(G) C
p q q

C%B(@) is compact. Hence the imbedding (C%?(G))* ¢ (W'4(G))* is compact. The
conclusion of Lemma 24 follows now easily from the bound |[|dXc |[(co.s @)« < C derived in
[5]; see Theorem 2bis.

Proof of Theorem 7' completed. Let A = A, = {x € G; |u(x)] < 1/2}. Since
E.(u.) < Clog(1/e), we have |A.| < Ce?log(1/e). In G\ A., we have

e U

g
(61) dug = Wug A dug + @d|u€|
We may thus write in G
w U
due = xA.duc + X\ A, (—Zug A dug + —€d|u€|).
|us| |u€|

Note that

p/2
/ duel” < ( / duc?) AP S0, 1<p <
A A

Recall the following estimate (see [9], Proposition VI. 4):

/|d|u€||pio, l<p<2.
G

Applying (6.1) and Lemma 24 we see that (u.) is bounded in WP p < 3/2. In particular,
up to a subsequence, we have u. — ug a.e. for some ug. Moreover, we see that |u.| = 1
a.e., since
1
2
G

(1= Jue?)? < Clog(1/e),
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so that |ug| = 1. Thus, up to a subsequence, we find
due —w(ue Adus) = 0in LP, 1<p<2.

Finally, Lemma 24 implies that, up to a further sequence, (du.) converges in LP(G),1 <
p < 3/2.

The proof of Theorem 7’ is complete.

As in the case of Theorem 6, Theorem 7’ generalizes to the situation where the boundary
data is not fixed anymore:

Theorem 7”. Assume that the maps g. € H'/?(€;R?) are such that:

(6.2) |9e| a2 < C,
(6.3) lgs| <1 on Q,
and

(6.4) Ilge| = 1|2 < CV/e.

Let u. be a minimizer of E, in H;e (G;R?). Then E.(u.) < Clog(1/¢) and (u.) is relatively
compact in WHP(G), 1 < p < 3/2.

An easy variant of the proof of Theorem 6" yields the bound E.(u.) < C'log(1/e). To
establish compactness in WP we rely on the following variant of Lemma 24:

Lemma 24'. The family (uc A du.) is compact in LP(G), 1 < p < 3/2.

Proof of Lemma 24’. With X, = u. A du., we may write X, = curl H,, where H. is a
linear operator acting on (X., g- A drg.) and satisfying the estimate

1 1
[He[[wre < C(lldXelwracays + 19e Adrgellwi-1/aa@y+), 1<p<3/2, —+-=1
[ ()] P q

(see [5]). Here, dr stands for the tangential differential operator on (2.

The proof of Lemma 2 in [5] implies that (g- Adrg:) is bounded in [W?49(2)]* provided
o > 1/2 and og > 2. If we choose ¢ > 1/2 such that — < 0 < 1 — m we find that
q

(ge Adrg.) is compact in [W1—1/a:9(Q)]*,
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It remains to prove that (dX.) is compact in [W19(G)]*. As in the proof of Lemma 24,
it suffices to prove that (dX.) is bounded in [C®*(G)]* for 0 < a < 1. For this purpose,
we construct an appropriate extension of u. to a larger domain. Let, for 0 < € < go(G),
I1; be the projection onto €2 of the set

Q.= {2z cR*\Q; dist (z,Q) =¢}.

Set ﬁg = h.oll. € HY?(0Q,) (where h. is defined in Lemma 23) and let K. be the harmonic

extension of ﬁg to
GuU{zcR?;dist (z,Q) <e}.

By standard estimates, we have
lhe = Kejallzz < Calhelm=e'/?,

so that
g — Kejallze < CeV2,

By Lemma 22" applied to ¢ = g. — K. |q, we may find a map ve : Gc — C such that

1
/|ws|2 4 8—2/|vs|2 <c.
G, Ge

ve = g — K¢ on{, wv.=0 on )

and
lv.| <2 in G..

{ Ue, in G
UE - . ’
ve + Ko, in G¢

Set

which satisfies U, = ﬁg on (). Since, for 0 < § < e, we have

/(1— 0P < /<|1— ||+ [0e)2 (L4 K|+ Joe])?

Qg QS

§32/(|h€oH5 — K2 + [ve?),
Qs

we find by standard estimates that
(6.5 Ja-1pp <o (elnelis + [ o)
Qg QS
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Integration of (6.5) over § combined with the obvious bound
Kl m1quc.) < C
yields

(6'6) Ee(Us§ Gs) <C.

As we already mentioned, an easy variant of the proof of Theorem 6’ gives
E-(us; G) < Clog(l/e)
and thus

(6.7) E.(Us;;GUGe) < Clog(1/e).
Let now R > 0 be such that
GU Gso(G) C Br.

A straightforward adaptation of Proposition 4 in [5] implies that, for 0 < & < ¢(G), there
is a map w. € H'(Bg \ (G UG.)) such that

(6.8) we =he on$., w.=1 on JBg,

(6.9) E.(w:) < Clog(1/e),

and

(6.10) / Jac w.| < C.
Br\(GUG:)

Set

V—{UE’ in GU G,
* lw., inBr\(GUG.)’

By (6.7) and (6.9), we have
E.(Vo; Br) < Clog(1/e),

so that JacV; is bounded in [CY*(Bg)]* for 0 < a < 1 (see [33]). As in the proof

loc

of Theorem 2bis in [5], we may now establish the boundedness of dX. in [C**(G)]* for
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0 < a < 1. Indeed, let 6 > 0 be sufficiently small. For { € C’O’a(é;/\l(@), let 1) be an
extension of ¢ to R? such that [|4|co.ars) < Cll¢llco.o@) and Supp ¢ C Br—s. Then

'!ﬁqujstlﬂ%AdKJAﬂ+;1;PG@AM@Awy

< Call@llgnn) + Il [ 192 Vel < Clicllonageys
Br\G

by (6.6) and (6.10).
The proof of Lemma 24’ is complete.

Proof of Theorem 7”. An inspection of the proof of Theorem 7’ shows that it suffices
to establish the estimate

(6.11) /|V|u5||p —0ase—0, V1<p<2.
G

We adapt the proof of Proposition V1.4 in [9]. Set n = 7. = 1 — |uc|?, which satisfies

2
(6.12) —An+ 8—2|u5|277 =2|Vu.|* inG,
(6.13) n>0 on (.

Let 17 be the solution of

2 . :
(6.14) —An+ 8—2|u5|277 =2|Vuc|* inG,
(6.15) n=0 on (2,
so that
(6.16) 1= Jucl?=n>7>0,

by the maximum principle. Set 77 = Min (77,'/2). Multiplying (6.14) by 7, we find

(6.17) / VA2 < 26172 / Va2 — 0 as € — 0.
{n<et/2} G
On the other hand, we have

(6.18) {;7(z) = "2} C {a; Jue(a) <1 -2},
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Set ¢ = n — n, which satisfies

2
(6.19) ~Al+ 8—2|u5|2§' =0 inG,
(6.20) (=pe onf,

where . = 1 — |g.|?. Clearly, we have |p.|g1/2 < C and by (6.4)

(6.21) lpe|l 2 < Ce'/2.

By the proof of Lemma 22, we find that

(6.22) V(P < C.
/

We claim that

(6.23) /|VC|p —0ase—0, Vp<2.
G

Indeed, by the maximum principle, 0 < { < f where f is the solution of

~A(=0 inG,
¢ = we on .
In particular, from (6.21) we see that
(6.24) / I{]> = 0 as e — 0.

G

Let x € C§°(G) with 0 < x <1 on G. Multiplying (6.19) by (x and integrating we obtain

1 1 [
Jiveexss [eaa <y [Ea
G G G
Combining this with (6.24) yields

(6.25) JIveix =0 vxecr@. 0yt
G

From (6.22) and (6.25) we deduce (6.23).
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We now claim that

(6.26) /|V77|p —0ase—0, Vp<2.

Since n = ¢ + 17, in view of (6.17) and (6.23) it suffices to prove that

/ Vil — 0.

where Z. = {z; |uc(x)]?> <1 —¢2}. But

/ (1 - Juel)? < Ce2log(1/2),

G

and thus
(6.27) | Z:| < Celog(1/e),
so that, by Holder and (6.14)-(6.15),

[ Vil < Vil z. -

Ze
(6.28) < O||Vue|?,|2.|*P)/% < CeP7P)/2(log(1/¢)) — 0 as e — 0.

Hence we have established (6.26). Similarly,

(6.29) /|Vu€|p < || Vue|2,]2:|37P/2 < Ce27P)/210g(1/¢)) — 0 as € — 0.
Ze

Finally, we note that, for € sufficiently small, we have

(6.30) Vlue|| < [Vue|xz. +[Vnl,

so that (6.11) follows by combining (6.26), (6.29) and (6.30).

The proof of Theorem 7" is complete.

7. Improved interior estimates. W1” (@) compactness for p < 2 and g € H'/2,

loc

Proof of Theorem 8
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Remark 7.1. As in the proof of Theorems 7’ and 7”, it suffices to establish the estimate
(7.1) |ue A duc||prxy < C, 3/2< p<2, K compactin G.
Estimate (7.1) will be proved under the following assumptions:

E.(u:) < Clog(l/e)

and
u. is bounded in Wh"(G),  for some 4/3 < r < 3/2.

In view of Theorems 6, 7 and of their variants, we find that Theorem 8 extends to mini-
mizers u. of E. when the variable boundary conditions satisfy (6.1)—(6.3).

Proof of Theorem 8. In what follows, we establish (7.1) when K is any compact subset
of the unit ball B.

Fix some 3/2 <p <2and 0 <~y < 1. Fix
(7.2) 4/3 <r < 3/2.
Denote u = u.. Since, by Theorems 6 and 7, we have
lullwrrsy) <C and  ul g1 sy < Clog(1/2)"/?,

we may choose
l—v<p<l—r/2

such that

(7.3) ullwrraB,) < Cy

and

(7.4) lull s,y < Cy(log(1/e))!/2.

Set now p = 2 — s, so that s > 0 and the conjugate exponent of p is

2—s
7.5 2 = <3.
(7.5) =4 1—-s7
Perform on B, a Hodge decomposition
u A du
——— =d*k+dL
lu A dul® +ab,
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where

(7.6) L= 0-form, L=0ondB,
and
A d
(7.7) k= 2form, |k|lwra < c‘ % — Cllu A dul|}* = Cllu A du|p™;
q
here, we use the notation || |, = || ||zr(B,)-

Recalling the fact that div(u A du) = 0, we find that
(7.8) ||u/\du||§:/(d*k)-(u/\du)-i—/dL (u A du) /d*k (u A du),
B, B, B,

since, by (7.6), we have L =0 on 0B,.
Let

(7.9) §=el0"

Assuming, for simplicity, 0B to be flat near some point, consider a partition of B, in
0-cubes @)

0B,

0B

(we will average over translates of this grid in later estimates).

Define
F={Qien [lul < 5] £ 0}

We are going to estimate the number of cubes in F with the help of the n-ellipticity
property of T. Riviere [37], that we state in a more precise form, proved in [8]:

Lemma 25. Let u. be a minimizer of E. in Bg with respect to its own boundary condition.
Then there is a universal constant C' such that, for every n > 0,0 < e <1 and R > 0 we

have
E.(us; Br) < nRlog(R/e) = |uc(0)] > 1 — Cn*/%.
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Let, for Q € F, @ be the cube having the same center as () and the size twice the one
of Q). From the n-ellipticity property, we have

(7.10) /eg(u) > Cdlog(d/e) ~dlog(l/e), VQ € F,
Q

so that
(7.11) #F <Cs5'  and ‘ ‘ < 06

QEF
Define
(7.12) Q=38 J @

QEF

on which |u| > 1/2.
We have, by (7.8),

||u/\du||§:/(d>kk)/\(u/\du)+ /(d*k)/\(u/\du)

Q B\Q
(7.13) < /(d ) A (A du) + 20k wro [ Valla(B\Q)2- 10,
Q

By (7.7) and (7.11), the second term of (7.13) is bounded by
(7.14) C(log(1/e))Y/? - 61=2/9|ju A dull, = < [luAdul), =,

provided ¢ is sufficiently small.

For the first term of (7.13), we use the identity

wAdu = |U|A(d(|z—|))+(1—|u1|2)(uAdu) in Q

and the fact that

to get
u u 2
715 d*k’ u/\du = (*k)/\ m/\d m +O(||k||W1q||Vu||2||1—|u| ||2q/(q—2))'
Q o2
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Since |u| < 1 and

11— Juf*ll2 < 2¢(B:(u.))'/? < Ce(log(1/€))"/?,
the second term of (7.15) bounded by
(7.16) Cllun dull}*(log(1/e)) =9 72/7 < |lu A dul|}~%,

provided ¢ is sufficiently small.

Let ¢ : D = [|z] < 1] — D be a smooth map such that ¢(Z) = ¢(z) and p(z) = z/|z| if
|z] > 1/10. Thus

aé*k/\(|u|/\d(|u|)> :aB/ kA (p(u)Adp(u

P

-3 /*m WAdip(u)) = (7.17)—(7.18).

QG]—'
Using (7.3) and the fact that, by (7.5), we have ¢ > 2, we find that
(7.17) < Cllullwrr @B, 1kl L 58,y < CllEl L 08,) < ClElg1-2/m(08,)

(7.19) < Cllkll gss2-2/(5,) < Cllkllwracs,) < ClluAdull,™.

In order to estimate the term (7.18) we replace, on each cube @, k by its mean %kg. The
error is of the order of

Z/ b-tollvul < [ [Vul+ Y el [ Vul+ X [ h-kolVu

QeEF 8B, QeF 0QNOB QEF
QOB 40 QNIB, 0Q\0B,

= (7.20) + (7.21) + (7.22).
As for (7.17), we find that

(7.23) (7.20) < ClluAdul), .

1/
ol <57 [ <570 (/w)
Q Q

) 1/r
V| < 62" ( / |Vu|T) ,
9QaB, 9QNAB,

Since

and

69



we have

/ 1/7‘
(7.21) < O~/ /|k| / |Vu|T)

QmaB ;é(/) oQNoB,
_1 ’ ’ l/T/
<Cs " lulwieony - ([ 1K)
uQ
QEF
QNOB,#0
Iy~ 1/r'—1/6
< cs U @ |1k s-

QEF,QNIB,#0

In view of (7.11) one may clearly choose 1 — v < p < 1 —+/2 such that
(7.24) #HQ e FIRNIB, # 0} S1/7,

and therefore

U Q‘ <O,
QEF,QNIOB,#0
This gives
(7.25) (7.21) < O3 M7 &M V2 K|y < CO7 V2 kel < [lu A dul| L3,

provided ¢ is sufficiently small.

To bound (7.22), we use averaging over the grids. For A € R? with |\| < §, consider the
grid of d—cubes having A as one of the vertices and let F) be the corresponding collection
of bad cubes. Then

i [Em<o [0 % /Q\aB /dwa() k()| Vu(a)

[A|<& [A]<6 QEFN
<ot Y / [ dzayli(a) ~ k)| Vu)
Q€-7:o~ ~
< C§/?~6/a Z ||VU||L2(@)||]€($) - k(y)HLQ(@x@)
QeFo
1/
< O5 5/l gy | / / ) — Kptdad]
QeFo
< C521og(1/2)) 2 3 / |w|q}
QeFo =

Q
< Jlu A dull, ™,
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provided e is sufficiently small. Therefore, by choosing the proper grid, we may assume
that

(7.26) (7.22) < Cllu A dul),~*.
Combining (7.23), (7.25) and (7.26), it follows that

(7.27) (7.20) + (7.21) + (7.22) < Cllu A dul|, .
By (7.13), (7.14), (7.16) and (7.27), we have

(7.28) Ju A dul|b = (7.29) +O(||u/\du||;_5),
where

(720)=— %" / o A (o) A do(u)).
QeF gy

For i =1,2,3, let m; be the projection onto the axis Ox;. For z; € m;(0Q), let
Ly, = (m) ™ (2:) N OQ.
Then

(7.30) 20 <33 Ihal [ ‘ [ #tw) noptwy/on

i=1 QeF 7:(Q) Ta,

dazi.

Denote I the d-square with 0 ' =T and let

(7.31) 61 = 03,69 = 0%,
Consider “good” sections I, i.e., such that

(7.32) dist (F, [|u| < 1/2}) > 8
and, with

ec(u) = ec(u)(x) = [Vu(@)]” + gi(l = [ul*)*(@),

(7.33) ee(u) < 6ot
r
Condition (7.33) implies that
1
(7.34) 5 /(1 Juf?)? < Spe .
r

Since |Vu| < C/e, it follows that the set I' N [lu| < 1/2] may be covered by a family G of
g—squares such that

#G < Coda/c
and
(7.35) > length(S) < Coeda /e = Coda.
Seg
We next invoke the following estimate (see the Proposition in Section 1 in [39]):
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Lemma 26 (Sandier [39]). Under the assumptions (7.32) and (7.35) we have, with Cy

the constant in (7.35),
[ Gl

I'N[lul>1/2]

dx > K|d|log(d1/(2C002)),

where d is the degree of ujr and K is some universal constant.

By Lemma 26 and our choice of 41, d2, we find that

[ et ndotw) -

r

(7.36) deg (

] < C/|Vu| /log(1/e).

On the other hand, recall the monotonicity formula of T. Riviere (see Lemma 2.5 in [37]):
Lemma 27 (Riviere [37]). Let x € G. Then, for 0 < r <dist (x,(2), the map
1 3
et [ (V@ + 550 )
B (z)
1S non-increasing.

By combining (7.36) and Lemma 27, we see that the collected contribution of the good
sections in the r.h.s. of (7.30) is bounded by

(7.37) cy |kQ|/|vu| Jlog(1/e) < C5 Y [kql <4 /|k| > XQ

QEF QEF QEF
We consider an extension, denoted by h, of |k| to R3, such that
[Allwramsy < CllIE[lwra(s,)-

We estimate the integral in (7.37) using the (B, ,, B, })- duality (for the definition of the

Besov spaces By, see e.g. H. Triebel [45]), where
. . 1/r
(738)  fllog, = [277 15 * Pl + D@77 % Pams — fx Pasa )]
Jj=2
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We let here P; > 0 be a suitable L' normalized smooth bump function supported in the
unit cube of R3, and denote Py (z) = h=3P;(h~'x).

On the one hand, since ¢ > 2 we have
(7.39) 17 lB1, < Cllhllwia < Cllkllwra < ClluAdull,™.

Letting f = ZQE £ XQ, wWe estimate next || f|| Byl . Without any loss of generality, we may
assume that Bg C G.

Assume first that j is such that 1 > 277 > §. If Q; C B3 is a 277 -cube, then
(7.40) /eg(u) < 0277 log(1/e),
Q1
by Lemma 27. On the other hand, if Q € F, then (7.10) holds. Therefore
(7.41) #{QeF;QCc @} <C2795

Also, if Q1 NF # (0, the n-ellipticity lemma implies

(7.42) / ee(u) > 0277 log(1/e),

Q1

and hence the set [|u| < 1/2] intersects at most C27 cubes Q1 of size 277. Thus

[(f 5 Pa-s) = (f * Po-ger)llp S IS * Paillp

X e/,

Q1,QINF#D On
L~ 1/p
S|X 2 MEYQun A
Q1,QINF#D
. . 1/
< [ S 2(e¥ -53-2—35—1)1’} by (7.41)
Q1ﬂ.7:7£@
(7.43) < 2 U/Po2ig? — §249/9

Assume now that 277 < §. Estimate then

F#(Pys = Pyrsn)| € Y v * (Bes — Posin)].
QeF
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In this case, it is easy to see that
IXQ * (Pa-5 — Pa-5+1)| < Cxa,

where

A= {z;dist (z,0Q) <2771,

In particular, each point in R? belongs to at most 8 A’s. Thus

(7.44) 1) xq* (Pes — Py-sir)|IF < C Y llxq * (Pa-s — Pomyin) |5 < C5277.
QEF QEF

From (7.43), (7.44)

o . , 1/q
||f||B;;, < C[ Z (277 5247/9)P 4 Z (277 §1/po—ilpyp ?
’ 2-9>6 2-7i<§
(7.45) < (6% 4 82FP)L/P < 52,

Here, we have used the fact that p < 2 < q.
From (7.37), (7.39) and (7.45), we find that

(7.46) (7.37) < Cllu A dul),~*.

Next, we analyze the contribution of the “bad” sections I';, in (7.30). A bad section
I'y, =T fails either (7.32) or (7.33).

Fix1=1,2,3 and @) € F. Define

(7.47) Jo = {zi € mi(Q); Tw, fails (7.32)},
(7.48) Jo = {zi € mi(Q); Ty, fails (7.33)},

and the surfaces

(7.49) &=6;=]J | I
Q l’z‘EJé)

(7.50) 6" =6/=uU U T,,.
Q z;€JE

Estimate the contribution of the bad sections in (7.30) by
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(7.51) (33§|k@|)i / Vul.

=lg/ (e
Estimate

(7.52)  [kql <6~ /Ikl < 5 1QP Okl Lo(s,) S 02 kllwracs,) S 62 lu A dully™.

Consider, for A € R3, the grid of §—cubes having A as one of the edges and let G\ be the
grid defined by the boundaries of these cubes. For each A, we have

/ V| < /|Vu| (18] + |82

Glusy

(7.53) <c / vul?) (5 3 (el +18D)

QEFA

Since (7.33) fails for z; € Jg), we have

[ectu = j eo(u) > |T)dne".

Q U,
xT; € J(/é
Thus
(7.54) > IG5 < edytlog(1/e).
QEFa -

To estimate (7.53), we use again an average over the grids Gx. Denote this averaging by
Av;, (7 refers to the translation).

Thus, taking (7.54) into account, we obtain

1/2
(7.55) (7.53) AUT/|W| (a5, < to(1/2) + au (37 1)
QEFA

Notice that the J(’Q—intervals of points x; such that dist (in, [|u| < %D < 01 do depend

on the grid translation — a fact that will be exploited next.
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First, recalling (7.4), we have

1 log 1
(7.56) AUT/|Vu|2 < / |Vu|2+5/|Vu|2§ %/5
G, OB B,

By the n-ellipticity lemma, we may cover [[u| < 1/2] N B with at most C§;* &;-cubes
o, @ < O67'. We fix such a covering (independent of \). Fix 4,Q. If dist (I'y,,[Jul <
1/2]) < 61, then clearly z; € m;(qn) for some g, C @ with dist (¢a,Gx) < d1.

YLe" \\ F‘rl
Hence
(7.57) TGl <261 - #{a1qa C Q, dist (4a,Gn) < 01}
and
(7.58) D 1ol < Coy - #{a; dist (ga, Ga) < 01}

Q

We now average over the grid translation. On the one hand, for fixed «, the inequality
dist (¢a,Gx \ 0B,) < 61

holds with 7—probability ~ §; /0. On the other hand, for fixed « and 1 — vy < p < 1 —17/2,
the inequality
dist (¢a, 0B)) < 61

holds with p—probability ~ §; /7.

Hence, by choosing p properly, we may assume that
#{o;dist (¢, 0B,) < 61} < C.

For any such p, we have

(7.59) Av, (7.58) <61~ 4o



Hence

01
/
<(C—.
(7.60) AUT(Z |JQ|) <CS
Substitution of (7.56), (7.60) into (7.55) yields, for small ¢,
log(1 1/2 1/2
(7.61) (7.55) < (M) (552_151052;(1/5) + 51) < 534,
)
by (7.9) and (7.31).
From (7.52)and (7.61),
(7.62) (7.51) < 834572 lu A dul|,* < Cllu A dul|}~*.

This completes the analysis. Indeed, by collecting the estimates (7.28), (7.30), (7.37),
(7.46), (7.51) and (7.62), it follows that

(7.63) lundullf, gy < Cyllun dullzip .
and thus
A dull oz, ) < Gy

Since 0 < v < 1 and 3/2 < p < 2 are arbitrary, the proof of Theorem 8 is complete.
8. Convergence for g € Y. Proof of Theorem 9

Proof of Theorem 9. We already know that a subsequence of (u.) converges in W1?(G),
1 < p < 3/2. The main novelties in Theorem 9 are:

a) the identification of the limit
Uy = €7,
where g = "¢, € H/? + W' and ¢ is the harmonic extension of ¢;
b) us — uy in C(G).

We first discuss b), which is easier. In view of a), it suffices to prove that (u.) is bounded
in C*(K) for every integer k and every compact subset K of G. Since E.(u.) = o(log1/¢),
by Theorem 6, we find, with the help of the n—ellipticity Lemma 24 that, for every compact
K in G, we have

|us| >

in K for small .

We next recall Theorem IV.1 in [9].
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Lemma 28. Let u. be a solution of

1 .
—Au, = 8—2u5(1 — |uc|?) in By
such that
(8.1) E.(us;By) < C.

Then (uc) is bounded in C*(Bj j3), for every k € N.

We now complete the proof of b) by establishing (8.1) on every ball B compactly con-
tained in G.

We write u. = p.e’?s in B. Let ¢ be a cutoff function with ¢ = 1 in B. We start by
multiplying the equation for .
div(p2Vpe) =0
by *(e — f ppe)-
We find that

/p§|V§05|2C2 < 2/p§|m| ¢ V¢! loe — f el

1/2 5/6
sc( /p§|m|2<2) ( / |ws|6/5) ,

by the Sobolev imbedding W1.6/5 ¢ L2,

We obtain that ¢, is bounded in H}

1ocs Since V.| < 2|Vu,| in B and u. is bounded in
W16/5 by Theorem 7.

Next consider the equation for p,

1
—Ap: + Ps|v§0€|2 = 8_296(1 - Pg)

Multiplying by (1 — p<)(, we find that

[iorc 5 [a-mrczc( [1wn+ [1ver).

We conclude by noting that

1
EwsB) < [ 90+ [ Vo4 5 [0z
B B e JB
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We now turn to the proof of a).
We start by constructing an appropriate domain G. C G on which |u.| ~ 1. For

simplicity, we assume () flat near some point. Fix some 0 < dg < 1 to be determined later.
Let 0 < 0 < g and u = u.. Set

(8.2) As = {x € G;dist (z,0) > Ve, Ju(x)] <1 -6}

For z € As, let Q be the cube centered at x such that one of its faces is contained in €2
and let () be the conical domain

Q

Let also Q7 be the cube centered at = having the size a third the one of Q. By Vitali’s
lemma, we may choose a finite family (Q7) of disjoint cubes such that A5 C UQ,. By the
n-ellipticity property, there is some 7(d) > 0 such that we have, with §, the size of Q,,

(8.3) E.(u, Q%) 2 1(8)da log(da/c) = 1/27(8)da log(1/¢),

since 04 > /. Thus

Ee(u,G)
(8.4) > o 773 Tog(179)

Since, by Theorem 6, we have E.(u,G) = o(log(1/¢)), we find that

(8.5) > 6 <6,

provided ¢ is sufficiently small.

We now set

G. = {z € G;dist (z,Q) > vz} \ UQa,
so that |us| > 1—0 in G..

By (8.5) and the construction of G¢, there is a Lipschitz homeomorphism ®. : G. — G
such that

(8.6)  [[DPc|lr~ < C, D@z < C, Pejoe. = Mo, , Pe|{uecdist (o,0)>26) = id,
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provided Jy is sufficiently small, with constants C' independent of ¢.

Here, II is the projection on €. In particular, G. is simply connected. We may thus
write in G,

(8.7) u=pe,p=|ul,¢p € C®.

Assuming further that dp < 1/2, we have p > 1/2 in G. and thus

(8.8) Wi .y < Hulfne.) < 4l < dlog(l/e),
provided ¢ is sufficiently small. Moreover, by Theorem 7, we have

(8.9) [lwiec.) < 2lulwire.) < 2lulwiee) < Cp,1 <p < 3/2.
We are now going to prove that 1|ac. is almost equal to ¢ o Il5¢_, where ¢ € H /2 4
WL(Q;R) is such that g = e*%.

Let 7 > 0 be to be determined later. Since g € Y, we may find some h € C>(Q; S!)
such that [|g — hl|g1/2 <n. Let ¢ € C*(2;R) be such that h = €. Let T, = @E‘aGe and
U.=T-1':Q — 0G.. Fix a smooth map 7 : C — C such that 7(z) = z/|z] if |2| > 1/2
and let

£(z) = g(a) — VD) w e q,

so that
(8.10) E(z) = m(g(x)) — m(ePV)) 2 € O\ UQa.
Therefore, we have

| @<c@ [ ipu <clpulet

(8.11) N\UGa {z;dist (x,00)<\/2}
< Ce'’*(log1/e)t/? < 1/2e'/7,

provided ¢ is sufficiently small. It follows that
(8.12) / Ih(z) — W=D | g < £1/5,
2N\UQa

provided 7 is sufficiently small. Thus, with A = ( — v o U., we have
(8.13) le™ =1l s,y <77
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By combining (8.6) and (8.8) (resp. (8.6) and (8.9)), we find that

(8.14) Mgz < ¢l ae@ + Cllvlrye.) < 6'/%(log(1/¢))'/?
and
(8.15) [Allwiraa/3 Q) < [Cllwrraas ) + Cllllwras gy < C,

provided ¢ is sufficiently small. In particular, we have

(8.16) M pasaay < C-.

By Lemma C.2 in Appendix C, if §y is sufficiently small and A satisfies (8.13), (8.14)
and (8.15), while the squares @, N (2 satisfy (8.5), then there is some integer a such that

(8.17) IA = 2mal| 1y < 6*/18.

Without restricting the generality, we may assume that a = 0, so that
(8.18) 1€ = ¢ 0 Uell 11y < 6*/18.

We actually claim that

(8.19) lo = o Uellzay < 6"/%,

if we choose the lifting ¢ of g properly. Indeed, by estimate (1.9) in Theorem 3, the map
gh €Y has a lifting x € H'/? + W such that

(8.20) |X|H1/2+W1<1 S C(G)|QB|H1/2(1 + |gB|H1/2).

Since ~ ~
|9h|H1/2 = |h(9 - h)|H1/2 —0ash —g,

we may choose 7 sufficiently small in order to have
(8.21) Ix — fxll oy < 815,
Using the fact that
lgh = e x|l = e = X < = fxllpn < 618

and B
lgh — 1|2 < 818,
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provided 7 is sufficiently small, we find that, modulo 277Z, we may assume that
(8.22) 1f Il £r o) < 265,

Since g = ¢*X*+8) inequality (8.19) follows by combining (8.20) - (8.22), provided &y is
sufficiently small.
We now prove that ¢ and ¢ are close on compact sets of G. Set ) = Yo®d 1 5= pod 1,
so that i, p are defined on GG and, in the set
M = {z € G;dist (x,Q) > 2§},

we have ¢ = ¢ and p = p.

Recall that 1) satisfies the equation div (p?V) = 0 in G.. Transporting this equation
on G and using (8.6), we see that 1 satisfies

(8.23) { diV(A(x)ﬁQV@bz =0 in G |
Y=1vYolU, onf

with
(8.24) CHEP << A(2)€,€ >< C|€)?, p(x) = p(x) and A(x) = I if x € M.
Therefore, the function B

f=¢-7
satisfies
(8.25) { Af = div (I — A(x)p?)Vy) in G '

f =¥ - 'QD o U on 0G

Thus, for 1 < p < 3/2 and K compact in G, we have

(8.26) £l ) < Cr (I = A(@)7*) Vil o ey + o = ¥ 0 Uell 1 (a))-

As we already observed in the proof of part b) of the theorem, we have p — 1 uniformly
on the compacts of GG. Thus

(8.27) (I = A(@)7*) V| Lo ary — O.
as € — 0. On the other hand, we have
(8.28) (I — A(2)5*) V| Lo avary < CIVYl Lo a\nry < CI VUl oan-
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If we choose some r with p < r < 3/2, we find that

r—p r—p
r
Y

(8.29) (I — A(@)3*) VY| oy < CllVullLrean |G\ M|+ < C§

by Theorem 7. By combining (8.19), (8.26), (8.27) and (8.29) we find that, for some
0 < a < 1 fixed, we have

(8.30) [ fllwre )y <69,

provided ¢ is sufficiently small.

Since, for 09 = o (K) sufficiently small, we have f = ¢ — 1 in K, we find that, as ¢ — 0,
$—1% —0in Wli’Cp(G), 1 < p < 3/2. Using once more the fact that p — 1 in Cf_(GQ), we
find that ue — u, in W;-?(G). This proves Theorem 9.

loc

Remark 8.1. Under the assumptions of Theorem 9 it is not true in general that |u.| — 1
uniformly on G. Indeed, if this were true, then u./|u.| would belong to H'(G;S?) for e
sufficiently small. Thus u./|u.| admits a lifting ¢. € H'(G;R) and g = e*¢<12. Hence g
must necessarily belong to X. But, even when g € X it is unlikely that |u.| — 1 uniformly
on G.

Remark 8.2. Let g € HY/?(Q; S') with L(g) = 0 and write g = €' with ¢ € HY/2+ W1,
Let ¢ be the harmonic extension of . One may wonder whether

(8.31) |uce ™ ||w1, < C Vp<2ase— 07

The answer is negative. The argument relies on the following
Lemma 29. Fix ¢ and let u. be a minimizer for E., with u. = g on 2. Then
(8.32) Us =g+
where ¢ is the harmonic extension of g and

(8.33) [Y(z)| < Cedist (z, Q).

Proof. Clearly ¥ = 0 on Q, || < 2, and |Avy| < Ce~2 on G. By interpolation one deduces
that |Vy| < Ce™! (see e.g. [7]) and the conclusion follows.

1. Using (8.32), write

|V (uee™)] 2 Jue] [V@| = V|
(8.34) > gl Vel = [4] [Ve] = [Vuel.
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We have

1
Vel r2(a) S (log 5)1/2 < o0

and, by (8.33)

/G (0] [V3)? < 023 4 / (V3) ()|

s>0 iSt(l’,Q)NQ_S

<Ce™®) 475.4°.27%|p|72q) < Ce™? < 0.
s>0

Consequently, assuming (8.31) were true for some p < 2, we necessarily must have, by
(8.34), that

(8.35) 9] Vgl € LP(G)

whenever g = e'* € H'/?(Q, S1).
This statement relates only to g and we show next that (8.35) cannot hold for p > 3/2.

2. Let 0 < § < 1 be small and take 0 < ¢ < (%)1_ such that

(8.36) supp ¢ C B(0,29) C Q (identified with the x;, z-plane),
1\~
(8.37) p= (5) on B(0,4),
1\~
(8.38) vel < (5) -
Hence

||6i(p||H1/2 <C.

Also, from (8.1)
|1 — e < O82

Hence for 23 > C§

1

(8.39) 1 —g(x1,22,23)] < /|1 — e'?|(a}, 23) Po(2}, 25 )darday < C8%|| Polos < 10
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Thus from (8.39)
19-IVEl Iz Z [IV@llLr (21,0005 >C0)

/|§|@(§)ei(r1€1+xz£z)e—x3IEId§
RZ

LP(z1,x2;x3>C9)

£

(8.40) > H Helg©)e=el]

L (25>C9)

> clele©)ly 107

&~ 2t

106

~ 571p(0) - (%) " gL/

(8.41) ~ T
In (8.40), we use Hausdorff-Young inequality and (8.41) follows from (8.36), (8.37).

Since % — z% < 0 for p > 3/2, a gluing construction with the preceding as building block
and 6 — 0 will clearly violate (8.35).

As in the previous sections and with some more work, we may prove the following
variant of Theorem 9:

Theorem 9’. Assume g € Y, and let g. be as in Theorem 6’ of Section 5. Let u. be a
minimizer of E. in H;e. Then
ue — uy in WHP(G)YNC™®(G), Vp < 3/2,

where u, 1s the same as in Theorem 9.

9. Further thoughts about p = 3/2

Let g € H'/2(Q;S') and let (u.) be a minimizer for E. in H,. In Section 6 we have
established that (u.) is relatively compact in W1P(G) for every p < 3/2. It is plausible
that (u.) is bounded and possibly even relatively compact in W13/2; see Open Problem
2 in Section 10.

There are two directions of evidence suggesting that, indeed, (u.) is bounded in W3/2,

The first one relies on a conjectured strengthening of the Jerrard-Soner inequality men-
tioned below.

The second one is a complete proof of the fact that any limit (in WP p < 3/2) of (u.)
belongs to W13/2; see Theorem 12.

9.1 Jerrard-Soner revisited

First recall the following immediate consequence of a result in [33]:
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Proposition 1 (Jerrard and Soner [33]). Let (v:) be a sequence in H*(Q; R?), Q C R3
a cube, satisfying

(9.1) (0. Q) = /Q

for all € < 9. Then for ( € C§°(w),w C @, we have the inequality

JRLCR:

where J(v.) is any 2 x 2 Jacobian determinant of v., ¢ > 3, and K = K(C, q,w).

1 1
|i§[V’Ug|2 + @HUE?P — ].|2 S 010g1/€

(9.2)

< K| ¢llwraq)

Remark 9.1. In fact in [33] one obtains a stronger estimate with the norm |[|C|yw1.q
replaced by any ||(]|co.«-norm, a > 0.

In this subsection, we will show that:
a) The conclusion of Proposition 1 fails for any ¢ < 3.

b) The validity of Proposition 1 for ¢ = 3 (which we conjecture) would imply the
boundedness in W13/2 of the minimizers (u.) of the Ginzburg-Landau problem in G with
boundary data g controlled in H/2(Q; S*),Q = 0G.

A basic tool is the following construction of an extension of g outside G.

Lemma 30. Assume G C Q and g € H/?(Q;S'). Then there is w. € H'(Q\G;R?)
satisfying

(9.3) we = g on G and w. = 1 in some fixed neighborhood of 0Q),
(9.4) E.(we; Q\G) < Cllgl|lg1/21logl/e,
(9.5) lwellwrr@\a) < Cpllgllgr/2 for every p < 2,

(9.6) we, — w in WHP(Q \ G) for every p < 2 with w € WHP(Q\ G), Vp <2
(9.7) lwe] <1inQ\G.

Proof. We follow the same construction as in [5] which we briefly recall here. First,
let H be any smooth function in Q\G with H € H'(Q \ G;R?) satisfying the boundary
conditions H =g on Q = 0G , H =1 near 0Q, and || H|| g1 < C||g|| g1/2-

Using the same notation as in the proof of Lemma 23, define

We,o(T) = @D(w)ﬁa(ﬂ(w))-

5
It may be shown as in [5] (or as in the proof of Lemma 23) that for some a = a. € C, |ac| <
1/10, the functions (w4, ) satisfy all the required properties.

Next, we establish the following
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Proposition 2. Assume that the conclusion of Proposition 1 is valid for some 2 < q < 3.
Let (u.) be a sequence of minimizers of E. in G as above. Then (u.) is bounded in
WL (G) with ¢' = q/(q — 1).

Proof. As in Section 6, it suffices to establish the boundedness of u. A du. in the space
Lq/(G). Proceeding by duality, consider ¢ € LY(G;R3), [|¢|l;, < 1 and take its Hodge
decomposition as

(=curlk+VLin G
(9.8) L=0onqQ,
with [[kllwrec) + | Llwiaqg) < C

(see e.g. [30] or [27]). Recall that, with the notations of differential forms we used earlier,
curl = d* and V = d. Let Q be a cube with G C ) and let w be an open set such that

G Cwandw C Q.
Next, extend k to k on Q, k= 0 on Q \ w, with control of ||l~€||W1,q(Q). We extend u. to Q
defining
{ ue in G
v =
© we in Q\G
where w; is provided by Lemma 30.

Recall that div(us A du.) = 0, and thus

/ (ue Ndug) - ¢ = / (ue A dug) - curl k.
G G

Hence

(9.9) ‘/(ug/\dug)-g“‘ < ‘/(vg/\dvs)- cuﬂ/%‘ +/ |Vw,| |Vk|.
G 5 Q\G

From (9.5), the last term in (9.9) is bounded by C'|welly1.0(\). hence by C’||g|| g1/,
since ¢’ < 2.

For the first term, perform an integration by part ( k =0 on 0Q) to get

(9.10) U (ve A due) - curlk‘—Q‘/ (ve) fc‘

and this quantity is bounded, by assumption, by C||k||W1,q(Q) (since supp k C w).

This proves Proposition 2.

Remark 9.2. The proof of Proposition 2 also provides an alternative quick proof of
Theorem 7.
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Corollary 4. The conclusion of Proposition 1 fails for every q < 3.

Proof. By Proposition 2, one would otherwise obtain the boundedness of the Ginzburg-
Landau minimizers in W1?(G) for some p > 3/2. This is not true in general, even for
certain ¢ € Y. Arguing by contradiction, one would otherwise obtain that the limit wu.
obtained in Theorem 9 belongs to WP with p > 3/2. However, this is false. Indeed

Remark 9.3. In general u, ¢ Wbt for t > 3/2. Here is an example (see [5]): Suppose ©
is flat near 0 and choose g(r) = /" with o < 1, « close to 1 and g smooth away from 0.
This g belongs to Y. It is easy to see that the harmonic extension of 1/r* does not belong
to Wbt for t > 3/(a+1). Thus u, ¢ Wi,

Remark 9.4. The preceding also shows that the improved interior estimates from Sec-
tion 7 can not be established via a strengthening of Jerrard-Soner but requires additional
structure (in particular the monotonicity formula).

9.2. Wb3/2 _ estimate of the limit

We start with the simple case when g € Y.
Theorem 11. Assume g € Y and let u, be as in Theorem 9. Then u, € W3/2.

Proof of Theorem 11. Recall that u, = €'Y where ¢ is the harmonic extension of
@ € HY?2 4+ Wbl Therefore, it suffices to apply the following imbedding result, which
is an immediate consequence of Theorem 1.5 in Cohen, Dahmen, Daubechies and DeVore
[23]:

Lemma 30. In 2-dimensions we have W11(Q) ¢ W3-2(Q).

For completeness we will prove a slightly more general form of this result in Appendix
D.

We now turn to the case of a general g € H'/2(Q; S1).

Theorem 12. Let g € H'/?(Q;5') and let (u.) be a minimizer of E. in H}(G;R?). In
view of Theorem 7' we may assume that (modulo a subsequence)

ue, — U in WHP(G), Vp < 3/2.

Then
UeW¥2(q).

Proof of Theorem 12. In the proof we will not fully use the fact that u. is a minimizer.
We will only make use of the properties
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(9.0.1) div(ue Adu:) =0 in G,

(9.0.2) ee = Ec(ue) < Clogl/e,

(9.0.3) ue, — U in WHP(G), Vp < 3/2,
(9.0.4) U =g € HY/2(Q; S1).

Claim

(9.0.5) U A dU belongs to L3/2(G).

This implies that U € W3/2, Indeed we have
b]2 = |a A b|* + |a-bf?

for any vectors a,b in R? with |a| = 1; applying this with a = U and b = g—g yields
|dU| = |U A dU| since U - g—g = 0.

In order to prove the Claim (9.0.5) we will check that, for every ? € L3(G;R3), we
have

(9.0.6) \/?(Umw)\ <0l Tlws.
G

Clearly, it suffices to verify (9.0.6) when ? € C§°. Consider the Hodge decomposition of
=
¢ as above, i.e.,

(9.0.7) ? = curl k +VL in G,
(9.0.8) L=0 on 0G,
(9.0.9) Ik (lwrsc) < Cll ¢ s

Then, by (9.0.1) and (9.0.8),
/VL«UAﬂD:O
G
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and thus

(9.0.10) T (UAdU) = [ (curl K)- (U AdU).
[

We will establish the bound

(9.0.11) } /( curl &) - (U A dU)} < C|F |lw.s

in 5 Steps. The desired estimate (9.0.6) will be consequence of (9.0.10) and (9.0.11).
Step 1. Extensions.

Let Q be a cube such that G € Q. Let k € W13(Q; R3) be such that supp k is contained
in a fixed compact subset of @,

~ —
k= k in G,
and B .
1kllwr3 @) < ClE lwrsa)-

Next, we extend g to Q\ G using Lemma 30. Thus, we obtain a family w. € H'(Q\ G;R?)
satisfying

(9.1.1) WelaGg = 95

(9.1.2) we = 1 in some fixed neighborhood of 0Q),
(9.1.3) E.(we; Q\G) < Clogl/e

(9.1.4) |we [lwrrr\a) < Cp, VD <2

(9.1.5) we, — win WHP(Q\ G), Vp< 2,

for some w € WHP(Q\ G; S1), Vp< 2.

Set
B { u. nG
Ue =
we in @\ G,
so that @, € H'(Q;RR?) and

(9.1.6) G, — U in WHP(Q), Vp<3/2,
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where

~ u in G
U= :
{ w inQ\G
and U € WLP(Q;SY), Vp<3/2.
Clearly,
(9.1.7) E.(te;Q) < Clogl/e.

It is convenient to introduce the following distribution denoted fjx A ﬁxj,i # 7

acting on functions C5°(Q;R).

An immediate computation shows that
(9.1.8)

/ (curl B) - U AdD =< Ty ATy, Tt > + < Uy ATy Tz > + < T A Uiy s > -
Q

[\DI»—l

We will prove e.g. that
(9.1.9) | < Usy AUsy, k> | < O|lkllwrs.

for every k € C3°(Q;R) and similarly for the other terms.
Assuming (9.1.9) we then have

(9.1.10) ‘/( curl k) - ((7/\d(7)‘ < C|lkllws (o)

and thus

U( curl?)-(U/\dU)‘ g‘ /(curl é)-wAdeCH%HWLg(Q)

Q\G
(9.1.11) < kllwrs ey lwllLerz ey + CllElwrs @)
Finally we obtain, by (9.1.4),
— —
(9.1.12) }/( curl k) - (U/\dU)} <C|l k lwrs
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which is the desired estimate (9.0.11).
The rest of the argument is devoted to the proof of (9.1.9).

Step 2. Use of a result of Jerrard-Soner.

For any 73 € R set
Yz, = QN (R? x {z3}).

Consider z3 such that

E. (0|22
(9.2.1) lim inf M < o0
e—0 logl/e
and
(9.2.2) U.. |55, — Ups,, in WHE—(S5,).

From (9.1.6), (9.1.7), this is the case for almost all Z3.

It follows then from Theorem 3.1 in [33] that (e, )sz, A (Ue,, )z, converges in D'(Xz,) to
Uz, AUz, and that

(923) ﬁxl N ﬁxg =T Z didai

where d; = dl(fg) €7, a; =a; (533) S Zi’g satisfy

E.(te \ Yi,)

(2 < T
(9.2.4) ﬁ;|dl(x3)|_l1£r1_}61f og 1/

Thus, from (9.1.7)
(9.2.5) Z/ |di(x3)|dws < C

and we may write

(9.2.6) < Uy, AUy, k >= W/dasg{ > di(ws)k(ai(xs)) }

To bound (9.2.6), we will need, besides (9.2.5), also certain cancellations that have to do
with the sign of d;’s.
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Step 3. Use of minimal connections.
Take 3 as in Step 2 and consider the domain
Oz, = QN [zs < T3] (or x3 > T3).
Since G, — U in Wl’%_(89f3), Gi., — U in HY/2(89Qz,). Remark also that, since U = 1
on 9(), the singularities of U on 0§13, are necessarily in ¥__.

Invoke next Theorem 6’ to claim that

~ ~ E-(io. E(3
(931) WL(U|EE3) :ﬂ.L(UlaQig) Shmlnf E( €|Qm3) s(UE:)

<C.
e=0 logl/e — SHp logl/e —

Note that assumption (5.11) is satisfied since

5 [P =1 < Clog /e
Q
implies
= faap—17 =1 [ [ (ap - 12—
Q S
and then .
= [ (] =17 < )

z3

for some fixed function h € L.

Thus, by (9.3.1), there is a reordering

{al(dl)} = {plv s 7p€} U {nlv s 7n€}
with possible repetition, such that

(9.3.2) Z pj(3) —n;(z3)] < C

J

and (9.2.5), (9.2.6) may be rewritten as

(where 20(z3) = > |di(x3)])

and

(9.3.4) < U, ANUgy, k >= W/dasg{ Z[k(pj (z3)) — k(n](asg))]}

We will now establish the desired bound (9.1.9) with the help of the following
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Proposition 3. Assume (9.3.3) and (9.3.4), then, for every k € C3°(Q;R),

935 ‘ [ aan{ 3 koo - k(nj(ws))}}‘ < Clklwrscay

Step 4. Decomposition of W1 3(R3)-function.
Let k € W1’3(R3), |k|lwis <1 and let
k=) Ak
s>0
be a usual Littlewood-Paley decomposition (we assume suppk C Q).

Thus

(9.4.1) > 8Ak|E < C.

Denote

(9.4.2) As = 8[| Agk|3;

hence

(9.4.3) d A <cC

First we estimate for fixed p > 0

(9.4.4) meas [z3; sup |Ask(z1,z2,x3) > p).
T,

Clearly, for fixed z3,
18k (s zg; ., < C4 A k(es)is,
so that
945 044 <57 [(18kGe)lez, s < Croe| Ak < Cp2

Denote ¢, the function on R

1

.

d|mmmmmnmene e

I
N
o
SIS

A
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Fix sp and decompose for s > sg + 1

Ak = kL, k2, with kL = Adk(l = C1arse)2) (Ask).

S,80
Hence

|]€5 50| < |A5k| X[\Ask\<(s—so)—2]

|ks 50| < |A5k| X[\Ask\>%(s—so)—2]'
Therefore
(9.4.6) > Ik l<C

s>sp+1

and by (9.4.5)
(9.4.7) meas 5, (Projq, (suppk?, ) < C(s —s0)® 27°A,.

Step 5. Estimation of (9.3.5).

Using the decomposition of Step 4, estimate

0500  039< [an{¥Y X ko) -kt

S0 jllpj—mg l~27%0

and

(9.5.1) |k(p;) — k(n)] < > 1Ak(p;) — Ask(ny)]
(9.5.2) + Z s s (03)] + kg 5, (n)])
(9.5.3) + > (k2 o )]+ K2 o (n)]).

Contribution of (9.5.1)

Estimate
|Ask(pj) — Ask(ng)| < [|Ask|lLip [pj — ny| < C2°7%.

Thus the contribution in (9.5.0) is bounded by

/ dws[ ST 20 (] Ipj(as) — nj(es)| ~ 27%))

50,8<50

< /E(Qﬁg)dxg <C
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by (9.3.3).

Contribution of (9.5.2)

Same, since (9.5.2) < C from (9.4.6).
Contribution of (9.5.3)

This is the crux of the argument.

Estimate, using (9.3.2) and the fact that |k2 | < C,

> 163 o0 (s (23)) | < 112 ool - X (z3) - [#4J] |pj(2s) — nj(as)| ~ 27°0}]

Jl |pj—mjl~27%0

Proj$3 (supp k’%’SO)

< C250X 2 ) (:I:3)-

Proj$3 (SuPpks,so
Integration in x3 gives therefore, using (9.4.7),
(9.5.4) C(s —s50)8 27 (5730) ),

which, by (9.4.3), is summable in )

80,5>80"

This completes the proof of (9.3.5), and thus of Theorem 12.

9.3. A geometric estimate related to Proposition 3

With the same technique as in the proof of Proposition 3 we may derive the follow-
ing estimate which has an interesting geometric flavour. It may be used to provide an
alternative proof of Theorem 12 as in [BOS1].

Proposition 4. Let I be a closed, oriented, rectifiable curve in R3, and denote by t the
ﬁ
unit tangent vector along I'; let k € W13(R3;R3).Then

ﬁ
[T <l
r
Proof. Part of the argument is a repetition of the proof of Proposition 3, but we have
kept it for the convenience of the reader who wishes to concentrate on Propostion 4 inde-

pendently of the rest of the paper. Assume |I'| =1 and let 7 : [0,1] — T be the arclength
parametrization (|§| = 1).

We need to bound

(9.6.1) [ = [ dn| 3 otoh)]

T xel"z3
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where I'y, = I'N [z = x3] is assumed finite (by choice of coordinate system) and o(y(s)) =
signys(s).
Thus 'y, ={P1,... , B} U{N1,... ,N,}, where o(P;) =1 and 0(Q;) = —1. Also,

1
r=r(x3) = icard(I‘m)

and

[ ez =3 [ aolds <1,

(9.6.3) Y IR -Ni| < T =1.

Write k for k3 and assume ||k||y1.3 < 1. Write, for fixed 3,

r(xs)

> ol@k(@)| < D [K(P) — k(N

xEFz3

(9.6.4) => Y kP k().

S0 |P.L‘—N.L‘|N2_SO

To estimate (9.6.4), we perform again the same decomposition of & € W3, Thus, for

fixed sg,
1 2
k=ke+ > kb o+ > k2
8>S0 8>S0

satisfying
(9.6.5) Vs, | S 2%
(9.6.6) gyl S (s = 50) 77

|k§0 <1 and

supp k2, , contained in the union of < o(s — 50)° cubes of size 27*
with

(9.6.8) Y o.<C
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(in fact ol/3 = |Ask|lwrs, k=D Ask, Littlewood-Paley decomposition).

Returning to (9.6.4), we get for fixed s,

(9.6.9) D ks (P) = key (V)]

|P.L‘—N.L‘|N2_SO
+

(9.6.10) > Do ke (P LR ()]

$>S0 |P.L‘—N.L‘|N2_SO
+

(9.6.11) > Yo KL LB+ IKS ().

§>50 |P7:—N7:|N2_SO
Contribution of (9.6.9)

(9.6.5) = (9.6.9) < #{i| |Ps — Ny| ~27%}.

Sum in sg = r(x3) satisfying (9.6.2).

Contribution of (9.6.10)

(9.6.6) = Y |kl | <

8>S0

Hence
(9.6.10) < #{i||P; — N;| ~ 27},

Contribution of (9.6.11)

For fixed s > so, we need to restrict 3 to Proja,(supp k2, ,) C R of measure < os(s —
50)%27% by (9.6.7).

By (963), #{Z“Pz _Nz| ~ 2—50} < 250’ \V/[L'3,
Thus,
/dxs{ Z |]€50 JP)+ .| <os(s— 30)62—(5_50)’

|P.L‘—N.L‘|N2_SO

summable in s, sg, s > s, taking also (9.6.8) into account.
10. Open problems
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OP1. Let u. be a minimizer of E; in H; with g € HY/2(Q; S1). Is it true that
/|sti /\ung| <C Vijase—07
G

OP2. Let u. be a minimizer of E; in H; with g € HY/2(Q; S1). Is it true that
[uellwrs2(qy < Case—07
Is (ue) relatively compact in W13/27
OP3. Assume u. : B — R? (B unit ball in R3) is smooth and satisfies
[ v+ 5 [ uel - 12 < Clog/e).
B

B
Is it true that for every compact subset K C B,

[(wes Nuce| < Culipliwns i € C(ER?
B

(As explained in Section 9.1 a positive solution of OP3 yields a positive answer to OP2)

OP4. Let u. be a minimizer of E; in H; with g € HY/2(Q; S1). Is it true that
|uc| is bounded in H'(G) ?

11. Appendices

Appendix A. The upper bound for the energy

With G and 2 = 0G as in Section 1, consider the following distinguished classes in
H'Y2(Q; S1):
R =1{gecgecWrP(Q;S!),Vp < 2;g is smooth away from a finite set ¥ of singularities},
Ro ={g € R;|Vy(z)| < C/|z — 0| near each o € ¥ and deg(g,0) = £1, Vo € T},
for each o € X, there is some R € O(3) such that
‘g(az)—R(x_”)‘§C|az—a|f0ra:neara }’

lz—o]

R1={96R0

where O(3) denotes the group of linear isometries of R3. Here, we identify S! C R? with
S1 x {0} viewed as a subset of R3. From the definition of R; we see that R must map
the tangent plane T, () into R? x {0} and thus R(n(c)) = (0,0,+1), where n(o) is the
outward unit normal to €. Clearly, deg(g,0) = +1 if R is orientation-preserving and -1
otherwise.

This Appendix is devoted to the proof of the following
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Lemma A.1. Let g € Ry and let Lg be the length of a minimal connection corresponding
to the geodesic distance in G. Then

(A1) Min {E.(u);u € H;(G; R*)} < wLg(g)log(1/e) + o(log(1/¢)) as e — 0.

The proof we present below uses some arguments from [40], Section 1.
Proof. Given § > 0 small, we first construct a domain G5 and a diffeomorphism &;s:
G — G5 (with & : 0G — 0Gy) such that
(A.2) |D¢s — 1| < Cdon G

and 0Gj is flat in a §-neighborhood of each singularity &5(a;) of gs = go &5 '

The construction of &; is standard. Assume, for simplicity, that 0 is a singular point of
g on £ and that, near 0, the graph of ) is given by x3 = (z1,x2) with ¢ smooth and
V(0) = 0. Set
n(x1, z2, x3) = (21,2, 3 — Y(21,72))

so that ||[Dn(z) — I|| < C|z| near 0. Let ¢ € C§°(B1) with ( =1 on By /5. Then

&(x) =+ ((2/0)(n(x) —x),r € G
has all the required properties relative to one singularity. We proceed similarly for the

other singularities.

We now write G and g instead of G5 and gs, so that we may assume that €2 is flat in a
d-neighborhood of each singularity.

After relabeling the singularities of g, we may assume that L (g) = >_;_; length (v;),
where «; connects (in G) P; and N;. We now introduce a second parameter A\,0 < X < 9,
and we choose some disjoint smooth curves I'; having the following properties:

) S8 length () < La(g) + X;

b) I'; is a simple curve;

&

c) I'; is contained in G except for its endpoints P; and Nj;
d) the curve I'; is orthogonal to € in a A-neighborhood of its endpoints.

Moreover, we may assume that I'; is parametrized in such a way that the tangent vector
at P; is outward and the one at N; is inward. We take the arclength as parameter. We
may thus write I'; = {X;(¢);t € [0,1}]}, with X;(0) = N;,X;(T;) = P;, where X; is
smooth, into and an immersion, and 7; = length(I';).
We consider the unit tangent vector to I';, e(X;(¢)) = X’ (t). We may find two smooth

(2)), e

; X

J J
vector fields f,g on I'; such that {f(X;(t)),9(X; X;(t))} is a direct orthonormal
basis for each t.
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We now define the map ®; : [0,7}] x By — R3 by
®;(t, u,v) = X;(t) +uf(X;(t)) +vg(X;(t)),
where By = {(u,v) € R?;u? + v? < \?}.
Clearly,
(A.3) | D®;(t,u,v) — M(t)|| < CAon [0,T;] x By,

where M (t) € O(3). Thus, for A sufficiently small, ®; is a diffeomorphism from [0, T}] x By
onto a A-tubular neighborhood U; of T';. Moreover U; C G for A small.

It is easy to see that the restriction of g to Q\ U;U; has a smooth S'-valued extension,
g, to G\ U;U;. Indeed, let ¢; : G — R3 be a diffeomorphism onto (;(G) with ¢;(G) C
Bgr x [0,7T;] and ¢;(U;) = By x [0,Tj]. Consider the function k : R® — S! defined by
k(z,y,2) = (z,9)/ (@ +y*)'/2.

Then
kj:kOleG\Uj—)SI

is smooth and
¢ =1_1k; : G\UU; — S
J

is also smooth. Moreover
deg(q,C7) = £1 Vj

where C’;r ={z € U |z — Pj[ = A} and C; = {z € Q; |z — N;| = A}. Therefore
deg(g/q,C;) =0 Vij.

Hence the function g/q restricted to Q \ UU; admits a smooth extension f : Q — S*.
J

Then f extends to a smooth map f : G — S!. Finally, the map § = fq has the desired
properties.

Clearly we have

(A4) E.(3:G\UUj) < O,

Consider the map h; : 9([0,7;] x By) — S! defined by

h_{go@j, on [0,7T}] x OBy
T go®;, on {0} x By and on {T;} x By
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Then h; is smooth on 0(]0,Tj] x By) except at the points (0,0,0) and (7},0,0). From the
construction in [40] we know that

(A.5) Min {E.(u; (0,T;) x By));u € Hj, ((0,T;) x Bx; R?)} < 7T log(1/e) 4 Ch.
Using (A.5) and (A.3) we return to U; via ®; and obtain a map
v=vx:U; — R?
such that v = g on (OU;) N Q and
(A.6) E.(v;U;) < (nTjlog(1/e) + Cx)(1 + CN).
Gluing the maps v; .\ defined above with the map §|5\UjUj, we obtain a map we ) :

G — R? satisfying
We,x = g on {2

and (by (A.4) and (A.6)),
(A7) E.(wex;G) < (W(Z T;)log(1/e) + CA) (1+CN) + Ch.

Returning to the original notation Gs and 5 = 0Gg, we have just constructed a map
we ) : Gs — R? satisfying
We A = g5 = 9055_1 on s

and

(A.8) E. (w27 Gs) < 7(La, (95) + A) log(1/€)(1 + CA) + Ch.

Finally, coming back to the original domain G via &5, we obtain some w, x5 € H; (G;R?)
such that

(A.9) E (e 26;G) < [m(Lgy(g5) + N log(1/e)(1 + CN) + Cy](1 + C9).

It is easy to see that
|La;(95) — La(g)] < Co

and thus we arrive at
(A.10) E. (W 26;G) < mLi(g)log(1/e)(1 +CA+ C9o) + C;\’(;,

which yields the desired conclusion (A.1) since A\ < § are arbitrarily small.

Appendix B. A variant of the density result of T. Riviere

We use the same notation as in Appendix A for R, R, and R;. Recall that R is dense
in H'Y/2(Q; S1); see Riviere [38], quoted as Lemma 11, and see Remark 5.1 for a proof.
This Appendix is devoted to the following improvement:
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Lemma B.1. The class R, is dense in H'/?(; S1).

Proof. Given g € HY/?(€;S') and £ > 0 we first use the density of Ry to construct a
map h € Rg such that ||h — g|g1/2 < e.

Next, write, as usual, the singular set > of h as
Y={P,Ps,... ,Py,N1,No,... , Ni}.

For every o € €, let T,(2) denote the tangent plane to 2 at o; we orient it using the
outward normal n(c) to G. Let Py denote the projection onto €2 defined in a tubular
neighborhood of € in R3.

For each i = 1,2,... |k, fix two smooth maps:

v H{E € Tr ()¢ = 1} — S,
v HE € In,(Q); € = 1} — 57,

such that
(B.1) deg(v;") = +1 and deg(y; ) = —1.

The conclusion of Lemma B.1 is an immediate consequence of the following more general:

Claim. With h as above, there is a sequence (hy,) in H/2(Q; S') such that:

(B.2) hp — hin HY/?

(B.3) he € C®(Q\ 3 5Y), Vn,

(B.4) h, € WHP(Q\ 2;8Y), Vn, Vp<2,
(B.5) \Vhn(z)| < Cp/dist (2,8), Vn, VozeQ\X,

for all 0 < t < to (sufficiently small, depending only on Q) and all i = 1,2, ...k, we have:

(B.6) (P (P; +16)) — 9" (§)] < Cut,  Vn, Y€ € Tp,(Q), 6] =1,
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Proof of the Claim. Fix an arbitrary function k € C*°(Q\ ; SHnwWir(Q,S1), Vp < 2
satisfying

(B.8) |IVE(z)| < Cdist (z,%), VreQ\X,
(B.9) [E(Pa(P; +1€)) — %7 (§)] < Ct,
(B.10) |[k(Pa(Ni +t€)) —; (§)] < Ct,

for all ¢,7,¢ as in (B.6) - (B.7).

The existence of k is proved as in Appendix A. First we define it on 9B; x [0, 7] using
the parameter t to homotopy ’y;r to the complex conjugate of 7,;". We then extend it to
B; x [0,T] by homogeneity of degree 0 and transfer it to a “tube-like” region U; in G
connecting P; to N;. Finally, we extend these functions smoothly to G \ U;, take their
complex product, and restrict it to 2.

To complete the proof of the Claim, note that T'(h) = T'(k) = 2« Zle((SPi —0n,). Thus
T(hk) = 0 and, by Theorem 2, there exists a sequence r, € C*({; S!) such that r, — hk
in H'/2. Using the fact that points have zero H'-capacity in 2 — d (and thus zero H'/? -
capacity), we may also assume that r,(P;) = r,(N;) =1, Vn,Vi. Clearly, the sequence
hy, = kry, has all the desired properties (B.2) - (B.7).

Lemma B.1 is obtained by choosing, in the Claim, as ’y;r and 7, any isometries from
Tp,(Q) and Ty, (Q) onto R?

Appendix C: Almost Z-valued functions

The purpose of this section is to prove the following fact used earlier in Section 8.

Lemma C.2. Assume o € H'/2((0,1) x (0,1)) and {Q,} a collection of squares in (0, 1)?
such that

(C.1) lellpas <C
(C.2) e = 110,112 \0Qa) <€
(C.3) [Pl < S(log(1/e))"/?

(C.4) > oa <,

where ¢ < 6 < 1 and o, denotes the size of ().
Then there is some a € Z such that

(C.5) lp — 2mal|r < CHYE.
The proof will rely on the following inequality (see also [15] and [35] for related results).
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Lemma C1. Let Q = (0,1)2, f € LY(Q). Then for all 0 < p < po, po sufficiently small,

(€0 -1, < Cuogp'_lcg[é E e

with C some constant.

Proof of Lemma C2. It follows from (C2) that we may write @) as a disjoint union

Q=JQ.uzul]A4;

JEZ
where
(C.7) A; C [l —2mj| < &'/
(C.8) | Zo| < 3/,

Apply Lemma C.1 to f = ya, with p = &'/?%. Hence, denoting Z = Zy UJ,, Qa,

A1 - |45]) < Clloge]™! // o~y (Jz— ) + )2

Ajx(Q\A;)
gcuogerlZ/ |x—y|—3+0|1oge|—1/ 2~y |z —y| + p)2
E¢JAJ><A;C AjXZ
2
_ xXr) — Yy _ _ _
<Clogel [ E=EIE L Cptogel [[ o —al e vl 40
AjXUAk AjXZ
k#j

Summation over j gives

714511 — |4;]) < Clloge| ™ [l /e + Clloge] // 2=y (2 — y| + )2
J Zx(Q\2)

by (C.3) 1
(C.9) < 052+C|log5|_1{z // Iz —y| " (Jz —y| + p) 2| + C|Zo|.c” 1.

Y Qax(Q\Qa)

For fixed «, estimate
(C.10) J[ et e=u0
Qa X (Q\Qa)
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Since for fixed = € Q4, |z — y| > dist (z,0Q, ), we get easily

(C.10) < C’/ [dist (z,0Q4) + p] 'dx < C|loge|o,

(e}

with o, the size of Q.
Substitute in (C.9) and use (C.4), (C.8) to bound

(C.11) STIA(1 = |A4]) SC2+CD oa +e1710 < C5+ 30,
J
Take jo with |A4;| = max |A;]. Thus |A;| < 3 for j # jo and by (C.11)
(C.12) 14l <6+,
J#Jo
Taking a = jo, finally estimate using (C.1), (C.7)
lo = 2mally <l = 2mjollLr(a,y) + [lllr@\a,y) + 27lal [Q\Aj]
< et + ClQ\A, [T + 2mla] [Q\4p|
where, by (C.4), (C.8), (C.12)
[Q\Ajo| <D 1Qal + 1201 + > 1A <D ol + ¥4+ C(6+Y7)

Jj#Jjo

< C(6 +£3/°).

Hence
o — 2mally < C (Y2 + 6Y4) 4 Cla|) (6 + £%/7)

implying
2nlal < [lolly +1 +a
la| < C and || — 2mall; < C(6Y/* +£1/8) < C5Y/8
which is (C.5).

Proof of Lemma C.1. We will derive the inequality by contradiction, using Theorem 4
n [14]. Let thus (f,) be a sequence in L(Q) and (g,) | 0 such that

C.13 log &y, 1// @) = I <1
(1) fosenl™ [ e et
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and
(C.14) I = [ Fullss = o
Denote by p, the radial modifier on R?

(C.15) pn(@) = cnllogen| ™ (2] +€n) 77

with ¢, such that [ p, =1 (hence ¢, ~ 1). Applying Theorem 4 from [14], with p = 1, it
follows that (f,,) is relatively compact in L'(Q), contradicting (C.14). This proves (C.6).

Appendix D. Sobolev imbeddings for BV

It is well-known that, if p > 1 and 0 < s < 1, then
Whr(Q) c W4(Q), Q c R?

with

This imbedding fails for p =1 and d = 1, i.e., W is not contained in W/%4 for ¢ > 1.
Surprisingly, the imbedding holds when p =1 and d > 2.

Lemma D.1. Assumed > 2 and 0 < s < 1. Then
BV (R?) ¢ WHP(R?)

with

(D.1) o1

When d = 2, this result is an immediate consequence of an interpolation result of Cohen,
Dahmen, Daubechies and DeVore [23]. It also seems to be contained in an earlier work of
V. A. Solonnikov [44] although the condition d > 2 does not appear in his paper. We thank
V. Maz’ya and T. Shaposhnikova for calling our attention to the paper of Solonnikov and
for confirming that the assumption d > 2 is indeed used there implicitly; they have also
devised another proof of Solonnikov’s inequality (personal communication).

Our proof relies on the following one-dimensional elementary inequality:
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Lemma D.2. Let 1 <p < oo and0 < s <1/p. Then, for every f € C§°(R),

1—s
(D.2) ey < CIALS @I I g,
where C' depends only on p and s.

Here, | |ys» ) denotes the canonical semi-norm on W*P(R), i.e.,

[ i+~ @)
Ve ) = / pyE dh.

Proof. Write, for A > 0,

>‘ o0
|f|W3p Z/dx/---dh+/dx/...dh
R 0 2

1—sp —s
A P

_ A
< I A 2 1
B )\1 sp 2\ —SP
§;2p1(Hf|| I )

since sp < 1. Minimizing in \ yields (D.2) with C = 2P~1 /sp(1 — sp).

Proof of Lemma D.1. Let u € C§°(R%). We will use the following equivalent norm on
WeP ( see e.g. Adams [1], Lemma 7.44)

|u x + hej) — u(x)|P dh.

(D.3) ||u||€[/s,p ~ ||/LI/||§/17 h1+5p

Jj= 1Rd

Note that BV ¢ L' N L4/(@=1 and thus we may estimate (via Holder)
[ullr < Cllullv,

since

:1_@__ 1-s

1
p d 1 d/(d—1)

»

(D.4)
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We now turn to the second term in (D.3); without loss of generality we may take j = 1.
We apply Lemma D.1 to the function

f() = ’LL(-, L2y L3y eeny xd)

(note that, by (D.4), sp < 1) and we obtain

/d{[;l /OO |U([L’1 -i-h,fL'Q,.--,xd) _u($1,$2,---,xd)|pdh
0
R

1+s
(D.5) hirer

1—s sp2 sp(l—s 1—s 1—s sp>
< CIFIESEIF N ) < CIAIE PN A Coe? Pl IR

On the other hand, we have

(D.6) / ||f’||L1(R)da:2d933...da:d§/|Vu|da:.
Rd—-1 Rd

On the other hand, the imbedding BV c L% (?=1) gives, with ¢ = d/(d — 1),

q

(D.7) / 1120 gy A2 g = ([0 ) < C /|Vu|d:)3
Rd—1 d

Finally we claim that

(d—1)/(d~2)
(D.8) / 11155 ) P dwsdas...dza < C /|Vu|d33 ;
Rd—1 d

when d = 2, inequality (D.8) reads
ez, < [ 1970l
R2

To prove (D.8) we use once more the imbedding BV C L”, but this time in R¢~!, with
r=(d—1)/(d —2), and we obtain

(D.9) 1, ) e gany < C / Vu(ar, )| dzads...dza.
Rd—1
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Next, we have

[ fl L (ra—1,01 (R)) =

R/ |, )lda

< / |f(z1, )| L (ma-1ydr1 by the triangle inequality
R

LT (Rd—l)

< C/|Vu(33)|d:)3 by (D.9).
Rd

Finally, we return to (D.5), integrate in dzodrs...dxq, and apply Holder with exponents
P, Q, R such that

Psp(l —sp) = (d—1)/(d —2),
Q1 —s)p(1 —sp) =d/(d - 1),
Rsp? = 1.

[ A straightforward computation shows that + + 5 + % = 1]. From (D.8), (D.7) and (D.6)

we deduce that
p

|u|€vs’p(Rd) <C /|Vu|da:
d
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Added in proof:

1) After our work was completed some of our results were generalized to higher dimen-

sions in [ABO].

2) F. Bethuel, G. Orlandi and D. Smets have solved our Open Problem 3 (and thereby
also Open Problem 2) in Section 10; see [BOS1] and [BOS2].

3) J. Van Schaftingen [VS] has given an elementary proof of our Proposition 4, which
extends easily to higher dimensions. His proof follows the same strategy as ours, except
that he uses the Morrey-Sobolev imbedding in place of a Littlewood Paley decomposition.

4) An alternative approach to Proposition 4 is to use a new estimate for the div-curl
system (see [BB]), namely

w32 < C| curl ul|p1, Vu with div u = 0.
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