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1. Introduction

Let G ⊂ R3 be a smooth bounded domain with Ω = ∂G simply connected. We are
concerned with the properties of the space

H1/2(Ω;S1) = {g ∈ H1/2(Ω; R2); |g| = 1 a.e. on Ω}.

Recall (see [12]) that there are functions in H1/2(Ω;S1) which cannot be written in the
form g = eıϕ with ϕ ∈ H1/2(Ω; R). For example, we may assume that locally, near a point
on Ω, say 0, Ω is a disc B1; then take

(1.1) g(x, y) = (x, y)/(x2 + y2)1/2 on B1.

Recall also (see [25]) that there are functions inH1/2(Ω;S1) which cannot be approximated
in the H1/2-norm by functions in C∞(Ω;S1). Consider, for example, again a function g
which is the same as in (1.1) near 0.

It is therefore natural to introduce the classes

X = {g ∈ H1/2(Ω;S1); g = eıϕ for some ϕ ∈ H1/2(Ω; R)}

and
Y = C∞(Ω;S1)

H1/2

.

Clearly, we have
X ⊂ Y ⊂ H1/2(Ω;S1).

Moreover, these inclusions are strict. Indeed, any function g ∈ H1/2(Ω;S1) which satisfies
(1.1) does not belong to Y . On the other hand, the function

g(x, y) =
{
e2ıπ/r

α

, on B1

1, on Ω\B1
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with r = (x2 + y2)1/2 and 1/2 ≤ α < 1, belongs to Y , but not to X(see [12]).

To every map g ∈ H1/2(Ω; R2) we associate a distribution T = T (g) ∈ D′(Ω; R). When
g ∈ H1/2(Ω;S1), the distribution T (g) describes the location and the topological degree
of its singularities. This is the analogue of a tool introduced by Brezis, Coron and Lieb
[19] in the framework of H1(G;S2) (see the discussion following Lemma 2 below). In the
context of H1/2(Ω;S1), the distribution T (g) and the corresponding number L(g) (defined
after Lemma 1) were originally introduced by the authors in 1996 and these concepts were
presented in various lectures.

Given g ∈ H1/2(Ω; R2) and ϕ ∈ Lip (Ω; R), consider any U ∈ H1(G; R2) and any
Φ ∈ Lip (G; R) such that

(1.2) U|Ω = g and Φ|Ω = ϕ.

Set
H = 2(Uy ∧ Uz, Uz ∧ Ux, Ux ∧ Uy);

this H is independent of the choice of direct orthonormal bases in R3 (to compute deriva-
tives) and in R2 (to compute ∧-products). Next, consider

(1.3)
∫

G

H · ∇Φ.

It is not difficult to show (see Section 2) that (1.3) is independent of the choice of U and
Φ; it depends only on g and ϕ. We may thus define the distribution T (g) ∈ D′(Ω; R) by

〈T (g), ϕ〉 =
∫

G

H · ∇Φ.

If there is no ambiguity, we will simply write T instead of T (g).

When g has a little more regularity, we may also express T in a simpler form:

Lemma 1. If g ∈ H1/2(Ω; R2) ∩W 1,1(Ω; R2) ∩ L∞(Ω; R2), then

〈T (g), ϕ〉 =
∫

Ω

((g ∧ gx)ϕy − (g ∧ gy)ϕx) , ∀ϕ ∈ Lip(Ω; R).

The integrand is computed pointwise in any orthonormal frame (x, y) such that (x, y, n)
is direct, where n is the outward normal to G – and the corresponding quantity is frame-
invariant.

By analogy with the results of [19] and [6] we introduce, for every g ∈ H1/2(Ω; R2), the
number

L(g) =
1
2π

Sup { 〈T (g), ϕ〉 ; ϕ ∈ Lip (Ω; R), |ϕ|Lip ≤ 1 } =
1
2π

Max {. . . },
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where |ϕ|Lip = Sup
x6=y

|ϕ(x) − ϕ(y)|/d(x, y) refers to a given metric d on Ω. There are three

(equivalent) metrics on Ω which are of interest:

(1.4)

dR3(x, y) = |x − y|,
dG(x, y) = the geodesic distance in Ḡ,

dΩ(x, y) = the geodesic distance in Ω.

When dealing with a specified metric, we will write LR3 , LG or LΩ. Otherwise, we will
simply write L (note that all these L′s are equivalent). It is easy to see that

(1.5) 0 ≤ L(g) ≤ C‖g‖2
H1/2, ∀g ∈ H1/2(Ω; R2)

and

(1.6) |L(g) − L(h)| ≤ C‖g − h‖H1/2(‖g‖H1/2 + ‖h‖H1/2), ∀g, h ∈ H1/2(Ω; R2).

When g takes its values into S1 and has only a finite number of singularities, there are
very simple expressions for T (g) and L(g):

Lemma 2. If g ∈ H1/2(Ω;S1) ∩H1
loc(Ω\ ∪kj=1 {aj};S1), then

T (g) = 2π
k∑

j=1

djδaj ,

where dj = deg(g, aj). Moreover L(g) is the length of the minimal connection associated
to the configuration (aj , dj) and to the specific metric on Ω (in the sense of [19]; see also
[27]).

Remark 1.1. Here, deg(g, aj) denotes the topological degree of g restricted to any small
circle around aj , positively oriented with respect to the outward normal. It is well defined
using the degree theory for maps in H1/2(S1;S1) (see [17] and [22]).

By the definition of T (g), we see that 〈T (g), 1〉 = 0. Therefore, if g is as in Lemma
2, then

∑
dj = 0. Thus we may write the collection of points (aj ), repeated with their

multiplicity dj , as (P1, . . . , Pk,N1, . . . ,Nk), where k = 1/2
∑

|dj | (we exclude from this
collection the points of degree 0). A point aj is counted among the P ’s if it has positive
degree and among the N ’s otherwise. Then L(g) = Inf

σ

∑
d(Pj ,Nσ(j)). Here, the Inf is

taken over all the permutations σ of {1, . . . , k} and d is one of the metrics in (1.4).

The conclusion of Lemma 2 is reminiscent of a concept originally introduced by Brezis,
Coron and Lieb [19]. There, u is a map from G ⊂ R3 into S2 with a finite number of
singularities aj ∈ G. To such a map u, one associates a distribution T (u) describing
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the location and the topological charge of the singular set of u. More precisely, if u ∈
H1(G;S2), set

D = (u · uy ∧ uz, u · uz ∧ ux, u · ux ∧ uz)

and T (u) = divD.

If u is smooth except at the aj ’s, it is proved in [19] that

T (u) = 4π
∑

djδaj .

Here, dj is the topological degree of u around aj .

Using a density result of T. Rivière (see [38] and Lemma 11 in Section 2; see also the
proof of Lemma 23, Remark 5.1 and Appendix B), we will extend Lemma 2 to general
functions in H1/2(Ω;S1):

Theorem 1. Given any g ∈ H1/2(Ω;S1), there are two sequences of points (Pi) and (Ni)
in Ω such that

(1.7)
∑

i

|Pi −Ni| <∞

and

(1.8) 〈T (g), ϕ〉 = 2π
∑

i

(
ϕ(Pi) − ϕ(Ni)

)
, ∀ϕ ∈ Lip (Ω; R).

In addition, for any metric d in (1.4)

L(g) = Inf
∑

i

d(Pi,Ni),

where the infimum is taken over all possible sequences (Pi), (Ni) satisfying (1.7), (1.8).
If the distribution T is a measure (of finite total mass), then

T (g) = 2π
∑

finite

djδaj

with dj ∈ Z and aj ∈ Ω.

Remark 1.2. There are always infinitely many representations of T (g) as a sum satisfying
(1.7)-(1.8) and such representations need not be equivalent modulo a permutation of points.
For example, a dipole δP − δQ may be represented as δP − δQ1 +

∑
j≥1(δQj − δQj+1) for

any sequence (Qj) rapidly converging to Q.

The last assertion in Theorem 1 is the H1/2-analogue of a result of Jerrard and Soner
[28, 29] (see also Hang and Lin [28]) concerning maps in W 1,1(Ω;S1).

Maps in Y can be characterized in terms of the distribution T :
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Theorem 2 (Rivière [38]). Let g ∈ H1/2(Ω;S1). Then T (g) = 0 if and only if g ∈ Y .

This result is the H1/2-counterpart of a well-known result of Bethuel [3] characterizing
the closure of smooth maps in H1(B3;S2) (see also Demengel [24]).

The implication g ∈ Y =⇒ T (g) = 0 is trivial, using e.g. (1.6). The converse is more
delicate; it uses the “dipole removing” technique of Bethuel [3] and we refer the reader to
[38]; for convenience we present in Section 4 a slightly different proof.

As was mentioned earlier, functions in Y need not belong to X, i.e., they need not have
a lifting in H1/2(Ω; R). However, we have

Theorem 3. For every g ∈ Y there exists ϕ ∈ H1/2(Ω; R) +W 1,1(Ω; R), which is unique
(modulo 2π), such that g = eıϕ. Conversely, if g ∈ H1/2(Ω;S1) can be written as g = eıϕ

with ϕ ∈ H1/2 +W 1,1, then g ∈ Y .

The existence will be proved in Section 3 with the help of paraproducts (in the sense of
J.-M. Bony and Y. Meyer). The heart of the matter is the estimate

(1.9) ‖ϕ‖H1/2+W1,1 ≤ CΩ‖eıϕ‖H1/2(1 + ‖eıϕ‖H1/2),

which holds for any smooth real-valued function ϕ; here CΩ depends only on Ω.

Using Theorem 3 and the basic estimate (1.9), we will prove that, for every g ∈
H1/2(Ω;S1), there exists ϕ ∈ H1/2(Ω; R) + BV (Ω; R) such that g = eıϕ (see Section
4). Of course, this ϕ is not unique. There is an interesting link between all possible liftings
of g and the minimal connection of g:

Theorem 4. For every g ∈ H1/2(Ω;S1) we have

Inf {|ϕ2|BV ; g = eı(ϕ1+ϕ2);ϕ1 ∈ H1/2 and ϕ2 ∈ BV } = 4πLΩ(g),

where |ϕ2|BV =
∫
Ω
|Dϕ2|.

Another useful fact about the structure of H1/2(Ω;S1) is the following factorization
result:

Theorem 5. We have

H1/2(Ω;S1) = (X) · (H1/2 ∩W 1,1),

i.e., every g ∈ H1/2(Ω;S1) may be written as g = eıϕh, with ϕ ∈ H1/2(Ω; R) and h ∈
H1/2(Ω;S1) ∩W 1,1(Ω;S1). Moreover we have the control

‖ϕ‖2
H1/2 + ‖h‖W1,1 ≤ CΩ‖g‖2

H1/2.
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The interplay between the Ginzburg-Landau energy and minimal connections has been
first pointed out in the important work of T. Rivière [37] (see also [34] and [38]) in the
case of boundary data with a finite number of singularities. We are concerned here with a
general boundary condition g in H1/2.

Given g ∈ H1/2(Ω;S1), set

(1.10) eε,g = eε = Min
H1

g (G;R2)
Eε(u),

where

Eε(u) =
1
2

∫

G

|∇u|2 +
1

4ε2

∫

G

(|u|2 − 1)2

and
H1
g (G; R2) = {u ∈ H1(G; R2);u = g on Ω}.

Theorem 6. For every g ∈ H1/2(Ω;S1) we have, as ε→ 0,

(1.11) eε = πLG(g) log(1/ε) + o(log(1/ε)).

This result and some variants are proved in Section 5. For special g′s (namely g′s with
finite number of singularities), formula (1.11) was first proved by T. Rivière in [37]. For a
general g ∈ H1/2(Ω;S1), it was established in [12] that

eε ≤ C(g) log(1/ε)

where C(g) = C(G)‖g‖2
H1/2(Ω)

; another proof of the same inequality is given in [38].

Using Theorem 6, we may characterize the classes X and Y in terms of the behavior of
the Ginzburg-Landau energy as ε→ 0. Indeed, Theorem 6 implies that

Y = { g ∈ H1/2(Ω;S1) ; eε = o(log(1/ε)) }.

On the other hand, it is easy to see that

X = { g ∈ H1/2(Ω;S1) ; eε = O(1) }.

Next, we present various estimates for minimizers uε in (1.10). In Section 6, we discuss
the following theorem (originally announced in [13] and subsequently established with a
simpler proof in [5]):
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Theorem 7. For every g ∈ H1/2(Ω;S1) we have

(1.12) ‖uε‖W1,p(G) ≤ Cp, ∀ 1 ≤ p < 3/2.

In fact, we will prove the following slight generalization of Theorem 7:

Theorem 7′. For every g ∈ H1/2(Ω;S1), the family (uε) is relatively compact in W 1,p

for every p < 3/2.

Remark 1.3. It is very plausible that Theorem 7 still holds when p = 3/2. However, the
conclusion fails for p > 3/2; see the discussion in Section 9.

In Section 7, we will establish stronger interior estimates:

Theorem 8. For every g ∈ H1/2(Ω;S1), we have

(1.13) ‖uε‖W1,p (K) ≤ Cp,K , ∀ 1 ≤ p < 2, ∀K compact in G.

Consequently, (uε) is relatively compact in W 1,p
loc for every p < 2.

Remark 1.4. The conclusion of Theorem 8 fails for p = 2. Here is an example, with
G = B1, the unit ball in R3, and g(x1, x2, x3) = (x1, x2)

/√
x2

1 + x2
2. T. Rivière [37] (see

also F.H. Lin and T. Rivière [34]) has proved that in this case uε → u = (x1, x2)
/√

x2
1 + x2

2,
and clearly this u does not belong to H1

loc(G).

Finally, we have a very precise result concerning the limit of uε when g ∈ Y :

Theorem 9. For every g ∈ Y , write (as in Theorem 3) g = eıϕ, with ϕ ∈ H1/2 +W 1,1.
Then we have

uε → u∗ = eıϕ̃ in W 1,p(G) ∩ C∞(G), ∀p < 3/2,

where ϕ̃ is the harmonic extension of ϕ.

Theorem 9 and some of its variants are presented in Section 8. In Section 9 we prove
some partial results about estimates in W 1,p when p = 3/2. In Section 10 we list some
open problems.

Most of the results in this paper were announced in [13].

The paper is organized as follows:

1. Introduction

2. Elementary properties of the minimal connection. Proof of Theorem 1
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3. Lifting for g ∈ Y . Characterization of Y . Proof of Theorem 3

4. Lifting for a general g ∈ H1/2. Optimizing the BV part of the phase. Proof of Theorems
4 and 5

5. Minimal connection and Ginzburg-Landau energy for g ∈ H1/2. Proof of Theorem 6

6. W 1,p(G) compactness for p < 3/2 and g ∈ H1/2. Proof of Theorem 7′

7. Improved interior estimates. W 1,p
loc (G) compactness for p < 2 and g ∈ H1/2. Proof of

Theorem 8

8. Convergence for g ∈ Y . Proof of Theorem 9

9. Further thoughts about p = 3/2

10. Some open problems

11. Appendices

A. The upper bound for the energy

B. A variant of the density result of T. Rivière

C. Almost Z-valued functions

D. Sobolev imbeddings for BV

12. References

2. Elementary properties of the minimal connection. Proof of Theorem 1

To every g ∈ H1/2(Ω; R2) we associate a distribution T (g) ∈ D′(Ω; R) in the following
way: consider any U ∈ H1(G; R2) such that

U|Ω = g.

Given ϕ ∈ Lip (Ω; R), let Φ ∈ Lip (G; R) be such that

Φ|Ω = ϕ.

Set
H = 2(Uy ∧ Uz, Uz ∧ Ux, Ux ∧ Uy).
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Lemma 3. The quantity
∫
G

H · ∇Φ depends only on g and ϕ.

Proof. We first claim that
∫
G

H · ∇Φ does not depend on the choice of Φ. Observe that,

if U ∈ C∞(Ḡ; R2), then
div H = 0.

By density, we find that
divH = 0 in D′(G)

for any U ∈ H1(G; R2). It follows easily that

∫

G

H · ∇Ψ = 0, ∀Ψ ∈ Lip (G; R) with Ψ = 0 on Ω.

This implies the above claim.

Next, we verify that
∫
G

H · ∇Φ does not depend on the choice of U . Let V be another

choice in H1(G; R2) such that V|Ω = g. Set W = V − U ∈ H1
0 . Then, with obvious

notation, ∫

G

HV · ∇Φ =
∫

G

HU · ∇Φ +
∫

G

R1 · ∇Φ +
∫

G

R2 · ∇Φ,

with R1 = (Wy ∧ Uz + Uy ∧Wz, . . . ), R2 = (Wy ∧Wz, . . . ).

We complete the proof of Lemma 3 with the help of

Lemma 4. For each U ∈ H1(G; R2) and W ∈ H1
0 (G; R2) we have

∫

G

R1 · ∇Φ = 0, ∀Φ ∈ Lip (G; R).

Proof of Lemma 4. By density, it suffices to prove the above equality for U ∈ C∞(Ḡ; R2),
W ∈ C∞

0 (Ḡ; R2) and Φ ∈ C∞(Ḡ; R). For such U and W , note that

Wy ∧ Uz + Uy ∧Wz = (W ∧ Uz)y + (Uy ∧W )z.

Therefore, ∫

G

R1 · ∇Φ = −
∫

G

[(W ∧ Uz)Φxy + (Uy ∧W )Φxz + · · · ] = 0.
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As a consequence of Lemma 3, the map

ϕ 7−→
∫

G

H · ∇Φ

is a continuous linear functional on Lip (Ω; R). In particular, it is a distribution. Again
by Lemma 3, this distribution depends only on g ∈ H1/2(Ω; R2). We will denote it T (g).

Remark 2.1. It is important to note that T has a “local” character. More precisely, if
g1, g2 ∈ H1/2(Ω; R2) are such that g1 = g2 in ω (where ω is an open subset of Ω), then

〈T (g1), ϕ〉 = 〈T (g2), ϕ〉, ∀ϕ ∈ Lip (Ω; R), with supp ϕ ⊂ ω.

This is an easy consequence of Lemma 3 and of the fact that, if supp g ∩ supp ϕ = ∅,
then one may extend g to U ∈ H1 and ϕ to Φ ∈ Lip such that supp U ∩ supp Φ = ∅.
Thus, one may define a local version of T as follows: if g ∈ H

1/2
loc (ω; R2), set

〈T (g), ϕ〉 = 〈T (h), ϕ〉, ∀ϕ ∈ C1
0(ω; R),

where h is any map in H1/2(Ω; R2) such that h = g in a neighborhood of supp ϕ.

Remark 2.2. Another important property is the invariance under diffeomorphisms. More
precisely, let Ω, G, g, ϕ be as above and let ξ : Ω̃ → Ω be an orientation-preserving diffeo-
morphism. Then

〈T (g), ϕ〉 = 〈T (g̃), ϕ̃〉,

where g̃ = g ◦ ξ and ϕ̃ = ϕ ◦ ξ. Clearly, ξ extends as an orientation-preserving diffeo-
morphism (still denoted ξ) from a small tubular neighborhood of Ω̃ in G̃ to a tubular
neighborhood of Ω in G (as in the proof of Lemma 5 below).

We have
〈T (g), ϕ〉 =

∫

G

H · ∇Φ = 2
∫

G

Jac (Φ, U),

since
H = 2(Uy ∧ Uz, Uz ∧ Ux, Ux ∧ Uy).

We may choose U and Φ supported in a small tubular neighborhood of Ω and set Ũ =
U ◦ ξ and Φ̃ = Φ ◦ ξ. Then, with obvious notation,

〈T (g̃), ϕ̃〉 =
∫

G̃

H̃ · ∇Φ̃ = 2
∫

G̃

Jac (Φ̃, Ũ) = 2
∫

G

Jac (Φ, U) = 〈T (g), ϕ〉.

Similarly, if ω is an open subset of Ω and ξ : ω̃ → ω is an orientation-preserving diffeomor-
phism, then (using Remark 2.1) we have

〈T (g), ϕ〉 = 〈T (g̃), ϕ̃〉
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for every g ∈ H
1/2
loc(ω; R2) and ϕ ∈ C1

0(ω; R). This is extremely useful because we can
always choose a local diffeomorphism with Ω̃ flat near a point. More precisely, let (ωi) be
a finite covering of Ω with each ωi diffeomorphic to a disc D via ξi : D → ωi. Let (αi) be
a corresponding partition of unity. Then, ∀ϕ ∈ Lip (Ω; R),

〈T (g), ϕ〉 =
∑

〈T (g), αiϕ〉

and we may compute each term 〈T (g), αiϕ〉 in D using the fact that

〈T (g), αiϕ〉 = 〈T (g ◦ ξi), (αiϕ) ◦ ξi〉.

Here is a noticeable fact about T (g):

Lemma 5. Let g ∈ H1/2(Ω; R2). Then there exists an L1-section F of the tangent bundle
T (Ω) such that

〈T (g), ϕ〉 =
∫

Ω

F · ∇ϕ, ∀ϕ ∈ Lip(Ω; R).

Proof of Lemma 5. For β > 0, let

Gβ = {X ∈ G; δ(X) < β}, Ωβ = {X ∈ G; δ(X) = β},

where δ(X) = dist (X,Ω). Assuming that β is sufficiently small, say β < β0, for every
X ∈ Gβ there exists a unique point σ(X) ∈ Ω such that δ(X) = |X − σ(X)|. Let
Π : Gβ → (0, β) ×Ω be the mapping defined by Π(X) = (δ(X), σ(X)). This mapping is a
C2-diffeomorphism and its inverse is given by

Π−1(t, σ) = σ − tn(σ), ∀(t, σ) ∈ (0, β) × Ω,

where n(σ) is the outward unit normal to Ω at σ. For 0 < t < β0, let Kt denote the
mapping Π−1(t, ·) of Ω onto Ωt.

Since n(σ) is orthogonal to Ωt = Π−1(t,Ω) at σ − tn(σ), it follows that, for every
integrable non-negative function f in Gβ,

∫

Gβ

f =

β∫

0

dt

∫

Ωt

fdσt =

β∫

0

dt

∫

Ω

f(Kt(σ))(Jac Kt)dσ,

where dσ, dσt denote surface elements on Ω,Ωt respectively.

We now make a special choice of U and Φ. Let

Φ(X) = ϕ(σ(X))ζ(δ(X)),
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where ϕ ∈ C1(Ω; R) is the given test function and

ζ(t) =
{

1, for 0 ≤ t ≤ β0/2
0, for t ≥ β0.

.

We take U to be any H1 extension of g such that U(X) = 0 if δ(X) ≥ β0/2. Hence

(2.1) 〈T (g), ϕ〉 =
∫

G

H · ∇Φ =
∫

Gβ0/2

H · ∇Φ =

β0/2∫

0

dt

∫

Ω

H · ∇Φ(Kt(σ))(JacKt)dσ.

For every σ ∈ Ω, fix a frame Fσ = (x, y) as in Lemma 1. We already observed that H ·∇Φ
can be computed (pointwise) in any direct orthonormal frame of R3. We choose, at any
points X ∈ Gβ0/2, the special frame (Fσ(X), n(σ(X)). Then, we have, ∀t ∈ (0, β0/2),∀σ ∈
Ω,

(2.2) (H · ∇Φ)(Kt(σ)) = 2(Uy ∧ Uz)(Kt(σ))ϕx(σ) + 2(Uz ∧ Ux)(Kt(σ))ϕy(σ).

We now insert (2.2) into (2.1) and obtain the conclusion of Lemma 5 with F (σ) =

F1(σ)
∂

∂x
+ F2(σ)

∂

∂y
, where

F1(σ) = 2

β0/2∫

0

(Uy ∧ Uz)(Kt(σ))(JacKt)dt

and

F2(σ) = 2

β0/2∫

0

(Uz ∧ Ux)(Kt(σ))(JacKt)dt.

We now turn to the

Proof of Lemma 1. It suffices to prove that
∫

G

H · ∇Φ =
∫

Ω

[(g ∧ gx)ϕy − (g ∧ gy)ϕx]

when U ∈ C∞(Ḡ; R2) and Φ ∈ C∞(Ḡ; R). We write

H =
(
(U ∧ Uz)y + (Uy ∧ U)z , (U ∧ Ux)z + (Uz ∧ U)x, (U ∧ Uy)x + (Ux ∧ U)y

)
.
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Integration by parts yields
∫

G

H · ∇Φ =
∫

Ω

U ∧ det (∇U,∇Φ,
→
n).

By Lemma 3, we may assume further that
∂U

∂n
= 0 and

∂Φ
∂n

= 0.

For each σ ∈ Ω, we compute det(∇U,∇Φ,
→
n) in the frame given by Lemma 1. We have

det (∇U,∇Φ,
→
n) =

∂U

∂x

∂Φ
∂y

− ∂U

∂y

∂Φ
∂x

= gxϕy − gyϕx,

and the conclusion follows.

Here are some straightforward variants and consequences of Lemma 1 and Remarks 2.1
- 2.2:

Lemma 6. Let ω be an open subset of Ω. Let

g ∈ H1/2(ω; R2) ∩W 1,1(ω) ∩ L∞(ω).

Then

(2.3) 〈T (g), ϕ〉 =
∫

ω

[(g ∧ gx)ϕy − (g ∧ gy)ϕx], ∀ϕ ∈ C1
0 (ω; R).

Lemma 7. Let ω be an open subset of Ω. Let g ∈ H1/2(ω;S1) ∩ VMO(ω;S1). Then

〈T (g), ϕ〉 = 0, ∀ϕ ∈ C1
0(ω; R).

Proof of Lemma 7. In view of Remark 2.2, we may assume that ω is a disc. There is a
sequence (gn) ∈ C∞(ω;S1) such that gn → g in H

1/2
loc (ω) (see [22]). Hence 〈T (gn), ϕ〉 →

〈T (g), ϕ〉, ∀ϕ ∈ C1
0(ω; R), by (2.5) below. On the other hand, by Lemma 6,

〈T (gn), ϕ〉 =
∫

ω

[(gn ∧ gnx)ϕy − (gn ∧ gny)ϕx]

= 2
∫

ω

(gnx ∧ gny)ϕ = 0

since |gn| = 1 on ω.

There is yet another representation formula for T :

13



Lemma 8. Let g = (g1, g2) ∈ H1/2(Ω; R2). Then if ω ⊂ Ω is diffeomorphic to a disc ω̃ as
in Remark 2.2, we have, ∀ϕ ∈ C∞

0 (ω; R),

(2.4) 〈T (g), ϕ〉 = 〈g̃1, (g̃2ϕ̃y)x − (g̃2ϕ̃x)y〉H1/2,H−1/2 − 〈g̃2, (g̃1ϕ̃y)x − (g̃1ϕ̃x)y〉H1/2,H−1/2.

Observe that, e.g. g̃2ϕ̃y ∈ H1/2(ω̃), so that (g̃2ϕ̃y)x ∈ H−1/2(ω̃).

Proof of Lemma 8. When g is smooth, (2.4) coincides with (2.3). The general case is
obtained by approximation.

We now describe some elementary but useful facts about T and L:

Lemma 9. We have, for g, h ∈ H1/2(Ω; R2), ϕ ∈ Lip(Ω; R),

(2.5) |〈T (g) − T (h), ϕ〉| ≤ C|g− h|H1/2(|g|H1/2 + |h|H1/2)|ϕ|Lip,

(2.6) |L(g) − L(h)| ≤ C|g − h|H1/2(|g|H1/2 + |h|H1/2)

and, in particular,
L(g) ≤ C|g|2H1/2.

If, in addition, g and h are S1-valued, then

(2.7) T (gh) = T (g) + T (h),

(2.8) L(gh̄) ≤ C|g − h|H1/2(|g|H1/2 + |h|H1/2)

and

(2.9) L(gh) ≤ L(g) + L(h).

Here, we have identified R2 with C and gh denotes complex multiplication, while | |H1/2

denotes the canonical seminorm on H1/2 :

|g|2H1/2 =
∫

Ω

∫

Ω

|g(x) − g(y)|2
d(x, y)3

dxdy.

The constant C in this lemma depends only on Ω.

Proof. Let U, V ∈ H1(G; R2) be the harmonic extensions of g, respectively h. Then
clearly, ∀Φ ∈ Lip (G; R),

∫

G

HU · ∇Φ ≤
∫

G

HV · ∇Φ + C‖∇U −∇V ‖L2 (‖∇U‖L2 + ‖∇V ‖L2 )‖∇Φ‖L∞,

so that (2.5) follows. Moreover, we find that

L(g) ≤ L(h) + C|g − h|H1/2(|g|H1/2 + |h|H1/2).

Reversing the roles of g and h, yields (2.6).

The proof of (2.7) – (2.9) relies on the following
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Lemma 10. For g, h ∈ H1/2(Ω; R2) ∩ L∞, we have, ∀ϕ ∈ C∞
0 (ω; R), with the same

notation as in Lemma 8,

〈T (gh), ϕ〉 = 〈|h̃|2g̃1, (g̃2ϕ̃y)x − (g̃2ϕ̃x)y〉H1/2,H−1/2

− 〈|h̃|2g̃2, (g̃1ϕ̃y)x − (g̃1ϕ̃x)y〉H1/2,H−1/2

+ 〈|g̃|2h̃1, (h̃2ϕy)x − (h̃2ϕ̃x)y〉H1/2,H−1/2

− 〈|g̃|2h̃2, (h̃1ϕ̃y)x − (h̃1ϕ̃x)y〉H1/2,H−1/2.

Note that the above equality makes sense since H1/2 ∩ L∞ is an algebra.

Proof of Lemma 10. When g and h are smooth, the above equality is clear by Lemma
8. The general case follows by approximation, using the fact that, if gn → g in H1/2,
hn → h in H1/2, ‖gn‖L∞ ≤ C, ‖hn‖L∞ ≤ C, then gnhn → gh in H1/2 (this is proved using
dominated convergence).

Proof of Lemma 9 completed. When |g| = |h| = 1, we find that T (gh) = T (g) + T (h),
by combining Lemma 8 and Lemma 10. Also in this case, we have

T (gh̄) = T (g) + T (h̄) = T (g) − T (h).

Using (2.5), we find that

L(gh̄) = Sup
|ϕ|Lip≤1

〈T (g) − T (h), ϕ〉 ≤ C|g− h|H1/2 (|g|H1/2 + |h|H1/2).

Finally, inequality (2.9) is a trivial consequence of (2.7).

Remark 2.3. There is an alternative proof of (2.7) - (2.9), which consists of combining
Lemma 2 (proved below) with the density result of T. Rivière [38]; see Lemma 11.

We now consider the special case where g ∈ H1/2(Ω;S1) is “smooth” except at a finite
number of singularities:

Proof of Lemma 2. The proof consists of 3 steps:

Step 1. Supp T (g) ⊂ ∪kj=1{aj}

This is a trivial consequence of Lemma 7.

Step 2. T (g) =
∑
j=1 cjδaj .

In view of Remark 2.2 we may assume that Ω is flat near each aj . We first note that, by a
celebrated result of L. Schwartz, T (g) is a finite sum of the form T (g) =

∑
j,α cj,αD

αδaj .

We want to prove that cj,α = 0 if α 6= 0. For this purpose, it suffices to check that
〈T (g), ϕ〉 = 0 if ϕ(aj) = 0,∀j. Let ϕ be any such function. Then, clearly, there is a
sequence (ϕn) ⊂ C1

0 (Ω\ ∪kj=1 {aj}) such that ∇ϕn → ∇ϕ a.e. and ‖∇ϕn‖L∞ ≤ C. Using
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Lemma 5, we obtain, by dominated convergence, that 〈T (g), ϕn〉 → 〈T (g), ϕ〉. On the
other hand, 〈T (g), ϕn〉 = 0 by Step 1.

Step 3. We have cj = 2πdj where dj = deg(g, aj).

Let ϕ be a smooth function on Ω such that

ϕ(x) =
{

1, for |x− aj | < R/2
0, for |x− aj | ≥ R

,

where R > 0 is sufficiently small.

Note that ∇ϕ = 0 outside the annulus A = {x ∈ Ω; |x− aj | ∈ [R/2, R]} and, moreover,
that g ∈ H1 on the same annulus. By Lemma 8 we find that

〈T (g), ϕ〉 =
∫

A

g1[(g2ϕy)x − (g2ϕx)y] −
∫

A

g2[(g1ϕy)x − (g1ϕx)y ].

Integration by parts yields

〈T (g), ϕ〉 =
∫

A

[(gy ∧ g)ϕx + (g ∧ gx)ϕy].

If g is smooth on A, and if we integrate by parts once more, we find that

〈T (g), ϕ〉 = −
∫

∑

(gy ∧ g)νx −
∫

∑

(g ∧ gx)νy,

where
∑

= {x ∈ Ω; |x − aj | = R/2} and ν is the inward normal to A on
∑

. With τ the
direct tangent vector on

∑
, we have

−(gy ∧ g)νx − (g ∧ gx)νy = g ∧ gτ .

Since g is S1-valued, we find that

〈T (g), ϕ〉 = 2π deg(g, aj).

For a general g ∈ H1(A;S1), we use the fact that C∞(Ā;S1) is dense in H1(A;S1) (see
[41], [10] and [22]) and the stability of the degree under H1/2-convergence (see [17] and
[22]), to conclude that 〈T (g), ϕ〉 = 2π deg(g, aj).

We now recall a useful density result due to T. Rivière, which is the H1/2 analogue of
a result of Bethuel and Zheng [10] concerning H1 maps from B3 to S2 (see also a related
result of Bethuel [4] concerning fractional Sobolev spaces).

16



Lemma 11 (Rivière [38]). Let R denote the class of maps belonging to W 1,p(Ω;S1),
∀p < 2, which are C∞ on Ω except at a finite number of points. Then R is dense in
H1/2(Ω;S1).

Remark 2.4. The above assertion does not appear in Rivière [38] but it is implicit in his
proof; for the convenience of the reader we present a simple proof in Remark 5.1 - see also
Appendix B for a more precise statement.

Remark 2.5. Similar density results hold in greater generality. Let Ω ⊂ R2 be a smooth
bounded domain. Let 0 < s <∞, 1 < p <∞ and

Rs,p = {u ∈W s,p(Ω;S1);u is C∞ except at a finite number of points}.

Then Rs,p is dense in W s,p(Ω;S1) for all values of s and p (see [16]); this extends earlier
results in [10], [25] and [4].

The density result combined with Lemma 2 yields “concrete” representations of the dis-
tribution T (g) and of the length of a minimal connectionL(g) for a general g ∈ H1/2(Ω;S1);
this is the content of Theorem 1.

Proof of Theorem 1. We start by recalling a result of Brezis, Coron and Lieb [19] (see
also [18]).

Lemma 12 (Brezis, Coron and Lieb [19]). Let (X,d) be a metric space. Let P1, . . . , Pk,
and N1, . . . ,Nk be two collections of k points in X. Then

L = Min
σ∈Sk

∑
d(Pj ,Nσ(j)) = Max

{∑

j

(ϕ(Pj) − ϕ(Nj)); |ϕ|Lip ≤ 1
}
,

where Sk denotes the group of permutation of {1, 2, . . . , k}.

The analogue of Lemma 12 for infinite sequences, which we need, is

Lemma 12′. Let (X,d) be a metric space. Let (Pi), (Ni) be two infinite sequences such
that

∑
d(Pi,Ni) <∞.

Let

(2.10) L = Sup
ϕ

{∑

i

(ϕ(Pi) − ϕ(Ni)); |ϕ| Lip ≤ 1
}
.

Then

L = Inf
(Ñi)

{∑

i

d(Pi, Ñi));
∑

i

(δPi − δÑi
) =

∑

i

(δPi − δNi)
}
.
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Here, and throughout the rest of the paper, the equality

∑

i

(δP̃i
− δÑi

) =
∑

i

(δPi − δNi)

for sequences (P̃i), (Ñi), (Pi), (Ni) such that

∑

i

d(P̃i, Ñi) <∞ and
∑

i

d(Pi,Ni) <∞

means that

∑

i

(ϕ(P̃i) − ϕ(Ñi)) =
∑

i

(ϕ(Pi) − ϕ(Ni)), ∀ϕ ∈ Lip.

Remark 2.6. A slightly different way of stating Lemma 12′ is the following. Given
sequences (Pi), (Ni) in a metric space X with

∑
i d(Pi,Ni) <∞, then

(2.10′)

L = Inf
(P̃i),(Ñi)

{∑

i

d(P̃i, Ñi);
∑

i

(δP̃i
− δÑi

) =
∑

i

(δPi − δNi)
}

= Sup
ϕ

{∑

i

(ϕ(Pi) − ϕ(Ni));ϕ ∈ Lip(X; R) and |ϕ|Lip ≤ 1
}
.

It is easy to see that the supremum in (2.10′) is always achieved. (Let (ϕn) be a maximizing
sequence. By a diagonal process, we may assume that ϕn(Pi) and ϕn(Ni) converge for
every i to limits which define a function ψ0 on the set {Pi,Ni, i = 1, 2, . . . } with |ψ0|Lip ≤ 1.
Next, ψ0 is defined on all of X by a standard extension technique preserving the condition
|ψ|Lip ≤ 1). A natural question is whether the infimum in (2.10′) is achieved. The answer
is negative. An interesting example, with X = [0, 1], has been constructed by A. Ponce
[36].

Proof of Lemma 12′. Let (Ñi) be such that

∑
(δPi − δÑi

) =
∑

(δPi − δNi).

Then ∑

i

(ϕ(Pi) − ϕ(Ni)) ≤
∑

i

d(Pi, Ñi)

and thus
L ≤

∑

i

d(Pi, Ñi).
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Conversely, given ε > 0, we will construct a sequence (Ñi) such that
∑
i d(Pi, Ñi) ≤ L+ε

and
∑
i(δPi − δÑi

) =
∑
i(δPi − δNi).

Let n0 be such that
∑

j>n0
d(Pj ,Nj) < ε/2. Let σ0 be a permutation of the integers

{1, 2, . . . , n0} which achieves

Min
σ

n0∑

j=1

d(Pj ,Nσ(j)).

Set

Ñj =
{
Nσ0(j), for 1 ≤ j ≤ n0

Nj , for j > n0

.

Clearly, ∑

j≥1

(
δPj − δÑj

)
=
∑

j≥1

(
δPj − δNj

)
.

By definition of L, we have

L = Sup
|ϕ|Lip≤1

∑

j≥1

(ϕ(Pj) − ϕ(Nj))

≥ Max
|ϕ|Lip≤1

n0∑

j=1

(ϕ(Pj) − ϕ(Nj)) − ε/2

=
n0∑

j=1

d(Pj , Ñj) − ε/2,

by Lemma 12. Thus ∑

j≥1

d(Pj , Ñj) ≤ L+ ε/2 + ε/2.

Proof of Theorem 1 continued. For g ∈ R we have

L(g) =
k∑

j=1

d(Pj ,Nj)

and

〈T (g), ϕ〉 = 2π
k∑

j=1

(
ϕ(Pj) − ϕ(Nj)

)

for some suitable integer k depending on g and suitable points P1, . . . , Pk,N1, . . . ,Nk in Ω.
Let now g ∈ H1/2(Ω;S1) and consider a sequence (gn) ⊂ R such that |gn− g|H1/2 ≤ 1/2n.
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By Lemma 2, T (gn+1)− T (gn) is a finite sum of the form 2π
∑

(δQj − δSj ). By Lemma
12, after relabeling the points (Qj ) and (Sj), we may assume that

T (g1) = 2π
k1∑

j=1

(δPj − δNj)

and

T (gn+1) − T (gn) = 2π
kn+1∑

j=kn+1

(δPj − δNj),∀n ≥ 1

with

2π
kn+1∑

kn+1

d(Pj ,Nj) = Sup {〈T (gn+1) − T (gn), ϕ〉;ϕ ∈ Lip(Ω; R), |ϕ|Lip ≤ 1}

≤ C|gn+1 − gn|H1/2(|gn+1|H1/2 + |gn|H1/2) ≤ C/2n( by (2.5)).

We find that T (gn) = 2π
∑kn

j=1(δPj − δNj) and that
∑

j≥1 d(Pj ,Nj) <∞.

Then for every ϕ ∈ Lip (Ω; R), the sequence
(
〈T (gn), ϕ〉

)
converges to 2π

∑
j≥1(ϕ(Pj)−

ϕ(Nj)). By Lemma 9, we find that T (g) = 2π
∑

j≥1(δPj − δNj ).

The second assertion in Theorem 1 is an immediate consequence of Lemma 12′ and
Remark 2.6.

The last property in Theorem 1, namely the fact that, if T (g) is a measure, then T (g)
may be represented as a finite sum of the form 2π

∑
j(δPj −δNj ), was originally announced

in [13] and established using a technique of Jerrard and Soner [31], [32], which was based
on the (Jacobian) structure of T (g). We do not reproduce this argument since Smets [43]
has proved the following general result:

Theorem 10 (Smets [43]). Let X be a compact metric space and let (Pj ), (Nj) ⊂ X
be infinite sequences such that

∑
d(Pj ,Nj) <∞. Assume that

∣∣∣∣
∑

j

(
ϕ(Pj) − ϕ(Nj)

)∣∣∣∣ ≤ C Sup
x∈X

|ϕ(x)|, ∀ϕ ∈ Lip(X).

Then one may find two finite collections of points (Q1, . . . , Qk) and (M1, . . . ,Mk), such
that

∞∑

j=1

(
ϕ(Pj) − ϕ(Nj)

)
=

k∑

i=1

(
ϕ(Qi) − ϕ(Mi)

)
, ∀ϕ ∈ Lip(X).

We refer to [43] and to [36] for more general results.
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Remark 2.7. A final word about the possibility of defining a minimal connection L(g)
when g ∈ W s,p(Ω;S1), for 0 < s < ∞ and 1 ≤ p < ∞. Recall (see [16] and Remark
2.5) that Rs,p is always dense in W s,p(Ω;S1) and note that we may always define L(g) for
g ∈ Rs,p. A natural question is whether there is a continuous extension of L to W s,p:

a) When sp < 1, the answer is negative. Indeed, let g ∈ Rs,p be a map with singularities
of nonzero degree, so that L(g) > 0. There is a sequence (gn) in C∞(Ω;S1) such that
gn → g in W s,p (see Escobedo [25]). Clearly, L(gn) = 0, ∀n, and L(gn) does not converge
to L(g).

b) When sp ≥ 2, the answer is positive since L(g) = 0, ∀g ∈ Rs,p (any singularity in
W s,p must have zero degree since W s,p ⊂ VMO).

c) When 1 ≤ sp < 2, the answer is positive. For s > 1/2 the proof is easy (indeed
if s ∈ (1/2, 1), then W s,p(Ω;S1) ⊂ H1/2, while if s ≥ 1, then W s,p ⊂ W 1,1 and we may
apply the result of Demengel [24] which asserts the existence of a minimal connection in
W 1,1). The case where s ≤ 1/2 is delicate and studied in [16].

3. Lifting for g ∈ Y . Characterization of Y . Proof of Theorem 3

The main ingredient in this Section is the following estimate, whose proof has already
been presented in Bourgain-Brezis [11]. We reproduce it here for the convenience of the
reader.

Theorem 3′. Let ψ be a smooth real-valued function on the d-dimensional torus Td and
set g = eıψ. Then

(3.1) |ψ|H1/2+W1,1 ≤ C(d)(1 + |g|H1/2)|g|H1/2.

Here, | | denotes the canonical seminorm on H1/2 (respectively H1/2 +W 1,1).

Proof of Theorem 3′. Write g − /

∫
g as a Fourier series,

g − /

∫
g =

∑

ξ∈Zd\{0}

ĝ(ξ)eıx·ξ.

The H1/2-component in the decomposition of ψ will be obtained as a paraproduct of g−/

∫
g

and ḡ − /

∫
ḡ. Let

(3.2) P =
∑

k

[∑

ξ2

λk(|ξ2|)ĝ(ξ2)e−ıx·ξ2
][ ∑

2k≤|ξ1|<2k+1

ĝ(ξ1)eıx·ξ1
]
,
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where, for each k, we let 0 ≤ λk ≤ 1 be a smooth function on R+ as below:

..........

..........

..........

..........

..........

...........................................................................................................................................................................................................................................................................................................................................................................................................

2k−2

1

2k−1

We claim that

(3.3) |P |H1/2 ≤ C‖g‖∞|g|H1/2

and

(3.4) |ψ − 1
ı
P |W1,1 ≤ C|g|2H1/2.

Proof of (3.3). This is totally obvious from the construction since, with ‖ ‖p standing
for the Lp-norm, we have

(3.5)

|P |2H1/2 ∼
∑

k

2k
∥∥∥∥
[∑

ξ2

λk(|ξ2|)ĝ(ξ2)e−ıx·ξ2
][ ∑

2k≤|ξ1|<2k+1

ĝ(ξ1)eıx·ξ1
]∥∥∥∥

2

2

≤
∑

k

2k
∥∥∥∥
∑

λk(|ξ|)ĝ(ξ)e−ıx·ξ
∥∥∥∥

2

∞

[ ∑

|ξ|∼2k

|ĝ(ξ)|2
]

≤ C‖g‖2
∞|g|2H1/2.

Proof of (3.4). We estimate, for instance,

(3.6) ‖∂1ψ − 1
ı
∂1P‖L1 .

Thus, letting ξ = (ξ1, . . . , ξd) ∈ Zd, we have

(3.7) ∂1ψ =
1
ı
ḡ∂1g =

∑

ξ1,ξ2∈Zd

ξ11 ĝ(ξ1)ĝ(ξ2) e
ıx·(ξ1−ξ2)

and, by (3.2), we find

(3.8)
1
ı
∂1P =

∑

k

∑

2k≤|ξ1|<2k+1

ξ2∈Zd

(ξ11 − ξ12)λk(|ξ2|)ĝ(ξ1)ĝ(ξ2)eıx·(ξ1−ξ2)
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and

(3.9) ∂1ψ − 1
ı
∂1P =

∑

k

∑

2k≤|ξ1|<2k+1

ξ2∈Zd

mk(ξ1, ξ2)ĝ(ξ1)ĝ(ξ2)eıx·(ξ1−ξ2).

Here, by definition of λk,

(3.10) mk(ξ1, ξ2) = ξ11 − λk(|ξ2|)(ξ11 − ξ12) =
{
ξ12 , if |ξ2| ≤ 2k−2

ξ11 , if |ξ2| ≥ 2k−1
.

Estimate

(3.11) ‖∂1ψ − 1
ı
∂1P‖1 ≤

∑

k1,k2

∥∥∥∥
∑

|ξ1|∼2k1 ,|ξ2|∼2k2

mk1(ξ1, ξ2)ĝ(ξ1)ĝ(ξ2)e
ıx·(ξ1−ξ2)

∥∥∥∥
1

.

We split the right-hand side of (3.11) as

∑

k1∼k2

+
∑

k1<k2−4

+
∑

k1>k2+4

= (3.12) + (3.13) + (3.14).

Clearly, 2−kmk(ξ1, ξ2) restricted to [|ξ1| ∼ 2k] × [|ξ2| ∼ 2k] is a smooth multiplier
satisfying the usual derivative bounds. Therefore,

(3.15) (3.12) ≤ C
∑

k

2k
∥∥∥∥
∑

|ξ1|∼2k

ĝ(ξ1)eıx·ξ1
∥∥∥∥

2

∥∥∥∥
∑

|ξ2|∼2k

ĝ(ξ2)eıx·ξ2
∥∥∥∥

2

∼ |g|2H1/2.

If k1 < k2 − 4, then |ξ2| > 2k1 and mk1(ξ1, ξ2) = ξ11, by (3.10). Therefore

(3.16)

(3.13) =
∑

k1<k2−4

∥∥∥∥
∑

|ξ1|∼2k1 ,|ξ2|∼2k2

ξ11 ĝ(ξ1)ĝ(ξ2)e
ıx·(ξ1−ξ2)

∥∥∥∥
1

≤
∑

k1<k2−4

2k1
∥∥∥∥
∑

|ξ1|∼2k1

ĝ(ξ1)eıx·ξ1
∥∥∥∥

2

.

∥∥∥∥
∑

|ξ2|∼2k2

ĝ(ξ2)eıx·ξ2
∥∥∥∥

2

≤
∑

k1<k2

2k1
( ∑

|ξ1|<2k1

|ĝ(ξ1)|2
)1/2( ∑

|ξ2|∼2k2

|ĝ(ξ2)|2
)1/2

≤ C|g|2H1/2.

If k1 > k2 + 4, then |ξ2| < 2k1−2 and mk1(ξ1, ξ2) = ξ12 and the bound on (3.14) is similar.

We now derive a consequence of Theorem 3′:
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Corollary 1. Let G be a smooth bounded domain in Rd+1 such that Ω = ∂G is connected.
Let ψ be a Lipschitz real-valued function on Ω and set g = eıψ. Then

|ψ|H1/2+W1,1 ≤ CΩ(1 + |g|H1/2)|g|H1/2.

Proof of Corollary 1. It is convenient to divide the argument into 4 steps.

Step 1. The conclusion of Theorem 3′ still holds if ψ is Lipschitz. This is clear by density.

Step 2. The conclusion of Theorem 3′ holds if Td is replaced by a d-dimensional cube Q
and ψ ∈ Lip (Q). This is done by standard reflections and extensions by periodicity.

As a consequence, we have

Step 3. The conclusion of Step 2 holds when Q is replaced by a domain in Ω diffeomorphic
to a cube.

Step 4. Proof of Corollary 1. Consider a finite covering (Uα) of Ω by domains diffeomor-
phic to cubes. Note that, if Uα ∩ Uβ 6= 0, then

|ψ|H1/2+W1,1(Uα∪Uβ) ∼ |ψ|H1/2+W1,1(Uα) + |ψ|H1/2+W1,1(Uβ).

Using the connectedness of Ω, we find that

|ψ|H1/2+W1,1(Ω) ∼
∑

α

|ψ|H1/2+W1,1(Uα).

The conclusion now follows from Step 3.

Proof of Theorem 3. First, let g ∈ Y and consider a sequence (gn) ⊂ C∞(Ω;S1)
such that gn → g in H1/2. Since Ω is simply connected, we may write gn = eıψn , with
ψn ∈ C∞(Ω; R).

Applying Corollary 1 to gnḡm, we find

|ψn − ψm|H1/2+W1,1 ≤ C(1 + |gnḡm|H1/2)|gnḡm|H1/2.

Since gn → g in H1/2 and |gn| ≡ 1, we have |gnḡm|H1/2 → 0 as m,n→ ∞ (see the proof
of Lemma 10). Therefore, (ψn − /

∫
Ω
ψn) converges in H1/2 +W 1,1 to a map ζ. Then, with

C an appropriate constant, ψ = ζ +C ∈ H1/2 +W 1,1, g = eıψ and ψ satisfies the estimate

|ψ|H1/2+W1,1 ≤ C(1 + |g|H1/2)|g|H1/2.

The uniqueness of ψ is an immediate consequence of the following
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Lemma 13. Let Ω be a connected open set in Rd. Let f : Ω → Z be such that f =
f0 +

∑
j fj , with f0 ∈ W 1,1

loc (Ω; R) and fj ∈ W
sj,pj

loc (Ω; R), where 0 < sj < 1, 1 < pj < ∞,
sjpj ≥ 1. Then f is a constant.

The proof of Lemma 13 is given in [12], Appendix B, Step 2. The argument is by
dimensional reduction, observing that the restriction of f to almost every line is Z-valued
and VMO; thus it is constant (see [22]). This implies (see e.g. Lemma 2 in [20]) that f
is locally constant in Ω.

We now prove the last assertion in Theorem 3. Let g ∈ H1/2(Ω;S1) be such that g = eıψ

for some ψ ∈ H1/2 +W 1,1(Ω; R). Let ψ = ψ1 + ψ2, with ψ1 ∈ H1/2 and ψ2 ∈ W 1,1. Set
gj = eıψj , j = 1, 2. Clearly, g1 ∈ X, so that g1 ∈ Y and thus T (g1) = 0. On the other
hand, g2 ∈ H1/2 ∩W 1,1, since g2 = gḡ1 ∈ H1/2. Therefore, we may use the representation
of T (g2) given by Lemma 1 and find, after localization, as in Remark 2.2,

〈T (g2), ϕ〉 =
∫

ω

(ψ2xϕy − ψ2yϕx) = 0, ∀ϕ ∈ C1
0(ω; R).

Hence T (g2) = 0. By (2.7) in Lemma 9, we obtain that T (g) = 0. Using Theorem 2, we
derive that g ∈ Y .

Remark 3.1. Theorem 3 is not fully satisfactory since, whenever ψ ∈W 1,1, the function
eıψ need not belong to H1/2 (but “almost”, since eıψ ∈ W 1,1 ∩ L∞, which is almost
contained in H1/2, but not quite). Here is an example: take some ψ ∈ W 1,1 ∩ L∞ with
ψ 6∈ H1/2. We may assume |ψ| ≤ 1. Then

|eıψ(x) − eıψ(y)| ∼ |ψ(x) − ψ(y)|,

so that
|eıψ |H1/2 ∼ |ψ|H1/2 = +∞.

4. Lifting for a general g ∈ H1/2. Optimizing the BV part of the phase. Proof
of Theorems 4 and 5

Assume g is a general element in H1/2(Ω;S1). This g need not be in Y and thus need
not have a lifting in H1/2 +W 1,1. However, g has a lifting in the larger space H1/2 +BV .
This is an immediate consequence of Theorem 3 (and estimate (1.9)) and of the following
result of T. Rivière [38] (which is the analogue of a similar result of Bethuel [3] for H1

maps from B3 to S2).
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Lemma 14 (Rivière [38]). Let g ∈ H1/2(Ω;S1). Then there is a sequence (gn) ⊂
C∞(Ω;S1) such that gn ⇀ g weakly in H1/2.

Remark 4.1. Lemma 14 implies that g 7→ T (g) and g 7→ L(g) are not continuous under
weak H1/2 convergence.

Here is a refined version of Lemma 14 which will be proved at the end of Section 4.2:

Lemma 14′. Let g ∈ H1/2(Ω;S1). Then there is a sequence (gn) ⊂ C∞(Ω;S1) such that
gn ⇀ g weakly in H1/2 and

lim sup
n→∞

|gn|2H1/2 ≤ |g|2H1/2 + CΩL(g),

for some constant CΩ depending only on Ω. Moreover, for every sequence (gn) in Y such
that gn → g a.e., we have

lim inf
n→∞

|gn|2H1/2 ≥ |g|2H1/2 + C ′
ΩL(g),

for some positive constant C ′
Ω depending only on Ω.

Existence of a lifting in H1/2 +BV

Let g ∈ H1/2(Ω;S1). For gn as in the above Lemma 14, write, using Corollary 1,
gn = eıϕn , with ϕn ∈ C∞(Ω;S1) and

|ϕn|H1/2+W1,1 ≤ CΩ(|gn|H1/2 + |gn|2H1/2).

Then, up to a subsequence, there is some ζ ∈ H1/2 +BV such that ϕn− /

∫
ϕn → ζ a.e. We

find that g = eıϕ, with ϕ = ζ + C and C some appropriate constant. Moreover, we may
write ϕ = ϕ1 + ϕ2, with

(4.1) |ϕ1|H1/2 + |ϕ2|BV ≤ CΩ(|g|H1/2 + |g|2H1/2).

An additional information about the decomposition is contained in Theorem 4. On
the other hand note that estimate (4.1) implies that every g ∈ H1/2 may be written as
g = g1g2, with

g1 = eıϕ1 ∈ X and g2 = eıϕ2 ∈ H1/2 ∩BV, i.e., H1/2 = (X) · (H1/2 ∩BV ).

A finer assertion is H1/2 = (X) · (H1/2 ∩W 1,1), which is the content of Theorem 5.

The proofs of Theorems 4 and 5 require a number of ingredients:

a) the dipole construction (see Section 4.1). This is inspired by the dipole construction in
the H1(B3;S2) context (see [19] and [3]);
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b) the construction of a map g ∈ H1/2(Ω;S1) ∩W 1,1 having prescribed singularities (with
control of the norms). This is done in Section 4.2;

c) lower bound estimates for the BV part of the phase, which are presented in Section
4.3, in the spirit of [19], [2], [27]. This is a typical phenomenon in the context of relaxed
energies and/or Cartesian Currents. More precisely, if one considers the Sobolev space
X = W s,p(U ;Sk), U ⊂ RN , and if smooth maps are not dense in X for the strong
topology, then the relaxed energy is defined by

E(g) = Inf {lim inf
n→∞

‖gn‖pWs,p ; (gn) ⊂ C∞(Ū ;Sk), gn → g a.e.}.

The gap E(g) − ‖g‖pWs,p ≥ 0 has often a geometrical interpretation in terms of the
singular set of g. For example, in the H1(B3;S2) context, the gap is 8πL(g), where L(g)
is the length of a minimal connection associated with the singularities of g (see [19]). We
will consider, in Section 4.3, similar lower bounds for S1-valued maps on Ω.

4.1. The dipole construction

Throughout this Section, the metric d denotes the geodesic distance dΩ in Ω and L(g) =
LΩ(g).

Lemma 15. Let P,N ∈ Ω, P 6= N . Given any ε > 0 there exists some g(= gε) such that

(4.2) g ∈W 1,∞
loc (Ω\{P,N};S1) ∩W 1,p(Ω;S1),∀p ∈ [1, 2),

(4.3) T (g) = 2π(δP − δN ),

(4.4) |g|W1,1 ≤ 2πd(P,N) + ε,

(4.5) |g|2H1/2 ≤ CΩd(P,N) where CΩ depends only on Ω,

(4.6)
{

there is a function ψ(= ψε) ∈ BV (Ω; R) such that g = eıψ,

with supp ψ ⊂ Λ = {x ∈ Ω; d(x, γ) < ε} and |ψ|BV ≤ 4πd(P,N) + ε,

where γ is a geodesic curve joining P and N ,

(4.7) g = 1 outside Λ.
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Proof. Extend γ smoothly beyond P and N ; denote this extension by γ̃. For ε0 > 0
sufficiently small (depending on γ̃), the projection Π of

Γ = {x ∈ Ω; d(x, γ) < ε0}

onto γ̃ is well-defined and smooth. Let x1 be the arclength coordinate on γ̃, such that
x1(P ) = 0, x1(N) = d(P,N) = L.
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x•

Π(x)
γ•

x1 = 0

P

x1 = d(P,N)
γ̃

N

For x ∈ Γ, let x1 = x1(Π(x)) be the arclength coordinate of Π(x) on γ̃ and let x2 =
±d(x, γ̃), where we choose “+” if the basis formed by the (oriented) tangent vector at
Π(x) to γ̃, the (oriented) tangent vector at Π(x) to the geodesic segment [Π(x), x] and
the exterior normal n at Π(x) to G is direct in R3; we choose “–” otherwise. Define the
mapping

x ∈ Γ 7→ Φ(x) = (x1, x2) ∈ R2.

Let 0 < δ < ε0 and consider the domain in R2

Γ̃δ = {(t1, t2) ∈ R2; 0 < t1 < L and |t2| <
2δ
L

min(t1, L− t1)}.

and the corresponding domain Γδ in Ω,

Γδ = {x ∈ Γ;Φ(x) ∈ Γ̃δ}.

Set, on R2,

g̃(t) = g̃(t1, t2) =

{
exp(ıϕ(Lt2/2δmin(t1, L− t1)), on Γ̃δ,

1, outside Γ̃δ,

where ϕ is defined by ϕ(s) =
{
π(s + 1)+, if s ≤ 1
2π, if s > 1

.

An easy computation shows that

g̃ ∈W 1,∞
loc (R2 \ {P̃ , Ñ};S1) ∩W 1,p

loc (R2;S1), ∀ 1 ≤ p < 2,
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where P̃ = Φ(P ) = (0, 0) and Ñ = Φ(N) = (L, 0). More precisely, we have

|g̃|p
W1,p(Γ̃δ)

= 4

L/2∫

0

(
L

2δt1

)p−1

dt1

+1∫

0

πp

((
2δs
L

)2

+ 1

)p/2
ds.

In particular, we find

(4.8) |g̃|W1,1(Γ̃δ) ≤ 2π (L+ δ)

and, for every 1 ≤ p < 2,

(4.9) |g̃|W1,p(Γ̃δ)
≤ Cp(Lδ)1/p

(
1
δ

+
1
L

)
.

For later purpose, it is also convenient to observe that, for any 1 ≤ q ≤ ∞,

(4.10) ‖g̃ − 1‖Lq(Γ̃δ) ≤ 2(Lδ)1/q .

We now transport the function g̃ on Ω and define

g(x) =
{
g̃(Φ(x)), if x ∈ Γδ
1, outside Γδ

.

It is not difficult to see that Φ is a C2-diffeomorphism on Γ and

(4.11) |JacΦ(x) − 1| ≤ Cγδ on Γδ,

where Cγ is a constant depending on γ.

Combining (4.8) - (4.11) yields

(4.12) |g|W1,1(Ω) ≤ 2π(L+ δ)(1 + Cγδ),

(4.13) |g|W1,p(Ω) ≤ Cp(Lδ)1/p
(

1
δ

+
1
L

)
(1 + Cγδ), 1 ≤ p < 2,

and

(4.14) ‖g − 1‖Lq(Ω) ≤ 2(Lδ)1/q(1 + Cγδ).
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¿From a variant of the Gagliardo - Nirenberg inequality (see e.g. [21] and the references
therein) we know that, if 1 < p <∞ and

(4.15)
1
p

+
1
q

= 1,

then

(4.16) |g|2H1/2(Ω) ≤ C(p,Ω)|g|W1,p(Ω)‖g‖Lq(Ω).

We now check properties (4.2) - (4.7): (4.2), (4.3) and (4.7) are clear. Estimate (4.4)
(resp. (4.5)) follows from (4.12)(resp. (4.16) applied e.g. with p = 3/2) provided δ is
sufficiently small (depending on ε and γ).

Construction of ψ and estimate (4.6)

In the region where g̃ ≡ 1, we take ψ̃ ≡ 0. In the region Γ̃δ where g̃ lives, we take

ψ̃(t1, t2) =
{
ϕ(Lt2/2δmin(t1, L− t1)), if t2 ≤ 0
ϕ(Lt2/2δmin(t1, L− t1)) − 2π, if t2 > 0

.

Set

ψ(x) =
{
ψ̃(Φ(x)), if x ∈ Γδ
0, outside Γδ

.

Then |Dψ| = |Dg| + 2πδγ, where δγ is the 1 − d Hausdorff measure uniformly distributed
on γ. Thus

|ψ|BV =
∫

Ω

|Dψ| =
∫

Ω

|Dg| + 2πL ≤ 4πL+ ε.

4.2. Construction of a map with prescribed singularities

Let (Pi), (Ni) be two sequences of points in Ω = ∂G such that
∑
dΩ(Pi,Ni) < ∞.

Define
T = 2π

∑

i

(δPi − δNi)

and

L = LΩ =
1
2π

sup{〈T,ϕ〉;ϕ ∈ Lip (Ω; R), |ϕ|Lip ≤ 1}.
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Lemma 16. a) For every g ∈W 1,1(Ω;S1) ∩H1/2(Ω;S1) such that T (g) = T , we have

∫

Ω

|Dg| ≥ 2πL and |g|2H1/2 ≥ CΩL,

where CΩ is a positive constant depending only on Ω.

b) For every ε > 0, there is some g(= gε) ∈W 1,1(Ω;S1) ∩H1/2(Ω;S1) such that

(4.17) T (g) = T,

(4.18) |g|W1,1 ≤ 2π(L+ ε),

(4.19) |g|2H1/2 ≤ CΩL,

(4.20)
{

there is a function ψ(= ψε) ∈ BV (Ω; R) such that

g = eıψ, and |ψ|BV ≤ 4π(L+ ε)
,

(4.21) meas (Supp ψ) = meas (Supp (g − 1)) ≤ ε.

In the proof of Lemma 16 we will use:

Lemma 17. Let (un) be a bounded sequence in H1/2(Ω; C) ∩ L∞ such that un → 1 a.e.
Then for every v ∈ H1/2(Ω; C) ∩ L∞ we have

|unv|2H1/2 =
∫

Ω

∫

Ω

|v(x)|2 |un(x) − un(y)|2

d(x, y)3
+ |v|2H1/2 + o(1) as n→ ∞.

Proof of Lemma 17. We have

|unv|2H1/2 =
∫

Ω

∫

Ω

|v(x)|2 |un(x) − un(y)|2

d(x, y)3
+
∫

Ω

∫

Ω

|un(y)|2
|v(x) − v(y)|2

d(x, y)3
+ 2In

=
∫

Ω

∫

Ω

|v(x)|2 |un(x) − un(y)|2

d(x, y)3
+ |v|2H1/2 + 2In + o(1),
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where

In =
∫

Ω

∫

Ω

(v(x)(un(x) − un(y))) · (un(y)(v(x) − v(y)))
d(x, y)3

,

so that it suffices to prove that

Jn =
∫

Ω

∫

Ω

|un(x) − un(y)||v(x) − v(y)|
d(x, y)3

→ 0.

Fix some ε > 0. Then

Jn =
∫∫

d(x,y)≥ε

|un(x) − un(y)||v(x) − v(y)|
d(x, y)3

+
∫∫

d(x,y)<ε

|un(x) − un(y)||v(x) − v(y)|
d(x, y)3

= o(1) +
∫∫

d(x,y)<ε

|un(x) − un(y)||v(x) − v(y)|
d(x, y)3

≤ o(1) + |un|H1/2

( ∫∫

d(x,y)<ε

|v(x) − v(y)|2

d(x, y)3

)1/2

,

so that Jn → 0.

Proof of Lemma 16. a) By Lemma 1, we have

〈T (g), ϕ〉 =
∫

Ω

g ∧ (gxϕy − gyϕx), ∀ϕ ∈ Lip (Ω; R),

so that
|〈T (g), ϕ〉| ≤

∫

Ω

|g| |Dg| |Dϕ| ≤
∫

Ω

|Dg|

if |ϕ|Lip ≤ 1. Taking the Sup over all such ϕ’s yields the first inequality.

The second inequality in a), namely L ≤ CΩ|g|2H1/2, was already established in Lemma
9.

b) Let ε < L. By Lemma 12′, we may find a sequence (Ñj ) such that

(4.22) T = 2π
∑

i

(δPi − δNi) = 2π
∑

j

(δPj − δÑj
)

and

(4.23)
∑

j

d(Pj , Ñj) < L+ ε/4π.
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By the dipole construction (Lemma 15), for each j and for each εj > 0, there is some
gj = gj,εj such that

(4.24) T (gj) = 2π(δPj − δÑj
),

(4.25)
∫

Ω

|Dgj | ≤ 2πd(Pj , Ñj) + εj ,

(4.26) |gj|2H1/2 ≤ CΩd(Pj , Ñj),

(4.27) there is a function ψj ∈ BV such that gj = eıψj ,

with

(4.28) |ψj |BV ≤ 4πd(Pj , Ñj) + εj

and

(4.29) meas(Supp ψj) = meas(Supp (gj − 1)) ≤ εj .

We claim that g =
∞∏

j=1

gj and ψ =
∑∞

j=1 ψj have all the required properties if we choose

the εj ’s appropriately.

Fix ε1 < ε/2 and let g1 = g1,ε1. By Lemma 17, we have

limsup
ε→0

|g1g2,ε|2H1/2 ≤ |g1|2H1/2 + limsup
ε→0

|g2,ε|2H1/2.

Thus, we may choose ε2 < ε/4 and g2 = g2,ε2 such that (using (4.5))

|g1g2|2H1/2 ≤ CΩ(d(P1, Ñ1) + d(P2, Ñ2)) + ε/2.

Using repeatedly Lemma 17, we choose ε3, ε4, . . . , such that

(4.30) εj ≤ ε2−j ∀j ≥ 1,

and, for every k ≥ 2,

(4.31)

∣∣∣∣
k∏

j=1

gj

∣∣∣∣
2

H1/2

≤ CΩ

k∑

j=1

d(Pj , Ñj ) + ε

k−1∑

j=1

2−j

≤ CΩ(L+ ε) + ε ≤ C ′
ΩL,
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since ε < L.

We claim that
( k∏

j=1

gj

)
converges in W 1,1. Indeed, set H =

∑
j≥1 |Dgj |. Then clearly

H ∈ L1 and ∣∣∣∣D
( k∏

j=1

gj

)∣∣∣∣ ≤ H.

On the other hand, for k2 ≥ k1 ≥ 1, we have, by (4.25),

∫

Ω

∣∣∣∣D
( k2∏

j=k1

gj

)∣∣∣∣ ≤
∑

j≥k1

∫
|Dgj | ≤ 2π

∑

j≥k1

d(Pj , Ñj) + ε2−k1+1.

Thus

∣∣∣∣
k∏

j=1

gj −
k+∏̀

j=1

gj

∣∣∣∣
W1,1

≤
∫

Ω

H

∣∣∣∣1 −
k+∏̀

j=k+1

gj

∣∣∣∣+ 2π
∑

j≥k+1

d(Pj , Ñj ) + ε2−k

≤ 2
∫

∪j>k{x;gj (x)6=1}

H + 2π
∑

j≥k+1

d(Pj , Ñj) + ε2−k.

Since meas
(⋃

j>k Supp (gj − 1)) ≤ ε2−k and
∑
d(Pj , Ñj) < ∞, we conclude that

( k∏

j=1

gj

)
is a Cauchy sequence in W 1,1 (note that it is clearly a Cauchy sequence in

L1, by (4.29)).

Set g =
∞∏

j=1

gj . By construction

|g|W1,1 ≤
∫

Ω

H ≤ 2π
∞∑

j=1

d(Pj , Ñj ) + ε

≤ 2π(L +
ε

4π
) + ε ( by (4.23)) ≤ 2π(L+ ε).

This proves (4.18).

On the other hand, by (4.31), the sequence
( k∏

j=1

gj

)
is bounded in H1/2, so that

g ∈ H1/2 and |g|2
H1/2 ≤ C ′

ΩL; this proves (4.19).
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We now turn to (4.17). By (2.7) and (4.24), we have

T

( k∏

j=1

gj

)
= 2π

k∑

j=1

(δPj − δÑj
).

By Lemma 1 and the convergence of (
∏k
j=1 gj) to g in W 1,1 as k → ∞, we have

〈T
( k∏

j=1

gj

)
, ϕ〉 → 〈T (g), ϕ〉, ∀ϕ ∈ Lip(Ω; R).

Thus,

〈T (g), ϕ〉 = 2π
∞∑

j=1

(ϕ(Pj) − ϕ(Ñj)), ∀ϕ ∈ Lip (Ω; R).

From (4.22) we conclude that

T (g) = 2π
∑

i

(δPi − δNi).

Properties (4.20) and (4.21) are immediate consequences of (4.23), (4.28) and (4.29).

We now derive some consequences of the above results. We start with a simple

Proof of Theorem 2. Let g ∈ H1/2(Ω;S1) be such that L(g) = 0. We must show that

g ∈ Y = C∞(Ω;S1)
H1/2

. By Lemma 11 there exists a sequence (gn) in R such that gn → g
in H1/2, and thus L(gn) → 0. Since each gn has only finitely many singularities, it follows
from the dipole construction there exists a sequence (hn) such that

hn ∈W 1,∞
loc (Ω\Σn;S1) ∩W 1,p(Ω;S1),∀p ∈ [1, 2), T (hn) = T (gn),

where Σn is the singular set of gn(Σn is a finite set), and moreover

|hn|2H1/2 ≤ CΩL(hn) → 0,
hn → 1 a.e. on Ω.

Clearly kn = gnhn ∈ W 1,∞
loc (Ω\Σn;S1) ∩ W 1,p(Ω;S1),∀p ∈ [1, 2) and T (kn) = T (gn) −

T (hn) = 0. By Lemma 2, we have deg(kn, a) = 0 ∀a ∈ Σn. Therefore kn admits a
well-defined lifting on Ω, kn = eiϕn , with ϕn ∈ W 1,∞

loc (Ω\Σn; R) ∩W 1,p(Ω; R),∀p ∈ [1, 2).
In particular, kn ∈ X ⊂ Y . In order to prove that g ∈ Y it suffices to check that kn → g
in H1/2. Write

|kn − g|H1/2 = |gnhn − g|H1/2 = |(gn − g)hn + g(hn − 1)|H1/2

≤ |(gn − g)hn|H1/2 + |g(hn − 1)|H1/2 .
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But
|(gn − g)hn|H1/2 ≤ |gn − g|H1/2 + 2|hn|H1/2 → 0

and

|g(hn − 1)|2H1/2 ≤ C

∫

Ω

∫

Ω

|g(x) − g(y)|2

d(x, y)3
|hn(x) − 1|2dxdy + C|hn|2H1/2 → 0.

Corollary 2. Given any g ∈ H1/2(Ω;S1), there exist h ∈ Y, k ∈ H1/2(Ω;S1)∩W 1,1(Ω;S1)
and ψ ∈ BV (Ω; R) such that

g = hk and k = eıψ.

Moreover, for every ε > 0, one may choose h, k, ψ such that

∫

Ω

|Dk| ≤ 2πL(g) + ε, |k|2H1/2 ≤ CΩL(g),

|h|2H1/2 ≤ |g|2H1/2 + CΩL(g)

and
|ψ|BV ≤ 4πL(g) + ε.

Proof. By Lemma 16 there exists a sequence (kn) in H1/2(Ω;S1) ∩W 1,1 such that

T (kn) = T (g), ∀n,

lim sup
n→∞

|kn|W1,1 ≤ 2πL(g),

|kn|2H1/2 ≤ CΩL(g), ∀n,

and
kn → 1 a.e. on Ω.

Set hn = gk̄n, so that T (hn) = 0, ∀n, and thus hn ∈ Y . By Lemma 17 we have

limsup
n→∞

|hn|2H1/2 ≤ |g|2H1/2 +CΩL(g).

The conclusion of Corollary 2 is now clear with k = kn, h = hn and n sufficiently large.

Proof of Theorem 5. As in the proof of Corollary 2 write g = hnkn. Since hn ∈ Y ,
we may apply Theorem 3 and write hn = eı(ϕn+ψn), with ϕn ∈ H1/2 and ψn ∈ W 1,1. An
inspection of the proof of Theorem 3 shows that

|ϕn|H1/2 ≤ CΩ|hn|H1/2 ≤ C ′
Ω|g|H1/2
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and
|ψn|W1,1 ≤ CΩ|hn|2H1/2 ≤ C ′

Ω|g|2H1/2.

Thus
g = eıϕn(eıψnkn),

which is the desired decomposition since eıψnkn ∈W 1,1 and

|eıψnkn|W1,1 ≤ |ψn|W1,1 + |kn|W1,1 ≤ C
′′

Ω|g|2H1/2.

Proof of the upper bound in Theorem 4. We have to show that, for every g ∈
H1/2(Ω;S1),

Inf{|ψ|BV ; g = eı(ϕ+ψ), ϕ ∈ H1/2, ψ ∈ BV } ≤ 4πL(g),

i.e., for every ε > 0, we must find ϕε ∈ H1/2 and ψε ∈ BV such that g = eı(ϕε+ψε) and

|ψε|BV ≤ 4πL(g) + ε.

Going back to the proof of Corollary 2 and Theorem 5, we may write, by (4.20), kn =
eıηn , with ηn ∈ BV and

limsup
n→∞

|ηn|BV ≤ 4πL(g).

On the other hand, since C∞(Ω; R) is dense in W 1,1(Ω; R), we may choose ψ̃n ∈ C∞(Ω; R)
such that

‖ψn − ψ̃n‖W1,1 < 1/n.

Finally, we may write

g = hnkn = eı(ϕn+ψn+ηn) = eı(ϕn+ψ̃n)+ı(ψn−ψ̃n+ηn),

with ϕn + ψ̃n ∈ H1/2, ψn − ψ̃n + ηn ∈ BV and

lim sup |ψn − ψ̃n + ηn|BV ≤ 4πL(g),

which is the desired conclusion.

We now turn to the

Proof of Lemma 14′. For the first assertion, we proceed as in the proof of Corollary 2.
Since hn ∈ Y , ∀n, we may find a sequence (h̃n) in C∞(Ω;S1) such that

‖h̃n − hn‖2
H1/2 → 0 as n→ ∞.
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Recall that
hn = gk̄n −→ g a.e.

Thus, by Lemma 17, we find

limsup |h̃n|2H1/2 ≤ |g|2H1/2 + CΩL(g)

and (passing to a subsequence)

h̃n −→ g a.e., h̃n ⇀ g weakly in H1/2.

To prove the second assertion, let (gn) be any sequence in Y such that gn −→ g a.e.
Writing gn = (gnḡ)g and observing that gnḡ → 1 a.e., we deduce from Lemma 17 that

|gn|2H1/2 = |g|2H1/2 + |gnḡ|2H1/2 + o(1) as n→ ∞.

On the other hand (see Lemma 9),

L(gnḡ) ≤ CΩ|gnḡ|2H1/2.

But L(gnḡ) = L(ḡ), since L(gn) = 0, and thus

|gn|2H1/2 ≥ |g|2H1/2 +C ′
ΩL(g) + o(1).

Remark 4.2. We have now at our disposal two different techniques for lifting a general
g ∈ H1/2(Ω;S1) in the form

g = eı(ϕ+ψ) with ϕ ∈ H1/2 and ψ ∈ BV.

The first method, described at the beginning of Section 4, yields some ϕ ∈ H1/2 and
ψ ∈ BV such that

g = eı(ϕ+ψ),

with the estimate

(4.32) |ϕ|H1/2 ≤ CΩ|g|H1/2

and

(4.33) |ψ|BV ≤ CΩ|g|2H1/2.

The second method, described in the proof of Theorem 4 (upper bound), yields, for
every ε > 0, some ϕε ∈ H1/2 and ψε ∈ BV such that

g = eı(ϕε+ψε),
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with

(4.34) |ψε|BV ≤ 4πL(g) + ε

and no estimate for ϕε in H1/2.

A natural question is whether one can achieve a decomposition of the phase in the form

g = eı(ϕ
#
ε +ψ#

ε )

with the double control
|ϕ#
ε |H1/2 ≤ C(ε, |g|H1/2)

and
|ψ#
ε |BV ≤ 4πL(g) + ε ?

The answer is negative even with g ∈ Y . To see this, we may use an example studied in
[15]. Assume that, locally, near a point of Ω, say 0, the square Q = I2, with I = (−1,+1),
is contained in Ω. Consider the function γδ(x) defined on I by

γδ(x) =





0, if − 1 < x < 0
2πx/δ, if 0 < x < δ

2π, if δ < x < 1
,

where δ is small.

On Q, set
gδ(x, y) = eıγδ(x) for (x, y) ∈ Q.

Clearly, we have gδ ∈ Y , so that L(gδ) = 0. We claim that

(4.35) ‖gδ‖H1/2(Q) ≤ C, ∀ δ,

and that there exist absolute positive constants c∗ and C∗ such that, if

(4.36) gδ = eı(ϕδ+ψδ), ϕδ ∈ H1/2(Q), ψδ ∈ BV (Q),

with

(4.37) |ψδ|BV (Q) ≤ C∗,

then

(4.38) |ϕδ|2H1/2(Q) ≥ c∗ log(1/δ) as δ → 0.
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The verification of (4.35) is easy. Indeed, by scaling we have

|gδ(·, y)|H1/2(I) ≤ C, ∀ δ, ∀ y,

and recall (see e.g. [1], Lemma 7.44) that

(4.39)
∫

I

|f(·, y)|2H1/2(I)dy +
∫

I

|f(x, ·)|2H1/2(I)dx ∼ |f |2H1/2(Q),

so that (4.35) follows.

We now turn to the proof of (4.38) under the assumptions (4.36) and (4.37). By Theorem
2 in [15] we know that, for a.e. y ∈ I,

(4.40) |ϕδ(·, y) + ψδ(·, y)|Hs(I) ≥ c(log(1/δ))1/2

for some absolute constant c > 0, where

(4.41) 2s = 1 − (log 1/δ)−1.

On the other hand, it is easy to see that

(4.42) |f |2Hσ(I) ≤
C

1 − 2σ
|f |2BV (I), ∀ f ∈ BV (I), ∀σ < 1/2

and

(4.43) |f |Hσ(I) ≤ C|f |H1/2(I), ∀ f ∈ H1/2, ∀σ ≤ 1/2,

with constants C independent of σ. Combining (4.40), (4.41), (4,42) and (4.43) yields, for
a.e y ∈ I,

(4.44) |ϕδ(·, y)|H1/2(I) + (log(1/δ))1/2|ψδ(·, y)|BV (I) ≥ c(log(1/δ))1/2.

Integrating (4.44) in y and using the inequalities
∫

I

|f(·, y)|H1/2(I)dy ≤
(

2
∫

I

|f(·, y)|2H1/2(I)dy

)1/2

≤ C|f |H1/2(Q), ∀ f ∈ H1/2(Q),

and ∫

I

|f(·, y)|BV (I)dy ≤ C|f |BV (Q), ∀ f ∈ BV (Q),

together with (4.37), we obtain

|ϕδ|H1/2(Q) + C∗(log 1/δ)1/2 ≥ c(log 1/δ)1/2,

and (4.38) follows, provided C∗ is sufficiently small.

4.3. Lower bound estimates for the BV part of the phase

We start with a simple lemma about maps from S1 into S1.
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Lemma 18. Let (gn) ⊂ BV (S1;S1) ∩ C0(S1;S1) be such that gn → g a.e. for some
g ∈ BV (S1;S1) ∩ C0(S1;S1) and ‖gn‖BV ≤ C. Then

lim inf
n→∞

(∫

S1

|ġn| − 2π|deg gn − deg g|
)

≥
∫

S1
|ġ|.

Here, ġ denotes the measure
∂g

∂θ
.

Proof. (We thank Augusto Ponce for simplifying our original proof). For g ∈ BV (S1;S1)∩
C0(S1;S1), let f ∈ C0([0, 2π]; R) be such that g(exp(ıθ)) = exp(ıf(θ)). Then deg g =
1
2π
(
f(2π) − f(0)

)
. Moreover, we have f ∈ BV and

(4.45)

2π∫

0

|f ′| =
∫

S1

|ġ|,

where f ′ is the measure
df

dx
. Indeed, since g is continuous, we have

(4.46)

∫

S1

|ġ| = Sup
{ n∑

j=1

|g(exp(ıtj+1)) − g(exp(ıtj ))|; 0 ≤ t1 < · · · < tn ≤ 2π
}

= Sup
{ n−1∑

j=1

|g(exp(ıtj+1)) − g(exp(ıtj))|; 0 ≤ t1 < · · · < tn ≤ 2π
}

(with the convention tn+1 = t1).

For a given δ > 0, we have

(4.47) (1 − δ)|f(tj+1) − f(tj )| ≤ |g(exp(ıtj+1)) − g(exp(ıtj))| ≤ |f(tj+1) − f(tj )|,

provided the partition (tj) is sufficiently fine. We obtain (4.45) by combining (4.46) and
(4.47).

Let fn ∈ BV ([0, 2π]; R) ∩ C0([0, 2π]; R) be such that gn(exp(ıθ)) = exp(ıfn(θ)) and
‖fn‖BV ≤ C. Up to a subsequence, we may assume that fn → h a.e. and in L1 for some
h ∈ BV .

Since g = eıh = eıf , we find that h = f + k, where k ∈ BV ([0, 2π]; 2πZ). Thus k must
be of the form

k = 2π
p∑

j=1

αjχIj a.e.,
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where αj ∈ Z, Ij = (aj , aj+1), 0 = a1 < · · · < ap+1 = 2π. Therefore

(4.48) h′ = f ′ +
p∑

j=2

αjδaj .

We have to prove that

(4.49) lim inf
n→∞

( 2π∫

0

|f ′n| −
∣∣∣∣

2π∫

0

(f ′n − f ′)
∣∣∣∣
)

≥
2π∫

0

|f ′|.

It suffices to show that

(4.50) lim inf
n→∞

( 2π∫

0

|f ′n| +
2π∫

0

(f ′n − f ′)
)

≥
2π∫

0

|f ′|.

Indeed, (4.50) applied to ḡn gives

(4.51) lim inf
n→∞

( 2π∫

0

|f ′n| −
2π∫

0

(f ′n − f ′)
)

≥
∫ 2π

0

|f ′|

and the combination of (4.50) and (4.51) is equivalent to (4.49). We may rewrite (4.50) as

(4.52) lim inf
n→∞

2π∫

0

(f ′n)+ ≥
2π∫

0

(f ′)+.

Let ϕ ∈ C∞
0 (0, 2π), 0 ≤ ϕ ≤ 1. Then

−
2π∫

0

fnϕ
′ =

2π∫

0

f ′nϕ ≤
2π∫

0

(f ′n)+

and thus

−
2π∫

0

hϕ′ ≤ lim inf
n→∞

2π∫

0

(f ′n)+.

Taking the supremum over such ϕ’s yields

lim inf
n→∞

2π∫

0

(f ′n)+ ≥
2π∫

0

(h′)+ =

2π∫

0

(f ′ +
∑

αjδaj )
+ by (4.48).

We conclude with the help of the following elementary
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Lemma 19. Let f ∈ BV ([0, 2π]) ∩ C0([0, 2π]). Then

2π∫

0

(f ′ +
∑

finite

αjδaj )
+ =

2π∫

0

(f ′)+ +
∑

(αj)+

for any choice of distinct points aj ∈ (0, 2π) and of αj in R.

Proof of Lemma 19. It suffices to consider the case of a single point a ∈ (0, 2π). Let
ζn = ζ

(
n(x−a)

)
, where ζ is a fixed cutoff function with ζ(0) = 1, 0 ≤ ζ ≤ 1. For any fixed

ψ ∈ C1
(
[0, 2π]

)
, we claim that

2π∫

0

f(ζnψ)′ → 0.

Indeed,
2π∫

0

f(ζnψ)′ =

2π∫

0

(
f − f(a)

)
(ζnψ)′,

so that
∣∣∣∣

2π∫

0

f(ζnψ)′
∣∣∣∣ ≤

2π∫

0

|f − f(a)| |(ζnψ)′| n→ 0,

since f is continuous at a.

Let ε > 0. Fix some ψ ∈ C1
0

(
(0, 2π)

)
, 0 ≤ ψ ≤ 1, such that

−
2π∫

0

fψ′ ≥
2π∫

0

(f ′)+ − ε.

Then, with 0 ≤ t ≤ 1,

2π∫

0

(f ′ + αδa)[(1 − ζn)ψ + tζn] = −
2π∫

0

f [(1 − ζn)ψ + tζn]′ + tα
n→ −

2π∫

0

fψ′ + tα.

Since 0 ≤ (1 − ζn)ψ + tζn ≤ 1, we find that

2π∫

0

(f ′ + αδa)+ ≥
2π∫

0

(f ′)+ + tα− ε, ∀ ε > 0, ∀ t ∈ [0, 1],
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and thus
2π∫

0

(f ′ + αδa)+ ≥
∫ 2π

0

(f ′)+ + α+.

The opposite inequality
2π∫

0

(f ′ + αδa)+ ≤
2π∫

0

(f ′)+ + α+

being clear, the proof of Lemma 19 is complete.

Remark 4.3. The assumption ‖gn‖BV ≤ C in Lemma 18 is essential (A. Ponce, personal
communication).

Corollary 3. Let Γ ⊂ RN be an oriented curve. Let (gn) ⊂ BV (Γ;S1) ∩ C0(Γ;S1) be
such that gn → g a.e. and ‖gn‖BV ≤ C, where g ∈ BV (Γ;S1) ∩ C0(Γ;S1). Then

lim inf
n→∞

(∫

Γ

|ġn| − 2π|deg gn − deg g|
)

≥
∫

Γ

|ġ|.

In particular, if deg gn = 0,∀n, then

lim inf
n→∞

∫

Γ

|ġn| ≥ 4π|deg g|

(the assumption ‖gn‖BV ≤ C is not required here).

Here, Γ need not be connected. If Γ =
⋃
j γj , with each γj simple, we set

deg g =
∑

j

deg(g; γj),

where γj has the orientation inherited from that of Γ.

Remark 4.4. It can be easily seen that the constants 2π in Lemma 18 and 4π in Corollary
3 cannot be improved.

We now prove a coarea type formula (in the spirit of [2]) used in the proof of the lower
bound in Theorem 4.

Lemma 20. Let g ∈ H1/2(Ω;S1) and ζ ∈ C∞(Ω; R). If λ ∈ R is a regular value of ζ, let

Γλ = {x ∈ Ω; ζ(x) = λ}.
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We orient Γλ such that, for each x ∈ Γλ, the basis
(
τ (x),Dζ(x), n(x)

)
is direct, where

n(x) is the outward normal to Ω at x. Then

〈T (g), ζ〉 = 2π
∫

R

deg(g; Γλ)dλ.

Remark 4.5. For a.e. λ we have g|Γλ
∈ H1/2 ⊂ VMO. Therefore, deg(g; Γλ) makes sense

for a.e. λ (see [22]). In general, Γλ is a union of simple curves, Γλ =
⋃
γj . In this case,

we set
deg(g; Γλ) =

∑
deg(g; γj),

where on each γj we consider the orientation inherited from Γλ.

Proof of Lemma 20. We write g = g1h, with g1 ∈ X and h ∈W 1,1(Ω;S1)∩H1/2(Ω;S1).
For a.e. λ, we have h|Γλ

∈W 1,1 and g1|Γλ
∈ H1/2.

Since g1 = eıϕ1 for some ϕ1 ∈ H1/2(Ω; R), for a.e. λ we have deg(g1; Γλ) = 0, so that
deg(g; Γλ) = deg(h; Γλ) for a.e. λ. Moreover, we have T (g) = T (h). It suffices therefore
to prove the statement of the lemma for h ∈ W 1,1(Ω;S1) ∩H1/2(Ω;S1). In this case, we
have

〈T (h), ζ〉 =
∫

Ω

|Dζ|h ∧
(
Dh ∧ Dζ

|Dζ|

)

(see Lemma 1 in the Introduction).

We recall the coarea formula (see, e.g., Federer [26], Simon [42])

(4.53)
∫

Ω

f |Dϕ| =
∫

R

( ∫

ϕ=λ

fds

)
dλ, ϕ ∈ C∞(Ω; R), f ∈ L1(Ω; R).

Applying (4.53) with ϕ = ζ, f = h ∧
(
Dh ∧ Dζ

|Dζ|

)
= h ∧ ∂h

∂τ
(where τ is the oriented

tangent unit vector to Γλ) we find

〈T (h), ζ〉 =
∫

R

(∫

Γλ

h ∧ ∂h

∂τ
ds

)
dλ = 2π

∫

R

deg(h; Γλ)dλ.

The final ingredient in the proof of Theorem 4 is the lower bound given by

Lemma 21. Let g ∈ H1/2(Ω;S1). If g = eı(ϕ+ψ) with ϕ ∈ H1/2(Ω; R) and ψ ∈ BV
(Ω; R), then ∫

Ω

|Dψ| ≥ 4πL(g).
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Proof. Let h = e−ıϕg ∈ H1/2(Ω;S1). Let (ψn) be a sequence of smooth real-valued
functions such that ψn → ψ a.e. and

∫

Ω

|Dψn| →
∫

Ω

|Dψ|.

Fix some ζ ∈ C∞(Ω; R) and let, for λ a regular value of ζ, Γλ = {x ∈ Ω; ζ(x) = λ}. Let
hn = eiψn . For a.e. λ we have hn|Γλ

→ h|Γλ
a.e. and h|Γλ

∈ H1/2 ∩ BV . For any such
λ we have h|Γλ

∈ BV ∩ C0. Indeed, since k = h|Γλ
∈ BV , k has finite limits from the

left and from the right at each point. These limits must coincide, since H1/2 ⊂ VMO
in dimension 1 (see e.g. [17] and [22]) and non-trivial characteristic functions are not in
VMO.

By the second assertion in Corollary 3, we find that, for a.e. λ,

lim inf
n→∞

∫

Γλ

|ḣn| ≥ 4π|deg(h; Γλ)|.

Thus, if |Dζ| ≤ 1, we have by the coarea formula,

lim inf
n→∞

∫

Ω

|Dhn| ≥ lim inf
n→∞

∫

Ω

|Dhn| |Dζ| = lim inf
n→∞

∫

R

(∫

Γλ

|Dhn|ds
)
dλ ≥

≥ lim inf
n→∞

∫

R

(∫

Γλ

|ḣn|ds
)
dλ ≥ 4π

∫

R

|deg(h; Γλ)|dλ ≥ 4π
∣∣∣∣
∫

R

deg(h; Γλ)dλ
∣∣∣∣.

On the other hand, by Lemma 20, we have

4π
∣∣∣∣
∫

R

deg(h; Γλ)dλ
∣∣∣∣ = 2|〈T (h), ζ〉|.

Thus, if ζ ∈ C∞(Ω; R) is such that |Dζ| ≤ 1, we have

(4.54)
∫

Ω

|Dψ| = lim inf
n→∞

∫

Ω

|Dψn| = lim inf
n→∞

∫

Ω

|Dhn| ≥ 2|〈T (h), ζ〉| = 2|〈T (g), ζ〉|.

We conclude by taking in (4.54) the supremum over all such ζ’s.

5. Minimal connection and Ginzburg-Landau energy for g ∈ H1/2. Proof of
Theorem 6
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Throughout this Section, the metric d denotes dG, the geodesic distance (on Ω) relative
to G, and L = LG.

Proof of Theorem 6. We start by deriving some elementary inequalities. For g ∈
H1/2(Ω; R2), let

eε,g = Min{Eε(u);u ∈ H1
g (G; R2)}.

Let g1, g2 ∈ H1/2(Ω;S1) and let uj ∈ H1
gj

(G;B2) be such that eε,gj = Eε(uj), j = 1, 2.
Then u1u2 ∈ H1

g1g2
(G; R2). We find that, for each δ > 0, we have

eε,g1g2 ≤ Eε(u1u2) ≤
1
2

∫

G

(|∇u1| + |∇u2|)2 +
1

4ε2

∫

G

(1 − |u1u2|2)2

≤ 1 + δ

2

∫

G

|∇u1|2 +
C(δ)

2

∫

G

|∇u2|2 +
1

4ε2

∫

G

((1 − |u1|2) + (|1 − |u2|2))2

≤ (1 + δ)eε,g1 + C(δ)eε,g2 .(5.1)

Similarly, we have

(5.2) eε,g1g2 ≥ (1 − δ)eε,g1 − C(δ)eε,g2 .

The upper bound eε,g ≤ πL(g) log(1/ε) + o(log(1/ε)).

We will use Lemma A.1 in Appendix A, which asserts that, if g ∈ R1, then

(5.3) eε,g ≤ πL(g) log(1/ε) + o(log(1/ε)) as ε→ 0.

The class R1, which is dense in H1/2(Ω;S1), is defined in Appendix A. Inequality (5.3)
was essentially established by Sandier [40].

Another ingredient needed in the proof is the following upper bound, valid for g ∈
H1/2(Ω;S1), and already mentioned in the Introduction (see [12], Theorem 5 and Remark
8; see also [38], Proposition II.1 for a different proof):

(5.4) eε,g ≤ C|g|2H1/2(1 + log(1/ε)),

for some C = C(G).

We now turn to the proof of the upper bound. Let g ∈ H1/2(Ω;S1). By Lemma B.1 in
Appendix B, there is a sequence (gk) in R1 such that gk → g in H1/2. On the one hand,
since H1/2 ∩L∞ is an algebra, we find that |g/gk|H1/2 → 0. On the other hand, recall that
L(gk) → L(g). Fix some δ̃ > 0. By (5.4) applied to g/gk, we find that

(5.5) eε,g/gk
≤ δ̃ log(1/ε) for ε sufficiently small,
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if k is sufficiently large. Using (5.3) for gk, where k is sufficiently large, we obtain

(5.6) eε,gk ≤ π(L(g) + δ) log(1/ε).

The upper bound follows by combining (5.1), (5.5) and (5.6).

The lower bound eε,g ≥ πL(g) log(1/ε) + o(log(1/ε)).

We rely on the corresponding lower bound in [40] (Theorem 3.1, part 1): if g ∈ R0

(where the class R0, dense in H1/2(Ω;S1), is defined in Appendix A), then

(5.7) eε,g ≥ πL(g) log(1/ε) + o(log(1/ε)) for ε sufficiently small

(no geometrical assumption is made on Ω or g). We fix some δ > 0. Applying (5.7) to gk
for k sufficiently large, we find that

(5.8) eε,gk ≥ π(L(g) − δ) log(1/ε) for ε sufficiently small.

The lower bound is a consequence of (5.2), (5.5) and (5.8).

There is a variant of Theorem 6 when the boundary condition depends on ε. Let
g ∈ H1/2(Ω;S1) and let gε ∈ H1/2(Ω; R2) be such that

(5.9) gε → g in H1/2,

(5.10) |gε| ≤ 1,

(5.11) ‖|gε| − 1‖L2 ≤ C
√
ε.

Set
eε,gε = Min{Eε(u);u ∈ H1

gε
(G; R2)}.

Theorem 6′. Assume (5.9), (5.10) and (5.11). Then we have

(5.12) eε,gε = πL(g) log(1/ε) + o(log(1/ε)) as ε→ 0.

The main ingredients in the proof of (5.12) are the following Lemmas 22 and 23.
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Lemma 22. Let ϕ ∈ H1/2(Ω; R2) and let u(= uε) be the solution of the linear problem

(5.13) −∆u+
1
ε2
u = 0 in G,

(5.14) u = ϕ on Ω = ∂G.

Then, for sufficiently small ε > 0,

(5.15)
∫

G

|∇u|2 +
1
ε2

∫

G

|u|2 ≤ CG

(
|ϕ|2H1/2(Ω) +

1
ε

∫

Ω

|ϕ|2
)
.

Proof of Lemma 22. Let Φ be the harmonic extension of ϕ and fix some ζ ∈ C∞
0 (R)

with ζ(0) = 1. Set
v(x) = Φ(x)ζ(dist (x,Ω)/ε).

Using, for 0 < δ < δ0(G), the standard estimate
∫

{x;dist (x,Ω)=δ}

Φ2 ≤ C

∫

Ω

ϕ2,

it is easy to see that, for 0 < ε < ε0(G), we have
∫

G

|∇v|2 +
1
ε2

∫

G

|v|2 ≤ CG

(
|ϕ|2H1/2 +

1
ε

∫

G

|ϕ|2
)
,

and the conclusion follows, since u is a minimizer so that,∫

G

|∇u|2 +
1
ε2

∫

G

|u|2 ≤
∫

G

|∇v|2 +
1
ε2

∫

G

|v|2..

For later use, we mention a related estimate, whose proof is similar and left to the
reader:

Lemma 22′. For 0 < ε < ε0(G), set

Gε = {x ∈ R3 \G ; dist (x,Ω) < ε }.
Let ϕ ∈ H1/2(Ω; R2) and let u(= uε) be the solution of the linear problem

−∆u+
1
ε2
u = 0 in Gε,(5.16)

u = ϕ on Ω = ∂G,(5.17)

u = 0 on ∂Gε \ ∂G.(5.18)

Then

(5.19)
∫

Gε

|∇u|2 +
1
ε2

∫

Gε

|u|2 ≤ CG

(
|ϕ|2H1/2 +

1
ε

∫

Ω

|ϕ|2
)
.
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Lemma 23. Let (gε) in H1/2(Ω; R2) satisfy (5.10), (5.11) and

(5.20) ‖gε‖H1/2 ≤ C.

Then there is (hε) in H1/2(Ω;S1) such that

(5.21) ‖hε‖H1/2 ≤ C

and

(5.22) ‖gε − hε‖L2 ≤ C
√
ε.

Moreover if, in addition,

(5.23) gε → g in H1/2,

then

(5.24) hε → g in H1/2

Proof.

We divide the proof in 4 steps

Step 1.

Let g1
ε = gε ∗ Pε be an ε-smoothing of gε.

Clearly

(5.25) ‖gε − g1
ε‖L2 ≤

√
ε‖gε‖H1/2 ≤ C

√
ε

and from (5.11), (5.25) we have

(5.26) ‖1− |g1
ε | ‖L2 ≤ C

√
ε.

Also

(5.27) ‖g1
ε‖H1/2 ≤ C,

and

(5.28) ‖g1
ε‖H1 ≤ Cε−1/2‖gε‖H1/2 ≤ Cε−1/2.

Step 2.
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Given a point a ∈ R2 with |a| < 1/10, let πa : R2 \ {a} → S1 be the radial projection
onto S1 with vertex at a, i.e.,

πa(ξ) = a+ λ(ξ − a), ξ ∈ R2 \ {a}

where λ ∈ R is the unique positive solution of

|a + λ(ξ − a)| = 1.

It is also convenient to note that

πa(ξ) = j−1
a

(
ξ − a

|ξ − a|

)
for ξ 6= a

where ja : S1 → S1, ja(z) =
z − a

|z − a| , is a smooth diffeomorphism.

In particular,

(5.29) |Dπa(ξ)| ≤
C

|ξ − a| ∀ξ ∈ R2 \ {a},

and πa is lipschitzian on {|ξ| ≥ 1/2} with a uniform Lipschitz constant (independent of a).

We claim that

(5.30) ha,ε = πa ◦ g1
ε : Ω → S1

satisfies all the required properties for an appropriate choice of a = aε, |aε| < 1/10.

For this purpose, it is useful to introduce a smooth function ψ : [0,∞) → [0, 1] such
that

ψ(t) =
{

0 if t ≤ 1/4,
1 if t ≥ 1/2,

and to write

(5.31) ha,ε = πa(g1
ε )ψ(|g1

ε |) + πa(g1
ε)(1 − ψ(|g1

ε |)) = ua,ε + va,ε.

Note that, in general, ha,ε is not well-defined since g1
ε may take the value a on a large set.

However, if a is chosen to be a regular value of g1
ε , then

Σε = {x ∈ Ω; g1
ε(x) = a}
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consists of a finite number of points and ha,ε is smooth on Ω \ Σε, and we have, using
(5.29),

(5.32) |∇(πa(g1
ε))| ≤ C

|∇g1
ε|

|g1
ε − a| on Ω \ Σε.

Moreover, near every point σ ∈ Σε, we have |g1
ε(x) − a| ≥ c|x− σ|, c > 0, and thus

|∇(πa(g1
ε))| ≤

Cε
|x − σ| .

In particular ha,ε ∈W 1,p(Ω;S1),∀p < 2.

Clearly, the function πa(z)ψ(|z|) is well-defined and lipschitzian on R2 for any a, |a| <
1/10, with a uniform Lipschitz constant independent of a. Therefore, (5.27) yields

(5.33) ‖ua,ε‖H1/2 ≤ C‖g1
ε‖H1/2 ≤ C.

where C is independent of a and ε.

Next, we turn to va,ε, which is well-defined only if a is a regular value of g1
ε . On Ω \Σε,

we have

|∇va,ε| ≤ C
|∇g1

ε|
|g1
ε − a|

(1 − ψ)(|g1
ε |) + |ψ′(|g1

ε |)||∇g1
ε|

≤ C
|∇g1

ε|
|g1
ε − a|χ[|g1ε |<1/2],

with C independent of a and ε.

We now make use of an averaging device due to H. Federer and W. H. Fleming [FF] and
adapted by R. Hardt, D. Kinderlehrer and F. H. Lin [29] in the context of Sobolev maps
with values into spheres. Recall that, by Sard’s theorem, the regular values of g1

ε have full
measure and thus

(5.34)
∫

B1/10

∫

Ω

|∇va,ε|pdxda ≤ Cp

∫

[|g1ε |<1/2]

|∇g1
ε|pdx, for any p < 2.

By Hölder, (5.34), (5.26) and (5.28) we find

(5.35)
∫

B1/10

∫

Ω

|∇va,ε|pdxda ≤ ‖g1
ε‖
p
H1

∣∣∣∣[|g1
ε| < 1/2]

∣∣∣∣
1− p

2

≤ Cε−
p
2 ε1−

p
2 ≤ Cε1−p.
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Next, fix any 1 < p < 2 and estimate (see e.g. [21])

(5.36) ‖va,ε‖H1/2 ≤ C‖va,ε‖1/2

Lp′ ‖va,ε‖1/2
W1,p .

From the definition of ψ we have

|va,ε| ≤ χ[|g1ε |<1/2]

and, using (5.26), we obtain

(5.37) ‖va,ε‖Lp′ ≤ Cε1/p
′
.

Substitution of (5.37) and (5.35) in (5.36) yields

(5.38)
∫

B1/10

‖va,ε‖2p
H1/2da ≤ Cεp−1ε1−p ≤ C.

In view of (5.38) we may now choose a = aε ∈ B1/10, a regular value of g1
ε , such that

(5.39) ‖vaε,ε‖H1/2 ≤ C.

Returning to (5.31), and using (5.33) and (5.39), we obtain (5.21) with hε = haε,ε.

Step 3.

Write Zε = [|g1
ε | > 1/2]. For any regular value a of g1

ε we have

‖ha,ε − g1
ε‖2
L2(Ω) = ‖ha,ε − g1

ε‖2
L2(|g1ε |≤1/2) + ‖ha,ε − g1

ε‖2
L2(Zε)

≤ Cε+ ‖ha,ε − g1
ε‖2
L2(Zε) by (5.26).

Next we estimate

‖ha,ε − g1
ε‖L2(Zε) ≤

∥∥∥∥ha,ε −
g1
ε

|g1
ε |

∥∥∥∥
L2(Zε)

+
∥∥∥∥
g1
ε

|g1
ε|

− g1
ε

∥∥∥∥
L2(Zε)

=
∥∥∥∥πa(g1

ε ) − πa

(
g1
ε

|g1
ε |

)∥∥∥∥
L2(Zε)

+
∥∥∥∥
g1
ε

|g1
ε |

− g1
ε

∥∥∥∥
L2(Zε)

.

Since πa(ξ) is lipschitzian on [|ξ| ≥ 1/2] we obtain

‖ha,ε − g1
ε‖L2(Zε) ≤ C

∥∥∥∥g1
ε −

g1
ε

|g1
ε |

∥∥∥∥
L2(Zε)

≤ C‖1− |g1
ε |‖L2(Zε) ≤ C

√
ε, by (5.26),
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Therefore

(5.40) ‖ha,ε − g1
ε‖L2(Ω) ≤ C

√
ε

with C independent of a and ε.

Combining (5.25) and (5.40) yields

‖ha,ε − gε‖L2(Ω) ≤ C
√
ε,

which is (5.22) when choosing a = aε.

Step 4.

Suppose now, in addition, that gε → g in H1/2. We claim that hε → g in H1/2.

Indeed, we have
‖g1
ε‖H1 ≤ ‖(gε − g) ∗ Pε‖H1 + ‖g ∗ Pε‖H1

≤ Cε−1/2‖gε − g‖H1/2 + ‖g ∗ Pε‖H1

= o(ε−1/2).

Returning to (5.35) and (5.38) we now find
∫

B1/10

∫

Ω

|∇va,ε|pdxda→ 0 as ε→ 0.

and we may choose aε so that

‖vaε,ε‖H1/2 → 0 as ε→ 0.

It remains to show that

(5.41) uaε,ε → g in H1/2 as ε→ 0.

Recall that
uaε,ε = πaε(g

1
ε)ψ(|g1

ε |) = Lε(g1
ε),

where Lε : R2 → R2 are lipschitzian maps with a uniform Lipschitz constant.

We have
‖g1
ε − g‖H1/2 = ‖(gε − g) ∗ Pε + (g ∗ Pε) − g‖H1/2

≤ C‖gε − g‖H1/2 + ‖(g ∗ Pε) − g‖H1/2,

so that

(5.42) ‖g1
ε − g‖H1/2 → 0.
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Finally we use the following claim:

(5.43)





If (kn) is a sequence in H1/2(Ω; R2) such that kn → k in H1/2 and
Ln : R2 → R2 satisfy a uniform Lipschitz condition, then

Ln(kn) − Ln(k) → 0 in H1/2.

Proof of (5.43). It suffices to argue on subsequences. Since

|kn − k|2H1/2 =
∫

Ω

∫

Ω

|kn(x) − k(x) − kn(y) + k(y)|2

d(x, y)3
dxdy → 0,

there is, (modulo a subsequence), some fixed h(x, y) ∈ L1(Ω × Ω) such that

|kn(x) − kn(y)|2

d(x, y)3
≤ h(x, y), ∀n.

We have

|Ln(kn) − Ln(k)|2H1/2 =
∫

Ω

∫

Ω

|Ln(kn(x)) − Ln(k(x)) − Ln(kn(y)) + Ln(k(y))|2

d(x, y)3
dxdy,

and the integrand In(x, y) satisfies

In(x, y) ≤ C
(|kn(x) − kn(y)|2 + |k(x) − k(y)|2)

d(x, y)3

≤ Ch(x, y),

and also,

In(x, y) ≤ C
(|kn(x) − k(x)|2 + |kn(y) − k(y)|2)

d(x, y)3
.

Therefore, by dominated convergence,

|Ln(kn) − Ln(k)|H1/2 → 0.

This proves (5.43).

We now return to the proof of (5.41). Applying (5.43) to Ln(ξ) = πaεn
(ξ)ψ(|ξ|) and to

kn = g1
εn

→ g in H1/2 by (5.42), we find that

Ln(g1
εn

) − Ln(g) → 0 in H1/2.

But Ln(g) = g ∀n since |g| = 1. Thus we are led to Ln(g1
εn

) → g in H1/2, which is (5.41).
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This completes the proof of Lemma 23.

Remark 5.1. It is interesting to observe that the construction used on the proof of Lemma
23 gives a simple proof of Rivière’s Lemma 11. In fact, we have a more precise statement.
Fix any element g ∈ H1/2(Ω;S1) and apply the construction described above with gε ≡ g.
The sequence

hε = πaε(g ∗ Pε)

satisfies the following properties:

hε ∈W 1,p(Ω;S1), ∀p < 2,∀ε,(5.44)

hε → g in H1/2 as ε→ 0,(5.45)

(5.46)




hε is smooth except on a finite set Σε ⊂ Ω and

|∇hε(x)| ≤
Cε

dist (x,Σε)
, ∀x ∈ Ω \Σε,

(5.47)



for each σ ∈ Σε, there is a smooth diffeomorphismγ = γε,σ, from the
unit circle in Tσ(Ω) onto S1, such that, assuming Ω flat near σ (for simplicity),

we have
∣∣hε(x) − γ

(
x− σ

|x− σ|

)∣∣ ≤ Cε|x − σ| for x ∈ Ω near σ.

Here, Tσ(Ω) denotes the tangent space to Ω at σ. Note that (5.47) implies that
deg(g, σ) = ±1 for each singularity σ.

All the above properties are clear from the proof of Lemma 23, except possibly (5.47).
Taylors’s expansion near σ ∈ Σε gives

g1
ε(x) = g1

ε(σ) +M(x − σ) +O(|x − σ|2)

where g1
ε(σ) = aε and M = Mε,σ = Dg1

ε (σ) is a bounded invertible linear operator from
Tσ(Ω) onto R2 (since aε is a regular value of g1

ε). Thus

g1
ε(x) − aε

|g1
ε(x) − aε|

=
M(x − σ)
|M(x − σ)| +O(|x − σ|)

and therefore

hε(x) = j−1
aε

(
g1
ε(x) − aε

|g1
ε(x) − aε|

)
= j−1

aε

(
M(x − σ)
|M(x − σ)|

)
+O(|x − σ|),
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where jaε(ξ) =
ξ − aε
|ξ − aε|

: S1 → S1. This proves (5.47) with

γ(z) = j−1
aε

(
Mz

|Mz|

)
, z ∈ Tσ(Ω).

Clearly, γ is a smooth diffeomorphism from the unit circle in Tσ(Ω) onto S1. We will
present in Appendix B a more precise statement.

Remark 5.2. The averaging process over a in the proof of Lemma 23 can be done on
any ball Bρ, 0 < ρ ≤ 1/10, with ρ possibly depending on ε. In particular, when gε → g in
H1/2, one may choose some special ρε → 0 and obtain a corresponding aε with aε → 0.
Then

h̃aε,ε =
g1
ε − aε

|g1
ε − aε|

has all the desired properties without having to consider

haε,ε = j−1
aε
h̃aε,ε.

The argument is similar, with a minor modification in Step 3.

Proof of Theorem 6′. Let kε ∈ H1/2(Ω; R2) with |kε| ≤ 1. We claim that

(5.48) eε,kε ≤ CΩ(|kε|2H1/2 +
1
ε
‖kε − 1‖2

L2).

Indeed, let u = uε be the solution of (5.13), (5.14) corresponding to ϕ = kε − 1. Using
the function (uε + 1) as a test function in the definition of eε,kε , we find

(5.49) eε,kε ≤ 1
2

∫

G

|∇uε|2 +
1

4ε2

∫

G

(|uε + 1|2 − 1)2.

From (5.15), we have

(5.50)
∫

G

|∇uε|2 ≤ C(|kε|2H1/2 +
1
ε
‖kε − 1‖2

L2).

On the other hand, by the maximum principle, we have

‖uε‖L∞(G) ≤ ‖kε − 1‖L∞(Ω) ≤ 2,
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and thus, by (5.15),
∫

G

(|uε + 1|2 − 1)2 =
∫

G

(|uε + 1| − 1)2(|uε + 1| + 1)2 ≤ 16
∫

G

|uε|2

≤ Cε2(|kε|2H1/2 +
1
ε
‖kε − 1‖2

L2).(5.51)

Combining (5.49), (5.50) and (5.51) yields (5.48).

Next, we write, using hε from Lemma 23,

gε = (gεh̄ε)(hεḡ)g

and apply (5.1) to find

(5.52) eε,gε ≤ (1 + δ)eε,g + C(δ)(eε,hεḡ + eε,gεh̄ε
).

We deduce from (5.48) (applied to kε = gεh̄ε) that

(5.53)
eε,gεh̄ε

≤ C(|gεh̄ε|2H1/2 +
1
ε
‖gεh̄ε − 1‖2

L2)

≤ C(|gε|2H1/2 + |hε|2H1/2 +
1
ε
‖gε − hε‖2

L2) ≤ C.

Applying (5.4) (with g replaced by hεḡ) yields

(5.54) eε,hε ḡ ≤ C|hεḡ|2H1/2(1 + log(1/ε)).

Recall that |hεḡ|H1/2 → 0 as ε→ 0 (by (5.24)). By Theorem 6, we know that

(5.55) eε,g = πL(g) log(1/ε) + o(log(1/ε)).

Combining (5.52) - (5.55) we finally obtain

lim sup
ε→0

eε,gε

log(1/ε)
≤ πL(g)(1 + δ), ∀ δ > 0.

The lower bound
lim inf
ε→0

eε,gε

log(1/ε)
≥ πL(g)(1 − δ), ∀ δ > 0,

is deduced in the same way via (5.2). This completes the proof of Theorem 6′.

6. W 1,p(G) compactness for p < 3/2 and g ∈ H1/2. Proof of Theorem 7′

Proof of Theorem 7′. The estimate

‖uε‖W1,p(G) ≤ Cp, ∀ 1 ≤ p < 3/2,

was established in [5]. We will now show that a simple adaptation of the argument there
yields compactness. We rely on the following
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Lemma 24. The family (uε ∧ duε) is compact in Lp(G), 1 ≤ p < 3/2.

Proof of Lemma 24. LetXε = uε∧duε. Since div (Xε) = 0, we may writeXε = curl Hε.
As explained in Section 3 of [5], we may choose Hε of the form Hε = H1

ε + H2. Here
H2 ∈ W 1,p(G), 1 ≤ p < 3/2, depends only on g, while H1

ε is a linear operator acting on
Xε satisfying the estimate

‖H1
ε ‖W1,p(G) ≤ Cp‖dXε‖[W1,q (G)]∗ , 1 ≤ p < 3/2,

1
p

+
1
q

= 1.

Therefore, it suffices to prove that (dXε) is relatively compact in [W 1,q(G)]∗.

For 1 ≤ p < 3/2 and
1
p

+
1
q

= 1, let 0 < β < α = 1− 3
q
. Then the imbeddingW 1,q(G) ⊂

C0,β(G) is compact. Hence the imbedding (C0,β(G))∗ ⊂ (W 1,q(G))∗ is compact. The
conclusion of Lemma 24 follows now easily from the bound ‖dXε‖[C0,β(G)]∗ ≤ C derived in
[5]; see Theorem 2bis.

Proof of Theorem 7′ completed. Let A = Aε = {x ∈ G ; |uε(x)| ≤ 1/2}. Since
Eε(uε) ≤ C log(1/ε), we have |Aε| ≤ Cε2 log(1/ε). In G\Aε, we have

(6.1) duε =
ıuε
|uε|2

uε ∧ duε +
uε
|uε|

d|uε|.

We may thus write in G

duε = χAεduε + χG\Aε

( ıuε
|uε|2

uε ∧ duε +
uε
|uε|

d|uε|
)
.

Note that ∫

Aε

|duε|p ≤
(∫

Aε

|duε|2
)p/2

|Aε|1−p/2
ε→ 0, 1 ≤ p < 2.

Recall the following estimate (see [9], Proposition VI. 4):

∫

G

|d|uε||p
ε→ 0, 1 ≤ p < 2.

Applying (6.1) and Lemma 24 we see that (uε) is bounded in W 1,p, p < 3/2. In particular,
up to a subsequence, we have uε

ε→ u0 a.e. for some u0. Moreover, we see that |uε|
ε→ 1

a.e., since
1
ε2

∫

G

(1 − |uε|2)2 ≤ C log(1/ε),
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so that |u0| = 1. Thus, up to a subsequence, we find

duε − ıu0(uε ∧ duε)
ε→ 0 in Lp, 1 ≤ p < 2.

Finally, Lemma 24 implies that, up to a further sequence, (duε) converges in Lp(G), 1 ≤
p < 3/2.

The proof of Theorem 7′ is complete.

As in the case of Theorem 6, Theorem 7′ generalizes to the situation where the boundary
data is not fixed anymore:

Theorem 7′′. Assume that the maps gε ∈ H1/2(Ω; R2) are such that:

(6.2) |gε|H1/2 ≤ C,

(6.3) |gε| ≤ 1 on Ω,

and

(6.4) ‖|gε| − 1‖L2 ≤ C
√
ε.

Let uε be a minimizer of Eε inH1
gε

(G; R2). Then Eε(uε) ≤ C log(1/ε) and (uε) is relatively

compact in W 1,p(G), 1 ≤ p < 3/2.

An easy variant of the proof of Theorem 6′ yields the bound Eε(uε) ≤ C log(1/ε). To
establish compactness in W 1,p we rely on the following variant of Lemma 24:

Lemma 24′. The family (uε ∧ duε) is compact in Lp(G), 1 ≤ p < 3/2.

Proof of Lemma 24′. With Xε = uε ∧ duε, we may write Xε = curl Hε, where Hε is a
linear operator acting on (Xε, gε ∧ dTgε) and satisfying the estimate

‖Hε‖W1,p ≤ C(‖dXε‖[W1,q (G)]∗ + ‖gε ∧ dTgε‖[W1−1/q,q (Ω)]∗), 1 ≤ p < 3/2,
1
p

+
1
q

= 1

(see [5]). Here, dT stands for the tangential differential operator on Ω.

The proof of Lemma 2 in [5] implies that (gε ∧dT gε) is bounded in [W σ,q(Ω)]∗ provided

σ > 1/2 and σq > 2. If we choose σ > 1/2 such that
2
q
< σ < 1 − 1

q
, we find that

(gε ∧ dTgε) is compact in [W 1−1/q,q(Ω)]∗.
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It remains to prove that (dXε) is compact in [W 1,q(G)]∗. As in the proof of Lemma 24,
it suffices to prove that (dXε) is bounded in [C0,α(G)]∗ for 0 < α < 1. For this purpose,
we construct an appropriate extension of uε to a larger domain. Let, for 0 < ε < ε0(G),
Πε be the projection onto Ω of the set

Ωε = {x ∈ R3 \ Ω ; dist (x,Ω) = ε }.

Set h̃ε = hε◦Πε ∈ H1/2(Ωε) (where hε is defined in Lemma 23) and let Kε be the harmonic
extension of h̃ε to

G ∪ {x ∈ R3 ; dist (x,Ω) < ε }.

By standard estimates, we have

‖hε −Kε|Ω‖L2 ≤ CG|hε|H1/2ε1/2,

so that
‖gε −Kε|Ω‖L2 ≤ Cε1/2.

By Lemma 22′ applied to ϕ = gε −Kε|Ω, we may find a map vε : Gε → C such that

∫

Gε

|∇vε|2 +
1
ε2

∫

Gε

|vε|2 ≤ C,

vε = gε −Kε|Ω on Ω, vε = 0 on Ωε

and
|vε| ≤ 2 in Gε.

Set

Uε =
{
uε, in G
vε +Kε, in Gε

,

which satisfies Uε = h̃ε on Ωε. Since, for 0 < δ < ε, we have
∫

Ωδ

(1 − |Uε|2)2 ≤
∫

Ωδ

(|1 − |Kε||+ |vε|)2(1 + |Kε|+ |vε|)2

≤ 32
∫

Ωδ

(|hε ◦Πδ −Kε|2 + |vε|2),

we find by standard estimates that

(6.5)
∫

Ωδ

(1 − |Uε|2)2 ≤ C

(
ε|hε|2H1/2 +

∫

Ωδ

|vε|2
)
.
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Integration of (6.5) over δ combined with the obvious bound

‖Kε‖H1(G∪Gε) ≤ C

yields

(6.6) Eε(Uε;Gε) ≤ C.

As we already mentioned, an easy variant of the proof of Theorem 6′ gives

Eε(uε;G) ≤ C log(1/ε)

and thus

(6.7) Eε(Uε;G ∪Gε) ≤ C log(1/ε).

Let now R > 0 be such that
G ∪Gε0(G) ⊂ BR.

A straightforward adaptation of Proposition 4 in [5] implies that, for 0 < ε < ε0(G), there
is a map wε ∈ H1(BR \ (G ∪ Gε)) such that

(6.8) wε = h̃ε on Ωε, wε = 11 on ∂BR,

(6.9) Eε(wε) ≤ C log(1/ε),

and

(6.10)
∫

BR\(G∪Gε)

|Jac wε| ≤ C.

Set

Vε =
{
Uε, in G ∪ Gε
wε, in BR \ (G ∪Gε)

.

By (6.7) and (6.9), we have
Eε(Vε;BR) ≤ C log(1/ε),

so that JacVε is bounded in [C0,α
loc (BR)]∗ for 0 < α < 1 (see [33]). As in the proof

of Theorem 2bis in [5], we may now establish the boundedness of dXε in [C0,α(G)]∗ for
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0 < α < 1. Indeed, let δ > 0 be sufficiently small. For ζ ∈ C0,α(G;∧1(R)), let ψ be an
extension of ζ to R3 such that ‖ψ‖C0,α(R3) ≤ C‖ζ‖C0,α(G) and Supp ψ ⊂ BR−δ. Then

∣∣∣∣
∫

G

dXε ∧ ζ
∣∣∣∣ ≤

∣∣∣∣
∫

BR

d(Vε ∧ dVε) ∧ ψ
∣∣∣∣+

∫

BR\G

∣∣∣∣d(Vε ∧ dVε) ∧ ψ
∣∣∣∣

≤ Cα‖ψ‖C0,α(G) + ‖ψ‖L∞

∫

BR\G

|Jac Vε| ≤ C‖ζ‖C0,α(G),

by (6.6) and (6.10).

The proof of Lemma 24′ is complete.

Proof of Theorem 7′′. An inspection of the proof of Theorem 7′ shows that it suffices
to establish the estimate

(6.11)
∫

G

|∇|uε||p → 0 as ε→ 0, ∀ 1 ≤ p < 2.

We adapt the proof of Proposition VI.4 in [9]. Set η = ηε = 1 − |uε|2, which satisfies

−∆η +
2
ε2

|uε|2η = 2|∇uε|2 in G,(6.12)

η ≥ 0 on Ω.(6.13)

Let η̃ be the solution of

−∆η̃ +
2
ε2

|uε|2η̃ = 2|∇uε|2 in G,(6.14)

η̃ = 0 on Ω,(6.15)

so that

(6.16) 1 − |uε|2 = η ≥ η̃ ≥ 0,

by the maximum principle. Set η = Min (η̃, ε1/2). Multiplying (6.14) by η, we find

(6.17)
∫

{η̃<ε1/2}

|∇η̃|2 ≤ 2ε1/2
∫

G

|∇uε|2 → 0 as ε→ 0.

On the other hand, we have

(6.18) {x ; η̃(x) ≥ ε1/2 } ⊂ {x ; |uε(x)|2 ≤ 1 − ε1/2 }.
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Set ζ = η − η̃, which satisfies

−∆ζ +
2
ε2

|uε|2ζ = 0 in G,(6.19)

ζ = ϕε on Ω,(6.20)

where ϕε = 1 − |gε|2. Clearly, we have |ϕε|H1/2 ≤ C and by (6.4)

(6.21) ‖ϕε‖L2 ≤ Cε1/2.

By the proof of Lemma 22, we find that

(6.22)
∫

G

|∇ζ|2 ≤ C.

We claim that

(6.23)
∫

G

|∇ζ|p → 0 as ε→ 0, ∀p < 2.

Indeed, by the maximum principle, 0 ≤ ζ ≤ ζ̂ where ζ̂ is the solution of

−∆ζ̂ = 0 in G,

ζ̂ = ϕε on Ω.

In particular, from (6.21) we see that

(6.24)
∫

G

|ζ̂|2 → 0 as ε→ 0.

Let χ ∈ C∞
0 (G) with 0 ≤ χ ≤ 1 on G. Multiplying (6.19) by ζχ and integrating we obtain

∫

G

|∇ζ|2χ ≤ 1
2

∫

G

ζ2|∆χ| ≤ 1
2

∫

G

ζ̂2|∆χ|.

Combining this with (6.24) yields

(6.25)
∫

G

|∇ζ|2χ→ 0 ∀χ ∈ C∞
0 (G), 0 ≤ χ ≤ 1.

From (6.22) and (6.25) we deduce (6.23).
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We now claim that

(6.26)
∫

G

|∇η|p → 0 as ε→ 0, ∀p < 2.

Since η = ζ + η̃, in view of (6.17) and (6.23) it suffices to prove that

∫

Zε

|∇η̃|p → 0.

where Zε = {x ; |uε(x)|2 ≤ 1 − ε1/2 }. But

∫

G

(1 − |uε|2)2 ≤ Cε2 log(1/ε),

and thus

(6.27) |Zε| ≤ Cε log(1/ε),

so that, by Hölder and (6.14)-(6.15),

∫

Zε

|∇η̃|p ≤ ‖∇η̃‖pL2 |Zε|(2−p)/2

≤ C‖∇uε‖pL2 |Zε|(2−p)/2 ≤ Cε(2−p)/2(log(1/ε)) → 0 as ε→ 0.(6.28)

Hence we have established (6.26). Similarly,

(6.29)
∫

Zε

|∇uε|p ≤ ‖∇uε‖pL2 |Zε|(2−p)/2 ≤ Cε(2−p)/2 log(1/ε)) → 0 as ε→ 0.

Finally, we note that, for ε sufficiently small, we have

(6.30) |∇|uε|| ≤ |∇uε|χZε + |∇η|,

so that (6.11) follows by combining (6.26), (6.29) and (6.30).

The proof of Theorem 7′′ is complete.

7. Improved interior estimates. W 1,p
loc(G) compactness for p < 2 and g ∈ H1/2.

Proof of Theorem 8
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Remark 7.1. As in the proof of Theorems 7′ and 7′′, it suffices to establish the estimate

(7.1) ‖uε ∧ duε‖Lp(K) ≤ C, 3/2 ≤ p < 2, K compact in G.

Estimate (7.1) will be proved under the following assumptions:

Eε(uε) ≤ C log(1/ε)

and
uε is bounded in W 1,r(G), for some 4/3 < r < 3/2.

In view of Theorems 6, 7 and of their variants, we find that Theorem 8 extends to mini-
mizers uε of Eε when the variable boundary conditions satisfy (6.1)–(6.3).

Proof of Theorem 8. In what follows, we establish (7.1) when K is any compact subset
of the unit ball B.

Fix some 3/2 ≤ p < 2 and 0 < γ < 1. Fix

(7.2) 4/3 < r < 3/2.

Denote u = uε. Since, by Theorems 6 and 7, we have

‖u‖W1,r(B) ≤ C and ‖u‖H1(B) ≤ C(log(1/ε))1/2,

we may choose
1 − γ < ρ < 1 − γ/2

such that

(7.3) ‖u‖W1,r(∂Bρ) ≤ Cγ

and

(7.4) ‖u‖H1(Bρ) ≤ Cγ(log(1/ε))1/2.

Set now p = 2 − s, so that s > 0 and the conjugate exponent of p is

(7.5) 2 < q =
2 − s

1 − s
≤ 3.

Perform on Bρ a Hodge decomposition

u ∧ du
|u ∧ du|s = d∗k + dL,
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where

(7.6) L = 0-form , L = 0 on ∂Bρ

and

(7.7) k = 2-form , ‖k‖W1,q ≤ C

∥∥∥∥
u ∧ du
|u ∧ du|s

∥∥∥∥
q

= C‖u ∧ du‖1−s
p = C‖u ∧ du‖p−1

p ;

here, we use the notation ‖ ‖p = ‖ ‖Lp(Bρ).

Recalling the fact that div(u ∧ du) = 0, we find that

(7.8) ‖u ∧ du‖pp =
∫

Bρ

(d∗k) · (u ∧ du) +
∫

Bρ

dL · (u ∧ du) =
∫

Bρ

(d ∗ k) ∧ (u ∧ du),

since, by (7.6), we have L = 0 on ∂Bρ.

Let

(7.9) δ = ε10
−3
.

Assuming, for simplicity, ∂B to be flat near some point, consider a partition of Bρ in
δ-cubes Q

∂Bρ

∂B

(we will average over translates of this grid in later estimates).

Define
F = {Q|Q ∩

[
|u| < 1

2

]
6= ∅}.

We are going to estimate the number of cubes in F with the help of the η-ellipticity
property of T. Rivière [37], that we state in a more precise form, proved in [8]:

Lemma 25. Let uε be a minimizer of Eε inBR with respect to its own boundary condition.
Then there is a universal constant C such that, for every η > 0, 0 < ε < 1 and R > 0 we
have

Eε(uε;BR) ≤ ηR log(R/ε) ⇒ |uε(0)| ≥ 1 −Cη1/60.
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Let, for Q ∈ F , Q̃ be the cube having the same center as Q and the size twice the one
of Q. From the η-ellipticity property, we have

(7.10)
∫

Q̃

eε(u) ≥ Cδ log(δ/ε) ∼ δ log(1/ε), ∀Q ∈ F ,

so that

(7.11) #F ≤ Cδ−1 and
∣∣∣∣
⋃

Q∈F
Q

∣∣∣∣ ≤ Cδ2.

Define

(7.12) Ω = Bρ\
⋃

Q∈F
Q,

on which |u| > 1/2.

We have, by (7.8),

‖u ∧ du‖pp =
∫

Ω

(d ∗ k) ∧ (u ∧ du) +
∫

Bρ\Ω

(d ∗ k) ∧ (u ∧ du)

≤
∫

Ω

(d ∗ k) ∧ (u ∧ du) + 2‖k‖W1,q‖∇u‖2(Bρ\Ω)1/2−1/q .(7.13)

By (7.7) and (7.11), the second term of (7.13) is bounded by

(7.14) C(log(1/ε))1/2 · δ1−2/q‖u ∧ du‖1−s
p ≤ ‖u ∧ du‖1−s

p ,

provided ε is sufficiently small.

For the first term of (7.13), we use the identity

u ∧ du =
u

|u|
∧
(
d

(
u

|u|

))
+
(
1 − 1

|u|2
)
(u ∧ du) in Ω

and the fact that

d

(
u

|u| ∧
(
d

(
u

|u|

)))
= 0,

to get

(7.15)
∫

Ω

(d∗k)∧(u∧du) =
∫

∂Ω

(∗k)∧
(
u

|u|∧d
(
u

|u|

))
+O(‖k‖W1,q ‖∇u‖2‖1−|u|2‖2q/(q−2)).
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Since |u| ≤ 1 and

‖1 − |u|2‖2 ≤ 2ε(Eε(uε))1/2 ≤ Cε(log(1/ε))1/2,

the second term of (7.15) bounded by

(7.16) C‖u∧ du‖1−s
p (log(1/ε))1−1/qε1−2/q ≤ ‖u ∧ du‖1−s

p ,

provided ε is sufficiently small.

Let ϕ : D = [|z| ≤ 1] → D be a smooth map such that ϕ(z) = ϕ(z) and ϕ(z) = z/|z| if
|z| > 1/10. Thus

∫

∂Ω

∗k∧
(
u

|u|∧d
(
u

|u|

))
=
∫

∂Bρ

∗k∧(ϕ(u)∧dϕ(u))−
∑

Q∈F

∫

∂Q

∗k∧(ϕ(u)∧dϕ(u)) = (7.17)−(7.18).

Using (7.3) and the fact that, by (7.5), we have q > 2, we find that

(7.17) ≤ C‖u‖W1,r(∂Bρ)‖k‖Lr′(∂Bρ) ≤ C‖k‖Lr′(∂Bρ) ≤ C‖k‖H1−2/r′(∂Bρ)

≤ C‖k‖H3/2−2/r′(Bρ) ≤ C‖k‖W1,q(Bρ) ≤ C‖u ∧ du‖1−s
p .(7.19)

In order to estimate the term (7.18) we replace, on each cube Q, k by its mean k̄Q. The
error is of the order of

∑

Q∈F

∫

∂Q

|k − k̄Q||∇u| ≤
∫

∂Bρ

|k| · |∇u|+
∑

Q∈F
Q∩∂Bρ 6=∅

|̄kQ|
∫

∂Q∩∂Bρ

|∇u|+
∑

Q∈F

∫

∂Q\∂Bρ

|k − k̄Q||∇u|

= (7.20) + (7.21) + (7.22).

As for (7.17), we find that

(7.23) (7.20) ≤ C‖u ∧ du‖1−s
p .

Since

|̄kQ| ≤ δ−3

∫

Q

|k| ≤ δ−3/r′
(∫

Q

|k|r
′
)1/r′

and ∫

∂Q∩∂Bρ

|∇u| ≤ δ2/r
′
( ∫

∂Q∩∂Bρ

|∇u|r
)1/r

,
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we have

(7.21) ≤ Cδ−1/r′
∑

Q∈F
Q∩∂Bρ 6=∅

(∫

Q

|k|r
′
)1/r′( ∫

∂Q∩∂Bρ

|∇u|r
)1/r

≤ Cδ−1/r′‖u‖W1,r(∂Bρ) ·
( ∫

∪Q
Q∈F

Q∩∂Bρ 6=∅

|k|r
′
)1/r′

≤ Cδ−1/r′
∣∣∣

⋃

Q∈F ,Q∩∂Bρ 6=∅

Q
∣∣∣
1/r′−1/6

· ‖k‖6.

In view of (7.11) one may clearly choose 1 − γ < ρ < 1 − γ/2 such that

(7.24) #{Q ∈ F|Q ∩ ∂Bρ 6= ∅} . 1/γ,

and therefore ∣∣∣
⋃

Q∈F ,Q∩∂Bρ 6=∅

Q
∣∣∣ ≤ Cδ3.

This gives

(7.25) (7.21) ≤ Cδ−1/r′δ3/r
′−1/2‖k‖W1,q ≤ Cδ2/r

′−1/2‖k‖W1,q < ‖u ∧ du‖1−s
p ,

provided ε is sufficiently small.

To bound (7.22), we use averaging over the grids. For λ ∈ R3 with |λ| < δ, consider the
grid of δ–cubes having λ as one of the vertices and let Fλ be the corresponding collection
of bad cubes. Then

δ−3

∫

|λ|<δ

(7.22) ≤ δ−3

∫

|λ|<δ

δ−3
∑

Q∈Fλ

∫

∂Q\∂Bρ

dx

∫

Q

dy|k(x) − k(y)||∇u(x)|

≤ Cδ−4
∑

Q∈F0

∫∫

Q̃×Q̃

dxdy|k(x) − k(y)||∇u(x)|

≤ Cδ1/2−6/q
∑

Q∈F0

‖∇u‖L2(Q̃)‖k(x) − k(y)‖Lq (Q̃×Q̃)

≤ Cδ−5/q‖∇u‖L2(Bρ)

[ ∑

Q∈F0

∫ ∫

Q̃×Q̃

|k(x) − k(y)|qdxdy
]1/q

≤ Cδ1−2/q(log(1/ε))1/2
[ ∑

Q∈F0

∫

Q̃

|∇k|q
]1/q

≤ ‖u ∧ du‖1−s
p ,
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provided ε is sufficiently small. Therefore, by choosing the proper grid, we may assume
that
(7.26) (7.22) ≤ C‖u ∧ du‖1−s

p .

Combining (7.23), (7.25) and (7.26), it follows that

(7.27) (7.20) + (7.21) + (7.22) ≤ C‖u ∧ du‖1−s
p .

By (7.13), (7.14), (7.16) and (7.27), we have

(7.28) ‖u ∧ du‖pp = (7.29) +O(‖u ∧ du‖1−s
p ),

where
(7.29) = −

∑

Q∈F

∫

∂Q

∗̄kQ ∧ (ϕ(u) ∧ dϕ(u)).

For i = 1, 2, 3, let πi be the projection onto the axis 0xi. For xi ∈ πi(∂Q), let

Γxi = (πi)−1(xi) ∩ ∂Q.
Then

(7.30) |(7.29)| ≤
3∑

i=1

∑

Q∈F

|̄kQ|
∫

πi(Q)

∣∣∣∣
∫

Γxi

ϕ(u) ∧ ∂ϕ(u)/∂τ
∣∣∣∣dxi.

Denote Γ̃ the δ-square with ∂ Γ̃ = Γ and let
(7.31) δ1 = δ3, δ2 = δ4.

Consider “good” sections Γ, i.e., such that

(7.32) dist
(
Γ,
[
|u| < 1/2

])
> δ1

and, with

eε(u) = eε(u)(x) = |∇u(x)|2 +
1
ε2

(1 − |u|2)2(x),

(7.33)
∫

Γ̃

eε(u) < δ2ε
−1.

Condition (7.33) implies that

(7.34)
1
ε2

∫

Γ̃

(1 − |u|2)2 < δ2ε
−1.

Since |∇u| ≤ C/ε, it follows that the set Γ̃ ∩ [|u| < 1/2] may be covered by a family G of
ε–squares such that

#G ≤ C0δ2/ε

and
(7.35)

∑

S∈G

length(S) ≤ C0εδ2/ε = C0δ2.

We next invoke the following estimate (see the Proposition in Section 1 in [39]):
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Lemma 26 (Sandier [39]). Under the assumptions (7.32) and (7.35) we have, with C0

the constant in (7.35),

∫

Γ̃∩[|u|≥1/2]

∣∣∣∣∇
(
u

|u|

)∣∣∣∣
2

dx ≥ K|d| log(δ1/(2C0δ2)),

where d is the degree of u|Γ and K is some universal constant.

By Lemma 26 and our choice of δ1, δ2, we find that

(7.36)

∣∣∣∣∣

∫

Γ

ϕ(u) ∧ dϕ(u)

∣∣∣∣∣ =

∣∣∣∣∣deg
( u
|u| ,Γ

)∣∣∣∣∣ ≤ C

∫

Γ̃

|∇u|2/log(1/ε).

On the other hand, recall the monotonicity formula of T. Rivière (see Lemma 2.5 in [37]):

Lemma 27 (Rivière [37]). Let x ∈ G. Then, for 0 < r <dist (x,Ω), the map

r 7→ 1
r

∫

Br(x)

(
|∇uε(x)|2 +

3
2ε2

(1 − |uε|2)2
)

is non-increasing.

By combining (7.36) and Lemma 27, we see that the collected contribution of the good
sections in the r.h.s. of (7.30) is bounded by

(7.37) C
∑

Q∈F

|̄kQ|
∫

Q

|∇u|2/log(1/ε) ≤ Cδ
∑

Q∈F

|̄kQ| <
∼
δ−2

∫

Bρ

|k|
( ∑

Q∈F

χQ
)
.

We consider an extension, denoted by h, of |k| to R3, such that

‖h‖W1,q (R3) ≤ C‖|k|‖W1,q(Bρ).

We estimate the integral in (7.37) using the (B1
q,q, B

−1
p,p)– duality (for the definition of the

Besov spaces Bσp,q, see e.g. H. Triebel [45]), where

(7.38) ‖f‖Bσ
r,r

=
[
2σr‖f ∗ P1‖rr +

∑

j≥2

(2σj‖f ∗ P2−j − f ∗ P2−j+1‖r)r
]1/r

.
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We let here P1 ≥ 0 be a suitable L1–normalized smooth bump function supported in the
unit cube of R3, and denote Ph(x) = h−3P1(h−1x).

On the one hand, since q > 2 we have

(7.39) ‖h ‖B1
q,q

≤ C‖h ‖W1,q ≤ C‖k‖W1,q ≤ C‖u ∧ du‖1−s
p .

Letting f =
∑
Q∈F χQ, we estimate next ‖f‖B−1

p,p
. Without any loss of generality, we may

assume that B6 ⊂ G.

Assume first that j is such that 1 ≥ 2−j ≥ δ. If Q1 ⊂ B3 is a 2−j–cube, then

(7.40)
∫

Q1

eε(u) ≤ C2−j log(1/ε),

by Lemma 27. On the other hand, if Q ∈ F , then (7.10) holds. Therefore

(7.41) #{Q ∈ F ;Q ⊂ Q1} ≤ C2−jδ−1.

Also, if Q1 ∩ F 6= ∅, the η-ellipticity lemma implies

(7.42)
∫

Q̃1

eε(u) ≥ C2−j log(1/ε),

and hence the set [|u| ≤ 1/2] intersects at most C2j cubes Q1 of size 2−j . Thus

‖(f ∗ P2−j ) − (f ∗ P2−j+1)‖p . ‖f ∗ P2−j‖p

.
∥∥∥

∑

Q1,Q1∩F6=∅

1
|Q1|

χQ̃1

∫

Q̃1

f
∥∥∥
p

.
[ ∑

Q1,Q1∩F6=∅

2−3j(23j |Q̃1 ∩ F|)p
]1/p

.
[ ∑

Q1∩F6=∅

2−3j(23j · δ3 · 2−jδ−1)p
]1/p

by (7.41)

. 2−2j/p22jδ2 = δ24j/q .(7.43)

Assume now that 2−j < δ. Estimate then

|f ∗ (P2−j − P2−j+1)| ≤
∑

Q∈F
|χQ ∗ (P2−j − P2−j+1)|.
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In this case, it is easy to see that

|χQ ∗ (P2−j − P2−j+1)| ≤ CχA,

where
A = {x ; dist (x, ∂Q) ≤ 2−j }.

In particular, each point in R3 belongs to at most 8 A′s. Thus

(7.44) ‖
∑

Q∈F
χQ ∗ (P2−j − P2−j+1)‖pp ≤ C

∑

Q∈F
‖χQ ∗ (P2−j − P2−j+1)‖pp ≤ Cδ2−j .

From (7.43), (7.44)

‖f‖B−1
p,p

≤ C
[ ∑

2−j≥δ

(2−jδ24j/q)p +
∑

2−j<δ

(2−jδ1/p2−j/p)p
]1/q′

. (δ2p + δ2+p)1/p < δ2.(7.45)

Here, we have used the fact that p < 2 < q.

From (7.37), (7.39) and (7.45), we find that

(7.46) (7.37) ≤ C‖u ∧ du‖1−s
p .

Next, we analyze the contribution of the “bad” sections Γxi in (7.30). A bad section
Γxi = Γ fails either (7.32) or (7.33).

Fix i = 1, 2, 3 and Q ∈ F . Define

J ′
Q = {xi ∈ πi(Q); Γxi fails (7.32)},(7.47)

J ′′
Q = {xi ∈ πi(Q); Γxi fails (7.33)},(7.48)

and the surfaces

S′ = S′
i =

⋃

Q

⋃

xi∈J′
Q

Γxi(7.49)

S′′ = S′′
i = ∪

Q
∪

xi∈J′′
Q

Γxi .(7.50)

Estimate the contribution of the bad sections in (7.30) by
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(7.51)
(

max
Q∈F

|̄kQ|
) 3∑

i=1

∫

S′
i∪S′′

i

|∇u|.

Estimate

(7.52) |̄kQ| ≤ δ−3

∫

Q

|k| ≤ δ−3|Q|5/6‖k‖L6(Bρ) . δ−1/2‖k‖W1,q(Bρ) . δ−1/2‖u ∧ du‖1−s
p .

Consider, for λ ∈ R3, the grid of δ–cubes having λ as one of the edges and let Gλ be the
grid defined by the boundaries of these cubes. For each λ, we have

∫

S′
i∪S′′

i

|∇u| ≤
(∫

Gλ

|∇u|2
)1/2

(|S′
i| + |S′′

i |)1/2

≤ C
(∫

Gλ

|∇u|2
)1/2(

δ
∑

Q∈Fλ

(|J ′
Q| + |J ′′

Q|)
)1/2

.(7.53)

Since (7.33) fails for xi ∈ J ′′
Q, we have

∫

Q

eε(u) ≥
∫

∪Γ̃xi

xi ∈ J ′′
Q

eε(u) ≥ |J ′′
Q|δ2ε−1.

Thus

(7.54)
∑

Q∈Fλ

|J ′′
Q| <∼ εδ−1

2 log(1/ε).

To estimate (7.53), we use again an average over the grids Gλ. Denote this averaging by
Avτ (τ refers to the translation).

Thus, taking (7.54) into account, we obtain

(7.55) (7.53) <
∼

[
Avτ

∫

Gλ

|∇u|2
]1/2[

δδ−1
2 ε log(1/ε) + δAvτ

( ∑

Q∈Fλ

|J ′
Q|
)]1/2

.

Notice that the J ′
Q-intervals of points xi such that dist

(
Γxi ,

[
|u| < 1

2

])
< δ1 do depend

on the grid translation – a fact that will be exploited next.
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First, recalling (7.4), we have

(7.56) Avτ

∫

Gτ

|∇u|2 ≤
∫

∂Bρ

|∇u|2 +
1
δ

∫

Bρ

|∇u|2 .
log 1/ε
δ

.

By the η–ellipticity lemma, we may cover [|u| < 1/2] ∩ B with at most Cδ−1
1 δ1–cubes

qα, α ≤ Cδ−1
1 . We fix such a covering (independent of λ). Fix i,Q. If dist (Γxi , [|u| <

1/2]) < δ1, then clearly xi ∈ πi(q̃α) for some qα ⊂ Q̃ with dist (qα,Gλ) < δ1.

.................
.............

...............
.....................................

........................................................

�

Γxiqα

Hence

(7.57) |J ′
Q| ≤ 2δ1 ·#{α; qα ⊂ Q̃, dist (qα,Gλ) < δ1}

and

(7.58)
∑

Q

|J ′
Q| ≤ Cδ1 · #{α; dist (qα,Gλ) < δ1}.

We now average over the grid translation. On the one hand, for fixed α, the inequality

dist (qα,Gλ \ ∂Bρ) < δ1

holds with τ–probability ∼ δ1/δ. On the other hand, for fixed α and 1− γ < ρ < 1− γ/2,
the inequality

dist (qα, ∂Bρ) < δ1

holds with ρ–probability ∼ δ1/γ.

Hence, by choosing ρ properly, we may assume that

#{α; dist (qα, ∂Bρ) < δ1} ≤ C.

For any such ρ, we have

(7.59) Avτ (7.58) . δ1 ·
1
δ1

· δ1
δ

+ C . δ1
δ
.
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Hence

(7.60) Avτ
(∑

|J ′
Q|
)
≤ C

δ1
δ
.

Substitution of (7.56), (7.60) into (7.55) yields, for small ε,

(7.61) (7.55) .
( log(1/ε)

δ

)1/2(
δδ−1

2 ε log(1/ε) + δ1

)1/2

< δ3/4,

by (7.9) and (7.31).

From (7.52)and (7.61),

(7.62) (7.51) ≤ δ3/4δ−1/2‖u ∧ du‖1−s
p ≤ C‖u∧ du‖1−s

p .

This completes the analysis. Indeed, by collecting the estimates (7.28), (7.30), (7.37),
(7.46), (7.51) and (7.62), it follows that

(7.63) ‖u ∧ du‖pLp(Bρ) ≤ Cγ‖u ∧ du‖1−s
Lp(Bρ),

and thus
‖u ∧ du‖Lp(B1−γ) ≤ Cγ.

Since 0 < γ < 1 and 3/2 ≤ p < 2 are arbitrary, the proof of Theorem 8 is complete.

8. Convergence for g ∈ Y . Proof of Theorem 9

Proof of Theorem 9. We already know that a subsequence of (uε) converges in W 1,p(G),
1 ≤ p < 3/2. The main novelties in Theorem 9 are:

a) the identification of the limit
u∗ = eıϕ̃,

where g = eıϕ, ϕ ∈ H1/2 +W 1,1 and ϕ̃ is the harmonic extension of ϕ;

b) uε → u∗ in C∞(G).

We first discuss b), which is easier. In view of a), it suffices to prove that (uε) is bounded
in Ck(K) for every integer k and every compact subset K of G. Since Eε(uε) = o(log 1/ε),
by Theorem 6, we find, with the help of the η–ellipticity Lemma 24 that, for every compact
K in G, we have

|uε| ≥
1
2

in K for small ε.

We next recall Theorem IV.1 in [9].
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Lemma 28. Let uε be a solution of

−∆uε =
1
ε2
uε(1 − |uε|2) in B1

such that

(8.1) Eε(uε;B1) ≤ C.

Then (uε) is bounded in Ck(B1/2), for every k ∈ N.

We now complete the proof of b) by establishing (8.1) on every ball B compactly con-
tained in G.

We write uε = ρεe
iϕε in B. Let ζ be a cutoff function with ζ ≡ 1 in B. We start by

multiplying the equation for ϕε
div(ρ2

ε∇ϕε) = 0

by ζ2(ϕε − /

∫
B
ϕε).

We find that
∫
ρ2
ε|∇ϕε|2ζ2 ≤ 2

∫
ρ2
ε|∇ϕε| |ζ| |∇ζ| |ϕε − /

∫
B
ϕε|

≤ C

(∫
ρ2
ε|∇ϕε|2ζ2

)1/2(∫
|∇ϕε|6/5

)5/6

,

by the Sobolev imbedding W 1,6/5 ⊂ L2,

We obtain that ϕε is bounded in H1
loc, since |∇ϕε| ≤ 2|∇uε| in B and uε is bounded in

W 1,6/5 by Theorem 7.

Next consider the equation for ρε,

−∆ρε + ρε|∇ϕε|2 =
1
ε2
ρε(1 − ρ2

ε).

Multiplying by (1 − ρε)ζ, we find that

∫
|∇ρε|2ζ +

1
ε2

∫
(1 − ρ2

ε)
2ζ ≤ C

(∫
|∇ρε| +

∫
|∇ϕε|2

)
.

We conclude by noting that

Eε(uε;B) ≤
∫

B

|∇ρε|2 +
∫

B

|∇ϕε|2 +
1
ε2

∫

B

(1 − ρ2
ε)

2 ≤ CB.
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We now turn to the proof of a).

We start by constructing an appropriate domain Gε ⊂ G on which |uε| ∼ 1. For
simplicity, we assume Ω flat near some point. Fix some 0 < δ0 < 1 to be determined later.
Let 0 < δ < δ0 and u = uε. Set

(8.2) Aδ = {x ∈ G; dist (x,Ω) ≥
√
ε, |u(x)| ≤ 1 − δ}.

For x ∈ Aδ , let Q be the cube centered at x such that one of its faces is contained in Ω
and let Q̃ be the conical domain

......................................................................................................................................................................
............
............
............
............
............
............
...........
...........
............
...........
...........
............
..

Q

Q̃

Ω

Let also Q# be the cube centered at x having the size a third the one of Q. By Vitali’s
lemma, we may choose a finite family (Q#

α ) of disjoint cubes such that Aδ ⊂ ∪Qα. By the
η-ellipticity property, there is some η(δ) > 0 such that we have, with δα the size of Qα,

(8.3) Eε(u,Q#
α ) ≥ η(δ)δα log(δα/ε) ≥ 1/2η(δ)δα log(1/ε),

since δα ≥
√
ε. Thus

(8.4)
∑

δα <
2

η(δ)
Eε(u,G)
log(1/ε)

.

Since, by Theorem 6, we have Eε(u,G) = o(log(1/ε)), we find that

(8.5)
∑

δα < δ,

provided ε is sufficiently small.

We now set
Gε = {x ∈ G; dist (x,Ω) ≥

√
ε} \ ∪Q̃α,

so that |uε| ≥ 1 − δ in Gε.

By (8.5) and the construction of Gε, there is a Lipschitz homeomorphism Φε : Gε → G
such that

(8.6) ‖DΦε‖L∞ ≤ C, ‖D(Φ−1
ε )‖L∞ ≤ C,Φε|∂Gε

= Π|∂Gε
,Φε|{x∈G;dist (x,Ω)≥2δ} = id,
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provided δ0 is sufficiently small, with constants C independent of ε.

Here, Π is the projection on Ω. In particular, Gε is simply connected. We may thus
write in Gε

(8.7) u = ρeıψ, ρ = |u|, ψ ∈ C∞.

Assuming further that δ0 < 1/2, we have ρ ≥ 1/2 in Gε and thus

(8.8) |ψ|2H1(Gε) ≤ 4|u|2H1(Gε) ≤ 4|u|2H1(G) ≤ δ log(1/ε),

provided ε is sufficiently small. Moreover, by Theorem 7, we have

(8.9) |ψ|W1,p(Gε) ≤ 2|u|W1,p(Gε) ≤ 2|u|W1,p(G) ≤ Cp, 1 ≤ p < 3/2.

We are now going to prove that ψ|∂Gε is almost equal to ϕ ◦ Π|∂Gε
, where ϕ ∈ H1/2 +

W 1,1(Ω; R) is such that g = eıϕ.

Let η > 0 be to be determined later. Since g ∈ Y , we may find some h ∈ C∞(Ω;S1)
such that ‖g − h‖H1/2 < η. Let ζ ∈ C∞(Ω; R) be such that h = eiζ . Let Tε = Φε

∣∣
∂Gε

and
Uε = T−1

ε : Ω → ∂Gε. Fix a smooth map π : C → C such that π(z) = z/|z| if |z| ≥ 1/2
and let

ξ(x) = g(x) − eıψ(Uε(x)), x ∈ Ω,

so that

(8.10) ξ(x) = π(g(x)) − π(eiψ(Uε(x))), x ∈ Ω \ ∪Q̃α.

Therefore, we have

(8.11)

∫

Ω\∪Q̃α

|ξ(x)|dx ≤ C(G)
∫

{x;dist (x,∂Ω)≤
√
ε}

|Du| ≤ C‖Du‖L2ε1/4

≤ Cε1/4(log 1/ε)1/2 ≤ 1/2ε1/5,

provided ε is sufficiently small. It follows that

(8.12)
∫

Ω\∪Q̃α

|h(x) − eiψ(Uε(x))|dx < ε1/5,

provided η is sufficiently small. Thus, with λ = ζ − ψ ◦ Uε, we have

(8.13) ‖eiλ − 1‖L1(Ω\∪Q̃α) < ε1/5.
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By combining (8.6) and (8.8) (resp. (8.6) and (8.9)), we find that

(8.14) |λ|H1/2(Ω) ≤ ‖ζ‖H1/2(Ω) + C‖ψ‖H1(Gε) < δ1/2(log(1/ε))1/2

and

(8.15) ‖λ‖W1/4,4/3(Ω) ≤ ‖ζ‖W1/4,4/3(Ω) + C‖ψ‖W1,4/3(Gε) ≤ C,

provided ε is sufficiently small. In particular, we have

(8.16) ‖λ‖L4/3(Ω) ≤ C.

By Lemma C.2 in Appendix C, if δ0 is sufficiently small and λ satisfies (8.13), (8.14)
and (8.15), while the squares Q̃α ∩ Ω satisfy (8.5), then there is some integer a such that

(8.17) ‖λ− 2πa‖L1(Ω) < δ1/18.

Without restricting the generality, we may assume that a = 0, so that

(8.18) ‖ξ − ψ ◦ Uε‖L1(Ω) < δ1/18.

We actually claim that

(8.19) ‖ϕ− ψ ◦ Uε‖L1(Ω) < δ1/20,

if we choose the lifting ϕ of g properly. Indeed, by estimate (1.9) in Theorem 3, the map
gh̄ ∈ Y has a lifting χ ∈ H1/2 +W 1,1 such that

(8.20) |χ|H1/2+W1.1 ≤ C(G)|gh̄|H1/2(1 + |gh̄|H1/2).

Since
|gh̄|H1/2 = |h̄(g − h)|H1/2 → 0 as h→ g,

we may choose η sufficiently small in order to have

(8.21) ‖χ− /

∫
χ‖L1(Ω) < δ1/18.

Using the fact that

‖gh̄− eı
/

∫
χ‖L1 = ‖eiχ − ei

/

∫
χ‖L1 ≤ ‖χ− /

∫
χ‖L1 < δ1/18

and
‖gh̄− 1‖L1 < δ1/18,
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provided η is sufficiently small, we find that, modulo 2πZ, we may assume that

(8.22) ‖/

∫
χ‖L1(Ω) < 2δ1/18.

Since g = eı(χ+ξ), inequality (8.19) follows by combining (8.20) - (8.22), provided δ0 is
sufficiently small.

We now prove that ψ and ϕ̃ are close on compact sets of G. Set ψ̃ = ψ◦Φ−1
ε , ρ̃ = ρ◦Φ−1

ε ,
so that ψ̃, ρ̃ are defined on G and, in the set

M = {x ∈ G; dist (x,Ω) ≥ 2δ},

we have ψ̃ = ψ and ρ̃ = ρ.

Recall that ψ satisfies the equation div (ρ2∇ψ) = 0 in Gε. Transporting this equation
on G and using (8.6), we see that ψ satisfies

(8.23)
{

div(A(x)ρ̃2∇ψ̃) = 0 in G

ψ̃ = ψ ◦Uε on Ω
,

with

(8.24) C−1|ξ|2 ≤< A(x)ξ, ξ >≤ C|ξ|2, ρ̃(x) = ρ(x) and A(x) = I if x ∈M.

Therefore, the function
f = ϕ̃− ψ̃

satisfies

(8.25)
{

∆f = div ((I −A(x)ρ̃2)∇ψ̃) in G
f = ϕ− ψ ◦ Uε on ∂G

.

Thus, for 1 ≤ p < 3/2 and K compact in G, we have

(8.26) ‖f‖W1,p(K) ≤ CK(‖(I −A(x)ρ̃2)∇ψ‖Lp(G) + ‖ϕ− ψ ◦ Uε‖L1(Ω)).

As we already observed in the proof of part b) of the theorem, we have ρ→ 1 uniformly
on the compacts of G. Thus

(8.27) ‖(I −A(x)ρ̃2)∇ψ̃‖Lp(M) → 0.

as ε→ 0. On the other hand, we have

(8.28) ‖(I −A(x)ρ̃2)∇ψ̃‖Lp(G\M) ≤ C‖∇ψ̃‖Lp(G\M) ≤ C‖∇u‖Lp(G\M).
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If we choose some r with p < r < 3/2, we find that

(8.29) ‖(I −A(x)ρ̃2)∇ψ̃‖Lp(G\M) ≤ C‖∇u‖Lr(G\M)|G \M |
r−p

r ≤ Cδ
r−p

r ,

by Theorem 7. By combining (8.19), (8.26), (8.27) and (8.29) we find that, for some
0 < α < 1 fixed, we have

(8.30) ‖f‖W1,p (K) ≤ δα,

provided ε is sufficiently small.

Since, for δ0 = δ0(K) sufficiently small, we have f = ϕ−ψ in K, we find that, as ε→ 0,
ϕ̃− ψ → 0 in W 1,p

loc (G), 1 ≤ p < 3/2. Using once more the fact that ρ→ 1 in Ckloc (G), we
find that uε → u∗ in W 1,p

loc (G). This proves Theorem 9.

Remark 8.1. Under the assumptions of Theorem 9 it is not true in general that |uε| → 1
uniformly on Ḡ. Indeed, if this were true, then uε/|uε| would belong to H1(G;S1) for ε
sufficiently small. Thus uε/|uε| admits a lifting ϕε ∈ H1(G; R) and g = eiϕε|Ω . Hence g
must necessarily belong to X. But, even when g ∈ X it is unlikely that |uε| → 1 uniformly
on Ḡ.

Remark 8.2. Let g ∈ H1/2(Ω;S1) with L(g) = 0 and write g = eiϕ with ϕ ∈ H1/2+W 1,1.
Let ϕ̃ be the harmonic extension of ϕ. One may wonder whether

(8.31) ‖uεe−iϕ̃‖W1,p ≤ C ∀p < 2 as ε→ 0?

The answer is negative. The argument relies on the following

Lemma 29. Fix ε and let uε be a minimizer for Eε, with uε = g on Ω. Then

(8.32) uε = g̃ + ψ

where g̃ is the harmonic extension of g and

(8.33) |ψ(x)| ≤ Cε−1dist (x,Ω).

Proof. Clearly ψ = 0 on Ω, |ψ| ≤ 2, and |∆ψ| ≤ Cε−2 on G. By interpolation one deduces
that |∇ψ| ≤ Cε−1 (see e.g. [7]) and the conclusion follows.

1. Using (8.32), write

|∇(uεe−iϕ̃)| ≥ |uε| |∇ϕ̃| − |∇uε|
≥ |g̃| |∇ϕ̃| − |ψ| |∇ϕ̃| − |∇uε|.(8.34)
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We have

‖∇uε‖L2(G) . (log
1
ε
)1/2 <∞

and, by (8.33)

∫

G

(|ψ| |∇ϕ̃|)2 ≤ Cε−2
∑

s≥0

4−s
∫

dist(x,Ω)∼2−s

|(∇ϕ̃)(x)|2

≤ Cε−2
∑

s≥0

4−s.4s.2−s‖ϕ‖2
L2(Ω) ≤ Cε−2 <∞.

Consequently, assuming (8.31) were true for some p < 2, we necessarily must have, by
(8.34), that

(8.35) |g̃| |∇ϕ̃| ∈ Lp(G)

whenever g = eiϕ ∈ H1/2(Ω, S1).

This statement relates only to g and we show next that (8.35) cannot hold for p > 3/2.

2. Let 0 < δ < 1 be small and take 0 ≤ ϕ ≤ ( 1
δ )

1− such that

suppϕ ⊂ B(0, 2δ) ⊂ Ω (identified with the x1, x2-plane),(8.36)

ϕ =
(

1
δ

)1−

on B(0, δ),(8.37)

|∇ϕ| ≤
(

1
δ

)2−

.(8.38)

Hence

‖eiϕ‖H1/2 < C.

Also, from (8.1)

‖1 − eiϕ‖L1 ≤ Cδ2.

Hence for x3 > Cδ

(8.39) |1 − g̃(x1, x2, x3)| ≤
∫

|1 − eiϕ|(x′1, x′2)Px(x′1, x′2)dx1dx2 ≤ Cδ2‖Px‖∞ <
1
10
.
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Thus from (8.39)

‖g̃.|∇ϕ̃| ‖Lp & ‖∇ϕ̃‖Lp(x1,x2;x3>Cδ)

∼
∥∥∥∥
∫

R2
|ξ|ϕ̂(ξ)ei(x1ξ1+x2ξ2)e−x3|ξ|dξ

∥∥∥∥
Lp(x1,x2;x3>Cδ)

≥
∥∥∥∥ ‖ |ξ|ϕ̂(ξ)e−x3|ξ|‖

Lp′
ξ

∥∥∥∥
Lp(x3>Cδ)

(8.40)

≥ c
[
‖ |ξ|ϕ̂(ξ)‖

Lp′

|ξ|∼ 1
10δ

]
.δ

1
p

∼ δ−1ϕ̂(0) ·
(

1
δ

) 2
p′

δ1/p

∼ δ
1
p− 2

p′ +
.(8.41)

In (8.40), we use Hausdorff-Young inequality and (8.41) follows from (8.36), (8.37).

Since 1
p
− 2
p′
< 0 for p > 3/2, a gluing construction with the preceding as building block

and δ → 0 will clearly violate (8.35).

As in the previous sections and with some more work, we may prove the following
variant of Theorem 9:

Theorem 9′. Assume g ∈ Y , and let gε be as in Theorem 6 ′ of Section 5. Let uε be a
minimizer of Eε in H1

gε
. Then

uε → u∗ in W 1.p(G) ∩ C∞(G), ∀p < 3/2,

where u∗ is the same as in Theorem 9.

9. Further thoughts about p = 3/2

Let g ∈ H1/2(Ω;S1) and let (uε) be a minimizer for Eε in H1
g . In Section 6 we have

established that (uε) is relatively compact in W 1,p(G) for every p < 3/2. It is plausible
that (uε) is bounded and possibly even relatively compact in W 1,3/2; see Open Problem
2 in Section 10.

There are two directions of evidence suggesting that, indeed, (uε) is bounded in W 1,3/2.

The first one relies on a conjectured strengthening of the Jerrard-Soner inequality men-
tioned below.

The second one is a complete proof of the fact that any limit (in W 1,p, p < 3/2) of (uε)
belongs to W 1,3/2; see Theorem 12.

9.1 Jerrard-Soner revisited

First recall the following immediate consequence of a result in [33]:
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Proposition 1 (Jerrard and Soner [33]). Let (vε) be a sequence inH1(Q; R2), Q ⊂ R3

a cube, satisfying

(9.1) Eε(vε;Q) =
∫

Q

[
1
2
[∇vε|2 +

1
4ε2

||vε|2 − 1|2
]
≤ C log 1/ε

for all ε < ε0. Then for ζ ∈ C∞
0 (ω), ω̄ ⊂ Q, we have the inequality

(9.2)
∣∣∣∣
∫
J(vε)ζ

∣∣∣∣ ≤ K‖ζ‖W1,q (Q)

where J(vε) is any 2 × 2 Jacobian determinant of vε, q > 3, and K = K(C, q, ω).

Remark 9.1. In fact in [33] one obtains a stronger estimate with the norm ‖ζ‖W1,q

replaced by any ‖ζ‖C0,α-norm, α > 0.

In this subsection, we will show that:

a) The conclusion of Proposition 1 fails for any q < 3.

b) The validity of Proposition 1 for q = 3 (which we conjecture) would imply the
boundedness in W 1,3/2 of the minimizers (uε) of the Ginzburg-Landau problem in G with
boundary data g controlled in H1/2(Ω;S1),Ω = ∂G.

A basic tool is the following construction of an extension of g outside G.

Lemma 30. Assume G ⊂ Q and g ∈ H1/2(Ω;S1). Then there is wε ∈ H1(Q\G; R2)
satisfying

(9.3) wε = g on ∂G and wε ≡ 1 in some fixed neighborhood of ∂Q,

(9.4) Eε(wε;Q\G) ≤ C‖g‖H1/2 log 1/ε,

(9.5) ‖wε‖W1,p(Q\G) ≤ Cp‖g‖H1/2 for every p < 2,

(9.6) wεn −→ w in W 1,p(Q \G) for every p < 2 with w ∈W 1,p(Q \G), ∀p < 2

(9.7) |wε| ≤ 1 in Q \G.

Proof. We follow the same construction as in [5] which we briefly recall here. First,
let H be any smooth function in Q\G with H ∈ H1(Q \ G; R2) satisfying the boundary
conditions H = g on Ω = ∂G , H ≡ 1 near ∂Q, and ‖H‖H1 ≤ C‖g‖H1/2.

Using the same notation as in the proof of Lemma 23, define

wε,a(x) = ψ

(
|H(x) − a|

ε

)
πa(H(x)).

It may be shown as in [5] (or as in the proof of Lemma 23) that for some a = aε ∈ C, |aε| <
1/10, the functions (wε,aε) satisfy all the required properties.

Next, we establish the following
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Proposition 2. Assume that the conclusion of Proposition 1 is valid for some 2 < q ≤ 3.
Let (uε) be a sequence of minimizers of Eε in G as above. Then (uε) is bounded in

W 1,q′(G) with q′ = q/(q − 1).

Proof. As in Section 6, it suffices to establish the boundedness of uε ∧ duε in the space
Lq

′
(G). Proceeding by duality, consider ζ ∈ Lq(G; R3), ‖ζ‖q ≤ 1 and take its Hodge

decomposition as

(9.8)





ζ = curl k + ∇L in G
L = 0 on Ω,
with ‖k‖W1,q(G) + ‖L‖W1,q(Q) ≤ C

(see e.g. [30] or [27]). Recall that, with the notations of differential forms we used earlier,
curl = d∗ and ∇ = d. Let Q be a cube with G ⊂ Q and let ω be an open set such that

G ⊂ ω and ω ⊂ Q.

Next, extend k to k̃ on Q, k̃ = 0 on Q \ ω, with control of ‖k̃‖W1,q (Q). We extend uε to Q
defining

vε =
{
uε in G
wε in Q\G

where wε is provided by Lemma 30.

Recall that div(uε ∧ duε) = 0, and thus
∫

G

(uε ∧ duε) · ζ =
∫

G

(uε ∧ duε) · curl k.

Hence

(9.9)
∣∣∣∣
∫

G

(uε ∧ duε) · ζ
∣∣∣∣ ≤

∣∣∣∣
∫

Q

(vε ∧ dvε) · curl k̃
∣∣∣∣+
∫

Q\G
|∇wε| |∇k̃|.

From (9.5), the last term in (9.9) is bounded by C‖wε‖W1,q′ (Q\G), hence by C ′‖g‖H1/2,
since q′ < 2.

For the first term, perform an integration by part (k̃ = 0 on ∂Q) to get

(9.10)
∣∣∣∣
∫

Q

(vε ∧ dvε) · curl k̃
∣∣∣∣ = 2

∣∣∣∣
∫

Q

J(vε) · k̃
∣∣∣∣

and this quantity is bounded, by assumption, by C‖k̃‖W1,q (Q) (since supp k̃ ⊂ ω).

This proves Proposition 2.

Remark 9.2. The proof of Proposition 2 also provides an alternative quick proof of
Theorem 7.
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Corollary 4. The conclusion of Proposition 1 fails for every q < 3.

Proof. By Proposition 2, one would otherwise obtain the boundedness of the Ginzburg-
Landau minimizers in W 1,p(G) for some p > 3/2. This is not true in general, even for
certain g ∈ Y . Arguing by contradiction, one would otherwise obtain that the limit u∗
obtained in Theorem 9 belongs to W 1,p with p > 3/2. However, this is false. Indeed

Remark 9.3. In general u∗ 6∈ W 1,t for t > 3/2. Here is an example (see [5]): Suppose Ω
is flat near 0 and choose g(r) = eı/r

α

with α < 1, α close to 1 and g smooth away from 0.
This g belongs to Y . It is easy to see that the harmonic extension of 1/rα does not belong
to W 1,t, for t > 3/(α+ 1). Thus u∗ 6∈W 1,t.

Remark 9.4. The preceding also shows that the improved interior estimates from Sec-
tion 7 can not be established via a strengthening of Jerrard-Soner but requires additional
structure (in particular the monotonicity formula).

9.2. W 1,3/2 - estimate of the limit

We start with the simple case when g ∈ Y .

Theorem 11. Assume g ∈ Y and let u∗ be as in Theorem 9. Then u∗ ∈W 1,3/2.

Proof of Theorem 11. Recall that u∗ = eıϕ̃ where ϕ̃ is the harmonic extension of
ϕ ∈ H1/2 + W 1,1. Therefore, it suffices to apply the following imbedding result, which
is an immediate consequence of Theorem 1.5 in Cohen, Dahmen, Daubechies and DeVore
[23]:

Lemma 30. In 2-dimensions we have W 1,1(Ω) ⊂W
1
3 ,

3
2 (Ω).

For completeness we will prove a slightly more general form of this result in Appendix
D.

We now turn to the case of a general g ∈ H1/2(Ω;S1).

Theorem 12. Let g ∈ H1/2(Ω;S1) and let (uε) be a minimizer of Eε in H1
g (G; R2). In

view of Theorem 7 ′ we may assume that (modulo a subsequence)

uεn → U in W 1,p(G), ∀p < 3/2.

Then
U ∈W 1,3/2(G).

Proof of Theorem 12. In the proof we will not fully use the fact that uε is a minimizer.
We will only make use of the properties
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div(uε ∧ duε) = 0 in G,(9.0.1)

eε = Eε(uε) ≤ C log 1/ε,(9.0.2)

uεn → U in W 1,p(G), ∀p < 3/2,(9.0.3)

uε|Ω = g ∈ H1/2(Ω;S1).(9.0.4)

Claim

(9.0.5) U ∧ dU belongs to L3/2(G).

This implies that U ∈W 1,3/2. Indeed we have

|b|2 = |a ∧ b|2 + |a · b|2

for any vectors a, b in R2 with |a| = 1; applying this with a = U and b = ∂U
∂xi

yields
|dU | = |U ∧ dU | since U · ∂U∂xi

= 0.

In order to prove the Claim (9.0.5) we will check that, for every
−→
ζ ∈ L3(G; R3), we

have

(9.0.6)
∣∣∣∣
∫

G

−→
ζ · (U ∧ dU)

∣∣∣∣ ≤ C‖−→ζ ‖L3 .

Clearly, it suffices to verify (9.0.6) when
−→
ζ ∈ C∞

0 . Consider the Hodge decomposition of
−→
ζ as above, i.e.,

−→
ζ = curl

−→
k + ∇L in G,(9.0.7)

L = 0 on ∂G,(9.0.8)

‖−→k ‖W1,3(G) ≤ C‖−→ζ ‖L3 .(9.0.9)

Then, by (9.0.1) and (9.0.8), ∫

G

∇L · (U ∧ dU) = 0
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and thus

(9.0.10)
∫

G

−→
ζ · (U ∧ dU) =

∫

G

( curl
−→
k ) · (U ∧ dU).

We will establish the bound

(9.0.11)
∣∣∣∣
∫

G

( curl
−→
k ) · (U ∧ dU)

∣∣∣∣ ≤ C‖−→k ‖W1,3

in 5 Steps. The desired estimate (9.0.6) will be consequence of (9.0.10) and (9.0.11).

Step 1. Extensions.

Let Q be a cube such that G ⊂ Q. Let k̃ ∈W 1,3(Q; R3) be such that supp k̃ is contained
in a fixed compact subset of Q,

k̃ =
−→
k in G,

and
‖k̃‖W1,3(Q) ≤ C‖−→k ‖W1,3(G).

Next, we extend g to Q\G using Lemma 30. Thus, we obtain a family wε ∈ H1(Q\G; R2)
satisfying

(9.1.1) wε|∂G = g,

wε ≡ 1 in some fixed neighborhood of ∂Q,(9.1.2)

Eε(wε;Q \G) ≤ C log 1/ε(9.1.3)

‖wε‖W1,p(Q\G) ≤ Cp, ∀p < 2(9.1.4)

wεn −→ w in W 1,p(Q \G), ∀p < 2,(9.1.5)

for some w ∈W 1,p(Q \G;S1), ∀p < 2.

Set

ũε =
{
uε in G
wε in Q \G,

so that ũε ∈ H1(Q; R2) and

(9.1.6) ũεn −→ Ũ in W 1,p(Q), ∀p < 3/2,
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where

Ũ =
{
u in G
w in Q \G

and Ũ ∈W 1,p(Q;S1), ∀p < 3/2.

Clearly,

(9.1.7) Eε(ũε;Q) ≤ C log 1/ε.

It is convenient to introduce the following distribution denoted Ũxi ∧ Ũxj , i 6= j

Ũxi ∧ Ũxj =
1
2
(Ũxi ∧ Ũ )xj +

1
2
(Ũ ∧ Ũxj)xi

acting on functions C∞
0 (Q; R).

An immediate computation shows that
(9.1.8)

−1
2

∫

Q

( curl k̃) · Ũ ∧ dŨ =< Ũx2 ∧ Ũx3, k̃1 > + < Ũx3 ∧ Ũx1 , k̃2 > + < Ũx1 ∧ Ũx2, k̃3 > .

We will prove e.g. that

(9.1.9)
∣∣ < Ũx1 ∧ Ũx2, k >

∣∣ ≤ C‖k‖W1,3.

for every k ∈ C∞
0 (Q; R) and similarly for the other terms.

Assuming (9.1.9) we then have

(9.1.10)
∣∣∣∣
∫

Q

( curl k̃) · (Ũ ∧ dŨ)
∣∣∣∣ ≤ C‖k̃‖W1,3(Q)

and thus
∣∣∣∣
∫

G

( curl
−→
k ) · (U ∧ dU)

∣∣∣∣ ≤
∣∣∣∣
∫

Q\G

( curl k̃) · w ∧ dw
∣∣∣∣+ C‖k̃‖W1,3(Q)

≤ ‖k̃‖W1,3(Q\G)‖w‖L3/2(Q\G) + C‖k̃‖W1,3(Q).(9.1.11)

Finally we obtain, by (9.1.4),

(9.1.12)
∣∣∣∣
∫

G

( curl
−→
k ) · (U ∧ dU)

∣∣∣∣ ≤ C‖−→k ‖W1,3(G)
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which is the desired estimate (9.0.11).

The rest of the argument is devoted to the proof of (9.1.9).

Step 2. Use of a result of Jerrard-Soner.

For any x̄3 ∈ R set
Σx̄3 = Q ∩ (R2 × {x̄3}).

Consider x̄3 such that

(9.2.1) lim inf
ε→0

Eε(ũε
∣∣Σx̄3)

log 1/ε
<∞

and

(9.2.2) Ũεn|Σx̄3
−→ Ũ|Σx̄3

in W 1,32−(Σx̄3).

From (9.1.6), (9.1.7), this is the case for almost all x̄3.

It follows then from Theorem 3.1 in [33] that (ũεn)x1 ∧ (ũεn)x2 converges in D′(Σx̄3) to
Ũx1 ∧ Ũx2 and that

(9.2.3) Ũx1 ∧ Ũx2 = π
∑

i

diδai

where di = di(x̄3) ∈ Z, ai = ai(x̄3) ∈
∑

x̄3
satisfy

(9.2.4) π
∑

i

|di(x̄3)| ≤ lim inf
ε→0

Eε(ũε
∣∣Σx̄3)

log 1/ε
.

Thus, from (9.1.7)

(9.2.5)
∑

i

∫
|di(x3)|dx3 ≤ C

and we may write

(9.2.6) < Ũx1 ∧ Ũx2 , k >= π

∫
dx3

{∑

i

di(x3)k
(
ai(x3)

)}
.

To bound (9.2.6), we will need, besides (9.2.5), also certain cancellations that have to do
with the sign of di’s.
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Step 3. Use of minimal connections.

Take x̄3 as in Step 2 and consider the domain

Ωx̄3 = Q ∩ [x3 ≤ x̄3] (or x3 ≥ x̄3).

Since ũεn → Ũ in W 1,32−(∂Ωx̄3), ũεn → Ũ in H1/2(∂Ωx̄3). Remark also that, since Ũ = 1
on ∂Q, the singularities of Ũ on ∂Ωx̄3 are necessarily in Σ

x̄3
.

Invoke next Theorem 6′ to claim that

(9.3.1) πL(Ũ|Σx̄3
) = πL(Ũ|∂Ωx̄3

) ≤ lim inf
ε→0

Eε(ũε|Ωx̄3
)

log 1/ε
≤ sup

Eε(ũε)
log 1/ε

≤ C.

Note that assumption (5.11) is satisfied since

1
ε2

∫

Q

(|ũε|2 − 1)2 ≤ C log 1/ε

implies
1
ε

∫

Q

(|ũε|2 − 1)2 =
1
ε

∫
dx3

∫

Σx3

(|ũε|2 − 1)2 −→ 0

and then
1
εn

∫

Σx3

(|ũεn| − 1)2 ≤ h(x3)

for some fixed function h ∈ L1.

Thus, by (9.3.1), there is a reordering

{ai(di)} = {p1, . . . , p`} ∪ {n1, . . . , n`}

with possible repetition, such that

(9.3.2)
∑

j

|pj(x̄3) − nj(x̄3)| ≤ C

and (9.2.5), (9.2.6) may be rewritten as

(9.3.3)
∫
`(x3)dx3 ≤ C

(where 2`(x3) =
∑

|di(x3)|)
and

(9.3.4) < Ũx1 ∧ Ũx2 , k >= π

∫
dx3

{∑

j

[k
(
pj (x3)

)
− k
(
nj(x3)

)
]
}
.

We will now establish the desired bound (9.1.9) with the help of the following
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Proposition 3. Assume (9.3.3) and (9.3.4), then, for every k ∈ C∞
0 (Q; R),

(9.3.5)
∣∣∣∣
∫
dx3

{∑

j

[
k(pj(x3)) − k(nj(x3))

]}∣∣∣∣ ≤ C‖k‖W1,3(Q).

Step 4. Decomposition of W 1,3(R3)-function.

Let k ∈W 1,3(R3), ‖k‖W1,3 ≤ 1 and let

k =
∑

s≥0

∆sk

be a usual Littlewood-Paley decomposition (we assume suppk ⊂ Q).

Thus

(9.4.1)
∑

8s‖∆sk‖3
3 < C.

Denote

(9.4.2) λs = 8s‖∆sk‖3
3;

hence

(9.4.3)
∑

λs < C.

First we estimate for fixed ρ > 0

(9.4.4) meas [x3; sup
x1,x2

|∆sk(x1, x2, x3)| > ρ].

Clearly, for fixed x3,

‖∆sk(x3)‖L∞
x1,x2

≤ C4s/3‖∆sk(x3)‖L3
x1,x2

so that

(9.4.5) (9.4.4) ≤ ρ−3

∫
(‖∆sk(x3)‖L∞

x1,x2
)3dx3 ≤ Cρ−34s‖∆sk‖3

3 ≤ Cρ−32−sλs.

Denote ζρ the function on R
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Fix s0 and decompose for s ≥ s0 + 1

∆sk = k1
s,s0

+ k2
s,s0

with k1
s,s0

= ∆sk(1 − ζ1/(s−s0)2)(∆sk).

Hence

|k1
s,s0| ≤ |∆sk| χ[|∆sk|<(s−s0)−2]

|k2
s,s0| ≤ |∆sk| χ[|∆sk|> 1

2 (s−s0)−2]
.

Therefore

(9.4.6)
∑

s≥s0+1

|k1
s,s0| < C

and by (9.4.5)

(9.4.7) meas x3

(
Projx3(suppk2

s,s0
)
)
≤ C(s− s0)6 2−sλs.

Step 5. Estimation of (9.3.5).

Using the decomposition of Step 4, estimate

(9.5.0) (9.3.5) ≤
∫
dx3

{∑

s0

∑

j||pj−nj|∼2−s0

|k(pj(x3)) − k
(
nj(x3)

)
|
}

and

|k(pj) − k(nj)| ≤
∑

s≤s0

|∆sk(pj) − ∆sk(nj)|(9.5.1)

+
∑

s>s0

(
|k1
s,s0(pj )| + |k1

s,s0(nj)|
)

(9.5.2)

+
∑

s>s0

(|k2
s,s0

(pj )| + |k2
s,s0

(nj)|
)
.(9.5.3)

Contribution of (9.5.1)

Estimate
|∆sk(pj) − ∆sk(nj)| ≤ ‖∆sk‖Lip |pj − nj | ≤ C2s−s0.

Thus the contribution in (9.5.0) is bounded by
∫
dx3

[ ∑

s0,s≤s0

2s−s0(#{j| |pj(x3) − nj(x3)| ∼ 2−s0})
]

≤
∫
`(x3)dx3 < C
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by (9.3.3).

Contribution of (9.5.2)

Same, since (9.5.2) < C from (9.4.6).

Contribution of (9.5.3)

This is the crux of the argument.

Estimate, using (9.3.2) and the fact that |k2
s,so| ≤ C,

∑

j| |pj−nj|∼2−s0

|k2
s,s0

(
pj(x3)

)
| ≤ ‖k2

s,s0
‖∞ · χ

Projx3(suppk2
s,s0 )

(x3) · [#{j| |pj(x3) − nj(x3)| ∼ 2−s0}]

< C2s0χ
Projx3 (suppk2

s,s0
)
(x3).

Integration in x3 gives therefore, using (9.4.7),

(9.5.4) C(s− s0)6 2−(s−s0)λs

which, by (9.4.3), is summable in
∑
s0,s>s0

.

This completes the proof of (9.3.5), and thus of Theorem 12.

9.3. A geometric estimate related to Proposition 3

With the same technique as in the proof of Proposition 3 we may derive the follow-
ing estimate which has an interesting geometric flavour. It may be used to provide an
alternative proof of Theorem 12 as in [BOS1].

Proposition 4. Let Γ be a closed, oriented, rectifiable curve in R3, and denote by
−→
t the

unit tangent vector along Γ; let
−→
k ∈W 1,3(R3; R3).Then

∣∣∣∣
∫

Γ

−→
k · −→t

∣∣∣∣ ≤ C‖k‖W1,3 |Γ|.

Proof. Part of the argument is a repetition of the proof of Proposition 3, but we have
kept it for the convenience of the reader who wishes to concentrate on Propostion 4 inde-
pendently of the rest of the paper. Assume |Γ| = 1 and let γ : [0, 1] −→ Γ be the arclength
parametrization (|γ̇| = 1).

We need to bound

(9.6.1)
∫

Γ

k3(γ(s))γ̇3(s)ds =
∫
dx3

[ ∑

x∈Γx3

σ(x)k3(x)
]
,
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where Γx3 = Γ∩ [x = x3] is assumed finite (by choice of coordinate system) and σ(γ(s)) =
signγ̇3(s).

Thus Γx3 = {P1, . . . , Pr} ∪ {N1, . . . ,Nr}, where σ(Pi) = 1 and σ(Qi) = −1. Also,

r = r(x3) =
1
2
card(Γx3)

and ∫
r(x3)dx3 =

1
2

∫
|γ̇3(s)|ds < 1,

(9.6.3)
∑

i

|Pi −Ni| ≤ |Γ| = 1.

Write k for k3 and assume ‖k‖W1,3 ≤ 1. Write, for fixed x3,

∣∣∣∣
∑

x∈Γx3

σ(x)k(x)
∣∣∣∣ ≤

r(x3)∑

i=1

|k(Pi) − k(Ni)|

=
∑

s0

∑

|Pi−Ni|∼2−s0

|k(Pi) − k(Ni)|.(9.6.4)

To estimate (9.6.4), we perform again the same decomposition of k ∈ W 1,3. Thus, for
fixed s0,

k = ks0 +
∑

s>s0

k1
s0,s +

∑

s>s0

k2
s0,s

satisfying

(9.6.5) |∇ks0| . 2s0

(9.6.6) |k1
s0,s| . (s− s0)−2

(9.6.7)
{ |k2

s0,s| . 1 and

suppk2
s0,s

contained in the union of . σs(s− s0)6 cubes of size 2−s

with

(9.6.8)
∑

σs < C
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(in fact σ1/3
s = ‖∆sk‖W1,3 , k =

∑
∆sk, Littlewood-Paley decomposition).

Returning to (9.6.4), we get for fixed s0,

∑

|Pi−Ni|∼2−s0

|ks0(Pi) − ks0(Ni)|(9.6.9)

+
∑

s>s0

∑

|Pi−Ni|∼2−s0

|k1
s0,s(Pi)| + |k1

s0,s(Ni)|(9.6.10)

+
∑

s>s0

∑

|Pi−Ni|∼2−s0

|k2
s0,s

(Pi)| + |k2
s0,s

(Ni)|.(9.6.11)

Contribution of (9.6.9)

(9.6.5) ⇒ (9.6.9) . #
{
i
∣∣ |Pi −Ni| ∼ 2−s0

}
.

Sum in s0 ⇒ r(x3) satisfying (9.6.2).

Contribution of (9.6.10)

(9.6.6) ⇒
∑

s>s0

|k1
s0,s| < C.

Hence
(9.6.10) . #

{
i
∣∣|Pi −Ni| ∼ 2−s0

}
.

Contribution of (9.6.11)

For fixed s > s0, we need to restrict x3 to Projx3(supp k2
s0,s) ⊂ R of measure . σs(s −

s0)62−s by (9.6.7).

By (9.6.3), #
{
i
∣∣|Pi −Ni| ∼ 2−s0

}
≤ 2s0 , ∀x3.

Thus, ∫
dx3

[ ∑

|Pi−Ni|∼2−s0

|k2
s0,s

(Pi)| + . . .

]
≤ σs(s − s0)62−(s−s0),

summable in s, s0, s > s0, taking also (9.6.8) into account.

10. Open problems
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OP1. Let uε be a minimizer of Eε in H1
g with g ∈ H1/2(Ω;S1). Is it true that

∫

G

|uεxi ∧ uεxj | ≤ C ∀i, j as ε→ 0 ?

OP2. Let uε be a minimizer of Eε in H1
g with g ∈ H1/2(Ω;S1). Is it true that

‖uε‖W1,3/2(G) ≤ C as ε→ 0 ?

Is (uε) relatively compact in W 1,3/2?

OP3. Assume uε : B → R2 (B unit ball in R3) is smooth and satisfies∫

B

|∇uε|2 +
1
ε2

∫

B

(|uε|2 − 1)2 ≤ C log(1/ε).

Is it true that for every compact subset K ⊂ B,∣∣∣∣
∫

B

(uεx ∧ uεy)ϕ
∣∣∣∣ ≤ CK‖ϕ‖W1,3 ∀ϕ ∈ C∞

0 (K)?

(As explained in Section 9.1 a positive solution of OP3 yields a positive answer to OP2)

OP4. Let uε be a minimizer of Eε in H1
g with g ∈ H1/2(Ω;S1). Is it true that

|uε| is bounded in H1(G) ?

11. Appendices

Appendix A. The upper bound for the energy

With G and Ω = ∂G as in Section 1, consider the following distinguished classes in
H1/2(Ω;S1):

R = {g ∈ g ∈W 1,p(Ω;S1),∀p < 2; g is smooth away from a finite set Σ of singularities},
R0 = {g ∈ R; |∇g(x)| ≤ C

/
|x− σ| near each σ ∈ Σ and deg(g, σ) = ±1, ∀σ ∈ Σ},

R1 =

{
g ∈ R0

∣∣∣∣
for each σ ∈ Σ, there is some R ∈ O(3) such that∣∣g(x) −R

(
x−σ
|x−σ|

) ∣∣ ≤ C|x− σ| for x near σ

}
,

where O(3) denotes the group of linear isometries of R3. Here, we identify S1 ⊂ R2 with
S1 × {0} viewed as a subset of R3. From the definition of R1 we see that R must map
the tangent plane Tσ(Ω) into R2 × {0} and thus R(n(σ)) = (0, 0,±1), where n(σ) is the
outward unit normal to Ω. Clearly, deg(g, σ) = +1 if R is orientation-preserving and -1
otherwise.

This Appendix is devoted to the proof of the following
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Lemma A.1. Let g ∈ R1 and let LG be the length of a minimal connection corresponding
to the geodesic distance in G. Then

(A.1) Min {Eε(u);u ∈ H1
g (G; R2)} ≤ πLG(g) log(1/ε) + o(log(1/ε)) as ε→ 0.

The proof we present below uses some arguments from [40], Section 1.

Proof. Given δ > 0 small, we first construct a domain Gδ and a diffeomorphism ξδ:
G→ Gδ (with ξδ : ∂G→ ∂Gδ) such that

(A.2) ‖Dξδ − I‖ ≤ Cδ on G

and ∂Gδ is flat in a δ-neighborhood of each singularity ξδ(aj) of gδ = g ◦ ξ−1
δ .

The construction of ξδ is standard. Assume, for simplicity, that 0 is a singular point of
g on Ω and that, near 0, the graph of Ω is given by x3 = ψ(x1, x2) with ψ smooth and
∇ψ(0) = 0. Set

η(x1, x2, x3) = (x1, x2, x3 − ψ(x1, x2))

so that ‖Dη(x) − I‖ ≤ C|x| near 0. Let ζ ∈ C∞
0 (B1) with ζ = 1 on B1/2. Then

ξδ(x) = x+ ζ(x/δ)(η(x) − x), x ∈ G

has all the required properties relative to one singularity. We proceed similarly for the
other singularities.

We now write G and g instead of Gδ and gδ, so that we may assume that Ω is flat in a
δ-neighborhood of each singularity.

After relabeling the singularities of g, we may assume that LG(g) =
∑k

j=1 length (γj),
where γj connects (in G) Pj and Nj . We now introduce a second parameter λ, 0 < λ < δ,
and we choose some disjoint smooth curves Γj having the following properties:

a)
∑k
j=1 length (Γj ) ≤ LG(g) + λ;

b) Γj is a simple curve;

c) Γj is contained in G except for its endpoints Pj and Nj ;

d) the curve Γj is orthogonal to Ω in a λ-neighborhood of its endpoints.

Moreover, we may assume that Γj is parametrized in such a way that the tangent vector
at Pj is outward and the one at Nj is inward. We take the arclength as parameter. We
may thus write Γj = {Xj(t); t ∈ [0, Tj ]}, with Xj(0) = Nj ,Xj(Tj ) = Pj , where Xj is
smooth, into and an immersion, and Tj = length(Γj).

We consider the unit tangent vector to Γj , e(Xj (t)) = X ′
j (t). We may find two smooth

vector fields f, g on Γj such that {f(Xj (t)), g(Xj (t)), e(Xj (t))} is a direct orthonormal
basis for each t.
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We now define the map Φj : [0, Tj ] ×Bλ → R3 by

Φj(t, u, v) = Xj(t) + uf(Xj (t)) + vg(Xj(t)),

where Bλ = {(u, v) ∈ R2;u2 + v2 ≤ λ2}.

Clearly,

(A.3) ‖DΦj(t, u, v) −M(t)‖ ≤ Cλ on [0, Tj ]×Bλ,

where M(t) ∈ O(3). Thus, for λ sufficiently small, Φj is a diffeomorphism from [0, Tj]×Bλ
onto a λ-tubular neighborhood Uj of Γj . Moreover Uj ⊂ G for λ small.

It is easy to see that the restriction of g to Ω \ ∪jUj has a smooth S1-valued extension,
g̃, to G \ ∪jUj . Indeed, let ζj : G → R3 be a diffeomorphism onto ζj(G) with ζj(G) ⊂
BR × [0, Tj ] and ζj(Uj ) = Bλ × [0, Tj ]. Consider the function k : R3 → S1 defined by

k(x, y, z) = (x, y)
/
(x2 + y2)1/2.

Then
kj = k ◦ ζj : G \ Uj → S1

is smooth and
q = Πk

j=1kj : G \ ∪
j
Uj → S1

is also smooth. Moreover
deg(q,C±

j ) = ±1 ∀j

where C+
j = {x ∈ Ω; |x− Pj | = λ} and C−

j = {x ∈ Ω; |x −Nj | = λ}. Therefore

deg(g/q,C±
j ) = 0 ∀j.

Hence the function g/q restricted to Ω \ ∪
j
Uj admits a smooth extension f : Ω → S1.

Then f extends to a smooth map f̃ : G → S1. Finally, the map g̃ = f̃q has the desired
properties.

Clearly we have

(A.4) Eε(g̃;G \ ∪
j
Uj) ≤ Cλ.

Consider the map hj : ∂([0, Tj ] ×Bλ) → S1 defined by

hj =
{
g̃ ◦ Φj , on [0, Tj ]× ∂Bλ

g ◦ Φj , on {0} ×Bλ and on {Tj} ×Bλ
.
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Then hj is smooth on ∂([0, Tj ]×Bλ) except at the points (0, 0, 0) and (Tj , 0, 0). From the
construction in [40] we know that

(A.5) Min {Eε(u; (0, Tj) ×Bλ));u ∈ H1
hj

((0, Tj ) ×Bλ; R2)} ≤ πTj log(1/ε) + Cλ.

Using (A.5) and (A.3) we return to Uj via Φj and obtain a map

v = vj,ε,λ : Uj → R2

such that v = g on (∂Uj ) ∩ Ω and

(A.6) Eε(v;Uj) ≤ (πTj log(1/ε) + Cλ)(1 + Cλ).

Gluing the maps vj,ε,λ defined above with the map g̃|G\∪jUj
, we obtain a map wε,λ :

G→ R2 satisfying
wε,λ = g on Ω

and (by (A.4) and (A.6)),

(A.7) Eε(wε,λ;G) ≤
(
π(
∑

Tj) log(1/ε) + Cλ
)

(1 + Cλ) + Cλ.

Returning to the original notation Gδ and Ωδ = ∂Gδ, we have just constructed a map
wε,λ : Gδ → R2 satisfying

wε,λ = gδ = g ◦ ξ−1
δ on Ωδ

and

(A.8) Eε(wε,λ;Gδ) ≤ π(LGδ (gδ) + λ) log(1/ε)(1 + Cλ) + C ′
λ.

Finally, coming back to the original domainG via ξδ, we obtain some w̃ε,λ,δ ∈ H1
g (G; R2)

such that

(A.9) Eε(w̃ε,λ,δ;G) ≤ [π(LGδ (gδ) + λ) log(1/ε)(1 + Cλ) + C ′
λ](1 + Cδ).

It is easy to see that ∣∣LGδ (gδ) −LG(g)
∣∣ ≤ Cδ

and thus we arrive at

(A.10) Eε(w̃ε,λ,δ;G) ≤ πLG(g) log(1/ε)(1 + Cλ+ Cδ) + C ′
λ,δ,

which yields the desired conclusion (A.1) since λ < δ are arbitrarily small.

Appendix B. A variant of the density result of T. Rivière

We use the same notation as in Appendix A for R,R0 and R1. Recall that R0 is dense
in H1/2(Ω;S1); see Rivière [38], quoted as Lemma 11, and see Remark 5.1 for a proof.
This Appendix is devoted to the following improvement:
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Lemma B.1. The class R1 is dense in H1/2(Ω;S1).

Proof. Given g ∈ H1/2(Ω;S1) and ε > 0 we first use the density of R0 to construct a
map h ∈ R0 such that ‖h− g‖H1/2 < ε.

Next, write, as usual, the singular set Σ of h as

Σ = {P1, P2, . . . , Pk,N1,N2, . . . ,Nk}.

For every σ ∈ Ω, let Tσ(Ω) denote the tangent plane to Ω at σ; we orient it using the
outward normal n(σ) to G. Let PΩ denote the projection onto Ω defined in a tubular
neighborhood of Ω in R3.

For each i = 1, 2, . . . , k, fix two smooth maps:

γ+
i :{ξ ∈ TPi (Ω); |ξ| = 1} → S1,

γ−i :{ξ ∈ TNi(Ω); |ξ| = 1} → S1,

such that

(B.1) deg(γ+
i ) = +1 and deg(γ−i ) = −1.

The conclusion of Lemma B.1 is an immediate consequence of the following more general:

Claim. With h as above, there is a sequence (hn) in H1/2(Ω;S1) such that:

(B.2) hn → h in H1/2

(B.3) hn ∈ C∞(Ω \ Σ;S1), ∀n,

(B.4) hn ∈W 1,p(Ω \ Σ;S1), ∀n, ∀p < 2,

(B.5) |∇hn(x)| ≤ Cn
/
dist (x,Σ), ∀n, ∀x ∈ Ω \ Σ,

for all 0 < t < t0 (sufficiently small, depending only on Ω) and all i = 1, 2, . . . k, we have:

(B.6) |hn(PΩ(Pi + tξ)) − γ+
i (ξ)| ≤ Cnt, ∀n,∀ξ ∈ TPi (Ω), |ξ| = 1,

(B.7) |hn(PΩ(Ni + tξ)) − γ−i (ξ)| ≤ Cnt, ∀n,∀ξ ∈ TNi(Ω), |ξ| = 1.
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Proof of the Claim. Fix an arbitrary function k ∈ C∞(Ω \Σ;S1) ∩W 1,p(Ω, S1), ∀p < 2
satisfying

(B.8) |∇k(x)| ≤ Cdist (x,Σ), ∀x ∈ Ω \ Σ,

(B.9) |k(PΩ(Pi + tξ)) − γ+
i (ξ)| ≤ Ct,

(B.10) |k(PΩ(Ni + tξ)) − γ−i (ξ)| ≤ Ct,

for all t, i, ξ as in (B.6) - (B.7).

The existence of k is proved as in Appendix A. First we define it on ∂B1 × [0, T ] using
the parameter t to homotopy γ+

i to the complex conjugate of γ−i . We then extend it to
B1 × [0, T ] by homogeneity of degree 0 and transfer it to a “tube-like” region Ui in G
connecting Pi to Ni. Finally, we extend these functions smoothly to G \ Ui, take their
complex product, and restrict it to Ω.

To complete the proof of the Claim, note that T (h) = T (k) = 2π
∑k

i=1(δPi −δNi). Thus
T (hk̄) = 0 and, by Theorem 2, there exists a sequence rn ∈ C∞(Ω;S1) such that rn → hk̄
in H1/2. Using the fact that points have zero H1-capacity in 2 − d (and thus zero H1/2 -
capacity), we may also assume that rn(Pi) = rn(Ni) = 1, ∀n,∀i. Clearly, the sequence
hn = krn has all the desired properties (B.2) - (B.7).

Lemma B.1 is obtained by choosing, in the Claim, as γ+
i and γ−i any isometries from

TPi (Ω) and TNi(Ω) onto R2

Appendix C: Almost Z-valued functions

The purpose of this section is to prove the following fact used earlier in Section 8.

Lemma C.2. Assume ϕ ∈ H1/2((0, 1)× (0, 1)) and {Qα} a collection of squares in (0, 1)2

such that

‖ϕ‖L4/3 ≤ C(C.1)

‖eıϕ − 1‖L1([0,1]2\∪Qα) ≤ ε(C.2)

|ϕ|H1/2 ≤ δ(log(1/ε))1/2(C.3)
∑

α

σα ≤ δ,(C.4)

where ε < δ � 1 and σα denotes the size of Qα.

Then there is some a ∈ Z such that

(C.5) ‖ϕ− 2πa‖L1 ≤ Cδ1/8.

The proof will rely on the following inequality (see also [15] and [35] for related results).
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Lemma C1. Let Q = (0, 1)2, f ∈ L1(Q). Then for all 0 < ρ < ρ0, ρ0 sufficiently small,

(C.6)
∥∥∥∥f −

∫
f

∥∥∥∥
L1

≤ C| log ρ|−1

∫∫

Q×Q

|f(x) − f(y)|
|x− y|(|x − y| + ρ)2

dxdy

with C some constant.

Proof of Lemma C2. It follows from (C2) that we may write Q as a disjoint union

Q =
⋃

Qα ∪ Z0 ∪
⋃

j∈Z

Aj .

where

(C.7) Aj ⊂ [|ϕ− 2πj| < ε1/8]

(C.8) |Z0| < ε3/4.

Apply Lemma C.1 to f = χAj with ρ = ε1/20. Hence, denoting Z = Z0 ∪
⋃
αQα,

|Aj |(1 − |Aj |) ≤ C| log ε|−1

∫∫

Aj×(Q\Aj )

|x − y|−1(|x − y) + ρ)−2

≤ C| log ε|−1
∑

k 6=j

∫∫

Aj×Ak

|x − y|−3 + C| log ε|−1

∫∫

Aj×Z

|x− y|−1(|x − y| + ρ)−2

≤ C| log ε|−1

∫∫

Aj×∪Ak

k 6=j

|ϕ(x) − ϕ(y)|2

|x− y|3
+ C| log ε|−1

∫∫

Aj×Z

|x− y|−1(|x − y| + ρ)−2.

Summation over j gives

∑

j

|Aj |(1 − |Aj |) ≤ C| log ε|−1 ‖ϕ‖2
H1/2 + C| log ε|−1

∫∫

Z×(Q\Z)

|x − y|−1(|x − y| + ρ)−2

by (C.3)

≤ Cδ2 + C| log ε|−1

[∑

α

∫∫

Qα×(Q\Qα)

|x− y|−1(|x − y| + ρ)−2

]
+ C|Z0|.ε−

1
10 .(C.9)

For fixed α, estimate

(C.10)
∫∫

Qα×(Q\Qα)

|x− y|−1(|x− y| + ρ)−2.
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Since for fixed x ∈ Qα, |x − y| > dist (x, ∂Qα), we get easily

(C.10) ≤ C

∫

Qα

[dist (x, ∂Qα) + ρ]−1dx < C| log ε|σα

with σα the size of Qα.

Substitute in (C.9) and use (C.4), (C.8) to bound

(C.11)
∑

j

|Aj |(1 − |Aj |) ≤ Cδ2 + C
∑

σα + ε
3
4−

1
10 ≤ Cδ + ε3/5.

Take j0 with |Aj | = max |Aj |. Thus |Aj | ≤ 1
2 for j 6= j0 and by (C.11)

(C.12)
∑

j 6=j0

|Aj | ≤ C(δ + ε3/5).

Taking a = j0, finally estimate using (C.1), (C.7)

‖ϕ− 2πa‖1 ≤ ‖ϕ− 2πj0‖L1(Aj0 ) + ‖ϕ‖L1(Q\Aj0 ) + 2π|a| |Q\Aj0 |

≤ ε
1
8 + C|Q\Aj0 |

1
4 + 2π|a| |Q\Aj0 |

where, by (C.4), (C.8), (C.12)

|Q\Aj0 | ≤
∑

|Qα| + |Z0|+
∑

j 6=j0

|Aj | ≤
∑

σ2
α + ε3/4 + C(δ + ε3/5)

≤ C(δ + ε3/5).

Hence
‖ϕ− 2πa‖1 ≤ C(ε1/8 + δ1/4) + C|a|)(δ + ε3/5)

implying

2π|a| ≤ ‖ϕ‖1 + 1 + |a|

|a| ≤ C and ‖ϕ− 2πa‖1 ≤ C(δ1/4 + ε1/8) ≤ Cδ1/8

which is (C.5).

Proof of Lemma C.1. We will derive the inequality by contradiction, using Theorem 4
in [14]. Let thus (fn) be a sequence in L1(Q) and (εn) ↓ 0 such that

(C.13) | log εn|−1

∫∫

Q×Q

|fn(x) − fn(y)|
|x− y|(|x − y| + εn)2

dxdy ≤ 1
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and

(C.14) ‖fn −
∫
fn‖L1 → ∞

Denote by ρn the radial modifier on R2

(C.15) ρn(x) = cn| log εn|−1(|x| + εn)−2

with cn such that
∫
ρn = 1 (hence cn ∼ 1). Applying Theorem 4 from [14], with p = 1, it

follows that (fn) is relatively compact in L1(Q), contradicting (C.14). This proves (C.6).

Appendix D. Sobolev imbeddings for BV

It is well-known that, if p > 1 and 0 < s < 1, then

W 1,p(Ω) ⊂W s,q(Ω), Ω ⊂ Rd

with
1
q

=
1
p
− (1 − s)

d
.

This imbedding fails for p = 1 and d = 1, i.e., W 1,1 is not contained in W 1/q,q for q > 1.
Surprisingly, the imbedding holds when p = 1 and d ≥ 2.

Lemma D.1. Assume d ≥ 2 and 0 < s < 1. Then

BV (Rd) ⊂W s,p(Rd)

with

(D.1)
1
p

= 1 − 1 − s

d
.

When d = 2, this result is an immediate consequence of an interpolation result of Cohen,
Dahmen, Daubechies and DeVore [23]. It also seems to be contained in an earlier work of
V. A. Solonnikov [44] although the condition d ≥ 2 does not appear in his paper. We thank
V. Maz’ya and T. Shaposhnikova for calling our attention to the paper of Solonnikov and
for confirming that the assumption d ≥ 2 is indeed used there implicitly; they have also
devised another proof of Solonnikov’s inequality (personal communication).

Our proof relies on the following one-dimensional elementary inequality:
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Lemma D.2. Let 1 < p <∞ and 0 < s < 1/p. Then, for every f ∈ C∞
0 (R),

(D.2) |f |pWs,p(R) ≤ C‖f‖p(1−sp)Lp(R) ‖f ′‖sp
2

L1(R),

where C depends only on p and s.

Here, | |Ws,p(R) denotes the canonical semi-norm on W s,p(R), i.e.,

|f |pWs,p(R) =
∫

R

dx

∞∫

0

|f(x + h) − f(x)|p

h1+sp
dh.

Proof. Write, for λ > 0,

|f |pWs,p =
∫

R

dx

λ∫

0

· · · dh+
∫

R

dx

∞∫

λ

· · · dh

≤ 2p−1‖f‖p−1
L∞ ‖f ′‖L1

λ1−sp

1 − sp
+ 2p−1‖f‖pLp

λ−sp

sp

≤ 2p−1

(
‖f ′‖pL1

λ1−sp

1 − sp
+ ‖f‖pLp

λ−sp

sp

)
,

since sp < 1. Minimizing in λ yields (D.2) with C = 2p−1/sp(1 − sp).

Proof of Lemma D.1. Let u ∈ C∞
0 (Rd). We will use the following equivalent norm on

W s,p ( see e.g. Adams [1], Lemma 7.44)

(D.3) ‖u‖pWs,p ∼ ‖u‖pLp +
d∑

j=1

∫

Rd

dx

∞∫

0

|u(x + hej) − u(x)|p

h1+sp
dh.

Note that BV ⊂ L1 ∩ Ld/(d−1) and thus we may estimate (via Hölder)

‖u‖Lp ≤ C‖u‖BV ,

since

(D.4)
1
p

= 1 − (1 − s)
d

=
s

1
+

1 − s

d/(d− 1)
.
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We now turn to the second term in (D.3); without loss of generality we may take j = 1.
We apply Lemma D.1 to the function

f(·) = u(·, x2, x3, ..., xd)

(note that, by (D.4), sp < 1) and we obtain

(D.5)

∫

R

dx1

∫ ∞

0

|u(x1 + h, x2, ..., xd) − u(x1, x2, ..., xd)|p

h1+sp
dh

≤ C‖f‖p(1−sp)Lp(R) ‖f ′‖sp
2

L1(R) ≤ C‖f‖sp(1−sp)L1 ‖f‖(1−s)p(1−sp)
Ld/(d−1) ‖f ′‖sp

2

L1 .

On the other hand, we have

(D.6)
∫

Rd−1

‖f ′‖L1(R)dx2dx3...dxd ≤
∫

Rd

|∇u|dx.

On the other hand, the imbedding BV ⊂ Ld/(d−1) gives, with q = d/(d− 1),

(D.7)
∫

Rd−1

‖f‖qLq(R)dx2dx3...dxd = ‖u‖q
Lq(Rd)

≤ C



∫

Rd

|∇u|dx



q

.

Finally we claim that

(D.8)
∫

Rd−1

‖f‖(d−1)/(d−2)
L1(R) dx2dx3...dxd ≤ C



∫

Rd

|∇u|dx




(d−1)/(d−2)

;

when d = 2, inequality (D.8) reads

‖f‖L∞
x2

(L1
x1

) ≤
∫

R2

|∇u|.

To prove (D.8) we use once more the imbedding BV ⊂ Lr, but this time in Rd−1, with
r = (d − 1)/(d − 2), and we obtain

(D.9) ‖f(x1, ·)‖Lr(Rd−1) ≤ C

∫

Rd−1

|∇u(x1, ·)|dx2dx3...dxd.
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Next, we have

‖f‖Lr(Rd−1;L1(R)) =

∥∥∥∥∥

∫

R

|f(x1, ·)|dx1

∥∥∥∥∥
Lr(Rd−1)

≤
∫

R

‖f(x1, ·)‖Lr(Rd−1)dx1 by the triangle inequality

≤ C

∫

Rd

|∇u(x)|dx by (D.9).

Finally, we return to (D.5), integrate in dx2dx3...dxd, and apply Hölder with exponents
P,Q,R such that

Psp(1 − sp) = (d − 1)/(d − 2),

Q(1 − s)p(1 − sp) = d/(d− 1),

Rsp2 = 1.

[ A straightforward computation shows that 1
P + 1

Q + 1
R = 1]. From (D.8), (D.7) and (D.6)

we deduce that

|u|p
Ws,p(Rd)

≤ C



∫

Rd

|∇u|dx



p

.
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Added in proof:

1) After our work was completed some of our results were generalized to higher dimen-
sions in [ABO].

2) F. Bethuel, G. Orlandi and D. Smets have solved our Open Problem 3 (and thereby
also Open Problem 2) in Section 10; see [BOS1] and [BOS2].

3) J. Van Schaftingen [VS] has given an elementary proof of our Proposition 4, which
extends easily to higher dimensions. His proof follows the same strategy as ours, except
that he uses the Morrey-Sobolev imbedding in place of a Littlewood Paley decomposition.

4) An alternative approach to Proposition 4 is to use a new estimate for the div-curl
system (see [BB]), namely

‖u‖L3/2 ≤ C‖ curl u‖L1 ,∀u with div u = 0.
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