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1. Introduction.

This is a follow-up of our paper [3] where we establish that

: |f(z) — f(y)|P
15,1%111(1 =) /Q 0 |z —y|drer dzdy ~ |V fllr(a), (1)

for any p € [1,00), where € is a smooth bounded domain in R%, d > 1.

On the other hand, if 0 < s < 1, p > 1 and sp < d, the Sobolev inequality for
fractional Sobolev spaces (see e.g. [1], Theorem 7.57 or [6], Section 3.3) asserts that

1 Fyeny = Cls.p, I = f fllLao) (2)
where . )
s
¢ d ¥
Here we use the standard semi-norm on W$-P
riey = [ [ i dady. (4)

When s = 1 the analog of (2) is the classical Sobolev inequality

VA1 ) 2 Co. DS = A1 0 (5)
where . . )
—=—-——and 1<p<d.
p* p d
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The behaviour of the best constant C'(p,d) in (5) as p T d is known (see e.g. [5],
Section 7.7 and also Remark 1 below); more precisely one has

19112 0 = Cl)d— )P If = f £l oy, (6)
Putting together (1), (4) and (6) suggests that (2) holds with
C(S,p, d) = C(d)(d - Sp)p_l/(l - 8)7 (7)

for all s < 1, s close to 1 and sp < d.

This is indeed our main result. For simplicity we work with €2 = the unit cube
Q in RY.

Theorem 1. Assumed > 1,p>1,1/2<s<1 and sp < 1. Then

. p d — sp)P~1
[ et = e S i g

where q is giwven by (3) and C(d) depends only on d.

As can be seen from (8) there are two phenomena that govern the behaviour of
the constant in (8). As s T 1 the constant gets bigger, while as s T d/p the constant
deteriorates. This explains why the we consider several cases in the proof.

As an application of Theorem 1 with p = 1 and f = x.a, the characteristic

function of a measurable set A C ) we easily obtain

Corollary 1. For all0 <e <1/2,

. d(Edy d/(d—14c¢)
s (e f [ =) o

Note that in the special case d = 1, (9) takes the simple form

. . dzdy 1/e
aras (o] 25

for some absolute constant C*. Estimate (10) is sharp as can be easily seen when
A is an interval.

The conclusion of Corollary 1 is related to a result stated in [3] (Remark 4).
There is however an important difference. In [3] the set A was fized (independent
of €) and the statement there provides a bound for |A| |°A| in terms of the limit, as
e — 0, of the RHS in (9). The improved version - which requires a more delicate
argument- is used in Section 7; we apply Corollary 1 (with d = 1) to give a proof
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of a result announced in [2] (Remark E.1). Namely, on 2 = (—1,+1) consider the
function

0 for —1<ax<0,
ve(x) =< 2mx/d for 0<z<d,
27 for o< x<l,

where § = e~/ & > 0 small.

Set u. = e?=. Tt is easy to check (by scaling) that
uel| g2 = ||Jue = 1| g2 < C

as ¢ — 0 and consequently ||uc| ga-o2 < C as e — 0. On the other hand, a
straightforward computation shows that ||¢c|| ga—e/2 ~ e~ /2.

The result announced in [2] asserts that any lifting ¢, of u. blows up in H(1—2)/2
(at least) in the same rate as @.:

Theorem 2. Let 1. :  — R be any measurable function such that u. = e'¥=.
Then
Vel ra—a/2 > 66_1/2,V€ €(0,1/2),

for some absolute constant ¢ > 0.

Remark 1. There are various versions of the Sobolev inequality (5). All these
forms hold with equivalent constants:

Form 1: ||V f|zrq) > A1llf —foHLq(Q) Ve Whe(Q).

Form 2: [[Vf|irq) = A2|f — fofllLaq) for all Q-periodic functions f €
Wiok (RY).

Form 35 |[V/|l1oe) > Asllfll oy VS € C(B).

Form 1 = Form 2. Obvious with A5 = A;.

Form 2 = Form 1. Given any function f € WY?(Q), it can be extended by
reflections to a periodic function on a larger cube @) so that Form 2 implies Form
1 with A; > C A, and C' depends only on d.

Form 1 = Form 3. By scale invariance, Form 1 holds with the same constant A
on the cube Qr of side R. Fix a function f € C§°(R%) and let R > diam (Supp f).
We have

IV fller@ry = Aillf = fo, flla@n)-
As R — oo we obtain Form 3 with A3 = A;.

Form 3 = Form 2. Given a smooth periodic function f on R?, let p be a smooth
cut-off function with p =1 on @ and p = 0 outside 2¢). Then

V(o) rray = Asllof | Laray
3



and thus
Azl fllzaq) < CUV fllzeo) + I fllze(@))

where C' depends only on d. Replacing f by (f — f 0 f) and applying Poincaré’s
inequality (see e.g. [5], Section 7.8) yields

Asllf = ffllza@) < ClIIVFllza)

The reader will check easily that the same considerations hold for the fractional
Sobolev norms such as in (8). The proof of the last implication (Form 3 = Form
2) involves a Poincaré-type inequality. What we use here is the following

Fact: Let 1 <p < o0, 1/2 < s < 1, then

|f(z) = F(y)I” P
(1—5)/62 ) |x_y|d+‘zp > c(df = flie )

The proof of this fact is left to the reader. (It is an adaptation of the argument in
the beginning of Section 5. In (3) of Section 5 one uses an obvious lower bound:

3>zc(§:uﬁwm) > el — 1)

For the convenience of the reader we have divided the proof of Theorem 1 into
several cases. The plan of the paper is the following:

1. Introduction.

2. Proof of Theorem 1 when p =1 and d = 1.
3. Proof of Theorem 1 when p =1 and d > 2.
4. Square function inequalities.

5. Proof of Theorem 1 when 1 < p < 2.

6. Proof of Theorem 1 when p > 2.

7. Proof of Theorem 2.

Appendix: Proof of square function inequality.

2. Proof of Theorem 1 when p=1 and d = 1.

For simplicity, we work with periodic functions of period 27 (for non-periodic
functions see Remark 1 in the Introduction). All integrals, LP norms, etc...., are
understood on the interval (0,27). We must prove that, (with e = 1 — s), for all
e € (0,1/2],

c//” Psf@>w [l ore. 1)



Write the left side as

1
€ /WT_EHf—thMhN
e Y2 [ f = fula. 2)

kZO |h|N2_

For |h| ~ 27F

If = frllt >

k—100 N —1n| . ‘s
||(f_fh)*FNkH1: N =2 ;FN(x): Z Te = Féjer kernel
In|<N
Nk — 12 in inT
S B Il einn — qyeine|
Ny 1

|n|<Ng

—k Nk _ ‘n’ £ inx .

2 Z Tknf(n)e (by the choice of Ny).

[n|<Nyg 1

This last equivalence is justified via a smooth truncation as in the following

Lemma 1. HZ\HKN f(n)(einh — 1)eine
for |h| <

2w Hz|n|<N nf(n)e™

1 1

100N

Proof. Write

Z nf( znﬂc

|n|<N

Z f znh znx

In|<N

(%) =g

1

where 0 < ¢ < 1 is a smooth function with

(1) = 1 for |t| <1
Y0 for |t > 2

We have from assumption

. nh
|20 ) o], ~ ] () s

and the second factor remains uniformly bounded. This may be seen by expanding

1

for |y| < & and using standard multiplier bounds.
5)



We now return to the proof of Theorem 1 (p =1,d =1).
Substitution in (2) gives thus

€ 22_61“

k>0

N. — ~ .
Z ka|n|nf(n)eznx

|n|<Ng 1

Define
10

ko = —.
€
For ko < k < 2k, minorate (using Lemma 1)

> Ni — In] ‘n’nf(n)em”: z H > Neo — Il ‘n’nf(n)e”“‘
|

N, N,
|TL|<Nk k 'ﬂ|<NkO ko

1 1

and therefore

Ny, — o
@z ¥ Menjmer| -
|7L|<Nk0
Nk — | ; inT
S Mt e
|n|<NkO ko Wil
Nig, —In| 2 inT
S N =l g (1)
N,
0<|n|< Ny, o0
Next write also
_r Nk—|n| R inx
(B)ze ) 2 > > —nN, e
rzl o [ERISk< [P Inl<Ny
—_r 2[7“?1} — |7’L| inT
D > e (5)
r>1 rtl,

<2l

Denote for each r by A, = {\.(n)|n € Z} the following multiplier

' 0] ol==1 9lz] ol ]




Thus
Ar(n) = A\ (—n)

H D Ar(n)e™

(This multiplier may be reconstructed from Féjer-kernels Fiy with N = ol 1,2z ol = ]).

Also

< C.
1

2[1":_1} B |Tl| inT
> e 2
|n\<2[rs ]
S ) afmen (6
r=1 r+1 1

and

G)z) 27

r>1

> Ar(n)(sign n)ln| f(n)e™™
(£ (T
27 I n|<2! e

1

We claim that for ¢ > 2

| 5 e

N1<"I’L|<N2

_1
<CN;
q

(8)

S Inl(sign n)g(n)e™

N1 <|n|<Na 1

with the constant C' independent of q.
Applying (8) with

1 .
7= g(n) = Ar(n)f(n), Ny =201 Ny =2l

we obtain the minoration

Mz

r>1

S amfm)en

r41
2l =l cjn| <2l =]

By construction
Z)\T(n) =1 for |n| > 2[¢].

r>1

Using also minoration (4) together with the triangle-inequality yields

n#0

LHS in (1) > (3) + (8) >

q

7



which proves the inequality.

Proof of (8).

Estimate
H Y e sH S ptsigmmens| | S (nlsign n)ame
Ni1<|n|<Na2 q Ni1<|n|<N2 4" Ny <|n|<Ngy

where the first factor equals

AN

H Z lsin’rw:

Ni<n<Ns

(assume N7, Ny powers of 2)

L.
E — sin nx
n

n~2k

>

log N1 <k<log N2

q

S > min (2" |z[, 27 F|z| 1)
log N1 <k<log N2 q
1 y
Sll—=—1| <N, 9. 10
|7 1o

This proves (8) and completes the proof of Theorem 1 when p =1 and d = 1.

3. Proof of Theorem 1 when p=1 and d > 2.
We have to prove that

[ dwdy = T s - 111, )

where ¢ = d/(d — s). We assume d = 2. The case d > 2 is similar. Write

/ %dmd ~ 3 k) / |f(+h) = f(a = )llsdh

O<k‘ h|N27k710
g f )(sinn.h)e™®

> 37 k) /
nezd

|hl|N2fk710
|h2|N27k710

dhydhs
L@

Let ¢ be a smooth function on R s.t. 0 < ¢ <1 and

(t)—{l for |t| <1
LA ) for |t| > 2
8

inx
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As for d = 1, consider (radial) multipliers Ao and A,,r >1

Mo(n) = p(27<|nl)

Ar(n) = 9(27F [nl) — (27 ¥ n) (3)
where e =1 — s and ¢ € (0,1/2).
Hence
D Aln) =
IAr | arzr,ony < C (multiplier norm) (4)
supp Ao C B(O,Z%’Ll) (5)
supp A C B(0,2°5 T\ B(0,2%). (6)
Write

@)= > +> > - (7)

1 2 1 2
t<k<? 2l rHcpcrt?

For 2 > k> 1 and |h| < 27%710 (4), (5) permit us to write
‘ > ‘ e sinn.h
1

Z)‘O f )znm

)e'"™* sinn.h

1

1

and thus

2]€(d+1—6) / ‘ Z f(n)(sm n.h)ein.x

|hil;|hg|~27 k=10

ok(3-)g— k(HZ)‘O o
— ke (‘ Or, (Z AO(”)f(n)ein.m> |
| xom) e

dhidhy >
1

T ||am<--->||) -

|

Wil
Similarly, for
r+1 r—+2
<k<
we have
2k(d+1—6) / H Z f(n) (Sin nh)ein.x > ein.:r: .
1 Wi

[hil,|ho|~27k=10

(9)



Since in the summation (7), each of the terms (8), (9) appear at least 1 times, we

have
2) Z H Z )\O(n)f(n)eznx + Z 9—T ein.m
Wil , Wil
Write
2—s l— st s
2 2
and by Holder’s inequality
1—s
H Z )\T(n)f(n)em.a: 2 < H Z )\r(n)f zn x m.x
-2 1
2
By the Sobolev embedding theorem (d = 2)
A ezn X < C )\ ZTL xX .
| = |Zrwien]

We estimate the last factor in (11).
Recalling (6),

rt

25+ S max(|ny|, [na) > 251
if A\p(n) #0,r > 1.

Hence, with ¢ as above

Ar(n) = Ar(0)(1 = 9)(277F 1) 4+ Ae(n).p(27 % n).(1 — ©)(27°F ng)

1 — m.x
# [ Sammfmens| |2 e T im0 - e T aene| <
1 r—1 . 1 r—1 .
—(1 — 27 = m1x1 — (1 = 27 = 1M2T2
(| aa-ae = R IRt Pt

H > An(n) f(n)e™®

W1,1.

Since (1 — ¢)(27 = ny) = 0 for |n1| < 2", one easily checks that
1 r— ;

> (- p)2 T e < Y 27t <o
1

1 11 e>r= 1

10

1 )
Lzz

(10)

(12)

(13)



Similarly

1 - . o

S (- )@ Fng)eme| <27

ng 2 Liz
Thus (13) implies that

| S amimens| < (14)
Wit
Substitution of (12), (14) in (11) gives
> M) fmenr| 27T OIS A () fm)e
22Ts w1
Wil

By (12), (15)

2

r>1

H Z )\0 ezn T Z )\ zn.m

ZHf—ffH%

by (3).
This proves (1) and completes the proof of Theorem 1 when p = 1.

4. Square function inequalities.

We present here some known inequalities used in the proof of Theorem 1 when
p>1. Let {A;f}j=12, .. bea Littlewood-Paley decomposition with A;f obtained
from a Fourier multiplier of the form ¢(277|n|) — (277" |n|) with 0 < ¢ < 1 a
smooth function satisfying ¢(t) =1 for || < 1 and ¢(t) = 0 for || > 2.

Recall the square-function inequality for 1 < ¢ < oo

| (Zim) | <1< cw](Simre)

We will also consider square-functions wrt a martingale filtration. Denote thus
{E;} the expectation operators wrt a dyadic partition of [0, 1]¢ and

Ajf=(E; —E;_1)f (2)

(1)

q

the martingale differences.

We will use the square-function inequality

for oo > ¢ > 2 (3)

Il < ova (3 rﬁjfﬁ)m

q

which is precise in terms of the behaviour of the constant for ¢ — oo (see [4] and

also the Appendix for a proof of (3)).
11



Remark 2. One should expect (3) also to hold if ﬁj is replaced by A; above but

we will not need this fact.

We do use later on the following inequality.

Let
1 1

1
p<qands:d(———>2—.
P q 2

Then, for g > 2
1/2
1l < cﬁ[Z@“HAkap)ﬂ | (1)

k

Proof of (4)
It follows from (3) that since ¢ > 2

N 1/2
1l < Cﬂ(ZHAjfuz) . (5)
7
Write
Nf = NAF+Y AjAf
k<j k>3
13, £ll0 £ 3259180l + S 27 1A ]

k<j k>j

< S BI@ AL, + 3 20 P @R A £l 6)
k<j k>j

Substitution of (6) in (5) gives

191 = Cyva{ (0 - 0PI ) )1/2 + Z(kz—j>24<j—k>s<2’“HAkfup)?)1/2}

k<j k>j

1/2
< wa(Z(z’“uAka) . )

k

5. Proof of Theorem 1 when 1 < p < 2.

Write
/ |f(z) — d+s Y gk / If (@ +h) — f(z — h)||2dh
|z —y|*tP k>0 |h|~27 k10
p
> ZQk(ders)/ Zf smnh m-zll dh,
k>0 [hl~27 k710 P (1)

12



Following the argument in Section 3 (formula (10)), we get again for

1 1
s:d(———),l—s:s
p q

202 Y (2] Eamfwen

T n

)p
wip

where the multipliers A\, are defined as before.
Case d =1
Define R .
fr=3" M) f(n)eine.
We will make 2 estimates.

First write
N . 1 .
= A, in.x - in.
f (}jn (n)f(n)e )*(T DR )
2§<|n|<2 e

implying

[frllg < N[ frllwrs

and by estimate (10) in Section 2,

r

_r(i 1 _T(l—g —r
1frlle S 2725 frllwrw = 2759 follwrw = 277 (| frllwr o

Estimate then

1 lg < Do Mfelle S C Y@ fellwin)-

Next apply inequality (4) of Section 4. Observe that

Apfl <D Akt

where, by construction, there are, for fixed k, at most 2 nonvanishing terms.

Thus
1AL S AL

Also, for fixed r

S —K¢g 1 -Tr
SN ARSN)? = 34T A s S 4Tl
k r
13



Substituting (7), (8) in (4) of Section 4 gives

171l < Cﬂ@;(zkﬂmkﬂnp)ﬂ " e DICRIATNY "

r

which is the second estimate.

Interpolation between (6) and (9) implies thus

171, < c(@)“) S e ] " (10)

r

Recalling (3) and also (2) (which implies that 1 —e¢ =
it follows that

1_1_-1 _1
5~ g <y hencee>1— )

()2 G)p_lufng (1)

which gives the required inequality.
Case d > 1
We will distinguish the further 2 cases

Case A: 0< % — % is not near 0
Case B: % — é is near 0

Observe that case B may only happen for d = 2 and p near 2 (we assumed
1<p<2).

Case A.
Define ¢; by

~i-4

so that ¢ < ¢; and ¢; is bounded from above by assumption.

Thus we have the Sobolev inequality

19lla: < Cligliw.e- (13)

Next, we make the obvious adjustment of the argument in Section 3, (11)-(15).

Thus Hoélder’s inequality gives

Ifellg < LENE0 N £112 (14)

with 1 1-6 9
— = — 42 hence # =1—s=c by (2), (12).
q T p 14




Hence, by (13)
1£:llg < Cllfr i lLF 15

To estimate || f,||p, proceed as in (13) of Section 3. Thus

50 5| 3 0= o e

S

[ frllw

L3(T)

||W1,p-

Substitution of (16) in (15) gives

[frllg < 27" [ frllwre.

Substitution of (17) in (3) gives (since ¢ is bounded by case A hypothesis)

1/2p

ESIAE (Z \Ajfr|2)
q

1/2)p

H( A, fr|2)
q
1/2p
> H(Z|A;~f|2) ~ e
7 q

(the second inequality requires distinction of the cases ¢ > 2 and p < ¢ < 2).

(18) gives the required inequality.
Case B.
Thus d = 2 and p is near 2.
Going back to (3) and applying (1), (4) of Section 4, we obtain

e Z T felwre)?

2 (24—7"2_ IO
r j

= (S eaf?)

i
_P
Za 2fIg

where

which again gives the required inequality.
15
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6. Proof of Theorem 1 when p > 2.

¢From (3) in Section 5, we get now the minoration

ez Z(2SjIIAjf||p)p (1)

which we use to majorize || f]|,.

We have already inequality (4) in Section 5, thus

1/2
1112 < ova( Seaie) @

J

Our aim is to prove that

S =

1flls < O (Z(25jHAijp)p> 3)

J

which will give the required inequality together with (1).

Using interpolation for 2 < p < g, it clearly suffices to establish (3) for large

values of ¢. To prove (3), we assume 2 < p < 4 (other cases may be treated
by adaption of the argument presented below). Assume further (taking previous
comment into account)

q = 2p. (4)
Again by interpolation, (3) will follow from (2) and the inequality

\ . 1/4
1110 < cat (S easit) )

J

We use the notation from Section 4 and start from the martingale square function
inequality (3) in Section 4; thus

Il <eval (X |ﬁjf|2)1/2 (6)

q

Write B B B
A<D 1A ARf =D 1A A f]
k

meZ
(putting A, =0 for k£ < 0).
Writing

<2

q meZ
16
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<Z !AjAj+mf\2>

q



we estimate each summand.

Fix m. Write
N 1/24 _ 2
H <Z !AjAj+mf\2> = H (Z |AjAj+mf|2>
j q 7 %
<2 3 1AL A i P 1A A gy fPls (8)
J1<j2
and

115 A e 1B Ay f s = [ [ 180 8im 18 B BB 21|
N q 2
< ||Aj1Aj1+mf||c21 ” Ej1[|Aj2Aj2+mf| 2]) q Hq
R 1_2 ~ ~ 1
< 400G Ay, Ay I (| 18 e FP) 7

< 410G D 4G DAy A 17 185, A m f 1, o)
9

Assume m <0

Estimate

HAylAjl—I—meq ZmHAJH-meq < 2m2d(h+m)(___)HAJH-mep (10)

12 Mgt fllp S 2™ 1Az tm fllp- (11)
Substitution of (10), (11) in (9) gives

4= d(5—%))m+m A~ 4 (52— Jl)[Qd(—_—)(Jl'f'm)”A 1+me ] [Qd(——— (Jz+m)HA 2+mf|’p]2
(12)
where . |
d(— - _) s
b q
Summing (12) for j; < jo and applying Cauchy-Schwartz implies for m < 0
® <am (i) [ S
>0 i
4| @A) (13

J

Assume next m > 0.
17



Estimate B L
1A, Ay mfllg S 290G Ay L flp

Y

and

1

io—71 1_2 i1 1_1
(9) < 427G 16D A L 12 A fI7
—ms g—(jo—j1)< s(j1+m s(jo2+m
<167 AT G 20U A F2[250 A L 2 (14)

Summing over j; < jo implies that for m > 0

®) < 16—m8q[2<28j|mjfup>4]. (15)

j
Summing (13), (15) in m implies that

URTOIELELED DRI SCHINY a

m<0 m>0 J

1/4
< q1/4[2<28f|mjfup>4] | (16)

J

To bound || f||4, apply (6) which introduces an additional q'/2-factor. This estab-
lishes (5) and completes the argument and the proof of Theorem 1.

7. Proof of Theorem 2.

We will make use of the following two lemmas

Lemma 2. Let I C R be an interval and let ¢ : I — Z be any measurable function.
Then, there is some k € Z such that

for all e € (0,1/2]. where C* is the absolute constant in Corollary 1 (inequality
(10) in Section 1).

Proof of Lemma 2. After scaling and shifting we may assume that I = (—1,+1).
For each k € Z, set

A ={z € I;y(x) < k}.
Note that Aj is nondecreasing, klim |Ak| = 0 and khI—ll—l |Ak| = 2. Thus, there
exists some k € Z such that

|Ak’ <1 and |Ak+1‘ > 1. (1)
18



Applying Corollary 1 with A = Ay and with A = Ay we find (using (1))

1/e
Ap] < |An] [44] < (o*e / / ﬂ) @)
AJea, |T—yl?~e

. dedy \"*
|“Ay1| < [Apya] [Arg] < (C 5/ / yz—s)
Apr S [T =Y

On the other hand

and

(3)

|(x) —P(y)| > 1 for ae. x € Ay, y € “Ag

and
|(x) —(y)| > 1 for ae. x € Apy1,y € Agyq.

Therefore

{z € I;4(x) # kY| = |Ax| + |“App]
. 0(x) — b(y)[? )“E
< 2(0 8/1/1 PEERE dxdy )

Lemma 3. Ifa>0,a <b<x,A C (a,b) is measurable, then

b—|A]
/ dy > / dy
(a,b)\A (LE - y)a a (33 - y)a

and similarly, if x < a < b, then

/ dy /" dy
@ona (U —=2) 7 Joqpa) (y —2)>

The proof of Lemma 3 is elementary and left to the reader.

Proof of Theorem 2. Let ¥, : = (—1,41) — R be any measurable function
such that u. = e'¥=. We have to prove that for all € < 1/2,

”tlp5‘|H(1*E)/2(Q) 2 66_1/2 (4)

for some absolute constant ¢ to be determined.

We argue by contradiction and assume that for some ¢ < 1/2

||¢€”H(1—6)/2(Q) < 77671/2. (5)
19



We will reach a contradiction if 7 is less than some absolute constant. Set
1
Y= %(1/}6‘ - 906)

so that ¢ : Q — Z; recall that u. = e*?= and the function ¢, is defined by

0 for —1<x<0,
ve(x) =1 2mx/d  for 0 <z <6,
27 ford <x <1,

where § = e~ /¢,

A straightforward computation (using the fact that v takes its values into Z)
shows that

[6(0) = V)| < 0e(e) — b)) for ae. oy € (-1 7)) )
and 5
[6(a) = 90| < [0:(0) ~ ve0)| for e .y € (5.1)). )

Applying Lemma 2 with I = (-1, 23—5) and I = (%, 1), together with (5), (7) and (8)
yields the existence of ¢, m € Z such that

{l‘ < <—17 ?) () # EH < 2(Crn?)t/e

and

{x € (x € g,l) s(x) # m}‘ < 2CHpP)Me.
We choose 7 in such a way that
4CH*P)ME < §/3, for e < 1/2,
for example
n? < 1/4eC*. (9)

It follows that £ = m. Without loss of generality (after adding a constant to 1))
we may assume that
{=m=0. (10)

Therefore
Ve(z) = pe(z) for z € [(—1,0)\A] U [(4,1)\B] (11)

where

A={z € (-1,0);9(x) # 0}
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and

B ={z € (6,1);¢(z) # 0}
with

|A| < §/6,|B| < /6. (12)
;From (11) and the definition of ¢. we have

|9he () — e (y rwg (v)?
// ’x_ ERE da:dy>6 dw \w— |2 —d
(—1,0)\A (5,)\B |CE —y|*e
472d
cof af
(—1,00\A GanB [T —y|>F

Applying Lemma 3 and (5) we find

|Al Ar2
Ui >6//WJE|3j |2EE dxdy>z—:/ dx/ W(sza
- 0

+1B| 1T —

5/6 2
>5/ dm/ Am”dy =4n%(1—e 1) 4+ 0(1)
5

+6/6 |z —y[>—=

as ¢ — 0. We obtain a contradiction for an appropriate choice of 7.

APPENDIX. Proof of square function inequality
Let {F,}n=0.12,... be refining finite partitions such that
#‘/Tn = K"
Q| = K™" if Q is an F,,-atom
(If @ = [0,1]%, K = 29).
Denote E,, the F,,-expectation

Af=E,f—E,_1f (we used the notation &nf in Section 4)
1/2
= (Z |Anf|2) (the square function)
lf| < f*=supl|E,f| (the maximal function)

Proposition 1.
mes [| f| > Al[Sfloc] < e A>1) (1)

where ¢ = ¢(K) > 0 is a constant.
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Proposition 2. (good-\ inequality)

<
2

mes [[* > 2\, Sf <e\supE, 1[|Anf]] <el] <e T mes[f* > ) (0<e<])
(2)

Proposition 3.

1% le < CVallSfllq  forg=2 (3)

We follow essentially [4].
Proof of Proposition 1.

One verifies that there is a constant A = A(K) such that if ¢ is F,,-measurable
and E,_1¢ =0, then
E,_1[e? ¢ < 1. (4)

Hence )
Ep_[e? /= AG ] <1 (5)

and, denoting S, f = (ngn ’Amf’2)1/27
/eEan(Snf)2 _ /eEn_lfA(sn_lf)QEn_l[eAnfA(Anf)z]
< / Enrf — ASurf)? (by (5))
< 1.

Thus
/ef—A(Sf)2 <1. (6)

Assume ||Sf||s < 1. Applying (6) to tf (¢t > 0 a parameter), we get
/ otf < eAt2
mes [f > )\ < At 12
and for appropriate choice of ¢
mes [f > )\ < e~ i1,

This proves (1).
Proof of Proposition 2.

This is a standard stopping time argument.
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Consider a collection of maximal atoms {Q,} C |JFy, s.t. if Q, is an F,-atom,
then |[E,, f| > A on Q,. Thus Q, NQp = ¢ for a # 3. Fix a. From the maximality

IE,—1f] < Aon Q. (7)

Therefore
[f* >2XN,5f <elsupE,,_1[|Anfl] < %e)\] NQa C
(F—Enf)* > (1— )\ Sf < e, supEon_1[|Am f]] < %A] N Qu = (8)

For m > n, denote Y, the indicator function of the set

Qaﬂl( mzl |Aef|2)1/2 <5A]m[Em_1[|Amf|] < %A]m M [Eef—Euf] < (1-)A] = (9).

£=n+1 n<é<m
Thus
Xm = Emfl Xm
and
g = Z XmAm f
m>n

is an {F,,|m > n}-martingale on Q.

.From the definition of x,,, we have clearly

1/2
S(g) = ( 3 Xm!Amf!2) <Aterger (10)

m>n

and
lg| > (1 — €)X on the set (8).

¢ From Proposition 1 and (10)
mes [z eQa| [g] > (1 —¢)A] < e |Qq (11)

hence
mes (8) S e =% |Qal. (12)

Summing (12) over a implies
1 c c
mes [f* > 2), Sf < el supEpm 1 [|An f[) < zeA] <e” = D Qal < e Fmes [f* > )]

which is (2).
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Proof of Proposition 3.

1N = q/Aq‘lmes [F* > AldA

= 2qq/>\q_1mes [f* > 2M]dA

3

< 2qq/)\q_1{mes [Sf > €N +mes [supEna[|Anfl] >

2\ ¢ I
< (2) tssly-+ ol sup Bl sl + 2 11

Take £ ~ /g so that the last term in (13) is at most §||f*||9. Thus

17 lle < CValllSFllq + [Fsup En—a[|An f]ll)- (14)

Also

1/q
0P Bacs (1201} < (3 WEn-alisa )

1/q
< (ZHAan?,)
< 1157l (15)

and (3) follows from (14), (15).
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