LIMITING EMBEDDING THEOREMS FOR $W^{s,p}$ WHEN $s \uparrow 1$ AND APPLICATIONS

Jean Bourgain, Haim Brezis and Petru Mironescu

Dedicated to the memory of T. Wolff

1. Introduction.

This is a follow-up of our paper [3] where we establish that

$$\lim_{s \uparrow 1} (1 - s) \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^{d + sp}} dx dy \sim \|\nabla f\|_{L^p(\Omega)}, \tag{1}$$

for any $p \in [1, \infty)$, where Ω is a smooth bounded domain in \mathbb{R}^d , $d \ge 1$.

On the other hand, if 0 < s < 1, p > 1 and sp < d, the Sobolev inequality for fractional Sobolev spaces (see e.g. [1], Theorem 7.57 or [6], Section 3.3) asserts that

$$||f||_{W^{s,p}(\Omega)}^p \ge C(s,p,d)||f - \int f||_{L^q(\Omega)}$$
 (2)

where

$$\frac{1}{q} = \frac{1}{p} - \frac{s}{d}.\tag{3}$$

Here we use the standard semi-norm on $W^{s,p}$

$$||f||_{W^{s,p}(\Omega)}^p = \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^{d+sp}} dx dy.$$
 (4)

When s = 1 the analog of (2) is the classical Sobolev inequality

$$\|\nabla f\|_{L^{p}(\Omega)}^{p} \ge C(p,d)\|f - \int f\|_{L^{p^{*}}(\Omega)}^{p}$$
 (5)

where

$$\frac{1}{p^*} = \frac{1}{p} - \frac{1}{d}$$
 and $1 \le p < d$.

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -TEX

The behaviour of the best constant C(p,d) in (5) as $p \uparrow d$ is known (see e.g. [5], Section 7.7 and also Remark 1 below); more precisely one has

$$\|\nabla f\|_{L^{p}(\Omega)}^{p} \ge C(d)(d-p)^{p-1}\|f-\int f\|_{L^{p^{*}}(\Omega)}.$$
 (6)

Putting together (1), (4) and (6) suggests that (2) holds with

$$C(s, p, d) = C(d)(d - sp)^{p-1}/(1 - s),$$
(7)

for all s < 1, s close to 1 and sp < d.

This is indeed our main result. For simplicity we work with Ω = the unit cube Q in \mathbb{R}^d .

Theorem 1. Assume $d \ge 1, p \ge 1, 1/2 \le s < 1$ and sp < 1. Then

$$\int_{Q} \int_{Q} \frac{|f(x) - f(y)|^{p}}{|x - y|^{d + sp}} dx dy \ge C(d) \frac{(d - sp)^{p - 1}}{1 - s} ||f - ff||_{L^{q}(Q)}^{p}$$
(8)

where q is given by (3) and C(d) depends only on d.

As can be seen from (8) there are two phenomena that govern the behaviour of the constant in (8). As $s \uparrow 1$ the constant gets bigger, while as $s \uparrow d/p$ the constant deteriorates. This explains why the we consider several cases in the proof.

As an application of Theorem 1 with p=1 and $f=\chi_A$, the characteristic function of a measurable set $A\subset Q$ we easily obtain

Corollary 1. For all $0 < \varepsilon \le 1/2$,

$$|A||^{c}A| \le \left(C(d)\varepsilon \int_{A} \int_{c_{A}} \frac{dxdy}{|x-y|^{d+1-\varepsilon}}\right)^{d/(d-1+\varepsilon)}.$$
 (9)

Note that in the special case d = 1, (9) takes the simple form

$$|A| |^{c}A| \le \left(C^* \varepsilon \int_{A} \int_{c_A} \frac{dxdy}{|x - y|^{2 - \varepsilon}} \right)^{1/\varepsilon} \tag{10}$$

for some absolute constant C^* . Estimate (10) is sharp as can be easily seen when A is an interval.

The conclusion of Corollary 1 is related to a result stated in [3] (Remark 4). There is however an important difference. In [3] the set A was fixed (independent of ε) and the statement there provides a bound for |A| $|^cA|$ in terms of the limit, as $\varepsilon \to 0$, of the RHS in (9). The improved version - which requires a more delicate argument- is used in Section 7; we apply Corollary 1 (with d=1) to give a proof

of a result announced in [2] (Remark E.1). Namely, on $\Omega = (-1, +1)$ consider the function

$$\varphi_{\varepsilon}(x) = \begin{cases} 0 & \text{for} & -1 < x < 0, \\ 2\pi x/\delta & \text{for} & 0 < x < \delta, \\ 2\pi & \text{for} & \delta < x < 1, \end{cases}$$

where $\delta = e^{-1/\varepsilon}, \varepsilon > 0$ small.

Set $u_{\varepsilon} = e^{i\varphi_{\varepsilon}}$. It is easy to check (by scaling) that

$$||u_{\varepsilon}||_{H^{1/2}} = ||u_{\varepsilon} - 1||_{H^{1/2}} \le C$$

as $\varepsilon \to 0$ and consequently $||u_{\varepsilon}||_{H^{(1-\varepsilon)/2}} \le C$ as $\varepsilon \to 0$. On the other hand, a straightforward computation shows that $||\varphi_{\varepsilon}||_{H^{(1-\varepsilon)/2}} \sim \varepsilon^{-1/2}$.

The result announced in [2] asserts that any lifting φ_{ε} of u_{ε} blows up in $H^{(1-\varepsilon)/2}$ (at least) in the same rate as φ_{ε} :

Theorem 2. Let $\psi_{\varepsilon}: \Omega \to \mathbb{R}$ be any measurable function such that $u_{\varepsilon} = e^{i\psi_{\varepsilon}}$. Then

$$\|\psi_{\varepsilon}\|_{H^{(1-\varepsilon)/2}} \ge c\varepsilon^{-1/2}, \forall \varepsilon \in (0, 1/2),$$

for some absolute constant c > 0.

Remark 1. There are various versions of the Sobolev inequality (5). All these forms hold with equivalent constants:

Form 1: $\|\nabla f\|_{L^p(Q)} \ge A_1 \|f - \int_Q f\|_{L^q(Q)} \quad \forall f \in W^{1,p}(Q).$

Form 2: $\|\nabla f\|_{L^p(Q)} \ge A_2 \|f - \int_Q f\|_{L^q(Q)}$ for all Q-periodic functions $f \in W^{1,p}_{loc}(\mathbb{R}^d)$.

Form 3: $\|\nabla f\|_{L^p(\mathbb{R}^d)} \ge A_3 \|f\|_{L^q(\mathbb{R}^d)} \quad \forall f \in C_0^\infty(\mathbb{R}^d).$

Form $1 \Rightarrow$ Form 2. Obvious with $A_2 = A_1$.

Form $2 \Rightarrow$ Form 1. Given any function $f \in W^{1,p}(Q)$, it can be extended by reflections to a periodic function on a larger cube \widetilde{Q} so that Form 2 implies Form 1 with $A_1 \geq CA_2$, and C depends only on d.

Form $1 \Rightarrow$ Form 3. By scale invariance, Form 1 holds with the same constant A_1 on the cube Q_R of side R. Fix a function $f \in C_0^{\infty}(\mathbb{R}^d)$ and let R > diam (Supp f). We have

$$\|\nabla f\|_{L^p(Q_R)} \ge A_1 \|f - \int_{Q_R} f\|_{L^q(Q_R)}.$$

As $R \to \infty$ we obtain Form 3 with $A_3 = A_1$.

Form 3 \Rightarrow Form 2. Given a smooth periodic function f on \mathbb{R}^d , let ρ be a smooth cut-off function with $\rho = 1$ on Q and $\rho = 0$ outside 2Q. Then

$$\|\nabla(\rho f)\|_{L^p(\mathbb{R}^d)} \ge A_3 \|\rho f\|_{L^q(\mathbb{R}^d)}$$

and thus

$$A_3 || f ||_{L^q(Q)} \le C(||\nabla f||_{L^p(Q)} + || f ||_{L^p(Q)})$$

where C depends only on d. Replacing f by $(f - \int_Q f)$ and applying Poincaré's inequality (see e.g. [5], Section 7.8) yields

$$A_3 || f - \int f ||_{L^q(Q)} \le C ||\nabla f ||_{L^q(Q)}.$$

The reader will check easily that the same considerations hold for the fractional Sobolev norms such as in (8). The proof of the last implication (Form $3 \Rightarrow$ Form 2) involves a Poincaré-type inequality. What we use here is the following

Fact: Let $1 \le p < \infty$, $1/2 \le s < 1$, then

$$(1-s) \int_Q \int_Q \frac{|f(x) - f(y)|^p}{|x - y|^{d+sp}} \ge c(d) ||f - \int_Q f||_{L^p(Q)}^p.$$

The proof of this fact is left to the reader. (It is an adaptation of the argument in the beginning of Section 5. In (3) of Section 5 one uses an obvious lower bound:

$$(3) \ge c \left(\sum_{r} \|f_r\|_{L^p} \right)^p \ge c \|f - ff\|_{L^p}^p.)$$

For the convenience of the reader we have divided the proof of Theorem 1 into several cases. The plan of the paper is the following:

- 1. Introduction.
- 2. Proof of Theorem 1 when p = 1 and d = 1.
- 3. Proof of Theorem 1 when p = 1 and $d \ge 2$.
- 4. Square function inequalities.
- 5. Proof of Theorem 1 when 1 .
- 6. Proof of Theorem 1 when $p \geq 2$.
- 7. Proof of Theorem 2.

Appendix: Proof of square function inequality.

2. Proof of Theorem 1 when p = 1 and d = 1.

For simplicity, we work with periodic functions of period 2π (for non-periodic functions see Remark 1 in the Introduction). All integrals, L^p norms, etc...., are understood on the interval $(0, 2\pi)$. We must prove that, (with $\varepsilon = 1 - s$), for all $\varepsilon \in (0, 1/2]$,

$$C\varepsilon \iint \frac{|f(x) - f(y)|}{|x - y|^{2 - \varepsilon}} dx dy \ge ||f - \int f||_{L^{1/\varepsilon}}.$$
 (1)

Write the left side as

$$\varepsilon \int \frac{1}{|h|^{2-\varepsilon}} ||f - f_h||_1 dh \sim$$

$$\varepsilon \sum_{k \ge 0} 2^{k(2-\varepsilon)} \int_{|h| \sim 2^{-k}} ||f - f_h||_1 dh. \tag{2}$$

For $|h| \sim 2^{-k}$

$$\begin{split} &\|f-f_h\|_1 \geq \\ &\|(f-f_h)*F_{N_k}\|_1 = \left(N_k = 2^{k-100}, F_N(x) = \sum_{|n| \leq N} \frac{N-|n|}{N} e^{inx} = \text{ F\'ejer kernel}\right) \\ &\left\|\sum_{|n| < N_k} \frac{N_k - |n|}{N_k} \hat{f}(n) (e^{inh} - 1) e^{inx}\right\|_1 \sim \\ &2^{-k} \left\|\sum_{|n| \leq N} \frac{N_k - |n|}{N_k} n \hat{f}(n) e^{inx}\right\|_1 \quad \text{(by the choice of } N_k). \end{split}$$

This last equivalence is justified via a smooth truncation as in the following

Lemma 1.
$$\left\| \sum_{|n| < N} \hat{f}(n) (e^{inh} - 1) e^{inx} \right\|_1 \gtrsim \frac{1}{N} \left\| \sum_{|n| < N} n \hat{f}(n) e^{inx} \right\|_1$$
 for $|h| < \frac{1}{100N}$.

Proof. Write

$$\left\| \sum_{|n| < N} n\hat{f}(n)e^{inx} \right\|_1 \le \left\| \sum_{|n| < N} \hat{f}(n)(e^{inh} - 1)e^{inx} \right\|_1 \cdot \left\| \sum \varphi\left(\frac{n}{N}\right) \frac{n}{e^{inh} - 1}e^{inx} \right\|_1$$

where $0 \le \varphi \le 1$ is a smooth function with

$$\varphi(t) = \begin{cases} 1 & \text{for } |t| \le 1\\ 0 & \text{for } |t| > 2 \end{cases}$$

We have from assumption

$$\left\| \sum \varphi\left(\frac{n}{N}\right) \frac{n}{e^{inh} - 1} e^{inx} \right\|_{1} \sim N \left\| \sum \varphi\left(\frac{n}{N}\right) \frac{nh}{e^{inh} - 1} e^{inx} \right\|_{1}$$

and the second factor remains uniformly bounded. This may be seen by expanding

$$\frac{y}{e^{iy}-1} \sim \frac{1}{i} + 0(y)$$

for $|y| < \frac{1}{50}$ and using standard multiplier bounds.

We now return to the proof of Theorem 1 (p = 1, d = 1).

Substitution in (2) gives thus

$$\varepsilon \sum_{k>0} 2^{-\varepsilon k} \left\| \sum_{|n| < N_k} \frac{N_k - |n|}{N_k} n \hat{f}(n) e^{inx} \right\|_1.$$
 (3)

Define

$$k_0 = \frac{10}{\varepsilon}.$$

For $k_0 < k < 2k_0$, minorate (using Lemma 1)

$$\left\| \sum_{|n| < N_k} \frac{N_k - |n|}{N_k} n \hat{f}(n) e^{inx} \right\|_1 \gtrsim \left\| \sum_{|n| < N_{k_0}} \frac{N_{k_0} - |n|}{N_{k_0}} n \hat{f}(n) e^{inx} \right\|_1$$

and therefore

$$(3) \gtrsim \left\| \sum_{|n| < N_{k_0}} \frac{N_{k_0} - |n|}{N_{k_0}} n \hat{f}(n) e^{inx} \right\|_{1} = \left\| \sum_{|n| < N_{k_0}} \frac{N_{k_0} - |n|}{N_{k_0}} \hat{f}(n) e^{inx} \right\|_{W^{1,1}} \geq \left\| \sum_{0 < |n| < N_{k_0}} \frac{N_{k_0} - |n|}{N_{k_0}} \hat{f}(n) e^{inx} \right\|_{\infty}.$$

$$(4)$$

Next write also

$$(3) \gtrsim \varepsilon \sum_{r \geq 1} 2^{-r} \sum_{\left[\frac{r+2}{\varepsilon}\right] \leq k < \left[\frac{r+3}{\varepsilon}\right]} \left\| \sum_{|n| < N_k} \frac{N_k - |n|}{N_k} n \hat{f}(n) e^{inx} \right\|_1$$

$$\gtrsim \sum_{r \geq 1} 2^{-r} \left\| \sum_{|n| < 2^{\left[\frac{r+1}{\varepsilon}\right]}} \frac{2^{\left[\frac{r+1}{\varepsilon}\right]} - |n|}{2^{\left[\frac{r+1}{\varepsilon}\right]}} e^{inx} \right\|_1.$$

$$(5)$$

Denote for each r by $\lambda_r = \{\lambda_r(n) | n \in \mathbb{Z}\}$ the following multiplier

Thus

$$\lambda_r(n) = \lambda_r(-n)$$

$$\left\| \sum \lambda_r(n) e^{inx} \right\|_1 < C.$$

(This multiplier may be reconstructed from Féjer-kernels F_N with $N = 2^{\left[\frac{r+1}{\varepsilon}\right]}, 2^{\left[\frac{r}{\varepsilon}\right]}, 2^{\left[\frac{r-1}{\varepsilon}\right]}$). Also

$$\left\| \sum_{|n| < 2^{\left[\frac{r+1}{\varepsilon}\right]}} \frac{2^{\left[\frac{r+1}{\varepsilon}\right]} - |n|}{2^{\left[\frac{r+1}{\varepsilon}\right]}} n \hat{f}(n) e^{inx} \right\|_{1} \gtrsim \left\| \sum_{2^{\left[\frac{r-1}{\varepsilon}\right]} < |n| < 2^{\left[\frac{r+1}{\varepsilon}\right]}} \lambda_{r}(n) n \hat{f}(n) e^{inx} \right\|_{1}$$

$$(6)$$

and

$$(5) \gtrsim \sum_{r \geq 1} 2^{-r} \left\| \sum_{2^{\left\lceil \frac{r-1}{\varepsilon} \right\rceil} < |n| < 2^{\left\lceil \frac{r+1}{\varepsilon} \right\rceil}} \lambda_r(n) (\operatorname{sign} n) |n| |\hat{f}(n) e^{inx} \right\|_1.$$
 (7)

We claim that for q > 2

$$\left\| \sum_{N_1 < |n| < N_2} \hat{g}(n)e^{inx} \right\|_q \le CN_1^{-\frac{1}{q}} \left\| \sum_{N_1 < |n| < N_2} |n| (\text{sign } n)\hat{g}(n)e^{inx} \right\|_1$$
(8)

with the constant C independent of q.

Applying (8) with

$$q = \frac{1}{\varepsilon}, \quad \hat{g}(n) = \lambda_r(n)\hat{f}(n), \quad N_1 = 2^{\left[\frac{r-1}{\varepsilon}\right]}, \ N_2 = 2^{\left[\frac{r+1}{\varepsilon}\right]}$$

we obtain the minoration

$$(7) \gtrsim \sum_{r \ge 1} \left\| \sum_{\substack{2^{\left[\frac{r-1}{\varepsilon}\right]} < |n| < 2^{\left[\frac{r+1}{\varepsilon}\right]}}} \lambda_r(n) \hat{f}(n) e^{inx} \right\|_q. \tag{9}$$

By construction

$$\sum_{r\geq 1} \lambda_r(n) = 1 \text{ for } |n| > 2^{\left[\frac{1}{\varepsilon}\right]}.$$

Using also minoration (4) together with the triangle-inequality yields

LHS in (1)
$$\gtrsim$$
 (3) + (8) \gtrsim $\left\| \sum_{n \neq 0} \hat{f}(n) e^{inx} \right\|_q$

which proves the inequality.

Proof of (8).

Estimate

$$\left\| \sum_{N_1 < |n| < N_2} \hat{g}(n) e^{inx} \right\|_q \le \left\| \sum_{N_1 < |n| < N_2} |n|^{-1} (\operatorname{sign} n) e^{inx} \right\|_q \left\| \sum_{N_1 < |n| < N_2} |n| (\operatorname{sign} n) \hat{g}(n) e^{inx} \right\|_1$$

where the first factor equals

$$\left\| \sum_{N_1 < n < N_2} \frac{1}{n} \sin nx \right\|_q \lesssim$$

$$\left\| \sum_{\log N_1 < k < \log N_2} \left| \sum_{n \sim 2^k} \frac{1}{n} \sin nx \right| \right\|_q \quad \text{(assume } N_1, N_2 \text{ powers of 2)}$$

$$\lesssim \left\| \sum_{\log N_1 < k < \log N_2} \min(2^k |x|, 2^{-k} |x|^{-1}) \right\|_q$$

$$\lesssim \left\| \frac{1}{1 + N_1 |x|} \right\|_q \lesssim N_1^{-1/q}. \tag{10}$$

This proves (8) and completes the proof of Theorem 1 when p=1 and d=1.

3. Proof of Theorem 1 when p=1 and $d \geq 2$.

We have to prove that

$$\iint \frac{|f(x) - f(y)|}{|x - y|^{d+s}} dx dy \ge \frac{C(d)}{1 - s} ||f - \int f||_q \tag{1}$$

where q = d/(d-s). We assume d = 2. The case d > 2 is similar. Write

$$\iint \frac{|f(x) - f(y)|}{|x - y|^{d+s}} dx dy \sim \sum_{0 \le k} 2^{k(d+s)} \int_{|h| \sim 2^{-k-10}} ||f(x + h) - f(x - h)||_1 dh$$

$$\ge \sum_{0 \le k} 2^{k(d+s)} \int_{\substack{|h_1| \sim 2^{-k-10} \\ |h_2| \sim 2^{-k-10}}} \left\| \sum_{n \in \mathbb{Z}^d} \hat{f}(n) (\sin n \cdot h) e^{in \cdot x} \right\|_1 dh_1 dh_2 \tag{2}$$

Let φ be a smooth function on \mathbb{R} s.t. $0 \le \varphi \le 1$ and

$$\varphi(t) = \begin{cases} 1 & \text{for } |t| \le 1\\ 0 & \text{for } |t| \ge 2 \end{cases}$$

As for d = 1, consider (radial) multipliers λ_0 and $\lambda_r, r \geq 1$

$$\lambda_0(n) = \varphi(2^{-\frac{1}{\varepsilon}}|n|)$$

$$\lambda_r(n) = \varphi(2^{-\frac{r+1}{\varepsilon}}|n|) - \varphi(2^{-\frac{r}{\varepsilon}}|n|)$$
(3)

where $\varepsilon = 1 - s$ and $\varepsilon \in (0, 1/2)$.

Hence

$$\sum_{n} \lambda_r(n) = 1$$

$$\|\lambda_r\|_{M(L^1, L^1)} \le C \qquad \text{(multiplier norm)}$$
(4)

$$\operatorname{supp} \ \lambda_0 \subset B(0, 2^{\frac{1}{\varepsilon} + 1}) \tag{5}$$

supp
$$\lambda_r \subset B(0, 2^{\frac{r+1}{\varepsilon}+1}) \setminus B(0, 2^{\frac{r}{\varepsilon}}).$$
 (6)

Write

$$(2) = \sum_{\frac{1}{\varepsilon} < k < \frac{2}{\varepsilon}} + \sum_{r \ge 1} \sum_{\frac{r+1}{\varepsilon} < k < \frac{r+2}{\varepsilon}}.$$
 (7)

For $\frac{2}{\varepsilon} > k > \frac{1}{\varepsilon}$ and $|h| < 2^{-k-10}$, (4), (5) permit us to write

$$\left\| \sum_{n} \hat{f}(n)e^{in.x} \sin n.h \right\|_{1} \gtrsim \left\| \sum_{n} \lambda_{0}(n)\hat{f}(n)e^{in.x} \sin n.h \right\|_{1}$$
$$\sim \left\| \sum_{n} \lambda_{0}(n)(n.h)\hat{f}(n)e^{in.x} \right\|_{1}$$

and thus

$$2^{k(d+1-\varepsilon)} \int_{|h_1|,|h_2|\sim 2^{-k-10}} \left\| \sum \hat{f}(n)(\sin n.h)e^{in.x} \right\|_1 dh_1 dh_2 \gtrsim$$

$$2^{k(3-\varepsilon)} 8^{-k} \left(\left\| \sum \lambda_0(n)n_1 \hat{f}(n)e^{in.x} \right\|_1 + \left\| \sum \lambda_0(n)n_2 \hat{f}(n)e^{in.x} \right\|_1 \right)$$

$$= 2^{-k\varepsilon} \left(\left\| \partial_{x_1} \left(\sum \lambda_0(n) \hat{f}(n)e^{in.x} \right) \right\|_1 + \left\| \partial_{x_2} (\cdots) \right\| \right) \sim$$

$$\left\| \sum \lambda_0(n) \hat{f}(n)e^{in.x} \right\|_{W^{1,1}}.$$
(8)

Similarly, for

$$\frac{r+1}{\varepsilon} < k < \frac{r+2}{\varepsilon}$$

we have

$$2^{k(d+1-\varepsilon)} \int_{|h_1|,|h_2|\sim 2^{-k-10}} \left\| \sum \hat{f}(n)(\sin nh)e^{in.x} \right\|_1 \gtrsim 2^{-r} \left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_{W^{1,1}}.$$
(9)

Since in the summation (7), each of the terms (8), (9) appear at least $\frac{1}{\varepsilon}$ times, we have

$$\varepsilon.(2) \gtrsim \left\| \sum \lambda_0(n)\hat{f}(n)e^{in.x} \right\|_{W^{1,1}} + \sum_r 2^{-r} \left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_{W^{1,1}}.$$
 (10)

Write

$$\frac{2-s}{2} = 1 - s + \frac{s}{2}$$

and by Hölder's inequality

$$\left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_{\frac{2}{2-s}} \le \left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_2^s \left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_1^{1-s}. \tag{11}$$

By the Sobolev embedding theorem (d=2)

$$\left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_2 \le C \left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_{W^{1,1}}.$$
 (12)

We estimate the last factor in (11).

Recalling (6),

$$2^{\frac{r+1}{\varepsilon}+1} > \max(|n_1|, |n_2|) > 2^{\frac{r}{\varepsilon}-1}$$

if $\lambda_r(n) \neq 0, r \geq 1$.

Hence, with φ as above

$$\lambda_r(n) = \lambda_r(n).(1 - \varphi)(2^{-\frac{r-1}{\varepsilon}}n_1) + \lambda_r(n).\varphi(2^{-\frac{r-1}{\varepsilon}}n_1).(1 - \varphi)(2^{-\frac{r-1}{\varepsilon}}n_2)$$

and thus

$$\left\| \sum \lambda_{r}(n)\hat{f}(n)e^{in.x} \right\|_{1} \leq \left\| \sum \lambda_{r}(n)n_{1}\hat{f}(n)e^{in.x} \right\|_{1} \left\| \sum \frac{1}{n_{1}}(1-\varphi)(2^{-\frac{r-1}{\varepsilon}}n_{1})e^{in.x} \right\|_{1} + \left\| \sum \lambda_{r}(n)n_{2}\hat{f}(n)e^{in.x} \right\|_{1} \left\| \sum \frac{1}{n_{2}}\varphi(2^{-\frac{r-1}{\varepsilon}}n_{1})(1-\varphi)(2^{-\frac{r-1}{\varepsilon}}n_{2})e^{in.x} \right\|_{1} \leq \left(\left\| \sum_{n_{1}} \frac{1}{n_{1}}(1-\varphi)(2^{-\frac{r-1}{\varepsilon}}n_{1})e^{in_{1}x_{1}} \right\|_{L_{x_{1}}^{1}} + \left\| \sum_{n_{2}} \frac{1}{n_{2}}(1-\varphi)(2^{-\frac{r-1}{\varepsilon}}n_{2})e^{in_{2}x_{2}} \right\|_{L_{x_{2}}^{1}} \right).$$

$$\left\| \sum \lambda_{r}(n)\hat{f}(n)e^{in.x} \right\|_{W^{1,1}}.$$
(13)

Since $(1-\varphi)(2^{-\frac{r-1}{\varepsilon}}n_1)=0$ for $|n_1|\leq 2^{\frac{r-1}{\varepsilon}}$, one easily checks that

$$\left\| \sum_{n_1} \frac{1}{n_1} (1 - \varphi) (2^{-\frac{r-1}{\varepsilon}} n_1) \varepsilon^{i n_1 x_1} \right\|_{L^1_{x_1}} \lesssim \sum_{\ell \ge \frac{r-1}{\varepsilon}} 2^{-\ell} < 2^{\frac{r-2}{\varepsilon}}.$$

Similarly

$$\left\| \sum_{n_2} \frac{1}{n_2} (1 - \varphi) (2^{-\frac{r-1}{\varepsilon}} n_2) e^{in_2 x_2} \right\|_{L^1_{x_2}} \le 2^{-\frac{r-2}{\varepsilon}}.$$

Thus (13) implies that

$$\left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_1 \le 2^{-\frac{r-2}{\varepsilon}} \left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_{W^{1,1}}.$$
 (14)

Substitution of (12), (14) in (11) gives

$$\left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_{\frac{2}{2-s}} \lesssim 2^{-\frac{r-2}{\varepsilon}(1-s)} \left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_{W^{1,1}}$$

$$\sim 2^{-r} \left\| \sum \lambda_r(n)\hat{f}(n)e^{in.x} \right\|_{W^{1,1}}.$$

$$(15)$$

By (12), (15)

$$\varepsilon.(2) \ge \left\| \sum \lambda_0(n) \hat{f}(n) e^{in.x} \right\|_2 + \sum_{r \ge 1} \left\| \sum \lambda_r(n) \hat{f}(n) e^{in.x} \right\|_{\frac{2}{2-s}}$$
$$\ge \left\| f - ff \right\|_{\frac{2}{2-s}}$$

by (3).

This proves (1) and completes the proof of Theorem 1 when p = 1.

4. Square function inequalities.

We present here some known inequalities used in the proof of Theorem 1 when p > 1. Let $\{\Delta_j f\}_{j=1,2,\dots}$ be a Littlewood-Paley decomposition with $\Delta_j f$ obtained from a Fourier multiplier of the form $\varphi(2^{-j}|n|) - \varphi(2^{-j+1}|n|)$ with $0 \le \varphi \le 1$ a smooth function satisfying $\varphi(t) = 1$ for $|t| \le 1$ and $\varphi(t) = 0$ for |t| > 2.

Recall the square-function inequality for $1 < q < \infty$

$$\frac{1}{C(q)} \left\| \left(\sum |\Delta_j f|^2 \right)^{1/2} \right\|_q \le \|f\|_q \le C(q) \left\| \left(\sum |\Delta_j f|^2 \right)^{1/2} \right\|_q. \tag{1}$$

We will also consider square-functions wrt a martingale filtration. Denote thus $\{\mathbb{E}_i\}$ the expectation operators wrt a dyadic partition of $[0,1]^d$ and

$$\widetilde{\Delta}_j f = (\mathbb{E}_j - \mathbb{E}_{j-1}) f \tag{2}$$

the martingale differences.

We will use the square-function inequality

$$||f||_q \le C\sqrt{q} \left\| \left(\sum |\widetilde{\Delta}_j f|^2 \right)^{1/2} \right\|_q \quad \text{for } \infty > q \ge 2$$
 (3)

which is precise in terms of the behaviour of the constant for $q \to \infty$ (see [4] and also the Appendix for a proof of (3)).

Remark 2. One should expect (3) also to hold if $\widetilde{\Delta}_j$ is replaced by Δ_j above but we will not need this fact.

We do use later on the following inequality.

Let

$$p < q$$
 and $s = d\left(\frac{1}{p} - \frac{1}{q}\right) \ge \frac{1}{2}$.

Then, for $q \geq 2$

$$||f||_q \le C\sqrt{q} \left[\sum_k (2^{ks} ||\Delta_k f||_p)^2 \right]^{1/2}.$$
 (4)

Proof of (4)

It follows from (3) that since $q \ge 2$

$$||f||_q \le C\sqrt{q} \left(\sum_j ||\widetilde{\Delta}_j f||_q^2\right)^{1/2}.$$
 (5)

Write

$$\widetilde{\Delta}_{j} f = \sum_{k \leq j} \widetilde{\Delta}_{j} \Delta_{k} f + \sum_{k > j} \widetilde{\Delta}_{j} \Delta_{k} f$$

$$\|\widetilde{\Delta}_{j} f\|_{q} \lesssim \sum_{k \leq j} 2^{k-j} \|\Delta_{k} f\|_{q} + \sum_{k > j} 2^{js} \|\Delta_{k} f\|_{p}$$

$$\lesssim \sum_{k \leq j} 2^{k-j} (2^{ks} \|\Delta_{k} f\|_{p}) + \sum_{k > j} 2^{(j-k)s} (2^{ks} \|\Delta_{k} f\|_{p}). \tag{6}$$

Substitution of (6) in (5) gives

$$||f||_{q} \leq C\sqrt{q} \left\{ \left(\sum_{k \leq j} (j-k)^{2} 4^{k-j} (2^{ks} ||\Delta_{k} f||_{p})^{2} \right)^{1/2} + \left(\sum_{k > j} (k-j)^{2} 4^{(j-k)s} (2^{ks} ||\Delta_{k} f||_{p})^{2} \right)^{1/2} \right\}$$

$$\leq C\sqrt{q} \left(\sum_{k} (2^{ks} ||\Delta_{k} f||_{p})^{2} \right)^{1/2}. \tag{7}$$

5. Proof of Theorem 1 when 1 .

Write

$$\iint \frac{|f(x) - f(y)|^p}{|x - y|^{d + ps}} dx dy \sim \sum_{k \ge 0} 2^{k(d + ps)} \int_{|h| \sim 2^{-k - 10}} \|f(x + h) - f(x - h)\|_p^p dh$$

$$\ge \sum_{k \ge 0} 2^{k(d + ps)} \int_{|h| \sim 2^{-k - 10}} \left\| \sum_{k \ge 0} \hat{f}(n) (\sin n \cdot h) e^{in \cdot x} \right\|_p^p dh.$$
12

Following the argument in Section 3 (formula (10)), we get again for

$$s = d\left(\frac{1}{p} - \frac{1}{q}\right), 1 - s = \varepsilon \tag{2}$$

$$\varepsilon.(1) \gtrsim \sum_{r} \left(2^{-r} \left\| \sum_{n} \lambda_r(n) \hat{f}(n) e^{in.x} \right\|_{W^{1,p}} \right)^p \tag{3}$$

where the multipliers λ_r are defined as before.

Case $\underline{d=1}$

Define

$$f_r = \sum_n \lambda_r(n)\hat{f}(n)e^{in.x}.$$

We will make 2 estimates.

First write

$$f_r = \left(\sum n\lambda_r(n)\hat{f}(n)e^{in.x}\right) * \left(\sum_{\substack{2^{\frac{r}{\varepsilon}} < |n| < 2^{\frac{r+1}{\varepsilon}}}} \frac{1}{n}e^{in.x}\right)$$

implying

$$||f_r||_q \le ||f_r||_{W^{1,p}} \left\| \sum_{\substack{2^{\frac{r}{\varepsilon}} < n < 2^{\frac{r+1}{\varepsilon}}}} \frac{1}{n} \sin nx \right\|_{(\frac{1}{p'} + \frac{1}{q})^{-1}}$$
(4)

and by estimate (10) in Section 2,

$$||f_r||_q \lesssim 2^{-\frac{r}{\varepsilon}(\frac{1}{p'} + \frac{1}{q})} ||f_r||_{W^{1,p}} = 2^{-\frac{r}{\varepsilon}(1-s)} ||f_r||_{W^{1,p}} = 2^{-r} ||f_r||_{W^{1,p}}.$$
 (5)

Estimate then

$$||f||_q \le \sum_r ||f_r||_q \le C \sum_r (2^{-r} ||f_r||_{W^{1,p}}).$$
 (6)

Next apply inequality (4) of Section 4. Observe that

$$|\Delta_k f| \le \sum_r |\Delta_k f_r|$$

where, by construction, there are, for fixed k, at most 2 nonvanishing terms.

Thus

$$\|\Delta_k f\|_p^2 \lesssim \sum_r \|\Delta_k f_r\|_p^2. \tag{7}$$

Also, for fixed r

$$\sum_{k} (2^{ks} \|\Delta_k f_r\|_p)^2 = \sum_{r} 4^{-k\varepsilon} \|\Delta_k f_r\|_{W^{1,p}}^2 \lesssim \frac{1}{\varepsilon} 4^{-r} \|f_r\|_{W^{1,p}}^2.$$
 (8)

Substituting (7), (8) in (4) of Section 4 gives

$$||f||_q \lesssim C\sqrt{q} \left[\sum_k \sum_r (2^{ks} ||\Delta_k f_r||_p)^2 \right]^{1/2} \leq \left[C\sqrt{\frac{q}{\varepsilon}} \right) \left[\sum_r (2^{-r} ||f_r||_{W^{1,p}})^2 \right]^{1/2}$$
(9)

which is the second estimate.

Interpolation between (6) and (9) implies thus

$$||f||_q \le C\left(\sqrt{\frac{q}{\varepsilon}}\right)^{2(1-\frac{1}{p})} \left[\sum_r (2^{-r}||f_r||_{W^{1,p}})^p\right]^{1/p}.$$
 (10)

Recalling (3) and also (2) (which implies that $1 - \varepsilon = \frac{1}{p} - \frac{1}{q} < \frac{1}{p}$, hence $\varepsilon > 1 - \frac{1}{p}$) it follows that

$$\varepsilon.(1) \gtrsim \left(\frac{1}{q}\right)^{p-1} \|f\|_q^p \tag{11}$$

which gives the required inequality.

Case d > 1

We will distinguish the further 2 cases

Case A: $0 < \frac{1}{p} - \frac{1}{d}$ is not near 0

Case B: $\frac{1}{p} - \frac{1}{d}$ is near 0

Observe that case B may only happen for d=2 and p near 2 (we assumed 1).

Case A.

Define q_1 by

$$1 = d\left(\frac{1}{p} - \frac{1}{q_1}\right) \tag{12}$$

so that $q < q_1$ and q_1 is bounded from above by assumption.

Thus we have the Sobolev inequality

$$||g||_{q_1} \le C||g||_{W^{1,p}}. (13)$$

Next, we make the obvious adjustment of the argument in Section 3, (11)-(15).

Thus Hölder's inequality gives

$$||f_r||_q \le ||f_r||_{q_1}^{1-\theta} ||f_r||_q^{\theta} \tag{14}$$

with

$$\frac{1}{q} = \frac{1-\theta}{q_1} + \frac{\theta}{p}, \text{ hence } \theta = 1 - s = \varepsilon \text{ by (2), (12)}.$$

Hence, by (13) $||f_r||_q \le C ||f_r||_{W^{1,p}}^{1-\varepsilon} ||f_r||_p^{\varepsilon}.$ (15)

To estimate $||f_r||_p$, proceed as in (13) of Section 3. Thus

$$||f_r||_p \lesssim \left\| \sum_{n=1}^{\infty} \frac{1}{n} (1 - \varphi) (2^{-\frac{r-1}{\varepsilon}} n) e^{inx} \right\|_{L_x^1(\mathbb{T})} ||f_r||_{W^{1,p}}$$

$$\lesssim 2^{-\frac{r-1}{\varepsilon}} ||f_r||_{W^{1,p}}.$$
(16)

Substitution of (16) in (15) gives

$$||f_r||_q \lesssim 2^{-r} ||f_r||_{W^{1,p}}. (17)$$

Substitution of (17) in (3) gives (since q is bounded by case A hypothesis)

$$\varepsilon.(1) \gtrsim \sum_{r} \|f_{r}\|_{q}^{p} \sim \sum_{r} \left\| \left(\sum_{j} |\Delta_{j} f_{r}|^{2} \right)^{1/2} \right\|_{q}^{p}$$

$$\gtrsim \left\| \left(\sum_{r,j} |\Delta_{j} f_{r}|^{2} \right)^{1/2} \right\|_{q}^{p}$$

$$\gtrsim \left\| \left(\sum_{j} |\Delta_{j} f|^{2} \right)^{1/2} \right\|_{q}^{p} \sim \|f\|_{q}^{p}$$

$$(18)$$

(the second inequality requires distinction of the cases $q \geq 2$ and $p < q \leq 2$).

(18) gives the required inequality.

Case B.

Thus d = 2 and p is near 2.

Going back to (3) and applying (1), (4) of Section 4, we obtain

$$\varepsilon.(1) \gtrsim \sum_{r} (2^{-r} \|f_r\|_{W^{1,p}})^p$$

$$\gtrsim \left(\sum_{r} 4^{-r} \sum_{j} \|\Delta_j f_r\|_p^2 4^j\right)^{\frac{p}{2}}$$

$$\gtrsim \left(\sum_{j} (2^{sj} \|\Delta_j f\|_p)^2\right)^{\frac{p}{2}}$$

$$\gtrsim q^{-\frac{p}{2}} \|f\|_q^p \tag{19}$$

where

$$q^{-\frac{p}{2}} = \left(\frac{1}{p} - \frac{s}{2}\right)^{\frac{p}{2}} \sim (2 - ps)^{p-1} \tag{20}$$

which again gives the required inequality.

6. Proof of Theorem 1 when p > 2.

¿From (3) in Section 5, we get now the minoration

$$\varepsilon.(1) \gtrsim \sum_{j} (2^{sj} \|\Delta_j f\|_p)^p \tag{1}$$

which we use to majorize $||f||_q$.

We have already inequality (4) in Section 5, thus

$$||f||_q \le C\sqrt{q} \left(\sum_j (2^{sj} ||\Delta_j f||_p)^2 \right)^{1/2}.$$
 (2)

Our aim is to prove that

$$||f||_q \le Cq^{1-\frac{1}{p}} \left(\sum_j (2^{sj} ||\Delta_j f||_p)^p \right)^{\frac{1}{p}}$$
 (3)

which will give the required inequality together with (1).

Using interpolation for $2 \le p < \frac{d}{s}$, it clearly suffices to establish (3) for large values of q. To prove (3), we assume $2 \le p \le 4$ (other cases may be treated by adaption of the argument presented below). Assume further (taking previous comment into account)

$$q \ge 2p. \tag{4}$$

Again by interpolation, (3) will follow from (2) and the inequality

$$||f||_q \le Cq^{\frac{3}{4}} \left(\sum_j (2^{sj} ||\Delta_j f||_p)^4 \right)^{1/4}.$$
 (5)

We use the notation from Section 4 and start from the martingale square function inequality (3) in Section 4; thus

$$||f||_q \le C\sqrt{q} \left\| \left(\sum |\widetilde{\Delta}_j f|^2 \right)^{1/2} \right\|_q. \tag{6}$$

Write

$$|\widetilde{\Delta}_j f| \leq \sum_k |\widetilde{\Delta}_j \Delta_k f| = \sum_{m \in \mathbb{Z}} |\widetilde{\Delta}_j \Delta_{j+m} f|$$

(putting $\Delta_k = 0$ for k < 0).

Writing

$$\left\| \left(\sum_{j} |\widetilde{\Delta}_{j} f|^{2} \right)^{1/2} \right\|_{q} \leq \sum_{m \in \mathbb{Z}} \left\| \left(\sum_{j} |\widetilde{\Delta}_{j} \Delta_{j+m} f|^{2} \right)^{1/2} \right\|_{q} \tag{7}$$

we estimate each summand.

Fix m. Write

$$\left\| \left(\sum_{j} |\widetilde{\Delta}_{j} \Delta_{j+m} f|^{2} \right)^{1/2} \right\|_{q}^{4} = \left\| \left(\sum_{j} |\widetilde{\Delta}_{j} \Delta_{j+m} f|^{2} \right)^{2} \right\|_{\frac{q}{4}}$$

$$\leq 2 \sum_{j_{1} \leq j_{2}} \| |\widetilde{\Delta}_{j_{1}} \Delta_{j_{1}+m} f|^{2} |\widetilde{\Delta}_{j_{2}} \Delta_{j_{2}+m} f|^{2} \|_{\frac{q}{4}}$$
 (8)

and

$$\| |\widetilde{\Delta}_{j_{1}} \Delta_{j_{1}+m} f|^{2} |\widetilde{\Delta}_{j_{2}} \Delta_{j_{2}+m} f|^{2} \|_{\frac{q}{4}} = \left[\int |\widetilde{\Delta}_{j_{1}} \Delta_{j_{1}+m} f|^{\frac{q}{2}} .\mathbb{E}_{j_{1}} \left[|\widetilde{\Delta}_{j_{2}} \Delta_{j_{2}+m} f|^{\frac{q}{2}} \right] \right]^{\frac{4}{q}}$$

$$\leq \| \widetilde{\Delta}_{j_{1}} \Delta_{j_{1}+m} f\|_{q}^{2} \| \left(\mathbb{E}_{j_{1}} [|\widetilde{\Delta}_{j_{2}} \Delta_{j_{2}+m} f|^{\frac{q}{2}}] \right)^{\frac{2}{q}} \|_{q}^{2}$$

$$\leq 4^{d(j_{2}-j_{1})(\frac{1}{p}-\frac{2}{q})} \| \widetilde{\Delta}_{j_{1}} \Delta_{j_{1}+m} f\|_{q}^{2} \| \left(\mathbb{E}_{j_{1}} [|\widetilde{\Delta}_{j_{2}} \Delta_{j_{2}+m} f|^{p}] \right)^{1/p} \|_{q}^{2}$$

$$\leq 4^{d(j_{2}-j_{1})(\frac{1}{p}-\frac{2}{q})} 4^{dj_{1}(\frac{1}{p}-\frac{1}{q})} \| \widetilde{\Delta}_{j_{1}} \Delta_{j_{1}+m} f\|_{q}^{2} \| \widetilde{\Delta}_{j_{2}} \Delta_{j_{2}+m} f\|_{p}^{2}.$$

$$(9)$$

Assume $m \leq 0$

Estimate

$$\|\widetilde{\Delta}_{j_1} \Delta_{j_1+m} f\|_q \lesssim 2^m \|\Delta_{j_1+m} f\|_q \leq 2^m 2^{d(j_1+m)(\frac{1}{p}-\frac{1}{q})} \|\Delta_{j_1+m} f\|_p$$
 (10)

$$\|\widetilde{\Delta}_{j_2} \Delta_{j_2+m} f\|_p \lesssim 2^m \|\Delta_{j_2+m} f\|_p.$$
 (11)

Substitution of (10), (11) in (9) gives

$$4^{(1-d(\frac{1}{p}-\frac{1}{q}))m+m} 4^{-\frac{d}{q}(j_2-j_1)} \left[2^{d(\frac{1}{p}-\frac{1}{q})(j_1+m)} \|\Delta_{j_1+m}f\|_p \right]^2 \left[2^{d(\frac{1}{p}-\frac{1}{q})(j_2+m)} \|\Delta_{j_2+m}f\|_p \right]^2$$

$$(12)$$

where

$$d\left(\frac{1}{p} - \frac{1}{q}\right) = s.$$

Summing (12) for $j_1 < j_2$ and applying Cauchy-Schwartz implies for m < 0

$$(8) < 4^{(2-s)m} \left(\sum_{\ell \ge 0} 4^{-\frac{d}{q}\ell} \right) \left[\sum_{j} (2^{sj} \| \Delta_j f \|_p)^4 \right]$$

$$\lesssim 4^{(2-s)m} q \left[\sum_{j} (2^{sj} \| \Delta_j f \|_p)^4 \right]. \tag{13}$$

Assume next m > 0.

Estimate

$$\|\widetilde{\Delta}_{j_1}\Delta_{j_1+m}f\|_q \lesssim 2^{d_{j_1}(\frac{1}{p}-\frac{1}{q})}\|\Delta_{j_1+m}f\|_p$$

and

$$(9) \leq 4^{d(j_2-j_1)(\frac{1}{p}-\frac{2}{q})} 16^{dj_1(\frac{1}{p}-\frac{1}{q})} \|\Delta_{j_1+m}f\|_p^2 \|\Delta_{j_2+m}f\|_p^2$$

$$\leq 16^{-ms} 4^{-(j_2-j_1)\frac{d}{q}} \|2^{s(j_1+m)} \Delta_{j_1+m}f\|_p^2 \|2^{s(j_2+m)} \Delta_{j_2+m}f\|_p^2. \tag{14}$$

Summing over $j_1 < j_2$ implies that for m > 0

$$(8) \lesssim 16^{-ms} q \left[\sum_{j} (2^{sj} \|\Delta_j f\|_p)^4 \right]. \tag{15}$$

Summing (13), (15) in m implies that

$$(7) \leq \left(\sum_{m \leq 0} 2^{(1-\frac{s}{2})m} + \sum_{m>0} 2^{-sm}\right) q^{1/4} \left[\sum_{j} (2^{sj} \|\Delta_{j} f\|_{p})^{4}\right]^{1/4}$$

$$\leq q^{1/4} \left[\sum_{j} (2^{sj} \|\Delta_{j} f\|_{p})^{4}\right]^{1/4}.$$
(16)

To bound $||f||_q$, apply (6) which introduces an additional $q^{1/2}$ -factor. This establishes (5) and completes the argument and the proof of Theorem 1.

7. Proof of Theorem 2.

We will make use of the following two lemmas

Lemma 2. Let $I \subset \mathbb{R}$ be an interval and let $\psi : I \to \mathbb{Z}$ be any measurable function. Then, there is some $k \in \mathbb{Z}$ such that

$$|\{x \in I; \psi(x) \neq k\}| \le 2 \left(C^* \varepsilon \int_I \int_I \frac{|\psi(x) - \psi(y)|^2}{|x - y|^{2 - \varepsilon}} dx dy \right)^{1/\varepsilon},$$

for all $\varepsilon \in (0, 1/2]$. where C^* is the absolute constant in Corollary 1 (inequality (10) in Section 1).

Proof of Lemma 2. After scaling and shifting we may assume that I = (-1, +1). For each $k \in \mathbb{Z}$, set

$$A_k = \{ x \in I; \psi(x) < k \}.$$

Note that A_k is nondecreasing, $\lim_{k\to -\infty} |A_k| = 0$ and $\lim_{k\to +\infty} |A_k| = 2$. Thus, there exists some $k\in\mathbb{Z}$ such that

$$|A_k| \le 1 \text{ and } |A_{k+1}| > 1.$$
 (1)

Applying Corollary 1 with $A = A_k$ and with $A = A_{k+1}$ we find (using (1))

$$|A_k| \le |A_k| \, |^c A_k| \le \left(C^* \varepsilon \int_A \int_{c_{A_k}} \frac{dx dy}{|x - y|^{2 - \varepsilon}} \right)^{1/\varepsilon} \tag{2}$$

and

$$|{}^{c}A_{k+1}| \le |A_{k+1}| |{}^{c}A_{k+1}| \le \left(C^{*}\varepsilon \int_{A_{k+1}} \int_{{}^{c}A_{k+1}} \frac{dxdy}{|x-y|^{2-\varepsilon}}\right)^{1/\varepsilon}.$$
 (3)

On the other hand

$$|\psi(x) - \psi(y)| \ge 1$$
 for a.e. $x \in A_k, y \in {}^cA_k$

and

$$|\psi(x) - \psi(y)| \ge 1$$
 for a.e. $x \in A_{k+1}, y \in {}^{c}A_{k+1}$.

Therefore

$$\begin{aligned} |\{x \in I; \psi(x) \neq k\}| &= |A_k| + |^c A_{k+1}| \\ &\leq 2 \bigg(C^* \varepsilon \int_I \int_I \frac{|\psi(x) - \psi(y)|^2}{|x - y|^{2 - \varepsilon}} dx dy \bigg)^{1/\varepsilon}. \end{aligned}$$

Lemma 3. If $\alpha > 0, a < b < x, A \subset (a, b)$ is measurable, then

$$\int_{(a,b)\backslash A} \frac{dy}{(x-y)^{\alpha}} \ge \int_{a}^{b-|A|} \frac{dy}{(x-y)^{\alpha}}$$

and similarly, if x < a < b, then

$$\int_{(a,b)\backslash A} \frac{dy}{(y-x)^{\alpha}} \ge \int_{a+|A|}^{b} \frac{dy}{(y-x)^{\alpha}}.$$

The proof of Lemma 3 is elementary and left to the reader.

Proof of Theorem 2. Let $\psi_{\varepsilon}: \Omega = (-1, +1) \to \mathbb{R}$ be any measurable function such that $u_{\varepsilon} = e^{i\psi_{\varepsilon}}$. We have to prove that for all $\varepsilon < 1/2$,

$$\|\psi_{\varepsilon}\|_{H^{(1-\varepsilon)/2}(\Omega)} \ge c\varepsilon^{-1/2} \tag{4}$$

for some absolute constant c to be determined.

We argue by contradiction and assume that for some $\varepsilon < 1/2$

$$\|\psi_{\varepsilon}\|_{H^{(1-\varepsilon)/2}(\Omega)} < \eta \varepsilon^{-1/2}.$$
(5)

We will reach a contradiction if η is less than some absolute constant. Set

$$\psi = \frac{1}{2\pi} (\psi_{\varepsilon} - \varphi_{\varepsilon})$$

so that $\psi: \Omega \to \mathbb{Z}$; recall that $u_{\varepsilon} = e^{i\varphi_{\varepsilon}}$ and the function φ_{ε} is defined by

$$\varphi_{\varepsilon}(x) = \begin{cases} 0 & \text{for } -1 < x < 0, \\ 2\pi x/\delta & \text{for } 0 < x < \delta, \\ 2\pi & \text{for } \delta < x < 1, \end{cases}$$

where $\delta = e^{-1/\varepsilon}$.

A straightforward computation (using the fact that ψ takes its values into \mathbb{Z}) shows that

$$|\psi(x) - \psi(y)| \le |\psi_{\varepsilon}(x) - \psi_{\varepsilon}(y)| \text{ for a.e. } x, y \in \left(-1, \frac{2\delta}{3}\right)$$
 (7)

and

$$|\psi(x) - \psi(y)| \le |\psi_{\varepsilon}(x) - \psi_{\varepsilon}(y)| \text{ for a.e. } x, y \in \left(\frac{\delta}{3}, 1\right).$$
 (8)

Applying Lemma 2 with $I = (-1, \frac{2\delta}{3})$ and $I = (\frac{\delta}{3}, 1)$, together with (5), (7) and (8) yields the existence of $\ell, m \in \mathbb{Z}$ such that

$$\left| \left\{ x \in \left(-1, \frac{2\delta}{3} \right); \psi(x) \neq \ell \right\} \right| \le 2(C^* \eta^2)^{1/\varepsilon}$$

and

$$\left| \left\{ x \in \left(x \in \frac{\delta}{3}, 1 \right); \psi(x) \neq m \right\} \right| \le 2(C^* \eta^2)^{1/\varepsilon}.$$

We choose η in such a way that

$$4(C^*\eta^2)^{1/\varepsilon} < \delta/3$$
, for $\varepsilon < 1/2$,

for example

$$\eta^2 < 1/4eC^*. \tag{9}$$

It follows that $\ell = m$. Without loss of generality (after adding a constant to ψ_{ε}) we may assume that

$$\ell = m = 0. \tag{10}$$

Therefore

$$\psi_{\varepsilon}(x) = \varphi_{\varepsilon}(x) \text{ for } x \in [(-1,0)\backslash A] \cup [(\delta,1)\backslash B]$$
 (11)

where

$$A = \{x \in (-1,0); \psi(x) \neq 0\}$$

and

$$B = \{x \in (\delta, 1); \psi(x) \neq 0\}$$

with

$$|A| < \delta/6, |B| < \delta/6. \tag{12}$$

From (11) and the definition of φ_{ε} we have

$$\varepsilon \int_{\Omega} \int_{\Omega} \frac{|\psi_{\varepsilon}(x) - \psi_{\varepsilon}(y)|^{2}}{|x - y|^{2 - \varepsilon}} dx dy \ge \varepsilon \int_{-1}^{0} dx \int_{0}^{1} \frac{|\psi_{\varepsilon}(x) - \psi_{\varepsilon}(y)|^{2}}{|x - y|^{2 - \varepsilon}} dy$$

$$\ge \varepsilon \int_{(-1,0)\backslash A} dx \int_{(\delta,1)\backslash B} \frac{|\varphi_{\varepsilon}(x) - \varphi_{\varepsilon}(y)|^{2}}{|x - y|^{2 - \varepsilon}} dy$$

$$\ge \varepsilon \int_{(-1,0)\backslash A} dx \int_{(\delta,1)\backslash B} \frac{4\pi^{2} dy}{|x - y|^{2 - \varepsilon}}.$$

Applying Lemma 3 and (5) we find

$$\eta^{2} > \varepsilon \int_{\Omega} \int_{\Omega} \frac{|\psi_{\varepsilon}(x) - \psi_{\varepsilon}(y)|^{2}}{|x - y|^{2 - \varepsilon}} dx dy \ge \varepsilon \int_{-1}^{-|A|} dx \int_{\delta + |B|}^{1} \frac{4\pi^{2} dy}{|x - y|^{2 - \varepsilon}}$$

$$\ge \varepsilon \int_{-1}^{-\delta/6} dx \int_{\delta + \delta/6}^{1} \frac{4\pi^{2} dy}{|x - y|^{2 - \varepsilon}} = 4\pi^{2} (1 - e^{-1}) + o(1)$$

as $\varepsilon \to 0$. We obtain a contradiction for an appropriate choice of η .

APPENDIX. Proof of square function inequality

Let $\{\mathcal{F}_n\}_{n=0,1,2,...}$ be refining finite partitions such that

$$\#\mathcal{F}_n = K^n$$

 $|Q| = K^{-n}$ if Q is an \mathcal{F}_n -atom

(If
$$\Omega = [0, 1]^d, K = 2^d$$
).

Denote \mathbb{E}_n the \mathcal{F}_n -expectation

$$\Delta_n f = \mathbb{E}_n f - \mathbb{E}_{n-1} f \qquad \text{(we used the notation } \widetilde{\Delta}_n f \text{ in Section 4)}$$

$$Sf = \left(\sum |\Delta_n f|^2\right)^{1/2} \qquad \text{(the square function)}$$

$$|f| \leq f^* = \sup |\mathbb{E}_n f| \qquad \text{(the maximal function)}$$

Proposition 1.

$$\operatorname{mes}\left[|f| > \lambda \|Sf\|_{\infty}\right] < e^{-c\lambda^2} \qquad (\lambda \ge 1) \tag{1}$$

where c = c(K) > 0 is a constant.

Proposition 2. $(good-\lambda inequality)$

$$\operatorname{mes}\left[f^* > 2\lambda, Sf < \varepsilon\lambda, \sup \mathbb{E}_{n-1}[|\Delta_n f|] < \varepsilon\lambda\right] < e^{-\frac{c}{\varepsilon^2}} \operatorname{mes}\left[f^* > \lambda\right] \qquad (0 < \varepsilon < 1)$$
(2)

Proposition 3.

$$||f^*||_q \le C\sqrt{q}||Sf||_q \quad \text{for } q \ge 2$$
(3)

We follow essentially [4].

Proof of Proposition 1.

One verifies that there is a constant A = A(K) such that if φ is \mathcal{F}_n -measurable and $\mathbb{E}_{n-1}\varphi = 0$, then

$$\mathbb{E}_{n-1}[e^{\varphi - A\varphi^2}] \le 1. \tag{4}$$

Hence

$$\mathbb{E}_{n-1}[e^{\Delta_n f - A(\Delta_n f)^2}] \le 1 \tag{5}$$

and, denoting $S_n f = \left(\sum_{m \leq n} |\Delta_m f|^2\right)^{1/2}$,

$$\int e^{\mathbb{E}_n f - A(S_n f)^2} = \int e^{\mathbb{E}_{n-1} f - A(S_{n-1} f)^2} \mathbb{E}_{n-1} [e^{\Delta_n f - A(\Delta_n f)^2}]$$

$$\leq \int e^{\mathbb{E}_{n-1} f} - A(S_{n-1} f)^2 \qquad \text{(by (5))}$$

$$< 1.$$

Thus

$$\int e^{f - A(Sf)^2} \le 1. \tag{6}$$

Assume $||Sf||_{\infty} \leq 1$. Applying (6) to tf (t > 0 a parameter), we get

$$\int e^{tf} \le e^{At^2}$$
mes $[f > \lambda] \le e^{At^2 - t\lambda}$

and for appropriate choice of t

$$\operatorname{mes} [f > \lambda] < e^{-\frac{\lambda^2}{4A}}.$$

This proves (1).

Proof of Proposition 2.

This is a standard stopping time argument.

Consider a collection of maximal atoms $\{Q_{\alpha}\}\subset\bigcup\mathcal{F}_n$ s.t. if Q_{α} is an \mathcal{F}_n -atom, then $|\mathbb{E}_n f|>\lambda$ on Q_{α} . Thus $Q_{\alpha}\cap Q_{\beta}=\phi$ for $\alpha\neq\beta$. Fix α . From the maximality

$$|\mathbb{E}_{n-1}f| \le \lambda \text{ on } Q_{\alpha}.$$
 (7)

Therefore

$$[f^* > 2\lambda, Sf < \varepsilon \lambda, \sup \mathbb{E}_{m-1}[|\Delta_m f|] < \frac{1}{K} \varepsilon \lambda] \cap Q_{\alpha} \subset$$

$$[(f - \mathbb{E}_n f)^* > (1 - \varepsilon)\lambda, Sf < \varepsilon \lambda, \sup \mathbb{E}_{m-1}[|\Delta_m f|] < \frac{1}{K} \varepsilon \lambda] \cap Q_{\alpha} = (8)$$

For m > n, denote χ_m the indicator function of the set

$$Q_{\alpha} \cap \left[\left(\sum_{\ell=n+1}^{m-1} |\Delta_{\ell} f|^{2} \right)^{1/2} < \varepsilon \lambda \right] \cap \left[\mathbb{E}_{m-1}[|\Delta_{m} f|] < \frac{1}{K} \varepsilon \lambda \right] \cap \bigcap_{n < \ell < m} [|\mathbb{E}_{\ell} f - \mathbb{E}_{n} f| \le (1 - \varepsilon)\lambda] = (9).$$

Thus

$$\chi_m = \mathbb{E}_{m-1} \ \chi_m$$

and

$$g = \sum_{m>n} \chi_m \Delta_m f$$

is an $\{\mathcal{F}_m|m\geq n\}$ -martingale on Q_{α} .

From the definition of χ_m , we have clearly

$$S(g) = \left(\sum_{m \ge n} \chi_m |\Delta_m f|^2\right)^{1/2} < \varepsilon \lambda + \varepsilon \lambda \lesssim \varepsilon \lambda \tag{10}$$

and

$$|g| > (1 - \varepsilon)\lambda$$
 on the set (8).

From Proposition 1 and (10)

mes
$$\left[x \ \varepsilon Q_{\alpha} \right] \ |g| > (1 - \varepsilon)\lambda | < e^{-\frac{c}{\varepsilon^2}} |Q_{\alpha}|$$
 (11)

hence

$$\operatorname{mes} (8) \lesssim e^{-\frac{c}{\varepsilon^2}} |Q_{\alpha}|. \tag{12}$$

Summing (12) over α implies

mes
$$[f^* > 2\lambda, Sf < \varepsilon \lambda, \sup \mathbb{E}_{m-1}[|\Delta_m f|] < \frac{1}{K}\varepsilon \lambda] < e^{-\frac{c}{\varepsilon^2}} \sum |Q_{\alpha}| \le e^{-\frac{c}{\varepsilon^2}} \text{mes } [f^* > \lambda]$$
 which is (2).

Proof of Proposition 3.

$$||f^*||_q^q = q \int \lambda^{q-1} \operatorname{mes} [f^* > \lambda] d\lambda$$

$$= 2^q q \int \lambda^{q-1} \operatorname{mes} [f^* > 2\lambda] d\lambda$$

$$\leq 2^q q \int \lambda^{q-1} \{\operatorname{mes} [Sf \ge \varepsilon \lambda] + \operatorname{mes} [\sup \mathbb{E}_{n-1}[|\Delta_n f|] \ge \frac{\varepsilon}{K} \lambda] + e^{-\frac{c}{\varepsilon^2}} \operatorname{mes} [f^* > \lambda] \}$$

$$< \left(\frac{2}{\varepsilon}\right)^q (||Sf||_q^q + K^q ||\sup \mathbb{E}_{n-1}[|\Delta_n f|]||_q^q) + 2^q e^{-\frac{c}{\varepsilon^2}} ||f^*||_q^q$$

$$(13)$$

Take $\frac{1}{\varepsilon} \sim \sqrt{q}$ so that the last term in (13) is at most $\frac{1}{2} ||f^*||_q^q$. Thus

$$||f^*||_q < C\sqrt{q}(||Sf||_q + ||\sup \mathbb{E}_{n-1}[|\Delta_n f|]||_q).$$
(14)

Also

$$\|\sup \mathbb{E}_{n-1}[|\Delta_n f|]\|_q \le \left(\sum_n \|\mathbb{E}_{n-1}[|\Delta_n f|]\|_q^q\right)^{1/q}$$

$$\le \left(\sum_n \|\Delta_n f\|_q^q\right)^{1/q}$$

$$\le \|Sf\|_q. \tag{15}$$

and (3) follows from (14), (15).

Acknowledgment

The first author (J.B.) is partially supported by NSF Grant DMS-9801013. The second author (H. B.) is partially sponsored by a European Grant ERB FMRX CT98 0201. He is also a member of the Institut Universitaire de France. Part of this work was done during a visit of the third author (P. M.) at Rutgers University; he thanks the Mathematics Department for its support and hospitality.

References

- [1] R.A. Adams, Sobolev spaces, Acad. Press, 1975.
- [2] J. Bourgain, H. Brezis and P. Mironescu, *Lifting in Sobolev spaces*, J. d'Analyse **80** (2000), 37-86.
- [3] J. Bourgain, H. Brezis and P. Mironescu, *Another look at Sobolev spaces*, Volume dedicated to A. Bensoussan, IOS Press (to appear).
- [4] S. Chang, T. Wilson, T. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), no 2, 217-246.
- [5] D. Gilbarg and N.S. Trudinger, *Elliptic partial differential equations of Second order*, Second edition, Springer-Verlag, Berlin, Heidelberg, New-York, 1983.

Jean Bourgain Institute for Advanced Study Princeton, NJ 08540 email: bourgain@math.ias.edu

H. Brezis
Analyse Numérique
Université P. et M. Curie, B.C. 187
4 Pl. Jussieu
75252 Paris Cedex 05, France
email: brezis@ccr.jussieu.fr

and

Department of Mathematics Rutgers University Hill Center, Busch Campus 110 Frelinghuysen Rd. Piscataway, NJ 08854, USA email: brezis@math.rutgers.edu

P. Mironescu Departement de Mathématiques Université Paris-Sud 91405 Orsay, France email: Petru.Mironescu@math.u-psud.fr