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ON THE EQUATION div Y = f AND APPLICATION
TO CONTROL OF PHASES

JEAN BOURGAIN AND HAÏM BREZIS

1. Introduction

The purpose of this paper is to present new results concerning the equation

(1.1) div Y = f on Td,
i.e., we work on Rd with 2π-periodic functions in all variables. In what follows we
will always assume that d ≥ 2 and that

(1.2)
∫
Q

f = 0

where Q = (0, 2π)d. The notations Lp,W 1,p, etc. refer to Lp(Td),W 1,p(Td), etc. or
to 2π-periodic functions in Lploc(Rd),W

1,p
loc (Rd), etc. We denote by Lp# the space of

functions in Lp satisfying (1.2).
Clearly, (1.1) is an underdetermined problem which admits many solutions. A

standard way of tackling (1.1) is to look for a vector field Y satisfying the additional
condition

curl Y = 0,
i.e., one looks for a special Y of the form

Y = gradu.

Equation (1.1) then becomes

(1.3) ∆u = f

and the standard Lp-regularity theory yields a solution u ∈W 2,p when f ∈ Lp#, 1 <
p <∞. Consequently (1.1) has a solution Y ∈ W 1,p for every f ∈ Lp#, 1 < p <∞.
More precisely, the operator div : W 1,p → Lp# admits a right inverse which is
a bounded linear operator K : Lp# → W 1,p. Strictly speaking, we should write
Y ∈ (W 1,p)d(= d-fold copy of W 1,p), div : (W 1,p)d → Lp, etc. But we will often
omit the superscript d to alleviate notation.

Three limiting cases are of interest:
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Case 1: p=== 1. It is well known that when f ∈ L1 equation (1.3) does not necessarily
admit a solution u ∈W 2,1. However, one might still hope to have some solution Y
of (1.1) in W 1,1 or at least in BV . This is not true: for some f ’s in L1, equation
(1.1) has no solution in BV and not even in Ld/(d−1); see Section 2.1.

Case 2: p === ∞∞∞. It is well known that when f ∈ L∞ equation (1.3) does not
necessarily admit a solution u ∈ W 2,∞. However, one might hope to find a solution
Y of (1.1) in W 1,∞. This is not true: McMullen [13] has shown that for some f ’s
in L∞ (even continuous f) equation (1.1) has no solution in W 1,∞. This is proved
using a duality argument and a “non-estimate” of Ornstein [16]; see Section 2.2.

Case 3: p=== d. This is the heart of our work. For every f ∈ Ld#, equation (1.3)
admits a solution u ∈W 2,d and thus equation (1.1) admits a solution Y = gradu ∈
W 1,d. Since W 1,d is not contained in L∞ (this is a limiting case for the Sobolev
imbedding), we cannot assert that this Y belongs to L∞. In fact, we give in Section
3 (Remark 7) an explicit f ∈ Ld such that the corresponding Y = grad u does not
belong to L∞. However one might still hope that given any f ∈ Ld# there is some
Y ∈ L∞ solving (1.1). This is indeed true:

Proposition 1. Given any f ∈ Ld# there exists some Y ∈ L∞ solving (1.1) (in the
sense of distributions) with

(1.4) ‖Y ‖L∞ ≤ C(d)‖f‖Ld .
Remark 1. A more precise statement established in the course of the proof says
that there exists Y ∈ C0 satisfying (1.1) and (1.4).

The proof of Proposition 1 is quite elementary; see Section 3. It relies on the
Sobolev-Nirenberg imbedding W 1,1 ⊂ Ld/(d−1) (and even BV ⊂ Ld/(d−1)) com-
bined with duality, i.e., Hahn-Banach. As a consequence, the argument is not
constructive, and Y is not obtained as above via a bounded linear operator acting
on f . In fact, surprisingly, the operator div has no bounded right inverse in this
setting:

Proposition 2. There exists no bounded linear operator K: Ld# → L∞ such that
divKf = f ∀f ∈ Ld# (in the sense of distributions).

Remark 2. Another way of formulating Proposition 2 is to say that the subspace
{Y ∈ L∞; div Y = 0} admits no complement in the space {Y ∈ L∞; div Y ∈
Ld} equipped with its natural norm. Alternatively, the closed subspace {grad u;
u ∈ W 1,1} has no complement in L1; see Section 3.

To summarize: for every f ∈ Ld#, equation (1.1) admits
a) a solution Y1 ∈ W 1,d,
b) a solution Y2 ∈ L∞.
A natural question is whether there exists a solution Y of (1.1) in L∞ ∩W 1,d.

This is indeed one of our main results.

Theorem 1. For every f ∈ Ld# there exists a solution Y ∈ L∞ ∩W 1,d of (1.1)
satisfying

(1.5) ‖Y ‖L∞ + ‖Y ‖W 1,d ≤ C(d)‖f‖Ld .
Despite the simplicity of this statement the argument is rather involved and a

simpler proof would be desirable.
We will present two techniques to tackle Theorem 1.
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First proof of Theorem 1 when d = 2 (see Section 4). It relies on Hahn-
Banach (via duality) and thus it is not constructive. But it is rather elementary;
the main ingredient is the new estimate (1.6) which is established by L2-Fourier
methods.

Lemma 1. On T2 we have

(1.6) ‖u− /

∫
u‖L2 ≤ C‖ gradu‖L1+H−1 , ∀u ∈ L2,

for some absolute constant C.

The main difficulty, in proving (1.6), stems from the fact that if we decompose

gradu = h1 + h2

with h1 ∈ L1 and h2 ∈ H−1, then h1 and h2 need not be gradients themselves; it
is only their sum which is a gradient.

The analogue of Lemma 1 for d > 2 is the estimate on Td,

(1.7) ‖u− /

∫
u‖Ld/(d−1) ≤ C(d)‖ gradu‖L1+W−1,d/(d−1) .

We have no direct proof of (1.7). But it can be deduced by duality from the
statement of Theorem 1 (and thus from the second proof presented in Section 7).

Second proof of Theorem 1, valid for all d ≥ 2 (see Sections 5 and 6).
We exhibit via a constructive (nonlinear) argument some explicit Y ∈ W 1,d ∩ L∞
satisfying (1.1) and (1.5). The argument for d = 2 is simpler and we start with this
case for expository reasons.

One should observe a certain analogy with the Fefferman-Stein [10] decomposi-
tion of BMO-functions and Uchiyama’s [21] constructive proof. Indeed, returning to
equation (1.1) and defining F by |ξ|F̂ (ξ) = f̂(ξ), we obtain that F ∈ W 1,d ⊂ BMO
and (1.1) becomes

(1.8) F =
d∑
j=1

Rj Yj

with Rj = jth Riesz transform (R̂jψ(ξ) = ψ̂(ξ) ξj|ξ| ), Y = (Y1, . . . , Yd).
The statement of Theorem 1 is that (1.8) has a solution Y ∈ L∞ ∩W 1,d. Recall

that according to Fefferman-Stein [10] any F ∈ BMO has a decomposition of the
form

(1.9) F = Y0 +
d∑
j=1

RjYj with Y0, Y1, . . . , Yd ∈ L∞.

The proof of this decomposition is again by duality and nonconstructive. The
later constructive approach from Uchiyama [21] gives a different proof of (1.9). If
we assume moreover that F ∈ W 1,d, Uchiyama’s argument gives that (1.9) has
a solution Y0, Y1, . . . , Yd ∈ L∞ ∩W 1,d. The new result in this paper shows that,
in fact, for F ∈ W 1,d, the Y0-component is unnecessary and (1.8) holds for some
Y1, . . . , Yd ∈ L∞ ∩W 1,d.

It should be mentioned that to achieve our decomposition we do use significantly
different methods from Uchiyama. This raises the question what are the function
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spaces X , W 1,d ⊂ X ⊂ BMO, such that every F ∈ X has a decomposition

(1.10) F =
d∑
j=1

RjYj

where Yj ∈ L∞ or (assuming the Riesz transforms bounded on X) the stronger
property Yj ∈ L∞ ∩X .

Remark 3. Using Theorem 1 we will prove (in Sections 4 and 6) that a slightly
stronger conclusion holds:

Theorem 1′. For every f ∈ Ld# there exists a solution Y ∈ C0 ∩W 1,d of (1.1)
satisfying (1.5).

The original motivation for studying (1.1) comes from the following question
about lifting discussed in Bourgain-Brezis-Mironescu [3], [4], [5]. Consider the
equation

g = eiϕ on Td

where ϕ is a smooth real-valued function.

Question. Assuming g is controlled in H1/2, what kind of estimate can we deduce
for ϕ?

Here is a first easy consequence of Theorem 1.

Corollary 1. We have

(1.11) ‖ϕ− /

∫
ϕ‖Ld/(d−1) ≤ C(d)(1 + ‖g‖H1/2)‖g‖H1/2 .

Proof. Write
grad g = ieiϕ gradϕ

and thus

(1.12) gradϕ = −iḡ( grad g).

Multiplying by Y gives

(1.13)
∫
Q

ϕ div Y =
∫
Q

iḡY · grad g.

Given f ∈ Ld we obtain from Theorem 1 some Y satisfying (1.1) (with f replaced
by f − /

∫
f) and (1.5). Thus we have

(1.14) |
∫

(ϕ− /

∫
ϕ)f | ≤ ‖g‖H1/2(‖ḡY ‖H1/2).

But
‖ḡY ‖H1/2 ≤ ‖g‖H1/2‖Y ‖L∞ + ‖g‖L∞‖Y ‖H1/2

(by (1.5)) ≤ C(‖g‖H1/2‖f‖Ld + ‖f‖Ld)
(1.15)

where we have used the obvious fact that ‖Y ‖H1/2 ≤ C‖Y ‖W 1,d . Combining (1.14)
and (1.15) yields (1.11). �
Remark 4. Estimate (1.11) cannot be improved, replacing the norm ‖ ‖Ld/(d−1)

by ‖ ‖Lp , p > d/(d − 1). This may be seen by choosing g = eiϕ with ϕ(x) =
(|x|2 + ε2)−α/2 with α < d − 1, α close to (d − 1) and ε close to 0 (the same
example has already been used in Bourgain-Brezis-Mironescu [3], Lemma 5). There
is however a better estimate than (1.11), namely
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Theorem 4. Let ϕ be a smooth real-valued function on Td and set g = eiϕ, then

‖ϕ‖H1/2+W 1,1 ≤ C(d)(1 + ‖g‖H1/2)‖g‖H1/2 .

Theorem 4 has been announced in Bourgain-Brezis-Mironescu [4] (Theorem 3)
and is proved in Section 8. Our proof of Theorem 4 is a direct estimate based
on paraproducts. In view of the preceding argument one may wonder whether
Theorem 4 can be proved by solving a divergence equation. After duality the
required statement would be

(1.16) ‖u− /

∫
u‖H1/2+W 1,1 ≤ C‖ gradu‖H−1/2+L1

but we do not know whether (1.16) holds.
We now turn to the question of coupling equation (1.1) with the Dirichlet con-

dition

(1.17) Y = 0 on ∂Q.

This question was addressed (in various forms) by a few authors; see e.g. Arnold–
Scott–Vogelius [2], Duvaut–Lions [9] (Theorem 3.2), X. Wang [22], Temam [20]
(Proposition 1.2(ii) and Lemma 2.4) and the references therein to Magenes–
Stampacchia [12] and Nečas [14]. Our aim is to establish the analogue of The-
orem 1′ under the Dirichlet condition. We start with the following known fact (see
e.g. Arnold–Scott–Vogelius [2] for d = 2).

Theorem 2. Given f ∈ Lp#(Q), 1 < p < ∞, there exists some Y ∈ W 1,p
0 (Q)

satisfying (1.1) with

(1.18) ‖Y ‖W 1,p ≤ C(p)‖f‖Lp .

Moreover Y can be chosen, depending linearly on f .

The operator and the estimate do not depend on p assuming we stay away from
the end points.

For the convenience of the reader we include a new proof; our technique is
extremely elementary and can be adapted to establish, for the limiting case p = d,

Theorem 3. Given f ∈ Ld#(Q) there exists some Y ∈ C0(Q̄)∩W 1,d
0 (Q) satisfying

(1.1) with
‖Y ‖L∞ + ‖Y ‖W 1,d ≤ C‖f‖Ld.

Theorem 3 is stronger than Theorem 1′. However it will be deduced from Theo-
rem 1′. There are variants of Theorems 2 and 3 when Q is replaced by a Lipschitz
domain in Rd (see Section 7.2).

The plan of the paper is the following:
1. Introduction.
2. The cases f ∈ Lp with p = 1 and p =∞.
3. Proofs of Propositions 1 and 2 and related questions.
4. Proof of Theorem 1 when d = 2 via duality.
5. Proof of Theorem 1 when d = 2 (explicit construction).
6. Proof of Theorem 1 when d > 2 (explicit construction).
7. The equation div Y = f with Dirichlet condition. Proof of Theorems 2 and 3.
8. Estimation of the phase in H1/2 +W 1,1. Proof of Theorem 4.
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2. The cases f ∈ Lp with p = 1 and p =∞

We consider here equation (1.1) with f ∈ Lp# and ask whether there exists a
solution Y ∈ W 1,p of (1.1) when p = 1 and p =∞. As we have already mentioned
in the Introduction the answer is negative. Here is the proof.

2.1. The case p = 1. Assume by contradiction that for every f ∈ L1
# there is

some Y ∈ W 1,1 satisfying (1.1). It follows that the linear operator

Tu = div u from E = W 1,1 into F = L1
#

is bounded and surjective. By the open mapping principle there is a constant C
such that for every f ∈ F there exists a solution Y ∈ E of (1.1) satisfying

‖Y ‖W 1,1 ≤ C‖f‖L1.

We now use a duality argument which occurs frequently in the rest of the paper.
We will deduce that W 1,d ⊂ L∞ with continuous injection, and since this is false,
we infer that for some f ’s in F there is no Y ∈W 1,1 satisfying (1.1).

Let u ∈W 1,d and set

(2.1) gradu = h ∈ Ld.

Given any f ∈ L1, let Y ∈W 1,1 be such that

div Y = f − /

∫
f

and
‖Y ‖W 1,1 ≤ C‖f − /

∫
f‖L1 .

Taking the scalar product of (2.1) with Y and integrating yields∫
Q

(u − /

∫
Q
u)f = −

∫
Q

hY.

Consequently

(2.2) |
∫
Q

(u − /

∫
Q
u)f | ≤ ‖h‖Ld‖Y ‖Ld/(d−1) .

By the Sobolev-Nirenberg imbedding we have W 1,1 ⊂ Ld/(d−1) and thus

(2.3) ‖Y ‖Ld/(d−1) ≤ C‖Y ‖W 1,1 ≤ C‖f‖L1.

Combining (2.2) and (2.3) we deduce that (u− /

∫
Qu) ∈ L∞ with

‖u− /

∫
Qu‖L∞ ≤ C‖ gradu‖Ld .

Impossible.

Remark 5. The same argument shows that equation (1.1) with f ∈ L1
# need not

have a solution Y in the sense of distributions with Y ∈ Ld/(d−1). (Note, however,
that the solution Y given via (1.3) belongs to Lp, ∀p < d/(d − 1), and even to
weak-Ld/(d−1)). It suffices to follow the above argument with E = W 1,1 replaced
by

Ẽ = {Y ∈ Ld/(d−1); div Y ∈ L1}
equipped with its natural norm.
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2.2. The case p =∞. This case has been settled negatively by McMullen [13] (the
interest in this kind of problem grew out of the study of the equation det(∇ϕ) = f
with ϕ bi-Lipschitz and also from a question of Gromov [11] on separated nets; see
Dacorogna-Moser [18], Ye [24], Rivière-Ye [17],[18], Burago-Kleiner [7]).

For the convenience of the reader we sketch a proof when d = 2, which is es-
sentially similar to the one of McMullen [13]. We argue by contradiction as above.
Then, for every f ∈ L∞ there is a Y ∈ W 1,∞ satisfying

div Y = f − /

∫
f

and
‖Y ‖W 1,∞ ≤ C‖f‖L∞.

Let ψ be a smooth function on T2 and set g = ψx1x2 . Write∫
gx1Y1 + gx2Y2 = −

∫
gf = −

∫
ψx1x1Y1x2 + ψx2x2Y2x1 .

Consequently ∣∣∣∣ ∫ gf

∣∣∣∣ ≤ C(‖ψx1x1‖L1 + ‖ψx2x2‖L1)‖f‖L∞

and thus
‖g‖L1 = ‖ψx1x2‖L1 ≤ C(‖ψx1x1‖L1 + ‖ψx2x2‖L1).

This contradicts a celebrated “non-inequality” of Ornstein [16] and completes the
proof.

Remark 6. The same argument shows that equation (1.1) with f ∈ C0 and
∫
f = 0

need not have a solution Y ∈ W 1,∞.

3. Proofs of Propositions 1 and 2 and related questions

Proof of Proposition 1. Recall the Sobolev-Nirenberg imbedding W 1,1 ⊂ Ld/(d−1)

and, more generally, BV ⊂ Ld/(d−1) with

(3.1) ‖u− /

∫
u‖Ld/(d−1) ≤ C(d)‖ gradu‖M ∀u ∈ BV,

where M denotes the space of measures. Set

E = C0, F = Ld#

and consider the unbounded linear operator A = D(A) ⊂ E → F , defined by

D(A) = {Y ∈ E; div Y ∈ Ld}, AY = div Y,

so that A is densely defined and has closed graph. Clearly we have

E∗ =M, F ∗ = L
d/(d−1)
# ,

D(A∗) = F ∗ ∩BV, A∗u = gradu.
By (3.1) we have

‖u‖F∗ ≤ C(d)‖A∗u‖E∗ ∀u ∈ D(A∗).
It follows from the closed-range theorem (see e.g. Brezis [6], Section II.7) that A
is surjective. More precisely, we claim that for any f ∈ F there is some Y ∈ E
satisfying (1.1) and

‖Y ‖L∞ ≤ 2C(d)‖f‖Ld ,
where C(d) is the constant in (3.1). �
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Indeed, let f ∈ F with ‖f‖Ld = 1 and consider the two convex sets

B = {Y ∈ E; ‖Y ‖E < 2C(d)}
and

L = {Y ∈ E; div Y = f}.
We have to prove that B ∩ L 6= ∅. Suppose not, and B ∩ L = ∅. Then, by
Hahn-Banach there exists µ ∈ E∗, µ 6= 0, and α ∈ R such that

(3.2) 〈µ, Y 〉 ≤ α ∀Y ∈ B
and

(3.3) 〈µ, Y 〉 ≥ α ∀Y ∈ L.
From (3.2) we have ‖µ‖ ≤ α/2C(d) and from (3.3) we deduce, in particular, that
〈µ,Z〉 = 0 ∀Z ∈ N(A). It follows that µ ∈ N(A)⊥ = R(A∗). Hence there exists
some u ∈ F ∗ ∩BV such that grad u = µ. Applying (3.1) we see that

(3.4) ‖u‖Ld/(d−1) ≤ C(d)‖µ‖ ≤ α/2.
On the other hand, by (3.3), ∀Y ∈ L,

α ≤ 〈µ, Y 〉 = 〈 gradu, Y 〉 = −
∫
u div Y = −

∫
uf ≤ ‖u‖Ld/(d−1) ≤ α/2.

This is impossible since α > 0 (because µ 6= 0).

Remark 7. The special solution of (1.1) given by Y = gradu, where u is the solution
of (1.3), belongs to W 1,d when f ∈ Ld; however, in general, it does not belong to
L∞. Here is an example due to L. Nirenberg. Using (x1, x2, . . . , xd) as coordinates
in Rd consider the function

u = x1|log r|αζ
where ζ is a smooth cut-off function with support near 0 and 0 < α < (d − 1)/d.
Note that Y = gradu does not belong to L∞ while

|∆u| ≤ C

r
| log r|α−1,

so that ∆u ∈ Ld.

We now turn to the proof of Proposition 2, i.e., the non-existence of a bounded
right inverse K : Ld# → L∞ for the operator div. We present two proofs. The first
is the simplest: after a standard averaging trick we obtain a bounded multiplier
Ld → L∞ and we reach a contradiction by a direct summability consideration. The
second proof is related to Remark 2: the existence of K would yield a factorization
of the identity map I: W 1,1 → Ld/(d−1) through the Banach space L1; however
no such factorization exists by a general argument from the geometry of Banach
spaces.

First proof of Proposition 2. Assume K : Ld# → L∞ is a bounded operator satisfy-
ing divK = I on Ld#. Then the averaged operator

K̃ =
∫
Td
τ−xKτxdx,

where τxf(y) = f(y + x), still satisfies

(3.5) div K̃ = I on Ld.
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On the other hand, K̃ is clearly a multiplier

K̃(ein·x) = (λ1(n), λ2(n), . . . , λd(n))ein·x

which is bounded from Ld into L∞ and hence from L1 into Ld
′

where d′ = d/(d−1).
By (3.5) we have

d∑
j=1

njλj(n) = 1 ∀n ∈ Zd

so that

(3.6) |λ(n)|2 =
d∑
j=1

|λj(n)|2 ≥ 1/|n|2 ∀n.

Consider the multiplier

M(ein·x) =
1

|n| d2−1
ein·x, n 6= 0.

Then M is bounded from Ld
′

into L2. Hence MK̃ is a bounded multiplier from L1

into L2. Thus ∑
n∈Zd
n6=0

|λj(n)|2
|n|d−2

<∞, ∀j.

Summing over j = 1, 2, . . . , d, and using (3.6) we deduce∑
n∈Zd
n6=0

1
|n|d <∞.

A contradiction. �

Second proof of Proposition 2. Assuming the existence of K : Ld# → L∞ we obtain
a factorization of the identity map I : W 1,1 → Ld

′
as

I = K∗ ◦ grad

which, in particular, gives a factorization of I through the Banach space L1. We
claim that there in no such factorization, as a consequence of Grothendieck’s the-
orem on absolutely summing operators. Both the result and the method are well
known and we briefly recall them (see Wojtaszczyk [23] for details). First take d = 2.
Then I : W 1,1 → L2 and we consider the operator I ◦D where D : L2 → W 1,1 is
defined by

D(ein·x) =
1√

1 + |n|2
ein·x.

Thus D is clearly bounded as an operator into H1, hence into W 1,1. Since I is
assumed to factor through L1, so does I ◦D:
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Next, recall Grothendieck’s theorem that any bounded operator B : L1 → L2 is
1-summing, i.e.,

π1(B)≡sup
{∑

‖Bxi‖; (xi)⊂L1 and max
x∗∈L∞,‖x∗‖≤1

∑
|〈xi, x∗〉|≤1

}
≤KG‖B‖,

where KG is Grothendieck’s constant.
From the usual ideal properties, we obtain( ∑

n∈Z2

1
1 + |n|2

)1/2

= ‖I ◦D‖HS = π2(I ◦D) ≤ π1(I ◦D)

= π1(B ◦A) ≤ ‖A‖π1(B) ≤ KG‖A‖ ‖B‖ <∞,
which in an obvious contradiction.

For d > 2, we have I : W 1,1 → Ld
′

and we consider the multiplication operator
M : Ld

′ → L2 given by M(ein·x) = (1 + |n|)1− d2 ein·x. Hence, considering now
M ◦ I ◦D : L2 → L2 factoring through L1, we obtain a contradiction again:(∑ 1

(1 + |n|)d−2(1 + |n|2)

)1/2

=‖M ◦I◦D‖HS=π2(M ◦I◦D)≤π1(M ◦I◦D)<∞.

Proof of Remark 2. Consider the Banach space

E = {Y ∈ L∞; div Y ∈ Ld}
equipped with its natural norm ‖Y ‖L∞ + ‖ div Y ‖Ld . Then

N = {Y ∈ L∞; div Y = 0}
is a closed subspace of E which admits no complement in E. Indeed, set

F = Ld#

and consider the bounded linear operator T : E → F defined by TY = div Y . By
Proposition 1, T is surjective. If N = N(T ) admits a complement in E, then T has
a bounded right inverse, i.e., an operator S : F → E such that

div (Sf) = f ∀f ∈ F
(see e.g. Brezis [6], Théorème II.10). But this is impossible by Proposition 2.

Similarly, the subspace

R = { gradu; u ∈W 1,1}
of L1 is closed and admits no complement in L1. Indeed, consider the spaces
E = {u ∈ W 1,1;

∫
u = 0}, F = L1 and the operator T = grad, a bounded linear

injective operator from E into F . If R = R(T ) admits a complement in F , then
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T has a bounded left inverse S : F → E (see e.g. Brezis [6], Théorème II.11). In
particular, S : F → L

d/(d−1)
# satisfies

S( gradu) = u, ∀u ∈ W 1,1 with
∫
u = 0.

Then S∗ : Ld# → L∞ satisfies

div (S∗f) = f, ∀f ∈ Ld#,
and this is again impossible by Proposition 2. �

4. Proof of Theorem 1 when d = 2 via duality

We now return to the periodic setting and we will prove the slightly stronger
form of Theorem 1,

Theorem 1′ (for d = 2). For every f ∈ L2
# there exists a solution Y ∈ C0 ∩H1

of (1.1) with

(4.1) ‖Y ‖L∞ + ‖Y ‖H1 ≤ C‖f‖L2

for some absolute constant C.

Theorem 1′ is proved by duality from

Lemma 2. On T2 we have

(4.2) ‖u− /

∫
u‖L2 ≤ C‖ gradu‖L1+H−1 , ∀u ∈ L2

where C is an absolute constant.

Assuming the lemma we turn to the

Proof of Theorem 1′. First observe that

L1 +H−1 ⊂M+H−1

and that

(4.3) ‖ · · · ‖L1+H−1 = ‖ · · · ‖M+H−1 on L1 +H−1

(this may be easily seen using regularization by convolution).
Let E = C0 ∩ H1, F = L2

# and consider the bounded operator T : E → F

defined by TY = div Y . Clearly, T ∗ : F ∗ = F → E∗ = M + H−1 is given by
T ∗u = gradu. By Lemma 2 we have

‖u‖F∗ ≤ C‖T ∗u‖E∗ ∀u ∈ F ∗,
and therefore T is surjective from E onto F . Estimate (4.1) follows from the open
mapping principle or one could argue directly using (4.2) and Hahn-Banach as in
the proof of Proposition 1. �

Proof of Lemma 2. Assume

(4.4) u ∈ L2
#,

(4.5) ∂xu = F1 + h1, ∂yu = F2 + h2

and

(4.6) ‖F1‖L1 + ‖F2‖L1 + ‖h1‖H−1 + ‖h2‖H−1 ≤ 1.
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We have to prove that

(4.7) ‖u‖L2 ≤ C.
�

The main ingredient is

Lemma 3. Under assumptions (4.4)–(4.6) we have

(4.8)
∑

n1,n2∈Z

n2
1n

2
2

(n2
1 + n2

2)2
|û(n1, n2)|2 ≤ C(‖u‖L2 + 1).

Assuming Lemma 3 we may now complete the proof of Lemma 2. Define

(4.9) u′(x′, y′) = u(x′ + y′, x′ − y′) =
∑
n1,n2

û(n1, n2) ei[(n1+n2)x′+(n1−n2)y′]

so that

(4.10) û′(n1 + n2, n1 − n2) = û(n1, n2)

and

∂x′u
′(x′, y′) = ∂xu(x′ + y′, x′ − y′) + ∂yu(x′ + y′, x′ − y′)

= (F1 + F2)(x′ + y′, x′ − y′) + (h1 + h2)(x′ + y′, x′ − y′)
∈ L1 +H−1

and similarly for ∂y′u′.
From (4.8) and (4.10) we obtain

∑
n1,n2

(n1 + n2)2(n1 − n2)2

4(n2
1 + n2

2)2
|û(n1, n2)|2 =

∑
n′1,n

′
2

(n′1)2(n′2)2(
(n′1)2 + (n′2)2

)2 |û′(n′1, n′2)|2
(4.11)

≤ C(‖u′‖L2 + 1) = C(‖u‖L2 + 1).

Addition of (4.8) and (4.11) implies that

‖u‖2L2 =
∑
n1,n2

|û(n1, n2)|2 ≤ C(‖u‖L2 + 1)

and the desired estimate (4.7) follows.
We now turn to the

Proof of Lemma 3. We have∑
n6=0

n2
1n

2
2

(n2
1 + n2

2)2
|û(n)|2 =

1
i
n
∑ n1n

2
2

(n2
1 + n2

2)2
∂̂xu(n)û(−n)

by (4.5)
=

1
i

∑ n1n
2
2

(n2
1 + n2

2)2
F̂1(n)û(−n) +

1
i

∑ n1n
2
2

(n2
1 + n2

2)2
ĥ1(n)û(−n)

= (4.12) + (4.13).

Estimate

(4.14) |(4.13)| ≤
∑
n1,n2

|ĥ1(n)|√
n2

1 + n2
2

|û(−n)| ≤ ‖h1‖H−1‖u‖L2.
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Write

(4.12) =
∑ n1n2

(n2
1 + n2

2)2
F̂1(n)∂̂yu(−n)

=
∑ n1n2

(n2
1 + n2

2)2
F̂1(n)F̂2(−n) +

∑ n1n2

(n2
1 + n2

2)2
F̂1(n)ĥ2(−n)

= (4.15) + (4.16).

Estimate

|(4.16)| ≤
∑ |n1| |n2|

(n2
1 + n2

2)2
(|∂̂xu(n)|+ |ĥ1(n)|) |ĥ2(−n)|

≤
∑ n2

1|n2|
(n2

1 + n2
2)2
|û(n)| |ĥ2(−n)|+

∑ |ĥ1(n)|√
n2

1 + n2
2

|ĥ2(−n)|√
n2

1 + n2
2

(4.17)

≤ ‖f‖L2 ‖h2‖H−1 + ‖h1‖H−1 ‖h2‖H−1 .

�

Estimation of (4.15). This is the key point. Since ‖F1‖L1 ≤ 1, ‖F2‖L1 ≤ 1, it
suffices (by convexity) to replace F̂i(n) by

(4.18) F̂1(n) = ein·a, F̂2(n) = ein·b

for some a, b ∈ T2 (this amounts to replacing F1, F2 by the Dirac measures δa, δb,
respectively).

Thus we obtain∑
n1,n2∈Z

n1n2

(n2
1 + n2

2)2
F̂1(n)F̂2(−n) =

∑ n1n2

(n2
1 + n2

2)2
ei[n1(a1−b1)+n2(a2−b2)]

= −
∑ n1n2

(n2
1 + n2)2

sinn1(a1 − b1) sinn2(a2 − b2)(4.19)

by parity considerations.

Claim. For all θ1, θ2 ∈ T

(4.20)
∣∣∣∣ ∑
n1,n2

n1n2

(n2
1 + n2

2)2
sinn1θ1 sinn2θ2

∣∣∣∣ ≤ C.
From the claim, we conclude that |(4.15)|, |(4.19)| ≤ C and, recalling also (4.14),

(4.17), inequality (4.8) follows.

Proof of the Claim. Splitting Z in dyadic intervals, we obtain

(4.21)
∑

k1,k2≥0

∣∣∣∣ ∑
n1∼2k1 ,n2∼2k2

n1n2

(n2
1 + n2

2)2
sinn1θ1 sinn2θ2

∣∣∣∣.
Recall the inequality

(4.22)
∣∣∣∣∑
n∈I

sinnθ
∣∣∣∣ . 4k|θ| ∧ 1

|θ|

if θ ∈ T and I ⊂ [2k−1, 2k] is an interval (where ∧ denotes min).
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From (4.22), assuming k1 ≥ k2, we have∣∣∣∣ ∑
n1∼2k1 ,n2∼2k2

n1n2

(n2
1 + n2

2)2
sinn1θ1 sinn2θ2

∣∣∣∣ ≤(
4k1 |θ1| ∧

1
|θ1|

)(
4k2 |θ2| ∧

1
|θ2|

)∥∥∥∥{ n1n2

(n2
1 + n2

2)2

}∥∥∥∥
`∞(n1∼2k1 )⊗̂`∞(n2∼2k2 )

(4.23)

where `∞(I)⊗̂`∞(J) denotes the usual projective tensor product. Thus the last
factor in (4.23) may be bounded by
(4.24)∥∥∥∥∂2

n1n2

n1n2

(n2
1 + n2

2)2

∥∥∥∥
`1(n1∼2k1 ,n2∼2k2 )

≤ C
∥∥∥∥ 1

(n2
1 + n2

2)2

∥∥∥∥
`1(n1∼2k1 ,n2∼2k2 )

≤ C 2k2

8k1
.

Substitution of (4.23), (4.24) in (4.21) gives the bound

(4.20), (4.21) ≤ C
∑

k1≥k2≥0

4k2−k1

(
2k1 |θ1| ∧

1
2k1 |θ1|

)(
2k2 |θ2| ∧

1
2k2 |θ2|

)

. C
2∏
i=1

[ ∑
k∈Z+

(
2k|θi| ∧

1
2k|θi|

)]
≤ C.

This completes the proof of the Claim and of Theorem 1′ for d = 2. �

5. Proof of Theorem 1 when d = 2 (explicit construction)

Our aim is to construct Y ∈ L∞ ∩H1 such that

(5.1) divY = f ∈ L2
#(T2).

Write
Z2 =

⋃
j≥0

(Λ1
j ∪ Λ2

j)

where

Λ1
j = [2j−1 < |n1| ≤ 2j; |n2| ≤ 2j ]

Λ2
j = [2j < |n2| ≤ 2j+1; |n1| ≤ 2j ].

..............................

........
......................

−2j 2j

n2

n1

Λ1
j Λ1

j

Let
Λα =

⋃
j

Λαj (α = 1, 2).

Decompose
f = f1 + f2 where fα = PΛαf ≡

∑
n∈Λα

f̂(n)ein·x.
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Claim. Let δ > 0 be small enough and ‖f‖2 ≤ δ. Then there are Y1, Y2 such that

(5.2) ‖Yα‖L∞∩H1 ≤ 1

and

(5.3) ‖∂αYα − fα‖2 ≤ δ4/3 (α = 1, 2).

Thus if ‖f‖2 = δ, then

‖f − ∂1Y1 − ∂2Y2‖2 ≤ δ1/3‖f‖2
and iteration of this gives (5.1).

The construction of Y1, Y2 is explicit but nonlinear (see Proposition 2).
Take α = 1 and denote f1 by f,Λ1

j by Λj.
Define

fj = PΛjf,

cj = ‖fj‖2,

Fj = D−1
x1
fj ≡

∑ 1
n1
f̂j(n)ein·x.

Hence (∑
c2j

)1/2

= ‖f‖2,

(5.4) ‖Fj‖∞ ≤
∑
n∈Λj

1
|n1|
|f̂(n)| . 2−j |Λj|1/2‖fj‖2 . cj .

Fix ε > 0 a small constant and partition

Λj =
⋃

r< 1
ε+1

Λj,r

............................

.......................
.....

Λj

n1

Λj,r

in stripes Λj,r such that

(5.5) |Projn1
Λj,r| ∼ ε2j.

Define first

(5.6) F̃j(x) =
∑
r

∣∣∣∣ ∑
n∈Λj,r

1
n1
f̂j(n)ein·x

∣∣∣∣.
Thus

(5.7) |Fj(x)| ≤ |F̃j(x)| . cj .
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From Cauchy-Schwarz

(5.8) ‖F̃j‖2 ≤ ε−1/2‖Fj‖2 . ε−1/22−jcj .

Observe that if Projn1
Λj,r = [ar, br], br − ar ∼ ε2j, then

|∂1F̃j | ≤
∑
r

∣∣∣∣ ∑
n∈Λj,r

n1 − ar
n1

f̂j(n)ein·x
∣∣∣∣

where ∣∣∣∣n1 − ar
n1

∣∣∣∣ < ε.

Therefore

(5.9) ‖∂1F̃j‖2 .
∑
r

ε‖PΛj,rf‖2 . ε1/2‖PΛjf‖2 = ε1/2cj

(this is the purpose of the construction of F̃j).
We also need to make an appropriate localization of the Fourier transform of F̃j .

Denote

KN(y) =
∑
|n|<N

N − |n|
N

einy,

the usual Féjer kernel on T. It is easy to see that if

P (y) =
∑
|n|<N

P̂ (n)einy

is a trigonometric polynomial, then

(5.10) |P | ≤ 3(|P | ∗KN).

Using this fact in the variables x1, x2, we see that

(5.11) |Fj | ≤ F̃j ≤ Gj
denoting

(5.12) Gj = 9F̃j ∗ (KN1 ⊗KN2)

where each ∆j,r is an N1 ×N2 rectangle, N1 ∼ ε2j, N2 ∼ 2j.
Thus, by construction

(5.13) supp Ĝj ⊂ [−N1, N1]× [−N2, N2] ⊂ [|n| ≤ 2j]

and inequalities (5.7), (5.8), (5.9) remain preserved.
Therefore,

‖Gj‖∞ ≤ 9‖F̃j‖∞ . cj (0 < δ < 1),(5.14)

‖Gj‖2 . ε−1/22−jcj ,(5.15)

‖∂1Gj‖2 . ε1/2cj ,(5.16)

‖∇Gj‖2 . ε−1/2cj .(5.17)

Assume that {fj | j ≤ K} is a finite sequence (which is no restriction).
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Define

Y1 = FK + FK−1(1−GK)

+ FK−2(1−GK−1)(1 −GK) + · · ·

=
∑
j≤K

Fj
∏
k>j

(1−Gk).(5.18)

Thus from (5.11)

|Y1| ≤ |FK |+ (1− |FK |)|FK−1|
+ (1− |FK |)(1− |FK−1|)|FK−2|+ · · · ≤ 1.

One may also rewrite (5.18) as

(5.19) Y1 =
∑

Fj −
∑

GjHj

with

Hj = Fj−1 + Fj−2(1−Gj−1)

+ Fj−3(1−Gj−2)(1 −Gj−1) + · · ·

=
∑
k<j

Fk
∏

k<k′<j

(1−Gk′ ).(5.20)

Clearly
|Hj | < 1.

By construction

(5.21) ∂1Y1 =
∑

fj −
∑

∂1(GjHj).

Next, we estimate the second term in (5.21) that will appear as an error term.
Observe that since supp F̂j ⊂ [|n| ∼ 2j ] and (5.13), also

(5.22) supp Ĥj ⊂ [|n| . 2j ].

Denote Pk Fourier projection operators on [|n| ∼ 2k] such that Id =
∑

k≥0 Pk.
From the preceding, we may thus ensure that

(5.23) GjHj =
∑
k≤j

Pk(GjHj).

Estimate then

(5.24)
∥∥∥∥∑

j

∂1(GjHj)
∥∥∥∥

2

≤
∑
s≥0

(∑
j

‖∂1Pj−s(GjHj)‖22
)1/2

(since for fixed s, the Pj−s have disjoint ranges).
Returning to the parameter 0 < ε < 1 introduced earlier, write

(5.25) ε = 2−s∗ (s∗ > 0)

and estimate (5.24) in the ranges

s > s∗(5.26)

0 ≤ s ≤ s∗.(5.27)
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Contribution of (5.26). Since |Hj | ≤ 1 and (5.15),

‖∂1Pj−s(GjHj)‖2 . 2j−s‖GjHj‖2
≤ 2j−s‖Gj‖2 ≤ ε−1/2 2−scj .(5.28)

Substitution in (5.24) gives the contribution

(5.29)
∑
s≥s∗

2−sε−1/2

(∑
c2j

)1/2

< 2−s∗ε−1/2‖f‖2 < ε1/2‖f‖2.

Contribution of (5.27). Estimate now

‖∂1Pj−s(GjHj)‖2 ≤ ‖∂1(GjHj)‖2 ≤ ‖∂1Gj‖2 + ‖Gj∂1Hj‖2
≤ ε1/2cj + ‖Gj∂1Hj‖2(5.30)

using (5.16).
Recalling definition (5.20) of Hj , one easily verifies that

(5.31) |∇Hj | ≤
∑
k<j

(|∇Fk|+ |∇Gk|).

Hence

(5.32) ‖∇Hj‖∞ ≤
∑
k<j

2kck

and from (5.15)

(5.33) ‖Gj∂1Hj‖2 ≤ ε−1/2cj

(∑
k<j

2−(j−k)ck

)
.

Substitution of (5.30), (5.33) in (5.24) gives the following bound on the contribution
of (5.27):

s∗ε
1/2

(∑
c2j

)1/2

+ s∗ε
−1/2

[∑
j

c2j

(∑
k<j

2−(j−k)ck

)2]1/2

(5.34) ≤
(

log
1
ε

)
ε1/2‖f‖2 +

(
log

1
ε

)
ε−1/2‖f‖22.

Consequently, from (5.21), (5.29), (5.34),

(5.35) ‖f − ∂1Y1‖2 =
∥∥∥∥∑

j

∂1(GjHj)
∥∥∥∥

2

≤ log
1
ε

(ε1/2‖f‖2 + ε−1/2‖f‖22).

Under the assumption ‖f‖2 ≤ δ, letting ε = δ in (5.35), we obtain thus

(5.36) ‖f − ∂1Y1‖2 ≤ δ
3
2− ≤ δ 4

3

which is (5.3).
It remains to estimate ‖Y1‖H1 = ‖∇Y1‖2.
By (5.19)

(5.37) ‖∇Y1‖2 ≤
∥∥∥∥∑

j

∇Fj
∥∥∥∥

2

+
∥∥∥∥∑∇(GjHj)

∥∥∥∥
2

.
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From the definition of Fj and since supp F̂j ⊂ Λ1
j , it follows that

(5.38)
∥∥∥∥∑

j

∇Fj
∥∥∥∥

2

∼
(∑

‖fj‖22
)1/2

= ‖f‖2.

Estimate the second term in (5.37) as in (5.24),

(5.39)
∥∥∥∥∑

j

∇(GjHj)
∥∥∥∥

2

≤
∑
s≥0

(∑
j

‖∇Pj−s(GjHj)‖22
)1/2

and

(5.40) ‖∇Pj−s(GjHj)‖2 . 2j−s‖GjHj‖2 ≤ ε−1/22−scj .

Thus

(5.41) (5.39) ≤ ε−1/2
∑
s≥0

2−s
(∑

j

c2j

)1/2

≤ ε−1/2‖f‖2

and

(5.42) ‖∇Y1‖2 ≤ δ−1/2‖f‖2 ≤ δ1/2.

Since ‖Y1‖∞ . 1, this establishes (5.2).
This proves the Claim and completes the proof of Theorem 1 for d = 2.

6. Proof of Theorem 1 when d > 2 (explicit construction)

Let f ∈ Ld#(Td). Our aim is to construct a solution Y of divY = f satisfying

‖Y ‖∞ ≤ C‖f‖d,(6.1)

‖∇Y ‖d ≤ C‖f‖d.(6.2)

We do this by standard modification of the previous L2-argument with the
Littlewood-Paley square function theory as main additional ingredient. Consider
again a partition

Zd =
⋃
j≥0

(Λ1
j ∪ · · · ∪ Λdj )

of disjoint d-rectangles Λαj of side length ∼ 2j.
We formulate the analogue of the Claim with Yα satisfying bounds (6.1), (6.2).

Letting α = 1, f = f1, define again

(6.3) Fj = D−1
x1
fj

satisfying

(6.4) ‖Fj‖∞ . (2j/d)d‖Fj‖d = 2j‖D−1
x1
fj‖d ∼ ‖fj‖d ≡ cj .
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Define F̃j and Gj as in (5.6), (5.12). Thus (5.11), (5.13) hold. Also

‖Gj‖∞ . ‖F̃j‖∞ ≤ ε−1/d′
(∑
r< 1

ε

∥∥∥∥ ∑
n∈Λj,r

1
n1
f̂j(n)einx

∥∥∥∥d
∞

)1/d

≤ ε−1/d′
(∑
r< 1

ε

(
2j

d−1
d (ε2j)

1
d

∥∥∥∥ ∑
n∈Λj,r

1
n1
f̂j(n)ein·x

∥∥∥∥
d

)d)1/d

. ε−1/d′+1/d

(∑
r< 1

ε

∥∥∥∥ ∑
n∈Λj,r

f̂j(n)einx
∥∥∥∥d
d

) 1
d

. ε 2
d−1‖fj‖d = ε

2
d−1cj ≤ ε

2
d−1δ.(6.5)

(We assume that δ is small enough compared with ε to ensure, in particular, that
ε

2
d−1δ � 1.)

Repeat the construction from Section 5. In place of estimate (5.24) we now have

(6.6)
∥∥∥∥∑

j

∂1(GjHj)
∥∥∥∥
d

≤
∑
s≥0

∥∥∥∥∑
j

|∂1Pj−s(GjHj)|2
)1/2∥∥∥∥

d

and distinguish between the cases (5.26), (5.27).

Contribution of (5.26). Estimate∥∥∥∥(∑
j

|∇Pj−s(GjHj)|2
)1/2∥∥∥∥

d

.
∥∥∥∥(∑

j

4j−s|Pj−s(GjHj)|2
)1/2∥∥∥∥

d

. 2−s
∥∥∥∥(∑

j

4j|GjHj |2
)1/2∥∥∥∥

d

. 2−s
∥∥∥∥(∑

j

4j(F̃j ∗Kj)2

)1/2∥∥∥∥
d

(6.7)

where Kj is a product of Féjer kernels

KN1 ⊗KN2 ⊗ · · · ⊗KNd , N1 ∼ ε2j, and N2, . . . , Nd ∼ 2j.

Again from standard square function inequalities

(6.8) (6.7) . 2−s
∥∥∥∥(∑

j

4j(F̃j)2

)1/2∥∥∥∥
d

.

Recalling the definition of F̃j , estimate

(6.9) (F̃j)2 ≤ ε−1
∑
r≤ε−1

∣∣∣∣ ∑
n∈Λ1

j,r

1
n1
f̂(n)einx

∣∣∣∣2.
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Substituting in (6.8), this gives

ε−1/22−s
∥∥∥∥(∑

j

∑
r<ε−1

∣∣∣∣ ∑
n∈Λ1

j,r

2j

n1
f̂(n)einx

∣∣∣∣2)1/2∥∥∥∥
d

. ε−1/2 2−s
∥∥∥∥(∑

j

∑
r<ε−1

∣∣∣∣ ∑
n∈Λ1

j,r

f̂(n)einx
∣∣∣∣2)1/2∥∥∥∥

d

.

(6.10)

We use here the fact that |n1| ∼ |n| ∼ 2j for n ∈ Λ1
j .

Recall also the definition of Λj,r obtained by partitioning the n1-variable in
intervals of size ε2j.

At this stage, we use the following (1-variable) inequality due to Rubio de Francia
[19], which generalizes the Littlewood-Paley inequality to arbitrary intervals.

Proposition 3. Let {Iα} be disjoint intervals in Z and

PIf =
∑
n∈I

f̂(n)einx

the corresponding Fourier projection.
Then, for 2 ≤ d <∞, there is the (one-sided) inequality

(6.11)
∥∥∥∥(∑ |PIαf |2

)1/2∥∥∥∥
d

≤ C‖f‖d.

Since {Projn1
Λ1
jr} are disjoint intervals in Z, application of (6.11) in the x1-

variable implies that

(6.12) (6.6) . ε−1/2 2−s‖f‖d.

Summation of (6.12) for s ≥ s∗ gives then

(6.13) (5.26)-contribution ≤ ε1/2‖f‖d.

Remark 8. We used the general Proposition 3 for convenience; the present case
could in fact be treated by more elementary means.

Contribution of (5.27). Estimate∥∥∥∥(∑
j

|∂1Pj−s(GjHj)|2
)1/2∥∥∥∥

d

.
∥∥∥∥(∑

j

|∂1(GjHj)|2
)1/2∥∥∥∥

d

≤
∥∥∥∥(∑

j

|∂1Gj |2
)1/2∥∥∥∥

d

+
∥∥∥∥(∑

j

|Gj(∂1Hj)|2
)1/2∥∥∥∥

d

= (6.14) + (6.15).

Estimate (6.14) by

(6.16)
∥∥∥∥(∑

j

|∂1F̃j |2
)1/2∥∥∥∥

d

.
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We have that

|∂1F̃j | ≤
∑
r<ε−1

∣∣∣∣ ∑
n∈Λ1

j,r

n1 − aj,r
n1

f̂(n)einx
∣∣∣∣

≤ ε−1/2

( ∑
r<ε−1

∣∣∣∣ ∑
n∈Λ1

jr

n1 − aj,r
n1

f̂(n)einx
∣∣∣∣2)1/2

where Projn1
Λ1
jr = [ajr, bjr], bjr − ajr ∼ ε2j. Thus

∣∣n1−aj,r
n1

∣∣ ≤ ε.
We get therefore

(6.16) ≤ ε−1/2 · ε
∥∥∥∥(∑

j

∑
r<ε−1

∣∣∣∣ ∑
n∈Λ1

jr

f̂(n)einx
∣∣∣∣2)1/2∥∥∥∥

d

. ε1/2‖f‖d.(6.17)

To estimate (6.15), use again inequality (5.31), together with (6.4), (6.5). Thus

(6.18) ‖∇Hj‖∞ ≤ ε
2
d−1

∑
k<j

2kck < ε
2
d−1 2j‖f‖d.

Hence

(6.15) ≤ ε 2
d−1‖f‖d

∥∥∥∥(∑
j

4jG2
j

)1/2∥∥∥∥
d

≤ ε 2
d−1‖f‖d

∥∥∥∥(∑
j

(2jF̃j)2

)1/2∥∥∥∥
d

≤ ε 2
d−

3
2 ‖f‖2d(6.19)

applying again the (6.8)-bound using Proposition 3.
Thus the (5.27)-contribution is

(6.20) ≤ ε1/2 log
1
ε
‖f‖d + ε

2
d−

3
2 log

1
ε
‖f‖2d.

Collecting estimates (6.13), (6.20), it follows that

‖f − ∂1Y ‖d =
∥∥∥∥∑

j

∂1(GjHj)
∥∥∥∥
d

≤ ε1/2 log
1
ε
‖f‖d + ε

2
d−

3
2 log

1
ε
‖f‖2d(6.21)

which is the analogue of (5.35). Assuming ‖f‖d = δ, take ε = δ1/2 to obtain

(6.22) ‖f − ∂1Y ‖d ≤ δ1/5‖f‖d.
It remains to estimate

‖∇Y ‖d ≤
∥∥∥∥∑∇Fj

∥∥∥∥
d

+
∥∥∥∥∑∇(GjHj)

∥∥∥∥
d

= (6.23) + (6.24).

We have

(6.23) ∼
∥∥∥∥(∑ |∇Fj |2

)1/2∥∥∥∥
d

∼
∥∥∥∥(∑ |fj |2

)1/2∥∥∥∥
d

. ‖f‖d.
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Estimate (6.24) as

(6.25)
∥∥∥∥∑
s≥0

(∑
j

|∇Pj−s(GjHj)|2
)1/2∥∥∥∥

d

. ε−1/2‖f‖d

using (6.7)–(6.12).
This completes the argument.

We conclude this section with a

Proof of Theorem 1′ when d > 2. The argument is somewhat bizarre: one uses du-
ality twice! First, from Theorem 1 we easily deduce the estimate on Td

(6.26) ‖u− /

∫
u‖Ld/(d−1) ≤ C(d)‖ gradu‖L1+W−1,d/(d−1) , ∀u ∈ Ld/(d−1).

Next, we argue as in the beginning of Section 4. Observe that

L1 +W−1,d/(d−1) ⊂M+H−1

and that

(6.27) ‖ · · · ‖L1+W−1,d/(d−1) = ‖ · · · ‖M+W−1,d/(d−1) on L1 +W−1,d/(d−1)

(this may be easily seen using regularization by convolution).
Let E = C0 ∩W 1,d, F = Ld# and consider the bounded operator T : E → F

defined by TY = divY . Clearly T ∗ : F ∗ → E∗ = M + W−d,d/(d−1) is given by
T ∗u = gradu. By (6.26) and (6.27) we obtain

‖u‖F∗ ≤ C‖T ∗u‖E∗ ∀u ∈ F ∗

and therefore T is surjective from E onto F . Applying the open mapping principle
(or use Hahn-Banach as in the proof of Proposition 1), we see that for every f ∈ F
there is some Y ∈ E satisfying TY = f and ‖Y ‖E ≤ C‖f‖F . �

Remark 9. Alternatively, one may approximate f ∈ Ld#(Td) by trigonometric poly-
nomials. If f is a trigonometric polynomial, we may clearly obtain Y as a trigono-
metric polynomial (after convolution). A standard limit procedure permits then to
complete the argument.

7. The equation div Y = f with Dirichlet condition. Proof of

Theorems 2 and 3

So far we have studied problem (1.1) coupled with a periodic condition. We con-
sider here problem (1.1) coupled with a Dirichlet condition. Usually one associates
with (1.1) the “partial” Dirichlet condition

(7.1) Y · n = 0 on ∂Q

(n is normal to ∂Q). It is quite standard that for every f ∈ Lp#, 1 < p <∞, there
is some Y ∈W 1,p satisfying (1.1), (7.1) and

‖Y ‖W 1,p ≤ C‖f‖Lp .
Indeed, one may look for a special Y of the form Y = gradu and one is led to the
Neumann problem

(7.2)

{
∆u = f in Q,
∂u
∂n = 0 on ∂Q,
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which admits a solution u ∈W 2,p such that

‖u‖W 2,p ≤ C‖f‖Lp.
It is also possible to couple problem (1.1) with the full Dirichlet condition

(7.3) Y = 0 on ∂Q.

For simplicity we investigate first the case where the domain is a cube and then the
case of a Lipschitz bounded domain.

7.1. The case of a cube. Let Q = (0, 1)d. Here is the first result:

Theorem 2. Given f ∈ Lp#(Q), 1 < p <∞, there exists some Y ∈ W 1,p
0 (Q) solving

(1.1) with
‖Y ‖W 1,p ≤ C(p, d)‖f‖Lp ,

where we use the standard notation

W 1,p
0 (Q) = {Y ∈ W 1,p(Q);Y = 0 on ∂Q}.

Moreover Y can be chosen, depending linearly on f .

We will make use of the following lemma (which is a special case of Theorem 2).

Lemma 4. Given f ∈ W 1,p
0 (Q), 1 < p < ∞, with

∫
f = 0, there exists Y ∈

W 1,p
0 (Q), such that

div Y = f

and

(7.4) ‖Y ‖W 1,p(Q) ≤ C(d)‖f‖W 1,p(Q).

Moreover Y can be chosen, depending linearly on f .

Proof. Following a known construction (see Adams [1], p. 58 and Nirenberg [15]),
we construct Y by induction on the dimension d. The assertion is obvious for d = 1.
Assume that it holds in dimension (d− 1). Let f ∈W 1,p

0 (Qd), where Qd = (0, 1)d,
with

∫
Qd
f = 0.

Set

g(x′) =
∫ 1

0

f(x′, t)dt, where x′ = (x1, . . . , xd−1) ∈ Qd−1.

Clearly, g ∈W 1,p
0 (Qd−1) with

‖g‖W 1,p(Qd−1) ≤ C‖f‖W 1,p(Qd)

and also
∫
Qd−1

g = 0. By the induction assumption there is some Z ∈W 1,p
0 (Qd−1)

such that

(7.5) divx′Z = g on Qd−1

and
‖Z‖W 1,p(Qd−1) ≤ C‖g‖W 1,p(Qd−1) ≤ C‖f‖W 1,p(Qd).

Fix a function ζ ∈ C∞0 (0, 1) such that

(7.6)
∫ 1

0

ζ(t)dt = 1.

For x = (x′, xd) ∈ Qd set

h(x) =
∫ xd

0

(f(x′, t)− ζ(t)g(x′))dt.
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It is easy to see (using (7.6)) that h ∈ W 1,p
0 (Qd) and

‖h‖W 1,p(Qd) ≤ C‖f‖W 1,p(Qd).

Moreover
∂h

∂xd
(x) = f(x)− ζ(xd)g(x′).

Combining this with (7.5) yields

f(x) = divx′
(
ζ(xd)Z(x′)

)
+

∂h

∂xd

i.e., the conclusion holds with

Y (x) =
(
ζ(xd)Z(x′), h(x)

)
.

�

Proof of Theorem 2. For simplicity we assume that d = 2; the argument is similar
for d > 2.

Let
Q = {(x, y) ∈ R2; 0 < x < 1, 0 < y < 1}.

Given f ∈ Lp#(Q), 1 < p < ∞, we will construct a solution Y ∈ W 1,p
0 (Q) of (1.1);

moreover

(7.7) ‖Y ‖W 1,p ≤ Cp‖f‖Lp
and Y depends linearly on f . This is done in three steps. �

Step 1. Construct a solution Y ∈ W 1,p(Q) of (1.1) satisfying (7.7) and

(7.8) Y = 0 on the edge {(x, 0); 0 < x < 1}.

Proof. Set
Q̃ = {(x, y); 0 < x < 1,−2 < y < 1}

and

(7.9) f̃ =

{
f in Q,
0 in Q̃\Q.

Let Z ∈W 1,p(Q̃) be the solution of

(7.10) divZ = f̃ in Q̃

obtained via (7.2) (or via periodic conditions on Q̃).
The heart of the matter is the following construction. Write Z = (Z1, Z2) and

define Y = (Y1, Y2) in Q, where

Y1(x, y) = Z1(x, y) + 3Z1(x,−y)− 4Z1(x,−2y),

Y2(x, y) = Z2(x, y)− 3Z2(x,−y) + 2Z2(x,−2y).
(7.11)

(This type of “reflection” is reminiscent of standard extension techniques in Wm,p,
m ≥ 2; see e.g. Adams [1]).

It is easy to see using (7.9), (7,10) and (7.11) that

div Y = f in Q

while (7.8) is clear from the definition of Y .
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It is important (for the next step) to observe that if we had started with the
additional information

Z = 0 on the edge {(0, y);−2 < y < 1} of Q̃,

then we could infer that Y also vanishes on the edge {(0, y); 0 < y < 1} of Q. �
Step 2. Construct a solution Y ∈ W 1,p(Q) of (1.1) satisfying (7.7) and
(7.12)

Y = 0 on the 2 adjacent edges {(x, 0); 0 < x < 1} and {(0, y); 0 < y < 1}.

Proof. Set
Q̂ = {(x, y);−2 < x < 1, 0 < y < 1}

and

f̂ =

{
f in Q,

0 in Q̂\Q.
From Step 1 applied to f̂ in Q̂ we obtain a solution Ẑ of

div Ẑ = f̂ in Q̂

such that
Ẑ = 0 on the edge {(x, 0);−2 < x < 1} of Q̂.

Starting with Ẑ (instead of Z) we repeat the construction of Step 1 changing the
roles of x and y. We thus obtain a Y ∈ W 1,p(Q) satisfying (1.1) in Q, (7.7) and
(7.12). �
Step 3. Proof of Theorem 2 completed.

Consider a smooth partition of unity (θi), i = 1, 2, 3, 4, subordinate to the cov-
ering of Q consisting of the 4 discs of radius 1 centered at the 4 vertices. Let
Yi ∈W 1,p(Q) be the solution constructed in Step 2 relative to each vertex.

Set

Z =
4∑
i=1

θiYi.

It is easy to see from this construction that θiYi ∈ W 1,p
0 (Q), ∀i and thus Z ∈

W 1,p
0 (Q). Moreover

divZ = f +
∑
i

∇θi · Yi

and
∑
i∇θi ·Yi ∈W

1,p
0 (Q). By Lemma 4 we may construct X ∈ W 1,p

0 (Q) satisfying

divX =
∑
i

∇θi · Yi

and Y = Z −X has all the desired properties in Theorem 2.

Next we have a variant of Theorem 1′ for the full Dirichlet condition.

Theorem 3. Given f ∈ Ld#(Q) there exists some Y ∈ C0(Q̄)∩W 1,d
0 (Q) satisfying

(1.1) with
‖Y ‖L∞ + ‖Y ‖W 1,d ≤ C‖f‖Ld.

Remark 10. Clearly, Theorem 3 implies Theorem 1′ since the function Y extended
by periodicity belongs to C0(Td)∩W 1,d(Td) and satisfies (1.1) on Td. However its
proof relies heavily on Theorem 1′.
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Proof of Theorem 3. Follow the same strategy as in the proof of Theorem 2. The
only difference is that in Step 1 use Theorem 1′ to obtain Z (instead of taking the
special Z in the form of a gradient). Of course the dependence of Y on f is not
linear anymore.

In Step 3 rely on the following variant of Lemma 4 (with an identical proof). �

Lemma 4′. Given f ∈ C0(Q̄) ∩W 1,p
0 (Q), 1 < p < ∞, with

∫
f = 0, there exists

Y ∈ C0(Q̄) ∩W 1,p
0 (Q) such that

divY = f

and
‖Y ‖L∞ + ‖Y ‖W 1,p ≤ C(‖f‖L∞ + ‖f‖W 1,p).

7.2. The case of Lipschitz domains. Let Ω be a Lipschitz, connected, bounded
domain in Rd. Recall that Ω is Lipschitz if there is a δ > 0 such that for every
point p ∈ ∂Ω, ∂Ω ∩ Bδ(p) is the graph of a Lipschitz function (in an appropriate
coordinate system varying with p).

We have the following variants of Theorems 2 and 3.

Theorem 2′. Given any f ∈ Lp#(Ω), 1 < p < ∞, there exists some Y ∈ W 1,p
0 (Ω)

solving (1.1) with

(7.13) ‖Y ‖W 1,p ≤ C(p,Ω)‖f‖Lp.

Moreover Y can be chosen, depending linearly on f .

Theorem 3′. For every f ∈ Ld#(Ω) there exists some Y ∈ C0(Ω̄)∩W 1,d
0 (Ω) solving

(1.1) with

(7.14) ‖Y ‖L∞ + ‖Y ‖W 1,d ≤ C(p,Ω)‖f‖Ld .

The heart of the argument (for both theorems) is the following.

Lemma 5. There is a bounded operator S : Lp(Ω)→W 1,p
0 (Ω) such that

f − divSf ∈ W 1,p
0 ∀f ∈ Lp

and

(7.15) ‖f − divSf‖W 1,p ≤ C‖f‖Lp .

The variant needed for the proof of Theorem 3′ is

Lemma 5′. There is a nonlinear map S : Ld(Ω)→ C0(Ω̄) ∩W 1,d
0 (Ω) such that

(7.16) ‖Sf‖L∞ + ‖Sf‖W 1,d ≤ C‖f‖Ld

and

(7.17) ‖f − divSf‖W 1,d ≤ C‖f‖Ld .

The proof of Lemma 5 relies on the following construction. Let Q′ be a cube of
side δ in Rd−1 and set

U = {(x′, y) ∈ Q′ × R;ψ(x′) < y < ψ(x′) + δ}

where ψ ∈ Lip (Q′).
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Lemma 6. Assume

(7.18) ‖∇ψ‖L∞(Q′) ≤ ε0(d) sufficiently small (depending only on d).

Then, given any g ∈ Lp(U) there is some Z ∈W 1,p(U) satisfying

(7.19) divZ = g in U,

(7.20) Z = 0 on {y = ψ(x′); x′ ∈ Q′} and on the lateral boundary of U ,
with

‖Z‖W 1,p(U) ≤ C(p, d)‖g‖Lp(U).

Moreover Z can be chosen to depend linearly on g.

Proof. For x′ ∈ Q′ and 0 < y < δ set

g̃(x′, y) = g
(
x′, y + ψ(x′)

)
.

Note that
‖g̃‖Lp(Q) = ‖g‖Lp(U)

where Q = Q′ × (0, δ).
By Theorem 2 there exists Z̃ ∈W 1,p(Q) such that{

div Z̃ = g̃ in Q,

Z̃ = 0 on {(x′, 0); x′ ∈ Q′} ∪
(
∂Q′ × (0, δ)

)
with

(7.21) ‖Z̃‖W 1,p(Q) ≤ C(d)‖g̃‖Lp(Q).

Note that here
∫
g̃ = 0 is not required since we may consider in Q̂ = Q′× (0, 2δ)

the function

ĝ(x′, y) =

{
g̃(x′, y) for x′ ∈ Q′ and 0 < y < δ,

−g̃(x′, y − δ) for x′ ∈ Q and δ < y < 2δ,

and then solve (using Theorem 2)

div Ẑ = ĝ in Q̂,

Ẑ = Q on ∂Q̂,

with
‖Ẑ‖W 1,p(Q̂) ≤ C(d)‖g̃‖Lp(Q).

The restriction Z̃ of Ẑ to Q′ × (0, δ) satisfies the desired properties.
Also, it is clear by scaling that the constant in (7.21) is independent of δ.
Returning to (x′, y) ∈ U , set

Z(x′, y) = Z̃
(
x′, y − ψ(x′)

)
;

it is easy to see, using (7.18) and (7.21), that

‖divZ − g‖Lp(U) ≤ C(d)ε0‖g‖Lp(U)

and
‖Z‖W 1,p(U) ≤ C(d)(1 + ε0)‖g‖Lp(U).

Choosing ε0 such that C(d)ε0 < 1 and iterating this construction yields the lemma.
�

The variant necessary for Theorem 3′ is



ON THE EQUATION div Y = f AND APPLICATION TO CONTROL OF PHASES 421

Lemma 6′. Assume (7.18). Then given g ∈ Ld(U) there is some Z ∈ C0(Ū) ∩
W 1,p(U) satisfying (7.19), (7.20) and

‖Z‖L∞(U) + ‖Z‖W 1,d(U) ≤ C(d)‖g‖Ld(U).

Next, we remove the smallness condition (7.18) on the Lipschitz constant of ψ.

Lemma 7. With the same notation as in Lemma 6, assume only that ψ ∈ Lip (Q′).
Then, given any g ∈ Lp(U), there is some Z ∈W 1,p(U) satisfying (7.19), (7.20)

and
‖Z‖W 1,p(U) ≤ C(p, d, ‖∇ψ‖L∞(Q′))‖g‖Lp(U).

Moreover Z can be chosen to depend linearly on g.

Proof. Consider the dilation x′ 7→ x̃′ = Nx′ (only in x′, not in the full x-variable).
Set Q̃′ = NQ′ and define on Q̃′ the function

ψ̃(x̃′) = ψ(x̃′/N).

Fix an integer N sufficiently large so that

‖∇ψ̃‖L∞(Q̃′) =
1
N
‖∇ψ‖L∞(Q′) ≤ ε0(d)

where ε0(d) comes from (7.18).
Set

g̃(x̃′, y) = g

(
x̃′

N
, y

)
.

Divide the cube Q̃′ (of side Nδ) into Nd−1 cubes of side δ and apply, in each of
them, Lemma 6 to ψ̃ and g̃. By gluing the corresponding solutions (this is possible
because all these solutions vanish on the lateral boundaries of their domains), we
obtain some Z̃(x̃′, y) ∈ W 1,p(Ũ) satisfying{

div x̃′,yZ̃ = g̃ in Ũ = {(x̃′, y) ∈ Q̃′ × R; ψ̃(x̃′) < y < ψ̃(x̃′) + δ},
Z̃ = 0 on {y = ψ̃(x̃′); x̃′ ∈ Q̃′},

and the corresponding W 1,p-estimate for Z̃.
We now return to the variables (x′, y) ∈ U . Write the components of Z̃ as

Z̃ = (Z̃ ′, Z̃d)

and set

Z(x′, y) =
(

1
N
Z̃ ′(Nx′, y), Z̃d(Nx′, y)

)
.

It is easy to check that Z satisfies all the required properties. �

The variant necessary for Theorem 3′ is

Lemma 7′. With the same notation as in Lemma 6, assume only that ψ ∈ Lip (Q′).
Then, given any g ∈ Ld(U), there is some Z ∈ C0(Ū) ∩ W 1,p(U) satisfying

(7.19), (7.20) and

‖Z‖L∞(U) + ‖Z‖W 1,p(U) ≤ C(d, ‖∇ψ‖L∞(Q′))‖g‖Lp(U).

We now return to the
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Proof of Lemma 5. Consider a finite covering of ∂Ω by a collection of cubes Qi, i =
1, . . . , k, of side δ such that in each Qi, ∂Ω∩Qi admits a Lipschitz parametrization
ψi. To this covering we associate functions θ0, θ1, . . . , θk such that

θ0 +
k∑
i=1

θi = 1 on Ω,

θ0 ∈ C∞0 (Ω) and θi ∈ C∞0 (Qi) for i = 1, . . . , k.

Given g ∈ Lp(Ω) solve, using Lemma 7, for i = 1, 2, . . . , k,{
divZi = g in Ui,

Zi = 0 on ∂Ω ∩Qi.
Next solve

divZ0 = g in Ω,
for example Z0 = grad(∆)−1 where ∆−1 is used with zero Dirichlet condition on
∂Ω.

Note that

Z =
k∑
i=0

θiZi ∈W 1,p
0

and

divZ = g +
k∑
i=0

∇θi · Zi.

All the conclusions of Lemma 5 hold with

Sg = Z.

�
Proof of Lemma 5′. We make the same construction as above, using Lemma 7′ in
place of Lemma 7 and Theorem 2 to solve divZ0 = g in any large cube containing
Ω. �

Theorem 2′ is an immediate consequence of Lemma 5 and the following general
functional analysis argument applied with E = W 1,p

0 , F = Lp# and T = div. (Note
that T ∗ = grad is injective on F ∗ = Lq#, since Ω is connected.)

Lemma 8. Let E,F be two Banach spaces and let T be a bounded operator from
E into F . Assume

(7.22) N(T ∗) = {0}.

(7.23)


There is a bounded operator S from F into E and
a compact operator K from F into itself such that

T ◦ S = I +K.

Then T admits a right inverse.

Proof. First we note that T is onto. Indeed, in view of (7.22) it suffices to show
that T (or equivalently T ∗) has closed range. This is an obvious consequence of the
inequality

‖f‖ ≤ C‖T ∗f‖+ ‖K∗f‖ ∀f ∈ F ∗

(which follows from (7.23)).
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Next, let X be a complementing subspace for N(I + K) in F and set Y =
R(I + K). Since u = (I + K)|X is an isomorphism onto Y , its inverse u−1 : Y →
X ⊂ F satisfies

(7.24) (I +K) ◦ u−1 = I on Y.

Let Q be a projector from F onto Y ; since R(I − Q) is finite dimensional, we
may choose a base (eα) of R(I −Q) and write

(7.25) f = Qf +
∑
α

〈e∗α, f〉eα ∀f ∈ F,

for some e∗α’s in F ∗.
Since we showed that T is onto, one has, for each α, some ēα ∈ E satisfying

(7.26) T ēα = eα ∀α.

Consider the operator S1 : F → E defined for every f ∈ F , by

S1f = S ◦ u−1 ◦Qf +
∑
α

〈e∗α, f〉ēα.

Using (7.24), (7.25) and (7.26) we see that

T ◦ S1f = (I +K) ◦ u−1 ◦Qf +
∑
α

〈e∗α, f〉eα

= Qf +
∑
α

〈e∗α, f〉eα = f

for every f ∈ F . Thus S1 is a right inverse for T . �

Proof of Theorem 3′. Given f ∈ Ld write, using Lemma 5′,

f = divY1 +R

with Y1 ∈ C0(Ω̄) ∩W 1,d
0 (Ω) and R ∈W 1,d

0 (Ω) (and the corresponding estimates).
If
∫
f = 0, then

∫
R = 0 and we may apply Theorem 2′ in any Lp (since

W 1,d ⊂ Lp, ∀p < ∞). In particular, if we choose p > d, we obtain Y2 ∈ W 1,p
0 (Ω)

such that
R = divY2.

By the Sobolev imbedding, Y2 ∈ C0(Ω̄) and Y = Y1 + Y2 satisfies all the required
properties. �

8. Estimation of the phase in H1/2 +W 1,1
. Proof of Theorem 4

We return in this last section to the question discussed in the Introduction con-
cerning the control of the phase ϕ in terms of ‖eiϕ‖H1/2 .

Let ϕ be a smooth real-valued function on Td and set g = eiϕ. The main result
is the estimate

(8.1) ‖ϕ‖H1/2+W 1,1 ≤ C(d)(1 + ‖g‖H1/2)‖g‖H1/2 .

Write g as a Fourier series

g =
∑
ξ∈Zd

ĝ(ξ)eixξ.
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The H1/2-component in the decomposition of ϕ will be obtained as a paraproduct
of g and ḡ,

(8.2) P =
∑
k

[∑
ξ2

λk(|ξ2|)ĝ(ξ2)e−ixξ2
][ ∑

2k≤|ξ1|<2k+1

ĝ(ξ1)eixξ1
]
,

where for each k we let 0 ≤ λk ≤ 1 be a smooth function on R+:

..........

..........

..........

..........

..........

...........................................................................................................................................................................................................................................................................................................................................................................................................

2k−2

1

2k−1

We claim that

(8.3) ‖P‖H1/2 ≤ C‖g‖∞‖g‖H1/2

and

(8.4) ‖ϕ− 1
i
P‖W 1,1 ≤ C‖g‖2H1/2 .

Proof of (8.3). This is totally obvious from the construction

‖P‖2H1/2 ∼
∑
k

2k
∥∥∥∥[∑

ξ2

λk(|ξ2|)ĝ(ξ2)e−ixξ2
][ ∑

2k≤|ξ1|<2k+1

ĝ(ξ1)eixξ1
]∥∥∥∥2

2

≤
∑
k

2k
∥∥∥∥∑λk(|ξ|)ĝ(ξ)e−ixξ

∥∥∥∥2

∞

[ ∑
|ξ|∼2k

|ĝ(ξ)|2
]

≤ C‖g‖2∞‖g‖2H1/2 .(8.5)

�

Proof of (8.4). We estimate for instance

(8.6) ‖∂1ϕ−
1
i
∂1P‖L1.

Thus, letting ξ = (ξ1, . . . , ξd) ∈ Zd,

(8.7) ∂1ϕ =
1
i
ḡ∂1g =

∑
ξ1,ξ2∈Zd

ξ1
1 ĝ(ξ1)ĝ(ξ2) eix·(ξ1−ξ2)

and by (8.2)

(8.8)
1
i
∂1P =

∑
k

∑
2k≤|ξ1|<2k+1,ξ2

(ξ1
1 − ξ1

2)λk(|ξ2|)ĝ(ξ1)ĝ(ξ2)eix·(ξ1−ξ2),

(8.9) ∂1ϕ−
1
i
∂1P =

∑
k

∑
2k≤|ξ1|<2k+1,ξ2

mk(ξ1, ξ2)ĝ(ξ1)ĝ(ξ2)eix·(ξ1−ξ2),

where by definition of λk

(8.10) mk(ξ1, ξ2) = ξ1
1 − λk(|ξ2|)(ξ1

1 − ξ1
2) =

{
ξ1
2 if |ξ2| ≤ 2k−2,

ξ1
1 if |ξ2| ≥ 2k−1.
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Estimate

(8.11) ‖∂1ϕ−
1
i
∂1P‖1 ≤

∑
k1,k2

∥∥∥∥ ∑
|ξ1|∼2k1 ,|ξ2|∼2k2

mk1(ξ1, ξ2)ĝ(ξ1)ĝ(ξ2)eix·(ξ1−ξ2)

∥∥∥∥
1

.

Distinguish the contributions of∑
k1∼k2

+
∑

k1<k2−4

+
∑

k1>k2+4

= (8.12) + (8.13) + (8.14).

Clearly 2−kmk(ξ1, ξ2) restricted to [|ξ1| ∼ 2k]× [|ξ2| ∼ 2k] is a smooth multiplier
satisfying the usual derivative bounds. Therefore

(8.15) (8.12) ≤ C
∑
k

2k
∥∥∥∥ ∑
|ξ1|∼2k

ĝ(ξ1)eixξ1
∥∥∥∥

2

∥∥∥∥ ∑
|ξ2|∼2k

ĝ(ξ2)eixξ2
∥∥∥∥

2

∼ ‖g‖2H1/2 .

If k1 < k2 − 4, then |ξ2| > 2k1 and mk1(ξ1, ξ2) = ξ1
1 by (8.10). Therefore

(8.13) =
∑

k1<k2−4

∥∥∥∥ ∑
|ξ1|∼2k1 ,|ξ2|∼2k2

ξ1
1 ĝ(ξ1)ĝ(ξ2)eix·(ξ1−ξ2)

∥∥∥∥
1

≤
∑

k1<k2−4

2k1

∥∥∥∥ ∑
|ξ1|∼2k1

ĝ(ξ1)eixξ1
∥∥∥∥

2

.

∥∥∥∥ ∑
|ξ2|∼2k2

ĝ(ξ2)eixξ2
∥∥∥∥

2

≤
∑
k1<k2

2k1

( ∑
|ξ1|<2k1

|ĝ(ξ1)|2
)1/2( ∑

|ξ2|∼2k2

|ĝ(ξ2)|2
)1/2

≤ C‖g‖2H1/2 .(8.16)

If k1 > k2 + 4, then |ξ2| < 2k1−2 and mk1(ξ1, ξ2) = ξ1
2 and the bound on (8.14) is

similar. �
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