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Figure 1. The function j.

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......................

................

......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
..............

..

j(r) = +∞ for r < 0

j(r)

r

................................................................
.....................

................
..............
.............
...........
...........
..........
..........
.........
.........
.........
........
.........
........
.........
.........
........
.........
........
........
.......
.......
........
.......
........
.......
.......
........
.......
........
.......
.......
........
.......
.......
....

Typeset by AMS-TEX

1
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Figure 2. The graph of ∂j.
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Figure 3. The graph of γ = (∂j)−1.
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Preface by Häım Brezis.

Most of the results in this work were obtained over the period 1975-77 and were an-
nounced at various meetings (see e.g. Brezis [3], [4], [5]). This paper has a rather unusual
history. Around 1970 I became interested in nonlinear elliptic equations of the form

(P.1) −∆u+ |u|p−1u = f in a domain Ω ⊂ R
N ,

with zero Dirichlet condition, where 0 < p < ∞ and f ∈ L1. The motivation came from
the study of the porous medium equation

(P.2)
∂v

∂t
− ∆(|v|m−1v) = 0,

with 0 < m <∞.
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The space L1 is a natural functional space associated with (P.2) since (P.2) generates
(at least formally) a contraction semi-group in L1. When trying to apply the Crandall-
Liggett theory in L1 to (P.2) one is led to the question whether the nonlinear operator
Av = −∆(|v|m−1v) is m-accretive in L1, and in particular whether the equation

v − λ∆(|v|m−1v) = f

admits a solution for every f ∈ L1 and every λ > 0. Setting u = |v|m−1v and scaling out λ
yields (P.1) with p = 1/m. In the sixties, equations of the type (P.1) had been extensively
studied by F. Browder (see e.g. Browder [1]) and by J. L. Lions (see e.g. Leray-Lions [1])
using energy estimates and monotonicity methods which are suitable when f ∈ H−1, but
not when f ∈ L1. No one in my circles was concerned with L1 data for (P.1). The only
result I had seen was stated in Stampacchia [1] and dealt with the linear elliptic equation
in divergence form

(P.3) Lu = −
∑ ∂

∂xj
(aij

∂u

∂xi
) = µ.

Stampacchia asserted that, given any µ ∈ L1 (or even measure), equation (P.3) admits
a solution u ∈ Lq, ∀q < N/(N − 2); this was an easy consequence, via duality, of the
DeGiorgi-Stampacchia estimate

‖v‖L∞ ≤ Cp‖f‖Lp ∀p > N/2,

for the solution of Lv = f .

In 1970, Walter Strauss and I tackled (P.1) for f ∈ L1. We proved, in Brezis-Strauss
[1], that, for every f ∈ L1 and every 0 < p < ∞, equation (P.1) admits a unique solution
u ∈ Lp. More generally, if β : R → R is any continuous nondecreasing function (such that
β(0) = 0), we established that, given any f ∈ L1, there exists a unique solution of

(P.4) −∆u+ β(u) = f

with β(u) ∈ L1. We even dealt with maximal monotone graphs β in R × R and obtained
the same conclusion for the multivalued equation.

(P.5) −∆u+ β(u) 3 f.

Later, we considered, in Bénilan-Brezis-Crandall [1], similar problems in all of R
N (instead

of domains).

At the International Congress of 1974, I heard a lecture by E. Lieb reporting on the
paper Lieb-Simon [1]. One of their results asserts that for some values of λ, λ > 0, the
Thomas-Fermi equation

(P.6) −∆u+ [(u− λ)+]3/2 =
∑̀

i=1

miδai
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with mi > 0 and δai
= Dirac mass at ai, admits a solution. Of course, the function

β(t) = [(t − λ)+]3/2 is nondecreasing, continuous and β(0) = 0 (since λ > 0). I became
intrigued and decided that it would be interesting to study (P.1)( or (P.4)) for measures
instead of L1 functions. My initial intuition was that measures and L1 functions are the
same “creatures” from the point of view of estimates, and therefore the Brezis-Strauss
theorem should extend easily to measures. On the other hand, the method of Lieb-Simon
was totally different from ours. In their variational approach, equation (P.6) appears as
the Euler equation of a “dual” convex minimization problem. Their technique could be
adapted to solve (P.4) for a limited class of nonlinearities β and a limited class of measures
f .

I mentioned the problem to Philippe Bénilan in the Spring of 1975 and he liked the
idea of working together on this topic. Philippe had been my first Ph D student, even
though he was about four years older than me (he defended his Ph D in 1972). He had
been sent to me in 1970 by his mentor, Jacques Deny, who was one of the leaders of the
French school in Potential Theory, jointly with M. Brelot and G. Choquet. He knew much
better than me the fine properties of harmonic functions and of measure theory. He was
the ideal partner on this project. We had been both invited the following summer to
Madison, Wisconsin, by Mike Crandall. I have nostalgic memories from the long days we
spent together working on the big tables outside the Memorial Union, facing the inspiring
view of Lake Mendota. Philippe, who was an addicted smoker, felt free to finish pack after
pack in this open-air environment. We managed rather quickly to prove that (P.1) has a
solution for every measure f in the case where p < N/(N−2) for N > 2 and no restriction
on p for N = 1, 2 (see Theorem A.1 in Appendix A). Of course, this was sufficient to handle
the Thomas-Fermi model since N = 3 and 3/2 < 3. Still, we were puzzled and tried hard
to remove the restriction p < N/(N − 2). For a few weeks we had no success, even on the
simple equation

(P.7) −∆u+ u3 = δ in R
3.

I remember vividly the shiny day when we discovered, sitting at “our” table next to
the lake, that (P.7) has no solution: this is the elementary computation in Remark A.
4. We were stunned! There was indeed an unexpected difference between measures and
L1 and it was due to the nonlinear nature of the problem. Later, we decided to read
carefully the paper of Lieb-Simon [1]. We thought about some of their open problems and
succeeded in solving two of them (see Section 5 and 6 below). Then came the painful task
of writing up our results. Philippe was a powerful and creative mathematician, able to
analyze a concrete differential equation in its most minute details . However, when the
time arrived to write a paper, he prefered to “hide” the simple illuminating examples and
to present instead a grand abstract framework. He was still strongly influenced by the
French school of Potential Theory whose program was to axiomatize Potential Theory “à
la Bourbaki” – carefully hiding the Laplace operator! Philippe was a perfectionist, always
eager to state a theorem in the most general setting, with minimal assumptions. He wrote
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a first, partial, draft of our paper (basically, Sections 1, 2, 3 below). I made drastic changes
which he did not like, etc. After several divergent iterations we stopped and the paper
was “buried” unfinished and unorganized. In the meantime we advertised some of the
results through lectures, and some hand-written partial versions were circulated “under
the coat” as “samizdats”. In fact, our unpublished results gave an impetus to beautiful
developments in numerous directions:

a) Solving nonlinear PDE’s with L1, or measures, as data became very fashionable.
There is a vast and flourishing literature starting in the eighties. I have listed some of the
references in Appendix A. Important connections with Probability Theory (E. Dynkin,
J.M. LeGall and their students) have reinvigorated the whole subject in recent years.

b) The nonexistence aspect (e.g. for Dirac masses) has given rise to striking new re-
sults about removable singularities (e.g. point singularities). On the other hand, singular
solutions have also been analyzed and classified; see some references in Appendix A.

c) Our approach turned out to be useful in other models arising in the density-functional
theory of atoms and molecules; see e.g. Bénilan - G. Goldstein - J. Goldstein [1], J.
Goldstein - G. Rieder [1], [2], [3], G. Rieder [1], G. Goldstein - J. Goldstein - W. Jia [1],
Breazna - G. Goldstein - J. Goldstein [1] and related references.

d) The need for new versions of the strong maximum principle in the case of “bad”
coefficients stimulated new research in that direction; see Appendix C and the references
therein.

e) The solution u of the Thomas-Fermi equation (P.6) tends to zero at infinity. The set
where the density ρ = [(u− λ)+]3/2 is positive plays an important role. When λ > 0, this
set is bounded. The regularity of its boundary has been studied by Caffarelli-Friedman
[1].

After the tragic death of Philippe I decided that our work should not remain in a drawer.
Out of respect for the memory of Philippe I have kept his style of presentation. Our notes
were incomplete and the last time we touched them was 1985. I have tried my best to
put them in good order and fill in missing arguments. My apologies to the reader if there
are still some inconsistencies. I have also added an extensive list of references published
in recent years and which bear some relation to our work.

Häım Brezis

0. Introduction.

The principal motivation of this work comes from the important paper of Lieb-Simon
[1]. One of their main results is the following. Given I > 0, let

KI =

{
ρ ∈ L1(R3); ρ > 0 a.e. and

∫
ρ = I

}
.
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Consider the function

(0.1) V (x) =
∑̀

i=1

mi

|x− ai|
, mi > 0, ai ∈ R

3,

and set for ρ ∈ L1 ∩ L5/3, ρ > 0 a.e.,

(0.2) E(ρ) =
3

5

∫
ρ5/3 −

∫
V ρ+

1

2

∫∫
ρ(x)ρ(y)

|x− y| dxdy.

It is not difficult to check that E(ρ) is well defined and bounded below. Consider the
minimization problem

(0.3) E(I) = inf
{
E(ρ); ρ ∈ KI ∩ L5/3

}
.

Theorem 0.1 (Lieb-Simon). Set

(0.4) I0 =
∑̀

i=1

mi

If I 6 I0, the minimum in (0.3) is uniquely achieved by some ρ. Moreover there is a
constant λ > 0 such that

(0.5) ρ2/3 − V + Bρ = −λ in [ρ > 0],

(0.6) −V + Bρ > −λ in [ρ = 0],

where

(0.7) Bρ(x) =

∫
ρ(y)

|x− y|dy.

In the neutral case, I = I0, one has ρ > 0 a.e. and λ = 0, so that ρ satisfies

(0.8) ρ2/3 − V +Bρ = 0 a.e. on R
3.

The constant λ plays an important role; −λ is called the chemical potential. It appears
in the Euler “equation” (0.5)-(0.6), corresponding to the minimization problem (0.3), as a
Lagrange multiplier associated with the constraint

∫
ρ = I. The dichotomy (0.5)-(0.6) is

standard in variational inequalities involving a constraint of the type ρ ≥ 0.
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It is convenient to introduce

(0.9) u = V − Bρ,

and then (0.5)-(0.6) may be rewritten as

(0.10) − 1

4π
∆u =

∑
miδai

− ρ,

(0.11) ρ = [(u− λ)+]3/2,

where r+ = max{r, 0} and δa = Dirac mass at a.

Hence we are led to the nonlinear PDE

(0.12) −∆u+ 4π[(u− λ)+]3/2 = 4π
∑

miδai

coupled with a condition at infinity coming from (0.9),

(0.13) u(x) → 0 as |x| → ∞

(possibly to be understood in a weak sense). Note that here the constant λ > 0 is not

given; it is part of the unknown. But we have instead the additional information

∫
[(u− λ)+]3/2 = I,

where I > 0 is given.

Remark 0.1. When I > I0, E(I) = E(I0) and the infimum in (0.3) is not achieved.

Our work goes in several directions. First, we replace the function
3

5
ρ5/3 by a general

convex function j : R → [0,+∞] such that j(0) = 0 and we incorporate the constraint
ρ > 0 into j by assuming

(0.14) j(r) = +∞ for r < 0.

Next, we consider a general measurable function V (x) instead of (0.1). We replace R
3

by R
N , N > 3, and we replace the Coulomb potential by the fundamental solution k of

(−∆), k(x) = cN/|x|N−2 with cN = 1/(N − 2)σN and σN is the area of the unit space in
R

N .
The energy E takes the form

(0.15) E(ρ) =

∫
j(ρ)−

∫
V ρ+

cN
2

∫∫
ρ(x)ρ(y)

|x− y|N−2
dxdy,
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whenever it makes sense.
The minimization problem we tackle is

(MI) E(I) = inf{E(ρ);

∫
ρ = I}.

The Euler equation (0.5)-(0.6) is replaced, at least formally, by a multivalued equation

(0.16) ∂j(ρ)− V + Bρ 3 −λ a.e. on R
N ,

for some constant λ, where ∂j is the subdifferential of j.

Note that in the special case where j is C1 on (0,+∞) we have

∂j(r) =





j′(r) for r > 0,

(−∞, j′(0+)] for r = 0,

∅ for r < 0,

and thus (0.16) is equivalent to

(0.17) j′(ρ) − V +Bρ = −λ in [ρ > 0],

(0.18) j′(0+) − V +Bρ > −λ in [ρ = 0],

which is precisely (0.5)-(0.6) when

(0.19) j(r) =





1

p
rp for r > 0,

+∞ for r < 0,

and p = 5/3.

Usually we will asume that V (x) → 0 as |x| → ∞ (at least in some weak sense - for
example, meas [|V | > δ] is finite for every δ > 0); we will also assume that j ′(0+) = 0, and
then (0.17)-(0.18) implies.

(0.20) λ > 0.

As above, we introduce

(0.21) u = V − Bρ,

so that we obtain

(0.22) −∆u+ ρ = −∆V
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and

(0.23) ∂j(ρ) 3 u− λ.

We now introduce the inverse maximal monotone graph, γ = (∂j)−1, which is also equal
to ∂j∗, where j∗ is the conjugate convex function of j (see e.g. Brezis [2]). In the most
important examples (see Section 4), γ is singlevalued.

Finally we arrive at the nonlinear multivalued PDE

(0.24) −∆u+ γ(u− λ) 3 −∆V,

(0.25) u(x) → 0 as |x| → ∞.

Again, λ is unknown, but we have the additional information

(0.26)

∫
∆(u− V ) = I,

with I > 0 given, or equivalently when γ is singlevalued

(0.27)

∫
γ(u− λ) = I.

*INSERT FIGURES 1, 2, 3 *

In Section 1 we study the relationship between the variational formulation (MI) and
the Euler equation (0.16). We prove in great generality (see Theorem 1) that if ρ is a
minimizer for (MI), then ρ satisfies the Euler equation (0.16). We establish the converse
(0.16) ⇒ (MI) under the additional condition

(H) j∗(V −M) ∈ L1 for some constant M,

which guarantees that E is bounded below. For example, when N = 3, V (x) =
∑ mi

|x− ai|
,

and j(r) =
1

p
rp for r > 0, condition (H) corresponds to the restriction

(0.28) p > 3/2.

In fact, when 1 < p 6 3/2, an easy computation (see Section 4) shows that E(I) = −∞
for every I > 0. Despite this fact, we are going to see in Section 4 that the Euler equation
(0.16) does have a solution when p > 4/3.
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Therefore, we have a range of p’s,

(0.29)
4

3
< p 6

3

2
,

where the variational formation is meaningless while the PDE approach makes sense. This
is the reason why we have taken, in Sections 3, 4 and in Appendix A, a direct PDE route.

In Section 2 we make basically the following assumptions on j:

(0.30) j is C1 on (0,+∞), j′(0+) = 0,

(0.31) lim
r→+∞

j(r)

r
= +∞

On the function V we assume V (x) → 0 as |x| → ∞ in the weak sense that

(0.32) meas [|V | > δ] <∞ for every δ > 0.

and that

(H+) ω = j∗((1 + θ)(V −M)) ∈ L1,

for some constants θ > 0 and M > 0. It follows from (H+) that

−V ρ > −j(ρ) − ω −Mρ

and consequently E(ρ) is well defined in (−∞,+∞] for every ρ ∈ L1, ρ > 0 and j(ρ) ∈ L1.

We then consider the auxilary problem, for every λ ∈ R,

(Pλ) inf{E(ρ) + λ

∫
ρ; ρ > 0, ρ ∈ L1 and j(ρ) ∈ L1}.

We will also make the assumption

(0.33) ess sup
RN

V > 0,

which is quite natural. If it is not satisfied, then V 6 0 a.e. on R
N and the unique

minimizer in (Pλ) is ρ = 0.

In Section 2 we prove the following
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Theorem 0.2. Assume (H+), (0.30), (0.31), (0.32) and (0.33). Then, for every λ > 0,
(Pλ) admits a unique minimizer ρλ, and ρλ satisfies (0.16). Set

I(λ) =

∫
ρλ, λ > 0.

Then the function λ 7−→ I(λ) is nonincreasing, and continuous from (0,∞) into [0,∞)
More precisely,

I(λ) is decreasing on
(
0, ess sup

RN

V
)
,(0.34)





I(λ) = 0 ∀λ > ess sup
RN

V if ess sup
RN

V <∞,

lim
λ→∞

I(λ) = 0 if ess sup
RN

V = ∞,
(0.35)





I0 = lim
λ↓0

I(λ) = sup
λ>0

I(λ) <∞ if and only if

(P0) admits a minimizer ρ0, and then I0 =

∫
ρ0.

(0.36)

As a consequence, we easily derive,

Corollary 0.3. Under the assumptions of Theorem 0.2, we have

{
for every I ∈ (0, I0) problem (MI) admits a unique minimizer

ρI = ρλ, where λ > 0 is the unique solution of I(λ) = I;
(0.37)

if I0 <∞, problem (MI0) admits ρ0 as its unique minimizer;(0.38)

if I0 <∞ and I > I0, problem (MI) admits no minimizer.(0.39)

In Section 3 we investigate situations where assumption (H) is not satisfied. For example

N = 3, V of the form (0.1) and j(r) =
1

p
rp, r > 0, with p in the range (0.29). We tackle

directly the Euler equation (0.16), first with λ > 0 prescribed and then with λ free and
I =

∫
ρ prescribed.

The main result in Section 3 is

Theorem 0.4. Assume (0.30). Let V be any measurable function satisfying (0.32) and
(0.33). Then, there exists λ1 ∈ [0,+∞] such that

(0.40) for every λ > λ1(and λ < +∞) there is a unique solution ρλ of (0.16)

(0.41) for λ < λ1 there is no solution of (0.16).
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Moreover the function I(λ) =
∫
ρλ is nonincreasing continuous on (λ1,+∞), and

I1 = sup
λ>λ1

∫
ρλ = lim

λ↓λ1

∫
ρλ

is finite if and only if (0.16) admits a solution for λ = λ1.

It may well happen that λ1 in Theorem 0.4 is +∞, meaning that there exists no λ
for which (0.16) has a solution. Consider the case N = 3, V (x) of the form (0.1) and

j(r) =
1

p
rp, r > 0, with 1 < p 6

4

3
. Then (0.16) is equivalent to

(0.42) −∆u+ [(u− λ)+]1/(p−1) =
∑

miδai

and we know from the nonexistence result (Remark A. 4) in Appendix A that for any
λ > 0, (0.42) has no solution.

The numbers λ1 and I1 in Theorem 0.4 play a central role and it is important to
determine their value in concrete situations. This is the content of Section 4. Here are
some typical results

Theorem 0.5. Assume (0.30). Let V be any measurable function satisfying (0.33) and

(0.43) V = k ∗ f for some f ∈ L1, i.e., f = −∆V ∈ L1.

Then, λ1 = 0 and

(0.44) 0 < I1 ≤
∫
f+.

Under the additional assumption

(0.45) j(r) ∼ rp near r = 0 with p > 2(N − 1)/N,

then

(0.46)

∫
f 6 I1 6

∫
f+

and in particular

(0.47) I1 =

∫
f if f > 0.

The proof of (0.46) relies heavily on the following ingredient established in Appendix
B.
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Lemma 0.6. Assume

(0.48) v = k ∗ µ, for some bounded measure in R
N

and

(0.49) v+ ∈ Lq(RN ) for some q ≤ N/(N − 2)

then

(0.50)

∫

RN

µ 6 0.

Assumption (0.43) does not hold e.g. when N = 3 and V is given by (0.1) since ∆V is
a measure and not an L1 function. In this case we have

Theorem 0.7. Same assumptions as in Theorem 0.5 except that we replace (0.43) by

(0.43′) V = k ∗ f, for some bounded measure f.

Assume in addition that

(0.51) j(r) ∼ rp as r → ∞, with p > 2(N − 1)/N.

Then all the conclusions of Theorem 0.5 hold.

Putting together all the above results, consider now the case where

(0.52) j(r) = rp, r > 0, with p > 2(N − 1)/N,

(0.53) V = k ∗ f for some bounded measure f > 0, f 6≡ 0.

Set

I1 =

∫
f.

Corollary 0.8. Assume (0.52) and (0.53). Given any I ∈ (0, I1] there exists a unique pair
ρ ∈ L1, ρ > 0, and λ > 0, denoted ρI , λI , satisfying

(0.54) ρp−1 − V + k ∗ ρ = −λ in [ρ > 0],

(0.55) −V + k ∗ ρ > −λ in [ρ = 0],

(0.56)

∫
ρ = I

When I = I1, then ρI > 0 a.e. and λI = 0. When I > I1, problem (0.54)− (0.55)− (0.56)
has no solution. Under the stronger assumption p > N/2, ρI is also the unique minimizer
of E(ρ) subject to the constraint {ρ ∈ L1 ∩ Lp, ρ > 0 and

∫
ρ = I}.

In Sections 5 and 6 we solve two problems raised by Lieb-Simon [1]. The first one
concerns the uniqueness of the extremal in some minmax principle.
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Theorem 0.9. Consider for simplicity the setting of Corollary 0.8 with

(0.57) 2(N − 1)/N < p 6 2.

Let I ∈ (0, I1], then λI given by Corollary 0.8 satisfies

(0.58) λI = max
ρ∈L1,ρ>0

R

ρ=I

ess inf
[ρ>0]

{V − ρp−1 − k ∗ ρ}

and

(0.59) λI = min
ρ∈L1,ρ>0

R

ρ=I

ess sup
RN

{V − ρp−1 − k ∗ ρ}.

If I < I1, the max (resp. min) in (0.58) (resp. (0.59)) is uniquely achieved by the solution
ρI obtained in Corollary 0.8.

When N = 3 and p = 4/3, assertions (0.58) and (0.59) are due to Lieb-Simon [1].
They asked whether the max in (0.58) and the min in (0.59) are uniquely achieved. The
answer is indeed positive when I < I1. As we shall see in Section 5, the answer negative

when I = I1. The proof of uniqueness in Theorem 0.9 involves a new form of the strong
maximum principle with “bad” coefficients described in Appendix C.

Our last result concerns the asymptotic behavior of λI as I ↑ I1.
Theorem 0.10. Consider for simplicity the setting for Corollary 0.8, with

(0.60) 2(N − 1)/N < p < 2.

Then

(0.61) α = lim
I↑I1

λI

(I1 − I)τ
exists,

where τ = 2(p− 1)/(2− 2N + pN) and the positive constant α can be computed explicitly
via the solution of an elementary ODE.

The exact value of α is given in Theorem 9 ( Section 6).

1. The variational problem and its Euler equation; conditions for equivalence.

Let Ω be a σ-finite measure space with measure dx. Let j : Ω × R → [0,+∞] be a
normal convex integrand, i.e., j(x, r) is measurable and, for a.e. x ∈ Ω, j(x, ·) is convex
l.s.c. (= lower semi-continuous). We assume that

(1.1) j(x, 0) = 0 for a.e. x ∈ Ω and j(x, r) = +∞ for a.e. x ∈ Ω and for all r < 0.
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Set

(1.2) a(x) = sup {r > 0; j(x, r) < ∞}.

Let j∗(x, s) denote the conjugate convex function, that is,

j∗(x, s) = sup
r∈R

{sr − j(x, r)} for a.e. x ∈ Ω, for all s ∈ R.

Note that

j∗(x, s) = 0 for a.e. x ∈ Ω, for all s 6 0,

j∗(x, s) > 0 for a.e. x ∈ Ω, for all s > 0.

Let V : Ω → R be a measurable function (so that |V (x)| < ∞ for a.e. x ∈ Ω). The
following assumption will sometimes play an important role:

(H) there exists a constant M such that j∗(·, V (·) −M) ∈ L1(Ω).

Note that assumption (H) holds for example if V + ∈ L∞(Ω).

Define the functional J : L1(Ω) → (−∞,+∞] to be

J(ρ) =





∫

Ω

{j(x, ρ(x))− V (x)ρ(x)} dx if j(·, ρ)− V ρ ∈ L1(Ω),

+∞ otherwise.

with
D(J) = {ρ ∈ L1(Ω); J(ρ) < +∞}.

In particular, if ρ ∈ D(J), then ρ(x) > 0 for a.e. x ∈ Ω.

Remark 1. If (H) holds, then J is convex l.s.c. on L1(Ω) and bounded below on bounded
sets of L1(Ω). This is a straightforward consequence of the fact that for every ρ ∈ L1(Ω)
we have j(x, ρ(x)) − V (x)ρ(x) > −j∗(x, V (x) −M) −Mρ(x) for a.e. x ∈ Ω (so that we
may use Fatou’s lemma to check the lower semi-continuity of J). Note that if (H) does
not hold, it may happen that D(J) is not convex. Consider, for example j(x, r) = r2 and
a function V such that V > 0 a.e. and V /∈ L2(Ω); then V ∈ D(J) while 1

2V /∈ D(J).

Set
L∞

0 (Ω) = {ρ ∈ L∞(Ω); ρ = 0 outside a set of finite measure}.

Throughout the paper we shall assume that k : Ω × Ω → R is a measurable function
satisfying

(1.3) k(x, y) = k(y, x) and k(x, y) > 0 for a.e. x, y ∈ Ω,
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(1.4)





for every ρ ∈ L∞
0 (Ω), then k(x, y)ρ(x)ρ(y) ∈ L1(Ω × Ω)

and

∫∫

Ω×Ω

k(x, y)ρ(x)ρ(y)dxdy > 0

(i.e., k is a nonnegative kernel).

Define the functional K : L1(Ω) → [0,+∞] by

K(ρ) =





1

2

∫∫

Ω×Ω

k(x, y)ρ(x)ρ(y)dxdy if ρ ∈ L1(Ω) and ρ > 0 a.e. on Ω

+∞ otherwise,

with
D(K) = {ρ ∈ L1(Ω); K(ρ) < +∞}.

Set
E(ρ) = J(ρ) +K(ρ) for ρ ∈ L1(Ω)

and
D(E) = D(J) ∩D(K);

E is called the Thomas-Fermi energy functional.

Finally we introduce the mapping B defined for ρ ∈ L1(Ω) with ρ > 0 a.e. on Ω, by

Bρ(x) =

∫

Ω

k(x, y)ρ(y) dy.

The main result in this section is the following:

Theorem 1. Let ρ0 ∈ L1(Ω) with ρ0 > 0 a.e. on Ω be such that

(1.5) 0 <

∫
ρ0(x) dx <

∫
a(x) dx,

and

(M) ρ0 ∈ D(E) and E(ρ0) 6 E(ρ) ∀ρ ∈ D(E) with

∫
ρ(x) dx =

∫
ρ0(x) dx.

Then1

(E)

{
there exists a constant λ ∈ R such that

∂j(x, ρ0(x)) +Bρ0(x) 3 V (x) − λ for a.e. x ∈ Ω.

Conversely, when (H) holds, then (E) implies (M).

Remark 2. λ appears in (E) as a Lagrange multiplier corresponding to the constraint∫
ρ(x)dx =

∫
ρ0(x)dx in the Euler equation (E) associated to the minimization prob-

lem (M).

In proving Theorem 1 we shall make use of the following:

1∂j(x, r) denotes the subdifferential of j(x, r) with respect to r.
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Lemma 1. The functional K is convex l.s.c. on L1(Ω). In addition

(1.6)

∫∫

Ω×Ω

k(x, y)ϕ(x)ψ(y) dx dy 6 K(ϕ) +K(ψ) ∀ϕ, ψ ∈ D(K)

and equality in (1.6) holds if and only if Bϕ = Bψ. Moreover we have2

(1.7) if ρ ∈ D(K) and A ⊂ Ω with |A| < ∞, then χABρ ∈ L1(Ω).

Proof of Lemma 1. Let (Ωn) be a nondecreasing sequence of measurable sets in Ω such
that |Ωn| <∞ ∀n and ∪nΩn = Ω. Given ϕ, ψ ∈ D(K) ∩ L∞(Ω) set

ϕn = χΩn
ϕ and ψn = χΩn

ψ.

By (1.4) we have

∫∫

Ω×Ω

k(x, y)[ϕn(x) − ψn(x)][ϕn(y) − ψn(y)] dx dy > 0,

i.e. ∫∫

Ω×Ω

k(x, y)ϕn(x)ψn(y) dx dy 6 K(ϕn) +K(ψn).

Using the monotone convergence theorem we obtain (1.6) for ϕ, ψ ∈ D(K) ∩ L∞(Ω). The
general case follows by truncation.

The function K is convex since for ϕ, ψ ∈ D(K) and t ∈ (0, 1) we have

K((1 − t)ϕ+ tψ) =
1

2

∫∫
k(x, y)[(1− t)ϕ(x) + tψ(x)][(1− t)ϕ(y) + tψ(y)] dx dy

= (1 − t)2K(ϕ) + t2K(ψ) + t(1 − t)

∫∫
k(x, y)ϕ(x)ψ(x) dx dy

6 (1 − t)2K(ϕ) + t2K(ψ) + t(1 − t) [K(ϕ) +K(ψ)]

= (1 − t)K(ϕ) + tK(ψ).

The lower semi-continuity of K follows from Fatou’s lemma.

Next, let ρ ∈ D(K) and A ⊂ Ω with |A| <∞. We have

∫

A

(Bρ)(x)dx =

∫∫

Ω×Ω

k(x, y)ρ(y)χA(x) dx dy 6 K(ρ) +K(χA).

2|A| = meas (A) denotes the measure of A and χA denotes the characteristic function of A.
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Finally we show that equality in (1.6) holds if and only if Bϕ = Bψ.
First, suppose that Bϕ = Bψ; then we have

∫
ϕBψ =

1

2

∫
ϕBψ +

1

2

∫
ψBϕ = K(ϕ) +K(ψ).

Conversely, assume that equality in (1.6) holds. Note that

∫
(ψ + ζ)Bϕ 6 K(ϕ) +K(ψ) +K(ζ) +

∫
ζBψ, ∀ϕ, ψ, ζ ∈ D(K),

and since (1.6) holds we obtain
∫
ζBϕ 6 K(ζ) +

∫
ζBψ. Replacing ζ by λ ζ, λ > 0, we

see that
∫
ζBϕ 6

∫
ζBψ ∀ζ ∈ D(K). Reversing ϕ and ψ we find

∫
ζBϕ =

∫
ζBψ ∀ζ ∈

D(K) and consequently
∫
ζBϕ =

∫
ζBψ ∀ζ ∈ L∞

0 (Ω). Therefore we have Bϕ = Bψ.

Remark 3. The argument above shows that K is a strictly convex function on D(K) if
and only if B is injective.

Proof of Theorem 1.

(E) ⇒ (M) (under assumption (H)).

Indeed, by (E) and the definition of the subdifferential, we have for ρ ∈ L1(Ω)

(1.8) j(·, ρ) > j(·, ρ0) + (V − Bρ0 − λ)(ρ− ρ0) a.e. on Ω.

In particular, for ρ ≡ 0, we find

j(·, ρ0) − V ρ0 + (Bρ0)ρ0 6 −λρ0 a.e. on Ω.

From (H) it follows that j(·, ρ0) − V ρ0 is bounded below by some L1 function; thus ρ0 ∈
D(E). Now let ρ ∈ D(E) with

∫
ρ(x)dx =

∫
ρ0(x)dx; integrating (1.8) and using (1.6) we

obtain (M).

(M) ⇒ (E) (without assumption (H), but with (1.5)).

First let ζ ∈ D(E) with
∫
ζ(x) dx =

∫
ρ0(x) dx and V (ζ − ρ0) ∈ L1(Ω).

Let
ρt = (1 − t)ρ0 + tζ with 0 < t < 1.

We claim that

(1.9) ρt ∈ D(J) and J(ρt) 6 (1 − t)J(ρ0) + tJ(ζ).

Indeed we have a.e. on Ω,

(1.10) j(·, ρt) − V ρt 6 (1 − t)(j(·, ρ0) − V ρ0) + t(j(·, ζ)− V ζ).
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On the other hand we have, a.e. on Ω,

j(·, ρt) > min{j(·, ρ0), j(·, ζ)}
– this follows from the monotonicity of j(x, ·) on [0,+∞). Therefore we obtain a.e. on Ω,

(1.11) j(·, ρt) − V ρt > min{j(·, ρ0) − V ρ0, j(·, ζ)− V ζ} − 2|V (ρ0 − ζ)|.
Combining (1.10) and (1.11) we see that ρt ∈ D(J) and integrating (1.10) we find

J(ρt) 6 (1 − t)J(ρ0) + tJ(ζ).

It follows that

E(ρt) 6 (1 − t)J(ρ0) + tJ(ζ) + (1 − t)2K(ρ0) + t2K(ζ) + t(1 − t)

∫
(Bρ0)ζ.

By assumption (M) we have

E(ρ0) = J(ρ0) +K(ρ0) 6 E(ρt)

and thus

tJ(ρ0) + (2t− t2)K(ρ0) 6 tJ(ζ) + t2K(ζ) + t(1 − t)

∫
(Bρ0)ζ.

Dividing by t and letting t→ 0 we find

(1.12)




J(ρ0) +

∫
(Bρ0)ρ0 6 J(ζ) +

∫
(Bρ0)ζ

∀ζ ∈ D(E) with
∫
ζ(x) dx =

∫
ρ0(x) dx and V (ζ − ρ0) ∈ L1(Ω).

Set Ṽ = V − Bρ0 and define the functional J̃ : L1(Ω) → (−∞,+∞] by

J̃(u) =





∫
{j(x, u(x))− Ṽ (x)u(x)} dx if j(·, u) − Ṽ u ∈ L1(Ω),

+∞ otherwise.

It is clear that ρ0 ∈ D(J̃) (since ρ0 ∈ D(E)).

We claim that

(1.13)

{
J̃(ρ0) 6 J̃(ζ) ∀ζ ∈ D(J̃)

with
∫
ζ(x) dx =

∫
ρ0(x) dx, (ζ − ρ0) ∈ L∞

0 (Ω) and Ṽ (ζ − ρ0) ∈ L1(Ω).

Indeed, suppose ζ satisfies the assumptions in (1.13), then ζ also satisfies the assumptions
in (1.12). Note that:

a) ζ ∈ D(K), since ζ 6 ρ0 + |ζ − ρ0| ∈ D(K) +D(K);

b) ζ ∈ D(J̃) ∩D(K) ⇒ ζ ∈ D(J), since j(·, ζ)− V ζ = j(·, ζ)− Ṽ ζ − (Bρ0)ζ;

c) V (ζ − ρ0) = Ṽ (ζ − ρ0) + (Bρ0)(ζ − ρ0).

We conclude the proof of Theorem 1 with the help of the next lemma applied to J̃
(instead of J).
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Lemma 2. Assume ρ0 ∈ D(J) satisfies (1.5), as well as

(1.14)

{
J(ρ0) 6 J(ρ) ∀ρ ∈ D(J)

with
∫
ρ(x) dx =

∫
ρ0(x) dx, (ρ− ρ0) ∈ L∞

0 (Ω) and V (ρ− ρ0) ∈ L1(Ω).

Then there exists a constant λ ∈ R such that

(1.15) V − λ ∈ ∂j(·, ρ0) a.e. on Ω.

Proof. Set

E− = {x ∈ Ω ; ρ0(x) > 0},
E+ = {x ∈ Ω ; ρ0(x) < a(x)}.

It follows from (1.5) that |E−| > 0 and |E+| > 0. Let (Ωn) be as in the proof of Lemma 1
and set

Ω′
n = {x ∈ Ωn; |V (x)| + ρ0(x) < n},

so that |E− ∩ Ω′
n| ↑ |E−| and |E+ ∩ Ω′

n| ↑ |E+| as n→ ∞. Fix n0 such that

|E− ∩ Ω′
n0
| > 0 and |E+ ∩ Ω′

n0
| > 0.

In what follows we choose n > n0; for every λ ∈ R set

(1.16) uλ(x) = (I + ∂j(x, ·))−1(V (x) + ρ0(x) − λ) for x ∈ Ω,

(1.17) Iλ =

∫

Ω′

n

uλ(x) dx.

Note that Iλ makes sense since |uλ(x)| 6 n + |λ| on Ω′
n and |Ω′

n| < ∞. Clearly we have
uλ(x) ↑ a(x) as λ ↓ −∞ and uλ(x) ↓ 0 as λ ↑ +∞. Therefore

lim
λ→−∞

Iλ =

∫

Ω′

n

a(x) dx and lim
λ→+∞

Iλ = 0.

On the other hand we have

0 <

∫

Ω′

n

ρ0(x) dx <

∫

Ω′

n

a(x) dx

since n > n0. Thus, there exists a constant λn ∈ R such that

(1.18) Iλn
=

∫

Ω′

n

ρ0(x) dx
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(note that Iλ is a continuous function of λ and, in fact, |Iλ − Iµ| 6 |λ− µ| |Ω′
n|). It follows

from (1.16) that, a.e. on Ω,

(1.19) uλn
(x) + ∂j(x, uλn

(x)) 3 V (x) + ρ0(x) − λn

and so

j(x, ρ0(x)) − j(x, uλn
(x)) > (V (x) + ρ0(x) − λn − uλn

(x))(ρ0(x) − uλn
(x)).

Hence a.e. on Ω we find

(1.20)
j(x, uλn

(x)) − V (x)uλn
(x) 6

6 j(x, ρ0(x)) − V (x)ρ0(x) − (ρ0(x) − uλn
(x))2 − λn(uλn

(x) − ρ0(x)).

On the other hand we have, a.e. on Ω′
n,

(1.21) j(x, uλn
(x)) − V (x)uλn

(x) > −V (x)uλn
(x) > −n(n+ |λn|).

Combining (1.20) and (1.21) we see that

j(·, uλn
) − V uλn

∈ L1(Ω′
n).

Set

ρ =

{
uλn

on Ω′
n,

ρ0 on Ω\Ω′
n.

Therefore ρ satisfies all the assumptions in (1.14) and we deduce that

(1.22)

∫

Ω′

n

{j(x, ρ0(x)) − V (x)ρ0(x)} dx 6

∫

Ω′

n

{j(x, uλn
(x)) − V (x)uλn

(x)} dx.

Combining (1.20) and (1.22) we find

ρ0 = uλn
a.e. on Ω′

n.

It follows from (1.19) that

V (x) − λn ∈ ∂j(x, ρ0(x)) for a.e. x ∈ Ω′
n.

For every n > n0, set

Λn = {λ ∈ R; V (x) − λ ∈ ∂j(x, ρ0(x)) for a.e. x ∈ Ω′
n}.

We have just established that Λn 6= ∅. Clearly Λn is a closed interval. Moreover Λn is
bounded; indeed if, for instance, Λn were unbounded below we would have ρ0(x) = a(x)
for a.e. x ∈ Ω′

n – a contradiction with |E+∩Ω′
n| > 0. Since Λn decreases with n we obtain

⋂

n>n0

Λn 6= ∅

and the conclusion of Lemma 2 follows.

Our next lemma – which will be used later – is closely related to Theorem 1.
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Lemma 3. Let ρ0 ∈ L1(Ω) with ρ0 > 0 a.e. on Ω be such that

(1.23) ρ0 ∈ D(E) and E(ρ0) 6 E(ρ) ∀ρ ∈ D(E).

Then

(1.24) ∂j(x, ρ0(x)) +Bρ0(x) 3 V (x) for a.e. x ∈ Ω.

Conversely, when (H) holds, then (1.24) implies (1.23).

Remark 4. Note that assumption (1.5) is not required in Lemma 3.

Proof of Lemma 3. In order to prove that (1.24) ⇒ (1.23) under assumption (H) one
proceeds exactly as in the proof of (E) ⇒ (M).

In order to prove that (1.23) ⇒ (1.24) one uses the same Ṽ and J̃ as in the proof of
Theorem 1 and one shows that

(1.25) J̃(ρ0) 6 J̃(ζ) ∀ζ ∈ D(J̃) with (ζ − ρ0) ∈ L∞
0 (Ω) and Ṽ (ζ − ρ0) ∈ L1(Ω).

Next one considers
Ω′

n = {x ∈ Ωn; |Ṽ (x)| + ρ0(x) < n}
and one uses (1.25) with

ζ =

{
u on Ω′

n,

ρ0 on Ω\Ω′
n,

where u(x) = (I + ∂j(x, ·))−1(Ṽ (x) + ρ0(x)). This leads to ρ0 = u a.e. on Ω′
n and

Ṽ (x) ∈ ∂j(x, ρ0(x)) for a.e. x ∈ Ω′
n.

Remark 5. Suppose that (E) and (H) hold. Then we have, in fact, a stronger conclusion
than (M), namely

(1.26) E(ρ0) + λ

∫
ρ0 6 E(ρ) + λ

∫
ρ ∀ρ ∈ D(E).

This follows from Lemma 3 applied with (V −λ) instead of V . In particular, if we happen
to know that λ > 0 (for example Lemma 8 implies that this holds when V∞ − j′(0+) > 0,
where V∞ is defined at the beginning of Section 2), then we have

(1.27) E(ρ0) 6 E(ρ) ∀ρ ∈ D(E) with

∫
ρ(x)dx 6

∫
ρ0(x)dx.

This explains why one can use a “relaxation” method (see Lieb-Simon [1] and also Propo-
sition 3 in Section 2). In other words, the constraint

∫
ρ(x) dx = I in the minimization

problem is “relaxed” to
∫
ρ(x) dx 6 I.
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Remark 6. Assume (H) holds. Then we have

(1.28) D(E)
L1

= {ρ ∈ L1(Ω); 0 6 ρ(x) 6 a(x) a.e. on Ω}

and consequently, for every constant I with 0 6 I <
∫
a(x) dx, there is some ρ ∈ D(E) such

that
∫
ρ(x)dx = I. For this purpose, it suffices to show that every function ρ ∈ L∞

0 (Ω)

such that 0 6 ρ(x) 6 a(x) a.e. on Ω, belongs to D(E)
L1

. Indeed, set

ρε(x) =
(ρ(x) − ε)+

1 + εj(x, (ρ(x)− ε)+) + ε|V (x)| , ε > 0,

and note that ρε ∈ D(E) and ρε → ρ in L1(Ω) as ε→ 0.

2. Existence via the variational route.

Given a constant I with 0 6 I <∞ we set

KI =

{
ρ ∈ D(E);

∫
ρ(x) dx = I

}
.

In this section we are concerned with the following problem:

(MI) find ρ̄ ∈ KI such that E(ρ̄) 6 E(ρ) ∀ρ ∈ KI .

For simplicity, we shall now assume that j(x, r) = j(r) is independent of x and we set

a = sup {r > 0; j(r) <∞} 6 ∞.

Of course, we assume that a > 0.

We recall (see Remark 6) that KI 6= ∅ for every I < a|Ω|. When I = a|Ω| (assuming
a|Ω| <∞), then either KI is reduced to a single element {a} or KI = ∅ – so that problem
(MI) has no interest. Therefore we may always assume that I < a|Ω|.

We shall encounter two different situations:

- in Case I, a strong assumption (on V or Ω) implies that problem (MI) has a solution
for every I < a|Ω|,
- in Case II, problem (MI) has a solution only for a limited range of I’s, usually smaller
than the interval [0, a|Ω|).
Throughout Section 2 we make an assumption slightly stronger than (H), namely

(H+) there exist constants θ > 0 and M ∈ R such that j∗
(
(1 + θ)(V −M)

)
∈ L1(Ω).
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We also assume that j is coercive, i.e.,

(2.1) lim
r→+∞

j(r)

r
= +∞.

Finally, we set3

V∞ = inf {α ∈ R; [V > α] has finite measure}.
Note that there exist α’s such that [V > α] has finite measure (this is so because (H)
holds and j∗ 6≡ 0 since a > 0). Therefore we have either V∞ ∈ R or V∞ = −∞. Of
course if |Ω| < ∞, then we have V∞ = −∞. In the special case where Ω = R

N and
V (∞) = lim

|x|→∞
V (x) exists, then V∞ = V (∞).

Case I: We assume here that

(2.2) V∞ = −∞.

The main result is the following:

Theorem 2. Assume (H+), (2.1) and (2.2). Then, for every I with 0 6 I < a|Ω| there
exists a solution of (MI).

In the proof of Theorem 2 we shall use

Lemma 4. Assume (H+). Let (ρn) be a sequence in D(J) such that

(2.3)

∫
j(ρn) − V ρn 6 C1 and

∫
ρn 6 C1 ∀n, for some constant C1 > 0.

Then, there exists a constant C2 such that

(2.4)

∫
j(ρn) 6 C2 and

∫
|V ρn| 6 C2 ∀n.

Proof of Lemma 4. Set ω(x) = j∗
(
(1 + θ)(V (x) −M)

)
so that ω ∈ L1(Ω) and

(1 + θ)(V −M)ρn 6 j(ρn) + ω. It follows that

(2.5) V ρn 6
1

1 + θ
j(ρn) + ω +Mρn

and, using (2.3), we obtain

∫
j(ρn) 6 C1 +

1

1 + θ

∫
j(ρn) +

∫
ω + |M |C1.

3We use the notations [V > α] = {x ∈ Ω; V (x) > α} and [V > α] = {x ∈ Ω; V (x) > α} etc...
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This leads to
∫
j(ρn) 6 C2. Next, set

fn =
1

1 + θ
j(ρn) + ω +Mρn − V ρn

so that fn > 0 (by (2.5)). From (2.3) we have

∫
j(ρn) + fn − 1

1 + θ
j(ρn) − ω −Mρn 6 C1

and thus ∫
|fn| 6 C1 +

∫
ω + |M |C1.

It follows that ∫
|V ρn| 6 C1 + 2

∫
ω + 2 |M |C1 +

∫
j(ρn)

and therefore we obtain a bound for
∫
|V ρn|.

Proof of Theorem 2. From assumption (H) we have

j(ρ) − V ρ > −j∗(V −M) −Mρ ∀ρ ∈ KI ,

so that

E(ρ) > −
∫
j∗(V −M) −MI ∀ρ ∈ KI ,

and consequently

(2.6) E(I) = inf
ρ∈KI

E(ρ) > −∞.

Let (ρn) be a minimizing sequence for (2.6). From Lemma 4 we deduce that

(2.7)

∫
j(ρn) 6 C

and

(2.8)

∫
|V |ρn 6 C,

for some constant C. We claim that the sequence (ρn) is equi-integrable in Ω, that is,

(2.9) ∀ε > 0 ∃ δ > 0 such that

∫

A

ρn < ε ∀n, ∀A ⊂ Ω measurable with |A| < δ,
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and

(2.10) ∀ε > 0 ∃Ω′ ⊂ Ω measurable with |Ω′| <∞ such that

∫

Ω\Ω′

ρn < ε ∀n.

Verification of (2.9). Given any k > 0, there is a constant Ck such that

j(r) > kr − Ck ∀r > 0

(this follows from (2.1)).

Consequently, we have for every measurable set A ⊂ Ω

k

∫

A

ρn 6

∫

Ω

j(ρn) + Ck |A|

so that (by (2.7)) we obtain ∫

A

ρn 6
C

k
+
Ck

k
|A|.

Given ε > 0 we fix k large so that
C

k
<
ε

2
and then we choose δ > 0 so small that

Ck

k
δ <

ε

2
.

Verification of (2.10). We recall that

∫
|V ρn| 6 C.

Choose k > 0 so large that
C

k
< ε and set Ω′ = [V > −k]. It follows from assumption

(2.2) that |Ω′| <∞. Clearly, we have

k

∫

Ω\Ω′

ρn 6

∫

Ω\Ω′

|V ρn| 6 C

and thus ∫

Ω\Ω′

ρn 6
C

k
< ε ∀n.

We may therefore apply the Dunford-Pettis theorem (see e.g. Dunford-Schwartz [1],
Corollary IV.8.11) and conclude that there exists a subsequence (ρnk

) such that ρnk
⇀ ρ̄

weakly in L1(Ω). It follows that
∫
ρ̄ = I and E(ρ̄) 6 infρ∈KI

E(ρ) (since E is convex and
l.s.c. on L1(Ω)).

We now turn to Case II, which is the most important from the point of view of appli-
cations.
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Case II: We assume here that

V∞ > −∞.

This implies in particular that |Ω| = ∞. For simplicity we will assume throughout the rest
of this section that

(2.11) V∞ = 0.

This is just a normalization condition since in the problems of interest we may always add
a constant to V . Note that (2.11) implies in particular that ess sup

Ω
V > 0.

Concerning j we will assume that j : R → [0,+∞] is convex l.s.c.,

j(r) = +∞ for r < 0 and j(0) = 0,(2.12)

j is finite and C1 on (0,∞),(2.13)

j′(0+) = lim
r↓0

j(r)

r
= 0.(2.14)

In addition, we assume that

(2.15) E is strictly convex onD(E)

and

(2.16) for every ρ ∈ D(E) and every δ > 0, the set [Bρ > δ] has finite measure.

Condition (2.16) says that, in some weak sense, Bρ→ 0 at “infinity”.

In order to study problem (MI), it will be extremely useful to introduce an auxiliary
problem. For every λ ∈ R, consider

(Pλ) inf

{
E(ρ) + λ

∫
ρ; ρ ∈ D(E)

}
.

The main result is the following:

Theorem 3. Assume (H+), (2.1), (2.11), (2.12), (2.13), (2.14), (2.15), and (2.16).
Then,

for every λ > 0, problem (Pλ) admits a unique minimizer ρλ,(2.17)

for every λ < 0, the infimum in (Pλ) is −∞.(2.18)
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Set

I(λ) =

∫
ρλ, λ > 0.

Then the function λ 7−→ I(λ) is nonincreasing, and continuous from (0,∞) into [0,∞)
More precisely,

I(λ) is decreasing on
(
0, ess sup

Ω
V

)
,(2.19)





I(λ) = 0 ∀λ > ess sup
Ω

V if ess sup
Ω

V <∞,

lim
λ→∞

I(λ) = 0 if ess sup
Ω

V = ∞,
(2.20)





I0 = lim
λ↓0

I(λ) = sup
λ>0

I(λ) <∞ if and only if

(P0) admits a minimizer ρ0 ∈ D(E), and then I0 =

∫
ρ0.

(2.21)

Figure 4. Typical shape of I(λ).
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The proof of Theorem 3 is based on several lemmas.

Lemma 5. Assume (H+), (2.1), (2.11), and (2.12). Then, for every ε > 0 there exists a
function ωε ∈ L1(Ω) such that

(2.22) j(r) − V (x)r + εr > ωε(x) for a.e. x ∈ Ω, ∀r > 0.

Proof. Set A = [V > ε] and so |A| < ∞ (since V∞ = 0). For x ∈ cA = [V 6 ε] we have

j(r) − V (x)r + εr > j(r) > 0
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and thus we choose ωε(x) = 0 on cA.

Given any k > 0 (to be fixed later) there is a constant Ck such that

j(r) > kr − Ck ∀r > 0.

(Here we have used (2.1)). For x ∈ [ε < V 6 k] we have

j(r) − V (x)r + εr > j(r) − kr > −Ck

and so we choose ωε(x) = −Ck on [ε < V 6 k].

Finally, we consider the case where x ∈ [V > k]. We now use assumption (H+) to write

(1 + θ)(V (x) −M) r 6 j(r) + ω(x)

where ω(x) = j∗((1 + θ)(V (x) −M)). Therefore we have

j(r) − V (x)r + εr > (1 + θ)(V (x) −M)r − ω(x) − V (x)r + εr

> r[−M + θV (x) − θM ] − ω(x) > −ω(x)

provided we fix k so large that −M + θk− θM > 0. Hence we may choose ωε(x) = −ω(x)
on [V > k].

Lemma 6. Same assumptions as in Lemma 5. Let (ρn) be a sequence in D(E) such that∫
ρn 6 C and ρn ⇀ ρ̄ weakly in L1(Ωj) for each j.4 Then

E(ρ̄) 6 lim inf
n→∞

E(ρn).

Proof. For every ε > 0, let ωε(x) be as in Lemma 5. We have

E(ρn) > E(ρnχΩj
) +

∫

Ω\Ωj

ωε(x) dx− ε

∫

Ω

ρn(x) dx.

For each j, ρnχΩj
⇀ ρ̄χΩj

weakly in L1(Ω).
Hence we obtain, for each j,

lim inf
n→∞

E(ρn) > E(ρ̄ χΩj
) +

∫

Ω\Ωj

ωε(x) dx− εC.

We conclude by letting j → ∞ and then ε→ 0.

4We recall that (Ωj) is a nondecreasing sequence of measurable sets in Ω such that |Ωj| < ∞ ∀j and

∪jΩj = Ω
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Lemma 7. Same assumptions as in Lemma 5. Then for every λ > 0 there is some
ρ̄ ∈ D(E) such that

(2.23) E(ρ̄) + λ

∫
ρ̄ 6 E(ρ) + λ

∫
ρ ∀ρ ∈ D(E).

Proof. Applying Lemma 5 with ε = λ/2, we obtain some function ω ∈ L1(Ω) such that

j(r) − V (x)r +
λ

2
r > ω(x) a.e. in Ω, ∀r > 0,

and so

j(r) − V (x)r + λr >
λ

2
r + ω(x) a.e. in Ω, ∀r > 0.

Therefore, for every ρ ∈ D(E), we have

E(ρ) + λ

∫
ρ >

λ

2

∫
ρ− C.

Thus if (ρn) is a minimizing sequence for (2.23), then
∫
ρn 6 C and also

∫
j(ρn)−V ρn 6 C.

We deduce from Lemma 4 that
∫
j(ρn) 6 C. Therefore, the sequence (ρn) is equi-integrable

on each Ωj and we may extract a subsequence still denoted (ρn) such that ρn ⇀ ρ̄ weakly
in L1(Ωj) for each j. We conclude with the help of Lemma 6 that (2.23) holds.

A final lemma,

Lemma 8. Assume (2.12), (2.13), (2.14), (2.16), and suppose ρ ∈ D(E). Let W be any
measurable function satisfying

(2.24) ∂j(ρ) + Bρ 3W a.e. on Ω.

Then

(2.25) W∞ 6 0.

Proof. Let α > 0; we shall prove that W∞ 6 α. Indeed fix ε such that 0 < ε < α. By
assumption (2.16) the set Ω1 = [Bρ > ε] has finite measure. Since α− ε > 0 there exists
δ > 0 such that ∂j(r) ⊂ (−∞, α − ε] for r ∈ [0, δ]. (Here we have used (2.14)). The set
Ω2 = [ρ > δ] has also finite measure (since ρ ∈ L1(Ω)). Using (2.24) we see that

[W > α] ⊂ Ω1 ∪ Ω2

and thus the set [W > α] has finite measure.

Proof of Theorem 3. We split the proof into 5 steps.
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Step 1. The existence of a minimizer ρλ for (Pλ) when λ > 0 has been established in
Lemma 7. We prove that I(λ) =

∫
ρλ is nonincreasing and continuous on (0,∞).

Proof. Let λ, µ > 0. We have
{ E(ρλ) + λI(λ) 6 E(ρµ) + λI(µ)

E(ρµ) + µI(µ) 6 E(ρλ) + µI(λ)

and thus
(λ− µ)

(
I(λ) − I(µ)

)
6 0,

so that the function λ 7−→ I(λ) is nonincreasing.

We now prove that I(λ) is continous on (0,+∞). Let λn → λ̄ with λ̄ > 0 and set
ρn = ρλn

. It is easy to see (as in the proof of Lemma 7) that
∫
ρn 6 C and

∫
j(ρn) 6 C.

Therefore we may extract a subsequence (ρnk
) such that ρnk

⇀ ρ̄ weakly in L1(Ωj) for
each j. We have

(2.26) E(ρnk
) + λnk

∫
ρnk

6 E(ρ) + λnk

∫
ρ ∀ρ ∈ D(E);

passing to the limit as k → ∞ we find

E(ρ̄) + λ̄

∫
ρ̄ 6 E(ρ) + λ̄

∫
ρ ∀ρ ∈ D(E),

so that ρ̄ and ρλ̄ are both minimozers for the problem (Pλ̄). By (2.15) it follows that

ρ̄ = ρλ̄,
∫
ρ̄ = I(λ̄). And also lim inf

k→∞

∫
ρnk

>

∫
ρ̄ = I(λ̄). Next we have, from (2.26)

(choosing ρ = ρ̄)

lim sup
k→∞

λnk

∫
ρnk

6 E(ρ̄) + λ̄

∫
ρ̄− lim inf

k→∞
E(ρnk

) 6 λ̄

∫
ρ̄.

We conclude that

lim sup
k→∞

∫
ρnk

6

∫
ρ̄

and so lim
k→∞

∫
ρnk

=
∫
ρ̄ = I(λ̄). The uniqueness of the limit shows that, in fact,

lim
n→∞

I(λn) = I(λ̄).

Step 2. Proof of (2.19).

Proof. Indeed let λ, µ ∈ (0, ess sup
Ω

V ) be such that I(λ) = I(µ). We have

E(ρλ) + λ

∫
ρλ 6 E(ρµ) + λ

∫
ρµ,

E(ρµ) + µ

∫
ρµ 6 E(ρλ) + µ

∫
ρλ,
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and therefore E(ρλ) = E(ρµ). We deduce from the strict convexity of E that ρλ = ρµ.

On the other hand we have

∂j(ρλ) + Bρλ 3 V − λ a.e.,

∂j(ρµ) + Bρµ 3 V − µ a.e.,

which means (since j is C1 on (0,∞))

{
j′(ρλ) + Bρλ =V − λ a.e. on [ρλ > 0]

Bρλ >V − λ a.e. on [ρλ = 0]

and similarly for ρµ.

If ρλ = ρµ = ρ is positive on a set of positive measure, then we have

V − λ− Bρ = V − µ−Bρ,

and thus λ = µ. Otherwise, ρλ = ρµ = ρ = 0, and then V − λ 6 0, V − µ 6 0, i.e.,
λ > ess sup

Ω
V and µ > ess sup

Ω
V , but this contradicts the assumption λ, µ ∈

(
0, ess sup

Ω
V

)
.

Step 3. Proof of (2.20).

Proof. By Lemma 3 we have

∂j(ρλ) +Bρλ 3 V − λ a.e. on Ω

and thus
ρλ ∈ ∂j∗(V − λ−Bρλ).

It follows that
j∗(V −M) − j∗(V − λ− Bρλ) > ρλ(λ−M +Bρλ)

and therefore

ρλ 6
j∗(V −M)

λ−M
for λ > M.

Using assumption (H) we obtain lim
λ→+∞

I(λ) = 0.

From the relation ∂j(ρλ) + Bρλ 3 V − λ a.e. on Ω we see that

[I(λ) = 0] ⇔ [ρλ = 0] ⇔ [V − λ 6 0 a.e.] ⇔ [λ > ess sup
Ω

V ].

Step 4. Proof of (2.21).
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Proof. Suppose that (P0) admits a minimizer ρ0 ∈ D(E). We have

E(ρλ) + λI(λ) 6 E(ρ0) + λ

∫
ρ0 ∀λ > 0,

and also
E(ρ0) 6 E(ρλ)

so that I(λ) 6
∫
ρ0 and I0 6

∫
ρ0 <∞.

Conversely, suppose I0 < ∞, so that
∫
ρλ 6 C ∀λ > 0. It follows from Lemma 4 that∫

j(ρλ) 6 C ∀λ > 0. Therefore, we may find, as in the proof of Theorem 2, a sequence
λn → 0 such that ρλn

⇀ ρ0 weakly in L1(Ωj) for each j. From Lemma 6 we easily see
that ρ0 is a minimizer for (P0). Moreover, we have

∫
ρ0 6 lim inf

n→+∞

∫
ρλn

= lim
λ↓0

I(λ) = I0.

Combining this with the above argument we find
∫
ρ0 = I0.

Step 5. Proof of (2.18).

Proof. Suppose by contradiction that, for some λ0 < 0, E(ρ) + λ0

∫
ρ is bounded below

on D(E). We deduce from Ekeland’s principle (see Ekeland [1]) that for every ε > 0 there
is some ρε ∈ D(E) such that

E(ρ) + λ0

∫
ρ− E(ρε) − λ0

∫
ρε + ε

∫
|ρ− ρε| > 0 ∀ρ ∈ D(E).

Applying Lemma 3 and standard convex analysis we see that

∂j(ρε) + Bρε 3 V − λ0 − fε a.e. on Ω

for some function fε ∈ L∞(Ω) with ‖fε‖L∞ 6 ε. We deduce from Lemma 8 that(
V − λ0 − fε

)
∞

6 0 and consequently V∞ − λ0 6 ε, so that −λ0 6 ε. Choosing ε < −λ0

yields a contradiction.

We may now return to problem (MI) described at the beginning of this section and
state, using the notation introduced in Theorem 3, the following:

Corollary 1. Under the assumptions of Theorem 3, we have

{
for every I ∈ (0, I0) problem (MI) admits a unique minimizer

ρI = ρλ, where λ > 0 is the unique solution of I(λ) = I;
(2.27)

if I0 <∞, problem (MI0) admits ρ0 as its unique minimizer;(2.28)

if I0 <∞ and I > I0, problem (MI) admits no minimizer.(2.29)
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Remark 7. If I0 < ∞ and I > I0, any minimizing sequence converges to ρ0 weakly in
L1(Ωj) for every j (this is proved at the end of the section). Note that the constraint∫
ρ = I is “lost” in the limit.

Proof of Corollary 1.
Proof of (2.27). We have, by construction,

E(ρλ) + λ

∫
ρλ 6 E(ρ) + λ

∫
ρ ∀ρ ∈ D(E)

and thus

E(ρI) + λI 6 E(ρ) + λI ∀ρ ∈ D(E) with

∫
ρ = I,

so that ρI is a minimizer for (MI).

Proof of (2.28). If I0 <∞, we have

E(ρ0) 6 E(ρ) ∀ρ ∈ D(E)

and in particular

E(ρ0) 6 E(ρ) ∀ρ ∈ D(E) with

∫
ρ = I0.

Therefore ρ0 is a minimizer for (MI0).

Proof of (2.29). Indeed, suppose that problem (MI) has a solution ρ̄ for some Ī > I0.
We deduce from Theorem 1 that there is a constant λ̄ ∈ R such that

∂j(ρ̄) + Bρ̄ 3 V − λ̄ a.e. on Ω.

Lemma 8 implies V∞ − λ̄ 6 0, i.e., λ̄ > 0 (since V∞ = 0). From Lemma 3 we see that

E(ρ̄) + λ̄

∫
ρ̄ 6 E(ρ) + λ̄

∫
ρ ∀ρ ∈ D(E).

Since E is strictly convex we must have ρ̄ = ρλ̄ and thus
∫
ρ̄ =

∫
ρλ̄ 6 I0. But, on the

other hand,
∫
ρ̄ = Ī > I0 – a contradiction.

We gather some additional facts in the next propositions.

Proposition 1. Same assumptions as in Theorem 3. Then for every I ∈ (0, I0) we have

[ρI > 0] has finite measure,(2.30)

ρI
6 γ0(V ) a.e.,(2.31)
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where

γ0(s) = (j∗)′(s− 0) = lim
t↑s

j∗(t) − j∗(s)

t− s
.

If I0 <∞, we have

(2.32) ρ0 6 γ0(V ) a.e.

and in particular

(2.33) I0 =

∫
ρ0 6

∫
γ0(V ) 6 ∞.

Proof. Since 0 < I < I0 there is some λ̄ > 0 such that ρI = ρλ̄ and thus we have

(2.34) ∂j(ρI) + BρI 3 V − λ̄ a.e. on Ω.

It follows from (2.34) and (2.14) that

[ρI > 0] ⊂ [V > λ̄],

and so [ρI > 0] has finite measure (since V∞ = 0 and λ̄ > 0).

We write (2.34) as
ρI ∈ γ(V − λ̄− BρI)

where γ = ∂j∗ = (∂j)−1; (2.31) follows from the monotonicity of γ.

When I0 <∞, the proof Theorem 3 (Step 4) shows that

ρI ⇀
I↑I0

ρ0 weakly in L1(Ωj) ∀j.

We deduce from (2.31) that
ρ0 6 γ0(V ) a.e. on Ω.

We now introduce two natural expressions

(2.35) E(I) =

{
inf

{
E(ρ) ; ρ ∈ D(E) and

∫
ρ = I

}
if I > 0

+ ∞ if I < 0,

and, for every λ ∈ R,

(2.36) Φ(λ) = − inf

{
E(ρ) + λ

∫
ρ ; ρ ∈ D(E)

}
.
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Proposition 2. Same assumptions as in Theorem 3. We have

E is convex, l.s.c. on R, E(0) = 0,(2.37)

E is strictly convex and decreasing on (0, I0),(2.38)

if I0 <∞, then E(I) = E(I0) = E(ρ0) for I > I0,(2.39)

Φ is convex, l.s.c. on R,(2.40)

Φ(λ) = ∞ ∀λ < 0,(2.41)

Φ(λ) > 0 ∀λ ∈ R,(2.42)

Φ is finite, C1, nonincreasing on (0,∞),(2.43)

Φ′(λ) = −I(λ) ∀λ > 0,(2.44)




Φ(λ) = 0 for λ > ess sup
Ω

V, if ess sup
Ω

V <∞

lim
λ→∞

Φ(λ) = 0 if ess sup
Ω

V = ∞,
(2.45)

Φ(λ) = E∗(−λ) ∀λ ∈ R and E(I) = Φ∗(−I) ∀I ∈ R.(2.46)

Figure 5. Typical shape of Φ(λ) and E(I).
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Proof.
Verification of (2.37). It follows from assumption (H) that E(I) > −

∫
j∗(V −M)−MI

and thus E(I) ∈ R for I > 0. Let I1, I2 > 0 and t ∈ (0, 1). Given ε > 0 there is some
ρ1 ∈ D(E) such that

∫
ρ1 = I1 and E(ρ1) 6 E(I1) + ε and there is some ρ2 ∈ D(E) such

that
∫
ρ2 = I2 and E(ρ2) 6 E(I2) + ε. Set ρ̄ = tρ1 + (1− t)ρ2 so that

∫
ρ̄ = tI1 + (1− t)I2

and E(ρ̄) 6 tE(I1) + (1 − t)E(I2) + ε. Therefore we obtain

E(tI1 + (1 − t)I2) 6 tE(I1) + (1 − t)E(I2) + ε,
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and so E is convex.

In view of the convexity of E we already know that E is continuous on (0,+∞) and that
lim sup

I↓0
E(I) 6 E(0) = 0. On the other hand if In → 0 with In > 0, there is a sequence

(ρn) in D(E) such that
∫
ρn = In and E(ρn) 6 E(In) + 1/n. Since E is l.s.c. on L1 we

conclude that lim inf
n→∞

E(In) > 0. Therefore lim
I↓0

E(I) = E(0) = 0.

Verification of (2.40), (2.41) and (2.42). It is clear that Φ is convex and l.s.c. since
it is a sup of affine functions. (2.41) corresponds to assertion (2.18) in Theorem 3. (2.42)
is obvious by choosing ρ = 0 as testing function in the definition of Φ.

Verification of (2.43) and (2.44). We have ∀λ, µ > 0,

E(ρµ) + µ

∫
ρµ 6 E(ρλ) + µ

∫
ρλ

and thus,

−Φ(µ) 6 E(ρλ) + λ

∫
ρλ + (µ− λ)

∫
ρλ = −Φ(λ) + (µ− λ)I(λ).

Hence
Φ(µ) − Φ(λ) + I(λ)(µ− λ) > 0 ∀λ, µ > 0.

Changing λ and µ yields

|Φ(µ) − Φ(λ) + I(λ)(µ− λ)| 6 |I(µ) − I(λ)| |µ− λ| ∀λ, µ > 0.

Assertions (2.43) and (2.44) follow.

Verification of (2.45). We have ∀λ ∈ R,

j(ρ) − (V − λ)ρ > −j∗(V − λ)

and thus, for ρ ∈ D(E),

E(ρ) + λ

∫
ρ > −

∫
j∗(V − λ),

so that

Φ(λ) 6

∫
j∗(V − λ).

If ess sup
Ω

V < ∞, we see immediately that Φ(λ) 6 0 for λ > ess sup
Ω

V (since j∗(s) = 0

for s 6 0).

If ess sup
Ω

V = ∞, we observe that j∗(V −λ) 6 j∗(V −M) for λ > M and j∗(V −λ) → 0

a.e. as λ→ +∞. It follows, by dominated convergence that
∫
j∗(V − λ) → 0 as λ→ +∞.
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Verification of (2.46). It is clear that, for every λ ∈ R,

inf
ρ∈D(E)

{
E(ρ) + λ

∫
ρ

}
= inf

I>0
{E(I) + λI},

i.e., Φ(λ) = sup
I>0

{−λI − E(I)} = E∗(−λ). It follows that E∗∗(I) = Φ∗(−I) ∀I ∈ R.

However E∗∗ = E since E is convex and l.s.c. on R.

Verification of (2.38) and (2.39). Let I1, I2 ∈ (0, I0) with I1 6= I2. We know from
Theorem 3 that there exist ρ1, ρ2 ∈ D(E) with

∫
ρ1 = I1 and

∫
ρ2 = I2, E(I1) = E(ρ1)

and E(I2) = E(ρ2). Since E is strictly convex we have, for t ∈ (0, 1),

E(tI1 + (1 − t)I2) 6 E(tρ1 + (1 − t)ρ2) < tE(ρ1) + (1 − t)E(ρ2)

= tE(I1) + (1 − t)E(I2).

On the other hand, we have from (2.46) and (2.41)

E(I) = sup
λ∈R

{−Iλ− Φ(λ)} = sup
λ>0

{−Iλ− Φ(λ)}.

For λ > 0 the function I 7→ (−Iλ−Φ(λ)) is nonincreasing and thus the function I 7→ E(I)
is also nonincreasing on R. It follows that E is decreasing on (0, I0) since it is strictly
convex on (0, I0). Finally, E is constant on (I0,+∞). Indeed, if I0 < ∞, there exists (by
Theorem 3) some ρ0 ∈ D(E) with

∫
ρ0 = I0 and E(ρ0) 6 E(ρ) ∀ρ ∈ D(E), so that

E(I0) = E(ρ0) 6 E(ρ) ∀ρ ∈ D(E).

In particular, E(I0) 6 E(I) ∀I. Since E is nonincreasing on R we conclude that E(I) =
E(I0) for I > I0.

Remark 8. In all the examples related to Thomas-Fermi I0 < ∞ (see Section 4). It would
be illuminating to construct examples satisfying all the conditions of Theorem 3 such that
I0 = ∞. From the definitions of Φ and (2.46) we have

Φ(0) = − inf
ρ∈D(E)

E(ρ) = − inf
I>0

E(I).

It would be useful to construct some examples where I0 = ∞ and Φ(0) < ∞, and other
examples where I0 = ∞ and Φ(0) = ∞. From (2.44) we see that Φ(0) < ∞ if and only if∫ 1

0
I(λ) dλ <∞.

The approach via relaxation

Another approach for proving Corollary 1 (without passing through Theorem 3) is the
relaxation method used by Lieb-Simon [1].
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Given a constant 0 6 I <∞ set

K̂I =

{
ρ ∈ D(E) ;

∫
ρ(x) dx 6 I

}

and consider the relaxed minimization problem

(M̂I) find ρ̂ ∈ K̂I such that E(ρ̂) 6 E(ρ) ∀ρ ∈ K̂I .

Set, for every I > 0,

(2.47) Ê(I) = inf

{
E(ρ) ; ρ ∈ D(E) and

∫
ρ 6 I

}
.

We keep the assumptions of Theorem 3. Clearly, the function I 7→ Ê(I) is convex, non-
increasing and continuous on [0,∞) (the argument is similar to the proof of (2.37) in
Proposition 2). It is easy to see that for every I > 0 the infimum in (2.47) is achieved by
some unique element, denoted ρ̂I (the argument is similar to the one used in the proof of
Lemma 7). A simple consideration about convex functions shows that there exists some

Î0 ∈ [0,∞] such that:

a) Ê is decreasing on [0, Î0),

b) Ê is constant on [Î0,∞] (assuming Î0 < ∞).

Proposition 3. Under the assumptions of Theorem 3, this Î0 satisfies all the properties

of I0 described in Corollary 1. Moreover Ê(I) = E(I) ∀I > 0.

Proof.
a) If I 6 Î0 we must have

∫
ρ̂I = I, so that ρ̂I is a solution of (MI).

Otherwise, set I ′ =
∫
ρ̂I < I. We have

Ê(I ′) = E(ρ̂I′

) 6 E(ρ) ∀ρ ∈ K̂I′ .

Choosing ρ = ρ̂I we obtain Ê(I ′) 6 Ê(I) – absurd.

b) If I > Î0, problem (MI) has no solution. Indeed, suppose, by contradiction, that there

is a solution ρ̄ of (MI) with I > Î0. We know, by Theorem 1, that there is a constant
λ ∈ R such that

∂j(ρ̄) + Bρ̄ 3 V − λ a.e.

and by Lemma 8 we find that λ > 0. Therefore we have

(2.48) E(ρ̄) + λ

∫
ρ̄ 6 E(ρ) + λ

∫
ρ ∀ρ ∈ D(E).
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Choosing ρ = ρ̂Î0 in (2.48) we obtain

E(ρ̄) + λI 6 Ê(Î0) + λÎ0.

However we have
Ê(Î0) = inf

ρ∈D(E)
E(ρ)

and this infimum is achieved only when ρ = ρ̂Î0 so that E(ρ̄) > Ê(Î0). It follows that λ < 0
– absurd.

Proof of Remark 7. Let I > I0 (I0 < ∞); we have E(I) = E(I0). Thus if (ρn) is a
minimizing sequence for (MI) we have E(ρn) → E(I0). As in Lemma 7 we may extract a
subsequence still denoted ρn such that ρn ⇀ ρ̄ weakly in L1(Ωj) for each j. By Lemma 6
we have E(ρ̄) 6 E(I0). Hence ρ̄ is a minimizer for E on D(E). By uniqueness we have
ρ̄ = ρ0.

Remark 9. Throughout this section we have made assumption (2.1), i.e. j is coercive, and
it played an essential role in applying the Dunford-Pettis theorem about weak convergence
in L1. When (2.1) does not hold it may be natural to extend the setting of problem (MI)
and to allow solutions ρ which are measures. This is an interesting direction of research.

3. A direct approach for solving the Euler equation.

As in Section 2, let j : R → [0,+∞] be a convex l.s.c. function such that

j(0) = 0 and j(r) = +∞ for all r < 0,

j is finite and C1 on (0,∞),

j′(0+) = lim
r↓0

j(r)

r
= 0.

Let V : Ω → R be a measurable function. Assume k : Ω×Ω → R is a measurable function
satisfying (1.3) and (1.4). For every ρ ∈ L1(Ω) with ρ > 0 a.e. we set

(Bρ)(x) =

∫
k(x, y) ρ(y)dy 6 +∞.

We shall make further assumptions on B:

(3.1)

∫
(Bρ− 1)+ < ∞ ∀ρ ∈ L1(Ω) with ρ > 0 a.e..

It is equivalent to assume that for every ρ ∈ L1(Ω) with ρ > 0 a.e. we have

(3.1′)

{ ∫
A
Bρ <∞ ∀A ⊂ Ω measurable with finite measure

and for every δ > 0 the set [Bρ > δ] has finite measure.
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j(0) and j(r) = −∞ for allr < 0,

j is finite and C1 on (0,∞),

j′(0+) = lim
r↓0

j(r)

r
= 0.

We may thus extend B as a linear operator from L1(Ω) into L1(Ω) + L∞(Ω). Sometimes
we shall use an assumption slightly stronger than (3.1):

(3.2) for every M > 0, sup

{∫
(Bρ− 1)+ ; ρ ∈ L1(Ω), ρ > 0 a.e.,

∫
ρ 6 M

}
<∞.

We shall also make an assumption related to the maximum principle:

(3.3)





∫
ρ p(Bρ) > 0 ∀ρ ∈ L1(Ω), ∀p ∈ P

and∫
ρ p(Bρ) = 0 if and only if p(Bρ) = 0,

where

P = {p ∈ C∞(R; R); 0 6 p 6 1, p′ > 0 on R, p′ ∈ L∞(R), and p(t) = 0 for t 6 1} .

Finally we suppose that

(3.4) B is injective.

We are concerned with the following problem:

(EI)

{
Given a constant I, with 0 < I <∞, find a function ρ ∈ L1(Ω) and a

constant λ ∈ R such that ρ > 0 a.e.,
∫
ρ = I and ∂j(ρ) +Bρ 3 V − λ a.e..

When assumption (H) holds, problem (EI) is equivalent to problem (MI) - which has been
solved in Section 2. We emphasize that throughout Section 3 we do not assume (H) and
we solve (EI) by a direct method. Our main results are the following.

Theorem 4. Assume (3.1), (3.3) and (3.4). Then, there exists I1 with 0 6 I1 6 ∞ such
that:

a) for every 0 < I 6 I1(and I <∞) there is a unique solution ρI of problem (EI),

b) for I1 < I < ∞ problem (EI) has no solution.

Remark 10. It may well happen that there is no I > 0 whatsoever for which problem
(EI) admits a solution (see an elementary example in Section 4, Remark 15). In this case
we say that I1 = 0. In contrast with the situation of Theorem 3 (where the assumption
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(H+) plays a central role), this may happen even if ess sup
Ω

(V − V∞) > 0. (Again, in the

example of Section 4, Remark 15 one has V∞ = 0, ess sup
Ω

V = +∞ but assumption (H+)

fails).

In order to solve (EI) we proceed as in Section 2 and introduce the auxiliary problem:

(Eλ)

{
Given a constant λ ∈ R, find ρ ∈ L1(Ω) with ρ > 0 a.e. such that

∂j(ρ) +Bρ 3 V − λ a.e..

Theorem 4 is a direct consequence of

Theorem 5. Assume (3.1), (3.3) and (3.4). Let V be any measurable function. Then,
there exists λ0 ∈ [V∞,+∞] such that:

a) for every λ > λ0 (and λ < +∞) there is a unique solution ρλ of (Eλ),

b) for λ < λ0 there is no solution of (Eλ).

The mapping λ 7→ ρλ defined for λ ∈ (λ0,+∞) is nonincreasing and continuous with values
into L1(Ω); moreover ρλ → 0 in L1(Ω) as λ→ +∞. Set

I1 = sup
λ>λ0

∫
ρλ = lim

λ↓λ0

∫
ρλ.

If λ0 ∈ R the following are equivalent:

(i) I1 <∞
(ii) (Eλ0

) has a unique solution ρλ0
,

(iii) there exist functions f ∈ L1(Ω), f > 0 a.e., and U : Ω → R measurable with
γ0(U) ∈ L1(Ω) such that V − λ0 = U +Bf .

where γ0 has been defined in Section 2, Proposition 1.

In this case ρλ → ρλ0
in L1(Ω) as λ ↓ λ0 and

(3.5) I1 6

∫
(γ0(U) + f)

Remark 11. Very often we will find that λ0 = V∞ (see e.g. Theorem 6). However it
may also happen sometimes that there is no λ ∈ R for which (Eλ) admits a solution (see
Section 4, Remark 15).

We start with some lemmas:
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Lemma 9. Assume (3.1). Let (ρn) be a sequence in L1(Ω) such that ρn ⇀ ρ weakly in
L1(Ω) and |ρn| 6 f for some f ∈ L1(Ω). Then Bρn → Bρ a.e. and in L1(Ω) + L∞(Ω).

Proof. We may always assume that ρ = 0. We recall that for a.e. x ∈ Ω the function
y 7→ k(x, y)f(y) is integrable. We write, for M > 0

(3.6) (Bρn)(x) =

∫

[k(x,·)6M ]

k(x, y)ρn(y)dy +

∫

[k(x,·)>M ]

k(x, y)ρn(y)dy

It follows that

lim sup
n→∞

|Bρn(x)| 6

∫

[k(x,·)>M ]

k(x, y)f(y)dy ∀M > 0.

As M → ∞ we see that Bρn → 0 a.e. By dominated convergence we have

∫
(|Bρn| − k)+ → 0 ∀k > 0.

Finally we note that

‖Bρn‖L1+L∞ 6 k +

∫
(|Bρn| − k)+ ∀k > 0.

and thus

lim sup
n→∞

‖Bρn‖L1+L∞ 6 k ∀k > 0.

Lemma 10. Assume (3.1). Then B is a bounded operator from L1(Ω) into L1(Ω)+L∞(Ω)
and from L1(Ω) ∩ L∞(Ω) into L∞(Ω).

Proof. Let (ρn) be a sequence in L1(Ω) such that ρn → 0 in L1(Ω). We may extract a
subsequence still denoted (ρn) such that |ρn| 6 f a.e. with f ∈ L1(Ω). We deduce from
Lemma 9 that Bρn → 0 in L1(Ω)+L∞(Ω). Thus B is a bounded operator from L1(Ω) into
L1(Ω) +L∞(Ω). It follows, by duality, that B is a bounded operator from L1(Ω)∩L∞(Ω)
into L∞(Ω).

Lemma 11. Assume (3.1) and (3.3). Let ρ ∈ L1(Ω) and let k > 0 be a constant. Then
we have

(3.7)

∫

[Bρ>k]

ρ > 0
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and

(3.8)

[
Bρ 6 k a.e. on [ρ > 0]

]
⇒

[
Bρ 6 k a.e. on Ω

]
.

Proof. It suffices to consider the case k = 1. We have
∫
ρ p(Bρ) > 0 ∀p ∈ P

and we obtain (3.7) by choosing a sequence (pn) in P such that pn(t) → 1 ∀t > 1. If
Bρ 6 1 on [ρ > 0] we have for p ∈ P

∫
ρ p(Bρ) =

∫

[ρ60]

ρ p(Bρ) +

∫

[ρ>0]

ρ p(Bρ) 6 0

since p(Bρ) = 0 a.e. on [ρ > 0]. It follows that p(Bρ) = 0 a.e. on Ω, for every p ∈ P and
thus Bρ 6 1 a.e. on Ω.

Lemma 12 (A comparison principle via L∞). Assume (3.1) and (3.3). Let V1 and
V2 be two measurable functions. Let ρ1, ρ2 ∈ L1(Ω) be such that ρ1 > 0, ρ2 > 0 and

(3.9)

{
∂j(ρ1) +Bρ1 3 V1

∂j(ρ2) +Bρ2 3 V2.

Then

(3.10) ‖(Bρ1 − Bρ2)
+‖L∞ 6 ‖(V1 − V2)

+‖L∞ .

In particular
[V1 6 V2 a.e. ] ⇒ [Bρ1 6 Bρ2 a.e. ]

and if B is injective
[V1 = V2 a.e. ] ⇒ [ρ1 = ρ2 a.e. ].

Proof. Set k = ‖(V1−V2)
+‖L∞ . On the set [ρ1−ρ2 > 0] we have, using (3.9), V1−Bρ1 >

V2 − Bρ2 and so B(ρ1 − ρ2) 6 k. It follows from (3.8) that B(ρ1 − ρ2) 6 k a.e. on Ω.

Lemma 13. Assume (3.1) and (3.3). Suppose that there is some ρ̄ ∈ L1(Ω) with ρ̄ > 0
such that

(3.11) ∂j(ρ̄) + Bρ̄ 3 V a.e. .

Then, for every λ > 0 there is some ρλ ∈ L1 with ρλ > 0 such that

∂j(ρλ) +Bρλ 3 V − λ a.e.
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and
ρλ 6 ρ̄ a.e..

Proof. We divide the proof into 2 steps:

Step 1. We claim that for every ε > 0 there is some ρε ∈ L1(Ω) with ρε > 0 a.e. such
that

(3.12) ∂j(ρε) + ερε + Bρε 3 V + ερ̄− λ a.e.

and

(3.13) ρε
6 ρ̄ a.e.

Proof. In what follows ε > 0 is fixed and we set Vn = inf{V + ερ̄, n}. For every n there
is a (unique) solution ρn of the problem

(3.14) ∂j(ρn) + ερn + Bρn 3 Vn − λ a.e.;

this is a consequence of Lemma 7. (Note that V∞ 6 0 – by (3.11) and Lemma 8 – and
thus (Vn)∞ 6 0. An easy inspection of the proof shows that Lemma 7 still holds if one
assumes V∞ 6 0 instead of V∞ = 0). We have

ρn = (∂j + εI)−1(Vn − λ−Bρn)

6 (∂j + εI)−1(V + ερ̄− λ)

= (∂j + εI)−1(V + ερ̄− Bρ̄+ Bρ̄− λ)

6 ρ̄+
1

ε
(Bρ̄− λ)+ ∈ L1(Ω).

since (∂j+ εI)−1 is Lipschitz with constant 1/ε. We may thus assume (for a subsequence)
that

ρn ⇀ ρ weakly in L1(Ω)

and then, by Lemma 9,

Bρn → Bρ a.e. and in L1(Ω) + L∞(Ω).

Using standard monotone analysis (see e.g. Brezis [1], Lemma 3) we can pass to the limit
in (3.14) and conclude that ρ satisfies (3.12). Applying Lemma 12 to (∂j + εI) we deduce
from (3.11) and (3.12) that 0 6 Bρ̄−Bρε 6 λ. Therefore we obtain

ρε = (∂j + εI)−1(V + ερ̄− Bρε − λ) 6 (∂j + εI)−1(V + ερ̄− Bρ̄) = ρ̄.
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Step 2. We let ε→ 0. It is easy to see that (for a subsequence εn → 0)

ρε ⇀ ρ weakly in L1(Ω)

Bρεn → Bρ a.e. and in L1(Ω) + L∞(Ω)

and ρ satisfies
∂j(ρ) +Bρ 3 V − λ a.e.

ρ 6 ρ̄ a.e. .

Proof of Theorem 5. Uniqueness follows from Lemma 12 since B is assumed to be
injective. Let

Λ = {λ ∈ R; (Eλ) has a solution} and λ0 = inf Λ

(λ0 = +∞ if Λ = ∅). It follows from Lemma 13 that λ0 has all the required properties;
moreover the mapping λ 7→ ρλ is nonincreasing.

In order to check its continuity let λn → λ ∈ (λ0,+∞) be a monotone sequence so that
ρλn

→ ρ in L1(Ω) (by monotone convergence). It follows that Bρλn
→ Bρ in L1(Ω) +

L∞(Ω) and thus ρ satisfies ∂j(ρ) + Bρ 3 V − λ a.e., i.e., ρ = ρλ. As λ ↑ ∞, ρλ ↓ ρ in
L1(Ω); since ρλ = 0 a.e. on the set [V − j′(0+) < λ], we conclude that ρ = 0 a.e. on Ω.

For the last assertion in Theorem 5, we note that (i) ⇒ (ii) and (ii) ⇒ (iii) are straight
forward (choose f = ρλ0

and U = V −λ0 −Bρλ0
). It remains to show that (iii) ⇒ (i). For

λ > λ0 we have
∂j(ρλ) +Bρλ 3 U +Bf + λ0 − λ

so that ρλ 6 γ0(U + Bf − Bρλ) and therefore

(3.15)

∫

[Bf−Bρλ60]

ρλ 6

∫
γ0(U).

On the other hand, we have, by Lemma 11,

(3.16)

∫

[Bf−Bρλ>0]

(f − ρλ) > 0.

Combining (3.15) and (3.16) we see that

∫
ρλ 6

∫
(γ0(U) + f).

We conclude with a rather general and useful result.
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Theorem 6. Assume (2.1), (2.12), (2.13), (2.14), (3.2), (3.3) and (3.4). Assume in ad-
dition that there exist a function f ∈ L1(Ω), and a measurable function U : Ω → R such
that

(3.17) V = U + Bf

and

(3.18)

∫

ω

γ0(U + t) <∞ ∀t > 0, ∀ω ⊂ Ω with |ω| <∞.

Then, for every λ > V∞, problem (Eλ) admits a solution, i.e., there exists a ρλ ∈ L1, ρλ > 0,
satisfying

∂j(ρλ) +Bρλ 3 V − λ.

In particular, if ess sup
Ω

V > V∞, problem (EI) admits a solution for every I ∈ (0, I1)

where

0 < I1 = lim
λ↓V∞

∫
ρλ 6 ∞.

Proof. Let λ > V∞ be fixed and let Vn = min{V, n}. Let ρn be the solution of (3.19)

(3.19) ∂j(ρn) + Bρn 3 Vn − λ.

The existence of ρn follows from Lemma 7. We claim that

(3.20)

∫
ρn 6 C.

Indeed let µ be such that λ > µ > V∞. We have

ρn 6 γ0(Vn − µ− Bρn) 6 γ0(V − µ− Bρn) = γ0(U − µ+ Bf −Bρn)

and therefore ∫

[Bf6Bρn]

ρn 6

∫
γ0(U − µ) <∞

since [U > µ] has finite measure (note that by (3.17), U∞ = V∞ = 0). On the other hand
we have, by Lemma 12, ∫

[Bf>Bρn]

(f − ρn) > 0.

It follows that ∫
ρn 6

∫
(γ0(U − µ) + f).
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Clearly ρn 6 γ0(V − µ), so that

(3.21) Supp ρn ⊂ ω = [V > µ]

and |ω| <∞.

Next, we claim that the sequence (ρn) is equi-integrable on ω. Indeed let t > 0 and let
A ⊂ ω be measurable. We write

∫

A

ρn 6

∫

A∩[Bf−Bρn6t]

ρn +

∫

[Bf−Bρn>t]

ρn.

As above we have ∫

A∩[Bf−Bρn6t]

ρn 6

∫

A

γ0(U − µ+ t)

and ∫

[Bf−Bρn>t]

ρn 6

∫

[Bf−Bρn>t]

f 6

∫

[Bf>t]

f.

Consequently ∫

A

ρn 6

∫

A

γ0(U − µ+ t) +

∫

[Bf>t]

f.

Given ε > 0 we first choose t large enough so that
∫

[Bf>t]

f < ε. Then we choose δ > 0

small enough so that |A| < δ implies
∫

A
γ0(U − µ+ t) < ε.

It follows from Lemma 12 that the sequence (Bρn) is a nondecreasing. From (3.20) and
assumption (3.2) we have

∫
(Bρn − k)+ 6 C(k) ∀ k > 0, ∀n.

Therefore Bρn ↑ u a.e. as n ↑ ∞ and
∫
(u− k)+ < ∞ ∀k > 0.

From (3.21) we deduce that (up to a subsequence)

ρn ⇀ ρ weakly in L1(Ω).

By Lemma 10 we have

Bρn ⇀ Bρ weakly in L1(Ω) + L∞(Ω).
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It follows that Bρn ⇀ Bρ weakly in L1(Ω′) for any Ω′ ⊂ Ω of finite measure. Since
Bρn → u a.e. on Ω we deduce that u = Bρ a.e. on Ω. Using Egorov’s lemma and
standard monotone analysis, we may now pass to the limit in (3.19) and conclude that

∂j(ρ) + Bρ 3 V − λ a.e..

Remark 12. Part of the argument used in the proof of Theorem 6 (e.g. the equi-
integrability of ρn) is inspired by the papers of Gallouët-Morel [2],[3].

Remark 13. If j is coercive, i.e., γ0 is everywhere defined, then assumption (3.18) is
weaker than (H+). Indeed we write

j∗ ((1 + θ)(V −M)) − j∗(V + t) > γ0(V + t)[θV −M − θM − t].

so that

γ0(V + t) 6 j∗ ((1 + θ)(V −M)) on [θV −M − θM − t > 1]

while

γ0(V + t) 6 γ0(
1 +M + θM + t

θ
+ t) on [θV −M − θM − t < 1].

4. Some examples. Further properties of I0 and I1.

In what follows and throughout the rest of the paper we assume that Ω = R
N (with the

Lebesgue measure dx) and N > 3.

We take k(x, y) = k(x− y) where k(x) = cN/|x|N−2 with cN = 1/[(N − 2)σN ] and σN

is the area of the unit sphere in R
N , so that

k ∈MN/(N−2)(RN )

and

−∆k = δ in the sense of D′(RN ).

Here Mp(RN ) (1 < p <∞) denotes the Marcinkiewicz (or weak Lp) space, i.e.,

Mp(RN ) = {u : R
N → R;u is measurable and ‖u‖Mp <∞}

where the norm ‖u‖Mp is defined by

‖u‖Mp = sup
A⊂R

N

|A|<∞

1

|A|1/p′

∫

A

|u(x)| dx.
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Some elementary properties of the spaces M p are discussed in the Appendix of Bénilan-
Brezis-Crandall [1]. In particular we recall that

ap‖u‖p
Mp 6 sup

λ>0
λp meas [|u| > λ] 6 ‖u‖p

Mp (ap > 0).

We also recall that, for every f ∈ L1(RN ),

Bf = k ∗ f ∈MN/(N−2)

and
‖Bf‖MN/(N−2) 6 ‖k‖MN/(N−2)‖f‖L1.

Moreover we have
−∆(Bf) = f in the sense of D′(RN )

and, in particular, B is injective. Therefore K defined in Section 1 is strictly convex (see
Remark 3).

We claim that the kernel k satisfies properties (1.4), (3.2) and (3.3).

Verification of (3.2). Let ρ ∈ L1(RN ) with ρ > 0 and ‖ρ‖L1 6 M . We have

∫

RN

(Bρ− 1)+ 6

∫

[Bρ>1]

Bρ 6 ‖Bρ‖Mp |A|1/p′

where p = N/(N − 2) and A = [Bρ > 1]. But |A| 6 ‖Bρ‖p
Mp and therefore

∫

RN

(Bρ− 1)+ 6 ‖Bρ‖p
Mp 6 CMp.

In order to check (1.4) and (3.3) it is convenient to use

Lemma 14. Let p ∈ C1(R) with p′ > 0 and p(0) = 0. Let ρ ∈ L1(RN ) be such that
ρ p(Bρ) ∈ L1(RN ). Then

∫
p′(Bρ)|∇(Bρ)|2 6

∫
ρ p(Bρ).

Proof. We already know (by Lemma A.10 in Bénilan-Brezis-Crandall [1]) that the conclu-
sion holds if, in addition, p ∈ L∞(R). In the general case, let (pn) be a sequence such that
pn ∈ C1(R) ∩ L∞(R), p′n > 0, pn(0) = 0, |pn(t)| 6 |p(t)| ∀t ∈ R, pn(t) → p(t) ∀t ∈ R

and p′n(t) → p′(t) ∀t ∈ R.
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We have ∫
p′n(Bρ)|∇(Bρ)|2 6

∫
ρ pn(Bρ)

and since |ρ pn(Bρ)| 6 |ρ p(Bρ)| ∈ L1(RN ) we conclude easily, using Fatou’s Lemma and
dominated convergence.

Verification of (1.4) and (3.3). Applying Lemma 14 with p(t) = t we obtain (1.4)
(note that

∫
A
|Bρ| < ∞ for every A with |A| < ∞). Suppose now p ∈ C1(R) ∩ L∞(R)

with p′ ∈ L∞(R), p′ > 0 and p(0) = 0. Let ρ ∈ L1(RN ) be such that
∫
ρ p(Bρ) = 0. It

follows from Lemma 14 that p′(Bρ)|∇(Bρ)|2 = 0 and thus ∇p(Bρ) = p′(Bρ) ∇(Bρ) = 0.
Therefore, p(Bρ) is a constant. On the other hand, Bρ → 0 as |x| → ∞ in a weak sense
(i.e., for every α > 0 the set [|Bρ| > α] has finite measure) and so does p(Bρ). It follows
that p(Bρ) = 0.

We recall the main result of Section 3. Let j : R → [0,+∞] be any convex l.s.c. function
such that

j(0) = 0 and j(r) = +∞ for all r < 0.

As above we set γ = ∂j∗ = (∂j)−1.

Let V : R
N → R be any measurable function. We are concerned with the two problems

(EI)

{
Given a constant I with 0 < I <∞, find a function ρ ∈ L1(RN ) and a

constant λ ∈ R such that ρ > 0 a.e.,
∫
ρ = I and ∂j(ρ) + Bρ 3 V − λ a.e.

and

(MI)

{
Given a constant I with 0 < I <∞ find a function

ρ ∈ KI =
{
ρ ∈ D(E) ;

∫
ρ = I

}
which minimizes E on KI .

Corollary 1 says that, under some assumptions, there exists 0 6 I0 6 ∞ such that

a) for every 0 < I 6 I0 (and I <∞) there is a unique solution ρI of problem (MI),

b) if I0 <∞ and I > I0 problem (MI) admits no solution.

Theorem 4 asserts that there exists I1 with 0 6 I1 6 ∞ such that:

a) for every 0 < I 6 I1 (and I <∞), there is a unique solution ρI of problem (EI),

b) if I1 <∞ and I > I1, problem (EI) has no solution.

In what follows we shall examine various examples of functions j and V , discuss the
relation between problems (EI) and (MI) and describe some additional properties of I0
and I1.

Some specific examples of functions j are the following:

Example 1. Let 1 < p <∞ and let
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j(r) =





1

p
rp for r > 0

+∞ for r < 0

so that, with 1
p + 1

p′ = 1,

j∗(s) =





1

p′
sp′

for s > 0

0 for s < 0

∂j(r) =





rp−1 for r > 0

(−∞, 0] for r = 0

∅ for r < 0

γ(s) = ∂j∗(s) = (∂j)−1(s) =

{
sp′−1 for s > 0

0 for s < 0.

The usual Thomas-Fermi problem (see e.g. Lieb-Simon [1], Lieb [1], [2], [3]) corresponds
to the case p = 5/3.

Example 2. Let 1 < p <∞ and let

j(r) =





1

p
[(1 + r)p − 1 − pr] for r > 0

+∞ for r < 0

so that

j∗(s) =





1

p′
(1 + s)p′ − 1 − p′s for s > 0

0 for s 6 0

∂j(r) =





(1 + r)p−1 − 1 for r > 0

(−∞, 0] for r = 0

∅ for r < 0

γ(s) = ∂j∗(s) = (∂j)−1(s) =

{
(1 + s)p′−1 − 1 for s > 0

0 for s < 0.

Such a j (with p = 5/3) occurs in the Thomas-Fermi theory of screening (see Lieb-Simon [1],
Section VII). Note that j(r) ∼ rp as r → +∞ while j(r) ∼ r2 as r → 0+.

Example 3. Let

j(r) =





3

∫ r1/3

0

t2 (
√

1 + t2 − 1) dt for r > 0

+∞ for r < 0

so that
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j∗(s) =





∫ s

0

(2t+ t2)3/2 dt for s > 0

0 for s < 0

∂j(r) =





√
1 + r2/3 − 1 for r > 0

(−∞, 0] for r = 0

∅ for r < 0

γ(s) = ∂j∗(s) = (∂j)−1(s) =

{
(2s+ s2)3/2 for s > 0

0 for s < 0.

Such a j occurs in some relativistic Thomas-Fermi model (E. Lieb, personal communica-
tion). Note that j(r) ∼ r4/3 as r → +∞ while j(r) ∼ r5/3 as r → 0+.

Example 4. Let 1 < q < p <∞ and let

j(r) =





1

p
rp − a

q
rq + br for r > 1

0 for 0 6 r 6 1

+∞ for r < 0

where a = q(p− 1) / p(q − 1) and b = (p− q)/p(q − 1), so that

∂j(r) =





rp−1 − arq−1 + b for r > 1

0 for 0 < r 6 1

(−∞, 0] for r = 0

∅ for r < 0

γ(s) =





0 for s < 0

[0, 1] for s = 0

singlevalued for s > 0.

Note that j(r) ∼ rp as r → +∞ while j(r) = 0 for 0 < r < 1 and γ(s) ∼ 1 + cs,
for s > 0, s ∼ 0 with c = p

(p−1)(p−q) . Such a j occurs in Thomas-Fermi model with an

“exchange correction” (see Benguria [1], Chapter 3).

In what follows we will assume that N = 3, but there are similar results for N > 3.
Throughout the rest of this section we will assume (this is satisfied in all the examples
above) that

(4.1) j is C1 on (0,∞) with j′(0+) = 0.

We will consider various types of functions V . In all cases we have V∞ = 0.

Type I: V = k ∗ f for some f ∈ L1.
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Thus V ∈ M3 and −∆V = f . In particular, we know that for every δ > 0 the set
[|V | > δ] has finite measure. This case is well adapted to the direct approach of Section 3.
Indeed, the equation

(4.2) −∆u0 + γ(u0) 3 f in R
3

admits a unique solution u0 ∈ M3 (by Theorem 2.1 in Bénilan-Brezis-Crandall [1]), with
γ(u0) ∈ L1 (more precisely f + ∆u0 ∈ L1) and

(4.3)

∫
γ(u0) 6

∫
f+.

(Recall γ(t) = 0 for t 6 0). If we set

ρ0 = f + ∆u0 = ∆(u0 − V )

we see (from (4.2)) that
u0 ∈ γ−1(ρ0) = ∂j(ρ0)

and therefore

(4.4) ∂j(ρ0) + Bρ0 3 V a.e..

More generally, for every λ > 0 there exists a unique solution uλ ∈M3 of

(4.5) −∆uλ + γ(uλ − λ) 3 f in R
3

(since β(t) = γ(t− λ) is a maximal monotone graph such that 0 ∈ β(0)). Then

ρλ = f + ∆uλ ∈ L1

satisfies
uλ − λ ∈ γ−1(f + ∆uλ) = ∂j(ρλ)

and therefore we have

(Eλ) ∂j(ρλ) + Bρλ 3 V − λ a.e..

Set

I1 =

∫
f + ∆u0 =

∫
γ(u0) 6

∫
f+.

Note that I1 > 0 whenever ess sup
Ω

V > 0. (Indeed [I1 = 0] ⇔ [γ(u0) = 0] ⇔ [u0 6 0]

because of assumption (4.1), and then by (4.2) we have u0 = V ).
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Corollary 2. For every I ∈ (0, I1] there exists a unique solution of problem (EI). In
addition, if we assume

(4.6)

∫ 1

0

γ0(s)

s4
ds = ∞,

then ∫
f 6 I1 6

∫
f+;

in particular, if f > 0 a.e. then

(4.7) I1 =

∫
f.

Proof. The conditions of Theorem 5 are satisfied with λ0 = V∞ = 0. Note that (Eλ)
has no solution for λ < 0. (Indeed, if (Eλ) has a solution for some λ ∈ R we deduce from
Lemma 8 and (4.1) that (V − λ)∞ = V∞ − λ = −λ 6 0, i.e., λ > 0). Hence we have the
first assertion of Corollary 2.

Next we assume (4.6). Applying Lemma B.1 and Theorem B.1 (from Appendix B) to
the function u0 we conclude that ∫

∆u0 > 0.

Therefore, I1 =
∫
f + ∆u0 >

∫
f .

Remark 14. We emphasize that the first assertion in Corollary 2 applies to Example 1
without any restriction on p. The second assertion holds only under the restriction

(4.8) p >
4

3

(this is an assumption about j near zero). It is clearly satisfied for the standard Thomas-
Fermi exponent p = 5/3.

On the other hand if (4.8) fails, i.e., if p < 4/3, then for f > 0 with compact support,
f 6≡ 0, we have I1 <

∫
f . Indeed in this case γ(s) ∼ sq as s → 0 with q = p′ − 1 > 3.

Applying a result of Véron [3] (Théorème 4.1) we see that u0(x) ∼ c/|x| as |x| → ∞ with
c > 0. Therefore (by Theorem B.1) we have

∫
∆u0 < 0 and I1 =

∫
f + ∆u0 <

∫
f .

Alternatively, we could also try to apply the variational route of Section 2. This is
indeed possible in Example 1 when

(4.9) p > 3/2
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((4.9) is now an assumption about j near infinity). Note that (4.9) holds for the standard
Thomas-Fermi exponent p = 5/3. However (4.9) does not hold in Example 2 (relativistic
Thomas-Fermi).

Indeed, the basic condition (H) (or H+) says that for some constant C ∈ R

(4.10) (V − C)+ ∈ Lp′

.

Recall that V ∈M3 and thus V |ω ∈ Lq(ω) for any q < 3 and any set ω with finite measure.
If we take C > 0 and ω = [|V | > C] we see that (4.10) holds provided p′ < 3, i.e., p > 3/2.

When condition (4.9) fails — for example j(r) = rp with p 6 3/2 — the functional

(4.11) E(ρ) + λ

∫
ρ =

∫
j(ρ)− V ρ+ λρ+

1

2

∫
ρBρ

is usually unbounded from below for any λ > 0. This means that the variational route used
in Section 2 is not practicable for a general V = Bf , f ∈ L1.

Here is a sketch of the argument. Suppose that we have a lower bound. Then

(4.12)

∫
V ρ 6

∫
ρp +

1

2

∫
ρBρ+ C

∫
ρ+ C.

It is easy to see from Young’s inequality on convolutions or the Lp regularity theory that
‖Bρ‖L6 6 C‖ρ‖L6/5 and thus

∫
ρBρ 6 ‖ρ‖L6/5‖Bρ‖L6 6 C‖ρ‖2

L6/5.

Since p < 2 we deduce from (4.12) that

∫
V ρ 6 C

(
‖ρ‖2

Lp + ‖ρ‖2
L6/5 + C

)

and by scaling we find ∫
V ρ 6 C

(
‖ρ‖Lp + ‖ρ‖L6/5

)
.

Hence
V ∈ Lp′

+ L6

so that
V ∈ Lq

loc with q = min(p′, 6).

Since p 6 3/2 we have p′ > 3 and then q > 3. On the other hand B does not map L1

into L3 (only into M3) [otherwise B would also map L3/2 into L∞ and then k ∈ L3 –
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impossible]. Hence there are some f ’s in L1 such that V = Bf 6∈ L3. For such V ’s the
functional (4.11) is unbounded below.

Type II: V = k ∗ µ for some bounded measure µ.

This case is especially important in the Thomas-Fermi setting because it includes func-
tions V (x) of the form

(4.13) V (x) =
∑̀

i=1

mi

|x− ai|
, mi ∈ R,

which play a central role in the analysis of Lieb-Simon [1]. Here we have

V = k ∗ µ and µ = 4π
∑̀

i=1

miδai
.

Again it is well suited to the direct approach of Section 3 provided we make the additional

assumption

(4.14)

∫

|x|<1

γ0
( 1

|x|
)

= C

∫ ∞

1

γ0(s)

s4
ds < ∞

which is required in order to apply Theorem A.1 (in Appendix A). In the framework of
Examples 1, 2, 4 this corresponds to the condition

(4.15) p >
4

3
.

Assumption (4.14) is an assumption about j near infinity. It is satisfied for the standard
Thomas-Fermi exponent p = 5/3. However (4.14) fails in Example 2 (relativistic Thomas-
Fermi).

As above we solve the equation

(4.16) −∆u0 + γ(u0) 3 µ in R
3

with the help of Theorem A.1 and we set

ρ0 = µ+ ∆u0 ∈ L1

and

I1 =

∫
µ+ ∆u0 =

∫
γ(u0) 6

∫
µ+.

Again I1 > 0 whenever ess sup
R3

V > 0.

Using the same strategy as in Corollary 2, we have
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Corollary 3. Assume (4.14). Then for every I ∈ (0, I1] there exists a unique solution of
problem (EI).

In addition, if we assume (4.6), then

∫
µ 6 I1 6

∫
µ+;

in particular if µ > 0, then

I1 =

∫
µ.

Remark 15. Condition (4.15) is absolutely essential. When it is not satisfied there is
usually no I whatsoever such that problem (EI) admits a solution. Take, for example,
j(r) = 3

4r
4/3 and then γ(s) = (s+)3. Let V (x) = 1/|x| (so that −∆V = 4πδ0). If we had

a solution of (EI) for some I, it would satisfy

∂j(ρ) +Bρ 3 V − λ.

Necessarily λ > 0 (by Lemma 8) and u =
c

|x| −Bρ satisfies

−∆u+
[
(u− λ)+

]3
= δ0

with (u − λ)+ ∈ L3. But this is impossible, even locally near 0; see the discussion in
Remark A.4. In particular, for the relativistic Thomas-Fermi model (Example 3 above)
with the Coulomb potential V (x) = 1/|x|, there is no I such that problem (EI) admits a
solution; existence holds provided the potential is slightly more “diffuse”.

Remark 16. As above, we see that the variational route discussed in Section 2 holds in

Example 1 when p > 3/2. If p 6 3/2 and V (x) =
∑

i

mi

|x− ai|
, the functional E(ρ) + λ

∫
ρ

is unbounded below.

Type III: V ∈M3(R3).

Clearly this situation is more general than Type II (since k ∗ µ ∈M 3). Here we cannot
anymore rely on Appendix A to solve

−∆u0 + γ(u0) 3 −∆V

since ∆V need not be a measure. Instead we will rely on Theorem 6. The conclusion is
less precise since we have little information about I1 (we suspect that I1 might sometimes
be infinite).
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Corollary 4. Assume again (4.14). Let V ∈ M 3(R3) be such that ess sup
R3

V > 0. Then

there exists 0 < I1 6 ∞ such that

a) for every I ∈ (0, I1) there is a unique solution of problem (EI),

b) if I1 < ∞, problem (EI1) admits a solution, and problem (EI) has no solution when
I > I1.

Proof. Apply Theorem 6 with the decomposition V = U + Bf and f = 0. We have to
verify (3.18), i.e.,

∫

ω

γ0(V + t) <∞ ∀t > 0, ∀ω ⊂ Ω with |ω| <∞.

This follows immediately from assumption (4.14) and Lemma A.1 applied to the function
un ≡ V + t ∈M3 on ω.

Remark 17. There are many variants of Corollary 4. For instance, in the standard
Thomas-Fermi theory (Example 1 with p = 5/3), it suffices to assume, for example, that

for every δ > 0, the set [V > δ] is bounded and V ∈ L
3/2
loc (singularities such as |x|−α,

α < 2 are admissible).
In the relativistic Thomas-Fermi (Example 2), it suffices to assume that for every δ > 0,

the set [V > δ] is bounded and that V = V1 + V2 with V1 ∈ L3
loc and V2 ∈ L1

loc with
∆V2 ∈ L1

loc. Note that the singularity V (x) = 1/|x| is excluded, but this is consistent with
the discussion in Remark 15 (see also Remark A. 4).

5. A min-max principle for the Lagrange multiplierλ; uniqueness of the ex-
tremals.

Throughout this section we take Ω = R
N , N > 3 and Bρ = k ∗ ρ as in Section 4.

Let j : R → [0,+∞] be a convex l.s.c. function such that

(5.1) j(0) = 0 and j(r) = +∞ for all r < 0

(5.2) j is C1 on (0,∞), and j′(0+) = 0.

Let V : Ω → R be a measurable function such that V∞ = 0. Recall (see Theorem 5)
that exists λ0 ∈ [0,+∞] such that for every λ > λ0 problem

(Eλ) ∂j(ρ) + Bρ 3 V − λ a.e.

admits a unique solution ρλ ∈ L1, ρλ > 0. As in the previous sections we set

I(λ) =

∫
ρλ and I1 = sup

λ>λ0

I(λ) = lim
λ↓λ0

I(λ) 6 ∞.

Note that I(λ) > 0 if and only if λ < ess sup
RN

V . Recall that (Eλ) has no solution for λ < λ0

and (Eλ0
) admits a unique solution if and only if I1 <∞.
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Theorem 7. For any λ0 < λ < ess sup
RN

V we have

(5.3) λ = max
ρ∈L1, ρ>0
R

ρ=I(λ)

ess inf
[ρ>0]

{V − Bρ− j′(ρ)}

and

(5.4) λ = min
ρ∈L1, ρ>0
R

ρ=I(λ)

ess sup
RN

{V − Bρ− j′(ρ)} .

Conclusion (5.3) holds for λ = λ0 <∞ provided I1 < ∞; conclusion (5.4) holds for λ = λ0

provided λ0 = 0 and I1 < ∞.

In (5.4) we use the convention that j ′(0) = j′(0+)(= 0).

Remark 18. The conclusion of Theorem 7 were obtained by Lieb-Simon [1] (Theorems
II. 28 and II. 29) in the context of the standard Thomas-Fermi model (see Example 1 in
Section 4 with p = 5/3, and V (x) given by (4.13) with mi > 0 ∀i).
Proof. If we take ρ = ρλ we have on the set A = [ρλ > 0] (which has positive measure
because of the assumption λ < ess sup

RN

V ),

(5.5) j′(ρλ) +Bρλ = V − λ,

so that

ess inf
[ρλ>0]

{V − Bρλ − j′(ρλ)} = λ.

Moreover, on the set [ρλ = 0] we have

V − λ− Bρλ 6 0.

and in particular

V − Bρλ − j′(ρλ) 6 λ.

Thus

ess sup
RN

{V − Bρλ − j′(ρλ)} = λ.

To conclude the proof it remains to show that for every ρ ∈ L1, ρ > 0, with
∫
ρ = I(λ) we

have

(5.6) ess inf
[ρ>0]

{V − Bρ− j′(ρ)} 6 λ
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and

(5.7) ess sup
RN

{V −Bρ− j′(ρ)} > λ.

Proof of (5.6). Suppose, by contradiction, that there is some ρ̄ ∈ L1, ρ̄ > 0, with∫
ρ̄ = I(λ), such that

(5.8) λ∗ = ess inf
[ρ̄>0]

{V −Bρ̄− j′(ρ̄)} > λ.

Let ρ∗ = ρλ∗ be the unique solution of (Eλ∗), i.e.,

(5.9) ∂j(ρ∗) +Bρ∗ 3 V − λ∗.

Set

W =

{
j′(ρ̄) +Bρ̄ on [ρ̄ > 0],

min{Bρ̄, V − λ∗} on [ρ̄ = 0].

Clearly we have

(5.10) ∂j(ρ̄) + Bρ̄ 3W a.e. on R
N ,

and

(5.11) W 6 V − λ∗ a.e. on R
N .

We deduce from (5.9), (5.10), (5.11) and Lemma 12 that

(5.12) Bρ̄ 6 Bρ∗.

Applying Theorem B.1 with u = B(ρ̄− ρ∗) 6 0, we see that
∫

(ρ̄− ρ∗) 6 0, i.e.,

(5.13)

∫
ρ̄ = I(λ) 6 I(λ∗) =

∫
ρ∗.

Let ρλ be the solution of (Eλ). From Theorem 5 we know that

(5.14) ρλ∗ 6 ρλ.

Combining (5.14) with (5.13) we deduce that

(5.15) ρ∗ = ρλ.

Recall that A = [ρλ > 0] = [ρ∗ > 0] has positive measure. Applying (Eλ) and (Eλ∗) on A
we find

V − λ = V − λ∗ a.e. on A,
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and thus λ = λ∗− a contradiction.

Proof of (5.7). Suppose, by contradiction, that there is some ρ̄ ∈ L1, ρ̄ > 0, with∫
ρ̄ = I(λ) such that

(5.16) µ∗ = ess sup
RN

{V − Bρ̄− j′(ρ̄)} < λ.

Fix µ such that max{µ∗, λ1} < µ < λ. Set

W = j′(ρ̄) +Bρ̄,

so that

(5.17) ∂j(ρ̄) + Bρ̄ 3W

and

(5.18) W > V − µ∗ > V − µ.

Let ρµ be the solution of

(5.19) ∂j(ρµ) + Bρµ 3 V − µ

(which exists since µ > λ1). Combining (5.17), (5.19) and (5.18), we deduce from the
comparison principle in Lemma 12 that Bρµ 6 Bρ̄. Applying Theorem B.1 once more
yields

∫
(ρµ − ρ̄) 6 0, i.e.,

I(µ) =

∫
ρµ 6

∫
ρ̄ = I(λ).

We conclude that ρλ = λµ and obtain a contradiction as above.

In the limiting case λ = λ0, the proof of (5.6) is unchanged. But we cannot use the
above proof for (5.7). In this case we simply observe that

ess sup
RN

{V − Bρ− j′(ρ)} > V∞ = 0 = λ0.

Lieb and Simon [1] have conjectured the uniqueness of the maximizer in (5.3) and the
minimizer in (5.4) (see Problem 4 in the Introduction and the discussion in Section II.7).
We will prove that the conjecture is true when λ0 < λ < ess sup

RN

V for a large class

of problems including the standard Thomas-Fermi model: Example 1 in Section 4 with
p = 5/3. (With the notations of Lieb-Simon [1] this means that the conjecture holds when
N < Z). A basic ingredient is a sharp form of strong maximum principle described in
Appendix C.
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However we will see that the conjecture fails (even for the standard Thomas-Fermi
model) in the “neutral” case λ = 0 (i.e., N = Z with the notations of Lieb-Simon [1]).

A counter example in the neutral case.
Consider for simplicity the case N = 3 and the Example of Section 4 with p > 4/3. In

the neutral case, the Thomas-Fermi ρ is the unique solution of the equations

(5.20) ρp−1 +Bρ = V =
∑

i

mi

|x− ai|

with mi > 0 ∀i. In other words u = ρp−1 is the unique positive solution of

(5.21) −∆u+ u1/(p−1) = 4π
∑

i

miδai
.

Moreover we have, by Corollary 3,

(5.22)

∫
ρ = 4π

∑
mi.

Clearly the function ρ satisfies ρ > 0,
∫
ρ = I = 4π

∑
mi, and

(5.23) ess inf
RN

(V − Bρ− ρp−1) = 0

(5.24) ess sup
RN

(V −Bρ− ρp−1) = 0.

We will now construct two functions ρ1, ρ2, distinct from ρ, satisfying ρ1 > 0, ρ2 > 0,
∫
ρ1 =∫

ρ2 = I,

(5.25) ess inf
RN

(V −Bρ1 − ρp−1
1 ) = 0,

(5.26) ess sup
RN

(V − Bρ2 − ρp−1
2 ) = 0.

Given k > 0, let uk > 0 be the solution of

(5.27) −∆uk + ku
1/(p−1)
k = 4π

∑
miδai

,

and set

(5.28) ρk = ku
1/(p−1)
k .
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From the results of Appendix B we deduce that

∫
ρk = I = 4π

∑
mi ∀k.

On the other hand, we see from (5.27) and (5.28) that

(k−1ρk)p−1 +Bρk = V =
∑ mi

|x− ai|

and therefore
V −Bρk − ρp−1

k = (k−(p−1) − 1)ρp−1
k .

We obtain the desired ρ1 and ρ2 satisfying (5.25) and (5.26) by choosing ρ1 = ρk1
and

ρ2 = ρk2
with k1 < 1 and k2 > 1.

Uniqueness of the extremals in the “ionic” case, 0 < I < I0.

In addition to the standard assumptions (5.1) and (5.2) on j, we assume here that

(5.29) j′ is concave on (0,∞),

and

(5.30) lim
r→∞

j(r)

r
= +∞.

As a result, it is easy to see that γ = (∂j)−1 is a continuous nondecreasing function on R

such that

(5.31) γ(s) = 0 for s 6 0,

and

(5.32) γ is convex on R,

so that γ′(s−) exists at every s ∈ R, and will be denote simply γ ′(s).
A typical example is

(5.33) j(r) =

{ 1
p
rp for r > 0,

+∞ for r < 0,

with 1 < p < 2 and then γ(r) = (r+)p′−1; recall that the standard Thomas-Fermi model
corresponds to p = 5/3 and then γ(r) = (r+)3/2.

Let λ > 0 and let V be any measurable function such that, for some R > 0,

(5.34) V (x) 6 λ for a.e. x with |x| > R.
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We will assume that

(5.35) γ′(V − λ) ∈ L1(RN ).

The standard Thomas-Fermi model corresponds to V (x) =
∑ mi

|x−ai|
in R

3 and satisfies

all the required assumptions (any p > 5/4 would be acceptable).

Let ρ ∈ L1, ρ > 0, be a solution of the problem

(5.36) ∂j(ρ) + Bρ 3 V − λ a.e. on R
N .

Suppose now that ρ1 is a maximizer for (5.3), i.e., ρ1 ∈ L1, ρ1 ≥ 0, satisfies

(5.37)

∫
ρ1 =

∫
ρ

and

(5.38) ess inf
[ρ1>0]

{V −Bρ1 − j′(ρ1)} = λ.

Similarly, suppose that ρ2 is a minimizer for (5.4), i.e., ρ2 ∈ L1, ρ2 > 0, satisfies

(5.39)

∫
ρ2 =

∫
ρ

and

(5.40) ess sup
RN

{V −Bρ2 − j′(ρ2)} = λ

(with the convention that j ′(0) = 0).

Theorem 8. Assume (5.1), (5.2), (5.29), (5.30), (5.34) − (5.40). Then

ρ1 = ρ2 = ρ.

The key ingredient in the proof is the following:

Lemma 15. Assume (5.1), (5.2), (5.29) and (5.30). Let ψ1, ψ2 ∈ L1 with ψ1 > 0 a.e. on
R

N , ψ2 > 0 a.e. on R
N be such that

(5.41)

∫
ψ1 =

∫
ψ2.

Let f1, f2 be measurable functions on R
N such that

(5.42) f1 ≤ f2 a.e. on R
N ,
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(5.43) f1(x) 6 0 for a.e. x, |x| > R,

(5.44) γ′(f1) ∈ L1.

Assume

(5.45) ∂j(ψ1) +Bψ1 3 f1 a.e. on R
N ,

and

(5.46) ∂j(ψ2) +Bψ2 3 f2 a.e. on R
N .

Then

(5.47) ψ1 = ψ2.

Proof of Lemma 15. From Lemma 12 and (5.42) we already know that

(5.48) Bψ1 6 Bψ2.

Set u = B(ψ2 − ψ1) > 0 and

a =





γ(f1 − Bψ1) − γ(f1 −Bψ2)

u
on [u > 0],

0 on [u = 0],

so that a > 0 a.e.
Clearly we have

(5.49)

−∆u+ au = (ψ2 − ψ1) + au

= γ(f2 − Bψ2) − γ(f1 −Bψ1) + au

> γ(f1 − Bψ2) − γ(f1 −Bψ1) + au ≡ 0.

From the convexity of γ we see that

γ(f1 −Bψ2) − γ(f1 − Bψ1) > γ′(f1 − Bψ1)(Bψ1 −Bψ2),

and thus, by (5.44),

(5.50) a(x) 6 γ′(f1) ∈ L1.

On the other hand u ∈MN/(N−2),∆u ∈ L1 and
∫

∆u = 0 (by (5.41)); moreover

−∆u = ψ2 − ψ1 > −γ(f1),
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since ψ2 > 0 and ψ1 = γ(f1 − Bψ1) 6 γ(f1). From (5.43) we infer that

(5.51) −∆u > 0 for a.e. x, |x| > R.

Applying Corollary B.3 we see that u ≡ 0 in [|x| > R]. We may then invoke Theorem C.
1 to conclude that u ≡ 0, i.e., ψ1 = ψ2.

We may now go to the

Proof of Theorem 8. Set

W = j′(ρ2) + Bρ2 a.e. on R
N ,

so that

∂j(ρ2) + Bρ2 3W a.e.

and by (5.40)

W > V − λ a.e.

Applying Lemma 15 to ψ1 = ρ, f1 = V − λ, ψ2 = ρ2 and f2 = W , we find that ρ = ρ2.
Next, letting

Z =

{
j′(ρ1) + Bρ1 on [ρ1 > 0],

min{Bρ1, V − λ} on [ρ1 = 0],

we see that

∂j(ρ1) +Bρ1 3 Z a.e. on R
N

and

W 6 V − λ a.e. on R
N .

Applying Lemma 15 to ψ1 = ρ1, f1 = W,ψ2 = ρ and f2 = V − λ we find that ρ1 = ρ.

6. Asymptotic estimates for I(λ) as λ ↓ 0; behavior of the chemical potential in
the weakly ionized limit.

In this section we assume that (where the symbol ∼ means, as usual, that the ratio
tends to 1),

(6.1) γ(s) ∼ sq as s ↓ 0, for some 1 < q <
N

N − 2
,

and

(6.2) f = −∆V is a nonnegative, nonzero, measure in R
N with compact support,
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where V ∈MN/(N−2)(Rn). If f 6∈ L1(RN ), we suppose, in addition, that

(6.3) γ0

(
1

|x|N−2

)
∈ L1

loc(R
N ).

Using Theorem 2.1 in Bénilan-Brezis-Crandall [1] if f ∈ L1(RN ), or Theorem A.1
in Appendix A if f 6∈ L1(RN ), we know that for every λ > 0, there exists (uλ, ρλ) ∈
MN/(N−2) × L1 such that

(6.4) ρλ ∈ γ(uλ − λ) a.e. and − ∆uλ + ρλ = f in D′(RN ).

We start with a result which is basically known (see e.g. Hille [1], Lieb-Simon [1],
Véron [3]):

Proposition 4. We have

(6.5) u0(x) ∼
(
B

|x|

)k

as |x| → ∞,

where

(6.6) k =
2

q − 1
and B = B(k,N) =

(
k(k −N + 2)

)1/2
.

We now set

I(λ) =

∫
ρλ(x) dx,

Rλ = inf
{
r > 0; uλ(x) < λ a.e. on [|x| > r]

}
,

Rλ = sup
{
r > 0; uλ(x) > λ a.e. on [|x| < r]

}
.

Clearly, we have Rλ 6 Rλ, supp ρλ ⊂
[
|x| 6 Rλ

]
, and ρλ(x) > 0 a.e. on

[
|x| < Rλ

]
.

The main result of this section is the following

Theorem 9. We have, as λ ↓ 0,

(6.7)
Rλ ∼ Rλ ∼ B

(
A0

λ

)1/k

,

I0 − I(λ) ∼ aAθ
0λ

1−θ,

with

(6.8) θ =
N − 2

k
, a = (N − 2)BN−2σN ,

where σN = |SN−1|, k and B are given by (6.6), A0 = (2k − N + 2)A1/2(N − 2)−1, and
A = h(0) is a constant, depending only on q and N , defined via the solution of an ODE
described in Lemmas 17 and 18.

In order to prove Proposition 4, we need the following lemma, essentially due to Hille [1,
Theorem 4] (see also Véron [3, Lemme 2.2]):
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Lemma 16. Let N > 3, 1 < q < N
N−2 , R0 > 0, ` > 0, φ0 > 0, and v0 ∈ C2

(
[R0,∞)

)
,

v0 > 0, be the solution of

(6.11)




v′′0 +

N − 1

r
v′0 = `vq

0 in [R0,∞),

v0(R0) = φ0.

Then

(6.12) v0(r) ∼
(

B

`1/2 r

)k

as r → ∞,

where k and B are given by (6.6).

It is well-known (see Brezis [8]) that (6.11) has a unique solution, even without pre-
scribing a condition at infinity. Moreover, there exists a constant C > 0 (depending on
the given data) such that

(6.13) v0(r) 6
C

rk
∀r > R0.

Proof of Lemma 16. By a simple scaling argument, it suffices to prove the lemma for

` = 1. Set v0(r) =

(
B

r

)k

w0(r
n), with

(6.14) n = 2k − (N − 2),

so that w0 ∈ C2
(
[σ0,∞)

)
, w0 > 0, satisfies

(6.15)

{
σ2w′′

0 = Lw0(w
q−1
0 − 1) in [σ0,∞),

w0(σ0) = ψ0,

where σ0 = Rn
0 , ψ0 = φ0

(
R0

B

)k

, and L =

(
B

n

)2

. Clearly, in order to prove (6.12), it

suffices to show that

(6.16) lim
σ→∞

w0(σ) = 1.

Note that the function (w0 − 1)2 is convex; indeed,

1

2

d2

dσ2
(w0 − 1)2 > (w0 − 1)w′′

0 > 0
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by (6.15).

Suppose, by contradiction, that (6.16) does not hold. Since (w0 − 1)2 is convex and
bounded (for this last property we just apply (6.13)), there would exist a δ > 0 small
enough so that (w0 − 1)2 > δ2 on [σ0,∞). We now split the argument into two cases:

Case 1: w0(σ0) > 1.
In this case, one has w0 > 1 + δ on [σ0,∞) and

(6.17) σ2w′′
0 > δ = L(1 + δ)

(
(1 + δ)q−1 − 1

)
> 0 on [σ0,∞).

In particular, w0 itself is convex and bounded. Thus it is also decreasing. We then conclude
that

(6.18) lim
σ→∞

σw′
0(σ) = 0.

In fact, by the convexity of w0, we can write

0 6 −σw′
0(σ) 6 2

(
w0(σ/2)− w0(σ)

)
for σ > 2σ0.

Since w0(σ) converges as σ → ∞, (6.18) follows.

On the other hand, it follows from (6.17) that

−w′
0(σ) =

∫ ∞

σ

w′′
0 (τ) dτ >

δ

σ
∀σ > σ0,

which contradicts (6.18). This proves (6.16) in Case 1.

Case 2: w0(σ0) < 1.
We have 0 < w0 6 1−δ on [σ0,∞), so that w0 is concave. We deduce that w0 is increasing,

lim
σ→∞

σw′
0(σ) = 0 and σ2w′′

0 (σ) 6 −δ

for some δ̄ > 0. As before, this gives a contradiction.

Proof of Proposition 4. By the maximum principle, we have 0 6 u0 6 V on R
N . Since

V is harmonic outside some large ball, lim
|x|→∞

V (x) = 0. Then for any pair of positive

numbers `, ` with 0 < ` < 1 < `, there exists R0 > 0 such that

`uq
0 6 ρ0 6 `uq

0 a.e. on [|x| > R0].

We may also assume that the support of f is contained in [|x| < R0/2]; in particular, u0

is C2 on [|x| > R0] (see e.g. Brezis [8, Theorem 3]).
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Set φ0 = max
|x|=R0

u0(x), and consider the solution v0 ∈ C2
(
[R0,∞)

)
, v0 > 0, of (6.11)

with ` and φ0 replaced by ` and φ0, respectively. By the maximum principle, we have
u0(x) 6 v0(|x|) on [|x| > R0], so that, by Lemma 16,

(6.19) lim sup
|x|→∞

[( |x|
B

)k

u0(x)

]
6

(
1

`

)k/2

.

We now claim that u0 > 0 on [|x| > R0]. For a.e. x ∈ R
N , let

a(x) =





ρ0(x)

u0(x)
if u0(x) 6= 0,

0 if u0(x) = 0,

so that u0 satisfies

(6.20) −∆u0 + au0 = f > 0 in D′(RN ).

Using (6.1), we deduce that a ∈ L1(RN ); moreover, a is bounded on [|x| > R0]. By the
strong maximum principle, then either u0 > 0 on [|x| > R0], or u0 ≡ 0 on [|x| > R0].
Suppose, by contradiction, that u0 ≡ 0 on [|x| > R0]; in this case, Theorem C.1 in
Appendix C would imply that u0 ≡ 0 in R

N , which is not possible because, by assumption
(6.2), f is a nonzero measure. We deduce that u0 > 0 on [|x| > R0], as claimed.

Set φ
0

= min
|x|=R0

u0(x) > 0, and consider the solution v 0 ∈ C2
(
[R0,∞)

)
, v 0 > 0, of

(6.11) corresponding to ` and φ
0
. We have u0(x) > v 0(|x|) on [|x| > R0], and then

(6.21) lim inf
|x|→∞

( |x|
B

)k

u0(x) >

(
1

`

)k/2

.

Since (6.19) and (6.21) hold for every 0 < ` < 1 < ` , the proposition follows.

In order to prove Theorem 9, we need the following

Lemma 17. Let K ∈ C1
(
[0, 1]

)
with K > 0 on (0, 1), and K ′(1) < 0. Then there exists

a unique solution h ∈ C1
(
[0, 1]

)
of

(6.22)





1

2
h′(ξ) + h(ξ)1/2 +K(ξ) = 0 in [0, 1],

h(1) = 0, h(ξ) > 0 ∀ξ ∈ [0, 1].

Proof. (We present a modification due to M. Crandall of our original proof).
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Given ε > 0, set

Fε(s) =





s1/2 if s > ε,
s

ε1/2
if 0 < s < ε,

0 if s 6 0.

Then Fε is Lipschitz continuous, and there exists a (unique) solution hε ∈ C1
(
[0, 1]

)
of





1

2
h′ε(ξ) + Fε

(
hε(ξ)

)
+K(ξ) = 0 in [0, 1],

hε(1) = ε.

Since h′ε 6 0, we have hε > ε, and

1

2
h′ε(ξ) + hε(ξ)

1/2 +K(ξ) = 0 ∀ξ ∈ [0, 1].

Moreover, ε 7−→ hε(ξ) is increasing, and the limit h0 of hε as ε ↓ 0 is a solution of (6.22).

We now turn to uniqueness. Let h̃ be any solution of (6.22). Since h̃′ < 0 on (0, 1), we

have h̃ > 0 on [0, 1); also, h̃ < hε on [0, 1) for every ε > 0, and so h̃ 6 h0 on [0, 1].

Take ξ0 ∈ [0, 1) so that K ′ < 0 on [ξ0, 1]. For 0 < δ < 1 − ξ0, let hδ be a function

defined on [ξ0 + δ, 1] by hδ(ξ) = h̃(ξ − δ). We have

dhδ

dξ
(ξ) + hδ(ξ)1/2 +K(ξ) = K(ξ) −K(ξ − δ) 6 0,

hδ(1) = h̃(1 − δ).

Thus if we take ε = h̃(1− δ) > 0, then hδ > hε on [ξ0 + δ, 1]. At the limit as δ ↓ 0, h̃ > h0

on [ξ0, 1], and so h̃ = h0 on [ξ0, 1]. In particular, if we now choose ε = h̃(ξ0) = h0(ξ0),

then both h̃ and h0 satisfy the initial value problem:





1

2
h′(ξ) + Fε

(
h(ξ)

)
+K(ξ) = 0 in [0, ξ0],

h(ξ0) = ε,

since h̃, h0 > ε on [0, ξ0], and Fε(s) = s1/2 if s > ε. By uniqueness, we conclude that

h̃ = h0 on [0, ξ0], and hence on the entire interval [0, 1].

We now prove the following
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Lemma 18. Let N > 3, 1 < q < N
N−2 , R0 > 0, ` > 0, φ0 > 0, λ > 0, and vλ ∈

C2
(
[R0,∞)

)
be the solution of

(6.23)




v′′λ +

N − 1

r
v′λ = `

[
(vλ − λ)+

]q
in [R0,∞),

vλ(R0) = φ0, lim
r→∞

vλ(r) = 0.

Then vλ(r) is decreasing with respect to r on [R0,∞).
For every 0 < λ 6 φ0, let Rλ ∈ [R0,∞) be such that vλ(Rλ) = λ. We have

(6.24) −v′λ(Rλ) =
(N − 2)λ

Rλ
∼ nA1/2

Rλ

(
B

`1/2Rλ

)k

as λ ↓ 0,

with k and B given by (6.6), n given by (6.14), and A = h(0), where h is the solution of
(6.22) corresponding to

K(ξ) =

(
B

n

)2

ξ(1 − ξq−1).

Proof. By a simple scaling argument, it suffices to prove the lemma for ` = 1. Firstly, we
have

d

dr

(
rN−1v′λ(r)

)
= rN−1

[
(vλ(r) − λ)+

]q
> 0 ∀r > R0.

In particular, since vλ(R0) > 0 and lim
r→∞

vλ(r) = 0, it follows from the maximum principle

that vλ > 0 in [R0,∞). We claim that v′λ < 0 in [R0,∞). In fact, if v′λ(r0) > 0 for some
r0 > R0, then we would have

rN−1v′λ(r) > rN−1
0 v′λ(r0) > 0 for every r > r0.

In other words, v′λ(r) > 0 for r > r0, and so

lim inf
r→∞

vλ(r) > vλ(r0) > 0.

But this contradicts lim
r→∞

vλ(r) = 0. We then deduce that v′λ < 0 in [R0,∞).

For each 0 < λ 6 φ0, it follows that there exists a unique Rλ ∈ [R0,∞) such that

vλ(Rλ) = λ. Moreover, if r > Rλ, then
d

dr

(
rN−1v′λ(r)

)
= 0. Thus

vλ(r) = λ

(
Rλ

r

)N−2

and v′λ(r) = − (N − 2)λ

Rλ

(
Rλ

r

)N−1

.

In particular,

(6.25) v′λ(Rλ) = − (N − 2)λ

Rλ
.
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Now set, as in Lemma 16, vλ(r) =

(
B

r

)k

wλ(rn) + λ, so that wλ satisfies

(6.26)





wλ ∈ C2
(
[σ0, σλ]

)
, w0 > 0,

σ2w′′
λ = Lwλ(wq−1

λ − 1) in [σ0, σλ],

wλ(σ0) = ψλ, wλ(σλ) = 0,

where σ0 = Rn
0 , σλ = Rn

λ, ψλ = (φ0 − λ)

(
R0

B

)k

, and L =

(
B

n

)2

. Using this notation,

we can rewrite (6.25) as

v′λ(Rλ) =
n

Rλ

(
B

Rλ

)k

σλw
′
λ(σλ).

In order to establish (6.24), it suffices to show that

(6.27) lim
λ↓0

(
σλw

′
λ(σλ)

)2
= A.

Before proving (6.27), we first remark that if v0 and w0 are the functions introduced in
Lemma 16, it follows from the standard maximum principle that

(6.28) vλ ↓ v0 and vλ − λ ↑ v0 as λ ↓ 0,

so that

(6.29) σλ ↑ ∞ and wλ ↑ w0 as λ ↓ 0.

As in Lemma 16, we split the proof of (6.27) into two cases:

Case 1: w0(σ0) 6 1.
Since (w0 − 1)2 is convex and lim

σ→∞
w0(σ) = 1, we have w0 6 1, and then wλ < 1 for λ > 0.

It follows from (6.26) that wλ is strictly concave.
Let mλ = maxwλ, and σλ ∈ [σ0, σλ] be such that wλ(σλ) = mλ. We have w′

λ < 0 on
(σλ, σλ], and, by (6.29), mλ ↑ 1.

Define ϕλ : [0,mλ] → [σλ, σλ] to be the inverse function of wλ|[σλ,σλ].

Set
hλ(ξ) =

[
w′

λ(ϕλ(ξ))ϕλ(ξ)
]2
.

We have
ϕ′

λ(ξ)w′
λ(ϕλ(ξ)) = 1,

ϕλ(ξ)w′
λ(ϕλ(ξ)) = −hλ(ξ)1/2,

ϕλ(ξ)2w′′
λ(ϕλ(ξ)) = Lξ(ξq−1 − 1),
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so that hλ satisfies





1

2
h′λ(ξ) + hλ(ξ)1/2 + Lξ(1 − ξq−1) = 0 in [0,mλ],

hλ(mλ) = 0.

Since hλ(0) =
(
σλw

′
λ(σλ)

)2
and mλ ↑ 1, the lemma follows in this case.

Case 2: w0(σ0) > 1.
For λ > 0 small enough, wλ(σ0) > 1 by (6.29). It then follows from the convexity of
(wλ − 1)2 that there exists a unique σλ ∈ (σ0, σλ) such that wλ(σλ) = 1, and w′

λ < 0 on
[σλ, σλ].

Define ϕλ : [0, 1] → [σλ, σλ] to be the inverse function of wλ|[σλ,σλ]. As before, set

hλ(ξ) =
[
w′

λ(ϕλ(ξ))ϕλ(ξ)
]2
,

so that hλ satisfies

1

2
h′λ(ξ) + hλ(ξ)1/2 + Lξ(1 − ξq−1) = 0 in [0, 1].

Note that
hλ(0) =

(
σλw

′
λ(σλ)

)2
.

By Lemma 17, to conclude this second case it suffices to show that lim
λ↓0

hλ(1) = 0; in other

words, we only need to prove that

(6.30) lim
λ↓0

σλw
′
λ(σλ) = 0.

The convexity of wλ on [σ0, σλ] implies that

0 6 w′
λ(σλ)(r − σλ) 6 wλ(r) − wλ(σλ) ∀r ∈ [σ0, σλ];

consequently

0 > σλw
′
λ(σλ) >

σλ

σλ − r

[
1 − wλ(r)

]
∀r ∈ [σ0, σλ].

Taking λ ↓ 0, and then r → ∞, we get (6.30) as desired.

Proof of Theorem 9. Let 0 < ` < 1 < `. Since 0 6 u0 6 V , there exists R0 > 0 such
that

`
[
(uλ − λ)

]q
6 ρλ 6 `

[
(uλ − λ)

]q
a.e. on [|x| > R0].

We may also assume that the support of f is contained in [|x| < R0/2].
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Set
ϕ

0
= min

|x|=R0

u0(x) and ϕ0 = max
|x|=R0

u0(x),

and consider v λ, vλ ∈ C2
(
[R0,∞)

)
to be the corresponding solutions given by Lemma 18.

By the maximum principle, we have

(6.31) v λ(|x|) 6 uλ(x) 6 vλ(|x|) on [|x| > R0].

It is clear that
R ′

λ = v−1
λ (λ) 6 R λ 6 Rλ 6 v−1

λ (λ) = R
′

λ,

and then, by Lemma 18,

nA1/2

N − 2

(
B

`1/2

)k

6 lim inf
λ↓0

λR k
λ 6 lim sup

λ↓0
λR

k

λ 6
nA1/2

N − 2

(
B

`
1/2

)k

.

Since the estimates above hold for any 0 < ` < 1 < ` , we conclude that

R λ ∼ R λ ∼ B

(
nA1/2

(N − 2)λ

)1/k

as λ ↓ 0.

Take u λ, uλ ∈ MN/(N−2), with ∆u λ, ∆uλ ∈ M, to be any extensions inside [|x| < R]
of v λ(|x|) and vλ(|x|), respectively. By Corollary B1 in Appendix B, and by (6.31), we
have

(6.32)

∫

RN

∆uλ >

∫

RN

∆uλ >

∫

RN

∆uλ.

Then, for λ > 0 sufficiently small (so that R ′
λ > R0),

(6.33)

∫

RN

∆uλ =

∫

|x|<R ′

λ

∆uλ = σN (R ′
λ)N−1v ′

λ(R ′
λ),

since ∆u λ = 0 on |x| > R ′
λ. Similarly,

(6.34)

∫

RN

∆uλ =

∫

|x|<R
′

λ

∆uλ = σN (R
′

λ)N−1v ′
λ(R

′

λ).

Thus, for λ > 0 small enough, it follows from (6.32), (6.33) and (6.34) that

σN (R ′
λ)N−1v ′

λ(R ′
λ) >

∫

RN

∆uλ > σN (R
′

λ)N−1v ′
λ(R

′

λ).
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Using Lemma 18, at the limit as ` ↓ 1 and ` ↑ 1, we obtain

(6.35) −
∫

RN

∆uλ ∼ aAθ
0λ

1−θ as λ ↓ 0,

where a is given by (6.8) and A0 =
nA1/2

N − 2
. We now apply Corollary B.2 and Lemma B.1

(with p = N/(N − 2)) in Appendix B. By (6.1), we have

∫

RN

∆u0 = 0, so that

(6.36) I0 − I(λ) =

∫

RN

(∆u0 − ∆uλ) = −
∫

RN

∆uλ.

Combining (6.35) and (6.36), we conclude that

I0 − I(λ) ∼ aAθ
0λ

1−θ as λ ↓ 0.

Behavior of the chemical potential in the weakly ionized limit.

We consider the standard Thomas-Fermi model and we follow now the notations of
Lieb-Simon [1] (except that we set µ = −εF , instead of ϕ0, where εF is the chemical
potential). The functions ϕµ and ρµ satisfy, with µ > 0,

(6.37) −∆ϕµ + 4π[(ϕµ − µ)+]3/2 = 4π
∑

ziδai

and

(6.38) ρµ = [(ϕµ − µ)+]3/2.

Set

J(µ) =

∫
ρµ

and

J(0) =

∫
ρ0 =

∑
zi = Z

Lieb-Simon [1, Problem 5] raised the following problem: prove that

(6.39) lim
µ↓0

µ

[Z − J(µ)]4/3
exists .

The answer is indeed positive and can be easily derived from Theorem 9.
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Corollary 5. We have

(6.40) lim
µ↓0

µ

[Z − J(µ)]4/3
=

(
π2

63A1/2

)1/3

where A = h(0), and h is the unique solution h > 0 of the differential equation

(6.41)

{ 1

2
h′(ξ) + h(ξ)1/2 +

12

49
ξ(1 − ξ1/2) = 0 in (0, 1),

h(1) = 0.

Remark 19. Solving numerically (6.41) yields A = h(0) = 1.129359 . . . and then

(6.42) lim
µ↓0

µ

[Z − J(µ)]4/3
= 0.52826 . . . ;

with the notation of Lieb-Simon [1], (6.42) reads

(6.43) lim
N↑Z

εF (N)

[Z −N ]4/3
= −0.52826 . . . .

This exact value is consistent with a lower bound for −εF (N) near N = Z obtained by
Benguria-Yáñez [1] with the help of a new variational characterization for εF ; we refer the
reader to the paper of Benguria-Yáñez [1] for other comments on this question.

Proof of Corollary 5. Let M = 1/16π2 and set

(6.44) u = M−1ϕµ.

From (6.37) we obtain

(6.45) −∆u+

[(
u− µ

M

)+
]3/2

= (4π/M)
∑

ziδai
.

We may apply Theorem 9 with λ = µ/M, q = 3/2, k = 4, B = (12)1/2, θ = 1/4, a =
4π(12)1/2, A0 = 7A1/2, and we obtain

(6.46) I0 − I(λ) ∼ 4π(12)1/2(7A1/2)1/4λ3/4.

Here I0 =
4π

M
Z = (4π)3Z and

(6.47) I(λ) =

∫ [(
u− µ

M

)+
]3/2

.
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Note that

J(µ) =

∫
ρµ =

∫
[(ϕ− µ)

+
]3/2 =

∫
[(Mu− µ)+]3/2 = M3/2I(λ),

and
J(0) = Z = M3/2I0.

Thus, by (6.46),

J(0) − J(µ) = M3/2[I0 − I(λ)]

∼ 1

(4π)2
(12)1/2(7A1/2)1/4[16π2µ]3/4

= (4π)−1/2(12)1/2(7A1/2)1/4µ3/4,

which is the desired result (6.39).

7. Another dual variational formulation.

In this section we assume that (H) holds, and that meas [V > δ] <∞ for every δ > 0.
Set

L =





(u, λ)

∣∣∣∣∣∣∣

u is a measurable function, λ > 0,

j∗(u− λ) ∈ L1,

u− V ∈MN/(N−2) and ∇(u− V ) ∈ L2




.

Fix I > 0; consider the following convex functional defined on L :

Φ(u, λ) =
1

2

∫ ∣∣∇(u− V )
∣∣2 +

∫
j∗(u− V ) + λI.

Theorem 10. Let (u0, λ0) be such that





u0 is measurable, λ0 > 0,

u0 − V ∈MN/(N−2), ∆(u0 − V ) ∈ L1 and

∫
∆(u0 − V ) = I,

− ∆(u0 − V ) + γ(u0 − λ0) 3 0 a.e.

Then
(u0, λ0) ∈ L and Φ(u0, λ0) 6 Φ(u, λ) ∀(u, λ) ∈ L.

Proof. Set ρ0 = ∆(u0 − V ), so that ρ0 ∈ L1, ρ0 > 0,
∫
ρ0 = I, and

∂j(ρ0) + Bρ0 3 V − λ a.e..
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By Theorem 1, ρ0 ∈ D(K); it follows from Lemma 14 that ∇Bρ0 = ∇(V − u0) ∈ L2, and

∫
ρ0Bρ0 =

∫
|∇(u0 − V )|2 = −

∫
(u0 − V ) ∆(u0 − V ).

Using the fact that γ = ∂j∗, we have, for any (u, λ) ∈ L,

(7.1)
j∗(u− λ) − j∗(u0 − λ0) > ∆(u0 − V )

[
(u− λ) − (u0 − λ0)

]

= ∆(u0 − V )
[
(u− V ) − (u0 − V )

]
+ (λ0 − λ) ∆(u0 − V ).

Take first u = V and λ > 0 such that j∗(V − λ) ∈ L1 (here we use assumption (H)); we
deduce from (7.1) that

j∗(u0 − λ0) 6 j∗(V − λ) + ρ0

(
Bρ0 + (λ− λ0)

)
∈ L1,

and thus (u0, λ0) ∈ L.

Now suppose (u, λ) ∈ L is such that u−V ∈ L∞. In this case, all the functions in (7.1)
are integrable, and we find

∫
j∗(u− λ)−

∫
j∗(u0 − λ0) >

>

∫
∆(u0 − V ) (u− V ) +

∫ ∣∣∇(u0 − V )
∣∣2 + (λ0 − λ)I

= −
∫

∇(u0 − V ) · ∇(u− V ) +

∫ ∣∣∇(u0 − V )
∣∣2 + (λ0 − λ)I

> −1

2

∫ ∣∣∇(u− V )
∣∣2 +

1

2

∫ ∣∣∇(u0 − V )
∣∣2 + (λ0 − λ)I,

i.e., Φ(u0, λ0) 6 Φ(u, λ).
[Here we have used the fact that

−
∫

(∆ϕ)ψ =

∫
∇ϕ · ∇ψ

∀ϕ, ψ with ϕ ∈ MN/(N−2),∆ϕ ∈ L1,∇ϕ ∈ L2, ψ ∈ L∞ ∩MN/(N−2),∇ψ ∈ L2; and this
may be easily justified by a smoothing argument.]

For a general (u, λ) ∈ L, set un = Tn(u− V ) + V , where

Tn(r) =





n if r > n

r if |r| 6 n

−n if r < −n
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so that un − V ∈ MN/(N−2) ∩L∞, ∇(un − V ) ∈ L2, and ∇(un − V ) → ∇(u− V ) in L2 as
n→ ∞. Moreover,

j∗(un − λ) 6 j∗(u− λ) on [u− V > −n],

j∗(un − λ) = j∗(V − n− λ) on [u− V < −n].

Note that for n > M − λ, we have j∗(V − n− λ) 6 j∗(V −M) ∈ L1 (by (H)); thus, for n
sufficiently large,

j∗(un − λ) ∈ L1 and j∗(un − λ) → j∗(u− λ) in L1 as n→ ∞.

Therefore, (un, λ) ∈ L for n large, and

Φ(u0, λ0) 6 Φ(un, λ) → Φ(u, λ) as n→ ∞.

This completes the proof of the theorem.

APPENDIX A

The equation −∆u+ β(u) 3 µ with µ measure

Let β be a maximal monotone graph on R with 0 ∈ β(0). Let M(RN ) denote the space
of bounded measures on R

N with the usual norm:

‖µ‖M = sup

{∫
ϕdµ; ϕ ∈ C0(R

N ) and ‖ϕ‖L∞ 6 1

}
,

where C0(R
N ) is the space of continuous functions on R

N tending to zero at infinity.
In this Appendix we assume that N > 3.

Theorem A.1. Assume β satisfies

(A.1) D(β) = R and β0
(
± 1

|x|N−2

)
∈ L1

loc(R
N ).

Then, for every measure µ ∈ M(RN ) there exists a unique solution u ∈MN/(N−2)(RN ) of
the problem

(A.2) −∆u+ β(u) 3 µ a.e. in R
N

such that

(A.3) w ≡ ∆u+ µ ∈ L1(RN ).
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Moreover if û is the solution corresponding to µ̂ we have

(A.4) ‖u− û‖MN/(N−2) + ‖∇(u− û)‖MN/(N−1) 6 C‖µ− µ̂‖M ,

(A.5) ‖(w − ŵ)+‖L1 6 ‖(µ− µ̂)+‖M ,

and

(A.6) [µ 6 µ̂ in M] ⇒ [u 6 û a.e.].

The proof of Theorem A.1 relies on the following

Lemma A.1. Let Ω be a measurable space of finite measure. Let (un) be a bounded
sequence in Mp(Ω) for some 1 < p <∞. Let β : R → R be a nondecreasing function such
that

(A.7)

∫

|s|>1

|β(s)|
|s|p+1

ds < ∞.

Then (β(un)) is bounded in L1(Ω) and equi-integrable.

Proof. We may always assume that β(0) = 0. Set γ(s) = β(s+ 0) − β(−s− 0) for s > 0,
so that γ is also nondecreasing and satisfies

∫ ∞

1

γ(s)

sp+1
ds <∞.

Let
αn(λ) = meas [|un| > λ].

Since (un) is bounded in Mp(Ω) there is a constant C such that αn(λ) 6 C/λp, ∀λ > 0.
Let A ⊂ Ω be measurable and let t > 0. We have

∫

A

|β(un)| dx 6

∫

A

γ(|un|) dx

6

∫

A∩[|un|6t]

γ(|un|) +

∫

[|un|>t]

γ(|un|)

6 |A| γ(t) + αn(t)γ(t) +

∫ ∞

t

αn(λ) dγ(λ)

6 |A| γ(t) + C

(
γ(t)

tp
+

∫ ∞

t

1

λp
dγ(λ)

)

= |A| γ(t) + Cp

∫ ∞

t

γ(λ)

λp+1
dλ.
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Given ε > 0 we fix t0 large enough so that

Cp

∫ ∞

t0

γ(λ)

λp+1
dλ < ε/2.

Then we have
∫

A
|β(un)| 6 ε for every A such that |A| < δ ≡ ε/2 γ(t0).

Proof of Theorem A.1.

Uniqueness. Let û be another solution. We have

−∆(u− û) + w − ŵ = 0 in R
N

and thus, by Kato’s inequality (see Kato [1]), we obtain

−∆|u− û| + (w − ŵ) sign (u− û) 6 0 in D′(RN ).

Since w ∈ β(u) and ŵ ∈ β(û) it follows that (w − ŵ) sign (u− û) > 0. Therefore, the
function ϕ = |u− û| is subharmonic and, for a.e. x0, we have

ϕ(x0) 6
1

|Cn(x0)|

∫

Cn(x0)

ϕ(x) dx

where Cn(x0) = {x ∈ R
N ;n < |x−x0| < 2n}. From the fact that ϕ ∈MN/N−2 we deduce

that ∫

Cn(x0)

ϕ(x) dx 6 C
∣∣Cn(x0)

∣∣2/N
.

Letting n→ ∞ we conclude that ϕ = 0 a.e.

Existence. We already know (see Bénilan-Brezis-Crandall [1, Theorem 2.1]) that if µ ∈
L1(RN ) all the conclusions of Theorem A.1 hold, even without assumption (A.1). If
µ ∈ M(RN ), we let fn = ρn ∗ µ where (ρn) is a sequence of mollifiers. We have

fn ∈ L1 ∩ C∞, ‖fn‖L1 6 ‖µ‖M and fn ⇀ µ in the w∗-topology of M.

Let un ∈ MN/(N−2)(RN ) be the (unique) solution of

−∆un + β(un) 3 fn

with wn = ∆un + fn ∈ L1(RN ). We already know that

‖un‖MN/(N−2) + ‖∇un‖MN/(N−1) 6 C‖fn‖L1

and
‖wn‖L1 6 ‖fn‖L1 .
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It follows that (un) is relatively compact in L1
loc(R

N ). On the other hand, assumption
(A.1) implies (A.7) with p = N/(N − 2). We deduce from Lemma A.1 that (wn) is equi-
integrable on every bounded set of R

N . Applying the Dunford–Pettis theorem (see e.g.
Dunford-Schwartz [1, Corollary IV.8.11]) we may choose a subsequence such that

unk
→ u in L1

loc(R
N ),

wnk
⇀ w weakly in L1

loc(R
N ).

We have u ∈MN/(N−2)(RN ), w ∈ L1(RN ) and (by standard monotone analysis; see e.g.
Brezis [1, Lemma 3]) w ∈ β(u) a.e. Therefore u is a solution of (A.2)–(A.3). Properties
(A.4), (A.5) and (A.6) follow easily5 from the corresponding properties for un, ûn. Indeed
fn − fn = ρn ∗ (µ− µ̂) so that

‖fn − f̂n‖L1 6 ‖µ− µ̂‖M and ‖(fn − f̂n)+‖L1 6 ‖(µ− µ̂)+‖M.

Remark A.1. The case N = 2 has been investigated by J.L. Vázquez [1].

Remark A.2. Let Ω ⊂ R
N be a bounded domain with smooth boundary. Under assump-

tion (A.1), the same method as above shows that, for every bounded measure µ on Ω,

there exists a unique solution u ∈W 1,1
0 (Ω) of the problem

{ −∆u+ β(u) 3 µ in Ω

u = 0 on ∂Ω

with w = ∆u+ µ ∈ L1(Ω).

Remark A.3 : Local regularity. Assume ω is an open subset of R
N . Suppose µ ∈

Lq
loc(ω) for some 1 < q < ∞, then the solution u of (A.2) satisfies u ∈ W 2,q

loc (ω) (see
Brezis [8, Theorem 3]).

Remark A.4 : Non existence without (A.1). Assume D(β) = R but (A.1) does not
hold—for example

(A.8)

∫

|x|<1

β0

(
1

|x|N−2

)
dx = ∞.

Then, for each c > 0, problem

(A.9) −∆u+ β(u) 3 cδ in R
N

5Note that if (vn) is a bounded sequence in Mp(1 < p < ∞) such that vn ⇀ v weakly in L1
loc, then

v ∈ Mp and ‖v‖Mp 6 lim inf ‖vn‖Mp . This is clear since {v ∈ Mp; ‖v‖Mp 6 C} is a closed convex set in

L1
loc by Fatou’s lemma.
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has no solution (with w = cδ + ∆u ∈ L1).

Indeed, suppose u is a solution of (A.9), then u is radial (by uniqueness) and u ∈
C1(RN\{0}) (by Remark A.3). We have

∫

|x|<r

w dx = c+

∫

|x|<r

∆u dx = c+ σNr
N−1u′(r)

and therefore

u′(r) = − c

σNrN−1
+ o(

1

rN−1
) as r → 0.

It follows that

u(r) =
c

σN (N − 2)rN−2
+ o(

1

rN−2
) as r → 0.

This contradicts (A.8) since
∫
|β0(u)| <∞.

In the special case where β(u) = |u|q−1u assumption (A.1) holds if and only if q <
N/(N − 2). When q > N/(N − 2) the nonexistence of solutions for µ = cδ may also
be viewed as a consequence of results about removable singularities (see Brezis-Véron [1]
and also Baras-Pierre [1]). When q > N/(N − 2), the measures µ for which the equation
−∆u+ |u|q−1u = µ has a solution u ∈ Lq have been completely characterized; see Baras-
Pierre [1] (and also Gallouët-Morel [2]). The result of Baras-Pierre asserts that, for 1 <
q <∞, the equation

(A.10) −∆u+ |u|q−1u = µ in R
N

has a solution u ∈ Lq(RN ) if and only if the bounded measure µ satisfies

(A.11) µ(E) = 0 ∀E ⊂ R
N such that cap2,q′ (E) = 0,

where cap2,q′ is the capacity associated to the Sobolev space W 2,q′

, and q′ = q/(q − 1).
An equivalent form asserts that (A.10) has a solution if and only if

(A.12) µ ∈ L1 +W−2,q.

Prior to our study very few authors had considered nonlinear PDE’s involving measures
as data (see however the pioneering nonexistence result of Kamenomostskaia [1] and the
paper of Bamberger [1]). Theorem A.1 and the nonexistence result stated above has been
the starting point and the motivation for many subsequent works in various directions:

A) Removable singularities. A typical result is the following (see e.g. Brezis-Véron [1],
Brezis [6], [7]).

Assume 0 ∈ Ω ⊂ R
N and q > N/(N − 2). Let f ∈ L1(Ω), and suppose u ∈ Lq

loc(Ω\{0})
satisfies

−∆u+ |u|q−1u = f in D′(Ω\{0}).
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Then u ∈ Lq
loc(Ω), and we have

−∆u+ |u|q−1u = f in D′(Ω).

A similar result has been established by Baras-Pierre [1] when the point 0 is replaced by
a closed set E ⊂ Ω with cap2,q′(E) = 0 (following earlier works by Loewner-Nirenberg [1]
and Véron [1]).

B) Classification of singularities. When the singularities are not removable it is an
important task to understand the nature of the singularities and possibly classify them.

A remarkable result of Véron asserts that if u ∈ C2(Ω\{0}), u > 0, and u satisfies

(A.13) −∆u+ uq = 0 in Ω\{0}

with 1 < q < N/(N − 2), then:

a) either u is smooth at 0;

b) or lim
|x|→0

|x|N−2 u(x) = c, where c is an arbitrary positive constant;

c) or lim
|x|→0

|x| 2
q−1 u(x) = C(q,N), where C(q,N) is an explicit constant such that

C(q,N)|x|− 2
q−1 is an exact solution of (A.13). For example, if q = 3/2 and N = 3, then

C(q,N) = 144. Following the terminology introduced in Brezis-Peletier-Terman [1],
this type of solution is called very singular (VSS).

For the proof we refer to Véron [2]; see also Brezis-Oswald [1]. A variety of other results
are presented in the book of Véron [4].

C) Measures as boundary data. Similar questions can be asked for nonlinear equations
involving measures as boundary condition. A typical example is the problem

−∆u+ |u|q−1u = 0 in Ω,(A.14)

u = µ on ∂Ω,(A.15)

where µ is a positive Borel measure on ∂Ω. The detailed investigation of such questions
was initiated by Gmira-Véron [1], and has vastly expanded in recent years; see the pa-
pers of Marcus-Véron [1], [2], [3], [4]. Important motivations coming from the theory of
probability—and the use of probabilistic methods—have reinvigorated the whole subject;
see the pioneering papers of LeGall [1], [2], the recent book of Dynkin [1], and the numerous
references therein.

D) Singular solutions and removable singularities for other nonlinear problems.
Questions concerning the existence (or nonexistence) of solutions with measure data, re-
movable singularities, and classification of singularities have been investigated for a large
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variety of nonlinear problems (elliptic and parabolic), such as

∂u

∂t
− ∆u+ |u|q−1u = f,

∂u

∂t
− ∆

(
|u|m−1u

)
= f,

− div
(
a(x,∇u)

)
+ |u|q−1u = f,

−∆u+ u|∇u|2 = f,

∂u

∂t
+ γ

∣∣∣∣
∂u

∂t

∣∣∣∣ − ∆u = 0, with 0 < |γ| < 1,

see Brezis-Friedman [1], Baras-Pierre [2], Brezis-Peletier-Terman [1], Brezis-Nirenberg [1],
Boccardo-Gallouët [1], [2], Boccardo-Gallouët-Orsina [1], [2], Boccardo-Dall’Aglio-Gallouët-
Orsina [1], Oswald [1], Pierre [1], and the numerous references in these papers. The study
of nonlinear parabolic equations with a Dirac mass as initial data is closely related to the
analysis of self-similar solutions; see Barenblatt [1], Barenblatt-Sivashinski [1], Friedman-
Kamin [1], Kamenomostskaia [1], Kamin-Peletier [1], Kamin-Peletier-Vázquez [1], [2], Pat-
tle [1], and Zel’dovich-Kompaneec [1].

E) “Forcing” solutions to exist. Assume β : R → R is continuous and nondecreasing,
with β(0) = 0. We make no assumption about the behavior of β at infinity, so that (A.1)
may fail. Our goal is to solve

−∆u+ β(u) = µ in Ω,(A.16)

u = 0 on ∂Ω.(A.17)

In general, (A.16)–(A.17) need not have a solution, but we may still consider approxima-
tions of (A.16)–(A.17), and try to understand how they fail to converge to a solution of
(A.16)–(A.17). There are several natural approximations. For example, we may solve

−∆un + βn(un) = µ in Ω,(A.18)

un = 0 on ∂Ω,(A.19)

where (βn) is a sequence of continuous nondecreasing functions with βn(0) = 0, such that
βn → β, e.g. uniformly on compact sets. Assume that each βn has at most a linear growth
at infinity, e.g. βn = β truncated at ±n, or βn is the Yosida approximation of β. Then
(A.18)–(A.19) admits a unique solution. Another reasonable approximation is

−∆un + β(un) = ρn ∗ µ in Ω,(A.20)

un = 0 on ∂Ω,(A.21)

where (ρn) is a sequence of mollifiers.
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Let us start with the case β(u) = |u|q−1u. It is not difficult to see that if q < N/(N−2),
then the solutions (un) of (A.18)–(A.19) or (A.20)–(A.21) converge to the solution of
(A.16)–(A.17), which exist for every measure µ. The difficulty arises when q > N/(N − 2)
and (A.16)–(A.17) has no solution, e.g. when µ = δa (a ∈ Ω). In this case, it has been
proved in Brezis [7] that un → 0. More generally, if µ = f+δa with f ∈ L1, then un → u∗,
where u∗ is the solution of

−∆u∗ + |u∗|q−1u∗ = f in Ω,

u∗ = 0 on ∂Ω.

Observe that u∗ does not satisfy −∆u∗ + |u∗|q−1u∗ = f + δa. An interesting aspect to
the same phenomenon is that when β(u) = |u|q−1u and q > N/(N − 2), the solution of
(A.16)–(A.17)—assuming it exists—is “not sensitive” to large perturbation of the data µ,
provided these perturbations are localized on sets of small capacity (in the sense of cap2,q′);
this is quantified in a recent estimate of Labutin [1] (see also Marcus-Véron [4]). For a
general measure µ > 0, it has been proved in Brezis-Marcus-Ponce [1] that un → u∗, where
u∗ is the unique solution of

−∆u∗ + |u∗|q−1u∗ = µ∗ in Ω,

u∗ = 0 on ∂Ω.

Here, µ∗ denotes the “regular” part µ1 of µ in the decomposition

µ = µ1 + µ2,

where µ1(E) = 0, ∀E with cap2,q′ (E) = 0, and µ2 is concentrated on a set Σ with
cap2,q′ (Σ) = 0; recall that this decomposition exists and is unique—see e.g. Fukushima-
Sato-Taniguchi [1].

Returning to a general continuous nondecreasing function β : R → R, the convergence
of the sequences (un) has been thoroughly investigated for a general measure µ > 0 in
Brezis-Marcus-Ponce [1]. The sequences (un) always converge to a well-defined limit u∗

independent of the approximation method. In addition, β(u∗) ∈ L1 and ∆u∗ is a bounded
measure, so that one may define the “reduced” measure

µ∗ = −∆u∗ + β(u∗).

The measure µ∗, which is a kind of “projection” of µ on the class of “admissible” measures,
has a number of remarkable properties. It is the largest measure ν such that ν 6 µ and

−∆v + β(v) = ν in Ω,

v = 0 on ∂Ω,

admits a solution, and therefore u∗ is the largest subsolution of (A.16)–(A.17). Moreover,
(µ− µ∗) is concentrated on a set Σ with cap1,2 (Σ) = 0.
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Applying a result of Vázquez [1], one may identify the measure µ∗ when N = 2 and
β(t) = (et−1). The identification of µ∗ in more general situations is an interesting direction
of research:

Open problem 1. What is µ∗ when β(t) = (et − 1) and N > 3 ? What is µ∗ when

β(t) = (et2 − 1) and N > 2 ?

Similar questions arise when β admits vertical asymptotes. Suppose for example that
β : (−1, 1) → R is a continuous nondecreasing function such that β(0) = 0 and lim

t→±1
β(t) =

±∞.

Open problem 2. What are the properties of the mapping µ 7→ µ∗ in this case ?

Other multivalued graphs β are of interest—for example the graphs

β(r) =





0 if r < a

[0,∞) if r = a

∅ if t > a

(for some a > 0), and

β(r) =





∅ if r < −1 and r > 1

(−∞, 0] if r = −1

0 if − 1 < r < 1

[0,∞) if r = 1.

They correspond respectively to one-sided and two-sided variational inequalities. The
objective is to solve in some natural “weak sense” the equation

−∆u+ β(u) 3 µ,

where µ is a given bounded measure. There are some partial results; see e.g. Baxter [1],
Dall’Aglio-Dal Maso [1], Orsina-Prignet [1], Brezis-Serfaty [1], and the references therein.

APPENDIX B

Some properties of

∫
∆u

It is clear that if a (smooth) function u decays “very fast” at infinity on R
N – for example

if u has compact support – then
∫

∆u = 0; on the other hand, if u decays at infinity like

1/|x|N−2 then
∫

∆u 6= 0. In this paragraph we investigate the relation between
∫

∆u and
the behavior of u at infinity. Throughout this Appendix we take N > 3.
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Theorem B.1. Assume u ∈MN/(N−2)(RN ) with ∆u ∈ M(RN ).
Then

lim
λ↓0

(
λN/(N−2) meas [u > λ]

)
exists and equals dN

[(
−

∫

RN

∆u
)+

]N/(N−2)

where dN is a positive constant depending only on N .

Before proving Theorem B.1 we deduce some corollaries

Corollary B.1. Assume u ∈MN/(N−2)(RN ) with ∆u ∈ M(RN ). If

lim inf
λ↓0

(
λN/(N−2) meas [u > λ]

)
= 0,

then ∫
∆u > 0.

In particular if u(x) 6 0 for |x| > R, then
∫

∆u > 0.

Corollary B.2. Assume u ∈MN/(N−2)(RN ) with ∆u ∈ M(RN ). Then

lim
λ↓0

(
λN/(N−2) meas [|u| > λ]

)
exists and equals dN

∣∣∣∣
∫

∆u

∣∣∣∣
N/(N−2)

.

Proof of Corollary B.2. Without loss of generality we may assume that
∫

∆u 6 0. By
Theorem B.1 we have

lim
λ↓0

(
λN/(N−2) meas [u > λ]

)
= dN

∣∣∣
∫

∆u
∣∣∣
N/(N−2)

and

lim
λ↓0

(
λN/(N−2) meas [−u > λ]

)
= 0.

The conclusion follows since

meas [|u| > λ] = meas [u > λ] + meas [−u > λ].

It is convenient, in the proof of Theorem B.1, to use the following notations:

p = N/(N − 2),

M(u) = lim sup
λ↓0

(
λp meas [u > λ]

)
,

M(u) = lim inf
λ↓0

(
λp meas [u > λ]

)
.
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Notice that, for any functions u1, u2, we have

(B.1) M(u1 + u2) 6
1

tp
M(u1) +

1

(1 − t)p
M(u2) ∀t ∈ (0, 1)

and

(B.2) M(u1 + u2) 6
1

tp
M(u1) +

1

(1 − t)p
M(u2) ∀t ∈ (0, 1).

These relations follow from the fact that

[u1 + u2 > λ] ⊂ [u1 > tλ] ∪ [u2 > (1 − t)λ] ∀t ∈ (0, 1).

Proof of Theorem B.1. Set A = −
∫

∆u. Given ε > 0, we fix R large enough so that

∫

|x|>R

|∆u| < ε.

Let k(x) = cN/|x|N−2 where cN = 1/(N − 2)σN and σN is the area of the unit sphere in
R

N (so that −∆k = δ0). Set

f1 = (−∆u)χBR
and f2 = (−∆u)(1 − χBR

),

u1 = k ∗ f1 and u2 = k ∗ f2,

where χBR
is the characteristic function of BR = {x ∈ R

N ; |x| < R}.

We have
u1 + u2 = k ∗ (−∆u) = u

and

(B.3) ‖u2‖Mp 6 ‖k‖Mp‖f2‖M 6 Cε.

We claim that there is some R > R such that

(B.4)

∣∣∣∣u1(x) −
AcN
|x|N−2

∣∣∣∣ 6
2 ε cN
|x|N−2

for |x| > R.

Indeed we have

u1(x) =

∫

BR

cN
|x− y|N−2

f1(y) dy
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and thus

u1(x) −
AcN
|x|N−2

= cN

∫

BR

1

|x− y|N−2
f1(y) dy −

cN
|x|N−2

∫

BR

f1(y) dy

+
cN

|x|N−2

(∫

BR

f1(y) dy − A

)
.

It follows that
∣∣∣∣u1(x) −

AcN
|x|N−2

∣∣∣∣ 6 cN

∫

BR

∣∣∣∣
1

|x− y|N−2
− 1

|x|N−2

∣∣∣∣ |f1(y)| dy+
εcN

|x|N−2
.

On the other hand, we have

∣∣∣∣
1

|x− y|N−2
− 1

|x|N−2

∣∣∣∣ 6
(N − 2)R

(|x| −R)N−1
provided |y| < R < |x|

[it suffices to write that |ϕ(1)−ϕ(0)| 6
∫ 1

0
|ϕ′(s)|ds with ϕ(t) = 1/|x− ty|N−2]. Therefore,

we obtain
∣∣∣∣u1(x) −

AcN
|x|N−2

∣∣∣∣ 6
C

(|x| − R)N−1
+

ε cN
|x|N−2

provided |x| > R

and we deduce (B.4) easily.

We now distinguish two cases:

(i) A 6 0

(ii) A > 0.

Case (i). It follows easily from (B.4) that

(B.5) M(u1) 6 (2 ε cN )pbN

where bN denotes the measure of the unit ball in R
N . Using (B.1), (B.3) and (B.5) we find

M(u) 6 Cεp

and since ε is arbitrary we conclude that M(u) = 0.

Case (ii). It follows easily from (B.4) that

(B.6) [(A− 2ε)cN ]pbN 6 M(u1) 6 M(u1) 6 [(A+ 2ε)cN ]p bN

provided ε < A/2. Using (B.1), (B.3) and (B.6) we find

M(u) 6
1

tp
[(A+ 2ε)cN ]p bN +

1

(1 − t)p
C εp ∀t ∈ (0, 1)
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Letting ε→ 0 and then t→ 1 we are led to

M(u) 6 Ap cpN bN .

On the other hand we have (by (B.2))

M(u1) 6
1

tp
M(u) +

1

(1 − t)p
M(−u2) ∀t ∈ (0, 1),

which implies

[(A− 2ε) cN ]
p
bN 6

1

tp
M(u) +

1

(1 − t)p
C εp ∀t ∈ (0, 1).

Letting ε→ 0 and then t→ 1 we are led to

M(u) > ApcpN bN .

We conclude that
M(u) = M(u) = ApcpN bN .

This establishes Theorem B.1 with

dN = cpNbN =
1

(N − 2)p σp
N

· σN

N
=

1

N(N − 2)p σp−1
N

.

Here is another useful application.

Corollary B.3. Assume u ∈MN/(N−2)(RN ), ∆u ∈ M(RN ) and

(B.7)

∫

RN

∆u = 0.

Suppose that, for some R > 0,

(B.8) u > 0 a.e. in [|x| > R]

and

(B.9) −∆u > 0 a.e. in [|x| > R].

Then
u ≡ 0 in [|x| > R].
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Proof. From (B.8), (B.9) and the strong maximum principle we know that either

u ≡ 0 in [|x| > R]

and the proof is finished, or

(B.10) u > 0 in [|x| > R].

More precisely, for every open set ω with compact closure in [ |x| > R ] there is a constant
δω > 0 such that

u > δω a.e. in ω.

We will show that (B.10) is impossible. Suppose that (B.10) holds. Fix R1 > R; then for
some δ > 0 we have

u > δ a.e. in [R1 < |x| < 2R1].

Fix ε > 0 so that

(B.11) u(x) >
ε

|x|N−2
a.e. in [R1 < |x| < 2R1].

Note that by (B.9) we have

−∆
(
u− ε

|x|N−2

)
> 0 in [|x| > R].

Applying the maximum principle in the region [R1 < |x| < ρ] with ρ > 2R1 we see that

u(x) − ε

|x|N−2
> − ε

ρN−2
in [R1 < |x| < ρ].

As ρ→ ∞ we conclude that

u(x) >
ε

|x|N−2
in [|x| > R1].

From Corollary B.1 applied with v(x) =
ε

|x|N−2
− u(x) we obtain

∫
∆v > 0. But ∆v =

−εδ0/cN − ∆u, and thus by (B.7),
∫

∆v = −ε/cN < 0. A contradiction.

It is sometimes convenient to combine Theorem B.1 with the following:
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Lemma B.1. Let Ω be a measurable space (with |Ω| 6 ∞). Let β : R → R be a
nondecreasing function such that

(B.12) β(0) = 0 and

∫ 1

0

β(s)

sp+1
ds = ∞ for some 1 < p <∞.

Let u : Ω → R be a measurable function such that

∫

Ω

β
(
u+(x)

)
dx < ∞.

Then

(B.13) lim inf
λ↓0

(
λp meas [u > λ]

)
= 0.

Remark B.1. Condition (B.12) is also necessary. More precisely, if u satisfies (B.13)
one can show that there exists a function β : R → R, convex, nondecreasing, Lipschitz

continuous, such that β(s) = 0 for s 6 0,

∫ 1

0

β(s)

sp+1
ds = ∞ and

∫

Ω

β
(
u+(x)

)
dx <∞.

Proof of Lemma B.1. Assume, by contradiction, that

lim inf
λ↓0

(
λp meas [u > λ]

)
> 0.

There exist λ0 > 0 and ε > 0 such that

α(λ) = meas [u > λ] >
ε

λp
for 0 < λ < λ0.

We have, for 0 < δ < λ0,

∫

[δ<u<λ0]

β(u(x)) dx = −
∫ λ0

δ

β(λ) dα(λ)

= −β(λ0)α(λ0) + β(δ)α(δ) +

∫ λ0

δ

α(λ) dβ(λ)

> −β(λ0)α(λ0) +
ε

δp
β(δ) +

∫ λ0

δ

ε

λp
dβ(λ)

= −β(λ0)α(λ0) +
ε

λp
0

β(λ0) + εp

∫ λ0

δ

1

λp+1
β(λ) dλ.

It follows that
∫

[δ<u<λ0]
β(u(x)) dx→ +∞ as δ → 0. A contradiction.
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APPENDIX C

A form of the strong maximum principle for −∆ + a(x) with a(x) ∈ L1

The strong maximum principle asserts that if u is smooth, u > 0 and −∆u > 0 in
a domain Ω ⊂ R

N , then either u ≡ 0 in Ω or u > 0 in Ω. The same conclusion holds
when −∆ is replaced by −∆ + a(x) with a ∈ Lp(Ω), p > N/2 (this is a consequence
of Harnack’s inequality; see e.g. Stampacchia [1], and also Trudinger [1], Corollary 5.3).
Another formulation of the same fact says that if u(x0) = 0 for some point x0 ∈ Ω, then
u ≡ 0 in Ω. A similar conclusion fails when a 6∈ Lp(Ω), p > N/2. For example u(x) = |x|2
satisfies −∆u+ a(x)u = 0 with a = 2N

|x|2
6∈ LN/2.

However if u vanishes on a larger set, not just at one point, one may still hope to
conclude that u ≡ 0 in Ω. Here is such a result.

Theorem C.1. Assume u ∈ L1
loc(R

N ) with u > 0 a.e. and ∆u ∈ L1
loc(R

N ). Let a ∈
L1

loc(R
N ), a > 0 a.e. Assume u has compact support and satisfies

(C.1) −∆u+ au > 0 a.e. in R
N .

Then u ≡ 0.

Proof. (We present a modification due to R. Jensen of our original proof). Set

an(x) = min{a(x), n}

and

(C.2) gn = −∆u+ anu,

so that gn is a nondecreasing sequence of functions in L1(RN ) and

gn ↑ g = −∆u+ au a.e..

Note that g need not belong to L1; g is just measurable and g > 0. Fix R sufficiently
large, so that u(x) = 0 for |x| > R− 1. Solve

{
∆bn = an in BR = [ |x| < R ]

bn = 0 on ∂BR = [ |x| = R ],

so that bn ∈W 2,p(BR) ∀p <∞, bn 6 0 in BR, 0 6 ebn 6 1 in BR, with

∆ebn = ebn
(
|∇bn|2 + ∆bn

)
.
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As n→ ∞, bn → b in W 1,p(BR) ∀p < N
N−1 , where b is the solution of

{
∆b = a in BR

b = 0 on ∂BR.

From (C.2) we have

(C.3) −
∫

BR

u∆ζ +

∫

BR

anuζ =

∫

BR

gnζ ∀ζ ∈W 2,q(BR) for some q > N/2.

Note that the first integral in (C.3) makes sense since u ∈ Lr ∀r < N
N−2 (recall that

∆u ∈ L1). [One may first prove (C.3) for ζ ∈ C2(BR) and then argue by density.]
Choosing ζ = ebn in (C.3) yields

−
∫

BR

uebn
(
|∇bn|2 + ∆bn

)
+

∫

BR

(
∆bn

)
uebn =

∫

BR

gne
bn

and, in particular, ∫

BR

gne
bn 6 0.

Therefore

(C.4)

∫

BR

(gn − g1)e
bn 6 −

∫

BR

g1e
bn 6

∫

BR

|g1|.

Since gn − g1 > 0 for n > 1, we conclude by Fatou’s lemma that (g − g1)e
b ∈ L1 and thus

geb ∈ L1. Returning to (C.4) we also have

∫

BR

(g − g1)e
b

6 −
∫

BR

g1e
b

and thus ∫

BR

geb
6 0.

Since g > 0 a.e. (by hypothesis (C.1)) we deduce that g ≡ 0 and consequently −∆u 6 0.
Therefore u 6 0 a.e. By assumption, u > 0 a.e. and thus u ≡ 0.

Remark C.1. Theorem C.1 is a special case of a much more general result due to
Ancona [1]:
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Theorem (Ancona [1]). Assume u ∈ L1
loc(Ω), Ω ⊂ R

N open connected, u > 0 a.e.,
∆u ∈ M(Ω), a ∈ L1

loc(Ω), a > 0 a.e., satisfy

∆u 6 au in the sense of measures,

i.e.,

(C.5)

∫

E

∆u 6

∫

E

a u for every Borel set E ⊂ Ω.

(Note that the integral on the right-hand side is well-defined in [0,∞] since au > 0 a.e.).
Assume that u vanishes on a set E ⊂ Ω of positive measure, then u ≡ 0.

The proof of Ancona relies on Potential Theory. The interested reader will find another
proof based on PDE techniques in Brezis-Ponce [1].

There are several interesting questions related to Theorem C.1:

Open problem 3. Can one replace in Theorem C.1 the assumption a ∈ L1
loc by a weaker

condition, for example a1/2 ∈ L1
loc (or a1/2 ∈ Lp

loc for some p > 1)?

Note that one cannot hope to go below L1/2. For instance the C2 function u given by

u(x) =

{ (
1 − |x|2

)4
for |x| 6 1

0 for |x| > 1

satisfies −∆u+ au > 0 for some function a(x) such that a(x) ∼ 1

(1 − |x|)2 for |x| < 1 and

|x| close to 1. Here aα ∈ L1, ∀α < 1/2, but a1/2 6∈ L1.

Still one more:

Open problem 4. Assume u ∈ C0, ∆u ∈ L1
loc, u > 0, a ∈ Lq

loc for some q > 1, a > 0 a.e.,
satisfy (C.1). Assume that u = 0 on a set E with cap1,2q (E) > 0, where cap1,2q refers to

the capacity associated with the Sobolev space W 1,2q. Can one conclude that u ≡ 0?

Ancona [1] (see also Brezis-Ponce [1]) has shown that the answer is positive when q = 1.
The answer is again positive when q > N

2 by the strong maximum principle mentioned
above.
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