
NEW QUESTIONS RELATED TO THE TOPOLOGICAL DEGREE

Häim Brezis(1),(2)
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1. Topological degree and VMO.

Degree theory for continuous maps has a long history and has been exten-
sively studied, both from the point of view of Analysis and Topology. If f ∈
C0(Sn, Sn),deg f is a well-defined element of Z, which is stable under continu-
ous deformation. Starting in the early 80’s, the need to define a degree for some
classes of discontinuous maps, emerged from the study of some nonlinear PDE’s
(related to problems in liquid crystals and superconductors). These examples in-
volved Sobolev maps in the limiting case of the Sobolev imbedding, see Sections
2 and 3 below (topological questions for Sobolev maps strictly below the limiting
exponent have been investigated in [14] and [13]). In these cases the Sobolev imbed-
ding asserts only that such maps belong to the space VMO (see below) and need
not be continuous.

In connection with degree for H1/2(S1, S1), L. Boutet de Monvel and O. Gabber
suggested a concept of degree for maps in VMO(S1, S1)(see [2] and Section 3 below).
In our joint work with L. Nirenberg [15] we followed-up on their suggestion and
established on firm grounds a degree theory for maps in VMO(Sn, Sn). Here is a
brief summary of our contribution.

First recall the definition of BMO (bounded mean oscillation), a concept origi-
nally introduced by F. John and L. Nirenberg in 1961. Let Ω be a smooth bounded
open domain in Rn, or a smooth, compact, n-dimensional Riemannian manifold
(with or without boundary). An integrable function f : Ω → R belongs to BMO if

|f |BMO = Sup
B⊂Ω

�
∫
B

�
∫
B

|f(x)− f(y)|dx dy <∞,

where the Sup is taken over all (geodesic) balls in Ω. It is easy to see that an
equivalent semi-norm is given by

Sup
B⊂Ω

�
∫
B

∣∣∣∣∣f(x)−�
∫
B

f(y)dy

∣∣∣∣∣dx.
1
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A very important subspace of BMO, introduced by L. Sarason, consists of VMO
(vanishing mean oscillation) functions, in the sense that

lim
|B|→0

�
∫
B

�
∫
B

|f(x)− f(y)|dxdy = 0.

It is easy to see that

VMO (Ω,R) = C0(Ω,R)
BMO

.

The space VMO is equipped with the BMO semi-norm |f | BMO. Clearly L∞ ⊂
BMO. It is well-know that BMO is strictly bigger than L∞ (a standard example

is f(x) = | log |x|
∣∣); however, as a consequence of the classical John-Nirenberg

inequality,
BMO ⊂ ∩

p<∞
Lp.

Thus, BMO is “squeezed” between L∞ and ∩
p<∞

Lp, and for many purposes serves

as an interesting “substitute” for L∞.
Concerning VMO, it is easy to see that L∞ 6⊂ VMO, but of course C0 ⊂ VMO.

A useful example, showing that the inclusion is strict, is the function

f(x) = | log |x||α,

which belongs to VMO for every α < 1. In some sense, VMO serves as a “sub-
stitute” for C0. The Sobolev space W 1,n provides an important class of VMO
functions. Recall that for every 1 ≤ p <∞,

W 1,p(Ω,R) = {f ∈ Lp(Ω);∇f ∈ Lp(Ω)}.

Poincaré’s inequality asserts that

∫
B

∣∣∣∣∣f −�
∫
B

f

∣∣∣∣∣ ≤ C|B|1/n
∫
B

|∇f |,

from which we deduce, using Hölder, that

�
∫
B

∣∣∣∣∣f −�
∫
B

f

∣∣∣∣∣ ≤ C

[∫
B

|∇f |n
]1/n

and thus W 1,n ⊂ VMO.
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Similarly, the fractional Sobolev space W s,p(Ω) is contained in VMO for all
0 < s < 1 and all 1 < p < ∞ with sp = n (the limiting case of the Sobolev
imbedding). Indeed, in the Gagliardo characterization, we have

(1.1) W s,p(Ω) = {f ∈ Lp(Ω);
∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|n+sp
dx dy <∞}.

Clearly∫
B

∫
B

|f(x)− f(y)|dx dy =
∫
B

∫
B

|f(x)− f(y)|
|x− y|(n/p)+s

|x− y|(n/p)+sdx dy

≤ C|B|(1/p)+(s/n)

∫
B

∫
B

|f(x)− f(y)|
|x− y|(n/p)+s

dx dy.

Using Hölder we deduce that

∫
B

∫
B

|f(x)−f(y)|dx dy ≤ C|B|(1/p)+(s/n)+2−(2/p)

[∫
B

∫
B

|f(x)− f(y)|p

|x− y|n+sp
dx dy

]1/p

.

and thus, when sp = n,

�
∫
B

�
∫
B

|f(x)− f(y)|dx dy ≤ C

[∫
B

∫
B

|f(x)− f(y)|p

|x− y|n+sp
dx dy

]1/p

,

which implies that W s,p ⊂ VMO.

One of the basic results in [15] is the following

Theorem 1. (H. Brezis - L. Nirenberg [15]). Every map f ∈ VMO(Sn, Sn) has a
well-defined degree. Moreover:

(a) this degree coincides with the standard degree when f is continuous,

(b) the map f 7→ deg f is continuous on VMO(Sn, Sn) under BMO-convergence.

It is quite easy to define the VMO-degree. For any given measurable map f :
Sn → Sn and 0 < ε < 1, set

f̄ε(x) = �
∫
Bε(x)

f(y)dy.

Next, an elementary lemma which is extremely useful
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Lemma 1. If f ∈ VMO(Sn, Sn), then

|f̄ε(x)| → 1 as ε→ 0, uniformly in x ∈ Sn.

Proof. Set

ρε(x) = �
∫
Bε(x)

�
∫
Bε(x)

|f(y)− f(z)|dy dz,

so that ρε(x) → 0 as ε → 0, uniformly in x ∈ Sn, since f ∈ VMO. Then, observe
that

1− ρε(x) ≤ |f̄ε(x)| ≤ 1.

If f ∈ VMO(Sn, Sn) we may now set

fε(x) =
f̄ε(x)
|f̄ε(x)|

, x ∈ Sn, 0 < ε < ε0(f).

Using ε as a homotopy parameter we see that deg fε is well-defined and independent
of ε for ε > 0 sufficiently small. This integer is, by definition, VMO- deg f . The
proof of (a) in Theorem 1 is straightforward. For the proof of (b) we refer to [15].

The space VMO(Sn, Sn) is larger than C0(Sn, Sn). However its structure, from
the point of view of connected (or equivalently path-connected) components, is
similar to C0(Sn, Sn). More precisely, there is a VMO version of the celebrated
Hopf result:

Theorem 2. The homotopy classes (i.e. the path-connected components) of
VMO(Sn, Sn) are characterized by their VMO-degree.

Remark 1. By contrast, it is not possible to define a degree for maps in L∞(Sn, Sn).
In fact, the space L∞(Sn, Sn) is path-connected (see [15], Section I. 5).

2. Degree for H1(S2, S2) and beyond.
In my earlier paper with J. M. Coron [11](see also [8],[9]) we were led to a concept

of degree for maps in H1(S2, S2). Our original motivation came from solving a
nonlinear elliptic system, proposed in [16],which amounts to finding critical points
of the Dirichlet integral

E(u) =
∫

Ω

|∇u|2

subject to the constraint

u ∈ H1
ϕ(Ω, S2) = {u ∈ H1(Ω;S2);u = ϕ on ∂Ω},
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where Ω denotes the unit disc in R2 and ϕ : ∂Ω → S2 is given (smooth). In the
process of finding critical points it is natural to the study the connected components
of H1

ϕ(Ω, S2), a question which is closely related to the study of the components of
H1(S2, S2). The way we defined a degree for H1(S2, S2) was with the help of an
integral formula. Recall that if f ∈ C1(Sn, Sn), Kronecker’s formula asserts that

(2.1) deg f = �
∫
Sn

det(∇f)

where det(∇f) denotes the n × n Jacobian determinant of f . When n = 2, the
right-hand side of (2.1) still makes sense when f is not C1, but merely in H1(S2, S2)
because det(∇f) ∈ L1. We were able to prove (via a density argument) that the
RHS in (2.1) belongs to Z and we took it as a definition of the H1-degree of
f . Similarly, one may use (2.1) to define a degree for every map f ∈ W 1,n. In
view of the discussion in Section 1, we know that W 1,n ⊂ VMO and thus any
f ∈W 1,n(Sn, Sn) admits a VMO-degree in the sense of Section 1. Fortunately, the
two definitions coincide. In fact, we have

Lemma 2. For every f ∈W 1,n(Sn, Sn),

W 1,n-deg f = VMO-deg f.

Moreover the components of W 1,n(Sn, Sn) are characterized by their degree.

Using this concept of degree we managed to prove in [11] that if ϕ is not a
constant, then E achieves its minimum on two distinct components of H1

ϕ(Ω, S2).
A very interesting question remains open:
Open problem 1. Does E admit a critical point in each component of H1

ϕ(Ω, S2)
when ϕ is not a constant?

Even the special case

ϕ(x, y) = (Rx,Ry,
√

1−R2), 0 < R < 1, x2 + y2 = 1,

is open.

It is also interesting to study the homotopy structure of W 1,p(Sn, Sn) for values
of p 6= n. This was done in my joint paper with Y. Li [13]:

Theorem 3. When p > n, the standard (C0) degree of maps in W 1,p is well-
defined and the components of W 1,p are characterized by their degree. When 1 ≤
p < n,W 1,p is path-connected.

Following the earlier paper[14] we started to investigate with Y.Li[13] the homo-
topy structure of W 1,p(M,N) when M and N are general Riemannian manifolds
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(M possibly with boundary, while ∂N = φ). When p ≥ dimM the homotopy
structure of W 1,p(M,N) is identical to the one of C0(M,N). When dimM > 1
and 1 ≤ p < 2, we proved in [13] that W 1,p(M,N) is always path-connected. When
p decreases from dimM to 2, the set W 1,p(M,N) becomes larger and larger while
various surprising phenomena may occur:

(a) some homotopy classes persist below the Sobolev threshold p = dimM ,
where maps need not belong to VMO.

(b) as p decreases, the set W 1,p(M,N) increases and in this process some of the
homotopy classes “coalesce” as p crosses distinguished integer values - and usually
there is a cascade of such levels where the homotopy structure undergoes “dramatic”
jumps.

(c) as p decreases new homotopy classes may “suddenly” appear, at some (inte-
gral) levels; every map in these new classes must have “robust” singularities: they
cannot be erased via homotopy.

We refer the interested reader to [13] and to the subsequent remarkable paper
by F.B. Hang - F.H. Lin [17].

3. Degree for H1/2(S1, S1). Can one hear the degree of continuous
maps?.

Another important example which motivated my work with L. Nirenberg [15]
was the concept of degree for maps in H1/2(S1, S1) due to L. Boutet de Monvel
- O. Gabber (it is presented in the Appendix of [2]). The motivation in [2] came
from a Ginzburg-Landau model arising in superconductivity. This H1/2-degree
also plays an important role in our study of the Ginzburg-Landau Vortices with F.
Bethuel - F. Hélein (see [1]). For example it is at the heart of the proof of

Lemma 3. Let Ω be the unit disc in R2 and let ϕ be a smooth map from ∂Ω = S1

into S1. then
[H1

ϕ(Ω, S1) 6= φ] ⇔ [degϕ = 0].

The way Boutet de Monvel and Gabber originally defined a degree forH1/2(S1, S1)
went as follows. First, observe that if f ∈ C1(S1,C\{0}), then the Cauchy formula
asserts that

(3.1) deg f =
1

2iπ

∫
S1

ḟ

f
.

In particular, if f ∈ C1(S1, S1) we may write (3.1) as

(3.2) deg f =
1

2iπ

∫
S1
f̄ ḟ =

1
2π

∫
S1

det(f, ḟ)
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(which is the simplest form of Kronecker’s formula (2.1)). Then Boutet de Monvel-
Gabber observed that the right-hand side in (3.2) still makes when f is not C1, but
merely in H1/2. To do so, they interpret the RHS in (3.2) as a scalar product in
the duality H1/2 −H−1/2(f̄ ∈ H1/2, ḟ ∈ H−1/2). Using a density argument they
prove that the RHS in (3.2) belongs to Z and they take it as definition for the H1/2-
degree of f . On the other hand recall (see Section 1) that H1/2(S1) ⊂VMO(S1).
Therefore any f ∈ H1/2(S1, S1) admits a VMO-degree in the sense of Section 1
and in fact we have

Lemma 4. For every f ∈ H1/2(S1, S1)

H1/2-deg f = VMO - deg f.

Lemma 2 and Lemma 4 show the unifying character of the VMO-degree, putting
various concepts of degree (for continuous maps, for W 1,n(Sn, Sn) maps, for
H1/2(S1, S1) maps, etc) under a common roof.

In 1996, I. M. Gelfand invited me to present at his seminar the VMO-degree
theory we had just developed with Louis Nirenberg. He asked me to elaborate on the
special case of the H1/2(S1, S1) - degree. I wrote down Gagliardo’s characterization
of H1/2, which, in this special case, takes the form

H1/2(S1) = {f ∈ L2(S1);
∫
S1

∫
S1

|f(x)− f(y)|2

|x− y|2
dx dy <∞}.

Since I. M. Gelfand was not fully satisfied with Gagliardo’s formulation, I also wrote
down the characterization of H1/2 in terms of the Fourier coefficients (an) of f :

H1/2(S1) = {f ∈ L2(S1);
+∞∑

n=−∞
|n||an|2 <∞}

(see also Lemma 5 below). At that point I. M. Gelfand asked whether there is a
connection between the degree and the Fourier coefficients. At first I was surprized
by his question, but I realized shortly afterwards that if one inserts the Fourier
expansion

f(θ) =
+∞∑

n=−∞
ane

inθ

into (3.2) one finds

(3.3) deg f =
+∞∑

n=−∞
n|an|2.

Formula (3.3) is easily justified when f ∈ C1(S1, S1). The density of C1(S1, S1)
into H1/2(S1, S1) and the stability of degree under VMO-convergence (and thus
under H1/2-convergence) yield
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Theorem 4. For every f ∈ H1/2(S1, S1)

(3.4) VMO-deg f =
+∞∑

n=−∞
n|an|2.

Formula (3.4) raises some intriguing questions. But, first, a consequence of
Theorem 4:

Corollary 1. Let (an) be a sequence of complex numbers satisfying

(3.5)
+∞∑

n=−∞
|n| |an|2 <∞,

(3.6)
+∞∑

n=−∞
|an|2 = 1

and

(3.7)
+∞∑

n=−∞
anān+k = 0 ∀k 6= 0.

Then

(3.8)
+∞∑

n=−∞
n|an|2 ∈ Z.

Proof. Set

f(θ) =
+∞∑

n=−∞
ane

inθ,

so that f ∈ H1/2(S1,C). Moreover we have

(3.9)
∫
S1

(|f(θ)|2 − 1)eikθdθ = 0 ∀k.

Indeed, for k = 0, (3.9) follows from (3.6) and for k 6= 0, (3.9) follows from (3.7).
Thus we obtain

(3.10) |f(θ)| = 1 a.e.



NEW QUESTIONS RELATED TO THE TOPOLOGICAL DEGREE 9

Applying Theorem 4 we find (3.8).

Pedagogical question. Is there an elementary proof of Corollary 1 which does
not rely on Theorem 4?

Suppose now f ∈ C0(S1, S1) and f /∈ H1/2. Then the series
+∞∑

n=−∞
|n||an|2

is divergent. The LHS in (3.4) is well-defined, but the RHS is not. It is natural
to ask whether deg f may still be computed as a “principal value” of the series∑+∞
n=−∞ n|an|2 (which is not absolutely convergent). In [10] we raised the question

whether standard summation processes can be used to compute the degree of a
general f ∈ C0(S1, S1). Let for example

σN =
+N∑

n=−N
n|an|2

or

Pr =
+∞∑

n=−∞
n|an|2r|n|, 0 < r < 1.

Is it true that, for any f ∈ C0(S1, S1),

deg f = lim
N→+∞

σN or deg f = lim
r↓1

Pr?

J. Korevaar [19] has shown that the answer is negative. He has constructed inter-
esting examples of maps f ∈ C0(S1, S1), of degree zero, such that σN (resp. Pr)
need not have a limit as N → ∞ (resp. r → 1) or may converge to any given real
number λ 6= 0, including ±∞. In view of this fact we now propose a more “modest”
question: do the absolute values of the Fourier coefficients determine the degree?
More precisely

Open problem 2. (Can one hear the degree of continuous maps?). Let f, g ∈
C0(S1, S1) and let (an), (bn) denote the Fourier coefficients of f and g respectively.
Assume

(3.11) |an| = |bn| ∀n ∈ Z.

Can one conclude that
deg f = deg g ?

Same question if one assumes only that f, g ∈ VMO(S1, S1).

Of course, the answer to Open problem 2 is positive if f, g ∈ H1/2(S1, S1). This
is a consequence of Theorem 4. The answer is still positive in a class of functions
strictly larger than H1/2. The proof is based on
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Theorem 5. For every f ∈W 1/3,3(S1, S1) we have

(3.12) VMO-deg f = lim
ε↓0

1
ε2

∑
n∈Z
n 6=0

|an|2
sin2 nε

n
.

Corollary 2. Assume f, g ∈W 1/3,3(S1, S1) satisfy (3.11). Then

VMO-deg f = VMO-deg g.

Corollary 3. (J. P. Kahane [18]). Assume f, g ∈ C0,α(S1, S1), with α > 1/3,
satisfy (3.11). Then

deg f = deg g.

Note that C0,α ⊂ W 1/3,3 ∀α > 1/3. (This is an obvious consequence of
Gagliardo’s characterization (1.1)). Thus Corollary 2 implies Corollary 3. Our
proof of Theorem 5 is a straightforward adaptation of the ingenious argument of J.
P. Kahane [18] for C0,α, α > 1/3.

Remark 2. The conclusion of Theorem 5 holds if f ∈W 1/p,p(S1, S1) with 1 < p ≤ 3
(since W 1/p,p ∩ L∞ ⊂ W 1/3,3 ∀p ≤ 3). [Note that when 1 < p ≤ 2 the conclusion
of Theorem 5 is an immediate consequence of Theorem 4 since

∑
|n||an|2 < ∞.

However in the range 2 < p ≤ 3 the conclusion is far from obvious since the series
|n||an|2 may be divergent]. It is interesting to point out that formula (3.12) fails
if one assume only f ∈ W 1/p,p(S1, S1) with p > 3. In fact, J. P. Kahane [18] has
constructed an example of a function f ∈ C0,1/3(S1, S1) such that deg f = 0 while

lim
ε↓0

1
ε2

∑
n∈Z
n 6=0

|an|2
sin2 nε

n
= λ,

where λ could be any real number λ 6= 0. The heart of the matter is the existence
of a 2π-periodic function ϕ ∈ C0,1/3(R,R) such that∫ 2π

0

(ϕ(θ + h)− ϕ(θ))3dθ = sinh ∀h.

This still leaves open the question whether Corollary 2 holds when W 1/3,3 is re-
placed by W 1/p,p, p > 3.

Taking p→ 1 in Remark 2 suggests that Theorem 5 holds for f ∈W 1,1. This is
indeed true and there is even a stronger statement:
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Theorem 6. For every f ∈ C0(S1, S1) ∩BV (S1, S1) we have

deg f = lim
ε↓0

1
ε

+∞∑
n=−∞

|an|2 sinnε.

Consequently, we also have

Corollary 4. Assume f, g ∈ C0(S1, S1) ∩BV (S1, S1) satisfy (3.11). Then

deg f = deg g.

Remark 3. It was already observed by J. Korevaar in [19] that for every f ∈ C0∩BV
one has

deg f = lim
N→∞

+N∑
n=−N

n|an|2,

which also implies Corollary 4.

Proof of Theorem 5. We follow the argument of J. P. Kahane [18], except that we
work in the fractional Sobolev space W 1/3,3 instead of the smaller Hölder space
C0,α, α > 1/3. Set

d = VMO − deg f.

By Theorem 3 (and Remark 10) in [15] we may write

f(θ) = ei(ϕ(θ)+dθ)

for some ϕ ∈ VMO(S1,R). Applying Theorem 1 from [13] and the uniqueness of
the lifting in VMO we know that ϕ ∈W 1/3,3.

Write

(3.13)
∫ 2π

0

f(θ + h)f̄(θ)dθ = 2π
+∞∑

n=−∞
|an|2einh =

∫ 2π

0

eidhei(ϕ(θ+h)−ϕ(θ))dθ,

(3.14) eidh = 1 + idh+O(|h|2),

and

(3.15)

ei(ϕ(θ+h)−ϕ(θ)) = 1+i(ϕ(θ+h)−ϕ(θ))− 1
2
(ϕ(θ+h)−ϕ(θ))2+O(|ϕ(θ+h)−ϕ(θ)|3).
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Thus
(3.16)
Im[eidhei(ϕ(θ+h)−ϕ(θ))] = Im[(1 + idh)ei(ϕ(θ+h)−ϕ(θ))] +O(|h|2)
= (ϕ(θ + h)− ϕ(θ)) + dh+O|h|2) +O(|h||ϕ(θ + h)− ϕ(θ)|2) +O(|ϕ(θ + h)− ϕ(θ)|3).

Integrating (3.16) with respect to θ yields

(3.17)

∣∣∣∣∣
+∞∑

n=−∞
|an|2 sinnh− dh

∣∣∣∣∣ ≤ C|h|2 + C

∫ 2π

0

|ϕ(θ + h)− ϕ(θ)|3dθ.

Next, integrating (3.17) with respect to h on (0, 2ε) gives∣∣∣∣∣ ∑
n∈Z
n 6=0

|an|2
(

1− cos 2nε
n

)
− 2dε2

∣∣∣∣∣ ≤ Cε3 + C

∫ 2ε

0

dh

∫ 2π

0

|ϕ(θ + h)− ϕ(θ)|3dθ

and therefore

(3.18)

∣∣∣∣∣ 1
ε2

∑
n∈Z
n 6=0

|an|2
sin2 nε

n
− d

∣∣∣∣∣
≤ Cε+

C

ε2

∫ 2ε

0

∫ 2π

0

|ϕ(θ + h)− ϕ(θ)|3dh dθ

≤ Cε+ C

∫ 2ε

0

∫ 2π

0

|ϕ(θ + h)− ϕ(θ)|3

|h|2
dh dθ,

which implies (3.12) since ϕ ∈W 1/3,3.

Proof of Theorem 6. Since f ∈ C0∩BV , the corresponding ϕ satisfies ϕ ∈ C0∩BV .
We return to (3.17) with h = ε,

(3.19)
∣∣∣1
ε

+∞∑
h=−∞

|an|2 sinnε− d
∣∣∣ ≤ Cε+

C

ε

∫ 2π

0

|ϕ(θ + ε)− ϕ(θ)|3dθ.

Next we have

(3.20)
∫ 2π

0

|ϕ(θ + ε)− ϕ(θ)|dθ ≤ ε‖ϕ‖BV .

Inserting (3.20) in (3.19) gives

(3.21)
∣∣∣1
ε

+∞∑
n=−∞

|an|2 sinnε− d
∣∣∣ ≤ Cε+ C Sup

θ
‖ϕ(θ + ε)− ϕ(θ)‖2L∞

and the conclusion follows since ϕ ∈ C0.
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4. New estimates for the degree.

Going back to (3.3) we see that, for every f ∈ C1(S1, S1)

(4.1) |deg f | ≤
∑

|n| |an|2.

Combining (4.1) with Gagliardo’s characterization (1.1) of H1/2 we find

(4.2) |deg f | ≤ C

∫
S1

∫
S1

|f(x)− f(y)|2

|x− y|2
dx dy.

In fact, the sharp estimate

(4.3) |deg f | ≤ 1
4π2

∫
S1

∫
S1

|f(x)− f(y)|2

|x− y|2
dx dy

is an immediate consequence of (4.1) and

Lemma 5. For every f ∈ H1/2 one has

(4.4)
∫
S1

∫
S1

|f(x)− f(x)|2

|x− y|2
dx dy = 4π2

+∞∑
n=−∞

|n| |an|2

Proof. Write∫
S1

∫
S1

|f(x)− f(y)|2

|x− y|2
dx dy =

∫ 2π

0

∫ 2π

0

|
∑
ane

inθ −
∑
ane

inψ|2

|eiθ − eiψ|2
dθ dψ

=
∫ 2π

0

dγ

|eiγ − 1|2

∫ 2π

0

∣∣ ∑
an(1− einγ)einθ

∣∣∣2dθ
= 2π

∑
|an|2

∫ 2π

0

|einγ − 1|2

|eiγ − 1|2
dγ.

But, for |n| ≥ 1,

|einγ − 1|2

|eiγ − 1|2
= (ei(n−1)γ + . . .+ 1)(e−i(n−1)γ + . . .+ 1)

and thus ∫ 2π

0

|einγ − 1|2

|eiγ − 1|2
dγ = 2π|n|.

Inserting this into the previous equality yields (4.4).
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Remark 4. Inequality (4.3) can be viewed as an estimate for the “least amount of
H1/2-energy” necessary to produce a map f : S1 − S1 with assigned degree. More
precisely we have

(4.5) Inf
f :S1→S1

deg f=n

∫
S1

∫
S1

|f(x)− f(y)|2

|x− y|2
dx dy = 4π2|n|

and the Inf in (4.5) is achieved when f(θ) = einθ. The existence of a minimizer for
similar problems where the standard H1/2 norm is replaced by equivalent norms
(e.g. the trace of anH1 norm on the disc with variable coefficients) is a very delicate
question because of “lack of compactness”; we refer to [20]

Remark 5. Estimate (4.2) serves as a building block in the study of the least H1/2-
energy of maps u : S2 → S1 with prescribed singularities. Such a question has been
investigated in [5]. More precisely, recall that

‖u‖2H1/2(S2) =
∫
S2

∫
S2

|u(x)− u(y)|2

|x− y|3
dx dy.

Given points Σ = {p1, p2, . . . , pk} ∪ {n1, n2, . . . , nk} consider the class of maps

A = {u ∈ C1(S2 \ Σ, S1); deg(u, pi) = +1 and deg(u, ni) = −1, ∀i}.

Theorem 7. (Bourgain-Brezis-Mironescu [5]). There exist absolute constants
C1, C2 > 0 such that

(4.6) C1L(Σ) ≤ Inf
u∈A

‖u‖2H1/2(S2) ≤ C2L(Σ)

where L(Σ) is the length of a minimal connection connecting the points (pi) to the
points (ni).

Theorem 7 is the H1/2-version of an earlier result [12] concerning H1 maps from
S3 into S2 with singularities which had been motivated by questions arising in
liquid crystals with point defects, while the analysis in [5] has its source in the
Ginzburg-Landau model for superconductors. It is the LHS inequality in (4.6)
which is related to (4.2). The RHS inequality in (4.6) comes from a “brute force”
construction called the “dipole construction”.

Remark 6. An immediate consequence of (4.3) is the estimate

(4.7) |deg f | ≤ 1
π2

∫
S1

∫
S1

|f(x)− f(y)|p

|x− y|2
∀f ∈ C1(S1, S1),∀p ∈ (1, 2).
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Estimate (4.7) deteriorates as p ↓ 1 since the RHS in (4.6) tends to +∞ unless
f is constant (see [4]). It would be desirable to improve the constant (1/π2) and
establish that

(4.8) |deg f | ≤ Cp

∫
S1

∫
S1

|f(x)− f(y)|p

|x− y|2
dx dy ∀f ∈ C1(S1, S1),∀p ∈ (1, 2).

with a constant Cp ∼ (p− 1) as p ↓ 1. In the limit as p ↓ 1, one should be able to
recover (in the spirit of [4]) the obvious inequality

(4.9) |deg f | ≤ 1
2π

∫
|ḟ |.

Inequality (4.8) is also valid for p > 2, but it cannot be deduced from (4.3) and
its proof requires much work.

Theorem 8. (Bourgain-Brezis-Mironescu [6]). For every p > 1, there is a constant
Cp such that for any (smooth) f : S1 → S1

(4.10) |deg f | ≤ Cp

∫
S1

∫
S1

|f(x)− f(y)|p

|x− y|2
= Cp‖f‖pW 1/p,p .

The proof of (4.10) we present in [6] makes use of the harmonic extension of f
inside the disc (and the machinery of W s,p-trace theory). It would be desirable to
find a more direct proof of (4.10).

There is an estimate stronger than (4.10):

Theorem 9. (Bourgain-Brezis-Mironescu [7]). For any δ > 0 sufficiently small
there is a constant Cδ such that, ∀f ∈ C0(S1, S1),

(4.11) |deg f | ≤ Cδ

∫
S1

∫
S1

[|f(x)−f(y)|>δ]

1
|x− y|2

dx dy.

The only proof we know for (4.11) is very involved and it is natural to raise

Open problem 3. Find a simpler proof for (4.11). Also, is there a more precise
estimate of the form

(4.12) |deg f | ≤ Cδ

∫
S1

∫
S1

[|f(x)−f(y)|>δ]

1
|x− y|2

dx dy

with C independent of δ?
In the spirit of [4] one might then be able to recover (4.9) as δ → 0.

Higher dimensional analogs.
Theorem 8 can be extended to higher dimensions:
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Theorem 8′. (Bourgain-Brezis-Mironescu [6]). Let n ≥ 1. For every p > n there
is a constant C(p, n) such that for any (smooth) f : Sn → Sn,

(4.13) |deg f | ≤ C(p, n)
∫
Sn

∫
Sn

|f(x)− f(y)|p

|x− y|2n
dx dy = C(p, n)‖f‖p

Wn/p,p .

We have not been able to generalize Theorem 9 to higher dimensions. A natural
analog would be

Open problem 4. Are there constants δ ∈ (0, 1) and C such that, ∀f ∈ C0(S1, Sn),

(4.14) |deg f | ≤ C

∫
Sn

∫
Sn

[|f(x)−f(y)|>δ]

1
|x− y|2n

dx dy?

In a different direction, it might be interesting to estimate other topological
invariants in terms of fractional Sobolev norms. One of the simplest examples
could be

Open problem 5. Does one have

| Hopf-degree f | ≤ Cp

∫
S3

∫
S3

|f(x)− f(y)|p

|x− y|6
∀p > 3,∀f ∈ C1(S3, S2)?
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