NEW QUESTIONS RELATED TO THE TOPOLOGICAL DEGREE

Haim Brezis(1):(2)

To I. M. Gelfand with admiration

1. Topological degree and VMO.

Degree theory for continuous maps has a long history and has been exten-
sively studied, both from the point of view of Analysis and Topology. If f €
CO(S™,S™),deg f is a well-defined element of Z, which is stable under continu-
ous deformation. Starting in the early 80’s, the need to define a degree for some
classes of discontinuous maps, emerged from the study of some nonlinear PDE’s
(related to problems in liquid crystals and superconductors). These examples in-
volved Sobolev maps in the limiting case of the Sobolev imbedding, see Sections
2 and 3 below (topological questions for Sobolev maps strictly below the limiting
exponent have been investigated in [14] and [13]). In these cases the Sobolev imbed-
ding asserts only that such maps belong to the space VMO (see below) and need
not be continuous.

In connection with degree for H'/2(S', 1), L. Boutet de Monvel and O. Gabber
suggested a concept of degree for maps in VMO(S!, S1)(see [2] and Section 3 below).
In our joint work with L. Nirenberg [15] we followed-up on their suggestion and
established on firm grounds a degree theory for maps in VMO(S™, S™). Here is a
brief summary of our contribution.

First recall the definition of BMO (bounded mean oscillation), a concept origi-
nally introduced by F. John and L. Nirenberg in 1961. Let €2 be a smooth bounded
open domain in R™, or a smooth, compact, n-dimensional Riemannian manifold
(with or without boundary). An integrable function f : 2 — R belongs to BMO if
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where the Sup is taken over all (geodesic) balls in Q. It is easy to see that an
equivalent semi-norm is given by

Sup f
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dx.
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A very important subspace of BMO, introduced by L. Sarason, consists of VMO
(vanishing mean oscillation) functions, in the sense that

iim f f 1$@) = 1(w)ldady =0,

|B|—0

It is easy to see that
BMO

VMO (Q,R) = CO(Q, R)

The space VMO is equipped with the BMO semi-norm |f| gpmo. Clearly L™ C
BMO. It is well-know that BMO is strictly bigger than L> (a standard example
is f(x) = |log|z||); however, as a consequence of the classical John-Nirenberg
inequality,

BMO c n L.

p<oo

Thus, BMO is “squeezed” between L*° and Q LP and for many purposes serves
p<o0

as an interesting “substitute” for L.
Concerning VMO, it is easy to see that L= ¢ VMO, but of course C° ¢ VMO.
A useful example, showing that the inclusion is strict, is the function

f(z) = |log |x[|*,
which belongs to VMO for every @ < 1. In some sense, VMO serves as a “sub-
stitute” for C°. The Sobolev space W™ provides an important class of VMO
functions. Recall that for every 1 < p < oo,

WhP(Q,R) = {f € LP(Q); Vf € LP(Q)}.

Poincaré’s inequality asserts that

A

from which we deduce, using Holder, that

Jli-fs SCVBW"]W

< B / vy,
B

and thus WbH" ¢ VMO.
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Similarly, the fractional Sobolev space W*P(Q2) is contained in VMO for all
0 <s<landalll<p< ocowith sp =n (the limiting case of the Sobolev
imbedding). Indeed, in the Gagliardo characterization, we have

(1.1) WeP(Q) = {f e LP(Q);/ @) = TP,y < o

oo |v—y[ntep

Clearly

(n/p)+s
[ L= s ar= [ [ REGRR e i ay

<cyB,<1/p>+<s/n>// \x—yMn/PHSd z dy.

Using Holder we deduce that

1/
/ / |f(z y)|de dy < O|B|(1/p)+(s/n)+2 (2/p) [/ |f(x) = fy)P de dy} p‘
B

B |z -yt

and thus, when sp = n,

x) — D 1/p
ff, - sy o[ [ RIS e a)

which implies that WP C VMO.

One of the basic results in [15] is the following

Theorem 1. (H. Brezis - L. Nirenberg [15]). Fvery map f € VMO(S™,S™) has a
well-defined degree. Moreover:
(a) this degree coincides with the standard degree when f is continuous,

(b) the map f — deg f is continuous on VMO(S™,S™) under BMO-convergence.

It is quite easy to define the VMO-degree. For any given measurable map f :
S — S™and 0 < e <1, set

fo(x) = /B Wy

Next, an elementary lemma which is extremely useful
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Lemma 1. If f € VMO(S™,S™), then

|fo(2)| — 1 as € — 0, uniformly in x € S™.

PT’OO?. Set
pe(x) = — dy dz,
(:IJ) fa(w)fs(w) |f(y) f(z)’ Yy az

so that p.(x) — 0 as € — 0, uniformly in x € S™, since f € VMO. Then, observe
that

1 —pe(z) < |JFE($)| <1
If f € VMO(S™,S™) we may now set

_ @
| /()]
Using € as a homotopy parameter we see that deg f. is well-defined and independent

of € for € > 0 sufficiently small. This integer is, by definition, VMO-deg f. The
proof of (a) in Theorem 1 is straightforward. For the proof of (b) we refer to [15].

fe(z)

yx € 8"0<e<eo(f).

The space VMO(S™, S™) is larger than C°(S™, S™). However its structure, from
the point of view of connected (or equivalently path-connected) components, is
similar to C°(S™, 8™). More precisely, there is a VMO version of the celebrated
Hopf result:

Theorem 2. The homotopy classes (i.e. the path-connected components) of
VMO(S™, S™) are characterized by their VMO-degree.

Remark 1. By contrast, it is not possible to define a degree for maps in L>°(S™, S™).
In fact, the space L>(S™, S™) is path-connected (see [15], Section I. 5).

2. Degree for H!(S?,5?) and beyond.

In my earlier paper with J. M. Coron [11](see also [8],]9]) we were led to a concept
of degree for maps in H'(S?,52). Our original motivation came from solving a
nonlinear elliptic system, proposed in [16],which amounts to finding critical points
of the Dirichlet integral

B = [ |Vuf
Q
subject to the constraint

u € H;(Q, 52) ={u € Hl(Q;SQ);u = ¢ on 0N},
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where Q denotes the unit disc in R? and ¢ : 9Q — S? is given (smooth). In the
process of finding critical points it is natural to the study the connected components
of H 919(9, S?), a question which is closely related to the study of the components of
H(S?%,5?). The way we defined a degree for H'(S?%,5?) was with the help of an
integral formula. Recall that if f € C1(S™,S™), Kronecker’s formula asserts that

(2.1) deg f = det(Vf)
STL

where det(V f) denotes the n x n Jacobian determinant of f. When n = 2, the
right-hand side of (2.1) still makes sense when f is not C', but merely in H' (52, 5?)
because det(Vf) € L'. We were able to prove (via a density argument) that the
RHS in (2.1) belongs to Z and we took it as a definition of the H'-degree of
f. Similarly, one may use (2.1) to define a degree for every map f € WbH". In
view of the discussion in Section 1, we know that W™ C VMO and thus any
f e whn(8™ 8™) admits a VMO-degree in the sense of Section 1. Fortunately, the
two definitions coincide. In fact, we have

Lemma 2. For every f € W1 (5™, 8™),
Whn_deg f = VMO-deg f.

Moreover the components of WH™(S™, S™) are characterized by their degree.

Using this concept of degree we managed to prove in [11] that if ¢ is not a
constant, then F achieves its minimum on two distinct components of H L}J(Q, 52).
A very interesting question remains open:

Open problem 1. Does E admit a critical point in each component of H (£, S?)
when ¢ is not a constant?

Even the special case

o(z,y) = (Rx,Ry,\/1—R?), 0<R<1, 22+t =1,

is open.

It is also interesting to study the homotopy structure of WP (5™ S™) for values
of p # n. This was done in my joint paper with Y. Li [13]:

Theorem 3. When p > n, the standard (C°) degree of maps in WHP is well-
defined and the components of WP are characterized by their degree. When 1 <
p < n, WP is path-connected.

Following the earlier paper[14] we started to investigate with Y.Li[13] the homo-
topy structure of W1?(M, N) when M and N are general Riemannian manifolds
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(M possibly with boundary, while ON = ¢). When p > dim M the homotopy
structure of W1P(M, N) is identical to the one of C°(M, N). When dim M > 1
and 1 < p < 2, we proved in [13] that WP (M, N) is always path-connected. When
p decreases from dim M to 2, the set W1P(M, N) becomes larger and larger while
various surprising phenomena may occur:

(a) some homotopy classes persist below the Sobolev threshold p = dim M ,
where maps need not belong to VMO.

(b) as p decreases, the set WP (M, N) increases and in this process some of the
homotopy classes “coalesce” as p crosses distinguished integer values - and usually
there is a cascade of such levels where the homotopy structure undergoes “dramatic”
jumps.

(c) as p decreases new homotopy classes may “suddenly” appear, at some (inte-
gral) levels; every map in these new classes must have “robust” singularities: they
cannot be erased via homotopy.

We refer the interested reader to [13] and to the subsequent remarkable paper
by F.B. Hang - F.H. Lin [17].

3. Degree for H'/?(S',S'). Can one hear the degree of continuous
maps?.

Another important example which motivated my work with L. Nirenberg [15]
was the concept of degree for maps in H'/2(S', S') due to L. Boutet de Monvel
- O. Gabber (it is presented in the Appendix of [2]). The motivation in [2] came
from a Ginzburg-Landau model arising in superconductivity. This H'/?-degree
also plays an important role in our study of the Ginzburg-Landau Vortices with F.
Bethuel - F. Hélein (see [1]). For example it is at the heart of the proof of

Lemma 3. Let Q be the unit disc in R? and let ¢ be a smooth map from 0 = S*
into S*. then
[Hy (2, 5%) # ¢] & [degp = 0].

The way Boutet de Monvel and Gabber originally defined a degree for H'/2(S*, S1)

went as follows. First, observe that if f € C(S*,C\ {0}), then the Cauchy formula
asserts that

) :
(3.1) deg f = 5ir Jan §

In particular, if f € C1(S!, S') we may write (3.1) as

32 denf =g [ Ff= 5o [ e
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(which is the simplest form of Kronecker’s formula (2.1)). Then Boutet de Monvel-
Gabber observed that the right-hand side in (3.2) still makes when f is not C!, but
merely in H'/2. To do so, they interpret the RHS in (3.2) as a scalar product in
the duality H'/2 — H-V2(f € HY/2, f € H1/2). Using a density argument they
prove that the RHS in (3.2) belongs to Z and they take it as definition for the H/2-
degree of f. On the other hand recall (see Section 1) that H/2(S') cVMO(S').
Therefore any f € H'Y/?(S',S') admits a VMO-degree in the sense of Section 1
and in fact we have

Lemma 4. For every f € H'/?(S', S)
H'Y2_deg f = VMO - deg f.

Lemma 2 and Lemma 4 show the unifying character of the VMO-degree, putting
various concepts of degree (for continuous maps, for W1 (S™, S™) maps, for
H'/2(S', S") maps, etc) under a common roof.

In 1996, I. M. Gelfand invited me to present at his seminar the VMO-degree
theory we had just developed with Louis Nirenberg. He asked me to elaborate on the
special case of the H'/2(S', S') - degree. I wrote down Gagliardo’s characterization
of HY2 which, in this special case, takes the form

HY?(SY) ={f¢€ L2(Sl);/s1 /51 |f(72:£‘(2y)’2dx dy < oo}

Since I. M. Gelfand was not fully satisfied with Gagliardo’s formulation, I also wrote
down the characterization of H'/2 in terms of the Fourier coefficients (a,) of f:

+oo
H'2(SY) = {f € L*(S"); Y Inllan|* < o0}
n=-—oo
(see also Lemma 5 below). At that point I. M. Gelfand asked whether there is a
connection between the degree and the Fourier coefficients. At first I was surprized
by his question, but I realized shortly afterwards that if one inserts the Fourier
expansion

f(o) = Z ane™?
into (3.2) one finds
+oo
(3.3) degf= > nlan|’.

Formula (3.3) is easily justified when f € C1(S,S!). The density of C1(S!,St)
into H'/2(S*,S) and the stability of degree under VMO-convergence (and thus
under H'/2-convergence) yield
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Theorem 4. For every f € HY/?(S', S)

+oo
(3.4) VMO-deg f = Z n|a,|?.

n=—oo

Formula (3.4) raises some intriguing questions. But, first, a consequence of
Theorem 4:

Corollary 1. Let (a,) be a sequence of complex numbers satisfying

“+o00
(3.5) > Inf lan]? < oo,

n=—oo

+oo
(3.6) > faal =1

and
+oo
(3.7) > nlngr =0 Vk#0.
Then
—+o00
(3.8) > nlan® € Z.
Proof. Set

+o0 .
[0 = 3 ane,

n=—oo

so that f € H'/2(S', C). Moreover we have

(3.9) /Sl(yf(e)y? —1)e*?dp =0 V.

Indeed, for k£ = 0, (3.9) follows from (3.6) and for k # 0, (3.9) follows from (3.7).
Thus we obtain

(3.10) [f(0) =1 a.e.
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Applying Theorem 4 we find (3.8).

Pedagogical question. Is there an elementary proof of Corollary 1 which does
not rely on Theorem 47

Suppose now f € C°(S', S1) and f ¢ H'/2. Then the series
+oo

> Inflanf?
is divergent. The LHS in (3.4) is well-defined, but the RHS is not. It is natural
to ask whether deg f may still be computed as a “principal value” of the series
¢ . nlan|? (which is not absolutely convergent). In [10] we raised the question

whether standard summation processes can be used to compute the degree of a
general f € C°(S1,S1). Let for example

+N
oON = Z n|a,|?
n=—N
or
+o0
P, = Z n|an|2r‘"|, 0<r<l.
n=—o0

Is it true that, for any f € C°(S1,S1),

_ _ o
deg f N1—1>I—Il—1000N or deg f lrlﬁl P,

J. Korevaar [19] has shown that the answer is negative. He has constructed inter-
esting examples of maps f € C°(St, S1), of degree zero, such that ox (resp. P.)
need not have a limit as N — oo (resp. » — 1) or may converge to any given real
number A # 0, including +o00. In view of this fact we now propose a more “modest”
question: do the absolute values of the Fourier coefficients determine the degree?
More precisely

Open problem 2. (Can one hear the degree of continuous maps?). Let f,g €
C°(S*t, S1) and let (a,,), (b,) denote the Fourier coefficients of f and g respectively.
Assume

(3.11) lan| = |bn] Vn € Z.
Can one conclude that
deg f =degg 7
Same question if one assumes only that f,g € VMO(S!, Sh).

Of course, the answer to Open problem 2 is positive if f, g € H'/?(S*, S'). This
is a consequence of Theorem 4. The answer is still positive in a class of functions
strictly larger than H'/2. The proof is based on
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Theorem 5. For every f € W'/33(S1 S') we have

1 sin® ne
12 MO-deg f = lim— 2 .
(3.12) VMO-deg f =lim— }  |an|*—

nez

n#0

Corollary 2. Assume f,g € W'/33(81 SY) satisfy (3.11). Then

VMO-deg f = VMO-degg.

Corollary 3. (J. P. Kahane [18]). Assume f,g € C%*(S, S1), with a > 1/3,
satisfy (3.11). Then

deg f = degg.

Note that C%* ¢ W'/33 Va > 1/3. (This is an obvious consequence of
Gagliardo’s characterization (1.1)). Thus Corollary 2 implies Corollary 3. Our
proof of Theorem 5 is a straightforward adaptation of the ingenious argument of J.
P. Kahane [18] for C% o > 1/3.

Remark 2. The conclusion of Theorem 5 holds if f € W'/PP(S1, 81 with 1 < p < 3
(since W1/PP 0 [ c W/33 ¥p < 3). [Note that when 1 < p < 2 the conclusion
of Theorem 5 is an immediate consequence of Theorem 4 since > |n||a,|* < oo.
However in the range 2 < p < 3 the conclusion is far from obvious since the series
In||a,|* may be divergent]. It is interesting to point out that formula (3.12) fails
if one assume only f € W1/PP(S' S1) with p > 3. In fact, J. P. Kahane [18] has
constructed an example of a function f € C%/3(S1,S1) such that deg f = 0 while

1 sin? ne
lim— 2 =\
lim— > lan* ===,
nez
n#0
where A\ could be any real number A # 0. The heart of the matter is the existence
of a 2m-periodic function p € C%/3(R,R) such that

/ o0+ ) — o(6)d8 = sinh V.

This still leaves open the question whether Corollary 2 holds when W1'/33 is re-
placed by WP p > 3.

Taking p — 1 in Remark 2 suggests that Theorem 5 holds for f € W1, This is
indeed true and there is even a stronger statement:
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Theorem 6. For every f € C°(S*, SY)n BV (S, SY) we have

+o0

1
deg f = lim— 2 sin ne.
eg f EILO E Z |ay,|” sinne

Consequently, we also have

Corollary 4. Assume f,g € C°(S,S*) N BV (S, SY) satisfy (3.11). Then
deg f = degg.

Remark 3. Tt was already observed by J. Korevaar in [19] that for every f € C°NBV

one has
+N

deg f= lim " nlay|”,
n=—N

which also implies Corollary 4.

Proof of Theorem 5. We follow the argument of J. P. Kahane [18], except that we

work in the fractional Sobolev space W1/3:3 instead of the smaller Holder space
C% > 1/3. Set
d=VMO — deg f.

By Theorem 3 (and Remark 10) in [15] we may write

f(0) = et (0)+do)

for some ¢ € VMO(S!, R). Applying Theorem 1 from [13] and the uniqueness of
the lifting in VMO we know that ¢ € W1/3:3,

Write
27 _ +oo ‘ 2 ‘
(3.13) f(0+h)f(0)dd = 2m Z |ap e = / etdheilp(0+h)=2(9)) g9,
0 n=-—0o0 0
(3.14) e =1 4 idh + O(|h|?),
and
(3.15)

T2 = 1 yi(p(8+h) — p(6)) — 5 (o(6+ ) — (6)+ Ollp(6-+ ) ~o(O)).
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Thus
(3.16)
Im[eidhei(so(0+h)—so(9))] = Im[(1 + z‘dh)ei(‘P(ngh)_“’(e))] + O(|h]2)

= (¢(0 + 1) — @(0)) + dh + O[|*) + O(hll(0 + k) — (0)*) + O(l(0 + ) — (0)[*).
Integrating (3.16) with respect to 6 yields

(3.17) Z lan|? sinnh — dh

n=—oo

27
< Olh]? + 0/ lo(0 + h) — (0)]>db.

Next, integrating (3.17) with respect to h on (0, 2¢) gives

Z an? ( — cos 2n€) oge?

nez
n#0

and therefore

2e 27
< cs3+0/ dh/ lo(0 + h) — p(0)]>do
0 0

1 sin® ne
S D lanf ———d

nez
n#0

C 2e 27
< Ce+ —2/ / (0 + h) — p(0)|*dh db

2e 27
<C’5+C’// \¢9+f|zh’2 p(6)° dh db,

(3.18)

which implies (3.12) since ¢ € W1/33,

Proof of Theorem 6. Since f € C°N BV, the corresponding ¢ satisfies ¢ € C°NBV.
We return to (3.17) with h = ¢,

1 400 C 2m
(3.19) )g > |an|2sinne—d) < Ce+ ;/ (0 +2) — p(6)]db.
h=—oc0 0

Next we have

(3.20) / o0+ €) — (8)]d8 < g5y

Inserting (3.20) in (3.19) gives

1
(3.21) ‘ Z |y |? sin ne — d’ <Ce+C Sup (0 +¢) — (0)]|3

n=—oo

and the conclusion follows since ¢ € C°.
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4. New estimates for the degree.

Going back to (3.3) we see that, for every f € C*(S1,S1)

(4.1) [deg f| <) |n| an|*.
Combining (4.1) with Gagliardo’s characterization (1.1) of H'/? we find
_ 2
(4.2) |deg f| < C’/ / (@) f(2y)| dx dy.
s1Jst |z —yl

In fact, the sharp estimate

1 (@) = F)
(4.3) !degf\ﬁm[gl/ql e dy

is an immediate consequence of (4.1) and

Lemma 5. For every f € H'/? one has

f(@)?
(4.4) /Sl /S1 |w —y!2 dr dy = 4r* Z In| |an|?

n=—oo

Proof. Write

27 27 inf __ iny |2
W)l | > ane > ane’™|
d dy = . df d
/S1 /Sl ’x_ 2 ray = / / |eif — it ]2 ¥
2
_ in zn@
‘/o e I emment a
27 | iny _ 1 2
_ }: 2 ’e |

But, for |n| > 1,

|ein’y _ 1|2

ST (€ 4 (e 44 1)

and thus

27 ‘ein'y . 1|2
—dy =2 .
|, T v

Inserting this into the previous equality yields (4.4).
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Remark 4. Inequality (4.3) can be viewed as an estimate for the “least amount of
H'/2_cnergy” necessary to produce a map f : S* — S! with assigned degree. More
precisely we have

(4.5) Inf /S /5 'f(T; - £|(2y)|2dx dy = 47°|n|

f:8t—s!
deg f=n

and the Inf in (4.5) is achieved when f() = e™?. The existence of a minimizer for
similar problems where the standard H'/2 norm is replaced by equivalent norms
(e.g. the trace of an H' norm on the disc with variable coefficients) is a very delicate
question because of “lack of compactness”; we refer to [20]

Remark 5. Estimate (4.2) serves as a building block in the study of the least H/2-
energy of maps u : S? — S! with prescribed singularities. Such a question has been
investigated in [5]. More precisely, recall that

2
u 2 1/2(Q2 :/ / ‘u(x) _U(y)‘ dCE dy
el (5% 52 J 82 [z —yl?

Given points ¥ = {p1,p2,... ,pr} U{ni,na,... ,ni} consider the class of maps

A={ueC"(S*\%,8";deg(u,p;) = +1 and deg(u,n;) = —1, Vi}.

Theorem 7. (Bourgain-Brezis-Mironescu [5]). There exist absolute constants
C1,C5 > 0 such that

(4.6) C1L(%) < Jg£||u|’§11/2(52) < G2 L(X)

where L(X) is the length of a minimal connection connecting the points (p;) to the
points (n;).

Theorem 7 is the H'/?-version of an earlier result [12] concerning H' maps from
S3 into S? with singularities which had been motivated by questions arising in
liquid crystals with point defects, while the analysis in [5] has its source in the
Ginzburg-Landau model for superconductors. It is the LHS inequality in (4.6)
which is related to (4.2). The RHS inequality in (4.6) comes from a “brute force”
construction called the “dipole construction”.

Remark 6. An immediate consequence of (4.3) is the estimate

1 [f(z) = f(y)lP /gl gl
(4.7) |deg f| < - /S1 /Sl P VfeC (S5,5Y),Vp e (1,2).
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Estimate (4.7) deteriorates as p | 1 since the RHS in (4.6) tends to 400 unless
f is constant (see [4]). It would be desirable to improve the constant (1/72) and
establish that

(4.8) |degf|§Cp/S1 /S |f(T;:£‘(§/>|pdx dy Yfe (S, SY),Vpe (1,2).

with a constant C), ~ (p — 1) as p | 1. In the limit as p | 1, one should be able to
recover (in the spirit of [4]) the obvious inequality

1 .
(19) deg ] < 5 [ 1f1
7T
Inequality (4.8) is also valid for p > 2, but it cannot be deduced from (4.3) and
its proof requires much work.

Theorem 8. (Bourgain-Brezis-Mironescu [6]). For every p > 1, there is a constant
C, such that for any (smooth) f : S' — S*

@) qaegsizc, [ [ HEEEIE e,

The proof of (4.10) we present in [6] makes use of the harmonic extension of f
inside the disc (and the machinery of W*P-trace theory). It would be desirable to
find a more direct proof of (4.10).

There is an estimate stronger than (4.10):

Theorem 9. (Bourgain-Brezis-Mironescu [7]). For any 6 > 0 sufficiently small
there is a constant Cs such that, Vf € C(St, S1),

1
(4.11) | deg f| < Cs / / ——dz dy.
St st |$—y|
[I.f (@)= f(y)|>d]

The only proof we know for (4.11) is very involved and it is natural to raise

Open problem 3. Find a simpler proof for (4.11). Also, is there a more precise
estimate of the form

(4.12) |deg f| < Co / / dx dy
S1.J st -
[1f(=)— f(y)\>5

with C independent of §7
In the spirit of [4] one might then be able to recover (4.9) as § — 0.

Higher dimensional analogs.
Theorem 8 can be extended to higher dimensions:
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Theorem 8'. (Bourgain-Brezis-Mironescu [6]). Let n > 1. For every p > n there
is a constant C(p,n) such that for any (smooth) f: S™ — S™,

@13)  |degs) <o) [ [ IO a4y = cpnipif,.

We have not been able to generalize Theorem 9 to higher dimensions. A natural
analog would be

Open problem 4. Are there constants § € (0,1) and C such that, Vf € C9(St, S™),

(4.14) |deg f| < C / / y|2” ————dz dy?

[1f(z)— f(y)\>5

In a different direction, it might be interesting to estimate other topological
invariants in terms of fractional Sobolev norms. One of the simplest examples
could be

Open problem 5. Does one have

_ P
| Hopf-degree f| < Cp/ / f(z) = )] Vp > 3.Vf e CH(S3,5%)?
53 .Jg3 |z —yl°
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