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Notation.

1g the function defined by 1g(x) =1if v € E and 1g(z) =0if = € E;
E  the closure of the subset E of the topological space X;
C(E,F) the space of continuous functions from the topological space E to the topological space F}

Cyw(E,F) the Banach space of continuous, bounded functions from the topological space E to the Banach

space F', equipped with the topology of uniform convergence;
C.(E,F) the space of continuous functions £ — F' compactly supported in E.

L(E,F) the Banach space of linear, continuous operators from the Banach space E to the Banach space

F, equipped with the norm topology;

L(E) the space L(E, E);

X* the topological dual of the space X;

X —Y if X CY with continuous injection;
Q an open subset of RY;

Q the closure of Q in RV;

0Q the boundary of €, that is 9Q = Q\ Q;

wCcC Q ifwcC Q and W is compact;

Ou=1u —@—@'
T T e dt
ou
aiu—uwi—axi,
Ot = uyp = ou = lx - Vu, where r = |z|;
or r
0z Ozl
Vu= (Blu, e ,8Nu);
N 92
Y
ox?

F  the Fourier transform in RY, defined by* Fu(¢) = / e 2™ 8y (z) ds
RN

Rl
I
N

~1 given by Fv(z) = / Xy (€) de;
RN
u = Fu;

Ce(Q) = Ce(4R) (or Ce(22,C));

Ch(2) = Cp(Q,R) (or Cp(2,0));

* with this definition of the Fourier transform, [|F|[zz2y = 1, F(u xv) = FuFv and F(D%) =
(@2mi)l e [T, 257 Fu.



Cr(Q) = {u € Cp(Q); Du € CL(Q) for all a« € NY such that [a] < m}, equipped with the norm

or@ = Y, D%

la|<m

[[ul

C(Q2)  the space of continuous functions Q — R (or Q — C). When  is bounded, C(Q) is a Banach space

when equipped with the L°° norm;

Cbu(Q)  the Banach space of uniformly continuous and bounded functions Q — R (or 2 — C) equipped

with the topology of uniform convergence;

Cy"(Q)  the Banach space of functions u € Cy, 4() such that D*u € Cy, 4(2), for every multi-index a such
that |a] <m. C}, (Q) is equipped with the norm of W™ (Q);

Co(€2) the closure of D(Q) in L*(Q);
C™(Q) for 0 < a < 1, the Banach space of functions u € Coly (©) such that

|DPu(x) — DPu(y)|
|z —y[*

lllgme = lfullwn +sup{ oy Q|3 = m} s

D(Q) = C () the Fréchet space of C* functions 2 — R (or Q — C) compactly supported in €2, equipped

with the topology of uniform convergence of all derivatives on compact subsets of €2;

D'(R2) the space of distributions on 2, that is the topological dual of D(Q);

S(RYN) the Schwartz space, that is the space of u € C®(RN,R) (or C*(RY,C)) such that for every
nonnegative integer m and every multi-index «,

Pm,a(u) = sup (1+ |x|2)m/2|Do‘u(x)| < 0.
reRN

S (RN ) is a Fréchet space when equipped with the seminorms p, o;

S’(RY)  the space of tempered distributions on RY, that is the topological dual of S(RY). S'(RY) is a
subspace of D' (RM);
. . 1 1
p'  the conjugate of p given by ~ + — = 1;
p P
LP(Q)) the Banach space of (classes of) measurable functions u :  — R (or C) such that / lu(z)|P dx < oo
Q

if 1 <p<oo,oresssuplul <ooif p=oco. LP(Q) is equipped with the norm
Q

1/p
</ |u(x)|P da:) , if p < o0
lullLe = Q

ess sup |u|, if p = oco.
Q

W™P(Q) the Banach space of (classes of) measurable functions v : @ — R (or Q — C) such that D*u €
L?(Q) in the sense of distributions, for every multi-index a with |a] < m. W™P(Q) is equipped with the

norm

lullwme = > 1Dl o

la|<m

Wy"P(2)  the closure of D(Q) in W™ ();



W% (Q) the dual of Wy"P (9Q);

H™(Q) =Wm™2(Q) H™(Q) is equipped with the equivalent norm

1/2

ullm = Z/\Da (@) do

la]<m

H™(Q) is a Hilbert space for the scalar product
(u,v)pgm = / Re(u(z)v(zx)) dx.
Q
H () = W52 (Q);
H7 () = W)

D(I,X)=Cg(I,X) the Fréchet space of C* functions I — X compactly supported in I, equipped with

the topology of uniform convergence of all derivatives on compact subintervals of I;

LP(I,X) the Banach space of (classes of) measurable functions u : I — X such that / lu(t)|/% dt < oo if
I

1 <p<oo,oresssupl|lu(t)|x <ooif p=oo. LP(I,X) is equipped with the norm
I

/p
Il (/Hu ON% dt) , if p < oo
Ul =

ess sup |Ju(t)||x, if p = oo.
I

di
WmP(I,X) the Banach space of (classes of) measurable functions v : I — X such that T; € LP(1,X) for

every 0 < j <m. W™P(I, X) is equipped with the norm

lullwns = Z A

Cobu(I,X) the Banach space of uniformly continuous and bounded functions I — X, equipped with the

topology of uniform convergence;

_ _ & _
C’{;’?u(l, X) the Banach space of functions u € C, (I, X) such that ﬁ € Cyu(l,X), for every 0 < j <m.
C{D’:Lu(f, X) is equipped with the norm of W™ (I, X);

C™(I,X) for 0 < a <1, the Banach space of functions u € C}*, (I, X) such that

" u(t) dm s)|
ullcm.a = |Jullwm.e +sup{ dt = Slof“ 7 8,t € I}

C(I,X) the space of continuous functions I — X. When [ is bounded, C(I, X) is a Banach space when
equipped with the norm of L>(7, X).

D(A) the domain of the operator A.

R(A) the range of the operator A.

Jn(A) = (I+XA)~!, when A is an m-accretive operator.

Ay = A(I + MA)~t, the Yosida approximation of the m-accretive operator A.

vi



Chapter 1. Linear semigroups of contractions; the Hille-Yosida theory and some

applications.

1.1. m-accretive operators. Throughout this section, X is a Banach space, endowed with the norm

1.1.1. Unbounded operators in Banach spaces.

Definition 1.1.1. A linear unbounded operator in X is a pair (D, A), where D is a linear subspace of X
and A is a linear mapping D — X. If sup{||Az||; z € D,||z|| < 1} < oo, A is bounded. If sup{||Az|; x €
D, ||z|| £ 1} = o0, A is not bounded.

Remark 1.1.2. It is clear that A is bounded if, and only if there exists a closed linear subspace Y of X
such that D C Y and an operator A € £(Y, X) such that Az = Az, for all z € D.

Definition 1.1.3. Let (D, A) be a linear unbounded operator in X. The domain D(A) of A is the set

the range R(A) of A is the set

the nullspace N(A) of A is the set

and the graph G(A) of A is the set
GA)={(z,f) e X x X;z €D and f = Az}.

D(A), R(A) and N(A) are linear subspaces of X, and G(A) is a linear subspace of X x X. If G(A) is closed
in X x X, we say that A is closed.

Remark 1.1.4. The pair (D, A) is often called “the operator A with domain D(A) = D” or just “the
operator A”. However, one must be aware that an operator is not only defined by the values Az, but also
with its domain. In other words, when one defines an operator, it is absolutely necessary to define its
domain. In particular, the same “formula” can define several operators, depending on what the domain
is. For example, let X = L?(R™). Let A; be defined by D(A4;) = X and Aju = u, for all u € X (A, is
the identity on X) and let Ay be defined by D(A2) = {u € HY(RY); u(z) = 0 for almost all |z| > 1} and
Asu =, for all u € D(As). Both Ay and A, are defined by the same formula, but A; and As have different
properties. For example, the domain of A; is dense in X, while the domain of As is not. The graph of A
is closed in X x X, while the graph of A, is not. It is a good exercise for the reader to determine W and

G(A). A; is m-accretive, while A5 is not (see below).That example is rather trivial, but we will see some

nontrivial examples in Section 1.2.
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Remark 1.1.5. When there is no risk of confusion, a linear unbounded operator in X is just called a linear

operator in X or even an operator in X.

1.1.2. m-~accretive operators in Banach spaces.

Definition 1.1.6. An operator A in X with domain D(A) is accretive! if
|+ Az| = =],

for all z € D(A) and all A > 0.

Definition 1.1.7. An operator A in X is m-accretive' if the following holds:
(i) A is accretive,

(ii) for all A > 0 and all f € X, there exists x € D(A) such that © + \Axz = f.

Lemma 1.1.8. If A is an m-accretive operator in X, then for every A > 0 and every f € X, there exists a
unique solution x € D(A) of equation

x+ Nz = f.

In addition ||z|| < ||f]]. In particular, given A > 0, the mapping f — x is a contraction X — X, and is one

to one X — D(A).

Proof. The result follows immediately from Definitions 1.1.6 and 1.1.7. O

Definition 1.1.9. Let A be an m-accretive operator in X. Given A > 0, the mapping f — x defined
in Lemma 1.1.8 is denoted by J\(A) (or Jx when there is no risk of confusion), or (I + AA)~t. We have
Jn € L(X), [\llzxy £ 1, and R(Jx) = D(A). Jy is called the resolvent of A

Proposition 1.1.10. If A is an m-accretive operator in X, then the graph G(A) of A is closed in X x X.

Proof. Since the operator J; is continuous, its graph is closed, and since R(J;) = D(A), this means that
the set {(z,f) € X x X;z € D(A) and f = x + Az} is closed in X x X. Therefore, the set {(x, f) €
X x X;2 € D(A) and f = Az} is closed in X x X. This proves the result. O

Remark 1.1.11. Let A be an m-accretive operator in X (or, more generally, a closed operator), and
suppose X is reflexive. Consider a family (z¢)eso C D(A). If z. = 2z in X as ¢ | 0, and if Az, is bounded
in X, then x € D(A) and Az, — Az in X as € | 0. Indeed, there exists a sequence ¢,, | 0 and y € X such
that Az, — yin X, as n — oo. In particular, (z.,, Az:,) — (z,y) in X x X, as n — oco. On the other
hand, since G(A) is closed in X x X it is also closed for the weak topology of X x X; and so, x € D(A) and

y = Az. Finally, one shows easily with the same argument that the whole family (Ax.)~o converges to Ax.

1 Some authors say that A is dissipative (respectively, m-dissipative), if and only if —A is accretive

(respectively, m-accretive).
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Corollary 1.1.12. Let A be an m-accretive operator in X. For every x € D(A), let ||z|p(ay = ||z|| + || Az||
and ||z pcay = ||z + Az||. It follows that

(i) ||l pcay is a norm on D(A), and (D(A), || || p(ay) is a Banach space. || - || p(ay is called the graph norm;
(i) D(A) — X (with the graph norm);
(iii) the restriction of A to D(A) is continuous D(A) — X, (with the graph norm) and || Al|z(p(a),x) < 1.
(iv) Il llpcay is an equivalent norm on D(A);

(v) Jy is an isomorphism from X to D(A) (with the graph norm).

Proof. It is clear that || ||p(a) is a norm on D(A). Furthermore, the mapping
D(A) - X x X
g:x+— (z,Ax)

satisfies [|g(z)||xxx = [|[zl[pca). Since g(D(A)) = G(A), which is closed by Proposition 1.1.10, it follows
that (D(A), | |pa)) is a Banach space. This proves (i). (ii) follows from inequality [|z|| < [[z|/p(a), while

(iii) follows from inequality |[Axz|| < [|z|[pca). It is clear that |[|z][[pa) < ||z| p(a), and also

[zl ey < 20zl + 2l < 3llzl[ay,

since A is accretive. This proves (iv). Finally, since R(J1) = D(A) by Lemma 1.1.8, it is immediate that
71zl pcay = l|z]|, for all 2 € X. Thus, J; is an isometry from X onto D(A) equipped with the equivalent

norm || [[[pca). This completes the proof. 0

Remark 1.1.13. Throughout the rest of this book, we will always consider D(A) as the Banach space
(D(A), [ pay)-

Corollary 1.1.14. If A is an m-accretive operator in X, then
(i) [[J/1z||pcay defines a norm on X, which is equivalent to the original norm || ||;

(ii) Jx € L(X, D(A)), for every A > 0.

Proof. It follows from Corollary 1.1.12 (iv) that ||Jiz|[|pcay = [|z||. Hence (i). Given A > 0 and z € X,

we have MAJyx = x — Jyx; and so,
1 2
5 lpea = el + e = Jnel < (143 ) llell
Hence (ii). O
Definition 1.1.15. Let A be an m-accretive operator in X, and let Jy be as in Definition 1.1.9. For every

x € X and A > 0, one defines Ayx € X by Axx = AJyx. Ay is called the Yosida approximation of A.

Lemma 1.1.16. Let A be an m-accretive operator in X , and let Ay be as above. The following properties

hold:

CHAPTER 1—PAGE 3



x—J)\

x
N for every x € X;

(i) Ayz =
(i) Ax € L(X) and [[Ax]|zx) < ;, for all A > 0;
(iii) Axx = JyAzx, for every x € D(A);
(iv) (Jx)p(a) € L(D(A)) and [[(Jx)|payllz(pcay < 1, for every A > 0;

(v) Ay is m-accretive.

Proof. Let xz € X and z = Jyz. Since z + AAz = x, we have A x = AAz = x — 2. This proves (i), and
(ii) follows immediately. Finally, if € D(A) and z = Jyz, then

z24+ Az =z.
Since both 2 and z belong to D(A), it follows that Az € D(A) and that
Az + MNA(Az) = Ax.

Now let w = JyAx. Since

w + NAw = Az,

we have

(w—Az) + Mw — Az) = 0.

Since A is accretive, it follows that w = Az, which proves (iii). Next,
I3zl peay = [zl + [Ase]| = [Tzl + [[ATza ]| < [l + [|Az]| =[] pa),
from which (iv) follows. Consider now p > 0. Given z € X, it follows from (i) that

T+ pAyxe = (1+ E) T — BJAx;

A A
and so,
o+ parell = (14 5) 2l = Slnall = (1+5) 2l = Klizll = o).
Therefore, Ay is accretive. Since Ay € L£(X), it follows that Ay is m-accretive (see Remark 1.1.22). O

Remark 1.1.17. If A is an m-accretive operator in X, and if X is reflexive, then one can show that D(A)

is dense in X. See Corollary 1.1.37 for the case of Hilbert spaces and Exercise 1.8.2 for the general case.

Remark 1.1.18. If X is a Hilbert space, then one can improve the estimate in (ii) above. In this case,
| Axllz(x) < 1/A. Indeed, given x € X, let f = Jyx, so that f + AAf = x. Taking the scalar product with
Af, we obtain \|Af|?+ (x, Af) < ||z||||Af]|, and the result follows from Lemma 1.1.36 below. However, in

the general case, one can have || Ax||z(x) = 2/A for all A > 0 (see Exercise 1.8.1).

The purpose of the following proposition is to show that J) is a good approximation of the identity, and

that the (bounded) operator Ay is a good approximation of the (unbounded) operator A, as A | 0.
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Proposition 1.1.19. Let A be an m-accretive operator in X. If D(A) is dense in X, then

(i) |lxx — x| < A||Az||, for all A > 0 and all z € D(A);

(ii) ||Jaz — z|| — 0, for all x € X;

AlO

(iii) [[Axx — Azl AT(;O’ for all x € D(A);
(iv) [[Jaz — 2| p(a) >\—10>07 for all x € D(A).
Proof. Letz € D(A). Since Jyxz—2 = —AAyz, (i) follows from Lemma 1.1.16 (iii). Since ||Jx —I||zx) < 2
and D(A) is dense in X, (ii) follows from Proposition A.1.4. Given x € D(A), it follows from (ii) that

JyAz — Az YT 0 in X. (iii) follows, since JyAz = Az, by Lemma 1.1.16. Finally, (iv) follows from (ii) and

(ii). 0

Remark 1.1.20. Property (i) holds as well if D(A) is not dense. Therefore, if A is an m-accretive operator,

then Jyz — x as A | 0, for every x € D(A), hence for every x € D(A) (see Proposition A.1.4).
Finally, the following proposition gives a quite useful characterization of m-accretive operators.

Proposition 1.1.21. If A is an accretive operator in X, then the following properties are equivalent:

(i) A is m-accretive,

(ii) there exists Ao > 0 such that for all f € X, there exists a solution x € D(A) of equation x + MgAx = f.
Proof. It is clear that (i)=(ii). Let us show that (ii)=-(i). Since A is accretive, it follows from property
(ii) that given f € X, there exists a unique x € D(A) such that z + \gAz = f. In addition, ||z| < | f]|-

Therefore, the mapping f +— is continuous X — X, and its norm is < 1. Let us denote this operator by J.

Let now A > 0 and f € X. Note that the equation

T+ Mz = f,
is equivalent to
T+ A Ax—&f—i— 1—& x
R X))
This last equation is equivalent to
x = F(z),

where
F(x):J();?f—&—(l—);?)x).
Ao

Note that F' is Lipschitz continuous X — X with a Lipschitz constant L < ’1 5 Therefore, if A > X\p/2,
then L < 1; and so, it follows from Theorem A.1.1 that there exists € X such that x = F(x). Therefore,
for every A > A\g/2 and every f € X there exists ¢ € D(A) such that z + N\Az = f. Iterating n times this
argument, it follows that for every A > A\g/2™ and every f € X, there exists € D(A) such that x4+ Ax = f.

Since n is arbitrary, the result follows. O
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Remark 1.1.22. Let A be an accretive operator in X. In order to check that A is m-accretive, we have in
principle to solve equation x + AAx = f for all f € X and all A > 0. Proposition 1.1.15 means that in fact,
we only have to solve the equation for all f € X and some A > 0. It follows in particular that if A € £(X)
is accretive, then A is m-accretive. Indeed, if A[[Al|z(x) < 1, then R(] + AA) = X.

Corollary 1.1.23. Let A and B be two operators in X. If R(I + A) = X, if B is accretive and if
G(A) C G(B), then A = B and A is m-accretive.

Proof. Let (z, f) € G(B), and let g = f+xz. In particular, x € D(B) and 2+ Bz = g. Since R(I+A) = X,
there exists y € D(A) such that y + Ay = g. Since G(A) C G(B), it follows that y € D(B) such that
y + By = g. In particular, (x — y) + B(x — y) = 0. Therefore, y = x, since B is accretive. It follows that
(z, f) € G(A). Therefore, A = B. Finally, A is accretive and R(I + A) = X; and so, A is m-accretive by
Proposition 1.1.21. |

Corollary 1.1.24. Let A and B be two m-accretive operators in X. If G(A) C G(B), then A = B.

1.1.3. Accretive operators and duality maps; sums of accretive operators. We recall the

definition of the duality map F. For every x € X, we define the duality set F'(z) C X* by
F(z) = {¢ € X*; [[€llx- = |lz] and (€, z)x-,x = [|l=[*}.
It follows from the Hahn-Banach theorem that F'(z) # .

Lemma 1.1.25. Let A be a linear operator in X. The following properties are equivalent:
(i) A is accretive;

(ii) for all x € D(A) there exists { € F(x) such that (¢, Az)x+ x > 0.

Proof. Assume A is accretive. Let @ € D(A) and set y = Az. We have ||z + Ay|| > ||=|| for all A > 0.
Given A > 0, let & € F(z + Ay) and set f = &/]|€x]]. We have

lz|l < llz+ Xyl = (fa, 2+ Ay)x x = (Fn, @) x x + Ay xx < o] + A y)xx x-

In particular, (fx,y)x+ x > 0 and lirillionﬂf/\,x)X*’X > ||z||. On the other hand, since || fx]| < 1, there exist
a sequence A\, | 0 and f € X* such that || f|| <1, nILIT;O<fAna$>X*,X = (f,z)x+ x and nlLH;o<fA’l’y>X*’X =
(f,y)x~ x. It follows that (f,y)x» x > 0 and that (f,x)x» x > ||z|. Since (f,z)x+ x < ||z||, we obtain
(f,x)x+~x = ||z||. Setting & = ||z||f, we deduce & € F(z) and ({y)x+ x > 0, hence (ii). Conversely,
assume (ii) holds. Let z € D(A) and let { € F(z) be such that (£, Az)x+ x > 0. Set f = z+ AAz. It follows
that

& fixx =& x)xx + M& Az)x+ x > (£, 2)x+ x-

Therefore,
2)1? = (€ x)x x < (& Fhxex < ENNFI = Nl A5
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and so, A is accretive, which completes the proof. O

Lemma 1.1.26. Let A be an m-accretive operator in X. Then (¢, Az)x+~ x > 0, for every x € D(A) and
every ¢ € F(x).

Proof. Let z € D(A) and € € F(z). For every A > 0, we have
(€ I =) ) xe x <2l (1 = 2A) " al| < [lolf* = (€ 2)x- x5

and so,

(& x— (I —-MA) ) x x >0.

Dividing the above inequality by A and letting A | 0, it follows from Remark 1.1.27 that (£, Az)x+ x > 0.

This completes the proof. O

Corollary 1.1.27. Let A and B be linear operators in X. Define the operator A+ B by D(A + B) =
D(A)N D(B) and (A+ B)x = Az + Bz. If A is m-accretive and if B is accetive, then A + B is accretive.

Proof. The result follows immediately from Lemmas 1.1.25 and 1.1.26 above. O

1.1.4. Restriction and extrapolation. In this section we show that, given an m-accretive operator
with a dense domain, one can restrict it to a smaller space, or extend it to a larger space in such a way that
the restricted or extended operator is m-accretive. These considerations will be useful in the next sections

for characterizing the “weak solutions”.

Theorem 1.1.28. Let A be an m-accretive operator in X with dense domain and let X, be the Banach

space (D(A), || ||pcay). The operator Ay in X; defined by

{D(A(1)) ={z € X1; Ar € X1},
Aqyr = Az, for all x € D(Aq));

is m-accretive in Xy, and D(Ay)) is dense in X;.

Proof. Consider z € D(A(1)), f € X1 and A > 0 such that

T+ ANz = f.
In particular
x4+ MMz = f. (1.1.1)
It follows that Az € D(A) and that
Az + MNA(Ax) = Af. (1.1.2)

Since A is accretive, it follows from (1.1.1) and (1.1.2) that ||z|| < || f]| and that ||Az| < ||Af]||. Therefore,

llzllx, < fllx,, and A is accretive.
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Let now A >0 and f € X3, and let x = J, f. It follows that
T+ Az = f.
In particular, Az € D(A) (i.e. x € D(A())) and
r+ Az = f;

and so, A1) is m-accretive.
Finally, let z € X; and let ) = Jxx. One verifies as above that x) € D(A(1)). Furthermore, it follows
from Proposition 1.1.19 (iv) that

r)y—x, in X7.
AL0

Therefore, D(A(y) is dense in X;. This completes the proof. O

Remark 1.1.29. Here are some observations concerning Theorem 1.1.28.

(i) Onme can iterate Theorem 1.1.28 and construct a family (X,,)nen of Banach spaces such that
o X o Xy o e X = X,

all embeddings being dense, and a family (A(,))nen of operators such that A, is m-accretive in X,
with domain X,,1; and A,z = Az for all z € X,, 1. Note that if A is bounded, then X,, = X for all

n € N, while if A is not bounded the family (X,,),en is strictly decreasing.

(ii) Tt follows from Corollary 1.1.14 that X; = J1(X) and that ||Jiz|x, = ||z|. One verifies easily by

iteration that X, = JJ"(X) for every nonnegative integer n and that ||J7'z|x, =~ ||z

Remark 1.1.30. Given an operator A on X, one can define powers of A as follows. One define A? by
D(A%) = {z € D(A); Az € D(A)},
{AQm = A(Az), for x € D(A?).
More generally, one defines by induction the operator A", for n > 2 by
D(A™) = {z € D(A"'); A" 'z € D(A)},
{A”x = A(A" 'z), for x € D(A™).
One verifies quite easily that the spaces X, defined in Remark 1.1.29 coincide with D(A™), with equivalent
norms if D(A™) is equipped with the norm ||z|[pan) = i | A7z|. Tt follows in praticular from Remark

§=0
1.1.29 (i) that if A is an m-accretive operator with dense domain, then D(A™) is dense in X for every

nonnegative integer m.

Theorem 1.1.31. If A is an m-accretive operator in X with dense domain, then there exist a Banach
space X 1 and an operator A(_yy in X_y such that

(i) X — X_4, with dense embedding;
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(ii) for all x € X, the norm of x in X_4 is equal to ||J1z|;
(iii) A(_y) is m-accretive in X _;

(iv) D(A(—y1)) = X, with equivalent norms;

(v) for all x € D(A), A_1yx = Aw.

In addition, X_1 and A(_q verifying (i) to (v) are unique.

Proof. Let ||z|| = ||Jiz|, for all z € X. It is clear that ||| ||| is @ norm on X and that [|z]]| < ||z|. Let X_1
be the completion of X for the norm ||| |||. Note that X_; is unique, and that (i) and (ii) hold. Furthermore,
note that

AJix =x — Jiz, for all z € X.
It follows that (see Lemma 1.1.16)
J1Ax = x — Jiz, for all © € D(A);
and so,
1Az (| < fllzlll + lzll < 2[l]l, for all z € D(A).

Therefore, one can construct by continuity a unique operator A € £(X, X_1) such that Az = Ax for all
x € D(A) and
[Az||| < 2||z||, for all x € X. (1.1.3)

Define the operator A(_;) in X_; by

{ D(A1)) = X,
Az = Az, for all z € X.

It is clear that (v) holds and that we have the algebraic identity D(A_;)) = X. The equivalence of the
norms follows easily from (1.1.3), which proves (iv). Consider next A > 0. Let z € D(A) and v = Jyz. We
have

v+ AAv = Ji(x + MAx).

Since A is accretive, it follows that
|z + Az = |lv+ AAv[| = o] = ([l
By density of D(A) in X and continuity of A, we obtain
llz + AAz|| = |zl for all 2 € X;

and so, A(_y) is accretive. Consider now f € X ;. Let f, € X be such that f, — f in X ;, and let

Ty = J1 fn. In particular, z, is a Cauchy sequence in X. Let x be its limit. Since
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it follows that
f=x+ Ax.

Applying Proposition 1.1.21, it follows that A(_,) is m-accretive in X_;. Finally, uniqueness of A_;) follows

from uniqueness of A. This completes the proof. O

Remark 1.1.32. One can iterate Theorem 1.1.31 and construct a family (X_,,),en of Banach spaces such

that

)

Xo=X - X_ 1 X_ -

all embeddings being dense, and a family (A(_,))nen of operators such that A, is m-accretive in X_,,
with domain X _, 41 and A_,)z = Az for all x € D(A). Note that if A is bounded, then X_,, = X for all
n € N, while if A is not bounded the family (X_,,),en is strictly increasing. Applying now Remark 1.1.29,

we obtain the family

..an+1r_)an_)...c_>X0:Xr_)...<_>X_n+1<_>X_n<_>...

all embeddings being dense, and the family (A(,))nez of operators such that A, is m-accretive in X,, with
domain X,, 11 and A,z = A for all x € X, N X
Remark 1.1.33. Here are a few simple observations about Theorem 1.1.31 and Remark 1.1.32.

(i) Note that the restrictions and extrapolations commute. In particular, (X;)_; = (X_1); = X and

(Ay)(=1) = (A1))(1) = A. This follows immediately from Corollary 1.1.14.

(ii) Note also that X_,, is the completion of X for the norm ||J{z||. In particular, J{ can be extended by
continuity, to an isomorphism X_,, — X. One verifies easily that for every x € D(A_,)) = X 41,

A(—pyx is the limit in X_,, of A(J{x). Note that J{z € D(A).

Corollary 1.1.34. With the notation of Theorem 1.1.31, if x € X is such that A_;yz € X, then x € D(A)
and Ax = A_px.

Proof. Set f =z + A1)z € X. Since A is m-accretive, there exists y € D(A) such that y + Ay = f; and
so, y + A_yy = f. Since A(_y) is accretive, it follows that 2 = y € D(A). Hence the result. O

Corollary 1.1.35. If A is an m-accretive operator in X with dense domain, then
(1) |Iaz —z||x_, <2M||z||, for all z € X;
(ii) if (xx)a>0 Is a bounded family in X and if X is reflexive, then Jyxy —xy — 0in X, as A | 0.

Proof. (i) follows from Proposition 1.1.19 (i) applied to A(_;y and from (1.1.3). (ii) follows from (i) and
Lemma A.1.9. O

1.1.5. The case of Hilbert spaces. Self-adjoint and skew-adjoint operators. = Throughout this
section, we assume that X is a Hibert space, and we denote by (, ) its scalar product. We have the following

characterization of accretive operators.
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Lemma 1.1.36. If A is a linear operator in X, then the following properties are equivalent:
(i) A is accretive;

(ii) (Ax,x) >0, for all x € D(A).

Proof. Assume that A is accretive and let © € D(A). For all A > 0, we have

|z + Az — ||]”
22

(Az,) + | Aa]? = >0,

(ii) follows by letting A | 0. Conversely, assume that (ii) holds, and let A > 0 and x € D(A). We have
lz + Az [|* = [lz|* + 2A(Az, @) + N[ A|* > =]

and so, A is accretive. O

Corollary 1.1.37. If A is an m-accretive operator in X, then D(A) is dense in X.
Proof. Let z be in the orthogonal of D(A) in X, and let = J;z € D(A). We have
0=(22) = (z+ Az,2) = (Az,2) + |2|* > [|l=]|*;

and so, x = 0, thus z = 0. Therefore, D(A) is dense. O

Remark 1.1.38. One verifies easily that the spaces X,, defined in Remark 1.1.32 are all Hilbert spaces.
In particular, the scalar product in X; is defined by (x,y)x, = (z,y) + (Az, Ay), for all z,y € X5, and the
scalar product in X_; is defined by (z,y)x_, = (Jiz, J1y), for all z,y € X.

Given an operator A in X with dense domain, we recall that its adjoint A* is defined as follows. We
set

D(A*) ={z € X; 3C < 00,Vy € D(A),|(Ay,z)| < C|yll}.

Given x € D(A), the linear mapping

D(A) —R
{ y+— (Ay,z)
can be extended by continuity to a linear, continuous mapping X — R. This defines an element of X* = X,
which we denote by A*z. It is well known that if B € £(X), then (A + B)* = A* + B*. In particular,
(I + A)* = I + A*. Finally, we recall (see Brezis [17], Corollary 11.17) that (R(A))* = N(4*) = {z €
D(A*); A*x = 0}.

Remark 1.1.39. Note that if A is m-accretive in X, it follows from Corollary 1.1.37 that D(A) is dense
in X; and so, A* is well defined.

Lemma 1.1.40. If A is an operator in X with dense domain and if A* is its adjoint, then

(i) G(A*) ={(,f) € X x X; (f,y) = (z,9),Y(y,9) € G(A)}, i.e. (z,f) € G(A*) if and only if (—f,x) €
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(ii) G(A*) is closed in X x X.

Proof. Let
Z=A{(z,f) € X xX; (f,y) = (,9),Y(y,9) € G(A)}.

Let (z, f) € Z. Since
(z, Ay) = (f,y),
for all y € D(A), we deduce

(@, Ay)l < [ l]l-

It follows that € D(A*) and that f = A*x. Therefore, Z C G(A*). Consider now x € D(A*), and let
f = A*z. We have

(f,y) = (x, Ay),
for all € D(A). This means that
(f:9) = (2,9),
for all (y,g) € G(A); and so, G(A*) C Z. This proves (i), and (ii) follows immediately. O

Propositon 1.1.41. If A is an m-accretive operator in X, then
(i) A* is m-accretive in X;
(it) (I+AA")" = (I + AN, for all A > 0;
(iii) (A*)x = (AN)*, for all X > 0;
(iv) et AN = (et )* for all A\ > 0 and t € R.
Proof. Let us first show that A* is accretive. Let x € D(A*) and A > 0. Applying Lemma 1.1.16, we

obtain

(A%z, Jhx) = (z, Adyx) = (z, Axz) = %(HmHQ — (z, Jxx)) > 0.

Letting A | 0, it follows from Lemma 1.1.36 that A* is accretive. Consider now A > 0 and let Ly =
(I + /\A)*l)* € L(X). Let z € X and z = Lyz. For every (y,g) € G(A), we have
1 1
(7,9) = 1 (2,5 + Ag) — (2,)) = 5 (Laz, (T + AA)y) — (,9))
1

= L T2+ 7)) — () = 1 (=~ 2.0).

It follows that (x, - x> € G(A"). Therefore, x € D(A*) and = + AA*x = z. This proves (i) and (ii).

Applying Lemma 1.1.16, we obtain

(4%), = I—(I —s—)\AA*)*l _I-(u +)\>\A)1)* _u-( 4—)\)\A)1)* RS

Hence (iii). (iv) follows easily. O
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Proposition 1.1.42. Let A be a closed, accretive operator in X with dense domain. If N(I + A*) = {0},

then A is m-accretive. In particular, if A* is accretive, then A is m-accretive.

Proof. We have
(R(I+A))" = N((I + A)") = N(I + A*) = {0};

and so, R(I + A) is dense in X. We now show that R(I + A) is closed. Let (fn)nen C R(I + A) be such that
fn e f in X. We have f, = x,, + Ax,, where x,, € D(A). Since A is accretive, it follows that (z,)nen is
a Cauchy sequence in X. Let z be its limit. Note that (Az,)nen is a Cauchy sequence in X. Since G(A) is
closed, it follows that © € D(A) and that f = (I + A)z; and so, R(I + A) is closed. Therefore, R(I+A) = X,

and it follows from Proposition 1.1.21 that A is m-accretive. O

Definition 1.1.43. An operator A in X with dense domain is symmetric (respectively skew-symmetric)
if G(A) C G(A*) (respectively G(A) C G(—A*)). An operator A in X with dense domain is self-adjoint
(respectively skew-adjoint) if A = A* (respectively A = —A*).

Remark 1.1.44. Tt follows from Definition 1.1.43 that A is symmetric if and only if (Az,y) = (z, Ay) for
all z,y € D(A). As well, A is skew-symmetric if and only if (Az,y) = —(z, Ay) for all z,y € D(A4). It
is also clear that if A is self-adjoint (respectively, skew-adjoint), then A is symmetric (respectively, skew-
symmetric). However, the converse is not true (see Exercises 1.8.4 and 1.8.5). Indeed, the identity A = +A*
is an identity between operators. It means that G(A) = £G(A*), or as well that D(A) = D(A*) and that
Az = £ A%z, for all x € D(A).

Corollary 1.1.45. If A is a densely defined operator in X, then the following properties hold:
(i) if A is skew-adjoint, then A and —A are m-accretive and (Az,z) = 0 for all x € D(A);
(ii) if A is self-adjoint and accretive, then A is m-accretive.
Proof. (i) If z € D(A), then (Az,z) = (z,A*x) = —(z, Az); and so, (Az,z) = 0. In particular, it

follows from Lemma 1.1.36 that A and —A are accretive. Since G(A) = —G(A*) is closed by Lemma 1.1.40,
property (i) follows from Proposition 1.1.42

(ii) A* = Aisaccretive. Furthermore, G(A) = G(A*) is closed by Lemma 1.1.40. Applying Proposition

1.1.42, it follows that A is m-accretive. Hence (ii). O

Corollary 1.1.46. If A is an m-accretive operator in X, then the following properties are equivalent:
(i) A is self-adjoint;
(ii) (Az,y) = (z, Ay), for all x € D(A).
Proof. Assume that A is self-adjoint. Then, G(A) = G(A*), from which (ii) follows. Conversely, assume

that A verifies (ii). This means that G(A) C G(A*). Let (z,f) € G(A*), and let g = = + A*z = = + f.
Since A is m-accretive, there exists y € D(A) such that ¢ = y + Ay. Since G(A) C G(A*), it follows that
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y € D(A*) and that ¢ = y + A*y; and so, x = y, since A* is accretive by Proposition 1.1.41. Therefore,
G(A*) C G(A); and so, A = A*. O

Corollary 1.1.47. If A is an m-accretive operator in X, then the following properties are equivalent:
(i) A is skew-adjoint;
(ii) (Az,x) =0, for all x € D(A);

(iii) —A is m-accretive.

Proof. It follows from Corollary 1.1.45 that (i)=-(ii) and that (i)=-(iii). It remains to show that (iii)=>(ii)
and (ii)=(i). Assume that A and —A are m-accretive. Applying Lemma 1.1.36 to both A and —A, it follows
that (Az,z) =0, for all x € D(A). Hence (ii). Finally, assume that (ii) holds, and let ,y € D(A). We have

(Az,y) + (z, Ay) = (A(z +y),z +y) — (Az,z) — (Ay,y) = 0.

This means that G(A) C G(—A*). Next, consider (z, f) € G(—A*) and let ¢ = z — A*z = = + f. Since
A is m-accretive, there exists y € D(A) such that ¢ = y + Ay. Since G(A) C G(—A*), it follows that
y € D(A*) and that g = y — A*y; and so, © =y, since —A* is accretive by (ii) and Proposition 1.1.41. Thus,
z € D(A) and Az = —A*z. Therefore, G(—A*) C G(A); and so, G(—A*) = G(A). Therefore (i) holds,

which completes the proof. O

Corollary 1.1.48. Let A be an m-accretive operator, and let A, be the operators defined in Re-
mark 1.1.32, for n € Z. If A is self-adjoint (respectively, skew-adjoint), then A, is self-adjoint (respectively,
skew-adjoint).

Proof. Assume that A is self-adjoint, the proof being similar if A is skew-adjoint. Arguing by induction, we
only need to show that A,y and A(_y) are self-adjoint. Given x,y € D(A(y)), it follows from Remark 1.1.38
that

(Amyz,y)x, = (Az,y) + (A(Azx), Ay).

Therefore, (Ayz,y)x, = (A1)y,7)x,. Since Ay is m-accretive, it follows from Corollary 1.1.46 that A
is self-adjoint. One shows as well that A(_y) is self-adjoint, by applying Remarks 1.1.33 and 1.1.38. O

Proposition 1.1.49. If A is a densely defined operator, then the following properties hold.

(i) If A is self-adjoint and if ¢ is a nonnegative integer, then A% is self-adjoint and accretive (hence m-

accretive).

(ii) If A is self-adjoint and accretive and if { is a positive integer, then A**! is self-adjoint and accretive
(hence m-accretive).

(iii) If A is skew-adjoint and if ¢ is a positive integer, then (—1)¢A%* is self-adjoint and accretive (hence
m-accretive).

(iv) If A is skew-adjoint and if ¢ is a positive integer, then A%*1 is skew-adjoint (hence m-accretive).
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Proof. Let A be asin (i), (ii), (iii) or (iv), so that in particular A* = e¢A with ¢ = £1. We proceed in five

steps.

Step 1. If m is a nonnegative integer, then

m—j

o (1.1.4)

A7z < || A™||% ||z

for all 0 < j < m and for all z € D(A™).
We argue by induction on m. (1.1.4) is clearly true for m = 1. Assume (1.1.4) for some mg > 1, and

let x € D(A™ 1), We have
ATz = (Ao, AT0g) = c(ATO N ATOHLg) < AT ] ATy

mgp—1 1
mo ||| ™o, we deduce that

Since by (1.1.4), [|[A™e~1z|| < ||A™ox|

m

Let now 0 < j < mg. Since by (1.1.4), ||[A%z| < |A™z|#s ||z ™ , we obtain by applying (1.1.5)
J

[ATz|| < [|Amotiz]| ™o

mo+1—j
|| MoTT , which is (1.1.4) for m = mgp + 1 and 0 < j < mg. The case j = mg + 1

being trivial, this shows (1.1.4) for m = mg + 1.

Step 2. If m is a nonnegative integer, then A™ is closed. Indeed, suppose (2, )n>0 € D(A™) satisfies
Tp — T and A"z, Y in X. By Step 1, ||A7z,|| is bounded for all j < m. In particular, ||Az,| is
bounded. Since A is closed, it follows from Remark 1.1.11 that € D(A) and Ax,, — Az. Since ||A(Az,)||
is bounded, we may apply again Remark 1.1.11, and it follows that z € D(A?) and A%z, — A2%z. By

induction, we deduce easily that x € D(A™) and A™x,, = A™z. Thus y = A™z and A™ is closed.

Step 3. Let m be a nonnegative integer and let 0 =% if miseven,c =1 if misodd and e = 1, 0 = £1

if m is odd and £ = —1. It follows that 0 A™ is accretive. Consider z,y € D(A™). If m = 2¢, we write
(cA™z,y) = ot (Alx, Ay) = (Alz, A%). (1.1.6)

If m =20+ 1, we write
(cA™x, y) = ot (A(Ax), Aly) = e (A(Ax), A%y). (1.1.7)

If m is even, we deduce from (1.1.6) that (c A™x, x) = ||A%z|? > 0. If m is odd and € = 1, then A > 0 and
we deduce from (1.1.7) that (cA™x,z) = (A(A’x), A’z) > 0. If m is odd and € = —1, then A is skew-adjoint
and we deduce from (1.1.7) that (cA™z,x) = 0.

Step 4. Let m be a nonnegative integer and let o be as in Step 3. It follows that N(I + o(A™)*) = {0}.
Indeed, consider y € N(I+0(A™)*). (Note that A™ is densely defined by Remark 1.1.30, so that I+o(A™)*
is well-defined.) We have

(y,x +0A™z) =0, (1.1.8)

for all z € D(A™). Fix z € X and, given A > 0, let ) = (I+eAA) ™z € D(A™). (Note that if e = —1, then
—A is also m-accretive). We now let x = z in (1.1.8). Since A* = A and ((I + e A)71)* = (I + AA)~ L,
we find

oe™(AMyx, z) = —(y,xn), (1.1.9)

CHAPTER 1—PAGE 15



where yy = (I + AA)~™y. Since ||z5]| < ||z||. Since z is arbitrary, we deduce in particular that

A"yl < [lyll-

Note also that yy )\TO»y. Since A™ is closed by Step 2, we deduce from Remark 1.1.11 that y € D(A™) and
that A"y, — A™y. Letting A | 0 in (1.1.9), we deduce

(y+oe™A™y, z) = 0.

Since z € X is arbitrary, we have then y + o™ A™y = 0. Setting 0 = o™, we see that ¢ is as in Step 3,

and we conclude that y = 0.

Step 5. Conclusion. Let m be a nonnegative integer and let o be as in Step 3. It follows from Steps 2,
3 and 4 that 0 A™ is densely defined, closed, accretive, and that N(I + o(A™)*) = {0}. It follows from
Proposition 1.1.42 that 0 A™ is m-accretive. If ¢ = 1, then it follows from (1.1.6) and (1.1.7) that c A™ is
symmetric, hence self-adjoint by Corollary 1.1.46. If e = —1 and m is even, then it follows from (1.1.6) that
o A™ is symmetric, hence self-adjoint by Corollary 1.1.46. Finally, if e = —1 and m is odd, then it follows
from (1.1.7) that (cA™z,z) = 0 for all © € D(A™). Therefore, c A™ is skew-adjoint by Corollary 1.1.47.

This completes the proof. O

Let A be an m-accretive operator in X and let A* be its adjoint. It follows from Proposition 1.1.41 that

A* is also m-accretive. In particular, D((A*)") is dense in X, for every nonnegative integer n. Therefore, if
n

D((A%)") is equipped with the norm ||z p 4y, = 3 [(A*)al], then D((A7)") < X < D((A*)")* with
j=1
dense embeddings. We have the following results.

Proposition 1.1.51. If A is as above and (X_,,),>0 are the spaces defined in Remark 1.1.32, then X_,, =

D((A*)™)* with equivalent norms.

Proof. It suffices to show that ||z|x_, = [[z|[p(a+)n)«. By density, we may assume that € X. It follows

from Remark 1.1.33 (ii), Proposition 1.1.42, Remark 1.1.30 and Remark 1.1.29 (ii) that

[zllx_, = [J1(A)" ]| = sup (Ji(A)"z,y)x x

lyll=1
= sup (z,J1(A")"y)x.x = sup (2, J1(A")"Y) p(a=)m)*,D((A*)™)
llyll=1 llyll=1
= sup (z,2) p((a*yn)=,p((a*)m) = [zl Dax)n)=-
[Izllp(caxyny=1
Hence the result. O

Corollary 1.1.52. Let A be a self-adjoint accretive or a skew-adjoint operator in X and let (X,,)nez be

the spaces introduced in Remark 1.1.32. Then, X_, = X} with equivalent norms, for every n € Z.

Proof. Consider n > 0. It follows from Remark 1.1.30 that X,, = D(A™) = D((A*)"); and so, X_,, = X}
by Proposition 1.1.51. Since the speces X,, are Hilbert spaces (see Remark 1.1.38), they are reflexive.
Therefore, X*,, = X}* = X,,. Hence the result. O
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Finally, we establish a useful property of self-adjoint operators in complex Hilbert spaces. Let X is a
C-linear vector space, endowed with a norm || || that makes it a real Banach space. We recall that X is a

complex Hilbert space if there exists a mapping b: X x X — C with the following properties:

b(Ax + py, z) = Ab(x, 2) + pb(y, ), for all z,y,2 € X and all A\, u € R;

y,x) = b(z,y), and all z,y € X;

oS

(
(
bliz,y) = ib(z,y), and all z,y € X;
b(x,x) = ||z|?, and all x € X.

It follows easily that X equipped with the scalar product

(z,y) = Re(b(z,y)),

is a real Hilbert space.

Lemma 1.1.53. Let X be a complex Hilbert space, and let A be an operator in X. Assume that A is
C-linear, and let iA be defined by

{ D(iA) = D(A),
(iA)x = iAx, for all x € D(A).
If D(A) is dense in X, then A* is C-linear and (iA)* = —iA*.

Proof. Let (z,f) € G(A*). For all (y,g) € G(A) and all A € C, we have

<)‘f7 y) = (fﬂ Xy) = (‘T7A(Xy)) = (x7XAy) = ()‘vay)

It follows that (Azx, Af) € G(A*); and so, A* is C-linear. Furthermore, Given (z, f) € G(A*) and (y,g) €
G(A), we have

(_ifv y) = (f7 Zy) = (Z‘,A(Z];)) = ('T’ig)'

It follows that (z,if) € G((iA)*); and so, G(—iA*) C G((iA)*). Applying that result to iA, we find
G(—i(1A)*) C G(—A*). By C-linearity, it follows that G((i¢4)*) C G(—iA*); and so, G((i4)*) = G(—iA*).

Hence the result. O

Corollary 1.1.54. Let X be a complex Hilbert space, and let A be an operator in X. If A is C-linear,

then the following properties are equivalent:
(i) A is self-adjoint;
(ii) ¢A is skew-adjoint.
Proof. Assume that A is self-adjoint. It follows from Lemma 1.1.53 that
(1A)* = —iA™ = —iA;
and so, iA is skew-adjoint. Conversely, if 1A is skew-adjoint, then
A = (—i(1A))" = i(iA)" = —i(iA) = A;
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and so, A is self-adjoint. O

1.2. Examples of m-accretive partial differential operators. In this section, we describe some

examples of partial differential operators that are related to classical evolution equations.
1.2.1. First order operators. Here are a few examples related to transport equations.
Example 1. A first order operator in R. Let X = C,(R), and define the operator A in X by

1 o du
DA ={uecC R)NX;u = dr € X}, (1.2.1)

Au =, for u € D(A).

We have the following result.
Proposition 1.2.1. If A is defined by (1.2.1), then both A and —A are m-accretive.

Proof. Let us first show that A is accretive. Let A > 0 and let (u, f) € D(A) x X verify v + Au = f. It
follows that

u+ A’ = f, for all z € R. (1.2.2)
Let
Lf(x)= %/ e f(s)ds. (1.2.3)
We have
1 T
LA < Ml [ € ds = | f .
— 00
Therefore,
(L fllzee < [ fllzoe- (1.2.4)

Note that the general solution of (1.2.2) is given by
u(z) = Lf(z) + aeX.

Since both u and Lf are bounded, it follows that a = 0. Therefore, w = Lf, and it follows from (1.2.4) that
A is accretive.

Consider now A > 0 and f € X. It follows from (1.2.4) that Lf € X. Furthermore, Lf € C'(R), and
Lf verifies equation (1.2.2). Therefore, Lf € D(A) and Lf + A(Lf)" = f. Therefore, A is m-accretive. One

shows as well that —A is m-accretive. O

Remark 1.2.2. Note that in the above example, D(A) is not dense in X. For example, u(x) = sin(x?)

belongs to X. However, one checks easily that if 2 € C*(R) verifies ||z — u|| L~ < 1/4, then sup |2’(z)| = oo,
zeR

and so z € D(A). Therefore, u cannot be approximated by elements of D(A).

Remark 1.2.3. One can modify the above example as follows.
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(i) Let X = L>°(R), and let A be defined by

{D(A) = W (R),
(1.2.5)

Au =1/, for u € D(A).
Then, both A and — A are m-accretive. The proof is essentially the same as the proof of Proposition 1.2.1.

Note that in the above example also, one can show easily that D(A) is not dense in X.

(ii) Let now X = Cy(R), and let A be defined by

D(A) ={uc CYR)NX; v € X},
{ (1.2

Au =1/, for u € D(A).

Then, both A and —A are m-accretive, with dense domain. Since D(R) C D(A), it follows that D(A)
is dense in X. The rest of the proof follows that of Proposition 1.2.1.

(iii) Consider now 1 < p < 0o, let X = LP(R), and let A be defined by

{D(A) =WHI(R),

(1.2.7)
Au =/, for u € D(A).

Then, both A and —A are m-accretive, with dense domain. If p = 2, then A is skew-adjoint. Since
D(R) C D(A), it follows that D(A) is dense in X. In order to show that A is m-accretive, and following
the proof of Proposition 1.2.1, we only have to show that L € £L(LP), and that ||L|z(zr) < 1. Let p’ be
the conjugate of p. It follows from Holder’s inequality that

L= [} [ kst s

— 00

1 0 s s 1/p
<5 e (SIfarr)T ds

— 00

10

<A

0
/ o5 |f(x + 5)P ds:

[wswparsy ([ as) ([ieoras) =i,

which is the desired estimate. One shows by the same method that —A is m-accretive. Finally, when

and so,

p = 2, it follows from Corollary 1.1.47 that A is skew-adjoint.

Example 2. A first order operator in a bounded interval. Consider X = {u € C(]0, 1]); u(0) = 0},

equipped with the sup norm. Define the operator A in X by

{ D(A) = {u € C'([0,1]); u(0) = u'(0) = 0},

(1.2.8)
Au =1/, for u € D(A).

We have the following result.
Proposition 1.2.4. The operator A defined by (1.2.8) is m-accretive with dense domain.

Proof. Following the proof of Proposition 1.2.1, one shows easily that, given f € X and A > 0, the unique
solution u € D(A) of equation
u+ ' = f,
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is given by

from which it follows that A is m-accretive. It remains to show that D(A) is dense in X. Consider u € X
and 0 > 0, and let us € X be defined by us(xz) = 0, on [0,0] and us(z) = u(z — ) for & > §. We have
lus —ul]| = 0in X, as § | 0. Given € > 0, let § be small enough so that |jus — u|| < e/2. Let vs € C(R)
be defined by vs(x) = 0, for z < 0, vs(x) = us(z), for 0 <z < 1, v5(z) = (2 — z)us(1), for 1 <z <2, and
vs(xz) = 0, for z > 2. Given a sequence p,, of mollifiers, we have (see Brezis [17], Proposition IV.21, p.70)
pn * Vs — v5 = ugs, uniformly on [0, 1]. Therefore, for n large enough, we have |[u — (py * vs)jj0,17| < €. On

the other hand, it is clear that (p, * vs)j0,1) € D(A) for n large enough. This completes the proof. O

Remark 1.2.5. One can modify the above example as follows.
(i) Let X = L*°(0,1), and let A be defined by
D(A) = {u € WH>(0,1); u(0) = 0},
{ Au =1/, for u € D(A).

Then, A is m-accretive. The proof is an adaptation of the proof of Proposition 1.2.4. Note that D(A)

is not dense in X.

(ii) Let 1 <p < o0, let X = LP(0,1), and let A be defined by
D(A) = {u € W(0,1); u(0) = 0},
{ (1.2.9)
Au =/, for u € D(A).
Then, A is m-accretive with dense domain. Since D(0,1) C D(A), it follows that D(A) is dense in X.
The rest of the proof is an adaptation of the proof of Proposition 1.2.4 (see also Remark 1.2.3 (iii)).
(iii) Let X = {u € C([0,1]); u(0) = u(1)}, and let A be defined by
D(A) = {u € C1([0,1)); u(0) = u(1) and w'(0) = w'(1)},
{ Au =1, for u € D(A).
Then both A and —A are m-accretive with dense domain.
(iv) Let 1 <p < oo, let X = LP(0,1), and let A be defined by
D(A) = {u € W, u(0) = u(1)},
{Au =/, for u € D(A).

Then, both A and —A are m-accretive with dense domain. If p = 2, then A is skew-adjoint.

Example 3. First order operators on R;. One can modify the above examples by considering opera-

tors on the half line. The proofs of the corresponding results are almost the same as in the case of the whole

line or a bounded interval. For example, let X = Cy(R4) = {u € C([0,00); u(0) = 0 and lim u(x) = 0},
Tr— 00

and let A be defined by
{D(A) ={uec C0,00)NX;u € X},

Au =1/, for u € D(A).
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We have the following result.
Proposition 1.2.6. If A is as above, then A is m-accretive with dense domain.

Remark 1.2.7. One can modify the above example as follows.
(i) Let p =00, let X = L>°(R,.), and let A be defined by
D(A) = {u € W'=(R,); u(0) = 0},
{Au =/, for u € D(A).
Then, A is m-accretive, and D(A) is not dense in X.
(ii) Let 1 <p < o0, let X = LP(R, ), and let A be defined by
D(A) = {u € W"P(R4); u(0) = 0},
{Au =/, for u € D(A).

Then, A is m-accretive with dense domain.

One can modify the above examples by considering the operator —u’ instead of u'.

X ={u € C([0,00); lim u(x) =0}, and let A be defined by
r— 00

r—00

{D(A) = {u € C*([0,)); mlin;o u(z) = lim u/(z) = 0},
Au = —u, for u € D(A).

We have the following result.
Proposition 1.2.8. If A is as above, then A is m-accretive with dense domain.

Remark 1.2.9. One can modify the above example as follows.
(i) Let X = C,([0,00)), and let A be defined by
D(A) ={u € C([0,00)) N X; v € X},
{Au = —u/, for u € D(A).
Then, A is m-accretive, and D(A) is not dense in X.
(ii) Let X = L*°(0,00), and let A be defined by
D(A) = Wh>(0,00),
{Au = —u/, for u € D(A).
Then, A is m-accretive, and D(A) is not dense in X.
(iii) Let 1 <p < 00, X = LP(0,00), and let A be defined by
D(A) = W(0,00),
{Au = —/, for u € D(A).
Then, A is m-accretive with dense domain.
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Remark 1.2.10. Note that when A is as in Proposition 1.2.4, Remarks 1.2.9, 1.2.5 and 1.2.7, —A is not

me-accretive.

Example 4. A first order operator in RY. Let X = C,(RY), and let a € RY. Define the operator

Ain X by
D(A)={ue X;a-Vue X},

N
du (1.2.10)
Au=a-Vu= ;aj%j, for u € D(A).

The condition a - Vu € X is understood in the sense of distributions. We have the following result.
Proposition 1.2.11. If A is defined by (1.2.10), then both A and —A are m-accretive.
The proof relies on the following two lemmas.
Lemma 1.2.12. Let A >0 and 1 < p < co. Ifu € LP(RY) verifies
u+ Xa-Vu=0, in D'(RV),
then u = 0 almost everywhere.

Proof. Let (pn)nen be a sequence of mollifiers (see Brezis [17], p.70), and let w, = p, * u. We have
up, € C°(RYN) N L2®(RY), and

Up + Aa- Vu, =0, in RV,
Given x € RV let

h(t) = e'u,(x + Aat), for t € R.

It follows that
h’(t) = et(un(I + )\at) + \a - vun(z + )\at)) —0;

and so, h is constant. Letting ¢ — —oo, and since u,, is bounded, it follows that A = 0. In particular,

un(7) = 0. Since z is arbitrary, we have u,, = 0. Hence the result, since u,, — u in L. (RY), asn — co. O

loc

Lemma 1.2.13. Given A > 0 and f € C,(RY), let

Lf(x)= l/ e f(z — as) ds.
AJo
Then,
Lf+Xa-V(Lf) = f, (1.2.11)
in D'(RY). In addition,
ILfllze < [ f]lze, (1.2.12)
for all 1 < p < oo such that f € LP(RY).
Proof. Define
1 [
Mf(x) = X/ e > f(x+ as)ds,
0
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for f € C,(RY). It follows easily from Fubini’s theorem that for every f € C,(RY) and » € D(RY), we have

(Lf,p / fMpdzx.
Furthermore,

(p(a + as)) ds

&=

M(\a-V — [Tesav as= [ ok
(Aa - Vo)(x) /0 e >a-Vo(x+as)ds /0 e
= —p(x) + Mp();
and so,
(Lf,p / fM(pdx—/ IfMAa-V)dr + (f, o)

Hence (1.2.11). Finally,

1 o0 _ s
LI@) < {1 e~ [ e Fds= | flo~.
0
(1.2.12) follows for p = co. For p < 0o, we have

1/p

|Lf(x)| < 1/000 v (e*§|f(x_as)‘p)1/p ds < A7 (/OOO e§|f(a:—as)|pds>

1 *©
/ \LflpSfIIinp/ e ds = |||,
RN 0

This completes the proof. O

Therefore,

Proof of Proposition 1.2.11. Let us first show that A is accretive. Let A > 0, f € X and u € D(A)
verify u + AMAu = f. Let w = Lf, where L is defined in Lemma 1.2.13. It follows that

(u—w)+a-V(u—w)=0, in D'(RY).

Applying Lemma 1.2.12; we find u = w, and accretivity follows from (1.2.12). Finally, given A > 0 and
f € X, it is clear that u = Lf belongs to D(A) and it follows from Lemma 1.2.13 that u + NAu = f.

Therefore, A is m-accretive. One shows as well that —A is m-accretive. O

Remark 1.2.14. Note that in Proposition 1.2.11, D(A) is not dense in X.

Remark 1.2.15. One can modify slightly the above example as follows.

(i) Let X = Co(RY), and let a € RY. Define the operator A in X by
D(A ):{UGX‘CL'VUGX},

1.2.13

Au=a- Vufzaja for u € D(A). ( )

Then, both A and —A are m-accretive with dense domain. The proof is easily adapted from the proof

of Proposition 1.2.11.

(i) Let X = L*°(RY), and let a € RY. Define the operator A in X by (1.2.13). Then, both A and
—A are m-accretive, and D(A) is not dense in X. The proof is easily adapted from the proof of

Proposition 1.2.11.
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(iii) Let X = LP(RY), 1 < p < oo, and let a € RY. Define the operator A in X by (1.2.13). Then, both
A and —A are m-accretive, with dense domain. If X = L2(R"), then A is skew-adjoint. The proof is
easily adapted from the proof of Proposition 1.2.11. Skew-adjointness of A when p = 2 follows from
Corollary 1.1.47.

Remark 1.2.16. Note that for all the examples of Section 1.2.1, one can work either in the spaces of

real-valued functions, or in the spaces of complex-valued functions.

1.2.2. The Laplacian with Dirichlet boundary condition. The following examples are important

in the study of the heat equation.

Example 1. H~! theory. Let Q be any open subset of RY. Set X = H~!(Q), and define the operator
A on X by

{D(A) = Hy(9), 1210

Au = —Au, for all u € D(A).

We equip Hg(€2) with the usual norm (|jul|2, + ||Vaul|2.)/2. We have the following result.

Proposition 1.2.17. The operator A defined by (1.2.14) is self-adjoint, accretive, and ||-|| p(4) is equivalent

to || - ||g:. In particular, A is m-accretive with dense domain.
Proof. It follows from Lemma A.4.3 that for every f € X, there exists a unique u € Hg () such that
—Au+u=f in X.

Let us denote by J the operator f +— u. It follows from Remark A.4.4 (i) that J is an isometry from X onto
HY(Q). In particular,
(w,v)g-1 = (Ju, Jv) g1 (1.2.15)

Let u,v € H}(Q). It follows from (A.3.17) and (A.3.14) that

(u, Jv) 2 :/VU-V(Jv)dx—l—(u,Jv)Lz
Q

(1.2.16)
= (u, 7A(JU)>H§,H*1 + (u, JU)H&,H* = <uvv>H§,H*1 = (u,v)2.
Furthermore, it follows from (1.2.15) that
(=Au,v)g-1 = (=Du+u,v)g-1 — (u,0)g-1 = (J(=Du+u), Jv) g1 — (u,0) g
= (=AWu) + Ju, Jv)gr — (w,v)g-1 = (w, Jv) g1 — (u,v)g-1.
Applying (1.2.16), it follows that
(—Au,v)g-1 = (u,v) 2 — (u,v)g-1. (1.2.17)

In particular, for every u € H{(£2), we have

(Au,u) -1 = [|ul| T2 — [lul[ -1 >0,
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by (A.3.16); and so, A is accretive, by Lemma 1.1.36. Given f € X, it follows from the preceding observations
that w = Jf € D(A) and that u + Au = f. Therefore, A is m-accretive (Proposition 1.1.21). Finally, it
follows from (1.2.17) that

(Au,v) g1 = (u, Av) g1,

for all u,v € D(A). Applying Corollary 1.1.46, it follows that A is self-adjoint. Finally, it follows from
Corollary 1.1.12 that [|ul[p(a) ~ [[u— Aullg-1, on D(A). By Remark A.4.4 (i), we obtain |[u| p(a) ~ [[ullz;,
on D(A). This completes the proof. O

We now describe some useful properties of (I + \A)~L.

Proposition 1.2.18. Let A be defined by (1.2.14) and let Jy = (I + AA)~! for A\ > 0. The following
properties hold:

(i) Jx € LHY)) and |||l z(u-1) < 1, for every X > 0;

(i) Jx € L(H7Y(Q), HE(Q)), for every X > 0;
(ii)) (Jx)jmp o) € L(Hg () and [[(J3) i)l ey < 1, for every A > 0;
(iv) Jyu o in H=Y(Q), for every u € H=1(Q);

(v) Jhu o in H}(Q), for every u € H}(Q).

Proof. (i) follows from Definition 1.1.9, (ii) follows from Corollary 1.1.14, (iii) follows from Lemma 1.1.16,

(iv) and (v) follow from Proposition 1.1.19. O

Proposition 1.2.19. Let A be defined by (1.2.14), let Jy = (I + AA)~* for A > 0 and let 1 < p < co. For
every u € H=1(Q) N LP(RY), the following properties hold:
(i) Jau e LP(Q) and ||Jaullrr < |Ju|Le, for every A > 0;

(i) Jru Tl in LP(Q).

Proof. (i) follows from Theorem A.4.11 and definition of Jy. The proof of (ii) is more delicate. Note that,
in view of (i) and Proposition A.1.4, we only have to establish the result for u € D(Q2). Therefore, consider
u € D(Q), and assume that v is supported in Qp = {z € Q; |x|] < R}. Set uy = Jyu. It follows that
uy € HE(Q) and
—AAuy +uy = u.

Define v(z) = 2Hu||Looeme_\/W. One has v > 2|ul, and one verifies easily that v > Awv. It follows
that v is a supersolution of the above equation, and that —v is a subsolution, for 0 < A < 1/2. Applying
Corollary A.4.27 and Proposition A.3.34, we obtain

lua] <wv e LP(Q), almost everywhere in ). (1.2.18)

We now argue by contradiction, and we assume that there exists a sequence A, | 0 and € > 0 such that

[T, w — u|lr» > €. It follows from Proposition 1.2.18 that JAnun:;Ou in H}(Q). In particular, it follows
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from Corollary A.3.10 that there exists a subsequence, which we still denote by A, such that Jy, u — u

n—oo

almost everywhere in Q. Applying (1.2.18) and the dominated convergence theorem, we find Jy, u — w in
n—oo

LP(Q), which is a contradiction. This completes the proof. O

Remark 1.2.20. Under the assumptions of Proposition 1.2.19, assume that u € L>°(€2). Then, it follows
from Theorem A.4.11 that Jyu € L*>(Q), for every A > 0. However, note that in general Jyu /4 u in L (Q),
as A | 0. Indeed, assuming that €2 is bounded, it follows from Corollary A.4.17 that every limit point in
L>(Q) of the family (Jyu)r>o belongs to Cy,(£2); and so, hIilliOnf | Jau—ul|pe > 0if u & Cp (). On the other
hand, if 2 verifies the assumptions of Theorem A.4.28 and if u € Cy(€2), then it follows from Theorem A.4.28
that Jyu € Cp(€2), and an obvious adaptation of the proof of Proposition 1.2.19 shows that JAu)\—l(;u in
Co(Q).

Example 2. L? theory. Let 2 be any open subset of RYV. Set X = L2(f2), and define the operator A
on X by

D(A) = {u € H}(Q); Au e LA (Q)},
{ (1.2.19)

Au = —Au, for all u € D(A).
We have the following result.

Proposition 1.2.21. The operator A defined by (1.2.19) is self-adjoint and accretive. In particular, A
is m-accretive with dense domain. In addition, D(A) — H}(Q); and in particular, if § is bounded, then

D(A) — L?(Q) with compact injection.
Proof. Let u,v € D(A). It follows from formulas (A.3.14) and (A.3.17) that
(Au,v)p2 = —(Au,v)2 = —(v, Au) gy 1 = / Vu - Vo. (1.2.20)
Q

In particular, (Au,u)r2 > 0, for all u € D(A); and so, A is accretive, by Lemma 1.1.36. Given f € L?(2) —
H~1(Q), it follows from Proposition 1.2.17 that there exists u € H}(Q) such that

u—Au=f, in H1(Q).

In particular, we have Au = u — f € L?(2); and so, u € D(A) and u + Au = f. Therefore, A is m-accretive
(Proposition 1.1.21). Furthermore, it follows from (1.2.20) that

(Au,v)p2 = (u, Av) e,

for all u,v € D(A). Applying Corollary 1.1.46, it follows that A is self-adjoint. Finally, given u € D(A), it
follows from (1.2.20) that

lullin = IVullZs + lullZ> = (Au,w)pe + |ullfe < Jullpealullze-

This completes the proof. O

Proposition 1.2.22. Let A be as in Proposition 1.2.18. If Q has a bounded boundary of class C?, then
D(A) = H?(Q) N HY(Q), with equivalent norms.
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Proof. This follows from Theorem A.4.8. O

Remark 1.2.23. Here are some simple regularity properties of the domain of A.
(i) It follows from Proposition A.4.10 that D(A) C H (), without any restriction on .

(ii) An iterative application of Proposition A.4.10 shows that D(A™) C HZ" () and that D(A") — H?*"(Q')

loc

for every ' CC Q (cf. Remark 1.1.30). Furthermore, D(A") = {u € HZ"(Q); ANu € HL(Q), for 0 <

loc

j<n-—1and A"u € L*(Q)}. In particular, QID(A”) C C*®(Q) (cf. Theorem A.3.40).

(iii) Applying Theorem A.4.8 one obtains as well that, if  has a bounded boundary of class C?", then
D(A™) — H?"(Q), and D(A") = {u € H*"(Q); Alu € H}(Q), for 0 < j < n — 1}. In particular, if Q
has a bounded boundary of class C*°, then o D(A™) C C*°() (cf. Theorem A.3.40). Therefore, if we
assume further that € is bounded, then nng(A”) ={uecC®Q);u=A~Au=A~Au=---=0on N}
(see Proposition A.3.23).

Remark 1.2.24. If A is defined by (1.2.19), then it follows easily from Theorem A.4.8 (uniqueness) that
(I +MA)~! coincides with the restriction to L?(£2) of the operator Jy defined in Proposition 1.2.19.

Corollary 1.2.25. Let A be defined by (1.2.19), let I be an interval of R and let 1 < p < co. Then, the
following properties hold:

(i) LP(I, D(A)) N\WHP'(1, L*(Q)) < Cn(T, H}();
(i) for every u € LP(I, D(A)) N WP (I, L*(Q)), the function t — ||Vu(t)||2, belongs to W (I), and
d 2
ZIVu®llze = —2(Au(t), ue(t)) 22,
for almost all t € I.
Proof. Consider u € C}(I, D(A)). It follows from (1.2.20) that
d
ZI1Vu®lzz = 2(Vu(t), V()2 = =2(Au(t), wi(t)) 12,

for all t € I. One concludes as in Corollary A.3.64. O

Remark 1.2.26. If A is defined by (1.2.19), then it follows from Proposition 1.2.21 and Proposition 1.1.49

that A™ is self-adjoint and accretive, for every positive integer n.

Example 3. LP theory. Let  be any open subset of RY. We will apply Proposition 1.2.19 in order to

construct a realization of the Laplacian in LP(£2). We begin with the following observation.

Lemma 1.2.27. Let 1 < p < oo, and for A\ > 0 let J) be defined in Proposition 1.2.19. There exists
a unique operator Iy € L(LP()) such that I\f = J\f, for every f € H-1(Q) N LP(Q). In addition, the
following properties hold:

(1) [Mxllzzry <1, for all A > 0;
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(i) for all f € LP(QY) and all A > 0, we have AL\ f € LP(Q) and —AALf + I f = f;

(iii) R(I,) = R(1,,), for all A, i > 0.

Proof. Since H(Q) N LP(Q) is dense in LP(Q), it follows from Proposition 1.2.19 that Jy has a unique
extension Iy € LP(f2), which verifies (i). Consider now f € LP(Q), and let (fn)nen C D(R2) be such
that f, njgof in LP(Q). Tt follows that I,f, e If in LP(Q), and since —AAI\f, + Infn = fn in
H71(Q), we have —AALf + I,f = f in D'(2). Hence (ii). Finally, let f € H=1(Q) N LP(Q), and let
u=1If e H Q)N LP(Q). Given u > 0, we have

A—p
A

—pAu 4+ u = u—i—%f.

A—p
A

Set g = u+ %f and let v = I,g € H1(Q) N LP(). It follows that

—puA(v—u)+v—u=0, in H(Q);

and so, u = v. Therefore, I\(H () N LP(Q)) C I,(H *(Q) N LP(Q)). Exchanging the roles of 1 and A,
we find I, (H~Y(Q) N LP(Q)) = I,(H*(Q) N LP(Q)). Since both I, and I, are continuous on LP(f2) and
H=1(Q)N LP(Q) is dense in LP(Q), (iii) follows. i

Proposition 1.2.28. Let 1 < p < oo, and for A > 0 let I be defined by Lemma 1.2.27. The operator A
in LP(Q) defined by

{D(A) = R(L); (1.221)

Au = —Au, for u € D(A);

is m-accretive with dense domain.

Remark. Note that for u € D(A), we have Au € LP(Q2) by Lemma 1.2.27; and so, definition (1.2.21) makes

sense.

Proof. Let u € D(A) and A > 0, and let f = Mu+ v = —A\Au + u. It follows from Lemma 1.2.27 (iii)
that there exists g € LP(Q) such that u = Ig. In particular, g = —AAu + u; and so, f = g. Applying again
Lemma 1.2.27, we find ||u||z» < ||f||z». Therefore, A is accretive. Let now f € LP(2), and let v = I f.
It follows that v € D(A) and that Au+ u = f; and so, A is m-accretive. Finally, let u € D(Q), and let
f=—-Au+wueD). It follows that u = I f. Therefore, D(2) C D(A), and it follows that D(A) is dense
in LP(Q). O

Proposition 1.2.29. Let 1 < p < oo and let A be defined by (1.2.21). If Q has a bounded boundary of
class C?, then D(A) = W2P(Q) N W, P(Q) with equivalent norms.

Proof. Define the operator B in L?(Q2) by

D(B) = W*?(92) N Wy (Q);
Bu = —Au, for u € D(B).
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It follows easily from Remark A.4.18 (i) and (iii) that B is m-accretive. Consider now u € D(B) and let
f=—=Au+u. Let (fn)nen C D(R) be such that f, = fin LP(§2), and let u,, = I f,,, where I; is defined in
Lemma 1.2.27. Tt follows from Remark A.4.18 (i) and (ii) that w, —u in W2P(Q), then from Lemma 1.2.27
that w = I; f. Therefore, u € D(A), and it follows that G(B) C G(A). Applying Corollary 1.1.23, we obtain
that A = B. Equivalence of the norms follows from Remark A.4.18 (i). O

Remark 1.2.30. Let p = 1 and let A be defined by (1.2.21). If Q has a bounded boundary of class
C?, then D(A) = {u € Wy' (Q); Au € LY(Q)}. This follows from Remark A.4.18 (iv) (cf. the proof of
Proposition 1.2.29). Note that in general D(A) is not contained in W2() (see Remark A.4.18 (ii)).

Remark 1.2.31. One can consider the case p = co. Let  be a bounded open subset of RY, and define
the operator A on L>(Q) by

D(A) = {u € L>®(Q) N Hy(Q); Au € L=(Q)},
{Au = —Au, for all u € D(A).

It follows easily from Remark A.4.18 (iv) that A is m-accretive. Note that D(A) C C(f), as follows
easily from Corollary A.4.17. Note also that if ) satisfies the assumptions of Theorem A.4.28, we have
D(A) C Cy(?). In particular D(A) is not dense in L>°(12), and this justifies Example 4 below.

Example 4. Cj theory. Let Q be an open subset of R, and define the operator A in Cy(f2) by

{D(A) = {u € Co(Q); Au € Co()};
(1.2.22)

Au = —Au, for u € D(A).

We have the following result.

Proposition 1.2.32. If N > 2, assume that every x € 0f) has the exterior cone property. Then, the

operator A defined by (1.2.22) is m-accretive with dense domain.

Proof. m-accretiveness follows from Corollary A.4.33. Since D(2) C D(A), it follows that D(A) is dense.

This completes the proof. O

Remark 1.2.33. Note that all the results of Section 1.2.2 hold true as well in the corresponding spaces of

complex-valued functions. The proofs are the same (cf. Section A.4.6).
1.2.3. The Schrédinger operator. The following examples are related to Schrédinger’s equation.

Example 1. H~! theory. Let Q be any open subset of RY. Set X = H~!(Q), and define the operator
A on X by

{ D(A) = H}(Q), (1.2.23)

Au = —iAwu, for all u € D(A).

We have the following result.
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Proposition 1.2.34. The operator A defined by (1.2.23) is skew-adjoint, and D(A) = H}(Q) with equiv-

alent norms. In particular, A and —A are m-accretive with dense domain.

Proof. The result follows from Proposition 1.2.17, Corollary 1.1.54 and Remark 1.2.33. O

Example 2. L? theory. Let © be any open subset of RY. Set X = L?(2), and define the operator A
on X by

D(A) = {u € H}(Q); Au € LA(Q)},
{ (1.2.24)

Au = —ilAwu, for all u € D(A).

We have the following result.

Proposition 1.2.35. The operator A defined by (1.2.24) is skew-adjoint. In particular, A and —A are

me-accretive with dense domain. In addition, D(A) — H} ().

Proof. The result follows from Proposition 1.2.21, Corollary 1.1.54 and Remark 1.2.33. O

Remark 1.2.36. Note that if 2 has a bounded boundary of class C?, then, D(A) = H%(Q) N H}(Q), with

equivalent norms. This follows from Proposition 1.2.22.

1.2.4. The wave operator. The following examples are related to the wave equation and to Klein-

Gordon equation.
Example 1. L? x H™! theory. Let © be any open subset of RY. Set
Y =1L%0) x HYQ), (1.2.25)

with its natural scalar product, and define the operator B on ) by
D(B) = Hq () x L*(Q2),
(1.2.26)
B(u,v) = (—v, —Au + u), for all (u,v) € D(B).

We have the following result.

Proposition 1.2.37. The operator B defined by (1.2.26) is skew-adjoint, and || - | p(py is equivalent to

| - lzz2 < z2- In particular, B and —B are m-accretive with dense domain.

Proof. Let U € D(B), and write U = (u,v). Let w € H(Q) be the solution of —Aw + w = v
(cf. Lemma A.4.2). It follows from Remark A.4.3 (iii) and (A.3.17) that
(BU,U)y = (—v,u)r2 + (—Du+u,v)g— = (—v,u)r2 + (v, w)m
= (—v,u)z + / {Vu - Vw +uw}dz
Q

= (—v,u)rz + (u, —Aw +w>Hé,H*1 = (—v,u)p2 + <U,U>H37H71;

and so, by (A.3.14),
(BU,U)y = 0. (1.2.27)
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In particular, B is accretive (cf. Lemma 1.1.36). Finally, given F = (f,g) € Y, equation U + BU = F is
{ u—v=Ff;
—Au+u+v=g;

{Au+2uf+g;

v=u— f.

equivalent to the system
or equivalently

It follows from Lemma A.4.3 that there exists u € H}(Q) solving the first equation. Then, v given by the
second equation belongs to L?(€2). It follows that B is m-accretive. The result now follows from (1.2.27)

and Corollary 1.1.47. O

One can extend Proposition 1.2.37 as follows. Let A\; be defined by

A = inf{/ |Vul?,u € H&(Q),/ lu|? = 1}. (1.2.28)
Q Q

(note that A; is the first eigenvalue of —A in H}(Q) if Q is bounded) and consider A > —\;. Consider on
H}(Q) the norm ||| - ||| defined by (A.4.2), that is

1/2
Ml = ( /Q {|W|2+A|u2}dx) ,

and consider on H~1(2) the corresponding dual norm. Define the operator B on ) by

{D(B) = Hy(Q) x L*(Q), (1.2.29)

B(u,v) = (—v, —Au+ Au), for all (u,v) € D(B).

We have the following result.

Proposition 1.2.38. Let A\ be defined by (1.2.28) and let A > —\1. The operator B defined by (1.2.29)
is skew-adjoint, and || - || p(p) is equivalent to || - ”HéxL?' In particular, B and —B are m-accretive with dense

domain.

Proof. The proof is easily adapted from that of Proposition 1.2.36, by using in particular Lemma A.4.2
and Theorem A .4.5. O

Remark 1.2.39. If Q is bounded, then it follows from Poincaré’s inequality (A.3.4) that Ay > 0. In

particular, one can take A = 0 in Proposition 1.2.38.
Example 2. H} x L? theory. Let Q be any open subset of RV. Set
H = H;(Q) x L*(Q), (1.2.30)

and define the operator A on H by

{D(A) = {(u,v) € H,Au € L*(Q) and v € H}(Q)},
(1.2.31)
A(u,v) = (—v, —Au+ u), for all (u,v) € D(A).
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We have the following result.

Proposition 1.2.40. The operator A defined by (1.2.31) is skew-adjoint. In particular, A and —A are
me-accretive with dense domain. In addition, D(A) — Hg(Q) x H}(Q).

Proof. Let U € D(A), and write U = (u,v). It follows from formulas (A.3.14) and (A.3.17) that
(AU, U)p = — / {Vu-Vw+vAu}dx = 0. (1.2.32)
Q

In particular, A is accretive (cf. Lemma 1.1.36). Finally, given F = (f,g) € H, equation U + AU = F is

{ u—v=f;
—Au+u+v=g;
{—Au—&—Zuzf—l—g;

v=u— f.

equivalent to the system

or equivalently

It follows from Lemma A.4.3 that there exists u € H}(Q) with Au € L?(Q) solving the first equation. Then,
v given by the second equation belongs to H} (). It follows that A is m-accretive. The result now follows

from (1.2.32) and Corollary 1.1.47. Property D(A) — H}(2) x H}(2) follows from Proposition 1.2.21. 0

Remark 1.2.41. It follows from Theorem A.4.8 that if Q has a bounded boundary of class C?, then
D(A) = (H?(Q) N H(Q)) x HE(Q) with equivalent norms.

Corollary 1.2.42. Let A be defined by (1.2.31) and let H_, and A(_yy be defined by Theorem 1.1.31. If
Y and B are defined by (1.2.25) and (1.2.26), then H_; = Y with equivalent norms, and A_qy = B.

Proof. LetV = (u,v) € D(A) C X C Y. We have
IAVIS = oll7z + | = Au+ullfr—r = [0l Z2 + lullF = VI3
and so, since B is skew-adjoint,
I = VIS = I =B)VIE = IBVIS + VI3 = IVIE A+ [VI5-
Given U € H, and applying the above inequality to V = J;(A), we obtain
U135 = 13 (AU + 11 (AU

Since H — Y, it follows that
U3 ~ |71 (AU |3,

On the other hand, note that H is dense in Y, since D(Q2) x D(Q) C H; and so, ) is the completion of H
for the norm ||J1(A)U||%. It follows that ) verifies properties (i) and (ii) of Theorem 1.1.31. Furthermore,
it follows from Proposition 1.2.37 that B verifies properties (iii) and (iv). Finally, property (v) follows by
definition. Hence the result, by Theorem 1.1.31. O
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One can extend Proposition 1.2.40 and Corollary 1.2.42 as follows. Let A; be defined by (1.2.28), and
consider A > —\;. Consider on H}(Q) the norm ||| - ||| defined by (A.4.2), that is

el = ( JROZG +A|u2}dx)1/2.

{D(A) = {(u,v) € H,Au € L*(Q) and v € H}(Q)},

Define the operator A on H by

(1.2.33)
A(u,v) = (—v, —Au + M), for all (u,v) € D(A).

We have the following result.

Proposition 1.2.43. Let A\, be defined by (1.2.28). If A > —\1, then the operator A defined by (1.2.33)
is skew-adjoint. In particular, A and —A are m-accretive with dense domain. Furthermore, H_1 = Y with
equivalent norms and A(_;y = B, where H_, and A,y are defined by Theorem 1.1.31, and ) and B are
defined by (1.2.25) and (1.2.29).

Proof. The proof is easily adapted from the proofs of Proposition 1.2.40 and Corollary 1.2.42, by making

use in particular of Lemma A.4.2 and Theorem A.4.5. O

Remark 1.2.44. If Q is bounded, then it follows from Poincaré’s inequality (A.3.7) that Ay > 0. In

particular, one can take A = 0 in Proposition 1.2.43.

Remark 1.2.45. Here are some simple regularity properties of the domain of A.

(i) It follows from Proposition A.4.10 that D(A) C H}

loc

() x H}(Q), without any restriction on Q.

(ii) One verifies easily that if n > 1, then D(A*") = {(u,v) € H}(Q) x L3(Q); Au, AV 1v € HL(Q) for 1 <
j <mnand A"v € L*(Q)}, and that D(A?") = {(u,v) € H}(Q) x L2(Q); ANu, Ao € HLH(Q) for 0 <
j < mnand A"y € L?(Q)}. An iterative application of Proposition A.4.10 shows that D(A") C
HPH Q) x HP () and that D(A") — H"Y(Q) x H™(Y) for every @ cC Q. In particular,
nng(An) C C™(Q) x C°() (cf. Theorem A.3.40).

(iii) Applying Theorem A.4.8 one obtains as well that, if £ has a bounded boundary of class C"*1, then
D(A™) C H"1(Q) x H™(Q). In particular, if  has a bounded boundary of class C°, then ngl D(A™) C
C>(Q) x C*°(Q) (cf. Theorem A.3.40). Therefore, if we assume further that © is bounded, then

N DA™ ={u e C®Q) xC®Q);u=Au=ANu=---=0and v =Av = A?v = --- = 0 on IN}

n>1
(see Proposition A.3.23).

Remark 1.2.46. Note that all the results of Section 1.2.4 hold true as well in the corresponding spaces of

complex-valued functions. The proofs are the same (cf. Section A.4.6).

1.2.5. The Stokes operator. = We introduce here the Stokes operator, which is essential in the study
of the Navier-Stokes equation. For simplicity, we begin with the Stokes operator in RY. Let N > 2, and
consider the Hilbert space

E = (L2®RV))".
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A vector of E has the form u = (uq,...,uy). We write

N ou;
V-u=divu = L.

and

Au= (Auy,...,Auy).

Let
X={ueFE;V-u=0}.

Here, the condition V - u = 0 is understood in the sense of distributions. It is clear that X is a closed

subspace of E. Therefore, X is also a Hilbert space with the scalar product of E, that is

N
(u,v) = / w;v; da.

We define the Stokes operator A by

D(A) = {ue (H2®RV)" N X; Aue X};
Au= —Au, for ue D(A).

We have the following result.

Theorem 1.2.47. The operator A defined above is self-adjoint and accretive, hence m-accretive with dense

domain.

Proof. We first show that R(I + A) = X. Let f€ X. In particular, f; € L2(RY) for every i € {1,...,N}.

Therefore, it follows from Propositions 1.2.21 and 1.2.22 that there exists u; € H?(R"Y) such that —Au; +
u; = f;. Setting u = (uy,...,uy), we have u € (HQ(]RN))N and —Au+ u = £ On the other hand,

setting v; = gz: € HI(RN) and ¢g; = 2;:: € Hil(RN), it follows from equation —Awu; + u; = f; that
—Av; +v; = g;. Note that V- u = Zf;l v; and Z;-V:lgi =V -f=0. Settingw =V -u € H_l(RN), it
follows that —Aw + w = 0. This implies that w = 0 (see Proposition 1.2.17); and so, u € X. Furthermore,
Au=u-fe X; and so, u € D(A) and u+ Au = f, which implies that R(I + A) = X. Finally, it follows
from Proposition 1.2.21 that (Au, u) > 0 and (Au, v) = (u, Av) for all u, v € D(A), which completes the

proof. O

Remark 1.2.48. Let 1 < p < oco. One can consider the Stokes operator in LP. More precisely, let
E = (I}’(RN))N7 and set X = {u € E; V-u = 0}. X is a closed subspace of E, therefore, X is also a
Banach space. We define the Stokes operator A (in LP) by

D(A) = {ue (W2P®RY)" N X; Aue X};
Au= —Au, for ue D(A).
Arguing as above, one shows that A is m-accretive with dense domain.
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The definition of the Stokes operator in a domain € is more technical. Let  C R be a bounded

domain with boundary of class C?. Let E = (LQ(Q))N7 and let
F={uc (DQ)Y; V- -u=0}.

Let X be the closure of F'in E. It is clear that X is a closed subspace of E. Therefore, X is also a Hilbert

space with the scalar product of E, that is

(u,v) = z_:/ u;v; dx.

One can show that the trace u - v makes sense for every u € E such that V- u € L?(Q) (where v(z) € RY

is the outward unit normal vector at the point x € 92), and that
X={ue€eE;V-u=0in Qand u-v =0 on 9Q}.

Furthermore, the orthogonal X+ of X in E is X+ = {u € E; 3p € HY(Q),u = Vp} (see Temam [94],
Theorems 1.4 and 1.5, pp.15—16). Let P : E — X be the orthogonal projection on X. We define the Stokes
operator A by

D(A) = (B*(Q) n HL ()" N X;

Au= —P(Au), for ue D(A).

We have the following result (see Fujita and Kato [46] for a proof).

Theorem 1.2.49. The operator A defined above is self-adjoint and accretive, hence m-accretive with dense

domain.

Remark 1.2.50. It is clear from what precedes that (u, f) € D(A) x X verify Au = fif and only if there
exists p € HY(Q) such that —Au+ Vp = £ It is clear that p is determined up to a constant; and so, if we
define

Y={peH1<Q>;/Qp=0},

then given (u,f) € D(A) x X such that Au = f, there exists a unique p € H'(Q) such that —Au =
f+ Vp. Moreover, the mapping f+ (u,p) is continous X — H?(Q) x H(£), as follows from Temam [94,
Proposition 1.2.2].

Remark 1.2.51. Let1 < p < oo. As above, one can consider the Stokes operator in LP. See McCracken [80]

Fujiwara and Morimoto [47] and Giga [51].

1.2.6. The Airy operator. We introduce here the Airy operator, which is essential in the study of the
Korteweg-De Vries equation. Let X = L?(R), and define the operator 4 on X by

D(A) = H*(R);
3

e for u € D(A).
x

Au = Ugpy =

We have the following result.
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Theorem 1.2.52. The operator A defined above is skew-adjoint. In particular, both A and —A are

me-accretive with dense domain.

Proof. Consider the operator B on L?(R) defined by

D(B) = H'(R),
{Bu =/, for u € D(B).

It follows that A = B3. Since B is skew-adjoint (see Remark 1.2.3 (iii)), it follows from Proposition 1.1.49 (iv)

that A is skew-adjoint. O

Remark 1.2.53. It is not difficult to show that the space X _; and the operator A(_;) introduced in
Theorem 1.1.31 are given by X_; = H3(R), and

D(A(_1)) = L*(R);
dS

%’ for u S D(A)

A(fl)u = Ugyy =

In particular, the operator A(_y defined above is skew-adjoint.

Remark 1.2.54. One can modify the above example as follows. Let m € Z be an integer, and let

X = H™(R) (as a matter of fact, m could be any real number). Define the operator A on X by

D(A) = H™(R);

%’ fOr (IS D(A).

Au = gy, =

As above, one shows that the operator A is skew-adjoint. In particular, both A and —A are m-accretive with
dense domain. Note that the space X _; and the operator A_;) introduced in Theorem 1.1.31 are given by
X_1=H™3(R), and

D(A(—1)) = H™(R);

dPu

dxz3’

The above definitions make sense since if u € H™(R) for some m € Z, then uy,, € H™ 3(R) (here uyy, is

AC1)U = Uggy = for u € D(A).

defined in the sense of distributions).

We next consider the Airy operator with periodic boundary conditions. Let £ be a positive real number,
and set X = L?(0,¢). Define the operator A on X by

D(4) = {u € H*(0,0); u(0) = u(t),u(0) = u'(€),w"(0) = u" ()}
3

Au = Ugpy = —=
dxz3’

for u € D(A).

We observe that the definition of D(A) makes sense, since H3(0,¢) — C?([0,¢]). We have the following

result.

Theorem 1.2.55. The operator A defined above is skew-adjoint. In particular, both A and —A are

me-accretive with dense domain.
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Proof. Consider the operator B on L?(0,/) defined by
{ D(B) = {u € H*(0,£); uw(0) = u(¢)},
Bu =, for u € D(B).

It follows that A = B3. Since B is skew-adjoint (see Remark 1.2.5 (iv)), it follows from Proposition 1.1.49 (iv)

that A is skew-adjoint. O

1.3. The Hille-Yosida-Phillips theorem. This section is devoted to the study of the linear evolution

du
equation T + Au = 0, where A is an m-accretive operator with dense domain.

1.3.1. The semigroup generated by —A, where A is an m-accretive operator. Throughout this

section, X is a Banach space, endowed with the norm || - ||. We begin with the following lemma.
Lemma 1.3.1. If A is an m-accretive operator in X with dense domain, then for every \ > 0, the operator
Ay € L(X) introduced in Definition 1.1.15 enjoys the following properties:

(i) lle™™>|zx) < 1, for all t > 0 and all A > 0;

(ii) |le~tM e — ety

| <t||Axa — Apz||, for all z € X, all t > 0 and all X\, > 0.

Proof. Consider the operator Jy introduced in Definition 1.1.9, and let x € X. By Lemma 1.1.16, we have

_ _ L Iy _t B\
etMp = it X g = Xex T;

and so,

J tll Iz
le ) < e lle Tl <eFe x|z < e Fek||z| < ||

Hence property (i). Consider now A, p > 0. It follows easily from Definition 1.1.15 and Lemma 1.1.16 that

Ay and A, commute; and so,

7stAk€7(1fs)tA 7tAuefst(A>\fAu)

(& kr =e€ x

)

for all z € X, t > 0 and s € [0,1]. Applying Proposition A.1.19, we obtain

d

o {e_StA*e_(l_s)tA“m} = —te et AN A (A — Auz)
s

= —te st e~ (U=t (A 0 — Az).

In particular, it follows from property (i) that

d
' a {e—stAAe—(l—s)tAux}H < t|Ayz — A,z
ds
Therefore,
1
d
|e” Mg — e Mg = ' / — {e_StAAe_(l_s)tA“x} ds|| < t||Arz — A,z
0 ds
Hence (ii). This completes the proof. O
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Corollary 1.3.2. Let A be an m-accretive operator in X, with dense domain. Given A > 0, consider the

operator Ay € L(X) introduced in Definition 1.1.15. There exists a family (T(t));>0 C £(X) such that
@) 1T®)lleex) < 1, for all t > 0;

(i) e g BT T(t)zx for all x € X, uniformly on bounded subsets of [0, 00).

Proof. Let T)(t) = e ***. It follows from Lemma 1.3.1 (i) that
1Tl zx) <1, (1.3.1)

for all ¢ > 0. Consider now z € D(A). It follows from Lemma 1.3.1 (ii) and Proposition 1.1.19 (iii) that,
given T' > 0, the function T)(¢)x is a Cauchy sequence in C([0,T],X). Let T(t)z = 1}}{1& Ty(t)z. It is clear
that T'(¢) is a linear mapping D(A) — X. Furthermore, it follows from (1.3.1) that [|T(¢)z| < ||z||, for all
x € D(A). Since D(A) is dense in X, it follows that T'(¢) can be extended to an operator of £(X), which we
still denote by T'(¢). Property (ii) now follows from Proposition A.1.4, and property (i) follows from (1.3.1).
This completes the proof. O

Remark 1.3.3. The family (7'(t));>0 constructed in Corollary 1.3.2 is sometimes denoted by e~*4. Note
that if A is bounded, this is consistent with the usual definition of the exponential, as follows immediately

from Proposition A.1.19 and Proposition 1.3.4 below.

Proposition 1.3.4. Let A be an m-accretive operator in X, with dense domain, and consider the family

(T'(t))i>0 constructed in Corollary 1.3.2. For every x € D(A) and every t > 0, the following properties hold:

(ii) the mapping t — T(t)x belongs to C(]0,0), D(A)) N C*(]0, ), X);

< ||Az||, for all t > 0;

(iii) AT(t)x = T(t)Az, for all t > 0.

In addition, the function u(t) = T(t)z is the unique solution of the problem

d——i—Au-O for all t > 0;
dt (1.3.2)

u(0) = x;

in the space C([0, ), D(A)) N C*(]0, 00), X).

Proof. Consider x € D(A). With the notation introduced in the proof of Corollary 1.3.2, let u(t) = T'(t)z,
ux(t) = Ta(t)x and vy (t) = —u)\ (t) = Axur(t) = Th(t)Arz. We have

ua(t) = T(t) Az = T (t)(Axz — Azx) + (Tx(t) Az — T'(t) Ax);
and so, by Corollary 1.3.2 and Proposition 1.1.19 (iii),
Jox(t) = T(0) Azl < [[Axe — Azl + | T(0) Az — T(0) Az] o,
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uniformly on bounded intervals. Passing to the limit, as A | 0 in identity

uA(t) = - / o(s) ds,

we obtain
¢
u(t) ==z —/ T(s)Ax ds.
0

Hence (i). It follows also that u € C1([0,00), X) and that
du
— = -T(t)Az. 1.3.
W () (133)
Let now wy(t) = Jaux(t), where Jy is introduced Definition 1.1.9. It follows from Corollary 1.1.14 (ii)
and Proposition 1.1.19 (ii) that wy(t) € D(A) and wy(t) )\—U;u(t) in X, for every t > 0. Note also that
Awy(t) = vx(t); and so, (wy, Aw)) /\—lo>(u(t), T(t)Az) in X x X. Since G(A) is closed (cf. Proposition 1.1.10),
it follows that u(t) € D(A), and that
Au(t) = T(t)Az. (1.3.4)

(1.3.3) and (1.3.4) yield property (iii). In addition, it follows from (1.3.4) that Au € C([0,0),X); and
so, u € C([0,00), D(A)). Hence property (ii). Furthermore, it follows from (1.3.3) and (1.3.4) that u solves
problem (1.3.2). It remains to establish uniqueness. Consider a solution u € C([0, 00), D(A))NC*([0, 00), X)
of (1.3.2). Given t > 0, let z(s) = T(t — s)u(s) for s € [0,t]. It follows that z € C([0,t], D(4)) NC*([0,], X),
and that

dz du
— =T(t— — + Au | = 0;
ds (t=s9) <ds i u) 0
and so, z(t) = z(0). This means that u(t) = T'(t)z. Since t > 0 is arbitrary, the result follows. O

1.3.2. Semigroups and their generators. = We begin by introducing semigroups of contractions, and

their generators.
Definition 1.3.5. A family (T'(¢))i>0 C L£(X) is called a semigroup of contractions if it satisfies the
following properties:
() 7(0) = I
(ii) T(t+s) =T@#)T(s), for all s,t > 0;
(iii) the mapping ¢t — T'(t)x is continuous [0,00) — X, for all z € X;
(iv) |\T(t)|\£(x) <1, forallt>0.
Remark. Note that in our definition, we include the continuity of the mapping ¢ — T'(t)x. A number

of authors do not inclufde this in their definition ant then they use the terminology “Cjy semigroups of

contractions”.

Definition 1.3.6. Let (T(t))i>0 C £(X) be a semigroup of contractions. The generator L of (T'(t))i>o is
the linear operator in X defined by
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% has a limit in X as ¢ | o};

(ii) Lz = lim

ﬂ, for all z € D(L).
t10 t

Remark 1.3.7. Note that if (T'(t));>0 C £(X) is a semigroup of contractions, then for every z € X, the
function ¢ +— ||T'(¢t)z| is nonincreasing on [0, 00). Indeed, || T(t + s)z|| = ||T(s)T(t)x| < |T(t)z||.

The introduction of m-accretive operators is justified by the following result.

Proposition 1.3.8. If (T'(t));>0 C £L(X) is a semigroup of contractions in X and if L is its generator, then

—L is m-accretive with dense domain.
The proof of Proposition 1.3.8 relies on the following lemma.

Lemma 1.3.9. If (T(t))>0 C £(X) is a semigroup of contractions in X and if L is its generator, then the
following properties hold:

¢
(i) given z € X and t > 0, set I(t,z) = / T(s)xds. Then, I(t,z) € D(L) and LI(t,x) =T (t)x — z;
0
(ii) given z € X, set Jx = / e 'T(t)xdt. Then, Jx € D(L) and Jz — LJx = .
0
Proof. Given h > 0, we have
T(h) 7 1 t+h 1 t 1 t+h 1 h
Mt a) = T [T = T [T .
=L r(ta) = /h ()t — /0 (et = /f (et~ /O (t)a dt

Letting h | 0, it follows that I(¢,x) € D(L) and that LI(t,z) = T'(t)x — 2. Hence (i). On the other hand,

we have

MJx _! / e N (T(t+h)x —T(t)z)dt
h h Jo
L [ _an N
=— e T(t)xdt — — e 'T(t)xdt
h Jn h Jo
el —1

o] h
= / e*tT(t)xdtfe*hl/ e T (t)x dt.
hJo h Jo

Letting h | 0, we obtain

lim ij =Jxr -z,
hl0
in X. It follows that Jx € D(L) and that Jx — LJx = . Hence (ii). O

Proof of Proposition 1.3.8 Let z € D(L) and A\, h > 0. We have

T(h)x —x A A )
JC—/\T = <1—|— h) x — hT(h):c7

and so,

T(h)x —x A A
o= AR > (14 2) el = el =

Letting h | 0 in the above inequality, it follows that —L is accretive. Furthermore, given f € X, let z = J f
where J is defined in Lemma 1.3.9. It follows that x € D(L) and that x — Lz = f. Therefore, —L is
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1
m-accretive (see Proposition 1.1.21). Finally, given « € X and ¢ > 0, consider z. = gI(e,x), where (g, x)
is defined in Lemma 1.3.9. It is clear that z. T in X. Since z. € D(L), it follows that D(L) is dense in
£

X. This completes the proof. O

Conversely, the introduction of semigroups of contractions is justified by the following result.

Proposition 1.3.10. Let A be an m-accretive operator in X with dense domain. The family (T'(t))i>0 C

L(X) introduced in Corollary 1.3.2 enjoys the following properties:
(i) (T'(t))i>0 is a semigroup of contractions in X;
(ii) the generator of (T'(t))i>0 is —A;

(iii) if a semigroup of contractions (S(t));>0 admits —A as its generator, then S(t) = T(t) for all t > 0.

Proof. It follows from Corollary 1.3.2 that ||T'()[|z(x) < 1. Furthermore, it follows from Proposition 1.3.4
that T(t+s)x = T(t)T(s)z, for all s,t > 0 and all x € D(A). Since D(A) is dense, we find T'(t+s) = T'(t)T(s).
Furthermore, it follows from Corollary 1.3.2 that the function T'(¢)x is continuous [0,00) — X, for all z € X.
Hence (i). Let L be the generator of (T'(t));>0, and consider x € D(A). Applying Proposition 1.3.4, we

obtain
¢
Tt)x=x— / T(s)Azx.
0

It follows that € D(L) and that Lz = —Az. In other words, G(A) C G(—L). Since both —L and A
are m-accretive, it follows from Corollary 1.1.24 that A = —L. Hence (ii). Finally, assume that another
semigroup of contractions (S(t)):>o admits —A as its generator. Consider z € D(A), and let u(t) = S(t)z.
Given t > 0 and h > 0, we have

ut+h) —ult) S(h) -1
h h

d+
It follows that u(t) € D(A) and that d—tu exists, for all £ > 0, and that

d+
Au(t) = S(t) Az = dT“.
Therefore, u € C([0,00), D(A)) N C*(]0,00), X) (see Theorem A.1.16), and u solves equation (1.3.2). It
follows from Proposition 1.3.4 that S(t)z = T'(t)x, for all ¢ > 0. By density, we find T'(t) = S(¢). This

completes the proof. O

Remark 1.3.11. Property (iii) of Proposition 1.3.10 means that if A is an m-accretive operator, then
the semigroup of contractions generated by —A is unique. In particular, there is a one-to-one and onto

correspondance between semigroups of contractions and m-accretive operators with dense domain.

By applying Propositions 1.3.8 and 1.3.10, we obtain the following result (the Hille-Yosida-Phillips

theorem).
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Theorem 1.3.12. A linear operator A in X is the generator of a semigroup of contractions in X if and

only if —A is m-accretive with dense domain.

We now establish an invariance result. That result will be helpful for showing that, when the operator

and the initial data have some symmetry properties, then the solutions of (1.3.2) have the same properties.

Proposition 1.3.13. Let A be an m-accretive operator in X with dense domain, and let (T'(t));>o be the
semigroup of contractions generated by —A. Let L € L(X) be such that Lipay € L(D(A)). If ALy = LAx
for all x € D(A), then T'(t)L = LT(t) for all t > 0. In particular, if Lz = 0, then LT (t)x = 0 for all t > 0.

Proof. Let x € D(A), and let u(t) = T(¢t)z. Then, u solves problem (1.3.2). If we set v(t) = Lu(t), we
d

have v € C([0,00), D(A)) N C([0, ), X), dit} + Av =0, and v(0) = Lz. Therefore, v(t) = T(t)Lx; and so,

T(t)Lx = LT (t)z, for all z € D(A). The result now follows by density. O

Corollary 1.3.14. Let A be an m-accretive operator in X with dense domain, and let (T'(t));>o be the
semigroup of contractions generated by —A. If Jy is the operator introduced in Definition 1.1.9, then

T(t)Jy = J\T(t) for all A > 0 and all t > 0.

Proof. It follows from Lemma 1.1.16 that one can apply Proposition 1.3.13 with L = J,. Hence the result.

|

We conclude this section with a characterization of the domain of m-accretive operators in reflexive

Banach spaces.

Proposition 1.3.15. Let A be an m-accretive operator in X and let (T(t));>0 be the semigroup of con-

tractions generated by —A. If X is reflexive, then every x € X such that
1
sup —||T(h)z — z|| < o0
h>0 h
belongs to D(A). In particular, D(A) = {z € X; 3C,||T(h)x — x| < Ch, for all h > 0}.
Proof. Let x be as in the statement, and let u(t) = T'(¢t)x. Given 0 < s < ¢, we have
[u(t) —u(s)|| = [[T(s)(T(t = s)x —2)|| < | T(t = s)x — =z <Ot - s).

It follows that u is Lipschitz continuous [0, 00) — X. Since u is also bounded, we have u € W°°((0, c0), X)
(cf. Corollary A.2.38). In particular, there exists ¢, | 0 such that w is differentiable at every t, and
lv/(tn)]] < C (Theorem A.2.30 and Corollary A.2.23). In particular,

Wt + 1) —ultn) T(h) -1
h h

has a limit as b | 0, for every n € N. This implies that T'(t,,)x € D(A), and || AT (¢,)z|| < C, for alln € N. In
particular, there exists a subsequence, which we still denote by (¢, )neny and y € X such that AT (¢,)x — v,
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as n — oo. Since T'(t,)x — x, as n — oo, it follows that (T'(¢,)z, AT (t,)x) — (x,y) in X x X. Since the

graph of A is closed, it is also closed for the weak topology; and so, © € D(A). Hence the result. O

Remark. When X is not reflexive, the conclusion of the above proposition fails. For example, let X = L!(R),
let A be the operator defined in Remark 1.4.2 (i) below and let (T'(¢)):er be the group of isometries generated
by —A. Let x = 1(,1). It follows from Remark 1.4.2 (i) below that T'(t)x = 1(;¢41). In particular,
|T(h)x — || < 2h, for all h > 0. On the other hand, note that D(A) = W(R) C C(R); and so, = ¢ D(A).

1.3.3. Regularity properties. In this section, we show that certain subspaces of X are invariant under

the action of semigroups of contractions. We begin with a simple result.

Proposition 1.3.16. Let A be an m-accretive operator in X, and let (T'(t));>o be the semigroup of con-
tractions in X generated by —A. If T(qy(t) = T'(t)|p(a) and if A(y) is the operator defined by Theorem 1.1.28,

then (T(1)(t))s>0 is a semigroup of contractions in D(A) and its generator is —Ay).

Proof. It follows from Proposition 1.3.4 that T'(¢) maps D(A) into itself. In addition, for every ¢ > 0 and
x € D(A), we have

IT®)zllpay = IT@Oz] + [AT@)2| = T O)z] + 1T@) Ax]| < ll2]| + [[Az]| = [l2] p(a)-

Therefore, T'(t)|pay € L(D(A)), and [|T(t)pa)llz(pcayy < 1. In particular, the definition of (T{1)(t)):i>0
makes sense. Furthermore, it follows from Proposition 1.3.4 that (T{;)(t))¢>0 is a semigroup of contractions

in D(A). Let L be its generator, and consider x € D(A(1)) = D(A?). We have
T(l)(h)l' — X T(h):zc -

= —)—A[L‘,

h h h10

in X. Furthermore, Az € D(A); and so, by Proposition 1.3.4

T(l)(h)x — X _ T(l)(h)Al’ — Ax

A —A(A
h 0 g~ AlAD)
in X. Therefore,
Tay(h)r — 2 _ T(h)x —x A
h h h10

in D(A); and so, x € D(L) and Lz = —Awx. It follows that G(A(;)) C G(—L). Since both —L and Ay are
m-accretive in D(A), it follows from Corollary 1.1.24 that Ay = —L. Hence the result. O

Corollary 1.3.17. Let A be an m-accretive operator in X, and let (T'(t));>o be the semigroup of con-
tractions in X generated by —A. Given a positive integer n, consider the space X,, and the operator A,)
defined by Remark 1.1.29. If T,y (t) = T'(t)|x,, for t > 0, then (T(»)(t))+>0 is a semigroup of contractions in

X, and its generator is —A(y).

Proof. This follows from applying iteratively Proposition 1.3.16 and Remark 1.1.29. O
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Corollary 1.3.18. Let A be an m-accretive operator in X, and consider the spaces (X, )n>0 defined by
Remark 1.1.29. Let x € D(A), and let u € C ([0, 00), D(A))NCL([0,00), X) be the solution of problem (1.3.2).
If x € X,, for some n > 1, then

ue () CI(0,00), Xn_,). (1.3.5)
§=0
Furthermore,
i , , o
% = (—1)IT(t) Al = (—1)7 Alu(t), (1.3.6)

for allt > 0 and all 0 < j < n, and

d (d'u diu
dt(dtﬂ>+ <dt1) 0 (1:3.7)
forallt > 0 and all 0 < 5 < n — 1. In particular, if v € ﬂ D(A™), we have u € C*([0,0), X,,), for all
n>0

n > 0.

Proof. Let us first establish (1.3.5) and (1.3.6). We argue by induction. The case n = 1 follows from
Proposition 1.3.4. Assume now that the result holds up to some n > 1. Let x € X,,+1. In particular, we

have A7z € X,,_;11, for every 0 < j < n+1; and so, u € Cy([0,00), Xy 41), by Corollary 1.3.17. Furthermore,

du

dti
47

sition 1.3.4, it follows that dT? € O([0,00), Xp—j41) N C*([0,00), X,,—;), for every 0 < j < n. Therefore,

it follows from (1.3.6) that (=1)7T(t) Az, for every 0 < j < n. Applying Corollary 1.3.17 and Propo-

(1.3.5) holds at order n 4+ 1. It follows easily that (1.3.6) also holds at order n + 1, by applying Proposi-
tion 1.3.4 (iii). Finally, (1.3.7) is a consequence of (1.3.5) and (1.3.6), by by applying Proposition 1.3.4 (iii).
This completes the proof. O

1.3.4. Weak solutions and extrapolation. If x € D(A), then u(t) = T'(¢)z is the solution of problem
(1.3.2) (cf. Proposition 1.3.4). On the other hand, if z € X \ D(A), then u ¢ C([0,00), D(A)), and in
particular, u cannot solve (1.3.2) on [0,00). The object of this section is to show that u solves a weak form

of problem (1.3.2).

Lemma 1.3.19. Let A be an m-accretive operator in X, and let (T'(t));>0 be the semigroup of contractions
in X generated by —A. Consider the space X 1 and the operator A(_yy defined by Theorem 1.1.31. If
(T(~1)(t))¢>0 is the semigroup of contractions in X _; generated by A(_yy, then T(_y)(t)x = T(t) for all
t > 0.

Proof. This follows from Remark 1.1.33, Proposition 1.3.16 and Proposition 1.3.10 (iii). O

Corollary 1.3.20. Let A be an m-accretive operator in X, and let (T'(t));>0 be the semigroup of contrac-
tions in X generated by —A. Consider the space X 1 and the operator A(_yy defined by Theorem 1.1.31.
Let € X, and set u(t) = T(t)z, for all t > 0. Then, u is the unique solution of problem

du

—+ A =0;
ar + Anu 0;
u(0) = x;
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in the space C([0,0), X) N C*([0,00), X_1).

Proof. This follows from Proposition 1.3.4, applied to the operator A(_;), and from Lemma 1.3.19. O

Corollary 1.3.21. Let A be an m-accretive operator in X, and let (T(t));>o be the semigroup of con-
tractions in X generated by —A. Given n > 0, consider the space X_, and the operator A(_, de-
fined by Remark 1.1.32. If (T(_,))i>0 is the semigroup of contractions in X_, generated by A, then
T_ny(t)x_, = T(—j)(t) for all 0 < j < n and all t > 0.

Proof. The result follows by applying iteratively Lemma 1.3.19 and Remark 1.1.33. O

Corollary 1.3.22. Let A be an m-accretive operator in X, and let (T'(t));>0 be the semigroup of con-
tractions in X generated by —A. Given n > 0, consider the space X, and the operator A, defined by
Remark 1.1.32, and let (T(_,))t>0 be the semigroup of contractions in X _,, generated by A(_,). Let v € X,
and set u(t) =T (t)x, for t > 0. Then, u € CJ([0,00), X_,) for all n > 0. In addition,

d"u
dtn

d (d"u d"lu
“ -1 n+1A —
dt (dt"l ) + ( ) (—=n) (dtnl ) O’

= (1) Ty (DAL 2 = (~1)" AL ult),

and

for allt > 0 and all n > 1.

Proof. The result follows by applying Corollary 1.3.18 to the operator A(_,,, for every n > 0. O

1.3.5. Groups of isometries. = We will show that, under some appropriate assumptions, some semi-

groups of contractions can be embedded in larger families of operators. We begin with the following definition.
Definition 1.3.23. A family (T'(t))ter C £(X) is called a group of isometries if it satisfies the following
properties:

(i) T(0) = I;

(ii) T(t+s) =T(t)T(s), for all s,t € R;
(iii) the mapping t — T'(¢)x is continuous R — X, for all z € X

(iv) |IT@t)z|| = ||z||, for all t € R and all z € X.

Remark 1.3.24. Here are some immediate consequences of Definition 1.3.23.

(i) If (T(t))ter C L(X) is a group of isometries, then (T'(t)):>0 is a semigroup of contractions. In addition,
if one sets S(t) = T(—t), for all t € R, then (S(¢))ier C L£(X) is also a group of isometries; and so,

(S(t))1>0 is a semigroup of contractions.

(ii) Recall that in a Banach space an isometry, i.e. a linear map T : X — X such that || Tz| = ||z| for

all x € X need not be surjective. For example, Tp(t) = ¢(t + h) on X = LP(0,00) with h > 0. Note
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also that if (T'(¢))ier C L£(X) is a group of isometries, then T(¢)X = X, for all ¢t € R. Indeed, we
have T'(t)X C X. On the other hand, given ¢t € R and « € X, we have x = T(t)y with y = T(—t)z;
and so, X C T(t)X. Conversely, if (T'(t));>0 C L£(X) is a semigroup of contractions such that T'(¢) is
a surjective isometry for all ¢ > 0, then (T'(t)):cr cen be embedded in a group of isometries (S())ier.

Indeed, set S(t) = T'(t) for t > 0 and S(t) = (T(—t))~* for t < 0.

Lemma 1.3.25. Let (T'(t))ier C £(X) be a group of isometries. If L is the generator of the semigroup of
contractions (T'(t))i>o, and if L is the generator of the semigroup of contractions (S(t))i>0, where S(t) =

T(—t), then L = ~L. In particular, both L and —L are m-accretive with dense domain.

Proof. Let z € D(L). Given h > 0, we have

Sh)x —xz T(-hz—=z
h N h

h h10

It follows that = € D(L) and that Lz = —La; and so, G(L) C G(—L). As well, given 2 € D(L) and h > 0,

we have
S(h)r —x fx
h h10

It follows that € D(L) and that Lz = —La; and so, G(L) C G(—L). Therefore, L = —L. Hence the result,
by Proposition 1.3.8. 0O

Lemma 1.3.26. Let A be an m-accretive with dense domain, such that —A is m-accretive. Let (T'(t))i>0
be the the semigroup of contractions in X generated by —A, and let (S(t));>0 be the the semigroup of
contractions in X generated by A. Define (U(t))ier C L(X) by

T(t), ift > 0;
U(t) = {
S(—t), ift > 0.

Then, (U(t))ter is a group of isometries.

Proof. Given x € D(A), let u(t) = U(t)z for t € R. Applying Proposition 1.3.4 to both A and —A, we see
that u is the unique solution in C(R, D(A)) N CY(R\ {0}, X) of the equation u' + Au = 0 for all ¢ # 0 with

the initial condition u(0) = z. Since

dtu d-u
—_— = —_— = A
o) = L 0) — s,

we see that in fact u € C1(R, X). It follows that U(t + s)x = U(t)U(s)x for all t,s € R and all z € D(A);

hence for all x € X by density. Next, since by construction U(t) is a contraction for all ¢ € R, we have
IU@)z| < [lz] = [U(=)U@)=]| < |U(E)x]],

for all t € R and all z € X. Therefore, U(t) is an isometry. The other properties are immediate. O

Applying Lemmas 1.3.25 and 1.3.26, one obtains the following result.
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Proposition 1.3.27. If (T'(t)):>0 is a semigroup of contractions in X with the generator —A, then the

following properties are equivalent:
(i) —A is m-accretive;
(ii) there exists a group of isometries (U(t))ter such that T(t) = U(t), for all t > 0.
Corollary 1.3.28. Let (T(t))ier C L(X) be a group of isometries, and let —A be the generator of the

semigroup of contractions (T'(t));>o. Then, for every x € D(A), the function u(t) = T(t)x, t € R is the

unique solution of problem

du

M Au =0
dt+ u = 0;
u(0) = x;

in the space C(R, D(A)) N C*(R, X).

Proof. It follows from Proposition 1.3.27, Lemma 1.3.26 and Proposition 1.3.4 that u € C(R, D(A)) N

d
CY(R\ {0}, X), that di; = —Au for all t # 0, and that

dtu d~u
—(0
dt ( ) dt

The result follows easily. O

Remark 1.3.29. Consider a group of isometries (7'(t))icr C £(X), and let x € X. It follows immediately
from the group property and Corollary 1.3.28 that if T'(tg)x € D(A) for some tg € R, then T'(t)z € D(A) for
all t € R. Therefore, if € D(A), then T'(t)z ¢ D(A) for all t € R.

1.3.6. The case of Hilbert spaces.  Throughout this section, we assume that X is a Hilbert space,
endowed with the scalar product (-,-). We will apply the results of Section 1.1.5 to obtain further properties.
Lemma 1.3.30. If (T'(t))¢>0 Is a semigroup of contractions with the generator —A, then

(i) (T(t)*)t>0 Is a semigroup of contractions;

(ii) the generator of (T'(t)*)¢>0 Is —A*.
Proof. It follows from Proposition 1.1.41 and Corollary 1.1.37 that A* is m-accretive with dense domain.

Let (S(t))i>0 be the semigroup of contractions generated by —A*. Applying Corollary 1.3.2 and Proposi-

tion 1.1.41, we obtain easily

S(t)r = lime "™ g = lim(e )"z = (T(t))*
(t)z =lime v =lim(e™™)"s = (T(t))",

for all £ > 0 and all z € X. Hence the result. O

Remark 1.3.31. Here are some comments on Lemma 1.3.30. Let (T'(t)):>0 be a semigroup of contractions

in a general Banach space X, and let A be its generator.
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(i) One may always consider T'(t)*. The family (T'(¢)*);>0 satisfies properties (i), (ii) and (iv) of Defi-
nition 1.3.5. This is easily verified. However, property (iii) (continuity) may fail. For example, let
X = LY(R) and let (T'(t)*)t>0 be defined by T'(t)p(z) = p(z —t) (see Remark 1.4.2 (i)). (T(£)*)e>o0
is defined on X* = L*®(R) by T'(t)*¢(x) = @(x + t), and one verifies easily that (T'(t)*);>0 is not

continuous on X*.

(ii) Since D(A) is dense in X, one may consider the operator A* on X* and A* is m-accretive (see Exer-
cise 1.8.3). If D(A*) is dense in X* then the proof of Lemma 1.3.30 shows that (T'(t)*);>¢ is indeed a

semigroup of contractions in X* and that its generator is —A*.

(iii) In particular, if X is reflexive, then A* is m-accretive with dense domain (see Exercise 1.8.2); and so,

(T'(t)*)1>0 is a semigroup of contraction, and its generator is —A*.

Corollary 1.3.32. If A be a self-adjoint, accretive operator in X and if (T'(t));>0 Is the semigroup of
contractions generated by —A, then T(t) = (T(t))* for all t > 0.

Proof. It follows from Corollary 1.1.45 that A is m-accretive with dense domain. The result now follows

from Lemma 1.3.30. O

Corollary 1.3.33. If A is a skew-adjoint operator in X, then there exists a group of isometries (T'(t)):ecr
such that —A is the generator of the semigroup of contractions (T'(t));>o. In addition, (T'(t))* = T'(—t), for
allt € R.

Proof. It follows from Corollary 1.1.47 that A and —A are m-accretive with dense domain. The result

now follows easily from Proposition 1.3.27 and Lemmas 1.3.26 and 1.3.30. O

Finally, we describe below a fundamental property of self-adjoint operators.

Theorem 1.3.34. Let A be a self-adjoint, accretive operator in X, and let (T'(t));>o be the semigroup
of contractions generated by —A. For every x € X, the function u(t) = T(t)x for t > 0 has the following
properties:

(i) u € C([0,00), X) N C((0,0), D(A)) N C*((0,00), X) and u is the unique solution of problem

d£+Au:0, for all t > 0;
- (1.3.8)
u(0) = ;
in that class;

1
(ii) [|Au(®)|| < m”m”, for all t > 0. Moreover, the function t — +/t||Au(t)|| belongs to L?(0,00) and
o0
1
[ slau| ds < ol
0 4
1
(iii) (Au(t),u(t)) < 2—t||xH2, for all t > 0. Moreover, the function t — (Au(t),u(t)) belongs to L*(0,00) and

[ o, ute)) ds < ol
0
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1
(iv) if x € D(A), then also ||Au(t)|* < Q—t(Ax,x), for all t > 0. Moreover, Au € L*((0,00),X) and

1
[ Au[Z2 (0,000, x) < §(A$7$)~

Proof. Let z € X, and let u(t) = T(t)x. Given A > 0, let Ay be the operator introduced in Defi-
nition 1.1.15, and set wuy(t) = e g, Tt follows from Lemma 1.1.16 and Proposition 1.1.42 that Ay is

7tA))

self-adjoint and acretive. Therefore, (e ¢+>0 is a semigroup of contractions. Applying Remark 1.3.7, we

obtain the following property:
The mapping t — [|u} (t)|| = |le”*** Axz| is nonincreasing. (1.3.9)

In addition, the following identities hold:

d
@2 = =2(Axua (), ua (1)), for all ¢ > 0, (1.3.10)

%(A,\u,\(t),u,\(t)) = 2(Azux(t),uh (1)) = =2[[u’ (t)||?, for all t > 0. (1.3.11)

It follows from (1.3.11) that (Axux(?),ux(f)) is a nonincreasing function of ¢; and so, integrating (1.3.10)

between 0 and t > 0, we obtain
t(Axux(t),ur(t)) < /Ot(A,\uA(s),uA(s))ds < %HxHQ (1.3.12)
Applying (1.3.9) and integrating (1.3.11) between 0 and ¢ > 0, we obtain
2|\ ()||* < Q/Ot [uA ()1 ds = (Axz, 2) — (Axua(t), ux(t) < (Arz,z), (1.3.13)

where the last inequality follows from Lemma 1.1.36. As well, multiplying (1.3.11) by ¢ and integrating, we
find

t

t
PRAOIP <2 [ sl ds < =2 [ 55 (Anur(s),un(s) ds
0 0

t
< / (Axux(s),ux(s))ds.
0
Applying (1.3.12), it follows that
26%[[ul ()] < ). (1.3.14)

Consider now t > 0. It follows from Corollary 1.3.2 and Proposition 1.1.19 that
Jyux(t) T u(t),

in X. On the other hand, it follows from (1.3.14) that A(Jyux(t)) = w)(t) is bounded in X. Applying
Remark 1.1.11, we find u(t) € D(A) and Ayux(t) = Au(t), as A | 0. Property (i) now follows by applying
Proposition 1.3.4 with the initial value u(e), for arbitrary ¢ > 0, and letting € | 0. Other properties are
obtained by passing to the limit in (1.3.12), (1.3.13) and (1.3.14) and using the weak lower-semicontinuity

of the norm, then equation (1.3.8). O

Corollary 1.3.35. Let A be a self-adjoint, accretive operator in X, let (T'(t))t>0 be the semigroup of
contractions generated by —A, and consider the spaces (X, )n>0 defined by Remark 1.1.29. Let z € X and
set u(t) = T(t)x. Then, u € C*((0,0), X,,), for every n > 0. In addition,

l4naol < (Z5) lel (13.15)
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for allm>1 and all t > 0.

Proof. Consider the operators A, defined by Remark 1.1.29. It follows from Corollary 1.1.48 and Re-
mark 1.1.29 that A(,) is a self-adjoint, accretive operator in X,,. Consider ¢ > 0. It follows from Theo-

rem 1.3.34 that u(t/n) € X; and that
n
2

Applying now Theorem 1.3.34 to the operator A(;), one obtains as well that u(2t/n) = T'(t/n)u(t/n) € X,

[Au(t/n)| < —=|lz]-

and that
n

2
A%mmnsQﬂ>aw

By induction, one finds u(t) € X,, and

4o < (=) .

Hence (1.3.15). Since t and n are arbitrary, the result now follows from Corollary 1.3.18, applied to u(t+¢),

e>0. |

Remark 1.3.36. Corollary 1.3.35 describes a smoothing effect. For every x € X and every t > 0, T'(t)x
belongs to nQOD(A"). This property displays the irreversible character of equation (1.3.2), when A is self-
adjoint and accretive. More precisely, if y € X\n@OD(A”)7 there does not exist any pair (x,t) € X x (0, 00)
such that y = T'(t)x. This is in great contrast with the case of skew adjoint operators, for which T'(¢) X = X.

1.3.7. Analytic semigroups. Throughout this section, we assume that X is a complex Banach space.
We recall that every real Banach space has a canonical complexification, and that conversely, any complex
Banach space has an underlying real Banach space structure. Let A be a linear unbounded operator in X
(considered as a real Banach space), and assume that A is C-linear (i.e. Ax € D(A) and A(A\x) = AAx for
all A € C and = € D(A)). The numerical range S(A) of A is the set

S(A) ={(§ Az) x+ x; x € D(A), ||lz| =1, € F(x)}.

Here, (-, )x+ x is the complex duality bracket between X* and X, and F is the duality mapping. Assume
that A is m-accretive with dense domain, and let (T'(¢));>0 be the semigroup of contractions generated by
—A. Since A is C-linear, it follows easily that (T'(¢));>0 C £(X), with X considered as a complex Banach

space. Given 0 < 6 < 7, we define the sector Cy by
Cyo={zeC\{0}; -0 <argz <6},
so that Cy = {0} U {z € C\ {0}; —0 < argz < 6}.

Definition 1.3.37. Let (T(t)):>0 be as above. We say that (T'(t));>0 is an analytic semigroup if there
exists 0 < 0 < 7 and a mapping T:Cp— L(X) with the following properties:

(i) T(t) = T(t) for all t > 0;
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(i) T(z1 + 22) = T(21)T(22) for all z1,z9 € Cy;

(i) lim T(z)z =z forallz € X;
2€Cy,z2—0

(iv) the mapping z — T(z) is holomorphic Cy — L(X).
We have the following characterization of analytic semigroups (see Pazy [85], Theorem 5.2, p. 61).

Theorem 1.3.38. Let A be a C-linear, m-accretive operator with dense domain and let (T(t))¢>0 be the

semigroup of contractions generated by —A. The following properties are equivalent:
(i) (T'(t))i>0 is an analytic semigroup;
(ii) the mapping t — T(t) is differentiable (0,00) — L(X) and there exists a constant C such that

LT ()| o) < C for all t € (0,1].

Remark 1.3.39. It follows in particular from Theorems 1.3.38 and 1.3.34 that if A is a self-adjoint,
accretive operator in a complex Hilbert space X, then the semigroup of contractions generated by —A is

analytic. (Note that A has a canonical C-linear, self-adjoint and accretive extension).
Finally, we have the following useful sufficient condition (see Haraux [58], Theorem 7.5, p. 116).

Theorem 1.3.40. Let A be a C-linear, m-accretive operator with dense domain and let (T'(t));>o be

the semigroup of contractions generated by —A. If the numerical range of A verifies S(A) C Cy for some

0 <8 < m/2, then (T(t))i>0 is an analytic semigroup.

1.4. Examples of semigroups generated by partial differential operators. In this section, we

apply the results of the preceding section to the examples described in Section 1.2.

1.4.1. First order equations. = We consider the operators introduced in Section 1.2.1. We first study
the one-dimensional case.

Let X = Cp(R), and let A be defined by

D(A)={uec C'R)NX;u € X},

(1.4.1)
Au =, for u € D(A).

It follows from Remark 1.2.3 (ii) that both A and —A are m-accretive with dense domain. It follows from
the results of Section 1.3.5 that —A generates a group of isometries (T'(¢)):er in X. For every ¢ € D(A),
u(t) = T(t)p is the unique solution in C(R, D(A)) N C1(R, X) of the problem

us +u, =0, t,xeR;
u(0,z) = p(x), zeR.

Furthermore, we have the following characterization of (T'(t)):cr.
Proposition 1.4.1. If A is as above and if (T'(t)):er is the group of isometries generated by —A, then

T(t)p(x) = p(x —t), forall t,z € R, (1.4.2)
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for every p € X.

Proof. Given ¢ € D(A), define v(t), for t € R, by

v(t,x) = p(xr —t), for z € R.

One verifies easily that v € C(R, D(A)) N C}(R, X), that v(0) = ¢ and that

dv
20 Ay =
7 + Av =0,

for all t € R. Applying Corollary 1.3.28, it follows that v(t) = T'(t)¢. The result now follows by density. O

Remark 1.4.2. One has similar results for the other one-dimensional examples of Section 1.2.1. In par-

ticular, one has the following results.

(i)

(iii)

Consider 1 < p < 00, let X = LP(R), and let A be defined by
D(A) = WH(R),
{Au =, for u € D(A).
It follows from Remark 1.2.3 (iii) that both A and —A are m-accretive with dense domain, and it follows

from the results of Section 1.3.5 that —A generates a group of isometries (T'(t)):er in X. Arguing as in

the proof of Proposition 1.4.1, one shows easily that, for every ¢ € X, T'(t)¢ is given by formula (1.4.2).

Consider X = {u € C([0, 1]); u(0) = 0}, equipped with the sup norm. Define the operator A in X by
D(4) = {u € C*([0,1]); u(0) = «(0) = 0},
{Au =, for u € D(A).
It follows from Proposition 1.2.4 that A is m-accretive with dense domain, and it follows from the results

of Section 1.3.2 that —A generates a semigroup of contractions (T'(¢));>o in X. Arguing as in the proof

of Proposition 1.4.1, one shows easily that, for every ¢ € X, T'(t)p is given by

0, if < min{¢, 1};

T(t)p(z) = (1.4.3)

o(x —t), if min{t,1} <z <1.
Note that in particular, T'(t) = 0 for ¢ > 1.
Consider 1 < p < 00, and let X = LP(0,1). Define the operator A in X by

{ D(A) = {u € WH?(0,1); u(0) = 0};
Au =1/, for u € D(A).

It follows from Remark 1.2.5 (ii) that A is m-accretive with dense domain, and it follows from the results
of Section 1.3.2 that —A generates a semigroup of contractions (T'(¢)):;>0 in X. Arguing as in the proof
of Proposition 1.4.1, one shows easily that, for every ¢ € X, T(t)y is given by formula (1.4.3). Note
that here also, T'(t) =0 for t > 1.
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(iv)

(vii)

Let X = {u € C([0,1]); u(0) = u(1)}, and let A be defined by
D(A) = {u € C1([0,1]); u(0) = u(1) and «/(0) = (1)},
{Au =/, for u € D(A).
It follows from Remark 1.2.5 (iii) that A is m-accretive with dense domain, and it follows from the
results of Section 1.3.2 that —A generates a semigroup of contractions (T'(t));>o in X. Arguing as in
the proof of Proposition 1.4.1, one shows easily that, for every ¢ € X, T'(t)p is given by the following

formula. Define ¢ € C'(R) by ¢(x) = ¢(z — E(x)), for all z € R. Here, E(x) denotes the integer part of
x,i.e. E(x) =mif m <a <m+ 1. Note that ¢ is periodic with period 1. Then, T'(¢) is given by

T(t)p(x) = ¢(z — 1),
for all ¢,z € R. Note that here, T'(t +m) = T(t) for t € R and all m € Z.
Let X = Co(R4) = {u € C([0,00); u(0) =0 and lim u(xz) =0}, and let A be defined by

D(A) = {u € CY([0,00)) N X; v/ € X},
Au =, for u € D(A).
It follows from Proposition 1.2.6 that A is m-accretive with dense domain, and it follows from the results

of Section 1.3.2 that —A generates a semigroup of contractions (T'(¢));>o in X. Arguing as in the proof
of Proposition 1.4.1, one shows easily that, for every ¢ € X, T'(t)p is given by

0, ifx <t

T(t)p(z) = { , (1.4.4)

oz —1t), if x>t
Note that T'(t) is an isometry in X. However, clearly T'(¢) is not surjective, and thus (T'(t)):>0 cannot
be embedded in a group of isometries (see Remark 1.3.24 (ii)).
Let X = LP(0,00). Define the operator A in X by

D(A) = {u € W"P(0,00); u(0) = 0};
{ Au =1/, for u € D(A).

It follows from Remark 1.2.7 (ii) that A is m-accretive with dense domain, and it follows from the results
of Section 1.3.2 that —A generates a semigroup of contractions (T'(¢));>o in X. Arguing as in the proof
of Proposition 1.4.1, one shows easily that, for every ¢ € X, T(t)¢ is given by formula (1.4.4). Note

that here also, T'(¢) is an isometry in X.

Let X = {u € C([0,00); lim wu(z) = 0}, and let A be defined by

r—00 r— 00

D(A) = {u € C'([0,00)); lim u(z) = lim «'(z) = 0},
{Au = —u/, for u € D(A).

It follows from Proposition 1.2.8 that A is m-accretive with dense domain, and it follows from the results

of Section 1.3.2 that —A generates a semigroup of contractions (T'(¢));>o in X. Arguing as in the proof

of Proposition 1.4.1, one shows easily that T'(¢) is given by

T(t)p(x) = p(x +1t), for all z < 0 and all t > 0, (1.4.5)
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for every ¢ € X. Note that in general ||T'(t)¢|| < ||¢|| for all ¢ > 0. The reader can easily construct a ¢
with this property.

(viii) Let 1 <p < o0, X = LP(0,00), and let A be defined by

{meﬂwwaw»

Au = —u/, for u € D(A).

It follows from Remark 1.2.9 (iii) that A is m-accretive with dense domain, and it follows from the
results of Section 1.3.2 that —A generates a semigroup of contractions (T°(t));>o in X. Arguing as in

the proof of Proposition 1.4.1, one shows easily that, for every ¢ € X, T(t)¢ is given by formula (1.4.5).
Note that here also, in general ||T'(¢t)p|| < ||¢|| for all ¢ > 0.

Let now X = Co(RY). Given a € RY, consider the operator A defined by

{D(A):{ueX;a-VuEX}, (1.46)

Au = a-Vu, for u € D(A).
It follows from Remark 1.2.15 (i) that both A and —A are m-accretive with dense domain, and it follows

from the results of Section 1.3.5 that —A generates a group of isometries (7'(t))ter in X. Then, we have the

following result.

Proposition 1.4.3. If A be as above and if (T(t)):cr is the group of isometries generated by —A, then

T(t)p(x) = p(x — ta), (1.4.7)
for all p € X and allt € R.

Proof. The proof is easily adapted from that of Proposition 1.4.1. O

Remark 1.4.4. Consider 1 < p < 0o, and let X = LP(RY). Define the operator A4 in X by (1.4.6). It
follows from Remark 1.2.15 (iii) that both A and —A are m-accretive with dense domain, and it follows from
the results of Section 1.3.5 that —A generates a group of isometries (T'(t))ier in X. Arguing as in the proof
of Proposition 1.4.1, one shows easily that, for every ¢ € X, T(t)¢p is given by formula (1.4.7).

1.4.2. The heat equation. Throughout this section, Q is an arbitrary open subset of RY. For some
of the results, we will make further assumptions on 2 which we will specify. We will apply the results of
Section 1.3 to the examples of Section 1.2.2, in order to solve the initial value problem for the heat equation
ur = Au.

Consider the operator A defined on H~1(Q) by (1.2.14), that is

{ D(A) = Hy(%),
Au = —Au, for all u € D(A).
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It follows from Proposition 1.2.17 that A is self adjoint and accretive. Therefore, —A is the generator of a
semigroup of contractions on H~!(Q2), which we denote by (7'(t));>0. On the other hand, the operator B
defined on L%(Q2) by (1.2.19), that is

D(B) = {u € B(Q); Au e LA},
{ Bu = —Au, for all w € D(B),

is self adjoint and accretive by Proposition 1.2.21. Therefore, —B is the generator of a semigroup of con-

tractions on L?(Q), which we denote by (S(t)):>o-
Lemma 1.4.5. With the above notation, T(t)¢ = S(t)p for all t > 0 and all p € L?(2).

Proof. Since G(B) C G(A) as subsets of H1(Q2) x H~1(Q), the result follows immediately from Propo-
sition 1.3.4 when ¢ € D(B) C D(A). Since both S(t) and T(t) are continous L?(Q) — H~(Q), the result
follows, by density of D(B) in L?(f2). O

Remark 1.4.6. Since (T'(t));>0 and (S(t)):>0 coincide where they are both defined, that is on L?(Q), we
will by denote also by (T'(t)):>0 the semigroup of contractions generated by —B.

Remark 1.4.7. By Corollary 1.3.32, T'(t) is self-adjoint in L?(Q) for all ¢ > 0, i.e.

(T()p, )2 = (0, T(t)V) 2,

for all t > 0 and all p,v € L3(9).

Theorem 1.4.8. Let A and (T(t));>0 be as above. Given p € H=Y(Q), set u(t) = T(t)p for t > 0. Then,
the following properties hold:

(i) u € C(]0,00), H~1(2))NC((0, 00), HL(2))NC((0,00), H=1(2)), and u is the unique solution of problem

uy — Au =0 for all t > 0,

(1.4.8)
u(0) = ¢;

in that class. Moreover, A"u € C*((0,00), H}(Q)) for every nonnegative integer n;

(i) u e C®((0,00) x Q);

(iii) ifp € L3(Q), thenu € C([0,0), L3(Q)). Ifp € HE(Q), thenu € C([0,00), HE (2))NC([0,00), H=1(Q)).
If moreover Ay € L*(Q), then Au € C([0,00), L?(Q2)) and u € C*([0, 0), L*(Q)).

Proof. Since D(A) = H}(Q) with equivalent norms (Proposition 1.2.17), property (i) follows from Theo-
rem 1.3.34 and Corollary 1.3.35. Next, it follows from property (i), Corollary 1.3.35 and Lemma 1.4.5 that
u € C*((0,00), D(B™)) for every nonnegative integer n; and so property (ii) follows from Remark 1.2.23 (ii)

and Sobolev’s embedding theorem. Finally, property (iii) follows from Lemma 1.4.5. O

When () satisfies certain regularity assumptions, the semigroup has better regularity properties. Some

of these properties are described in the following proposition.
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Theorem 1.4.9. Let A and (T(t));>0 be as in Theorem 1.4.8. Given ¢ € H=1(Q), set u(t) = T(t)p for
t > 0. Then the following properties hold:

(i) if Q has a bounded boundary of class C? and if ¢ € H?*(Q) N H(Q), then u € C(]0,00), H*(2)) N
C([0, 00), L*(92));
(ii) if Q has a bounded boundary of class C*™ for some positive integer m, then u € C*((0,00), H*™(Q));
(iii) if Q has a bounded boundary of class C*°, then u € C*([e,00) x Q), for every € > 0;

(iv) if Q is bounded with boundary of class C*, and if p € C*°(Q) satisfies the compatibility relations
u=Au=---A"u=---=0 on Y, then u € C*([0,00) x ).

Proof. If ¢ € D(B), then it follows from Lemma 1.4.5 that u € C([0,00), D(B))NC*([0, ), L*()). Since
D(B) — H?(2) whenever Q has a bounded boundary of class C? (Remark 1.2.23), property (i) follows. On
the other hand, u € C*°((0,00), D(B"™)) for every nonnegative integer n (see the proof of Theorem 1.4.8).
Therefore, properties (ii) and (iii) follow from Remark 1.2.23 and Sobolev’s embedding theorem. Finally, if
e ngoD(B"), then it follows from Corollary 1.3.17 that u € o C*°([0,00), D(B™)). Hence property (iv),
by applying Remark 1.2.23 and Sobolev’s embedding theorem. O

Remark 1.4.10. Note that the compatibility relations of property (iv) of Theorem 1.4.9 are necessary

conditions if u € C*°([0,00) x Q). Indeed, we have u = d—ltt == ﬁ: =.--=0on (0,00) x 9. Since
d’ﬂ
W: = A"u, the compatibility relations follow.

We next describe some pointwise estimates that are consequences of Theorem 1.3.34.

Theorem 1.4.11. Let A and (T(t))i>0 be as in Theorem 1.4.8. Given p € L?(2), set u(t) = T(t)p for
t > 0. Then the following properties hold:

> 1
(i) |Au(®)]|ze < |p2 for all t > 0 and / s||Au(s)|* ds < ZHSDH%Z,
0

Lol
t\/iw

1 e 1
i) |[Vu(t < — for all t > 0 and \Y 2ds < =|lol|?22;
(i) [[Vu(®)lz> < \/Q»tllwllm orallt >0 an /O IVu(s)I” ds < S llellze;

1 o 1
(ili) if o € HF(Q), then ||Au(t)||z2 < —=||V| 2 for all t > 0 and / | Au(s)||?ds < =[|[Vel|2e.
V2t 0 2
Proof. By density, we need only consider the case ¢ € D(2). In this case, the resuls follow from Theo-
rem 1.3.34, Lemma 1.4.5 and identity (A.3.17). O

The following result, which is a form of the weak maximum principle for the heat equation, is essential

for the study of both the linear and the nonlinear heat equations.

Theorem 1.4.12. Let T > 0,1 < p < oo and f € L _((0,T), H 1(2)). Assume u € C([0,T],L*(2)) N

loc

LP((0,T), HY(Q)) nWL'((0,T), H-1(Q)) solves equation

ug — Au = f, for almost all t € (0,T),
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and that
(i) there exists v € LP((0,T), Hi()) such that u(t) < v(t) almost everywhere in Q for almost all t € (0,T);

(ii) f=g+h, with g € L. ((0,T), H71(2)), g(t) <0 for almost all t € (0,T), and h € L, ((0,T), L*(Q)),

loc loc

h(t) < Clu(t)| almost everywhere in §) for almost all t € (0,T) where C' is independent of t;
(iii) u(0) < 0 almost everywhere in €.

It follows that u(t) < 0 almost everywhere in Q) for all t € (0,T).
Proof. Since u™(t) € H}(Q) for almost all ¢ € (0,T) by Proposition A.3.34, it follows that

(we(8),u™ (6)) =1, my — (D), u™ () -1 iy = (F (), u™ (8) =1,y

for almost all ¢ € (0, 7). It follows from Corollary A.3.15 and formula (A.3.17) that (Au(¢), u™ () e-1.m1 <0,
and it follows from assumption (ii) and formula (A.3.14) that
O Oy < O Oy <€ [ Ot (o =€ [ (02 e
Q Q

Therefore, applying Corollary A.3.68, we obtain

d

— [ ut(t)*dr < C’/ ut(t)? d,
dt Jq

Q

for almost all ¢ € (0,T"). Integrating the above inequality and using assumption (iii), we obtain

t
/u+(t)2da:§0/ /u+(s)2dxds,
Q o Ja

for all t € (0,7); and so, u™ (t) = 0 by Gronwall’s lemma. Hence the result. O

Remark 1.4.13. Here are some comments concerning Theorem 1.4.12.

(i) Assumption (ii) can be slightly weakened. In fact, in the proof of Theorem 1.4.12 we only need that
(@), u* ) 1y < Cllu™(¢)||32 for almost all t € (0,T), where C' is independent of ¢.

(ii) Assumption (i) means that v < 0 on 9. This assumption is essential, as the following example shows.
2

1

Take Q = (—1,1) and u(t,x) = t+%f§.

(with f = 0) except (i), but u(t) takes some positive values on €2 for each ¢ > 0.

It is clear that u satisfies all the assumptions of Theorem 1.4.12

(iii) One must be very careful about the regularity assumptions on u, which are essential. Consider for

example the equation

u — Au = 0,
ujpn =0,
u(0) = -1,

in a bounded, smooth domain  C RY. Theorem 1.4.12 asserts that u(t) < 0 in 2. On the other hand,

we have u € C([e,00) x Q) and if we set v(t) = u;(t), then

v — Av =0,
vion =0,
v(0) = 0.
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Note that the condition v(0) = 0 makes sense since v € C([0,00), H %(Q2)) (because v = Au and u €
C([0,00), L2(£2)). On the other hand, we have v(t) > 0 in Q, v(t) # 0 for all ¢t > 0 (see Exercise 1.8.18).

In particular, the conclusion of Theorem 1.4.12 does not hold, due to the lack of regularity of v at t = 0.

(iv) Let (T'(t))t>0 be as in Theorem 1.4.8 and let ¢ € D(Q). If ¢ > 0 in Q, then T'(¢)p > 0 in Q for all
t > 0. This follows from Theorem 1.4.12 applied to v = —T(t)¢ with f = 0 and v = u. By density, it
follows that T'(t)¢ > 0 almost everywhere in Q for all t > 0 and all ¢ € L%(2) such that ¢ > 0 almost

everywhere in €.
When Q = RY, one can compute T(t)¢ in terms of a kernel, as shows the following result.

Proposition 1.4.14. Suppose that Q = RY and let (T(t));>0 be as in Theorem 1.4.8. For every t > 0,
22
define the function S; € S(RY) by Sy(x) = (47rt)_N/2e_% forx € RN. If p € L2(RY) and if u(t) = T(t)yp
for t > 0, then the following properties hold:
(i) T(t)p =Sy *p for all t > 0;

(ii) if ¢ € LP(RYN) for some 1 < p < oo, then u(t) € LY(RY) for all p < ¢ < oo, and

N (1

()| 2o < (@drt)"F G || o
for all t > 0.

Proof. Let ¢ € L? and set u(t) = S; x ¢, for t > 0. We will check that u(t) € D(A) for all t > 0,
u € C([0,00), LARN))NC((0,00), L2(RY)), u(0) = ¢ and u; = Aw for all ¢ > 0. This will show property (i)
(see Theorem 1.3.34 (i)). The regularity properties are easily verified. Furthermore, a direct calculation
shows that 0;S; — AS; = 0 for all ¢ > 0, which shows that u verifies the equation u; — Au = 0 for all ¢ > 0.
Therefore, it remains to show that u(t) — ¢ in L?(R") as ¢t | 0. Note that

N/2 00 N/2
1 1
ISiler = =7 | e'“dxz( / emlzdx) :(2 / d) 1
™ / RN ™ JR2 0

It follows from Young’s inequality that ||S: * ¢|lL2 < ||¢||pz. Therefore, by density and Lemma A.1.4, we

need only show the result for ¢ € D(RY). Suppose now that ¢ € D(RY). Note that

1 2
Sexp(x) = N2 /]RN e (e — 2v/t2) dz.

It follows from the above formula and the dominated convergence theorem that S; x p(z) — () as t | 0.
1

Let R be large enough so that Supp(y¢) C {|z| < R}. For || > 2R and |y| < R, we have |z —y| > §\x| For

|z| > 2R, it follows that

|z|2

_lz—yl? 1 _l=? _N/2 _l=
e @ydy'ﬁ/ e 157 p(y)| dy < CtN/2e~ Tor .
/{IwSR} W (4mt)N/2 J (i< ry )

St x p(a)] =

1
(47t)N/2

Therefore, there exists ¢ > 0 such that |S; « o(z)| < Ce~1#* for |z| > 2R. Since ||S; x @l < [|¢]lL~,

we have as well |S; x p(z)| < Ceclel” for all z € RV, By the dominated convergence theorem, we obtain
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that Sy x o — ¢ in L2(RY) as t | 0, which shows (i). Property (ii) follows from property (i) and Young’s

inequality, since an easy calculation shows that ||Sy| .- = r—2r (47775)_%(1_%) < (47rt)_%<1_%). O

Theorem 1.4.15. Let (T'(t));>0 be as in Theorem 1.4.8 for a general domain (2, let p € L*(Q) and let
u(t) =T (t)p. If p € LP(Q) for some 1 < p < oo, then u(t) € L1(Q) for all p < q < oo, and

N(l

u(t)]| Lo < (4mt)"=

1
=) ||| o
for all t > 0.

Proof. Suppose first that p < co. By density, we need only prove the result for ¢ € Hg(2) N LP(Q). Define
¥ € HY(RN) N LP(RY) by

(@) iz e 9,

€Tr) =

Oifz ¢ Q,
and let v(t) = St x ¢ where S; is defined in Proposition 1.4.14. It follows from Theorem 1.4.8 that v €
C([0,00), HL(RNM))NC([0,00), H~Y(RY)) and v; — Av = 0 in H~}(RY). In addition, v(¢) > 0; and so, if we
set w(t) = v(t))q, then w € C([0,00), H(2))NC*([0,00), H(Q)), wy —Av =0in H~1(Q) and w(t) > 0. It
follows easily that z1(t) = u(t)—w(t) and 25(t) = —u(t) —w(t) verify the assumptions of Theorem 1.4.12 (take
v = |ul). Therefore, z1(t), z2(t) < 0, which implies that |u(¢)| < w(t) almost everywhere on  for all ¢ > 0.
In particular, [Ju(t)]|za) < [[w(t)||le@) < Jv(t)]|Lam~yy and the result follows from Proposition 1.4.14. If

p = 00, apply the result for finite p, with ¢ = co, then let p T co. O

Remark. The LP — L% estimates of Theorem 1.4.15 can be also obtained by a technique of multipliers.
Since that technique can be applied to certain nonlinear problems to which the comparison argument is not

applicable, we describe it in Section 1.7.3 below.

Remark 1.4.16. It follows in particular from Theorem 1.4.15 that for arbitrary domains 2, T'(¢) is con-
tinuous LP(Q) — L%(Q), for every t > 0 and every 1 < p < ¢ < oo with p < oo. In particular, if 2 has
finite measure, then, given ¢ > 0 and 1 < p < oo, T'(¢) is continuous LP(Q) — LI(Q) for every 1 < ¢ < 0.
However, if for example Q = RY| then T'(¢) does not map LP(Q2) to L4(f) if ¢ < p. Indeed, let 1 < p < oo

and let
1

) = ) e Log@ + 1))
One verifies easily that ¢ € LY(RY) for ¢ > p and that ¢ ¢ LI(RY) for ¢ < p. On the other hand, given

for z € RV,

t>0,
_ _le—y|? _ 1
T(t)p(x) = (4nt) N/Q/ e” a p(y)dy > (4nt) N 2e “/ o(y) dy.
RN {lz—yl<1}
v(y)

One verifies easily that inf  inf > 0. Therefore, there exists € > 0 such that T'(t)p > Et*N/ze’%go;

z€RN |z—y|<1 (p(l‘)
and so, T'(t)¢ ¢ LY(RY) for ¢ < p.

Corollary 1.4.17. Let (T(t))¢>0 be as in Theorem 1.4.8, let p € L*(Q) and let u(t) = T(t)p. If p € LP(Q)
for some 1 < p < oo, then u € C([0,0), LP(Q)).
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Proof. By density and Theorem 1.4.15, we need only consider the case ¢ € D(f). Suppose that ¢
is supported in the ball of RY with center 0 and radius R < oo, and define w € S(RY) by w(z) =
||l oo VIFRZ o= /1H1el | Apy easy calculation shows that Aw < wj; and so, if we set z(¢,z) = e‘w(z), then
2y — Az > 0. Therefore, if we apply Theorem 1.4.12 to u; = u — 2 and ug = —u — 2| (take v = |u|), then
we obtain |u(t)| < z(t). Therefore, given T > 0, we have |u(t, z)| < eTw(z) almost everywhere in 2 for all
t € [0,T]. Continuity of u(t) in LP(Q) now follows from continuity in L?(2) and the dominated convergence

theorem. O

Remark 1.4.18. It follows from Corollary 1.4.17 that for every 1 < p < oo, (T'(t))s>0 can be uniquely
extended by continuity to a semigroup of contractions in LP(2), which we still denote by (T'(t))¢>0. On the
other hand, the operator A in LP(Q) defined by (1.2.21) also defines a semigroup of contractions in LP(£2).

It turns out that the two semigroups coincide, as shows the following result.

Proposition 1.4.19. Let (T(t));>0 be as in Theorem 1.4.8, let 1 < p < oo and let (S(t))i>0 be the
semigroup of contractions in LP()) generated by —A, where A is the operator defined by (1.2.21). Then,
T(t)p = S(t)p for every ¢ € L*(Q) N LP(Q) and every t > 0.

Proof. By density, we need only show the result for ¢ € D(Q). Set ¥ = —Ap + ¢, so that ¢ = J1¢) where
Jp is as in Lemma 1.2.27. If u(t) = T'(t)¢, then it follows from Corollary 1.3.18 that u:(t) = T(t)A¢; and
so, by Corollary 1.4.17, that u € C*([0,00), LP(Q2)). Since u; = Au, we have also Au € C([0,00), LP(£2)).
Furthermore, if v(t) = T'(t)y € C([0, 00), LP(?)), then it follows from Corollary 1.3.14 that u(t) = T(¢t) 1y =
JiT(t)y = Jyv(t). Therefore, u € C([0,00), D(A)) N C1([0,00), LP(R)). Since u; = Au = —Au, it follows
from Proposition 1.3.4 that u(t) = S(t)y. Hence the result. O

(T'(t))e>0 is in fact an analytic semigroup in LP(Q) for all 1 < p < co. This property is the object of

the following result.

Proposition 1.4.20. Let (T'(t));>0 be as in Theorem 1.4.8 and let 1 < p < oco. Then (T(t))i>0 Is an
analytic semigroup in LP(£2).

If Q has a bounded boundary of class C?, then in addition

1
IT@plwes <© (147 ol (149
and
1
T llwrr < C (14 — , 1.4.10
170 @lwon < ( ﬁ) el (1.4.10)

for allt > 0 and all ¢ € LP(Q).
Proof. Note that by Theorem 1.4.11 and Remark 1.2.23, we need only prove the result for p # 2. We
proceed in three steps.

Step 1. We show that (T'(t))¢>0 is analytic in LP(€2) for p > 2. Let A be the operator in L?(Q2) defined
by (1.2.21), so that —A is the generator of (T'(t));>0 considered as a semigroup of contractions in LP(€2).
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(See Proposition 1.4.19.) We extend A to complex valued functions by C-linearity. It is clear that A is
also m-accretive in LP?(€2, C), and that the semigroup generated by —A is the natural extension of (T'(¢)):>0
to LP(Q2,C). For the rest of the proof, we denote by LP(Q) and WP(Q) the spaces of complex valued
functions. Let (-,-), 1+ denote the complex duality bracket between LP(f2) and LY (Q). Let f € D(R), and
set u = I f, with the notation of Lemma 1.2.27. We have u € H}(Q) N L>(Q). Let M = |jul/z~ and let

F : C — C be defined by
2Pz, if 2] < M,
F(z) =
MP=2z, if |z| > M,
so that F is Lipschitz continuous. We have in particular F(u) = |u[P~2u, and it follows easily from Corol-

lary A.3.29 (see also Section A.3.7) that |u[P~2u € H}(2). Furthermore, it follows from Theorem A.3.12 and

an easy calculation that

_ p— 2 . .
V(up2am < <|“|2|VU|2 + i @V + |u2|Vu2)> if u £ 0,

0if u=0,

almost everywhere. Therefore,

Re(Vu - V([ulP 7)) > |uf"~*|Vul?,

and

-2
[Em(Va- ¥ (jul2a))| < Eo= |l =2 Vul?,

—9 _
almost everywhere. Setting Cp = {z € C; —0 < argz < 0} with tan = pT, we have Vu - V(|u|P~21u) € Cy

almost everywhere. Therefore,
(Au, \u|p72u>Lp,Lp/ = / Vu - V(|ulP~?a) dzx € Cy.
Q

Since I; is an isomorphism from LP(Q) onto D(A) (Theorem 1.1.12), and since the mapping u — |u|P~2u is

continuous L?(Q) — L¥' (), it now follows by density of D(Q) in LP(£) that

(Au, |u|p_2u>Lp7Lp/ € Cy,
for all w € D(A). The result now follows from Theorem 1.3.39, since the duality map in LP is given by
F(u) = [|ul 35" |ul"~?u.

Step 2. We show that (T'(t));>0 is analyticin LP(Q) for 1 < p < 2. Letnow 1 < p < 2. Given ¢, € D(Q),
we set u(t) = T(t)¢ and v(t) = T(t)1). Note that ¢ € D(A), so that v € C([0, 00), D(A))NC*([0, 00), LP(£2)).
We have for t > 0

(u(®), ) o o = (u(t);¥) 12,12 = (9, 0(t)) 12,22 = (9, (1)) 1o 10

since T'(t) is self-adjoint in L?(£2) (see Corollary 1.3.32). Therefore, it follows from Step 1 and Theorem 1.3.38
that

C
W (), 9) o, | = 10, 0" () o, | < el |91 o
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Since u'(t) = —Au(t) , we obtain
lA4u(t)lzr < lplee

Let now ¢ € LP(Q), let (¢n)n>1 C D(Q) be such that ¢, a2 in LP(Q)), and set u(t) = T(t)¢ and
U (t) = T(t)pn. Fixt > 0. It follows from the above inequality that there exists a subsequence (ny)r>1 and
& € LP(Q) with ||£]|r < C/t such that Au,, (t) — £. Since the graph of A is closed, it is also closed for the
weak topology, so that u(t) € D(A) and ||Au(t)||Lr < %||<p||Lp. It follows easily that the mapping ¢ — T'(t)
is differentiable (0,00) — L(LP(£2)) and that [[tT'(t)||z(zr()) < C for all £ > 0; and so, (T'(t))>0 is analytic
in LP(Q) by Theorem 1.3.38.

Step 3. We show formulas (1.4.9) and (1.4.10). Formula (1.4.9) follows from Steps 1 and 2 and Theo-
rem 1.3.38. Formula (1.4.10) follows from (1.4.9) and the Gagliardo-Nirenberg inequality (A.3.10). This

completes the proof. O

Remark 1.4.21. Here are some comments on the above results.

(i) Tt follows from Proposition 1.4.20 that if ¢ € LP(Q) for some 1 < p < oo and if u(t) = T(t)p, then
A"y € C((0,00), LP(R2)) for every integer n > 0. Moreover |07 A u(t)|| < Ct="+)||p||L» for all
t > 0, where C' is a constant depending on m and n. By applying Theorem 1.4.15, we obtain that if
¢ € LP(Q) for some 1 < p < 00, then A™u € C*((0,00), LI(2)), for all p < ¢ < 00, ¢ > 1. Moreover,

N (1 1

107 AMu(t) | e < Ot~ F G || 1o,

for all ¢ > 0, where C' is a constant depending on m and n.

(ii) The conclusion of Corollary 1.4.17 does not hold for p = co. To see this, consider ' CC Q and let
o =1g € L*(Q) N L>®(Q). Given t > 0, it follows in particular from Theorem 1.4.8 that u(t) € C(f).
Therefore, ||u(t) — ¢|lre~ > 1/2; and so, u € C([0,00), L°(f2)). However, we have the following L*°

regularity result.

Proposition 1.4.22. Let (T'(t));>0 be as in Theorem 1.4.8, let ¢ € LP(2) for some 1 < p < oo, and let
u(t) =T(t)p. Then A™u € C*((0,00), L>=(2)), for every nonnegative integer m. Moreover,

|07 A (@)l < Ot~ 5 g 1,
for all t > 0, where C' is a constant depending on m and n.

Proof. Note that we need only prove the continuity properties, since the estimates then follow from Re-

mark 1.4.21 (i), by letting ¢ T co. We proceed in two steps.

Step 1. u € C((0,00),L>*(f2)). Lete > 0andletty,t > e. We have u(t)—u(to) = T(e)(u(t—e)—u(top—e));
and so, by Theorem 1.4.15,

lu(t) = ulto)llz= < (4me) NP Ju(t — &) — ulto — &) Lo

Since u € C([0,00), LP(?)), it follows that u € C([e, 00), L*°(£2)). Hence the result, since ¢ is arbitrary.
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Step 2. Conclusion. Given ¢ > 0, it follows from Remark 1.4.21 (i) that A™T"u(e) € LP(Q2) for every

n

d
nonnegative integers m,n. Since dTnAm“(t +¢e) = T(t)A™ ™ u(e) (see Corollary 1.3.18), it follows from

Step 1 that A™u € C™((g,00), L*>(2)). Hence the result, since e, m and n are arbitrary. O

Under the assumptions of Proposition 1.2.32, the operator A defined by (1.2.22) defines a semigroup
of contractions in Cy(f2). The following result shows that this semigroup coincides with the semigroup

generated by the heat equation in L2(2), on L2(2) N Cy(Q)

Proposition 1.4.23. If N > 2, suppose that every x € 9 has the exterior cone property. Let (T'(t))i>0
be as in Theorem 1.4.8 and let (S(t)):>0 be the semigroup of contractions in Cy(2) generated by —A, where
A is the operator defined by (1.2.22). Then, T(t)p = S(t)p for every ¢ € L?(2) N Co(Q) and every t > 0.

Proof. By density (see Proposition A.3.58), we need only show the result for ¢ € D(2). Set u(t) = S(t)e
and let T > 0. Since D(2) C nr;OD(A”)7 it follows from Corollary 1.3.18 that A™u € C*°([0, 00), Cy(£2))
for every nonnegative integer m. In particular, given any Q' CC Q, we have ujg € C°°([0,00), H*(€')) (see
Proposition A.4.10). On the other hand, since u € C(]0,00), Co(2)), 0<%J<T{u(t)} is in a compact subset
of Cp(2). Tt follows easily (apply Lemma A.3.48) that for every ¢ > 0, there exists a compact subset K
of Q such that (u(t) —e)" is supported in K. Consider now Q' CC € such that K C Q. It follows that
(u—e)T € C([0,T), H}(€')). Therefore, by Lemma A.3.63,

%/Q/[(u(t) - = 2/,(u(t) —e)tuy = 2//(u(t) — &)t Au

and so, there exists a constant C' such that
[[(u — E)+||L°°(O,T;L2(Q/)) +[IV(u— 5)+HL2(0,T;L2(Q/)) <Cll(¢ - 5)+||L2(Q’)-
Since (u — €)™ is supported in ', this implies
[ (u — €)+||L°°(O,T;L2(Q)) + IV (u — 5)+||L2(O,T;L2(Q)) <Cll(¢ - 5)+||L2(Q)- (1.4.11)

Note that (u—e)* 1 ut as e | 0. Therefore, it follows from (1.4.11) and the monotone convergence theorem

that ut(t) € L?(Q) and that (u(t) —e)* Eﬂﬁ(t) in L2(Q) for every t € [0,T)]. Since (u — &) is bounded
g

in L>°(0,T; L?(2)) by (1.4.11), it follows from Theorem A.2.20, that u™ € L>(0,T; L*(2)) and that

/t(u(t) —e)to(t) dt — /tu(t)+9(t) dt,
0 0

in L2(Q) as € | 0 for every 6§ € C.((0,7)). It follows also from (1.4.11) that (u — €)* is bounded in
L?(0,T; H}(Q)). By Remark A.2.19 (i), there exists a sequence (£, )n>0 and v € L*(0,T; H}(Q2)) such that
(u—en)t = vin L2(0,T; H}(Q)), from which it follows (see Lemma A.2.21) that ut = v € L2(0,T; H}(Q)).

Applying this result to —u, we obtain as well that u= € L?(0,T;H}(2)); and so, u = vt —u~ €
d7l
L?(0,T; H(Q)). Applying this result to v(t) = dt: = S(t)A"p for arbitrary integers n, it follows that

u € W™2((0,T), H (Q)) for any n. Therefore, u € C°°([0,T], Hi(2)). Since T is arbitrary, we obtain
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u € C°([0,00), H}(R)), and since u; = Au for all t > 0 and u(0) = ¢, it follows from Theorem 1.3.34 that
u(t) = T'(t)p. Hence the result. O

Corollary 1.4.24. If N > 2, suppose that every x € 9 has the exterior cone property, and let (T(t))i>0
be as in Theorem 1.4.8. If ¢ € L*(Q2) and if u(t) = T(t)¢, then u € C°°((0,00),Co(Q?)), and in particular
u € C([e,00) x Q) for every € > 0. If furthermore ¢ € Co(£2), then u € C([0,00),Co(R)), and in particular
u € C([0,00) x Q).

Proof. We proceed in several steps, and we use the notation of Proposition 1.4.23.

Step 1. If ¢ € Cp(2), then u € C([0,00),Cp(£2)). This follows immediately from Proposition 1.4.23, since
S(t)p € C([0,00),Co(2)) by construction.

Step 2. If ¢ € L%(Q), then u € C((0,00),Co(Q2)). Consider (p,)nen C D(2) such that ¢, — ¢ in
L2(Q), and set u,(t) = T(t)¢n. Given e > 0, it follows from Proposition 1.4.14 that [|u(e) — upe)||r~ <
(4me) N4 — pnllL2. Since un(g) € Co(Q), it follows easily that u(e) € Co(2) and the result follows from
Step 1.

Step 3. Conclusion. By Step 1, it remains to show that, given ¢ € L2(), we have u € C°°((0, 00), Co(2)).
Let n € N and ¢ > 0. It follows from Theorem 1.4.8 that A"u(e) € L*(Q). Therefore, by Step 2 and

dn
formula (1.3.6), ﬁ € C((e,00),Co(€2)). This completes the proof, since n and ¢ are arbitrary. O

By Proposition 1.4.23, (T'(t)):>0 can be extended to a semigroup of contractions in Cy(£2) provided 2
is smooth enough. Set

M(Q) = Co(Q)".
We now extend (T'(t));>0 by duality to M(Q).

Theorem 1.4.25. If N > 2, suppose that every x € 0f) has the exterior cone property. Given any
p € M(Q), we define S(t)p € M(QQ) by

(S, YY) a),co = (0, T()V) Mm(9),Co (1.4.12)

for all p € Cy(Q2). (S(t)p is well defined by Proposition 1.4.23.). The following properties hold.
(i) S(t)p =T(t)p for allt > 0, if ¢ € LP(Q) for some 1 < p < o0, or if p € Cy(N).

(ii) If u(t) = S(t)p for all t > 0, then u € C((0,00)LP(Q)) for all 1 < p < oo and u € C((0,00)Cy(12)).
Moreover,

_N(1_-1
lu(®)llr < @nt)~FO=5) gl aray, (1.4.13)
forallt >0 and all 1 < p < oo.

(iii) If u is as above, then u € C°°((0,00) x Q) N C*((0,0), H} () and u satisfies the equation

up — Au =0, (1.4.14)
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in (0,00) x Q, and
/Qu(t)wﬁ wa, (1.4.15)
for all ¢ € Cy(Q).
(iv) If v € C((0,00), H3 (22)) N C((0,00), L' (Q2)) satisfies the equation (1.4.14) in H=1(Q) for all t > 0, and
satisfies the initial condition (1.4.15), then v(t) = S(t)p for all t > 0.

(v) If Q is bounded and if p,, — ¢ in M(Q) weak-, then S(t)p, — S(t)p for all t > 0, in Cy(Q2).
n—oo

n— oo

Remark 1.4.26. In view of property (i) of Theorem 1.4.25, we will denote by (T'(t))¢>o the family (S(¢)):>o-

Remark 1.4.27. Note that (T()):>0 is not a semigroup of contractions on M (2), because it does not
satisfy the continuity property S(t)p o in M(Q) for all ¢ € M (). Indeed, let ¢ € M(Q) and suppose
that T'(t)¢ e in M(Q2). Since T'(t)p € LY(Q) for all t > 0 and L*(f) is a closed subspace of M (), it
follows that ¢ € L'(Q) and T'(t)¢p P in LY(Q2). Thus, if o € M(Q) but ¢ & L'(Q), then T(t)p does not

converge to o in M().

Remark 1.4.28. Let o € 2 and let d,, be the Dirac mass at xg. We have d,, € M (), so that T'(¢)d,,
is well defined.

Remark 1.4.29. Note that the boundedness assumption in property (v) is essential. Consider for example
Q= R and let ¢, = 1¢,nq1). We have ¢, — 0 in M(R) weak-x. On the other hand, T'(t)p,(z) =
T(t)po(xz — n) does not have any strong limit in LP(Q) for any p > 1.

Proof of Theorem 1.4.25. (i) Let ¢,9 € D(Q2). It follows from Remark 1.4.7 that

(S V) ar),co = (0 TV m(),00 = (0, T(@) D)2 = (T()p, )2 = (T() @, V) ar),co-

(i) now follows by density and the estimate of Theorem 1.4.15.

(ii) Let ¢ € M(2) and ¢ € D(2). We have by (1.4.12) and Theorem 1.4.15

(T, V) a0l < @@ ITOBl e < @rt)™F =5 ol 191l (1.4.16)

for allt > 0 and all 1 < p < oco. Let p > 11. We deduce from (1.4.16) that S(t)p € LP(Q2) for all t > 0 and
that estimate (1.4.13) holds for all p > 1. Letting now p | 1 we deduce that S(t) € L'(Q2) for all ¢ > 0 and
that (1.4.13) holds for p = 1. The regularity properties of (ii) now follow from Corollaries 1.4.17 and 1.4.24.

(iii) The regularity of u and the equation (1.4.14) follow from (ii) and Theorem 1.4.8. Let ¢ € Cp(Q).
We have

/Qu(tﬁ/) = (S(t)p, VI m(),co = (0, TOV) M(2),00 ﬁ«P?w)M(Q),COv
since T'(t)y ﬁw in Cy(€2). This proves (1.4.15)
(iv) Let v be as in (iv). Given 0 < £ < t < 00, we have by Theorem 1.4.8 v(t) = T(t — €)v(e); and so,
(v(t), V) me)co = (v(E), Tt —&)¥)nm),con
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for every ¢ € Cp(R2). We let £ | 0, and we observe that by (1.4.15) v(e) e in M () weak-x and that
€
T(t—e)yp T T(t)y in Cy(R2). Therefore,
€

(), V) m).co = (0 TV m@),00 = (SE)0, V) m(0),000
which implies that u(t) = S(t)e.

(v) Suppose ¢, el in M(Q) weak-+. It follows from (1.4.12) that S(t)¢y, 2 S(t)e in M(Q)
weak-x, and in particular in D’(2). Note that sup ||¢n|[ar(n) < co. Therefore, it follows from (1.4.13) and
Theorem 1.4.11 that (S(t)¢n)n>0 belongs to ani(())unded subset of H}(2), hence to a compact subset of
L?(Q). In particular, S(t)p, e S(t)e in L?(Q) for every t > 0. It follows from Theorem 1.4.15 that
S(t)pn = S(t/2)S(t/2)on — S(t/2)S(t/2)p = S(t)g in L>(2). 0

We describe below some decay properties as t — oo of (T'(t)):>o-

Theorem 1.4.30. Assume that || < oo, let Ay > 0 be defined by (1.2.28), and let (T'(t));>0 be as in
Theorem 1.4.8. Then, |T(t)||z(r2) < e~ for all t > 0.

Proof. Let ¢ € D(Q2) and set u(t) = T'(t)p. It follows from Theorem 1.4.8 and Corollary A.3.54 that

Dt = 20u0), we () -1 = 2u(t), Su(t)) g - = 2 VD)3

and so, by (1.2.28) and Proposition A.4.34,

d
U@z < =2Mlu@)lIZ:

Integrating the above differential inequality, we obtain ||u(t)[|2. < e 2*%||¢||2.. The result now follows by

density. O

Remark 1.4.31. Instead of assuming [2] < oo in Theorem 1.4.30, one may assume as well that Q is

bounded in one direction, or more generally that € verifies the assumptions of Remark A.3.38 (i).

Corollary 1.4.32. Assume that |Q] < oo, let Ay > 0 be defined by (1.2.28), and let (T'(t));>0 be as in
Theorem 1.4.8. For every 1 < p < oo, there exists a constant C,, such that | T(t)p| » < Cpe=*| ]|, for

ArlQ2/N

every t > 0 and every ¢ € LP(2). In addition, one can take C' = e~ =

Proof. Suppose first that p < co. By density, we need only show the result for ¢ € D(2). Consider ¢, > 0.

For t < tg, it follows from that
IT®¢llLe < lellpe = etfee g L < eX0e™ ]|

Next, if p > 2, it follows from Theorems 1.4.15 and 1.4.30 that

1 1

Tl e < (dmto)~F G| T(t - to)|| 12
FETDeMtoe g 1

1_1
< ((amta) N210) "7 AN .
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If p < 2, one obtains as well
_(i_1
IOl <19~ DT ()| 2
< 10" G=3)eXto et T (1) 12

1

—(i_1
o () I

IO 2/N
and the result follows by taking t, = % For p = oo, apply the result for finite p then make p T oco.
™
(Note that, for example, L>(Q) — L2(€), so that T(t) is well defined for ¢ € L>(12).) O

Remark 1.4.33. Note that one can never take C, = 1 if p # 2 (see Cazenave and Haraux [29], Corol-
laire 3.5.10 and the remark that follows).

When (2 is bounded, one can express the solution of the heat equation in terms of the decomposition
of the initial value on the basis of L?() of the eigenvectors of —A in Hg (). More precisely, we have the

following result.

Proposition 1.4.34. Let (\,)n>1 be the family of eigenvalues of —/\ in H} (), let (¢, )n>1 be a Hilbert
basis of L*(Q)) made of eigenvectors (see Section A.4.5), and let (T(t));>0 be as in Theorem 1.4.8. Given

o € L3(), set a, = (p,¢n)r2 for all n > 1, so that ¢ = Zangon, and let u(t) = T'(t)p. Then, u(t) =

n=1
o0
Z ane*)‘"tgon, for all t > 0.
n=1
k
Proof. Consider an integer k > 1. Given a family (an)1<n<k, let ¢ = Z ann and set
n=1

k
u(t) = Z anei)\nt‘ﬁm
n=1

for ¢ > 0. Since (¢n)n>1 C HL(Q), it follows that u € C°°([0, 00), H}(2)) and that u(0) = ¢. Furthermore,

k k

du _ _

priai g ane M \pon = E ane M A, = Au;
n=1

n=1

and so, u(t) = T'(t)p by Theorem 1.4.8. The result follows easily, since the set

k
U {Zanﬁﬁn; (an)lgngk C ]Rk}

k>1 (n=1

is dense in L?(Q). O

Remark 1.4.35. Note that the results of this section are true as well in the corresponding spaces of
complex-valued functions, as follows easily by considering Reu and Imu. The only exception is Theo-

rem 1.4.12 that does not make sense anymore. (See Section A.4.6 and Remark 1.2.33.)

Remark 1.4.36. We can apply Proposition 1.3.13 to show that if Q and ¢ have some symmetry properties,

then T'(t)¢ has the same properties. For example, assume that @ C RY is symmetric with respect to the
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hyperplane {xy = 0}. Let w be the corresponding symmetry, i.e. wx = (x1,...,2xy_1,—2y). Define the op-
erator L € L(L?(Q)) by Lu(z) = u(x)—u(wz). Considering the operator A on L?(2) defined by D(A) = {u €
HY(Q); Au € L2(Q)} and Au = Awu for u € D(A), straightforward calculations show that A and L fulfill the

assumptions of Proposition 1.3.13. Therefore, if ¢(x1,...,25) = @(x1,...,2Ny-1, —TxN) almost everywhere,
then u(t) = T(t)p verifies u(t,x1,...,2n5) = u(t,z1,...,2y-1,—2xN) almost everywhere for all ¢ > 0. By
considering Lu(z) = u(x) + u(wx), one shows as well that if p(x1,...,25) = —p(21,...,TN_1, —2n) almost
everywhere, then u(t) = T'(t)y verifies u(t, z1,...,xn) = —u(t,z1,...,2N—_1, —zN) almost everywhere for all

t > 0. By considering the rotations, one shows that if ) is a ball centered at the origin and if ¢ is spherically

symmetric, then u(t) is also spherically symmetric.

1.4.3. Schrédinger’s equation.  Throughout this section, € is an arbitrary open subset of RY. For
some of the results, we will make further assumptions on 2 which we will specify. We will apply the results
of Section 1.3 to the examples of Section 1.2.3, in order to solve the initial value problem for the Schrodinger
equation iu; + Au = 0.
Consider the operator A defined on H~1(Q) by (1.2.23), that is
D(A) = Hy(%),
{ Au = —iAu, for all u € D(A).

It follows from Proposition 1.2.34 that A is skew adjoint. Therefore, —A is the generator of a group of
isometries on H~1(Q), which we denote by (T'(t));er. On the other hand, the operator B defined on L?((2)

by (1.2.24), that is
{ D(B) = {u € Hy(Q); Lu € L*(Q)},

Bu = —ilwu, for all u € D(B),
is skew adjoint by Proposition 1.2.35. Therefore,—B is the generator of a group of isometries on L?(2),

which we denote by (S(t)):er-
Lemma 1.4.37. With the above notation, T(t)p = S(t)p for all t € R and all ¢ € L?(Q).

Proof. Since G(B) C G(A) as subsets of H~1(2) x H~1(2), the result follows from Proposition 1.3.4(see
the proof of Lemma 1.4.5). O

Remark 1.4.38. Since (T'(t))¢cr and (S(t))scr coincide where they are both defined, that is on L2(Q), we
will by denote also by (T'(t)):cr the group of isometries generated by —B.

Theorem 1.4.39. Let A and (T(t))icr be as above. Given p € H(Q), set u(t) = T(t)p for t € R. Then,
the following properties hold:

(i) we C(R,HL(Q))NCHR, H~1(Q)) and u is the unique solution of problem

tug + Au =0 for all t € R,
(1.4.17)
u(0) = ¢;
in that class; moreover, ||u(t)||g-1 = ||¢llg-1, [[u(®)]rz = ||l¢llrz and ||Vu(t)||rz = [|[Vel||Le for every

teR;
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(ii) if furthermore Ay € L?*(Q), then u € C1(R, L*(Q)) and Au € C(R, L*(Q)); moreover, ||Au(t)||z: =
|A@||L2 for every t € R;

(iii) if furthermore there exists a positive integer m such that Ny € HY(Q) for all 0 < j < m — 1 and
A™p € L?(Q), then Nu € C™I(R, L3(Q)) for all 0 < j < m; moreover, ||ANu(t)| g2 = [|[Ad¢] e for

everyt € R and every 1 < j < m.

Proof. Since D(A) = HZ () with equivalent norms (Proposition 1.2.17), the first part of property (i)
follows from Corollary 1.3.28. Since (T(t));cr is a group of isometries in both H~1(Q2) and L?(f2), con-
servation of the H~! and L? norms follow. On the other hand, it follows from Proposition 1.3.4 that
T(t)Ap = AT(t)p. Therefore, T(t)Ap = Au(t); and so, Therefore, T(t)(—Ap + @) = —Au(t) + u(t). It
follows that || — Au(t) + u(t)||g-1 = || — D¢ + ¢||g-1. By property (iii) of Remark A.4.4, this implies
that [[u(t)||z: = [l¢llg. Since [lu(t)[|r2 is conserved, conservation of [|[Vu(t)|[z2 follows, which completes
the proof of (i). Property (ii) follows from Lemma 1.4.37 and Corollary 1.3.28 applied to the operator B.
Finally, property (iii) follows from Remarks 1.1.30 and 1.2.23 (ii), and Corollary 1.3.18. O

Remark 1.4.40. One can apply Corollary 1.3.20 (or even Corollary 1.3.22) to obtain existence and unique-
ness of solutions to (1.4.11) when ¢ € L?(Q) or ¢ € H~1(Q) (or even in larger spaces). However, the spaces
in which lies the solution may be complicated. For example, if ¢ € L?(£2), the solution is unique in the class
C(R,L*(Q))NCHR,Y) where Y = (D(B))* in the duality D(B) — L*(Q) — (D(B))*. Note that A defines
a continuous mapping L?(Q) — Y by (Au,v) = Re/QuA@da:, for all u € L?(Q) and all v € D(B).

When 2 satisfies certain regularity assumptions, we have better regularity properties. Some of these

properties are described in the following result.

Theorem 1.4.41. Let A and (T(t))er be as in Theorem 1.4.39. Given ¢ € H=(Q), set u(t) = T(t)p for
t € R. Then, the following properties hold:

(i) if Q has a bounded boundary of class C? and if ¢ € H?(2) N H3 (), then u € C(R, H2(Q) N H(Q)) N
CH(R, L*());

(ii) if Q is bounded with boundary of class C*, and if p € C>(Q) satisfies the compatibility relations
u=Au=---A"u=---=0 ondQ, then u € C*(R x Q).

Proof. If ¢ € D(B), then it follows from Lemma 1.4.5 that u € C(]0,00), D(B)) N C*([0, ), L*()).
Since D(B) — H?(Q) whenever  has a bounded boundary of class C? (Remark 1.2.36), property (i)
follows. Finally, if ¢ € QOD(B"), then it follows from Corollary 1.3.17 that u € QO C*°(]0,00), D(B™)).

Hence property (ii), by applying Remark 1.2.23 and Sobolev’s embedding theorem. O

Remark 1.4.42. Note that the compatibility relations of property (ii) of Theorem 1.4.41 are necessary

conditions if u € C*°([0,00) x ). Indeed, we have u = di: =... = dt:j =.--=0on (0,00) x 9. Since
dn
W:f = " /A", the compatibility relations follow.
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Remark 1.4.43. When € is bounded, one can express the solution of Schrodinger’s equation in terms of
the decomposition of the initial value on the basis of L?(£2) made of the eigenvectors of —A in H}(Q). More
precisely, let (A, )n>1 be the family of eigenvalues of —A in HJ (), let (¢n)n>1 be a Hilbert basis of L?(12)

made of eigenvectors (see Section A.4.5), and let (T'(t));>0 be as in Theorem 1.4.39. Given ¢ € L?(Q), set
an = (@, on)r2 for all n > 1, so that ¢ = Zancpn, and let u(t) = T(t)p. Then, u(t) = Zane*“‘"t@n, for
n=1

n=1

all £ > 0. See the proof of Proposition 1.4.34.

Remark 1.4.44. We can apply Proposition 1.3.13 to show that if 2 and ¢ have some symmetry properties,
then T'(t)¢ has the same properties (see Remark 1.4.36).

1.4.4. Schrédinger’s equation in RY. We devote a section to Schrédinger’s equation in the special

case 0 = RY, since in this case many more properties of the equation are known.
Lemma 1.4.45. Let ¢ € S(RY). Ifu € C(R;S(RY)) is defined by
w(®)(€) = PE)e ™ M for all ¢ € RV,

then
u(t) = Sy x ¢, forallt #0,

with

i|z|?

Sy(x) = (4mit)~N/2e 7T

. _iNmw
where we set i~N/2 = e~ 5",

The proof relies on the following lemma.
Lemma 1.4.46. Let z € C verify Rez > 0. If p € S(RY) is defined by
pE) = e 1™ for e € RY,

then

2
IEd]

plz) = (4mz)~N/2e~ = for x € RV,
where we set 2~ N/2 = |2|N/2e= " | if z = |2|e with —7/2 < 0 < 7/2.
Proof. Let
() = / exp(—me®|E|?) dE, for —m/2 <0 < 7)2.
RN

Integration over RY of identity V - (exp(—me®?|¢[?)¢) = exp(—me|¢|?)[N — 2me?|¢|?] shows that ¢ solves

iN6

N
the differential equation ¢'(6) = f%go(e); and so, p(0) = e~ "z ¢(0). Since it is well known that ¢(0) = 1,

we find ¢(f) = e~ "2". Therefore, if we set z = |z|ei® with —7/2 < 6 < 7/2, then
—4n?z|€)? _ —N/2 _ —N/2
/ e d§ = (4m|z|)""/7p(0) = (4mz)~ /" (1.4.18)
RN
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Next, note that
p(z) = / 62772’90-567471'22\&2 de.
]RN

Integrating over RY identity

2
V(2o ) = dri (;I

— + 2mix - f) 62””56_4”2ZIE|2,
z

where the divergence is with respect to &, it follows that

|z

@ Vplz) = -7

p().
Therefore, if we fix z € RN and if we set

f(s) = p(sx), for s >0,
|z

then f solves the ordinary differential equation f'(s) = 5
z

sf(s); and so,

2
pla) = £(1) = F(0) = [ et g
RN
The result now follows from (1.4.18). 0

—

Proof of Lemma 1.4.45. It is clear that the function ¢ +— wu(t) is continuous R — S(RY); and so,

u € C(R;S(RY)). Consider t # 0. Given & > 0, define u. by

—

U (8)(€) = P(E)e 4™ HE” for all ¢ € RY.

It is also clear that u. € C(R;S(RY)). It follows from the dominated convergence theorem that uj(\t)
converges to u/(t\) in L2(RM), as ¢ | 0; and so, u.(t) converges to u(t) in L?(RY) as e | 0. In particular,
there exists a sequence &, | 0 such that wu. () converges to u(t) almost everywhere in RV, as n — oo.
Furthermore,

ue(t) = F-1 (@(_)e—4w2(i+e)t|~\2> —px Fl <6—47r2(i+€)t|.|2) :

=2

and so, by Lemma 1.4.46, u.(t) = K.(t) x ¢, where K.(t) = (4n(i + ¢)) /2”75 . Therefore, by the

dominated convergence theorem, u.(t) converges pointwise to S; * ¢, as € | 0. Hence the result. O

Corollary 1.4.47. If ¢ € S(RY) and if u(t) = T(t)p for all t € R, then
u(t) = Sy x ¢, for allt # 0,
with S; as in Lemma 1.4.45.

Proof. Set v(t) = u(t), for all t € R. We have v € C(R; L>(R")). Furthermore, since iu; + Au = 0, it
follows that
ive(t, &) — 4m?u(t, €) = 0.
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Integration of the above differential equation in ¢ for every £ € RY yields
AL, €) = v(t, &) = e 4™ el 3, (1.4.19)

The result now follows from Lemma 1.4.45. O

Remark 1.4.48. It follows immediately from formula (1.4.19) that for every ¢ € S(RY), we have T'(-)p €
C(R,S(RY)). By duality, T(¢) can be extended to S'(RY), and T(-)p € C(R, S’ (RY)) for every ¢ € S'(RY).
Furthermore, if ¢ € H*(RY) for some s € R, then u(t) = T(t)¢p verifies u € joj) CI(R, H* =21 (RN)), as follows
immediately from formula (1.4.19) and the definition of the Sobolev spaces H*(RV) by the Fourier transform.

Corollary 1.4.49. For every t # 0, define the dilation operator D, by Dyu(x) = (4mt)~N/?u (%) and
7r

x|
the multiplier M; by M;(z) = et Then,
T(t)p = i N> M, Dy (F(Myp)),
for all t # 0 and all p € L2(RY).

Proof. By density, we need only establish the result for ¢ € S(RY). In this case, it follow from Corol-
lary 1.4.47 that

Jz—y|?

T0)p(w) = (rit) ™2 [ =T oty dy

=2 s .
— N2 (4et) N2 / e 2l ) Vel o(y) dy.
RN

Hence the result. O

The above formulation is the basic step for establishing the following fundamental estimate for Schro-

dinger’s equation in R¥:

Theorem 1.4.50. Let 2 < p < oco. If ¢ € L2RN) N LF'(RN) and u(t) = T(t)g, then u € C(R\
{0}, L?(RY)). Moreover,
(@) 1z0 < (nlel) ™3 ol e, (1.4.20)

for all t # 0.
Proof. It follows from Corollary 1.4.49 that
[u(®)llze = |1 De(F M)l -
An easy calculation shows that ||Diul/rr = (47rt)_N(%_%) lu]|r; and so,
lu(®)llz» = (amt) ™3| F M o

Therefore,

_ 1_ 1 _ 1_ 1
()| e < @rt) VG2 Mygl| = (4mt) VG2 g L,
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which proves estimate (1.4.20). To prove continuity, consider (¢n)nen € S(RY) such that ¢, — ¢ in
L2RN) N LY (RN) as n — co. We have T(-)p, € C(R;S(RY)); and so, T(-)¢, € C(R; LP(RY)). Fur-
thermore, it follows from (1.4.20) applied to ¢, — ¢ that T'(-)¢, — u(-) converges to 0 in C((—oo, —¢| U

[e,00); LP(RYN)) for every € > 0. Hence the result. O

Lemma 1.4.51. Consider 1 < p,q < oco. If F € L(LP(RN), LY(RY)), then 2 < ¢ < oo and p = ¢'.

2
lz]

1z . It follows from Lemma 1.4.46 that

Proof. Given z € C such that Rez > 0, let p,(z) = (47z)"N/%e™
alz|?

—N/2 __alz?
p.(€) = e=*"#I" | Therefore, if 2 = a + ib with a > 0, then |p.(z)| = (47r(a2 + b2)1/2) e @+ and

9= (&) = e~4malel® Ap easy calculation shows that

w|z

Nl=
3=

”ﬁZ”L — _N(1,1_ a? ( - )
m:(q Vapl/pyN/2(47q)~ ¥ (5+5-1) L . (L421)

Note that if (i) holds, then the right-hand side of (1.4.21) must remain bounded independently of a > 0 and

1 1
b € R. First fix ¢ > 0 and make b — oco. If 5 o > 0, then the right-hand side of (1.4.21) goes to oo, which
p

1 1
is a contradiction. Therefore, p < 2. Take now b = 0. If — 4+ — # 1, then the right-hand side of (1.4.21) goes
p q

to oo as a | oo or as a | 0. Therefore, p = ¢/, which completes the proof. O

Remark 1.4.52. Tt follows from Theorem 1.4.50 that for every ¢ # 0, one can extend by continuity 7'(¢)
to an operator of L(LP (RN), LP(RN)) for every 2 < p < oco. It follows easily from Proposition 1.4.47 and
Lemma 1.4.51 that if p,q are such that T(t) € L(LY(RY), LP(RY)) for some t # 0, then one must have
2 < p < oo and g =p'. This is a major difference between Schrodinger’s equation and the heat equation
(c.f. Theorem 1.4.15). Furthermore, note that estimate (1.4.20) does not hold in a bounded domain (if
p > 2). Indeed, if T(t) € L(LP (), LP(Q)) with |Q| < oo, then in particular T(t) € L(LP' (Q), L*(Q)). Tt
follows that I = T'(—t)T(t) € L(L? (), L*(2)), which is absurd.

The following result, which is known as Strichartz estimate (see Strichartz [93]), is a consequence of
estimate (1.4.20). The proof, which makes use of estimates for the nonhomogeneous problem, is given in
Section 1.6 below. (We do not give the original proof of [93], but we follow the much simpler proof of Ginibre

and Velo [56].) Before stating the estimate, we make the following definition.

Definition 1.4.53. We say that a pair (q,r) of real numbers is admissible if the following holds:

i) 2<r< 2<r<oc0if N=1,2<r<oc0if N=2);

N -2

(ii) (ZI:N(;—i) (and so, 2 < ¢ < 0).

In particular, the pair (00, 2) is always admissible.

Theorem 1.4.54. For every ¢ € L?(R"™) and for every admissible pair (q,r), the function t — T(t)p
belongs to L4(R,L"(RY)) N C(R, L?(RY)). Furthermore, there exists a constant C, depending only on q
such that

ITC)ell e,y < Cllelle,
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for every ¢ € L2(RY).

Remark 1.4.55. Theorem 1.4.54 describes a quite remarkable smoothing effect. Indeed, for all ¢t € R,

T(t)L? = L?. In particular, given t # 0 and p € (2, ), there exists a dense subset E, of L? such that

2
N -2
T(t)p & LP, for every ¢ € E,. However, it follows from Theorem 1.4.54 that for every ¢ € L?, T(t)p € L,
for almost all ¢ € R. Note that by the preceding observation, the restriction “for almost all £ € R” cannot

2
be reduced to “for all ¢t # 0” in general. Note also that by considering a sequence (p,)n>0 C [2, n2) such
> _

as n — 00, it follows that given ¢ € L2, there exists a set N, C R of measure 0 such that

that 2N
at p, —
=N

2
for every t € R\ N, one has T'(t)¢ € LP for every p € |2, ﬁ) (p€2,00],if N=1).
. . . o 2N
Remark 1.4.56. We do not know if the estimate of Theorem 1.4.54 holds in the limiting case r = N_3’
q = 2. However, a similar estimate holds with the space and time integration reversed. More precisely, we

have
~ N—2
+00 ~N—z2 2N
L] weara)a) < clple,
RN —o0
2 N . .
for every ¢ € L*(R"), that is HUHL%(RN,L?(R)) < C|l¢llr2 (see Ruiz and Vega [90]).

2N
Corollary 1.4.57. Let o € HY(RY) and let r € (2, m) (r e (2,00), if N=2,1€ (2,00], if N =1).
Then, |[T(t)gl|e — 0, as £ — %oc.

Proof. Let ¢ be such that (¢,r) is an admissible pair (see Definition 1.4.5). It follows from Gagliardo-
Nirenberg’s inequality (see Theorem A.3.44 and Remark A.3.45) that there exists C such that for every
t,s € R,

q—2

2 -2
l[u(t) = u(s)llr < Cllu(t) — uls)|| f l|ult) —uls)ll 2 -
Since p € H'(RY), it follows from Theorem 1.4.39 that u(t) is bounded in H*(R™); and so,

a=2
[u(t) = u(s)]|r < Cllu(t) = uls)lls -
Furthermore, u; = iAu is bounded in H~}(RY); and so, there exists C' such that (see Lemma A.3.60)

lu(t) = u(s)lz= < OJt — s|*/2.

Therefore,

q—2
1 <Ot — |5

[[u(t) — u(s)|

In particular, v : R — L"(RY) is uniformly continuous. The result now follows from the property u €

LR, L"(RY)) (Theorem 1.4.54), since ¢ < oo. O

We now study a different smoothing effect. One verifies easily with the formula of Corollary 1.4.47 that
for every ¢ € L*(RY) with compact support, the function (¢,z) — T(¢)p(z) is analytic in (0, +00) x RY. In

other words, T'(t) being essentially the Fourier transform (see Corollary 1.4.49), maps functions having a nice
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decay as |z| — oo to smooth functions. We now establish precise estimates describing this smoothing effect,
which will enable us to prove similar results in the nonlinear case. Let us first introduce some notation. For
j€{l,---,N}, let P; be the partial differential operator on RN*1 defined by

Oju

Pju(t,z) = (z; + 2it0;)u(t, ) = zju(t, ) +
0x;

(t, ). (1.4.22)

For a multi-index o, we define the partial differential operator P, on RN*! by

N

P =] P

i=1

Furthermore, for z € RY, we set

Consider a smooth function u : RV*! — C. A direct calculation shows that

Pju(t,z) = 2ite' 1 5\ T,

L

from which it follows by an obvious iteration argument that

Rwuﬂgz(%wﬂd4tDa(a“$u). (1.4.23)
We have the following result.

Theorem 1.4.58. Let a be a multi-index. Let ¢ € L*(RY) be such that x*¢ € L*(R"), and let u(t) =
T(t)p € C(R,L%(RY)). The following properties hold:

(i) T(t)z%p = P,u(t), and in particular Pyu € C(R, L?(RN)) and ||Pau(t)||r2: = ||x%¢||12 for all t € R.

(ii) Da<eiifu@OeECUR\{an%RNDand

|z|2

@)D (e-iituu)) o = 2%l

for every t # 0.

Proof. By density, we need only establish the result for ¢ € S(RY), in which case both u and P,u
belong to C(R,S(RY)) (see Remark 1.4.48). A direct calcularion shows that [P,,id; + A] = 0, where [-, -]
is the commutator bracket. Therefore, P,u is also a solution of Schrodinger’s equation; and so, P,u(t) =
T(t)P,u(0) for all t € R. (i) follows, since P,u(0) = x*p. Property (ii) follows from property (i) and
identity (1.4.23). O

Remark 1.4.59. Property (i) of Theorem 1.4.58 means that T'(¢t)z* = P,T(t).

Corollary 1.4.60. Letp € L?>(RY), and assume that for some nonnegative integer m, we have (1+|z|™)p €

L?(RYN). Then, e*i%u(t) € C(R\ {0}, H™(RY)), and if k is the integer part of m/2, we have

we () C/(R\{0}, H P (RY)).

loc
0<j<k
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In particular, if (1 + |z|™)¢ € L?(RY) for every nonnegative integer m, then u € C*(R \ {0} x RY).

|=|2 2|2
Proof. The H™-regularity of eii%u(t) follows from Theorem 1.4.58. Since ¢/ € C>*R\ {0} x R™),
it follows that u € C(R\ {0}, H]7.(R™)). The regularity of the time derivatives follows from the equation.o

Corollary 1.4.61. Let o € L?(R") be such that |- |o(-) € L*(RY), and let u(t) = T(t)¢. The following
properties hold:

(i) The function t +— (x + 2itV)u(t,x) belong to L1(R, L™ (RY)) for every admissible pair (q,7);

2N
ﬁ) (r € [2,00), if N =2, 7 € [2,00], if N = 1), we have u € C(R/{0}, L"(RY))
and there exists C, depending only on r and N such that

(i) for every r € [2,

_ 1_ 1
1 < CIITVGEH) (gl 2 + lzellze),

[[u(?)]

for every t # 0.
Proof. It follows from identity (1.4.22) and Remark 1.4.59 that
(x4 20tV)u(t,z) = T(t),

where ¢ (z) = zp(z); and so, property (i) follows from Theorem 1.4.54. Consider now the function v(¢, x) =

z|2
eﬂ%u(t,x). It follows from Theorem 1.4.58 that Vv € C(R/{0}, L2(RY)) and that

IVo(®)llzz < Ol Izl e

The result now follows from Gagliardo-Nirenberg’s inequality, since |u(t, )| = |v(t, z)|. O

Finally, we describe a third kind of smoothing effect, of Sobolev type. It says that for every ¢ € L2(RY),
T(t)p belongs to HIIO/CQ(]RN ) for almost all ¢ € R. It was discovered simultaneously by Constantin and
Saut [30], Sjolin [92] and Vega [95]. See also Ben Artzi and Devinatz [11], Ben Artzi and Klainerman [12],
Kato and Yajima [67] for further developments, as well as Kenig, Ponce and Vega [70] for a related smoothing

effect. A typical result in this direction is the following (see Ben Artzi and Klainerman [12] for a rather

simple proof).

Theorem 1.4.62. There exists a constant C' such that for every ¢ € L?2(R™N), u(t) = T(t)p verifies

+o0 1
/ /RN W\Pu(t,x)F dz dt < O[3,

where P = (I — A)Y/4 is the pseudo-differential operator defined by Pu(¢) = (1 + 472 |€)2) M Au(€).

1.4.5. The wave equation. Throughout this section,  is an arbitrary open subset of RY. For some
of the results, we will make further assumptions on 2 which we will specify. We will apply the results of

Section 1.3 to the examples of Section 1.2.4, in order to solve the initial value problem for the wave equation
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ug — Au = 0 or the Klein-Gordon equation u; — Au + m?u = 0. Consider H = H}(Q) x L*(Q) with its
natural scalar product, and define the operator A on H by
{D(A) = {(u,v) € H,Au € L*(Q) and v € H}(Q)},

A(u,v) = (—v, —Au+ u), for all (u,v) € D(A).
It follows from Proposition 1.2.40 that A is skew-adjoint. Therefore, —A is the generator of a group of
isometries (T'(t))tcr. Furthermore, it follows from Corollary 1.2.42 that, with the notation of Theorem 1.1.31,
H_y = L*(Q) x H~'(Q) with equivalent norms, and A_1) is the operator B defined by

{D(B) = Hy(Q) x L*(9),

B(u,v) = (—v,—Au + u), for all (u,v) € D(B).

Therefore, (T(t)):er can be extended to a group of isometries on L?(Q) x H (), which we still denote by
(T'(t))ter- We have the following result.

Theorem 1.4.63. Let (T(t))ier be as above. Given (¢,v) € H(2) x L?(Q), set T(t)(¢, %) = (u(t),v(t)).
The following properties hold:

(i) uw e C(R,H}(Q) N CYR, L3(2)) N C*(R, H~1(Q)) and u is the unique solution of the problem

Uy — Au+u =0 for all t € R,
(1.4.24)
u(0) = ¢, w(0) =1,
in that class. Furthermore, v = u; and
[t +[Vutt. ) + a2y do = [ (0@ + Vo) + o)) do (1.4.25)
Q Q

for all t € R;
(i) if furthermore Ny € L?(2) and ) € H (), then in addition Au € C(R, L3(R2)) and u € CH(R, H}(Q))N
C?(R, L?*(Q)) and
J Ao + Sut,af + [Vutt.)P do = [ (Vola) + Sple) + [Vo@)P o, (1420)
Q Q

for all t € R.

Proof. Since (p,%) € D(B), it follows that (u,v) € C(R, H} () x L*(Q)) N C*(R, L3(2) x H~(Q)) and
that (u,v) is the unique solution in that class of the equation (uy, v¢) + B(u,v) = 0 with the initial condition
(u,v)(0) = (¢, ). Therefore, (u,v) is the unique solution of the system

Uy =0,

v — Au~+u =0,

u(0) =, v(0) =1.
The first part of property (i) follows. Since v = wy, the conservation law (1.4.25) follows from the property

[(w, 0) (Ol zr 52 = 10, V)| 2wz (T'(2))eer is a group of isometries in H}(Q) x L2(£2)). Under the assump-
tions of (ii), we have (p,v) € D(A); and so, (u,v) € C(R, D(A)) N C*(R,H), from which the first part of
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property (ii) follows. It remains to establish the conservation law (1.4.26). Note that T(t).A = AT(t) (see
Proposition 1.3.4). Therefore, [|A(u,v)(®)||g1xz2 = [A(@, V)| g1 xL2; and so,
J AT+t = Sl = [ (V0P + 4?4l = AP do.
It follows that
/Q{|Vut|2 +u? +u? — 2ulu + Au?Y dx = /Q{|V77/1|2 + 9% + 0% — 200 + Ap?} da.

The result now follows from the above identity, after integrating by part the terms —2uAu and —2pAp (see
identity (A.3.17)) and substracting identity (1.4.25). O

Remark 1.4.64. One can obtain higher order regularity and higher order conservation laws by applying

Remark 1.2.45 and 1.1.30, and Corollary 1.3.18.

When 2 satisfies certain regularity assumptions, we have better regularity properties. Some of these

properties are described in the following result.

Theorem 1.4.65. Let (T(t));er be as above. Given (p,1) € H}(Q) x L?(Q), set (u(t),v(t)) = T(t)(p, )
for t € R. The following properties hold:

(i) If Q has a bounded boundary of class C* and if ¢ € H?(Q) and ¢ € H}(Q2), then u € C(R, H*(2) N
Hi(Q)) N CHR, Hy(Q)) N C*(R, L*());

(i) if  is bounded with boundary of class C*°, and if p,1) € C*(Q) satisfy the compatibility relations
u=Au=-A"w=---=0andv=A~Av=---A"v=-.-=0 on 0, then u € C(R x Q).

Proof. Property (i) follows from Theorem 1.4.63 (ii) and Remark 1.2.41. If (p,9) € QOD(A”), then

it follows from Corollary 1.3.17 that (u,v) € QO C*°(]0,00), D(A™)). Hence property (ii), by applying
Remark 1.2.45. - 0

Remark 1.4.66. Note that the compatibility relations of property (ii) of Theorem 1.4.65 are necessary

— d dr
conditions if u € C*°([0,00) x Q). Indeed, we have u = ditL =...= dt: =.--=0on (0,00) x 9Q. Since
d2n d2n+1 d2n
Y A Duand S Y= V(AT ", the compatibility relations follow.
dt2n dt2n+1 dth

We now extend the previous results. Let A; > 0 be defined by (1.2.28), and let A > —X\;. (Note that if
Q is bounded (or bounded in one direction), then it follows from Poincaré’s inequality that A\; > 0, so that

we can chose A = 0.) Consider on H{(f2) the equivalent norm

lull = ( RO w}dx)m.

We still consider H = H}(Q) x L?(£2), but with the scalar product associated with the above norm on H}(Q),

and we define the operator A on H by
{D(A) = {(u,v) € H,Au € L*(Q) and v € H}(Q)},
A(u,v) = (—v, —Au+ M), for all (u,v) € D(A).
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It follows from Proposition 1.2.43 that A is skew-adjoint. Therefore, —A is the generator of a group of isome-
tries (T'(t)):er. Furthermore, it follows from Proposition 1.2.43 that, with the notation of Theorem 1.1.31,
H_1 = L*(Q) x H~'(Q) with equivalent norms, and A(_y) is the operator B defined by

{D(B) = Hy () x L*(9),

B(u,v) = (—v, —Au + Au), for all (u,v) € D(B).

Therefore, (T(t)):er can be extended to a group of isometries on L?(Q) x H~1(2), which we still denote by
(T'(t))ter- We have the following result.

Theorem 1.4.67. Let (T(t))er be as above. Given (p,1) € Hg(Q) x L*(Q), set T(t)(¢, ) = (u(t),v(t)).
The following properties hold:

(i) uwe C(R, H}(Q))NCHR, L?(Q)) N C?*(R, H1(Q)) and u is the unique solution of the problem

Uy — Au+ Au =0 for all t € R,
(1.4.27)

u(0) =, u(0) =1,

in that class. Furthermore, v = u; and

[t + [Fult,2) + e, 2} do = [ (0@ + V(@) + Ap(a)*}
Q Q

for all t € R;
(ii) if furthermore A € L?(Q) and ¢ € H} (), then in addition Au € C(R, L?(Q)) and u € CH(R, HZ ()N

C?(R, L?*(Q)) and

/Q{\Vut(um)P + Au(t, z)? + N\ Vu(t,z)]*} do = /Q{\Vz/)(x)|2 + Ap(x)? + AVe(x)|?} dr,

for all t € R.
(iii) If Q has a bounded boundary of class C? and if p € H?(Q) and ¢ € H}(Q), then u € C(R, H*(Q) N
Hg () N CH(R, Hy () N C*(R, L*(Q));

(iv) if Q is bounded with boundary of class C*°, and if ¢, € C°°(Q) satisfy the compatibility relations
u=Au=--ANu=--=0andv=~Av=---A"w=---=0o0n Y, thenu € C*°R x Q).

Proof. The proof is easily adaptated from the proofs of Theorems 1.4.63 and 1.4.65. O

Remark 1.4.68. One can solve problem (1.4.27) for any value of the parameter A, even for A < —Aj.

Indeed, (1.4.27) is equivalent to
{utt—Au—i—u: (1= XNu,

u(0) = ¢, uy(0) = 1.
This can be written in the form

U, + AU = F(U),
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with U = (u,v) and A the operator associated with A = 1. Here F'(u,v) = (0,(1 — A)u). Since F' is linear,
it is in particular globally Lipschitz, and it follows from the results of Chapter 2 that this problem can be
solved. The mapping (v, ¥) — (u(t),us(t)) defines a continuous group (T(t))icr, which is not of isometries
in general (see Section 1.7.1). With this notation, all the conclusions of Theorem 1.4.67 hold for any value
of A. The conclusions of Theorem 1.4.70 and Corollary 1.4.72 below also hold for any value of A (the proof

is the same).

Remark 1.4.69. One can obtain higher order regularity and higher order conservation laws by applying

Remark 1.2.45 and 1.1.30, and Corollary 1.3.18. Note also that the compatibility relations of property (ii)
of Theorem 1.4.65 are necessary conditions if u € C*°(]0,00) x §2). Indeed, we have u = ditl == dt:

= (A — AI)™v, the compatibility

2n d2n+ 1 U d2n1}

. d“"u, n
-+ =0 on (0,00) x . SlnceW:(A—/\I) uandW:W

relations follow.

One of the most important features of the wave equation is the finite speed propagation phenomenon.
It says that if © contains the ball B(xg,Tp), then the values of the solution in the cone {(¢,z) € [0,Tp] x
Q; | — x| +t < Ty} are determined only by the initial values in the ball B(xg,Tp). This phenomenon is

described in the following theorem.

Theorem 1.4.70. Let (T(t))ier be as in Theorem 1.4.67. Let Ty > 0 and zo € ), and assume that
B(zo,Tp) = {|lv — x| < To} C Q. Let (p,¢) € Hi(Q) x L?() and let u be the corresponding solution
of (1.4.27). If ¢ and v vanish almost everywhere on B(xg,Ty), then u vanishes almost everywhere on the

U B(xo, Ty — |t]) = {(t,x) € (—Ty,Tp) X Q; |z — < Ty — |t]}.
COHe_T0<t<TO (o, To — [t]) = {(t,2) € (=To, To) |z — o — [t}

Proof. Without loss of generality, we may assume that zo = 0. Assume first that u € C?([0,Tp] x ), so
that the equation uy — Au + Au = 0 holds everywhere in [0, Tp] x Q. Multiplying the equation by u;, we

obtain

0 (1, 0 (1 2 _
a <2Ut) -V- (utVu) + a <2|VU ) + duuy = 0,

which we rewrite in the form

0 (0 IV ) = V- (0 Vu) + (1= Nuu

Given 0 < t < Tp, we integrate the above identity on B(0,Ty — t). It follows that

;/B(O%_t) %(uf + |Vu|? +u?) = (Ty —t)N ! /SN?1 v [usVu)((To — t)€)] d€ +/ (1— Nuug,

B(0,Th—t)

where SV~ is the unit sphere of RV and v is the outward unit vector at SV~!. Given a smooth function

o(t,x), note that

d — d [T N-1
dt 5010 ot o) dor = %/0 rt T dr /SN*1 o(t,r€) dE
- Gt e = =0 [ ot (0 - 09 de
B(0,To—t) .
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Therefore,
1d
2dt Jpo,1—1)

1
—f(To—t)N_l/ (u? + |Vul® + u? — 2u,Vu - v) (L, (Ty — t)§) df—i—(l—)\)/ UU.
2 SN—1 B(0,To—t)

(uf + [Vul* +u?) =

Since |2u;Vu - v| < 2|u; Vu| < u? + |Vul?, it follows that

1d

1—A
—— (u? + |Vu* +u?) < (1—/\)/ uy < !/ (u? +u?).
2dt Jpo,m—t) B(0,To—t) 2 B(0,To—1)

Integrating the above differential inequality, we obtain

/ (uf + |Vul> + u?)(t,2) d < e'l_’\“/ (uf + | Vul®> +u?)(0,2) dz
B(0,To—t) B(0,T,) (1.4.28)

— el / (62 + [Vl + ¢2)(x) d,
B(O,Tg)

for all t € [0,Tp]. Let now m > 2 + g, so that H™ (2) C C?*(Q). It follows from Remark 1.2.45 that
D(A™) C C?*(Q)2. Given (p,%) € HF(Q) x L*(Q2), it follows from Remarks 1.1.29 and 1.1.30 that there
exists a sequence (¢, ¥,) C D(A™2) such that (p,,10,) — (@, 1) in HE (2)x L2(Q) as n — oco. On the other
hand, if we set (u,v,) = T(t)(pn,¥n), it follows from Corollary 1.3.18 that (u,,v,) € C%([0, ], D(A™)),
so that u, € C2([0,Ty] x Q). Applying (1.4.28) to u,, and letting n — oo, it follows that inequality (1.4.28)
holds for every (¢,%) € H}(Q) x L?(Q) (note that u,, — u in C([0,Tp], H(Q)) N C1([0, Tp], L*(2))). The
result for ¢ > 0 follows, since the right-hand side of (1.4.28) vanishes when ¢ and 1 are as in the statement
of the theorem (with z¢ = 0). Since the equation is time reversible (i.e. it is invariant under the change of
variable ¢t — —t), it follows that u(—t) is the solution of the problem (1.4.27) corresponding to the initial

values (¢, —1), and this proves the result for ¢ < 0. O

Remark 1.4.71. Theorem 1.4.70 says that if (¢1, 1) and (@2, ¥2) coincide almost everywhere in B(zg, Tp),
then the corresponding solutions uy, ug of problem (1.4.27) coincide almost everywhere in the cone {(¢,z) €
(0,Tp) x € |z — zo| + |t| < To}. To see this, take (¢, 1) = (p2 — ¢1,%2 —1). In other words, it means that
u(t,z) depends only on the values of ¢ and v in the ball B(z,|t|), as long as B(z, [t|) C Q. When N > 3 is
odd, there is even a stronger property in the case A = 0 (see Remark 1.4.68); namely, u(t,z) depends only
on the values of ¢ and 1 in the sphere S(z, |t|) = {(t, z); |x| = |t|}, as long as S(z, |t|) C Q. This property
is called Huygens’ principle (see Courant and Hilbert [33]).

Corollary 1.4.72. Letzg € Q, let R > 0 be such that B(zg, R) C Q and set T = sup{r > 0; B(zg, R+7) C
Q}. Let (p,%) € HY(Q) x L*(Q) and let u be the corresponding solution of (1.4.27). If ¢ and 1 are supported
in the ball B(xq, R), then u(t) is supported in the ball B(xzo, R + [t|) for all t € (=T, T).

Proof. We proceed in two steps. We first establish the result when 2 = R¥, then in the general case.

Step 1. The case Q = RY. We need to show that u(t) vanishes almost everywhere on the ball B(y, p) for
every y € RV and p > 0 such that |zg—y| > R+|t|+p. By assumption, we have B(y, p+|t|)NB(zg, R) = 0. Tt
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now follows from Theorem 1.4.70 that u(t) vanishes almost everywhere on the ball B(y, p+[t|—|t|) = B(y, p)-

Hence the result.

Step 2. The general case. Let ¢, and u be as in the statement. Define @, {Z; by

@ on €, - ¥ on €,
p= and ¢ =
0 on RV \ Q, 0 on RV \ ,

It is clear that @,¢ € L%(RY), and it follows from Proposition A.3.25 that 3 € H'(RM). Let ()
be the solution of (1.4.27) with @ = RY with the initial values (#,1). It follows in particular that
u € C(R,H (RY)) N CY (R, L*(RY)) N C*(R, H~Y(RY)). Finally, let w(t) = u(t)jq. It follows that w €
C(R,HY(Q)) N CYR, L*(N)) N C*(R, H~1(R2)). Furthermore, it follows from Step 1 that w(t) is supported
in the ball B(xq, R+ |t|) for |t| < T. Therefore, by Proposition A.3.28, w € C(R, H}(Q)). Finally, it is clear

that w solves the following problem.
{wtt—Aw—i—/\w:O
w(0) = ¢, w(0) = 1.

Therefore, w(t) = u(t) for |t| < T, by uniqueness. This completes the proof. O

Remark 1.4.73. When Q = R" | one can establish L — L9 estimates for the solutions of problem (1.4.27).

The proofs are based on sharp Fourier analysis, and are much more difficult than the proof of Theorem 1.4.50.

(i) A typical estimate is the following. Let ¢ = 0, ¢ € L%(R") and let u be the corresponding solution
of (1.4.27) with A > 0. There exists a constant C' independant of ¢ such that

N-1
Hu(t)H avt1y < O|t|7 N+1 ||1/1|| 2N+
L N-1 N1

for all t € R\ {0}. See Marshall, Strauss and Wainger [78] for a complete study of these properties.

(ii) One can obtain estimates of the solution of the wave equation (i.e. when A = 0, see Remark 1.4.68) in

homogeneous Besov spaces. For example,
_(N— 1_1
u(®)ll s < ClmN DG D gl

for all ¢ # 0. Here, u is the solution of (1.4.27) with A = 0 and v = 0, 2 < r < o0 and § =

N+1/1 1
T+ <2 - > See Brenner [15] and Pecher [86] for these estimates. For the Klein-Gordon equation
,

(i.e. when A > 0), similar estimates hold with the homoheneous Besov spaces Bf 5 replaced by the Besov

spaces Bﬁz (see Brenner [16]).

Remark 1.4.74. One can obtain for the wave equation in RY (i.e. (1.4.27) with A = 0, see Remark 1.4.68)
estimates of the type described in Theorem 1.4.54. These estimates were discovered by Strichartz [93],
and are called Strichartz estimates. The simplest proof makes use of the estimates in the Besov spaces, as

described in Remark 1.4.73 (ii). A typical estimate is the following. Let 2 <7 < o00,2 < ¢g< oo and p € R

1 1 1 N+1/1 1
:p—1+N(—> and p—|—+(—)§1.
q r

satisfy

2 2 2 r
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For every (p,1) € HY(RY) x L2(RY), the solution u of (1.4.27) with A = 0 belongs to L(R, Bf)Q(RN), and
there exists a constant C' independant of (p, ) such that

ll oo,y < CUIVlz2 + 191152

(Note that for the Klein-Gordon equation, i.e. when A > 0, similar estimates hold with the homoheneous
Besov spaces Bfg replaced by the Besov spaces Bﬁ_’Q, see Brenner [16].) By applying Sobolev’s inequalities for

the homogeneous Besov spaces, one obtains estimates for space-time integrals of u. For example, if N > 3,

N 1 1 1
3 and let ¢ be defined by — = N (2 — > — 1. By applying the above estimate
q T

with p = 0 and since BS)Q(RN) — L"(RY) (see Bergh and Lofstrom [13] or the appendix of Ginibre and
Velo [56]), it follows that

<r<

16‘
N

ullLa@,Lry < CUVElL2 + 1] L2)-

See Ginibre and Velo [57, Lemma 2.2] for these questions.

Remark 1.4.75. When 2 is bounded, one can express the solution of problem (1.4.27) in terms of the
decomposition of the initial values on the basis of L?(2) made of the eigenvectors of —A in Hg (). More
precisely, let (A\,),>1 be the family of eigenvalues of —A in H}(Q), let (¢n)n>1 be a Hilbert basis of
L?(Q)) made of eigenvectors (see Section A.4.5). Given (¢,v) G(i{&(ﬂ) x L2(2), set a, = (¢, ¢n)r> and

b, = (¥, pn)rz for all n > 1, so that ¢ = Zangpn and ¢ = angan, and let u be the corresponding

n=1 n=1

solution of (1.4.27). Then,

u(t) = i <an cos (t A+ )x) + \/% sin (t An + A)) On,
n=1 n

for all £ > 0. See the proof of Proposition 1.4.34.

Remark 1.4.76. We can apply Proposition 1.3.13 to show that if Q2 and ¢, ¢ have some symmetry prop-
erties, then T'(t)(¢, ) has the same properties (see Remark 1.4.36).

Remark 1.4.77. Note that the results of this section (and of the following section) hold true as well in
the corresponding spaces of complex-valued functions, as follows easily by considering Reu and Imu (see

Section A.4.6 and Remark 1.2.46).

1.4.6. Stokes’ equation. In this section, we will apply the results of Section 1.3 to the examples of
Section 1.2.5, in order to solve the initial value problem for the Stokes equation. We begin with the stokes

equation in RY. Let N > 2, and consider the Hilbert space F = (L2 (RN))N. Let
X={ueFE;V-u=0}.

Here, the condition V- u = 0 is understood in the sense of distributions. X is a Hilbert space when endowed

with the scalar product of E (see Section 1.2.5). We consider the Stokes operator A defined by
D(A) = {ue (H2®RV)" N X; Aue X};
Au= —Au, for ue D(A).
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It follows from Theorem 1.2.47 that A is self-adjoint. Therefore, —A is the generator of a semigroup of

contractions in X which we denote (T'(t));>0. We have the following result.

Theorem 1.4.78. Let ® € X and set u(t) = T(t)®. Then u € C([0,0),X) N C((0,0),X), Au €
C((0,00), X), and u is the unique solution of problem
{ut—Auzo, for all t > 0,
u(0) =,

in that class. Moreover, A™u € C*((0,00),X) for every nonnegative integer m, and in particular u €

C>((0,00) x RN)N.

Proof. The result follows from Corollary 1.3.35, except for the last property u € C*((0,00) x RM)V,

which follows easily from Sobolev’s embedding theorem. O

Remark 1.4.79. Note that all the components u; of u solve the heat equation in RY; and so, we may
apply all the results of Section 1.4.2. In particular, (T'(t));>¢ verifies the conclusions of Proposition 1.4.14
with the spaces LP(R™) replaced by (L*(R™))V.

We now study the Stokes equation in a domain. Let © € RY be a bounded domain with boundary of
class C2. Let E = (LQ(Q))N, and let F = {u € (D(Q))"; V-u=0}. Let X be the closure of F in E. X is
also a Hilbert space with the scalar product of E. Let P : E — X be the orthogonal projection on X. We
consider the Stokes operator A defined by

D(A) = (H*(Q) N HH(Q)" N X;
Au = —P(Au), for ue D(A).
It follows from Theorem 1.2.49 that A is self-adjoint. Therefore, —A is the generator of a semigroup of

contractions in X which we denote (T'(t)):>0. We have the following result.

Theorem 1.4.80. Let & € X and set u(t) = T(t)®. Then u € C([0,),X) N C((0,0),X), Au €

C((0,00),X), and u is the unique solution of problem

u; — P(Au) =0, forallt >0,
(1.4.29)
u(0) = 2,
in that class.
Proof. The result follows from Corollary 1.3.35. O

Remark 1.4.81. Note that u € C([0,00), X) N C((0,00), X)NC((0,00), D(A)) solves problem (1.4.29) if
and only if there exists p € C((0, 00), H*(€)) such that

u; — Au+ Vp =0, forall t >0,
(1.4.30)

u(0) = &,
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Indeed, if u solves (1.4.29), given t > 0 let p € Y — H'(Q) (see Remark 1.2.50) be such that —Au+ Vp =
—u; € X. It follows from Remark 1.2.50 that the mapping u; +— p is continuous X — H'(Q), so that
p € C((0,00), H*(2)) and u solves (1.4.30). The converse statement follows by applying the projection P
to (1.4.30), since Vp € X1 (see Section 1.2.5).

Remark 1.4.82. The semigroup (T'(t));>o verifies the same LP — L7 estimate as the heat semigroup.
Namely,

1

_N(1_1
1T ¢llee < Ct=FG=D|p) 1,

for all t > 0 and for all 1 < p < ¢ < oo (see Coulhon and Lamberton [32]). The Stokes operator in LP (see
Remark 1.2.51) generates a bounded analytic semigroup (see Giga [51]). It seems that one does not know

whether or not this semigroup is of contractions.

1.4.7. Airy’s equation. In this section, we will apply the results of Section 1.3 to the examples of
Section 1.2.6, in order to solve the initial value problem for the Airy equation u; + gz = 0. Let X = L?(R),
and define the operator A on X by

D(A) = H*(R);
dS

7ﬁ, for u S D(A)
T

AU = —Upze =
It follows from Theorem 1.2.52 that A is skew-adjoint; and so —A is the generator of a group of isometries
(T'(t))ter on X. We have the following result.
Theorem 1.4.83. Let (T(t))ier be as above. Given ¢ € L*(R), set u(t) = T(t)p for all t € R. The
following properties hold:
(i) ue C(R,L*(R))Nu € CY(R,H3(R)), and u is the unique solution of the problem
Ut + Upze = 0, for all t € R,
(1.4.31)
U(O) =%
in that class. Moreover, ||u(t)||p2 = ||¢||r2 for all t € R;

(ii) If ¢ € H™(R) for some integer m > 0 and if p is the integer part of m/3, then

we N CHR,H™ P (R)),

0<j<p
. . _3 7 o
and equation (1.4.31) holds in H™ *(R). Moreover, ’—u(t)‘ = H— for all t € R and all
oxI L2 dad Il Lz
0<j<p.
Proof. The result follows from Theorem 1.2.52 and Remarks 1.2.53 and 1.2.54. O

Remark 1.4.84. One can show that T'(t)p = S; ¢ for all ¢ # 0, where the kernel S; is given by
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Here, Ai is the classical Airy function. It follows in particular from the above formula that [|T(¢)¢| L <
C’\t|_%<1_%) lloll s for all 2 < r < oo. (See Kato [63], Ginibre and Tsutsumi [55].) By applying this inequal-
ity, one obtains easily Strichatrz type estimates (the proof is an adaptation of the proof of Theorem 1.4.54).

Namely,

I1T()oll o, Lrm)) < Cllell 2,

2 1 2
forall2§7“§ooandallﬁgqgoosuchthatq=3<1—r>.

Remark 1.4.85. Airy’s equation has another remarkable smooting effect. For every ¢ € L%(R), T(t)p
belongs to H}'

loc

(R) for almost all ¢t € R. More precisely, setting u(t) = T'(t)p, we have the estimate

T 9y 1/2
sup </ ax(t,x)th> < Cllellze-

z€eR —00

It follows in particular that |u|r2m 1 (—r,r)) < Cll@|lL2 for all 0 < R < co. (See Kato [63], Kenig, Ponce
and Vega [70].)

Finally, we describe a third smoothing effect for the Airy equation.

Theorem 1.4.86. Let (T(t));cr be as above. Given ¢ € L*(R), set u(t) = T(t)¢ for all t € R. If there
exists b > 0 such that e*®¢(x) € L?(R), then e*®u(t) € C*°((0,00), H™(R)) for all nonnegative integers m.

In particular, u € C*°((0,00) x R).

Proof. Let (S(t))i>0 be the semigroup of the heat equation in Q@ = R, let (R(t))ier be the group of
translations defined by R(t)w(z) = w(z —t), and set v(t) = etbSS(bt)R(th)T(t)w with ¢ (z) = e"¢(z) €
L?(R). Since both (R(t));>0 and (T(t)):>0 are semigroup of contractions in L?*(R), it follows easily from
the smoothing effect of the heat equation that v(t) € C°°((0,00), H™(R)) for all nonnegative integers m.

Moreover, we have

3 _m
[o(@)][rm < Ce™ (]t]) ™% (|9 2. (1.4.32)

On the other hand, a direct calculation shows that v; + vgze — bUze + b2v, — b3v = 0. Therefore, if we set
z(t,x) = e P®v(t,x), then 2; + 24z = 0. In addition, 2(0) = ¢ in D'(R). Assume that ¢ € S(R). One
verifies (using the Fourier transform) that T'(-)y € C(R,S(R)), which implies easily that v € C(R,S(R)).
We deduce in particular that z € C(R, L?(R)); and so, z(t) = u(t). It follows that e*u(t) = v(t), and we
deduce from (1.4.32) that

3 m
le**u(t)l| < Ce' (blt]) =% [le* ]| 2

The general case (1 + e**)p € L?(R) follows from the above inequality and an obvious density argument. 0

1.5. Nonhomogeneous equations. Throughout this section, X is a Banach space, endowed with the
norm ||-||, and A is an m-accretive operator in X, with dense domain. We denote by (T'(¢));>0 the semigroup

of contractions generated by —A (cf. Section 1.3).
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Given T >0, x € X and f € C([0,T],X), we want to solve the following problem:

u € C([0,T], D(A)) N CY([0,T], X);

% + Au=f, for all t € [0,T7; (1.5.1)
u(0) = .

We begin with the following result (the variation of the parameter formula), which is fundamental.

Theorem 1.5.1. (Duhamel’s principle) Let T > 0, x € D(A) and f € C(]0,T),X). If u is a solution of
problem (1.5.1), then

¢
u(t) = T(t)x + / T(t—s)f(s)ds, (1.5.2)
0
for every t € [0, T].
Proof. Note first that the mapping s — T'(t — s)f(s) is continuous [0,¢] — X; and so, formula (1.5.2)

makes sense. Consider now ¢ € (0,T], and set w(s) = T'(t — s)u(s) for 0 < s < t. Given s < s+ h < t, we

have

. —
It follows from Definition 1.3.6 that

wisth) = wls) _ oy g py {“(”}2“(5) ) Iu(s)}-

w(s+ h) —w(s) , B
— h—w>T(t —s)(u'(s) + Au(s)) =T(t — s) f(s).

Since T'(t — -)f(-) € C([0,], X), it follows that w € C1([0,¢], X) (see Theorem A.1.16) and that w'(s) =
T(t — s)f(s). Integration over [0,¢] yields (1.5.2) for ¢ € (0,T]. On the other hand, it is clear that (1.5.2) is

verified for ¢ = 0. Hence the result. |

Corollary 1.5.2. Let T > 0, z € D(A) and f € C([0,T],X). Then, problem (1.5.1) has at most one
solution, given by formula (1.5.2).

Given T' > 0, z € X and f € C([0,T],X), it is clear that formula (1.5.2) defines a function u €
C([0,T],X). We will now establish sufficient conditions on z and f so that w is the solution of (1.5.1). Note
that it is necessary that z € D(A). However, this is not sufficient. Indeed, if (T'(t));>¢ is the restriction of a
group of isometries (U(t)):cr, take =0 € D(A), y € X, and set f(t) = T'(t)y. It follows that the solution
of (1.5.2) is u(t) = tT'(t)y. Therefore, if y ¢ D(A), it follows from Remark 1.3.29 that u ¢ C([0,T], D(4)).

In particular, 4 does not solve (1.5.1).

Lemma 1.5.3. Let T > 0, x € X and f € L'((0,T),X). Then, formula (1.5.2) defines a function
u € C([0,T],X). In addition,

ulleqo,r,xy < 1=l + £z 0,7),x)

for allz € X and f € L*((0,T), X).

Proof. The result is immediate if f € C([0,7],X). The general case follows from an obvious density
argument (cf. Remark A.2.18 (i)). O
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Proposition 1.5.4. Let T >0, f € C*([0,7]; X) and set
t
v(t) = / T(t—s)f(s)ds, for 0 <t <T. (1.5.3)
0

Then, the following properties hold:

(i) v e CY([0,T],X);

(i) v'(t) = f(0) + /Ot T(t—s)f'(s)ds, for all t € [0,T);
(iii) v € C([0,T], D(A));
(iv) v'(t) + Av(t) = f(¢), for all t € [0, T].
Proof. Note that

v(t) = /OtT(s)f(t—s)ds, for0 <t <T.

Properties (i) and (ii) follow easily. Let now 0 <¢ < T, and 0 < h < T —¢. Applying (1.5.3), we obtain

et o) Tt L f s )7 s (L5.4)

h h

Letting h | 0 and using the fact that v € C1([0,T],X), it follows that v(t) € D(A) and that v'(t) =
—Av(t) + f(t). Since f —v' € C([0,T],X) and G(A) is closed, it follows that v(T) € D(A) and that
Av(T) = f(T) — v'(T). Hence (iii) and (iv). O

Proposition 1.5.5. Let T > 0, f € C([0,T]; D(A)) and let v be defined by (1.5.3). Then, the following
properties hold:

(i) v € C([0,T], D(A));
t
(i) Av(t)(t) = / T(t — s)Af(s) ds, for all t € [0,T];
0
(iii) v € CH([0,T], X);
(iv) v'(t) + Av(t) = f(¢), for all t € [0,T).
Proof. (i) and (ii) follow from Corollary 1.1.12 (iii), Remarks A.2.18 (vii) and A.2.15 (iii), and Proposi-

tion 1.3.4 (iii). Letting h | 0 in formula (1.5.4) and using the fact that v € C(]0,T], D(A)), (iii) and (iv)
follow easily (cf. the proof of Proposition 1.5.4. O

Corollary 1.5.6. LetT >0,z € D(A), f € C([0,T]; X) and let u be defined by formula (1.5.2). If either
feCY[0,T],X) or f € C([0,T); D(A)), then, the following properties hold:

(i) u solves problem (1.5.1);

(ii) if f € C([0,T], X), then u'(t) = —T(t)Az + f(0) + /t T(t—s)f'(s)ds, for all t € [0,T];
0
(iii) if f € C(]0,T),D(A)), then Au(t) = T(t)Azx + /t T(t —s)Af(s)ds, for all t € [0,T].
0
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Proof. Note that u(t) = T(t)z + v(t), where v(¢) is defined by (1.5.3). Therefore, the result follows from
Propositions 1.3.4, 1.5.4 and 1.5.5. O

Theorem 1.5.7. Let T >0,z € D(A), f € C([0,T],X) and let u be defined by formula (1.5.2). If one of
the following properties hold:

(i) f€L1(<07T)7D(A>);
(ii) feWh((0,7), X);

then u Is the solution of problem (1.5.1).

Proof. Assume first that (i) holds. Let (f)n>0 C C*([0,T], D(A)) converge to f in L'((0,T),D(A)),
and let (u,)n,>0 be the corresponding solutions of (1.5.2). It follows from Lemma 1.5.3 that w, —u in
C([0,T], X). Furthermore, it follows from Lemma 1.5.3 and Corollary 1.5.6 (iii) that (un)n>0 is a Cauchy
sequence in C([0,T], D(A)). Therefore, u € C([0,T], D(A)), and u,, o in C([0,T], D(A)). On the other
hand, since u,, solves (1.5.1), u}, is a Cauchy sequence in C([0,7],X); and so, u,, — o' in C([0,T],X)
(cf. Corollary A.2.39). It follows that u solves problem (1.5.1).

If (ii) holds, let (fn)n>0 C C*([0,7],X) converge to f in WH1((0,T),X), and let (u,)n>o be the
corresponding solutions of (1.5.2). Applying Lemma 1.5.3, we find u,, o in C([0,7T],X). On the other
hand, it follows from Lemma 1.5.3 and Corollary 1.5.6 (ii) that (u,,)n>0 is a Cauchy sequence in C1([0, T, X).
Therefore, u € C1([0,T], X), and u,, —_ in C1([0, 7], X). On the other hand, since u, solves (1.5.1), Au,
is a Cauchy sequence in C([0,T], X). By closedness of G(A), it follows easily that v € C([0,T], D(A)), and

that u, — in C([0,T], D(A)). It follows that u solves problem (1.5.1). This completes the proof. O

Corollary 1.5.8. Let T > 0 and © € D(A). Consider a Lipschitz continuous function f : [0,T] — X, and
let w be defined by formula (1.5.2). If X is reflexive, then w is the solution of problem (1.5.1).

Proof. The result follows from Theorem 1.5.7 and Corollary A.2.38. O

Remark 1.5.9. Note that it is essential that X be reflexive in Corollary 1.5.8, as shows the following
example. Let X = L*(R), let A be the operator defined in Remark 1.4.2 (i) and let (T'(t));cr be the group
if isometries generated by —A. Let f(t) = T(t)1(o,1), for all ¢ € R. It follows from Remark 1.4.2 (i) that
f(t) = 1gq1). In particular, [|f(t) — f(s)|| < 2|t — s|, for all ¢, s; and so, f is Lipschitz continuous. The
function u defined by (1.5.2) with z =0 is

t
u(t) = / T(t)l(ojl) ds = tT(t)l(OJ) = tl(t,t+1)~
0
Note that D(A) = WH(R) € C(R). Therefore, u(t) € D(A), if t # 0. In particular, u does not solve (1.5.1).

Corollary 1.5.10. Let T > 0, x € X, f € C([0,T],X) and let uw € C([0,T], X) be defined by (1.5.2).
Consider the space X_1 and the operator A(_yy defined by Theorem 1.1.31. Then, u is the unique solution
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of the following problem:
u e C([0,T], X)NCYH[0,T]), X_1);
du
dt
u(0) = x.

+ A_yu = f, forallt € [0,T]; (1.5.5)

Proof. Apply Theorem 1.5.7 to the operator A_;). Uniqueness follows from Corollary 1.5.2, applied to
the operator A(_y). O

Remark 1.5.11. Theorem 1.5.7 means that, given x € D(A) and f € C([0,T], X), problems (1.5.1)
and (1.5.2) are equivalent under the extra assumption f € WH1((0,7), X)+ L*((0,T), D(A)). It can also be
useful to have equivalence of problems (1.5.1) and (1.5.2) under extra assumptions on u instead of f. This

is the object of the following result.

Proposition 1.5.12. LetT >0,z € X, f € C([0,T],X) and let u € C([0,T], X) be defined by (1.5.2). If

one of the following assumptions holds:
(i) ue C([0,T], D(A));
(i) u € C*([0, 7], X);

then u solves problem (1.5.1).

Proof. Let v(t) be given by (1.53). Since u(t) = v(t) + T(t)x, we deduce from (1.54) that

u —u . t+h
(t+h)—ut) _ T(h) Iu(t)+%/t T(t + h — s)f(s) ds.

h h

Then we argue as in the proofs of Propositions 1.54 and 1.55. O

Until now we have always assumed that f is continuous. However, note that formula (1.5.2) makes
sense if we assume only f € L*((0,T), X) (cf. Lemma 1.5.3). We have similar results in this case, which we

describe below.

Lemma 1.5.13. Let T >0,z € X and f € L'((0,T), X). If u solves the following problem:

uwe LY((0,T), D(A)) nW((0,T), X);

d
ditL + Au = f, for almost all t € (0,T); (1.5.6)
u(0) = x;

then w is given by (1.5.2) for all t € [0, T].

Proof. Note first that u € WH1((0,7T), X) — C([0,T], X); and so, condition u(0) = x makes sense. Also,
it follows from Lemma 1.5.3 that (1.5.2) makes sense. Given ¢ € (0,77, set w(s) = T(t — s)u(s) for 0 < s < ¢.
Given 0 < s <t — h, we have

w(s+ h) —w(s)
h

:T(t—s—h){“(”hf);“(s) - T(h;_lu(s)}. (1.5.7)
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Since

T(t—s— h)%u(s) — (¢~ ) Au(s) € L'((0,1), X),

and
T(h) -1

T = s — )=

u(s)|| < [|Au(s)|| € L1(0,T),

for almost all s (see Proposition 1.3.4), it follows from the dominated convergence theorem that

y—1
U T(t — ) Au,

in L'((e,t — ¢), X) for every ¢ > 0. On the other hand, it follows easily from Corollary A.2.36 that also

7t~ g,

in L'((e,t —€), X). Therefore,

w(-+h) —w() '
—— o Tt =) + Au) =T(t = )f,

in L1((e,t —¢), X) for every ¢ > 0. It follows easily that w € Wh((e,t —¢), X) and that w’ = T(t —-)f.
Since T'(t — -)f € L((0,t), X), it follows that w € W11((0,t), X) and that w’ = T(t — -)f. Integrating the
last identity between 0 and ¢, we obtain (1.5.2). O

Corollary 1.5.14. Let T > 0, z € X and f € L'((0,T),X). Then, problem (1.5.6) has at most one
solution, given by formula (1.5.2).

Lemma 1.5.15. Let T > 0, z € D(A), f € L'((0,T),D(A)), and let u be defined by (1.5.2). Then,
u e C([0,T],D(A)) and u solves (1.5.6).

Proof. It follows from Lemma 1.5.3, applied in the space D(A), that v € C([0,T],D(A)). Consider
(frn)nen C C([0,T], D(A)) such that f, e f,in L*((0,T),D(A)), and let u,, be given by (1.5.2) relative
to fn. It follows from Lemma 1.5.3 (applied in the space D(A)) that wu, o in C([0,T],D(A)). On the
other hand, it follows from Theorem 1.5.7 that u,, solves (1.5.1). Therefore,

u;:—Aun—i—fn — —Au+f,

in LY((0,7T), X). It follows from Remark A.2.29 that u € W((0,7T), X) and that u solves (1.5.6). O

Corollary 1.5.16. LetT >0,z € X, f € L*((0,T),X), u € C([0,T], X), and consider the space X 1 and
the operator A(_yy defined by Theorem 1.1.31. Then, u solves the following problem:

u e C([0,T], X)n W ((0,T), X _1);

d
d—? + A_pyu = f, for almost all t € (0,T); (1.5.8)
u(0) = z;

if, and only if u is given by (1.5.2).
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Proof. The result follows from Lemmas 1.5.13 and 1.5.15 applied in the space X _;. O

Corollary 1.5.17. Let T >0,z € X, f € L'((0,T), X) and let u € C([0,T], X) be defined by (1.5.2). If

one of the following assumptions holds:
(i) we LY((0,T),D(A));
(i) we WH((0,T), X);

then u solves problem (1.5.6).

Proof. Assume first that (i) holds. Then, it follows from Corollary 1.5.16 that

d
dit‘ = —A_yu+f=—Au+ f e L(0,T), X);

and so, u € WH((0,7),X) and u solves (1.5.1). Assume now that (ii) holds. Then, it follows from

Corollary 1.5.16 that A_jyu € L'((0,T), X). Applying Corollary 1.1.34, we find u € L*((0,T), D(A)). This

completes the proof. O

Corollary 1.5.18. LetT >0,z € X, f € L*((0,T), X) and let u € C([0,T)], X) be defined by (1.5.2). For
every 0 < s < T, we have
¢
u(t + s) =T (t)u(s) + / T(t—o0)f(s+0)do, (1.5.9)
0

for all t € [0,T — s]. Equivalently,
t
u(t) = T(t — s)uls) + / T(t - ) (o) do, (1.5.10)
for all t € [s,T).

Proof. It is clear that (1.5.9) and (1.5.10) are equivalent. Let v(t) be equal to the right-hand side of (1.5.9).

It follows from Corollary 1.5.16 that v is the unique solution of

veC(0,T —s], X)NWH(0,T — ), X_1);

% + A_1yv = f, for almost all t € (0,7 — s);
v(0) = u(s).

On the other hand, it it follows from Corollary 1.5.16 that u(s+ -) also solves the above problem. Hence the

result. |

Remark. Evidently, one could prove easily formula (1.5.9) by using only (1.5.2). However, our proof of

Corollary 1.5.16 explains quite clearly why (1.5.9) holds.

Remark 1.5.19. Assume that the operator —A is the generator of a group of isometries (7'(¢))icg. Then
all the results of this section hold if one replaces the interval [0,T] by the interval [—S,T] with S > 0. In
particular, formulas (1.5.2) and (1.5.6) hold for —S <¢ < T.
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1.6. Specific properties of various nonhomogeneous partial differential equations. We know
that the nonhomogeneous problem u; + Au = f can be solved, under appropriate assumptions on A and f

(see Section 1.5). We now investigate specific estimates of u, u; and Aw in various examples.

1.6.1. The heat equation. Throughout this section, § is an arbitrary open subset of RY. Consider the
operator A defined on L?(Q2) by

D(A) = {u € HA(); hu e @)},
{ Au = —Au, for all u € D(A).

It follows from the results of Section 1.4.2 that —A is the generator of a semigroup of contractions on L?(2),
which we denote by (T'(t)):>0. Moreover, (T'(t))¢>¢ is analytic and verifies the estimate ||T(¢)¢||Lr < ||| Lr
for all 1 < p < oo (in fact, (T'());>0 is a semigroup of contractions in LP(£2) for 1 < p < 0o). Therefore, for
every T < 0, 1 < p < oo and for every f € L'((0,T), LP(2)) the function

u(t) = /0 T(t—s)f(s)ds, (1.6.1)

belongs to C([0,T], LP(£2)) and is the weak solution of the problem

ug — Au = f,
ujpn =0,
u(0) = 0.

We have the following result.

Theorem 1.6.1. Let T > 0, 1 < p,q < oo and f € L1((0,T),LP(R2)). If u is defined by (1.6.1), then
u € WhHa((0,T), LP(Q)) and Au € LI((0,T), LP(2)). Moreover, there exists a constant C such that

llue|lLaco,r),20) + 1A Lac0,7),20) < CllfllLaco,r),L7),

for all f € LI((0,T), LP(Q)).

Proof. The result is an immediate consequence of the following abstract theorem. O

Theorem 1.6.2. Let Q be an open subset of RN and let (T(t));>0 be a semigroup of contractions on L*({2)

and let — A be its generator. Assume further that
(1) (T(t))e>0 is an analytic semigroup;
(ii) for all 1 < p < oo, |T(#t)¢|lLr < |¢llLes for all t > 0 and all ¢ € L?(Q) N LP(R).

Let 1 < p,q < oo and T > 0. For every f € L((0,T'), LP(2)), the function

u(t) = /O T(t — 5)f(s) ds

is well defined, u € C([0,T], LP(f2)). Moreover u € Wh4((0,T), LP(2), Au € L4((0,T), LP() and there

exists a constant C' such that

lwellLao, 1y, L0y + AUl Lao,1),0) < CllflLaco,),L7)s
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for every f € Li((0,T), LP(Q2)).

Proof. See Coulhon and Lamberton [31] and Lamberton [74]. O

Remark 1.6.3. The type of regularity property described in the above theorem is called “maximal regu-

larity”, since it implies that all the members of the equation u; + Au = f have the same regularity.

1.6.2. The heat equation with a potential. Here we consider the equation
— Au—a(t,z)u = f(t, ),
ujpn =0, (1.6.2)
u(0) = uyg,

under various assumptions on the potential a. We write equation (1.6.2) in the form

u(t) = T(t)uo + /0 T(t — s)(a(s)u(s) + f(s))ds, (1.6.3)

For simplicity, we assume throughout this section that || < oco.

If a(t,z) € L*°((0,T),L>())) many results concerning the heat equation extend to this case. In
particular, the smoothing effect LP(2)—L%(Q2) (Theorem 1.4.15) can be obtained by a very simple comparison
argument. Indeed, the solution u of (1.6.3) with f = 0 satisfies |u| < eXtv, where v(t) = T(t)|uo| and
K = |lall=(0,1)x)-

However, one can do better. A natural assumption is that a € L*>°((0,7), L°(Q2)) with o > 1, 0 > %
Indeed, there are two reasons why this assumption is natural:

First reason. Assume for simplicity N > 3. If one multiplies the equation (1.6.2) by u, one is lead to

T
//au2.
o Jo

This can be done using the following device: for all € > 0, there exists C(e) such that

/OT/Qau?gs/OT/Q|vu|2+C(s)/OT/Qu2

estimate

Indeed, by Hélder, we have

/au2 < lallzellull® 5 < llallzelull? o llullzz,
Q L

with 0 < a < 1, since 2 < 20’ < NQN

The desired conclusion follows from Young’s and Sobolev’s

inequalities. Finally, we choose ¢ = 1/2 and we obtain the estimates

lu(®)llzz < elullrz,

/ / Vul? < e flug|2s.

Similarly, if one multiplies by powers of u one can establish P — LY estimates as in the proof of Proposi-

tion 1.7.3.
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N
Second reason. The assumption that a € L*°((0,T), L7 (Q)) with 0 > 1, ¢ > 5 is also natural from

the point of view of the integral equation (1.6.3). Indeed, note that the operator

ur— U(u)(t) = /0 T(t — s)a(s)u(s) ds

is a bounded linear operator C([0,T], L1(2)) — C([0,T], L1(2)), for every q > o'. This follows from the fact
that

IT(¢ = s)a(s)u(s)|| e < (t =) 3 a(s) e [[u(s)] o,

and o > N/2.

The same reasonning applies if instead a € L((0,T), L°(f2)), or more generally, a € L*((0,T), L (Q2))+
L>=((0,T),L°()). This space contains all the spaces of the form L?((0,7T),LY(Q)) with v > N/2, v > 1
and 1 + — < 1 (since o can be arbitrarily chosen, o > N/2).

B 2y

Note that the above argument breaks down when o takes the critical value N/2. However, we will be

1 N
Z 4+ =1landvy>N/2,v>1.
5t v /2,y

Here, the key ingredient is to use the singular convolution estimates of Marcinkiewicz. Such an a belongs to

N N
LY((0,T), L>()) + L>=((0,T), L= (2)) but we cannot replace 5 by some o > 5

able to conclude in some “critical cases” when a € L?((0,T), L7(Q)) with

We first give a result of the form ||u(t)||r~ < Allugl|ze~ + Bl f|lz((0,7),). It will be useful for later

purpose to have an explicit dependence for A and B in terms of a and t.

N
Theorem 1.6.4. Let0<T < oo, let o > 50 > 1, and let a, f € L>®((0,T), L°(2)). Given ug € L (Q),
there exists a unique solution v € L>((0,T), L>()) of (1.6.3) on (0,T), and it satisfies

al| T - -4
||u(t)||Loo §2€Ct” o0 0,6y, ) (HU’OHLO‘J +t1 QUHf”LOO((O,t),L"))a (164)

20
20 — N’ )
Moreover, uniqueness holds in the class L*=°((0,T"), L7 (2)).

for allt € (0,T), with a =

Proof. We first show that (1.6.3) has at most one solution in L>((0,7),L° (Q)). (Note that au €
L>((0,T),L'(Q)), so that the equation (1.6.3) makes sense in L!(Q).) Indeed, if u and v are two solu-

tions, we have

t
HMﬂ—meﬂSCA(FﬂV7@7ﬁWW—UWU%
t
s01jt—@ﬁﬂmm4w—muw@

t
_ N
SQMManﬂjAU—@ 5w — o] e ds,

and it follows from Proposition A.5.7 that u = v.
We now prove that the equation (1.6.3) has a solution in L*°((0,T"), L>°(€2)). We apply the contraction
mapping principle to the map ® : L>((0,T"), L>°(Q)) — L*°((0,T), L>°(2)) defined by

@ (u)(t) = T(t)ug —|—/0 T(t — s)(a(s)u(s) + f(s))ds, (1.6.5)
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for t € (0,T). Note that

1@ (w)(t) = @(v)(B)][ L < C/O (t = )72 a(s)] o uls) = v(s)|| o~ ds

_N
< CT' 27 ||al| oo (0,1), L) 14 = 0l Low ((0,1), Lo%)-

Hence, ® is a strict contraction for example if

_ N
Cllall Lo (o,7),0)T" 27 <

Therefore, ® has a fixed point, which is a solution of (1.6.3). In this case, the conclusion of the theorem
follows with [Ju(t)||re < 2(J|uollre= + CTl_%”fHLoo((O’T)’La)). The general case follows by a standard
iteration argument. O
Remark 1.6.5. Let 0 < T < oo, let 0 > g and let 8 > 1 be such that % <1- 2& Let a,f €
LP((0,T), L7 (2)) and let ug € L>(£2). Then, there exists a unique solution u € L>((0,T), Log(Q)) of (1.6.3)

on (0,7, and it satisfies

Ctlla|* N1
(@) < 26”15 @) (Jugzoe + CEE T Flsgonnze)
o1 N 1 . . / .
forall t € (0,T), with — =1— % 3 Moreover, uniqueness holds in the class L°°((0,T"), L7 (2)). This is
W o

proved by the same argument as in Theorem 1.6.4.

The next result concerns the same equation (1.6.3) except that we now consider the case T = oo, and
we are interested in obtaining a bound for ||ul| s ((0,00),°¢). Note that (1.6.4) does not give any uniform

bound as t — oco.

N
Theorem 1.6.6. Let o > 5 > 1, and let a,f € L*((0,00),L7()). Let up € L*(N) and u €
L2 (0, 00), L7 () verify (1.6.3) for all t > 0. If u € L°((0,00), L()), then u € L°((0,00), L°(Q)) and

[l Lo ((0,00), L) < Aol 4+ C (Jull Lo (0,00),1) + [1F Lo ((0,00),27)) 5

where C' is independent of u.
Proof. It follows from (1.6.4) that

[ull 2o (0,13),£) < 4 (luollz= + [ fll = ((0,00),27)) »

for T7 > 0 small enough. Next, we have
t
u(t +s) =T (t)u(s) + / Tt —7)(a(s+1)u(s+7)+ f(s+ 7)) dr.
0
1 1 1
Let 1 < ¢ <r < oo be such that 5 = + —. It follows from Theorem 1.4.15 that
o
_N ¢ _N
[u(t + s)l|lzr < Ct727 |lu(s)llpa + C | (t =7)727 la(s + 7)|[zo uls + 7) [z~ dT
0

+c/0 (t = 7)1 f(5 + 7)|| o dr-
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Note that ¢ < o, so that

t
_N _N _N
/(t—T) 21 f(s + 7)llLa dr < CH 72 || fll oo ((0,00),7) < C 2 | fll oo ((0,00),27)5
0

for t < 1. From the generalized Gronwall inequality (Proposition A.5.7), we deduce that there exists C' such
that

_N
Jut + 8)[lr < Ct2 (luls)llLa + [ fll o> ((0.00).27))

for all s >0 and ¢ € (0, 1].

In particular, for any € > 0, there exists C such that for every 7 > 0,

ull oo (rte,00),27) < C ([ull oo ((ro00), 9y + 1| Lo ((0,00), L)) - (1.6.6)

Finally, let m = [o]. Starting from ||u[| s ((0,00),z1) and iterating m times the estimate (1.6.6), we find
||U\|Loc((%,oo),m) < C (JJull Lo ((0,00),21) + 1 F Il Lo ((0,00),17))

1
with1— = =" In particular, v > o. Applying finally (1.6.6) with ¢ = o and r = oo, we deduce
vy o

[l Loe 1y 00y, 250y < C ([l Loe ((0,00),L1) + [1F |22 (0,000,229 -

This completes the proof. O

We now return to the same equation (1.6.3) but on a finite interval [0, T], and we assume that ug € L1(2),

for some g < co. We study the smoothing effect.

N
Theorem 1.6.7. Let 0 <T < o0, let o > 50 > 1, and let a, f € L>=((0,T), L°(£2)). Given uy € LI(Q2),

1 < g < o0, there exists a unique solution v € C([0,T],L4(Q)) N L2 ((0,T), L>(2)) of equation (1.6.2).

loc

Moreover, there is a constant C' depending only on N, o, q, || such that u satisfies

@ N
(@)l < CeCMNimn oy (3 4 1) uollo + ' | flli= (0.2 (16.7)

N\ !
for all t € (0,T], with a = 1—2—
o

Uniqueness also holds in the class L°°((0,T), L9(Q2)) provided q¢ > o' (without having to assume u €

Lz ((0,T), L>(Q))).

loc

Proof. By a solution u € C([0,T], L9(2)) N L2.((0,T), L>(£2)) of equation (1.6.2), we mean that

loc

u(t) =T(t —e)u(e) + / T(t — s)(a(s)u(s) + f(s))ds for0<e<t<T, 168)

in LI(Q2).
u(t)ﬁuo in LI(Q)

Note that (1.6.8) makes sense for v € C([0,T7], L%(2)) N L2, ((0,T), L>°(Q2)). Furthermore, if ¢ > ¢’ and

u € L>=((0,7T),L9(£)), then au € L>((0,T), L'(2)), so that the equation (1.6.3) makes sense in L!(Q2) and

is equivalent to (1.6.8). We now proceed in six steps.
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Step 1. Uniqueness in the class L*((0,7"), L"/(Q)). The argument is the same as in the proof of Theo-
rem 1.6.4.

Step 2. We show that for every ¢ > 1, there exists a constant C' depending only on N, ¢, o, || such that
if ug € L>*(2) and if

1— N
CTy * lallze(o,m),L7) < 1,
then the solution v € L>((0,T), L>()) of (1.6.3) verifies
N
2 [Ju(t) |l < C(lluolls + tfllLe=(0,t),L2)), (1.6.9)
for all t € (0,T%).
1 1 1
Indeed, consider 1 < 0 < o, and let p € [0, 00] be such that 7= + —. We have
p o

t

N k N N
[u(®)][r <t ||uO||L9+/(t—8) 2“Ha(S)IILUIIU(S)HL»der/(t—S) 221 £ (s)ll e ds;
0 0
and so,

_N
[u(®)]|e <2727 [Juo] Lo

1
_N _N _ N N _N 1
#17% ([0 =) )l o 58 sp e ue)ae + 0 E 0 s~ o
0 <s<

Therefore, if
1—37 ! _N N 1
Ty |lallLe(0,11),L) (L—7) 2 3rdr) < g,
0
then

N 1
t27 [|u(t)||Le < 2l|uollre + 2t/Q% || fll Lo ((0,),L7)5 (1.6.10)

for all ¢t € (0,7%). A similar argument in the case § > o, p = oo shows that if

1-4% ! _N _N 1
Ty % |lalle(0.1,),07) ; (1—m)2mrvdr | <o,

then
N
20 [[u(t)|| L < 2l|uollze + 2t/ fll Lo ((0,t),L7)5 (1.6.11)

for all t € (0,71). If ¢ > o, then (1.6.9) follows from (1.6.11). If ¢ < o, then let m = [0/q]. Applying m

times the estimate (1.6.10) to ug, u(t/m),..., respectively, we find

Nm
t2e lu() |l < Clluollze + tll fllze(0,6),27));

1 1
with = — = = . Now v > o, and we conclude by applying (1.6.11).
q o

Y
Step 3. If ug € L>*°(QQ), then for every 1 < ¢ < oo the estimate (1.6.7) holds.  This is obtained by

combining Step 2 and (1.6.4).

Step 4. There exists C such that for every ¢ € [1, 00] and every ug, vy € L% (2), the corresponding solutions
u and v of (1.6.3) verify

lu(t) — v(t)]| Lo < 2eCMNE= 00,27 |lug — v 14,
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20
20 — N’
This is equivalent to the estimate

for all t € (0,7), with o =

Ju(t)]| g < 2eCHNNEe0.0.27) ||ug]| La, (1.6.12)
for the solution u of (1.6.3) with f = 0. We recall that, by Theorem 1.6.4, we have

(@)l < 267050029 [ | . (1.6.13)
We now prove, by a duality argument, that

lu(®)]| 2 < 2NNz 0.0, g (1.6.14)

Indeed, fix tg € (0,77, let ¢ € D(Q), and let w be the solution of

t

wt) = T(ty + / T(t - 5)(b(s)w(s))) ds,

for t € (0,tp), where b(t) = a(to — t). Setting v(t) = w(to —t) for 0 < t < ¢, it follows that v solves the

equation
— v — Av = av,

vjgn =0,

v(to) = 9.

Now if u is the solution of (1.6.3) with f = 0 and the initial value wug, we have

[/Q uv] : = /Oto /Q(uvt +u) = /Oto /Q(u(fAv — av) + v(Au + au))

to to
:/ /(—UAU—FUAU):/ /(Vu-Vv—Vv-Vu)zO.
0o Ja 0o Ja

(These calculations are valid provided ug and a are sufficiently smooth, and then the result is obtained for

general ug € L*(2) and a € L*°((0,T), L7(2)) by a density argument.) Therefore,
[ uttarp = [ wouwito)
Q Q

Jutto)la =sup { [ uto)us v € D) and o= <1}

< Juo || 1 Jw(to) || Lo

It follows that

< 2eCSHG‘Hz‘X’((O,tO),L°’) ||UO||L17
where the last inequality follows from (1.6.13). Since to € (0,7) is arbitrary, this proves (1.6.14). The

general case 1 < ¢ < oo now follows from (1.6.13), (1.6.14) and Riesz-Thorin’s interpolation theorem (The-
orem A.5.11).

Step 5. Existence in the class C([0,T], L(2)) N L2 ((0,T), L (€2)). Let up € L), and let (ug)n>0 C
L>(Q) be such that uy — wup in L9(2). Let u™ be the corresponding solutions of (1.6.3). It follows from
Steps 3 and 4 that u™ converges to a limit u in C'([0, 7], L9(2)) and in C([e,T], L>=°(£2)) for every 0 < e < T.

Therefore, u solves the equation (1.6.8) and satisfies the estimate (1.6.7).
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Step 6. Uniqueness in the class C([0,T], L(Q2)) N LS

loc

((0,T),L>°(2)). Let u and v be two solutions.
Given 0 < e < T, u(- +¢) — v(- + €) is the solution of the equation (1.6.3) with f = 0 and the initial value

u(e) — v(e), respectively. It follows from Step 3 that
lu(t + &) = v(t + &)z < Cellimom.en (¢35 4 1) u(e) - v(e) 2o,

for all t € (0,T — ¢). Letting ¢ | 0, we obtain u(t) = v(¢) for all ¢t € (0, 7). This completes the proof. O

1 N
The next results concern the “critical case” a € LA((0,T), L7(Q)) with 3 + o0 = 1 and v > N/2. We
Y

begin by showing that “weak solutions” of u; — Au = au + f are “almost” in L°°.

N 1 N
Theorem 1.6.8. Let 0 < T < oo, let v > 57 > 1, and let a, f € Lfic((O,T),L’Y(Q)) with 3 + 2 = 1.
Ifu e L ((0,T), LY (), with u > (', satisfies the equation
u — Au = au + f,
(1.6.15)
U =0,

on (0,T), then u € L?

loc

((0,T), L>=(Q)) N L, ((0,T), LP (), for every p < oc.

loc

Remark 1.6.9. Note that in general u ¢ L° ((0,7"), L>(€2)) under the assumptions of Theorem 1.6.8 (see
Exercise 1.8.16).

Remark 1.6.10. One limiting case (which is not allowed, see Exercise 1.8.17) in Theorem 1.6.8 is 5 = oo
N

and v = 5 Assume for simplicity f = 0, and let a € L>((0,T), L= (Q)). Let u € L>((0,T), L4(2)) for

some g < oo but possibly very large. We don’t know whether u belongs to L. ((0,7T), L?(£2)) for every finite

loc

p. We believe that the answer is negative.

Proof of Theorem 1.6.8. By a solution u € L ((0,T),L" (2)) of equation (1.6.15), we mean that

loc

u(t) = Tt — e)ule) + / T(t — s)(a(s)u(s) + f(s)) ds, (1.6.16)

for 0 < e <t < T. Note that au + f € LL_((0,T),L*(Q)), so that (1.6.16) makes sense in L'(Q2). We

loc

proceed in four steps.

Step 1. For every 7 >0, 7 € [/, 00] and p € (8, 0), the operator ¥ defined by
t
W(w)(t) = [ T(t~ s)als)uls) + £(5)) ds
0
is bounded L?((0,7), L"(Q2)) — LP((0,7), L"(2)). More precisely, there exists a constant C(p, ) such that
11
1Y (W)lze(0,7),L7) < C(p,7) (Ha||Lﬁ((o7T),Lv)||UHLP((0,T),LT) +7r[Qf ”f”Lﬁ((O,T),L’Y)') (1.6.17)

Indeed, we have by Theorem 1.4.15

1
pe

19 (u)(t)2- < / (t =) (Jla()lo uls) e + 1207 1f112)
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and so, (1.6.17) follows from the Marcinkiewicz convolution theorem (see Theorem A.5.16). Here, we have
used the assumption that p > ' for, if p = B then |la(s)||~||u(s)||r- only belongs to L'(0,T), and the

convolution of \t|_% with L! does not belong to LP.

Step 2. If u(ty) € L°(Q2) for some tg € (0,7) and some p € [y, 00], then u € LP((tg,t1), L"(2)), provided
p € (p,00), r € [p,00] and 1 € (tg,T) are such that

max{C(p,7), C(u, M) }HallLo((to.00) < 1, (1.6.18)
and
N /1 1 1
=l-—--) <= 1.6.1
2 <p 7‘) <p (16.19)

Indeed, note that v(t) = u(to + t) verifies
v(t) = T(t)u(ty) + /0 T(t — s)(a(to + s)v(s) + f(to + s)) ds. (1.6.20)

By (1.6.19) and Theorem 1.4.15, we have T'(-)u(to) € LP((0,T —to), L"(£2)). Therefore, by applying (1.6.18),
(1.6.17) and a fixed point argument (see the proof of Theorem 1.6.4), we deduce that the equation (1.6.20)
has a solution w € LP((tg,t1), L"(2)). The same estimate (1.6.17) applied with p = p and r = 7/, alongwith
the assumption (1.6.18), shows uniqueness in the class L*((to,t1), LY (Q)). Since LP((to,t1), L"(Q)) —
LH((to, t1), L7 (Q)), we deduce that v = w.

Step 3. u € L?

loc

a € LP((0,T), L7(£2)). there exists 0 < 7 < T such that

((0,T),L>°(Q)) for every p < oo. Fixe > 0, ¢ < T. We may always assume that

C(ps) lall s ((s,s47),07) < 1. (1.6.21)

sup
0<s<T—71

Since u € L ((0,T),LY (Q)), we have u(t) € LY (Q) for almost all ¢ € (0,T). Therefore, given any

loc

t € (g,T), there exists t — 7 < t < ¢ such that u(t’) € L7 (). By (1.6.21) and Step 2, we deduce that
we LH((t',t 4+ 1),L"(Q)), for any r € [y/, 00] such that

N1 1y _1
2 \y r w

Therefore, since € > 0 is arbitrary, we have u € L{! ((0,7),L"(2)). An obvious iteration of this argument

loc
shows that u € Lt ((0,T),L°(€2)). Then, applying once more Step 2, we obtain u € L. ((0,T), L>=(R)),

loc loc

for every p < oo.

Step 4. we L2 ((0,7),LP(Q)) for all p < co. By Step 3, we may assume that au+ f € L?((0,T), L7(Q2))

loc

for every p < 8 and ug € L*(€2). We have to estimate

1

t
u(t)|| s < c+/ (t — )" G~ au + £ - ds.
0

By Holder, the right-hand side is bounded as soon as we can find p € [1, 3) such that

N<1 1) '<1 (1.6.25)
—|{=——-]p . .0.
2\7 ¢
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N N /1 1
Note that 2—ﬂ’ = 1, so that 5 ( — ) B < 1. Hence, we can always find some 1’ > ', ie. p > (8
2 Y 4

satisfying (1.6.25). O

Next, we consider a situation which is still “critical”. The main point is to establish an estimate for u

near t = T, without assuming any a priori behavior of v near T.

N 1 N
Theorem 1.6.11. Let 0 < T < oo, let y > 5721 let a, f € LP((0,T), LY(Q)) with = + > = 1 and

B
let ug € L>(Q). If u € L{ ([0,T),L>(R)), with u >+ is solution of the equation (1.6.3) on (0,T), then

w € LP((0,T), L (Q)) N L ((0,T), LP(Q)), for every p < oo.

Proof. Fix p € [¢/,00). We consider the operator defined by (1.6.5). By (1.6.17), we deduce
[@(u)ll e ((0,1),2¢) < Clluollzee + CllallLs (o, 7). 1wl Lo (0,1),2) + Cll flILa(0,7),7)- (1.6.23)

In view of this estimate, we now proceed as follows. We choose Ty < T such that

Cllall s ((zy,1y,L7) < (1.6.24)

DN | =

This is always possible, since § < oo. Given t € (Ty,T), we use equation (1.6.3) on (Tp,T). It follows
from (1.6.23) and (1.6.23) that

1
lullze((1o,0),200) < Cllu(To)llL + §HU||LP((To,t),L°°) + ClIh| Lo ((10,6),27)}

and thus,

el o (ro,m), L) < 2C ([[(To) | + 1Rl Lo (0 ,1),27)) -
For the other estimate, we proceed as in Step 4 of the proof of Theorem 1.6.8. O
Finally, we show a uniqueness result when a € C([0,T], L* (Q)).

Theorem 1.6.12. Assume N > 3 and that Q is of class C2. Let T > 0 and a € C([0,T],L* (Q)). If
N
we L>®((0,T),L9(Q)) with ¢ > 7

satisfies
2

for all t € [0,T], then u(t) = 0.

1 1 2
Proof. We have au € L*°((0,T),L™(Q)), with = p + N In particular, 1 < ry < o0, so that by
0
maximal regularity (Theorem 1.6.1) we have u € LP((0,T), W27 (Q) N W, () for every p < oo, and u
satisfies

uy — Au = au, (1.6.25)

in L™Q) for almost all ¢ € (0,7).
We now use a duality argument. Fix ¢ty € (0,T), and ¢ € D(Q). Let a,, = min{n, max{a,—n}}. We
have (an)n>0 C C([0,T], L= (Q))NL>((0,T)x Q). Moreover, a, — ain C([0,T], L= (2)) as n — oo. Indeed,
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la| < p(|uP~ + |v]P~1), so that a € L((0,T), L= (Q)). We now argue by contradiction. Otherwise, there
exist € > 0, ¢t € [0,T] and a sequence (t,)n>0 € [0,T] such that ¢, — ¢ and ||a(t,, ) — a(t, )||L% >e. On
the other hand, by possibly extracting a subsequence, we may assume that w(t,) — u(t) and v(t,) — v(t)
in L9(Q2) and almost everywhere, and that there exists ¢ € L7(Q) such that |u(t,)| + |v(tn)] < ¢ almost
everywhere. It follows casily that a(t,) — a(t) almost everywhere and that |a(t,)| < C|p|P~! € L= (). By
dominated convergence, we deduce a(t,) — a(t) in L (Q), which is absurd.

Let v,, be the solution of

— (Un)t — Avp = anvy, in (0,t) x Q,
v, =0 1in (0,%) x 09,

Un(t0)=¢ in Q.

We now multiply the equation (1.6.25) by v,, and integrate on (0,ty) x 2. We obtain

{/Q uvn} ;0 = /Oto /Q(u(vn)t + upv,) = /Oto /Q(u(—Avn — apvp) + vp(Au + au)) = /Oto /Q(a — Q) UV,

Therefore,
to
/ u(to)y =/ /(a — Q) UV,
Q 0o Ja

Hence

[ wtto)s| < alla = anllg 5 im0 o lonl s oan.aon (1.6.26)

o1 1 2 . . .
with 7= 1——-- N > 0. In particular, we have 6 < co. We claim that for every 2 < r < oo there exists a
q

constant C' (C depends on r) such that
SliIO)||Un||Loo((O)tO)7L7‘) S CHw”Lr (1627)

Assuming the claim, we let n — oo in (1.6.26) and we obtain

/Qu(to)lb =0.

Since tg € (0,T) and ¢ € D(Q) are arbitrary, we deduce that v = 0. O

Proof of Claim (1.6.27). We use the same method as in Brezis and Kato [22]. It is convenient to

introduce wy, (t) = v, (to — t) so that w,, satisfies

(wn)t — Awp, = byw,  in (O,to) x €,
w, =0 in (0,%) x 0%, (1.6.28)

wp(0) =9 in Q,

with b,,(s) = a,(to — s). We multiply the equation (1.6.28) by |w,|" 2w, to obtain

1d 4(r — 1)
- T t " - 5 ke
Tdt/g‘wl( )"+ 2 /Q|v|wL
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where b(t) = a(ty —t) for 0 <t < ty. Given j > 0 to be chosen large enough, we write b = b — b; + b;, and

/Wmmmrsjﬁbfwuwaﬂ+/ﬁmuwur
Q Q Q

< Mo =b5ll g llwnll” ge + FllwnlZr (1.6.30)

we estimate

N-—-2
<Clb-bl, 5 [ 1Vhal# o+l

where the last inequality follows from Sobolev’s inequality. We now choose j large enough (independent of

n) so that
4(r —1)
r2

Cllo b x <

(Recall that b; — b in C([0,t0), L¥ (€)). It is here that we use the assumption a € C([0,T], L= (2));
jHOO
a € L=((0,T), L= () would not be sufficient.) It now follows from (1.6.29) and (1.6.30) that

1d .
23 | oo < sl

from which we deduce |Jw,, (t)|[5. < [|¢]|F e/ .

N
Remark 1.6.13. The conclusion of Theorem 1.6.12 fails if ¢ = N 3 To construct such an example, we

use the technique of Ni and Sacks [82]. Let 1 be as in Remark 3.9.11 and let v be the solution of (3.9.1)
with the initial condition v(0) = . Set u = v — 1 and

VP — P

D e T

Pl v =)

u satisfies

for all t € [0,T], but u # 0.

1.6.3. Schrodinger’s equation. Throughout this section, we consider the group of isometries (T'(t)):er
associated with Schrodinger’s equation, and we assume 2 = RY. We use the notation of Sections 1.4.3
and 1.4.4, and in particular the notion of admissible pair (see Definition 1.4.53). We begin with a Strichartz’
estimate in the nonhomogeneous case (see Strichartz [93] and Yajima [101]). We also give the proof of

Theorem 1.4.54.

Theorem 1.6.14. Let I be an interval of R (bounded or not), let J = I and let ty € I. Let (vy,p) be an
admissible pair, and let f € L' (1, Lr (R™)). Then, for every admissible pair (q,r), the function

t
t»—><I>f(t):/ T(t—s)f(s)ds, fortel,

to

belongs to LY(I, L"(RN)) N C(J, L>(RY)). Furthermore, there exists a constant C, depending only on v and
q such that

1@ fllLacr,zry < Clfllp 1,000y

for every f e L (I, L (RN)).

CHAPTER 1—PAGE 104



Remark 1.6.15. Note that the definition of ®; makes sense. Indeed, L (RY) — H-YRY), and so
f e LY(I',H-Y(RY)), for every bounded interval I’ C I. In particular, we have ®; € C(I', H-}(RY)).
Evidently, Theorem 1.6.14 gives an estimate of the solution of the nonhomogeneous Schrodinger equation
iug + Au+ f =0,
{ u(0) =0,
in terms of f and ¢.
Proof of Theorem 1.6.14. We divide the proof into six steps. For convenience, we assume that I = [0,7T),

for some T € (0,00) and that tg = 0, the proof being the same in the general case. It is convenient to define,

in the same way as ®, the operators ¥ and O, (where t € (0,7 is a parameter) by

T
Uy(s) = / T(s—1t)f(t)dt,¥s €[0,T),
and
t
Oy r(s) = / T(s—o0)f(o)do,Vs €[0,T).
0
It is clear that both ¥ and ©; map continuously L{ ([0, T); H=Y(RY)) to C([0,T), H 1 (RY)).

Step 1. For every admissible pair (¢,7), ® € L(LY (0,T;L" (RN)), L9(0,T; L"(RY))), with a norm de-
pending only on ¢. By density, it is sufficient to consider the case f € C.([0,T), LT/(RN)). In this case, it
follows easily from Theorem 1.4.49 that ®; € C([0,T), L"(RY)), and that

t 1 1 T —2
1@5(1)1 < / t— s VG f(s)] e ds < / [t — 8|51 ()] ds.

It follows from the classical Riesz’ potential inequalities (see Corollary A.5.17) that

1@l zao,riLry < Clflpa 0,750
where C' depends only on gq.

Step 2. By the same argument, one shows that both ¥ and ©; are continuous from Lq/(O, T:L" (RM)) to
L4(0,T; L"(RY)), with norms depending only on q.

Step 3. For every admissible pair (¢,7), ® € L£(L9 (0, T;L" (RN)),C([0,T], L>(RN))), and its norm de-
pends only on ¢. By density, it is sufficient to consider the case f € C.([0,T), L RM))YNC.([0,T), L*(RN)).
It follows that ®; € C([0,T), L?(RY)); and so,

t

10 (8)]2. = ( / T(t - 5)f(s) ds, / T(t - 0)f(0) do)ys

0

0
:/0 /0 (T(t—=5)f(s), T(t —0)f(0))L2 dods
:/z/'(f(S),T(s—U)f(a))deads:/(f(s)7@t’f(8))md8)

0o Jo ;

where we used the property T'(t)* = T'(—t) (see Corollary 1.3.33). Applying Hélder’s inequality in space,
then in time, and applying Step 2, it follows that

1217 < Iflle 0,750 1€ sl a0, sy < C@IFITar 0.1y
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Hence the result, since t is arbitrary.

Step 4. By the same argument, one shows that both ¥ and ©, are continuous from L9 (0,T; L (RN)) to
C([0,T], L>(RY)), with norms depending only on gq.

Step 5. For every admissible pair (g,7), ® € L(L'(0,T; L*(RY)), L4(0,T; L"(R"))), and its norm depends
only on q. Let f € L*(0,T; L?>(R™)) and consider ¢ € C.([0,T), D(RY)). We have

/OT(@f(t)a @(t)) 2 dt = /T /t(T(t — 8)(s), o(t)) 2 ds dt
/ / T(s—t)p(t))p> dtds

:/O F(5), W) ds;

and so, by Cauchy-Schwartz’ inequality and Step 4,

D ( dt| < v o
[ @000 1 < Wl oan o s
< C(Q)||f”L1(0,T;L2)||S0||Lq’(0,T;LT’)-
On the other hand, one verifies easily that for every g € L4(0,T; L"(R")), one has
gl oo, 7;2r ) = bup{/ ()2 dt; o € C([0,T), DR™)), [[€ll Lo’ (0,77 ry) = 13-

The result follows from (1.6.31), and the above relation applied with g = ®;.

Step 6. Conclusion. Let (v, p) be an admissible pair. It follows from steps 1 and 3 that ® is continuous
from L' (0, T; L” (RN)) to L>(0,T; L2(RN)) and from L (0, T; L* (RN)) to L7(0,T; L°(RY)). Consider an
admissible pair (g,r) for which 2 < ¢ < p, and let § € [0,1] be such that

1 6 1-96 1 6 1-6
—=-4+—— and - = - + ——.
rop 2 q v o0

By applying Holder’s inequality in space, then in time, we obtain
0
194l aco,rsemy S NP sl 20,7500 12510 702y < ClF Il 0,320

where C' depends only on  and g. Therefore, ® maps continuously LY (0,T; L* (RN)) to L4(0,T; L" (RN)).
Let now (g,7) be an admissible pair for which p < r and let p € [0, 1] be such that

1 w  1—p 1 wo l—p
T and -~ = 5 + r/ .

By steps 1 and 5, ® is continuous from L7 (0, T; L™ (RN)) to L4(0,T; L"(RY)) and from L'(0,T; L2(RN))

to L4(0,T; L™ (RYN)). By Interpolation, it follows that ® is continuous L7 (0, T; Lo (RY)) — L9(0,T; L™ (RY))

for every pair (o, ) such that, for some 6 € [0, 1],

(see Theorem A.5.12.) The result follows by choosing 6 = p. O
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Proof of Theorem 1.4.54. The proof is parallel to the proof of Theorem 1.6.14, and we describe only
the main steps. Let
+o0 +oo
Ap(t) = / T(t — ) f(s) ds, and T; — / T(—t)f(t) dt.

One shows (see proof of Theorem 1.6.14, Step 1) that

1A £l Lao.riery < C@OIFN Lo 0,7,

for every admissible pair (g, r). It follows (see (see proof of Theorem 1.6.14, Step 3) that

ITsllze < C@ONflpar om0

from which one obtains easily that
+oo

+oo
\[ (T(t)g, ¥(1)) L2 dt] = (%/ T(=t)p(t) dt) > < C(@lell 219l Lo 0,7;1):

— 00

for every ¢ € L}(RY) and ¥ € C.([0,T), D(RY)). The result follows easily (see proof of Theorem 1.6.14,
Step 5). O
t
Remark 1.6.16. One can obtain estimates of u(t) = / T(t — s)f(s)ds of the type obtained in Theo-
rem 1.4.62. More precisely, if f € L2([0,T], L?(RY)), thenou € L*([0,T), H'/?(B)) for every bounded open
set B C RY (see Constantin and Saut [30]). Therefore, there is locally a gain of half a derivative. As a
matter of fact, if one is willing to reverse the time and space integrations, then the gain is one derivative.
More precisely, if {Qq}aczny is a family of disjoint open cubes of size R such that R = anZN Qo, then (see

Kenig, Ponce and Vega [70])

+oo 1/2 oo 1/2
sup </ / |Vu(t,$)|2dt dx) <CR Z (/ / \f(t,$)|2dt dx) -
QGZN “ o @ — 00

aeZN

See also Ruiz and Vega [90] for related estimates.

1.6.4. The wave equation. Throughout this section, we assume = RY and we consider the continuous
group (T'(t))ier in L2(RY) x H-H(RYN) associated with the wave equation (i.e. (1.4.27) with A = 0, see
Remark 1.4.68). We use the notation of Section 1.4.4. Given T > 0 and f € L'((0,T), H*(RY)), the

solution u of the problem

{utt&uf’ (1.6.32)

u(0) = u(0) =0,
is the first component of U given by

Ut) = /0 T(t—s)F(s)ds,

where F(s) = (0, f(s)). The Strichartz estimate for the solutions of (1.6.32) are best stated in the homoge-

neous Besov spaces. A typical result is the following (see Ginibre and Velo [57, Lemma 2.1]).
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2(N -1
Theorem 1.6.17. Assume N > 3, let 0 < T < oo and set I = (0,T). Let2§r,p<(]\77_3)andlet
N-+1
2<q,'y§ooand0§s7a<2(N7t1)bedeﬁnedby
2 2(N-1) 1 1 2 2(N-1) 1 1
—=——Zs=(N-1)(=—~ d — =—=(N-1)({=-—-].
q N+1 '’ ( )<2 r) a ¥ N+1 7 ( )2 p

If f € L' (I, B;’,Q(RN)), then the solution u of (1.6.32) verifies wu € LI(I, B, 5(RN)), where w = (—A)'/?
is the pseudo-differential operator defined by wu(§) = 2n|€|u(€). Moreover, there exists a constant C' such
that

ku”Lq(I,B;g) < C”f”[,’Y/([’BZ/Q)? (1.6.33)

for all f € L' (I, BY ,(RY)).
Proof. The proof is very similar to the proof of Theorem 1.6.1, by using the estimates of Remark 1.4.74.

See Ginibre and Velo [57, Lemma 2.1]. O

Remark 1.6.18. Note that for Klein-Gordon’s equation (i.e. (1.4.27) with A > 0), similar estimates hold

with the homogeneous Besov spaces replaced by the Besov spaces.

By applying Sobolev’s inequalities in the homogeneous Besov spaces, one can deduce LP estimates from

Theorem 1.6.17. For example, we have the following result.

Corollary 1.6.19. Assume N > 3, let 0 < T < oo and set I = (0,T). Let 2 < r,p < and let

2(N —1)
N-3

2 < q,v < oo be defined by

Assume further that

If f € LY (I, L (RN)), then the solution u of (1.6.32) verifies u € L(I, L"(RN)). Moreover, there exists a
constant C' such that

lwullLacr,zry < Clfl v 1,00y

for all f € LY (I, L (RN)).

Proof. Let s and o be as in Theorem 1.6.17. Since r > 2 and p’ < 2, we have (see Bergh and Lofstrom [13])

I-'Ig, (RN)) — Bg,)Q(RN)) and B;; (RN) < H*(RN). Therefore, it follows from (1.6.33) that

HWUHLq(z,H:S) < C||fHLw’(1,H§,)-

Since w™? commutes with A, it follows that if u is the solution corresponding to f, then w™%u is the solution

corresponding to w™? f; and so,

||w170U||L<1(I,HFS) < C’wa"f“Lw(I,H;j,).
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By definition of the homogeneous Sobolev spaces Hr_ $(RY), this implies that

||UHLq(1,H,}*”*S) < CHf||Lw'(1,H2,)~

Finally, it follows from the assumptions that s + o = 1. Hence the result, since HO(RY) = L"(RY) and
70 RNy _ 70" (RN
H) (RY) = LF(RY). O

2(N +1)

N_1 in Theorem 1.6.19,

Remark 1.6.20. Note that in particular, one can choose r = p =q =~ =

< C||f|| 2(N+1) .
L

so that ||U|| 2(N41)
L N=T NF3 (RN+1)

+1)
1.6.5. Stokes’ equation. Let Q@ C RY be a bounded domain with boundary of class C?. Let E =
(LQ(Q))N, and let F' = {u € (D(Q))"; V-u=0}. Let X be the closure of F'in E. X is also a Hilbert space
with the scalar product of E. Let P : E — X be the orthogonal projection on X. We consider the Stokes

operator A defined by
D(A) = (B*(Q) n HL ()" N X;

Au = —P(Au), for ue D(A).
It follows from Theorem 1.2.49 that A is self-adjoint. Therefore, —A is the generator of a semigroup of
contractions in X which we denote (T'(t));>0. Given T' > 0 and f€ L*((0,7), X), u defined by

u(t) = /0 T(t—s)f(s)ds

is the weak solution of the problem

{ut+Auf’ (1.6.34)

u(0) = 0.

For this problem, there is a maximal regularity result similar to the one obtained for the heat equation.

Theorem 1.6.21. Let T > 0, 1 < p,q < oo and f € L((0,T), LP(Q)N N L*((0,T),X). If u is the
corresponding solution of (1.6.34), then u € W44((0,T), L?(Q)") and Au € LI((0,T), LP(Q)Y). Moreover,

there exists a constant C such that
laellzaco,ry, o)y + 1Al Lago,r),eyny < fllao,1) 10y ™)
for all f& LI((0,T), LP(Q)N N L((0,T), X).
For a proof of Theorem 1.6.21, see Coulhon and Lamberton [32].

Remark 1.6.22. A similar result holds when © = RY, since every component u; of u solves the heat
equation (see Remark 1.4.79 and Theorem 1.6.1), and when Q = RY \ D, where D is a smooth bounded
domain (see Giga and Sohr [53]).

1.6.6. Airy’s equation. Let X = L?(R), and define the operator A on X by
D(A) = H*(R);
d3

_ﬁ7 for u S D(A)

Au= —Ugp, =
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It follows from Theorem 1.2.52 that A is skew-adjoint; and so —A is the generator of a group of isometries

(T(t))¢er on X. Given T > 0 and f € L*((0,T), L?(R)), u given by

ut) = [ T =s)05)ds

is the weak solution of the problem

Ut + Uppe = f)
{ (1.6.35)

u(0) = 0.
We have the following Strichartz estimate for the problem (1.6.35) (See Ginibre and Tsutsumi [55]).

Theorem 1.6.23. Let 0 < T < oo and let 2 < r, p < co. Define g, € [6,00] by

222y aa 221(1-2).
qg 3 T v o3 p
If f € LV((0,T),L° (R)), then the corresponding solution u of (1.6.35) belongs to L((0,T),L"(R)) N

C((0,T),L?(R)). Furthermore, there exists a constant C such that

lull aco,my,emy < ClF L (0,1, 00 )
for every f e L' ((0,T), L (R)).

Proof. The proof is similar to the proof of Theorem 1.6.14, by applying the estimates of Remark 1.4.84

(see Ginibre and Tsutsumi [55]). O

Remark 1.6.24. One can obtain estimates of the type described in Remark 1.4.85 for the nonhomogeneous

problem (1.6.35). See in particular Kenig, Ponce and Vega [70] and Ginibre and Tsutsumi [55].

1.7. Comments.

1.7.1. Semigroups of contractions are not the most general form of continuous semigroups. In particular,

one can define Cy semigroups (T'(t))¢>0. They satisfy the following properties (cf. Pazy [85], Chapter 1):
(i) T(t) € L(X), for all t > 0;

(i) T(0) = I

(iii) T(t+s) =T ()T (s), for all s,t > 0;

(iv) the function ¢ +— T'(t)z is continuous [0,00) — X, for all z € X.

It is easily verified that there exists constants M > 1 and w > 0 such that |T'(t)|zx) < Me*?, for all
t > 0 (see Pazy [85], Theorem 2.1, p.4). The generator of a Cy semigroup is defined as for semigroups of
contractions. However, it is sufficient to consider semigroups of contraction since an operator —A in X is
the generator of a Cy semigroup of type (M,w) if, and only if there exists an equivalent norm ||| - ||| on X
such that A + wI is m-accretive in (X, ||| - |||) (see Pazy [85], Chapter 1, Lemma 5.1 and Theorems 5.2 and
5.3).
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1.7.2. Baillon’s theorem. In view of Theorem 1.3.34, one may ask if there are semigroups for which
the solution of (1.5.2) solves (1.5.1) for every € D(A) and every f € C([0,T],X). It turns out that under
fairly general assumptions, the only case for which such a property holds is when A is bounded, as shows

the following result of Baillon [5].

Theorem 1.7.1. Let (T(t))i>0 C L(X) be a semigroup of contractions and let —A be its generator.

Assume there exists tg > 0 such that

/Oto T(to — 5)f(s) ds € D(A), (1.7.1)

for every f € C([0,t0], X). If X does not contain any subspace isomorphic to c¢g, then A is bounded. In

particular, if X is reflexive, then A is bounded.

In fact, Baillon’s result asserts that the conclusion holds under (apparently) stronger conditions. How-

ever, it can be weakened by using the following lemma.

Lemma 1.7.2. Let (T'(t));>0 C £(X) be a semigroup of contractions and let —A be its generator. If there
exists tg > 0 such that (1.7.1) holds for every f € C([0,t0], X), then the following properties hold:

(i) /Ot T(t—s)f(s)ds € D(A), for every f € C([0,10],X) and every t € [0,%o];

t
(ii) there exists a constant C such that H/ T(t — s)f(s)dsllpay < Cllfllne=(o,0),x), for every f €
0
C([0,t0], X) and every t € [0, o]

Proof. Define the operator L : C([0,%0], X) — D(A) by
to
Lf= / T(to — s)f(s)ds.
0

If f, — fin C([0,t0], X), then it follows from Lemma 1.5.3 that Lf,, — Lf in X. Therefore, if further-
more Lf,, — ¢gin D(A), then g = Lf. It follows that the graph of L is closed; and so, by the closed graph
n—oo

theorem, there exists a constant C' such that

to
||/0 T(to — s)f(s)ds|pcay < CllfllLe=((0.t0),x)> (1.7.2)
for every f € C(]0,%0], X). Given f € C([0,t0], X) and ¢ € [0, to], define g € C([0, o], X) by

f(0), if0<s<ty—t;
g(s) =
f(S—t0+t)7 iftg—t <s <t

It follows easily that
t to to
/ T(t—s)f(s)ds = / T(to— s)g(s)ds — / T(s)f(0)ds;
0 0 ¢
and so, by (1.7.2) and Lemma 1.3.9,

t
| /O T(t —s)f(s)dsllpcay < (C+3)f e ((0.t0).%)-
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The result follows, since t and f are arbitrary. O

1.7.3. We give below an alternative proof of the LP — L4 estimates of Theorem 1.4.15, based on a technique of
multipliers. That technique can be applied to certain nonlinear problems to which the comparison argument
is not applicable. We have the following result, inspired by Fabes and Stroock’s proof (see Fabes and
Stroock [41] and Davies [36]) of the L' — L estimate.

Proposition 1.7.3. Let Q be an arbitrary open subset of RY and let T > 0. Let f € C([0,T], H~1(Q))
and let u € C([0,T], H (Q)) N C1([0,T], H~1(Q)) solve equation

ug — Au = f, forall0 <t <T.

Assume that for every ¢ € C1(R)NW1°°(R) such that p(0) = 0 and ¢’ > 0, one has (¢ (u(t)), F@) a1 -1 <0
for almost all t € [0, T]. Then, the following properties hold:

(i) If u(0) € L1(Q) for some 1 < q < oo, then u(t) € LI(Q) for every t € (0,T], and
lu(®)]|za < [lu(0)]La,
for all t € (0,T7;
(i) if u(0) € LY(Q) N L>(Q), then u(t) € LP(Q) for every 1 < p < oo and every t € (0,T]. In addition,
Ju®llze < 0t ¥ O3 Ju(0) | 11,
for all t € (0,T], where the constant C' depends only on p and N.

Proof. We proceed in several steps.

Step 1. Preliminary estimates. Let ¢ be as in the assumption. Define ¢ and i by

o(z) = /Oz p(s)ds, for z € R, (1.7.3)

and
P(z) = /096 V' (s)ds, for z € R. (1.7.4)

It follows that ¢ and 1 verify the same assumptions as ¢. By taking the H~! — H{ scalar product of the
equation with ¢(u) € C([0,T], Hi(2)) and by applying Corollary A.3.65 and identity (A.4.24), one obtains

d 2
- /Q Su(t)) dz + /Q Vo) de < 0, (1.7.5)
for all ¢t € [0,T], from which it follows in particular that
/¢(u(t)) de < / o(u(s)) dz, (1.7.6)
Q Q

for0<s<t<T.
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Step 2. Proof of property (i). If ¢ <2, let ¢ > 0 and define

1 qr3 + 2ex

q(c+22)7"
so that ¢ defined by (1.7.3) is given by

1 z?

¢(x) = ———=

q (e +a2)*2"
Applying now (1.7.6), letting € | 0 and applying the dominated convergence theorem to the right-hand side
and Fatou’s lemma to the left-hand side, one obtains property (i). If 2 < ¢ < 00, let £ > 0 and define
1 q|z|? 2%z + 2¢|z|9z
q (e + x2)a/2

p(x) =

b

so that ¢ defined by (1.7.3) is given by

_ 1 faft
o) = q (6+x2)(’%2

The same argument as above shows that the conclusions of property (i) hold. Finally, if ¢ = co, apply the

previous result for finite ¢ and make ¢ T co.

Step 5. Proof of property (ii). We recall that there exists A, depending only on N, such that

([#) % <af o ([1)" -

for all v € H}(Q) N LY(Q). This follows from Gagliardo-Nirenberg’s inequality (see Theorem A.3.44 and
Remark A.3.45 (ii)). Consider ¢, ¢ and ¢ as in step 1. It follows from inequality (1.7.7) that

([ 1wtuton ) <A/|w ([ ot )

Therefore, inequality (1.7.5) yields

%/ng(u(t)) AL e (/ ) v <. (1.7.8)

Consider now 2 < p < co. Note that by property (i), we have u(t) € L'(2) N L>®(Q) and ||u(t)||z=~ <

[|u(0)|| =, for all 0 < ¢t < T. Set M = ||u(0)||z=~ and let ¢ as at step 1 be such that p(x) = |z|P~ 1z
1 2 p

for || < M. It follows that ¢(z) = —|z|P for |x| < M and that ¢(z) = —|z|2 for |z|] < M. Therefore,
p b

inequality (1.7.8) yields

;f/glu(t)|p+4(p/1;1> (Jo ) (/ () )HN =0

b

for all 0 <t < T. Note that by property (i), / lu(t)]? < / |«(0)]2; and so,
Q Q

d L, Ap—1) 1 D\
a/Q|u(zs)\ + 2 TR ( [ |u(t)|) <.
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Applying Theorem A.5.3, we then obtain

[ o < (%)mt-m (f |u<o>|é’)2. (1.7.9)

< 2. Therefore, if we set p = 2¢ with 1 < ¢ < oo, inequality (1.7.9)

Note that since p > 2, we have
(p—1)

NA\ T _N
fullzer < (7)€ F RO

for 0 <t <T. Applying the result to u(- + s), one obtains in fact

yields

N
NA\ % N
Jute+ 9l < ()5 H uoloe

for 0 <t < s < T. Choosing s of the form 72~ ("*1) and ¢ = 2", we obtain

NA N2~ (n+2) i)
|lu(t + 72*(n+1))HL2n+1 < (4) 9N (n+1)2 llw(t)|| p2n -
An obvious iteration argument based on the above inequality shows that
NA
4T

for all 0 < 7 < T and n > 0. Note that 271 +---+27" < 1; and so, by step 1, |[u(7(27 4+ 4+27"™)) jons1 >

n—1 No2—(+2)

||’LL(T(271 + .4 2*"))“L2n+1 < H
j=0

i11)2-(+2)
NG+ ]”“(ONLM

lu(7)||2n+1. Therefore,

[u(r) || pontr < K lw(0)[| L1, (1.7.10)

with .
n=1,(j+2 e 1
K, = (NA)szo 2 (21\7/2)2,-01 (+1)27 0+
"\ 4r '

oo o0
Since g 2 0+2) — 3 and E (j 4+ 1)27UFD = 2 it follows that
§j=0 =0

N/2
lim K, =2V <NA> / )

n—oo 47

Therefore, inequality (1.7.10) yields

Ju(r) o~ < 2¥ (JZ;“)N/Q Ju(@)llzs = (NTA)N/Q 4Ol

for all 0 < 7 < T, and property (ii) follows, by applying property (i) and Hélder’s inequality. O

1.8. Exercises.

Exercise 1.8.1. The object of this exercise is to show that the estimate of Lemma 1.1.16 (ii) is optimal in
the sense that one can have ||Ax||z(x) = 2/A for all A > 0. Let X = Cy(0, 00) equipped with the sup norm.
Define the operator A on X by

D(A) = {u € C'([0,00)) N X; v/ € X},
{Au =’ for all uw € D(A).
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It follows from Proposition 1.2.6 that A is m-accretive. Let 0 < § < M and define f € X as follows.
x/dif 0 <z <4,

lifo <ax< M,
flx) = 1—%(x—M)ifM§x§M+5,

A4z -M-0iM+6§<z<M+65+1,

Oif M+0+1<uz.
Let A > 0 and let u = Jy f.

A
e Show that u(M +0) > 1 — e 35.

A
e Show that ||Axfllzx) > 2 — e 735.

e Show that ||Axf]lzx) = 2/A, for all A > 0.

Exercise 1.8.2. Let A be an m-accretive operator in a Banach space X, and assume that X is reflexive.
The object of this exercise is to show that D(A) is dense in X. Let z* € X* be such that (z*, f)x+ x =0
for all f € D(A). Let x € X, and set f = (I + A)lz.

e Show that (z*,2)x+ x = (z*, Af)x~ x.

e For A > 0, define f\ = (I + ANA)~!f. Show that fy — f as A | 0, that |Af\|| < ||Af]| and that
Afx € D(A) (see Lemma 1.1.16).

e Show that (z*, Af)x+ x = 0 and conclude.
Exercise 1.8.3. Let A be an m-accretive operator in a Banach space X, and assume that D(A) is dense

in X. Therefore, we may consider the operator A* in X* (see Brezis [17], Proposition 11.16). The object of

this exercise is to show that A* is m-accretive in X*. Consider A > 0.

e Show that R(I + AA*) = X* (see Brezis [17], Theorem II.20). Let € D(A*) and f € X* be such that
o+ Az = f.

e Show that (z,2)x« x = (f, (I + MA)"12)x+ x for all z € X.
e Show that ||z||x+ < ||f|lx+-

e Conclude.

Exercise 1.8.4. Let X = L?(0,1). Define the operator A on X by
D(A) = H}(0,1),
{ Au =1/, for all u € D(A).
e Show that A is skew-symmetric.
e Determine D(A*) and A*u for all u € D(A*).
e Show that A is not skew-adjoint.
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Exercise 1.8.5. Let X = L?(0,1). Define the operator 4 on X by
D(A) = {u € H?(0,1); u(0) = u'(0) = u(1) = u'(1) = 0},
{Au = —u”, for all u € D(A).
e Show that A is symmetric.

e Determine D(A*) and A*u for all u € D(A*).

e Show that A is not self-adjoint.

Exercise 1.8.6. Let 1 <p < 0o, X = LP(0,1). Consider the m-accretive operator A on X defined by
D(A) = {u € W(0,1); u(0) = 0},
{Au =4/, for all u € D(A).
(See Remark 1.2.5 (ii).)

e Determine D(A*) and A*x for all © € D(A*).

Exercise 1.8.7. Assume N > 3. Let 0 < T < oo and a, f € C([0,T], L= (2)). The object of this exercise is
to show that if ug € L>(Q) and u € L2 ([0,T), L>=(Q)) N L2.((0,T), H (2)) satisfy (1.6.3) for all t € (0,7),

then w € L>=((0,T), L1(2)) for every q € [1,00).

N
2

e Show that for every € > 0, there exists a. € L*((0,7),L= (Q2)) such that ||a€||LOC(0 0¥
a—a. € L*((0,T) x Q). (Consider for example a. = a if |a| > M and a. = 0 if |a| < M, with M large

< ¢ and

enough.)

e Given 2 < ¢ < oo, multiply the equation u; — Au = au + f by |u|9~2u, and show that

1d/ 4(q—1)/ a4 / .
- th—f-i V0u|z S auq—|— ’LLq .
thﬂ\()l Z Q| |ul?| Q{\III |flul?™"}

e Conclude.

Exercise 1.8.8. Assume N > 3. Let 0 < T < oo, let a € C([0,T], L= (2)), and let u be a smooth solution

n (0,7) of
{ut — Au = au,

Ulpq = 07

The object of this exercise is to show that if ||u(t)]| L TS 0 for some ¢ > 1, then u(t) = 0.

e Show that if a, — a in C([0,T], L (€2)), then there exists b € C([0,T], L (Q)) and a subsequence

ng — oo such that |a,, (t)] < b(t) a.e. in Q for all ¢ € [0,7]. (Hint: consider a subsequence (n)k>0

27% and let b = |ao| + Z |Gnysy = Gny )

such that ||ank+1 - ank“ (
k=0

c(o,11,L%) <

e Show that, given 7 € (0,T) and f € C°((0,T) x Q), there exists v € L>*((0,T), L"(2)) for every r < 0o

which is a solution of the equation
—vy — Av=av + f,

upn = 0,
v(t) =0.
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(Hint: approximate a by a sequence (an)n>0 C C°((0,T) x ), apply the first question then Exer-

cise 1.8.7 to obtain estimates independent of n, and let n — o0.)
e Conclude. (Hint: use the preceding question and apply a duality argument.)

N
Exercise 1.8.9. Assume N > 3. Let 0 < T < o0, let a € L*>°((0,7T), LP(£2)) for some p > 1, p > 5 and

let u be a smooth solution on (0,7") of
{ uy — Au = au,

Ulpq = 07
Show that if ||u(t)|| 1 w(), then u(t) = 0. (Hint: given 7 € (0,7) and f € C((0,T) x Q), consider the
solution v € L*((0,T), L>°(£2)) of the equation

—v— ANv=av+ f,
vjan = 0,

v(1) =0,

and apply a duality argument.)

Exercise 1.8.10. Let 0 < p < R < 00, and set Q = B(0, R) and w = B(0, p). Let u(t) be the solution of
up—Au=0 in (0,00) x £,
u=0 in (0,00) x 09,
u(0,2) = 1,,.

The object of this exercise is to show that there exist ¢, ce > 0 independent of R and p such that

L2 4

u(t,z) > ot Te R’ efRTRfle(R —|zl), (1.8.1)

forallt >0 and z € Q.

e Let \; be the first eigenvalue of —A in H} () and let ¢ be the corresponding eigenvector such that
©1(0) = 1. Show that 1(z) > c; R (R — |z|) and \; = coR™2.

o Let v(t,x) = e Mty (2)2(t, ), where z(t) is the solution of
z—Az=0 in (0,00) x RY,
z(0,2) = 1,.
Show that w(t,z) > v(t,z) for (¢,2) € (0,00) x © and conclude.
Exercise 1.8.11. The object of this exercise is to show that if (T'(t)):>¢ is the heat semigroup in a connected
open set Q C RY and if ug € L*(Q), ug > 0 and ug # 0, then T'(t)ug > 0 in 2 for all ¢ > 0.

e Let zg,z € Q and let v € C1([0,1],Q) be such that v(0) = z¢ and (1) = z. Let £ be the length of the
arc v, let

p= min dist(y(t), 0Q),
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and set = °. Show that there exists a constant K (¢, u, N) such that if ug > 1 on B(xg, i), then
n=7 I I
T(t)ug(x) > e+ on B(zx,p), (1.8.2)

14
for all 0 < ¢ < 1. (Hint: apply j times the estimate (1.8.1), with j = LJ +1).

e Conclude.

Exercise 1.8.12. The object of this exercise is to show that if (T'(¢));>0 is the heat semigroup in a bounded,

smooth, connected domain of RY then there exists a constant K depending on  such that for all ug € M(),

T(t)uo(z) > =% ( / Ws) 5(x),

in 2 for all 0 <t < 1. Here 6(z) is the distance of x to 9€.

u0207

e Show that there exists p > 0 such that for every x € 9Q the ball of radius p and center z — p7i(x)
is contained in 2. Here, 7i(x) is the outward unit normal vector at xz. Show that there exists ¢ such
that given any =g,z € Q such that §(xg) > p, 6(z) > p, there exists a function v € C*([0,1],Q) with
~v(0) = zg and y(1) = z,

< min di Q
p< Jin dist(v(t), 09),

and the length of v is < /.

Show that there exists a constant

e Fix any zp € Q such that d(xg) > p, let p = Z and set 1) = 1p(a,,)-

K depending on 2 such that
Tt)(z) = e ™, (1.8.3)

for all 0 < ¢t < 1 and for all x € Q such that 6(x) > 3u. (Hint: apply the estimate (1.8.2).) Show that

there exists a constant K7 depending on {2 such that

Ky

T(t) >e 7, (1.8.4)

for all 0 <t < 1. (Hint: apply the estimates (1.8.3) and (1.8.1))

e Let T € B(xo, ) and let 6z be the Dirac mass at Z. Show that

1 N _u?
T(t)oz > 5(4772?) e T, (1.8.5)
92 . ) 9> N, a2 _ou?
forall 0 <t < N (Hint: show that if ¢ < N then T'(¢)éz(x) > (4nt)"2(e” % — e~ 4 ).) Show
that there exists a constant Ky depending on {2 such that
Ko
T(t)oz > e 74, (1.8.6)
for all 0 < ¢ < 1. (Hint: combine the estimates (1.8.5) and (1.8.4).)
e Show that for every p € D(Q), ¢ > 0,
Ko
T(t)pze = (/ wé) ¥, (1.8.7)
Q
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for 0 < ¢t < 1. (Hint: apply the identity T(t)p(T) = / ©T'(t)0z and the estimate (1.8.6).)
Q

e Conclude. (Hint: establish the result for ug € D(€2) by combining the estimates (1.8.7) and (1.8.4).)

Exercise 1.8.13. Let 0 < p < R < 00, and set Q = B(0,R) and w = B(0, p).

e Let u be the solution of
—Au=0 in Q\,

u=0 in 09,
u=1 in Ow.

Show that

|x‘7N+2 _R7N+2 )
p—N+2 _ R-N+2 it N#2,
U =9 g R -1
log R —loglz| .. v o
log R —log p
e Let v be the solution of
—ANv=1, in Q
v=0 in ON.
Show that v , ,
P - - p” —lz* .
N(N—Z)(p N+ R N+2)+T if |z| <p,
v(z) = N
m(m—N“ — RN if p<|z| <R,
if N3 and
2 2 2
%(logR*Ing) + % if |z| <p,
v(z) =19 5
E(log R—loglal) if p<la| <R,
if N =2.

Exercise 1.8.14. The object of this exercise is to show that if u € H}(Q) N C(Q) verifies
—Au=f in €,

where Q C RY is a connected domain and f € H1 — (Q), f >0, f #Z0, then v > 0 in .

o Let xg € Q. If u(xzg) = 0, show that u > 0 on B, where B is any ball centered at xg and contained in Q

(apply the first part of Exercise 1.8.13).

e Conclude.
Exercise 1.8.15. The object of this exercise is to show that if u € H}(Q) N C(Q) verifies
—Au=f in €

where Q C RY is a smoth, connected domain and f € H=1(Q2), f >0, f # 0, then u(z) > C§(x) in Q. Here
C > 0 and §(x) is the distance of = to 9.
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e Show that there exist n > 0 and & > 0 such that u(z) > ¢ for all x € Q such that §(x) > n/2 (apply the
first part of Exercise 1.8.12 and Exercise 1.8.14).

e Conclude (apply the first part of Exercise 1.8.13).

Exercise 1.8.16. The object of this exercise is to construct f € L?((0,T),L*(2)), where Q C R? is a

smooth domain, such that the solution u of

Ut — Au = fa
upn = 0, (1.8.8)
u(0) =0,

belongs to LP((0,T), L>°(2)) for every p < oo, but does not belong to L>((0,T") x Q).
e Given f € L2((0,T), L?(Q)), show that u € L?((0,T), L>°(£2)) for every p < oo.

o Let o € H}(Q)\ L>®(Q), and let v(t) = T(t)¢, where (T'(t));>0 is the heat semigroup. Define u €

C([0,2], L*(2)) by
u<_{ma—w ifo<t<i,

o(t—1) if1<t<2.
Show that u is the solution of (1.8.8) for some f € L?((0,2), L?(€)), and that u & L>°((0,2) x Q).

Exercise 1.8.17. The object of this exercise is to construct a, f € C([0,T], L= (Q)), where © is the unit

ball of RV, N > 3, such that the solution u of (1.6.2) with uy = 0 does not belong to L°(f2) for any ¢ € [0, T].

e Consider a decreasing function § € C2((0,1)) such that 6(r) = —logr for r small and §(r) = 2~V — 1
for 1 — 7 small. Define ¢ : Q — R by ¢(z) = 6(|z|). Show that ¢ € H}(Q) and that

Ay = ayp,

for some a € L= ().
e For a as above, construct f € C([0,T],L% (Q)) and a solution u of (1.6.2) with ug = 0 such that

u(t) & L () for any ¢ € [0, 7.

Exercise 1.8.18. The object of this exercise is to show that if & C R is a bounded domain and if u is

the solution of the equation
up — Au=0 1in Q,

uw=0 in 09,

then u; < 0 in Q and us # 0 for all ¢ > 0.
e Show that w is smooth in (0,00) x Q.

e Show that / up; = e Mt and / U1 = 7)\167>\1t (and in particular u; # 0 for all ¢ > 0) where A; is
Q Q
the first eigenvalue of —A in H{(2) and ¢ is the first eigenvector, normalized so that 1 > 0 in Q and

lleillzr = 1.
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e Let (. be the solution of
{ —eN(+ (=1 inQ,

(=0 1in 0.
Show that (. — 1 in L?(2) as € | 0.

e Let u® be the solution of
u;y — Au® =0 in Q,

u® =0 1in 09,

UE(O) = Ce-

Show that u§(t) < 0 for all ¢ > 0 and conclude.
1.9. Open Problems.

Open Problem 1.9.1. Let a € L=((0,T),L= (). Let u € L*((0,T), L(R)) for some g possibly very

large (but finite) verify
uy — Au = au,

upn =0,
u(0,x) = up(x) € L=(£).
Does u belong to LY ((0,T), LP(Q)) for every finite p?

loc

Open Problem 1.9.2. A related question is: can one replace the assumption a € C([0,T], L (Q)) by
a € L=((0,T), L () in Theorem 1.6.12? The problem is open even under the additional assumption
u € CX((0,T) x Q).

Open Problem 1.9.3. Assume N > 3. Let a € C([0,T],L= (Q)) and u € C([0,T], L}(2)) N L=.((0,T),

loc
L*>(Q)) satisfy the equation
{ up — Au = au,

ugn = 0.
If Ju(t)|| 2 WO, does one have u = 0?7 Note that this is the case if one replaces L'(2) by L'*¢(Q) or

L= () by L=1¢(1)) for some & > 0, see Exercises 1.8.8 and 1.8.9.

Open Problem 1.9.4. Assume N >3, and let a € L= () and u € L%(Q) solve the equation

{ — Au = au,
’LLaQZO.

Let s be the best constant in Sobolev’s inequality s||uHL v < ||Vulpz. If Ha||L% < 52, does one have

2
N—-2

u = 07 (Note that formally, the result would follow by multiplying the equation by u and applying Hélder’s

and Sobolev’s inequality.)
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Chapter 2. Abstract semilinear problems: global and local existence.

In this chapter, we consider abstract initial value problems of the form

du
E“!‘AUJZF(U), (2.1)
u(0) = ug.

Throughout this chapter, A is a densely defined linear m-accretive operator in a Banach space X with the
norm || -||, F is a nonlinear mapping, and wg is a given initial value. We will consider various situations. For
example, the easiest case is when F : X — X is globally Lipschitz, and then (2.1) has a solution defined for
all times ¢t > 0. Another case is when F': D(A) — D(A) is globally Lipschitz (for the graph norm), and then
again (2.1) has a solution defined for all times ¢t > 0. Next, we consider the case where F' is not globally
Lipschitz, but only Lipschitz continuous on every bounded set; in this case, we establish that (2.1) has a
local solution defined on a maximal time interval [0, T},) and in addition, if Ty, < oo, then w(¢) blows up as

t1 T

2.1. The case I': X — X is globally Lipschitz. @ Assume F': X — X is globally Lipschitz in the

sense that there exists a constant L such that
IP() = F@)| < Lijv - ull
for all u,v € X. The main result of this section is the following.

Theorem 2.1.1. Given any ug € X, there exists a unique global weak solution u of (2.1) in the sense that
u € C([0,00), X) and .
u(t) =T (t)uog + / T(t — s)F(u(s))ds, (2.1.1)
0

for all t > 0.

In addition, there is continuous dependence of u with respect to ug:
Jo(t) — u(®)]| < e llvo — uoll, (2.1.2)

for all t > 0, where v is the solution of (2.1.1) with the initial value vy.
Moreover, if ug € D(A) then u is Lipschitz continuous on bounded sets of [0, 00); i.e. for every T < oo,

there exists a constant My such that
ulte) —ult1)|| < Mrlts —ta], (2.1.3)
for all 0 < t1,ts <T.

Corollary 2.1.2. Assume that X is reflexive and that ug € D(A). Then (2.1) has a unique global, classical

solution, i.e.

u € CH([0,00), X) N C([0,50), D(A)), (2.1.4)
where D(A) is equipped with the graph norm.
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Proof of Corollary 2.1.2. We already know by Theorem 2.1.1 that the solution w of (2.1.1) is Lipschitz
continuous on bounded sets, hence F(u) is also Lipschitz continuous on bounded sets. The conclusion (2.1.4)

follows from Corollary 1.5.8. O

Proof of Theorem 2.1.1. The proof proceeds in four steps.

Step 1. Uniqueness. Assume u and v are two solutions of (2.1.1). Then

[u(t) —v(®)]] < L/O [[u(s) = v(s)l| ds,

thus by Gronwall’s inequality, |lu(t) — v(t)|| < ||u(0) — v(0)||eLt = 0.

Step 2. Existence. This is proved by using the contraction mapping principle in the space
E = {u € C(]0,00), X); supe” " |lu(t)| < oo},
>0

where k£ > 0 is to be chosen. E equipped with the norm

I,

[ull 5 = supe™™Ju(t)
>0
is a Banach space. Given u € E, set
¢
O (u)(t) =T (t)uo + / T(t — s)F(u(s))ds,

0

for all t > 0. We first claim that ®(u) € E. It is clear that ®(u) € C([0,00), X). Next, we have
¢
1@ () (B < [luoll +/0 1 (u(s))[| ds.

But [|F(u(s))|| < Lllu(s)|| + [[F'(0)]|; and so,
ekt —1

k

t
[@(w) (@) < lluoll + [ F(O)] JrLllullE/0 e ds = ||uo|| + | F(0)]| + L [[ull -

Therefore, ®(u) € E and
1 L
12wl < lluoll + — IO} + L llulle-
We claim that ® is a contraction on E provided k£ > L. Indeed, we have

t t ekt _
I90)(®) = 2O < L [ fu(s) = o(o) ds < Lju=vils | eds = L fu =l

Thus,
L
12(u) = @()llz < +llu—vlle.

Choosing any k > L, we conclude that ® has a fixed point v € F, which is a solution of equation (2.1.1).

Step 3. Continuous dependence. Assume that v and v are two solutions of (2.1.1) associated to the initial

values ug and vg, respectively. Then,

[u(t) = v(@®)] < [luo = voll + L/O [u(s) = v(s)ll ds,
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and (2.1.2) follows from Gronwall’s inequality.

Step 4. Lipschitz continuity when ug € D(A). Let h > 0. By Corollary 1.5.18 we know that u(t + h) is
the weak solution of (2.1) with the initial value u(h). By (2.1.2), we have

lut + h) = u(®)l| < [lu(h) — u(0)[l", (2.1.5)
for all £ > 0. On the other hand, we have
u(h) =T (h)up + /Oh T(h —s)F(u(s))ds;
and so,

Ju(h) ~oll < IT(R)uo — woll + A sup [ F(u(s))]| < blldug|| + . sup |F(u(s))] (2.1.6)

0<s

by Proposition 1.3.4 (i). On the other hand,
w0l < ool + [ 16Dl s < ol + 1O+ [ o) as.

By Gronwall’s inequality, this implies

lu()Il < (luoll + ¢ F(0) )™

and so,

S [Pl < RO + Le""(||uoll + RIF(O)]]).

(2.1.3) follows from (2.1.5), (2.1.6) and the above inequality. O

Remark 2.1.3. Instead of applying the contraction mapping principle in E, one could work in C([0, T], X)
equipped with its usual norm, and then ® is a contraction provided LT < 1. Fix any such T, then (2.1.1)

has a solution of [0, 7], and by iteration (2.1.1) has a global solution.

Remark 2.1.4. It is essential to assume in Corollary 2.1.2 that X is reflexive. Here is an example showing
that if X is not reflexive, then the weak solution of (2.1.1) needs not be a classical solution even if ug € D(A).

Let X = Cp(R) and let A be defined by
DA) ={uec C'(R)NX;u € X},
{ Au =/ for u € D(A).
Recall that T'(t)¢(z) = p(x — t) (see Proposition 1.4.1). Let F(u) = u™. Clearly, F : X — X is globally
Lipschitz. We claim that in this case the weak solution of (2.1.1) is given by

u(t,z) = elug (x — t) —ug (z —t).
Indeed, F(u(s)) = e*ug (x — s), and T(t — s)F(u(s)) = e*ug (x — t); and so,

T(t)uo + tT(t—s)F(())dsfuox—t Jr/ Sz —1t)d
0 0
ug(z —t) + (' — Dug (z —t)
= —uy (x—t)+e'u +(m—t):u(t).
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Choosing for example ug(z) = ¢~ sinz € D(A), it follows that u(t) & D(A) for ¢t > 0 since the function

x +— u(t,z) is not C*.

Remark 2.1.5. Throughout this section, we have assumed that F' is independent of ¢t. It is very easy to
extend the above results to the case where F' also depends on t, under various assumptions. For example,

assume that F(t,u) : [0,00) x X — X is continuous and that for every T' < oo there exists Ly such that
(8, 0) = F(t,u)|| < Lrljo = ul],

for all t € [0,7] and all u,v € X. Then, given any uy € X, the problem

du
E—I—Au-F(t,u)7

u(0) = uyg,

has a unique global weak solution. For every T' > 0, we consider the space
Er ={ucC(0,T],X); sup e *|u(t)] < oo},
0<t<T
with k > Lp, and then the map ® defined by

t
B(u)(t) = T(#)uo + / T(t — 5)F(s,u(s)) ds,
0
has a unique fixed point in Er.

2.2. The case F': X — X is globally Lipschitz and C'. Assume F : X — X is globally Lipschitz
and that F' € C'(X, X). The main result of this section is the following.

Theorem 2.2.1. Given uy € D(A), there exists a unique global, classical solution u of (2.1), i.e. u €

C([0,00), X) N C([0, 00), D(A)).

Remark 2.2.2. In contrast with Corollary 2.1.2, we do not assume here that X is reflexive, but instead

we assume that F € C1(X, X).

Proof of Theorem 2.2.1. The idea is the following. Consider the problem (2.1), and formally differentiate

it with respect to t. Thus we have

d (du du , du

hence v = d—u satisfies
dt J
v
— 4+ Av=F'(u) - v,
dt (u) (2.2.1)

v(0) = F(ug) — Aug.

d
So far, we do not know whether ditL really exist, but on the other hand the existence of v satisfying (2.2.1)

in the weak sense follows from Remark 2.1.5. Therefore, we define v to be the weak solution of (2.2.1), and
d
our aim is to prove that u € C*([0, 00), X) with v = d—?
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From (2.1.1), we have

' F(u(s + h)) — F(u(s)) I
+/0 T(t— s) - ds+ﬁ/0 T(t+h— s)F(u(s))ds.

On the other hand, from (2.2.1) we have
v(t) = T(t)(F(ug) — Aug) + /0 T(t — s)F'(u(s)) - v(s) ds.

It follows that
H u(t+ h) — u(t)

Y —U(t)H <z + 29 + 23,
with

)

. /t _ S)H F(u(s + h)})L — F(u(s)) F(u(s)) “(S>H ds,
0

T = HT(t)(%uo + Auo)

23 = H% /Oh T(t+ h — s)F(u(s)) ds — T(t)F(uo)H.

Since uy € D(A), we have x; — 0 as h | 0. Next, we estimate z5. Using the fact that FF € C'(X, X), we
have for every a € X

1F(a + 2) — F(a) = F'(a) - 2[| < ea(llz])]l2ll,

with €4(]|z]]) — 0 as ||z|]] — 0. Moreover, this estimate is uniform for a in a compact set of X. Given T < oo,

it follows that
|F(uls + b)) = F(u(s)) — F'(u(s) - (u(s + h) —u(s)]| < e(lluls +h) — uls)|)]uls + ) — u(s)]
for all s € [0,7] and all h € [0,1]. Using Theorem 2.1.1, we obtain
|Fuls + h)) = F(u(s)) = F'(u(s) - (u(s + h) —u(s)]| < =(h) by
and thus

| Elele 2PN = o) oy ) - u(e)

<e(h) + HF’(U(S)) : (w - v(s)) H

Therefore,
u(s + h) —u(s)

t
T2 ST&‘(}L)—FC/
0 h

— v(s)” ds,

with C' = sup |[|[F'(u(s))].
0<s<T
Finally,

25 < H% /Oh T(h — $)F(u(s)) ds — F(un)|| < n(h).
with n(h) — 0 as h | 0. Set
on(t) = [ =Dy

Combining the above inequalities, we find
t
on(®) <T(b) + () + € [ onls) ds.
0
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By Gronwall’s lemma, this implies that
en(t) < (Te(h) +n(h))e,

for all ¢t € [0,T]. It follows that ¢p(t) — 0 as h | 0. This means that v is right differentiable for all ¢ € [0,T)
+

d
and that d—tu = v(t). Since v € C([0, ), X), it follows from Theorem A.1.16 that u € C1([0,T), X). This
implies that F'(u) € C1([0,7), X). Going back to equation (2.1.1), we may now assert, using Proposition 1.5.4
that u € C([0,T), D(A)) and that

a+Au:F(u),

for all t € [0,T). The result follows, since T is arbitrary. O

2.3. The case F : D(A) — D(A) is globally Lipschitz for the graph norm. In this section, we
assume F' : D(A) — D(A) is globally Lipschitz, i.e. that there exists a constant L such that

[1F(v) = F(u)|| + |A(F (v) = F(w)|| < L(|lv = ull + [[Av — Au]),
for all u,v € D(A). The main result is the following.

Theorem 2.3.1. Given any uyg € D(A), there exists a unique global, classical solution u of (2.1), i.e.
u € C([0,00), X) N C([0,00), D(A)).
In addition, if ug € D(A?) then % and Au are Lipschitz continuous from bounded sets of [0,00) to X.
Moreover, if X is reflexive and ug € D(A?), then u € C1([0,0), D(A)) N C([0, ), D(A?)).

Proof. As in Theorem 1.1.28, set X; = D(A) and consider the operator Ay defined by

{D(A(l)) = {I S Xl; Ax € Xl},
Az = Ax for all z € D(Aq)).

Recall that Ay is a densely defined m-accretive operator in X; (Theorem 1.1.28) and that the semigroup
generated by —A() coincides with the restriction of (7'())¢>0 to X; (Proposition 1.3.16). Applying The-
orem 2.1.1, there exists a unique, global weak solution in the sense that v € C([0,00), D(A)) and u veri-
fies (2.1.1). In particular, F'(u) € C([0,00), D(A)), and it follows from Corollary 1.5.6 that u € C*([0, 00), X)
and that u solves (2.1) in the classical sense.

In the case ug € D(A?), it follows from Theorem 2.1.1 that
lu(ta) = u(t1)llpay < Mrlta = ],

for all T < oo and 0 < t1,t3 < T, i.e. Au is Lipschitz continuous on bounded sets of [0,00) into X. Going
back to the equation (2.1), we see that (c% = F(u) — Au is also Lipschitz continuous on bounded sets of
[0, 00) into X.

Finally, if X is reflexive, so is X;; and from Corollary 2.1.2 we deduce that if ug € D(A?), then
u € C'([0,00), X1) N C([0,00), D(A(1)), Le. u € CH([0,00), D(A)) N C([0,00), D(A?)). O
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2.4. The case F : X — X is Lipschitz continuous on bounded sets. Maximal interval of
existence. The blow up alternative. Assume F' : X — X is Lipschitz continuous on bounded sets,

i.e. for every constant M, there exists Lj; such that
[1F(v) = F(u)l| < Lallv — ull, (2.4.1)
for all u,v € X such that ||u|| < M and |jv|]| < M. The first result of this section is the following.

Theorem 2.4.1. For every ug € X, there exists 0 < T < oo and a unique weak solution u of (2.1) defined
on [0,T], i.e. u € C([0,T],X) and (2.1.1) holds for all t € [0, T].

Proof. Set E = C([0,T],X) with its usual norm, where T' > 0 is to be chosen later. Set
K ={uec E; ||u(t)| < |uol + 1 for all t € [0,T]},

so that K is a closed subset of the Banach space FE. Given any u € K, set

O(u)(t) = T(t)uo + /0 T(t — s)F(u(s))ds,

for all ¢ € [0,T7, so that ®(u) € E. We claim that
a) [|[@(v) — @(u)||lg < LT||v — ul|g for all u,v € K, where L = Lj; with M = |lug| + 1. This is an obvious
consequence of (2.4.1).

b) ®: K — K, provided T(||F(0)|| + L(|luo]| + 1)) < 1. Indeed,

[@(w) )] < [luoll +/O ([ (u(s))l ds.

On the other hand,
[1F(u(s)) = FO)|| < Llju(s)|| < L([Juoll + 1),

since u € K. Therefore,

@)D < [luoll + TUEO)] + L{lluoll + 1)),

and the conclusion follows.

We now choose T small enough so that
T(|FO)] + L(lluoll + 1)) <1, (2.4.2)

which implies in particular that LT < 1. Then ® has a unique fixed point u € K. This u is a weak solution
of (2.1). The uniqueness of u follows from (2.4.1) and Gronwall’s inequality, as in the proof of Theorem 2.1.1.

|

Remark 2.4.2. It is tempting to iterate this construction. We first get existence on an interval [0, 7] as
above. Next, we have a weak solution of (2.1) starting from the initial value u(T7), and it is defined on [0, ¢;]
with

S (IFO) + Cr([lw(TO)l + 1) <1,
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where C; = Lj; with M = ||u(T})|| + 1. Gluing these two functions, and using Corollary 1.5.18, we now
obtain a weak solution of (2.1) defined on [0,7%] with To = T} + §;. We define inductively the increasing

sequence (T},)n>1. It can very well happen that sup T,, < co (see Remark 2.4.4).
n>1

Maximal interval of existence. Let T} < T and let u; and us be weak solutions of (2.1) on [0,7;] and
[0, T»], respectively. By uniqueness, we know that u; = us on [0,71]. Consider now the family (u;(t));cr of
all weak solutions of (2.1) defined on some interval [0, T;]. Set
T =supT;.
iel

Note that T}, may be +00. We define the function u(t) on [0,T1,) by
u(t) =ui(t), if t € [0,T3),i € 1.

This function is well defined by the uniqueness property mentioned above. Note that u € C(]0,T), X) and
that u verifies (2.1.1) for all ¢ € [0,Ty,). This solution is called the maximal solution of (2.1).

Theorem 2.4.3. Assume (2.4.1) and let u be the maximal solution of (2.1). Then, the following alternative
holds.

Either T}, = 400,

or T, < oo and tlTijrgrln [lu(t)]] = +oo.
In the first case, we say that u is a global solution, in the second case we say that u blows up in finite

time.

Proof. Suppose that T, < oo and that there exists a sequence ¢; T Ty, such that ||u(t;)]| < C < co. Fix
any 0 > 0 such that
S(IFO)I+L(C + 1)) <1,

where L = Ly with M = C + 1. Starting from u(t;), we have a weak solution v; of (2.1) defined on [0, d].
Gluing together u with v;, we obtain a weak solution of (2.1) defined on [0,¢; + 4] (see Corollary 1.5.18).

For j sufficiently large, ¢t; + 0 > T1,, and this is impossible since u is the maximal solution. O

Remark 2.4.4. For a given equation (2.1), the maximal time of existence Ty, depends on ug. Here are

some simple examples with X = R and A = 0 showing that many situations may occur.

du UQ
Example 1: — = —u®. Here, the solution is given by u(t) = ————, so that T,, = +oco for every
dt ’ 0 1+ 2tu? .
ug € R.
d + o0 if ug =0,
U U
Example 2: — = u>. Here, the solution is given by u(t) = 707 so that T, = 1 .
dt 1 — 2tug 5 < oo if ug #0.
2ug
du Y + oo if ug <0,
Example 3: — = u?. Here, the solution is given by u(t) = —%  sothat T =14 1 )
dt 1 —tug — < oo ifug > 0.

uo
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d .
Example 4: el Here, the solution is given by u(t) = 4o
dt ud —e2t(ug — 1)

, so that

1 ud .
§log (u% _1) < oo if ug| > 1.

T =

Theorem 2.4.5. Assume (2.4.1).
(i) The mapping uy — Ty (ug) is lower semicontinuous.

(ii) The solution u depends continuously on the initial value uy in the sense that if ug — ug and if v/ is
j—»OO

the corresponding maximal solution of (2.1) defined on the interval [0,T}), then given any T < Ty,, u’

is defined on [0, T] for j large enough and u? — u in C(]0,T], X). More precisely, there exists Cy such

J—00

that ||u? (t) — u(t)|| < Cr|lul) — u| for all t € [0,T].

Proof. Given ug, let T' < Ty, (ug), C = Jmax lu(®)|| and M = C + 1. Let § > 0 be small enough so that

S(IFO) + L(M +1)) < 1,
with L = Lj;41, and let 5 be large enough so that
[, — uolle*T < 1. (2.4.3)
We claim that T = Ty (u}) > T and that
l? (t) = u(®)]| < llug — uolle™, (2.4.4)

for all ¢ € [0,T]. Indeed, it follows from (2.4.3) and Theorem 2.4.1 (see in particular formula (2.4.2)) that
T; > ¢ and sup |u/(t)|| < M + 1. It follows from (2.4.1) and Gronwall’s inequality that (2.4.4) holds for
all t € [07(5}[.)S;rglépaurticular7 |lu?(t)|| < M, and one can iterate this construction k times with k = [T/4].
Therefore, u/ is defined on [0, (k 4+ 1)d], and in particular 7; > T, and the estimate (2.4.4) holds for all
t € [0,T]. The result follows. 0

Theorem 2.4.6. Assume (2.4.1). Suppose ug € D(A) and let v be the maximal solution of (2.1).
(i) w is Lipschitz continuous on compact intervals of [0, Ty,).

(ii) If X is reflexive, then u is a classical solution of (2.1) on [0,Ty,), i.e. u € C([0,Tw), X) N C([0, Tw),
D(4)).

(iii) If F € C*(X,X), then u is a classical solution of (2.1) on [0, Ty,).

We omit the proof, since it is similar to the proofs of the corresponding statements when F' is globally

Lipschitz.

Theorem 2.4.7. Assume (2.4.1) and set C(M) = sup{||F(2)|; ||z|| < M}. If u is the maximal weak

solution of (2.1), then

Cllu®l+6) _ _1
3 T —t

(2.4.5)
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for all > 0 and all t € [0,T},).

Proof. The proof proceeds in two steps.

g .
Step 1. Lette€ [0,7) and 8>0. If 0 < s < ————— is such that t + s < Ty,, then
[ el + 5)
[ut + )| < [lu@®)] + 8.
B

Indeed, otherwise there exists so < c such that ¢t + so < T, ||Ju(t + s)|| < JJu(t)|] + 8 for

(lu®)] + 5)
0<s<sgand ||u(t+ so)|| = ||u(t)| + 8. However, it follows from (2.1.1) that

[[u(t + so)|| < [lu(®)] + /030 [E(u(s)ll ds < [lu@®)l + soC([[u)]| + 8) < [lu(@)]] + 5,

which is absurd.

Step 2. Note that (2.4.5) is equivalent to

B
I >4 Gl + )

If the above inequality does not hold, there exists Gy > 0 and tg € [0,T},) such that
Bo
T <t+ 775
Cllulto)ll + Bo)

then by Step 1, u is bounded on [0,Ty,). Therefore, F(u(-)) € L*°((0,Tm), X) and it follows from for-

mula (2.1.1) that u(t) has a limit as ¢ 1 oo, which is impossible. The result follows. O

Remark 2.4.8. Observe that (2.4.5) gives a lower bound of blow up which is independent of the solution.
Note that this estimate often provides an optimal rate. This is the case for the examples of Remark 2.4.4

(choose 8 = ||u(®)]]).

Remark 2.4.9. The case where I is locally Lipschitz. Assume F' : X — X is locally Lipschitz,
i.e. for every x € X, there exists r > 0 such that F' is Lipschitz continuous B(z,r) — X. Note that this
assumption is weaker than the assumption that F' is Lipschitz continuous on every bounded set. (It does
not even imply that F is bounded on bounded sets.) The same argument as in the proof of Theorem 2.4.1
shows that for every ug € X there is a unique weak solution defined on a maximal interval [0,T},). We call

attention on the following.

Open problem. Assume F is locally Lipschitz, and let ug € X be such that T}, < co. Does [Ju(t)|] — +o0

ast 1 Tm? (It is not even clear that limsup |u(t)|| = +o0.)

m

Note that if F' is bounded on bounded sets, then the answer is yes. Indeed, the conclusion of Theorem 2.4.7

holds without assumption (2.4.1), and estimate (2.4.5) implies blow up by choosing 5 = 1.

Theorem 2.4.10. Assume F : X — X is locally Lipschitz and in addition that F' grows at most linearly,
ie.

[F(w)]| < Cullul + Ca, (2.4.6)
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for all x € X. Then, for every ug € X, Ty (ug) = +00.

Proof. First observe that by Remark 2.4.9, estimate (2.4.5) holds. The conclusion follows by taking
B =|u(t)] +1in (2.4.5), and using assumption (2.4.6). O

Here is another situation where u is globally defined for every ug € X.

Theorem 2.4.11. Assume that X is a Hilbert space with scalar product (-,-) and that F : X — X is

Lipschitz continuous on bounded sets. If
(F(u),u) < Cylul|® + Ca, (2.4.7)
for all w € X, then Ty, (ug) = +oo for every ug € X.

Proof. Assume first that ug € D(A), so that u is a classical solution of (2.1). We claim that T, = 400
and that
lu(®)1 < (Juoll* + 2C2)e* ™, (2.4.8)

for all t > 0. Indeed, by taking the scalar product of the equation with u, we obtain using (2.4.7)
S llu®? < Cullull® + Ce,

from which (2.4.8) follows.

Let now ug € X and ug — wug with u% € D(A). The corresponding solutions u’ are global and
verify (2.4.8), which implies that they are uniformly bounded on bounded sets of [0,00). By continuous
dependence, we see that (2.4.8) holds for all ¢ € [0,T},), and thus Ty, = +o0. O

2.5. The case F : D(A) — D(A) is Lipschitz continuous on bounded sets. In this section, we
assume that F': D(A) — D(A) is Lipschitz continuous on bounded sets, i.e. for every constant M, there

exists Ljs such that
[1E(v) = Fu)ll + |AF(v) = F(u)|| < La([lo — ull + [[Av — Aul]), (2.5.1)
for all u,v € D(A) such that ||u| + ||Au| < M and |jv|| + ||Av|| < M.

Theorem 2.5.1. Assume (2.5.1). For every ug € D(A), there exists a unique classical solution u of (2.1)
defined on a maximal interval [0,Ty,), with the alternative that

either Ty, = 400,

or Ty, < oo and tlTiII% lu(@®)] + [[Au(t)]| = +o0.

d
In addition, if ug € D(A?), then di: and Au are Lipschitz continuous on compact subsets of [0, Ty,) into

Moreover, if X is reflexive and ug € D(A?), then u € C*([0, Ty), D(A)) N C([0, Tw), D(A?)).
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We omit the proof, since it is similar to the proof of Theorem 2.3.1; instead of using Theorem 2.1.1, we

now use the results of Section 2.4.

Remark 2.5.2. In some concrete examples, it is possible to apply several existence results, and in principle
they could lead to defferent values of Ty,. Often, one can prove that the Ty, is the same for all methods.
Suppose for example F' : X — X is Lipschitz continuous on bounded sets and, given ug € D(A), let T}
be the maximal time of existence. Suppose that in addition F': D(A) — D(A) is Lipschitz continuous on
bounded sets and let 75 be the corresponding maximal time of existence. Then T} = T5.

Proof. Ty, < Tj. Indeed, if T < T3, then tl%rjr% [lu(®)|| = 400, but on the other hand, u € C([0,Tz), X).
Impossible.

T, > Ti. Suppose not, that T, < Ty. Then, 751%1:/% lu@®)| + || Au(t)|| = +o00. Fix T3 € (T2, T1). It
follows from Theorem 2.4.6 (i) that u is Lipschitz continuous [0,75] — X. On the other hand, we know
that u € C*([0,T%), X), and thus H%(t)” < C for all ¢t € [0,T>) and some constant C. Going back to the
equation, we have

()] < | %) + 1@ < o

for all ¢t € [0,T%). Impossible.

Conclusion. In many concrete problems the first question is to determine whether for a given initial value
ug the solution is global or whether it blows up in finite time. In view of the above results, the global
existence follows from a priori estimates on every bounded set of [0,00). In the case where F : X — X is
Lipschitz continuous on bounded sets, then we can apply Theorem 2.4.3 and it suffices to estimate [|u(t)]|.
However, in a number of important situations, F' does not map X — X but it maps D(A) — D(A). In view
of Theorem 2.5.1, global existence then follows from an estimate of ||u(t)|| + ||Au(t)|| on every bounded set
of [0,00). Of course, this can be a rather delicate task.
The next question is the following.
(i) If the solution is global, then it is of interest to study its asymptotic behavior as t — co.

(ii) If finite time blow up occurs, then one wants to know how wu(t) behaves near blow up time.
Here is still another variant of the local existence theory.

Theorem 2.5.3. Assume X is reflexive and F' : D(A) — D(A) verifies the following properties.
(i) F maps bounded sets of D(A) into bounded sets of D(A).

(ii) For every M, there exists Ly such that
1F() = F(u)|| < Larllv — ull,

for all u,v € D(A) such that |lu| pcay < M and ||v||pay < M.

Then, for every ug € D(A), there exists a unique, classical solution of (2.1) defined on a maximal interval
[0,Tw), with the alternative that
either Ty, = 400,
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or T, < oo and tlTiTIp lu(@®)] + [[Au(t)]] = +oo.
Proof. Given T >0, let E = C(]0,T],D(A)), and set
K = {u € FE; ||u(t)||D(A) < ||u0||D(A) +1, for t € [O,T]}

K is equipped with the distance induced by the norm of C([0,7],X). Note that K is a complete metric
space, since X (hence D(A)) is reflexive.

Consider ® as in the proof of Theorem 2.1.1. ® : K — K is a strict contraction provided TLjy; < 1
and T'sup{[|F'(u)|pay; lullpay < M} < 1, with M = |[Jugl[pay + 1. The alternative is proved as in
Theorem 2.4.3. O

2.6. Smoothing effect for self-adjoint operators in Hilbert spaces. In this section, we assume

that X is a Hilbert space with the scalar product (-,-) and that A is a self-adjoint accretive operator.

Theorem 2.6.1. Assume F : X — X is Lipschitz continous on bounded sets. Then, for every ug € X,
the weak solution of (2.1) defined on the maximal interval [0, Ty,) satisfies in addition u € C*((0,Ty,), X) N
C((0,Tw), D(A)). In particular, u is a classical solution of (2.1) on (0,Ty,).

Proof. The proof is an adaptation of the proof of Theorem 1.3.34 to the nonlinear case. We first assume
ug € D(A), so that by Theorem 2.4.6 u is a classical solution of (2.1) on [0,7},), and we obtain estimates

that are independent of ||Augl||. Taking the scalar product of the equation with u, we find

()P + (Au,w) = (F (), w);

and so, for every t € [0, Ty,),
Sl + [ CAu(e).u(s)) ds = Sl + [ (Fu(s)).u(s) ds. (2:6.1)

d
Next, we take the scalar product of the equation with td—qz, and we obtain
du du
27+ e, 2 = i, 22,
i, %) = (R (), T

Since A is self-adjoint,

du 1d
(AU, E) = §E(AU7U)7
and so,
1d du
~ LA H H A Flu), 55,
2dt((uu )+t uu—|—t(()dt)
Since (F'(u), %) fHF( MN? + , this yields after integration on (0,t), 0 < ¢t < Ty,

HAu(E) u() + / ts\)‘é—“;]fds < [ auto)utsnas + [ sG] as

Using now (2.6.1) we obtain

H(Au(t), u(t)) + / < Sluoll? + /{sHF DI+ (F(u(s),u(s)}ds.  (262)
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Next, given 0 < h < Ty, we set up,(t) =

t+h) —u(t
w for all 0 <t < T}, — h. We have by equation (2.1)

duy, F(u(t + h)) — F(u(t))
7£T-+14uh4— h

Taking the scalar product of this equation with wuy, we find

Flu(t+h) - Fu®) )
h )

d
3 el + Cun, ) = (

It follows from (2.4.1) that

5 dt||uh||2 < Ot +h)|ual?,

where C(s) = L5y with M(s) = sup |u(o). It follows that

0<o<s
llun@®))1? < |Jun(s)]|2e2t—=)CER)
Letting h | 0 and using the fact that u € C*([0,T,), X), we find
d 2 d 2 ’
Hl t H < Hdi;(S)H 2(t=9)C (1),

for 0 < s <t < Ty. It follows that

G| = se e G
and (2.6.2) yields
tautr), u(e) + Se 20| 20| < Lo + /{snF DIP+ (F(u(s),uls)}ds.  (2.63)

for all 0 <t < Ty,.
Let now ug € X, let u% — ug with ué € D(A), and let v’/ be the corresponding maximal solutions

of (2.1). Given any ¢ € (0,Ty,), it follows from (2.6.3) and the continuous dependence (Theorem 2.4.5) that

|2 <cr

for all t € [0,T] and all j sufficiently large. Using the equation, it follows that there exists Kt such that

there exists Cr such that

12 Au’ ()|* < K,

for all t € [0, 7] and all j sufficiently large. Since u’(t) — u(t) in X as j — oo, this implies that u(t) € D(A)
for all t € (0,T]. Therefore, by Theorem 2.4.6, u is a classical solution of (2.1) on [¢t,T]. The result follows,

since 0 < t < T < Ty, are arbitrary. O

2.7. Some simple examples where global existence holds.

Example 1. Consider the equation
u +u, =gu), 0<z<l,t>0,
u(t,0) =0, t>0, (2.7.1)

u(0,2) =up(z), 0<zx<l1,
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where g : R — R is locally Lipschitz and
lg(u)| < Clul + C, (2.7.2)

for all u € R and some constant C. Assume uy € W1P(0,1) with 1 < p < oo and ug(0) = 0. Then, there
exists a unique global, classical solution u of (2.7.1), i.e. u € C1([0,0), LP(0,1)) N C([0,00), WLP(0,1)).
Fix T'> 0 and M > 0, and let
g(M) it u > M,
g(u) = ¢ g(u) if =M <u <M,
g(—M) if u < —M,
so that ¢ is globally Lipschitz and verifies (2.7.2). Applying Corollary 2.1.2 with X = LP(0,1) and Re-

mark 1.4.2 (iii), we obtain a unique global, classical solution @ of (2.7.1) where g is replaced by g. From the

equation
u(t) = T(t)uo + / T(t — s)g(u(s))ds,
0

and the fact that T'(¢) is a contraction in L>°(0,1) (by formula (1.4.3)), it follows that
¢
[a()]| 2 < Jluollze +/0 (Cllu(s)llz= + C) ds.
By Gronwall’s inequality, we obtain
@@l < (luollz= + Ct)e,

for all ¢ > 0. We choose M = (||ugl| + CT)eCT, so that g(u(t,x)) = g(u(t,z)) for all z € (0,1) and all
t € [0, T]. Therefore, @ is a classical solution of (2.7.1) on [0,7]. The result follows, since T is arbitrary.
Assume in addition that g € C?(R,R) with g(0) = 0, and that ug € W?2?(0,1) with u(0) = u{(0) = 0.
Then u € C([0, 00), W2P(0,1)) N C*(]0, 00), WP(0,1)). This follows from Theorem 2.5.1. We only have to
verify that F' : D(A) — D(A) is Lipschitz continuous on bounded sets. Here, D(A) = {u € W1?(0,1); u(0) =
0}. Given M, we have to evaluate ||g(u) — g(v)||p(a), i-e. |lg(u) — g(v)llzr + |9’ (wW)uz — g'(v)ve| Lr, With

llullpcays lvllpay < M. First, we have

llg(u) = g(v)llzr < Lllu —v[Ls-

Next, we write
lg'(wue — g'(V)vallr < llg" (W) (ua — va)llLe + (9" () — ¢' (V) vzl Lr

< Llv —ullpay + lg'(w) = g'(0) 2= [[v] pa)-
On the other hand,
lg'(w) = g’ ()|~ < Kflu— vl < Kllu—v|[p(a),
where K = sup{|¢”(s)|; |s| < ||ullr= + ||v|lz=}. Combining all these estimates, we see that |g(u) —
9(W)lpca)y < Lullu—vlpea).
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Example 2. Consider the equation
us — Au=g(u), xe€Q,t>0,
u(t,z) =0, z€dQ,t>0, (2.7.3)
u(0,z) = uo(x), = €Q,

where g : R — R is locally Lipschitz and
lg(u)| < Clul +C,

for all u € R and some constant C. Here, € is a smooth bounded domain of RY. Assume uy € W2P(Q) N

WyP() with

max{l, J;f} < p < oo.
Then, there exists a unique global, classical solution u of (2.7.3), i.e. u € C([0,00), W2P(2) N W, P () N
C1([0, 00), LP(£2)).

The argument is the same as in the previous example, except that instead of Remark 1.4.2 (iii) we
apply Proposition 1.4.19, and also Theorem 1.4.15. The assumption p > % implies that D(A) = W2P(Q)N
WyP(Q) — L>(Q) (see Appendix, Section A.3.4).

Assume in addition that g € C3(R,R) with g(0) = 0, and that ug € W*P(Q) with ug = Aug = 0 on 9.
Then u € C1([0,00), W2P(Q)) N C([0,00), WP(£2)). The argument is the same as in the previous example,

except that we now apply the following lemma.

N
Lemma 2.7.1. Assume g € C3(R,R) and let max {1, 2} < p < 00. Then the map F : u — g(u) maps
W?2P(Q) — W?2P(Q) and is Lipschitz continuous on bounded sets.

Proof. Assume ||ully2.p, ||ullwzr < M, so that in particular ||ul|pe<, ||v]L~ < Kjs. Clearly,

lg(u) = g(0)|[zr < Cllu —v] Lo

0
Next, we estimate ||Dg(u) — Dg(v)||», where D = e for some 1 < j < N. We write
Ty

lg'(w)Du — g'(v) Dol e < |lg’(w)(Du = Dv)|[Le + [[(g'(w) — g'(v)) Dol e
< Cllu = vfzr + Cllu = vl L~ |v]lwr.e
< Cllu = vfw2s-

2

Finally, we estimate ||D?g(u) — D?g(v)||z», where D? = for some 1 < j,k < N. We write

Oz 0z,

9" (w)D*u+ g (u)(Du)? — ¢ (v) D*v + g" (v)(Dv)?||L» < A+ B,

with
A =g (u)D*u — ¢ (v)D*v]|L»,

B =||g" (u)(Du)* = g" (v)(Dv)?| -

First, we have
A< g (w)(D*u — D*v)| e + [[(¢'(uw) = ¢'(v)) D?]| s

< Cllu=vllze + Cllu = vl|p= [[olwzr < Cllu = v]fw2r
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Next, we have
B < |lg" (w)(Du + Dv)(Du — Do)l s + [[(g" (u) — ¢" (v))(Dv)?||

S C(HDUHLQ}) + HD’UHL2p)”D’U, — D’UHLQP + O”U — ’UHLoo ||D’U||%2p.

The result now follows from the Gagliardo-Nirenberg inequality
IDul|2r < Cllull e Jullwer.

(See (A.3.10).)

Example 3. Consider the equation
iug + Au=g(u), = e€Q,t>0,
u(t,z) =0, =z €N, t>0,

u(0,x) =uo(x), =€,

(2.7.4)

where g : C — C is globally Lipschitz. Here, § is either a smooth bounded domain of RY, or 2 = RV (and

in that case, we also assume g(0) = 0). For every ug € H?(2) N Hg (£2), there exists a unique global, classical

solution u of (2.7.4), i.e. u € C1([0,00), L*(Q)) N C([0,00), H2(Q) N HL(2)).

This is a direct consequence of Theorem 2.1.1, Corollary 2.1.2, Proposition 1.2.35 and Remark 1.2.36.
Assume in addition that N < 3, g € C? with ¢g(0) = 0, and vy € H*(Q) with ug = Aug = 0 on 9.
Then, u € C([0,00), H*(Q)) N C([0,00), H?(Q) N H}(2)). The argument is the same as in the preceding

example. The assumption N < 3 allows us to apply Lemma 2.7.1 with p = 2.

Example 4. Consider the equation
uy — Au = g(u,ug, Vu), x € Q,t>0,
u(t,x) =0, x€dQt>0,

u(0,2) = uo(z), u (0, 2) = vo(z), =z €Q,

(2.7.5)

where g : R x R x RNV — R is globally Lipschitz. Here, € is either a smooth bounded domain of RV, or
Q =RY (and in that case, we also assume g(0) = 0). Assume ug € H2(Q) N H}(Q) and vy € HE (). Then,
there exists a unique global, classical solution u of (2.7.5), i.e. u € C%(]0,00), L2(Q2)) N C([0, 00), HL(2)) N

C([0,00), H?(2)).
As in Section 1.4.5, we write (2.7.5) as the system

ur —v =0,
vy — Au+u = g(u,v, Vu) + u,
u(0) = ug, v(0) = vy,

and we work in the space X = H}(Q) x L*(Q) with
F(u,v) = (0,9(u, v, Vu) + u).

It is clear that F': X — X is globally Lipschitz.
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In order to get further regularity results, we have to make further assumptions. Here are some typical

situations.

(i) Assume N = 1, g € C*(R3 R) and ¢(0,p,q) = 0. If ug € H3(Q) with ug = u§ = 0 on 9Q and
vo € H?(2) N H(Q), then u € C?([0,00), H}(Q)) N C1([0,00), H2(2)) N C([0, 00), H3(£2)).

(ii) Assume N < 3, g(u,p,q) = g(u) depends only on u, g € C?(R,R) with g(0) = 0. If ug € H?(Q) with
up = Aug = 0 on 9Q and vy € H2(Q) N HY(Q), then u € C%([0,00), Hi(2)) N C*([0, 00), H*(2)) N
C([0,00), H*(92)).

(iii) Assume N < 5, g(u,p,q) = g(u) depends only on u, g € C?*(R,R) with g(0) = 0 and ¢g"” € L*®(R).
If ug € H3(Q) with ug = Aug = 0 on 9N and vy € H?(Q) N HY(Q), then u € C?([0,00), H(2)) N
C([0, 00), H*(2)) N C([0, 00), H*()).-

The proof consists in showing that under the above assumptions, F maps D(A) — D(A) and is Lipschitz
continuous on bounded sets. We carry the details just for the case (ii). We show that the mapping u +—
g(u) maps H2(Q) N H} () — HE(Q) and is Lipschitz continuous on bounded sets. The fact that g maps
H2(Q) N HF () — HY(Q) (in fact HL(Q) — HE(Q)) is proved in Corollary A.3.29. Fix M and assume
up,up € H*(Q) N H(Q) with [[ua||g2, [uzllgz < M, so that in particular [lui]|z, [uzllp~ < Kpn. We
estimate

lg(u1) = g(u2)llm < llg(ur) — g(u2)llz2 + [lg' (ur) Dus — g’ (u2) Dus||
< Cllur = uglL2 + [lg'(ua)(Dur = Dug)lz2 + [[(9'(u1) — g'(u2)) Dua || >
< Clluy = uzllz2 + Cllur — ugllgr + Clluy — ual| Lo || Dual| 2

S C||u1 — ’LL2||H2.
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Chapter 3. The nonlinear heat equation.

Throughout this chapter, we assume that Q is a smooth, bounded, connected open subset of RY, and

we consider the equation
up — Au=g(u), x€Qtel0,T],

u(t,z) =0, ze€d,tel0,T], (3.1)
u(0,2) = up(z), =z €9,
where we assume systematically that g : R — R is locally Lipschitz.

3.1. A general local existence result. The main result of this section is the following.

Theorem 3.1.1. Given ug € L™ (), there exists a unique weak solution u of (3.1), defined on a maximal

time interval [0,Ty,), i.e. u € L*°((0,T) x Q) for all T < T, and

w(t) = T(t)ug + /0 T(t — s)g(u(s)) ds, (3.1.1)

for all t € [0,Ty,). Moreover, we have the blow up alternative

either T, = +o0,

or T, < oo and tlTi%}j [lw(®)|| e = +o0.

In addition, u depends continuously on ug. More precisely, the mapping uy — Tin(ug) is lower semi-
continuous, and for every T < Ty, there exists ¢ > 0 and C' < oo such that if ||vg — ug|lpe < &, then

lv —ull Lo (0,1)x0) < Cllvo — uo|| (), where v is the solution of (3.1.1) with the initial value vo.
Remark 3.1.2. Note that from (3.1.1), it follows that
u € C((0,Ty) x Q), (3.1.2)

so that in particular u(t) € C(Q) for all ¢ € (0, Tyy).
First, note that T'(t)ug € C((0,00) x Q) (Corollary 1.4.24). Next, let T' < Tp,; we claim that

v(t) = /0 T(t— s)h(s)ds, (3.1.3)

_ — N
belongs to C([0,T] x Q) whenever h € LP((0,T) x Q) with p > 1+ 5 Indeed, we have

t
HU@NhﬁWQ)SLA IT(t — $Yh(s)]| o s ds

t
<C [ 69 Fh(s) ooy ds
0

t _ N >
< C”hHLP((O,T)xQ) (/ (t—s) 2-D ds) ,
0

by Theorem 1.4.15. It follows from the standard linear theory that if A is smooth, then so is v; and so the
result follows from the above estimate. Finally, we observe that h(s) = g(u(s)) belongs to LP((0,T) x Q)
for every p < co. Note also that, since (T(t))¢>0 is a semigroup of contractions in L?(Q2) for 1 < p < oo, we

have u € C([0, ), LP(2)) for all p € [1, 00).
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Proof of Theorem 3.1.1. We first prove uniqueness. Suppose that u; and us are two solutions of (3.1.1)

on [0,7T]. Then,
ui(t) — us(t) = / T(t = s)(g(ui(s)) — g(ua(s))) ds.
0

Taking the L° norm of both sides, and using the fact that

1Tl < llellze,

we find

t

Jur (t) = ua ()l < /O l9(ur(s)) — g(ua(s))llLe> ds < K ; [ur(s) — ua(s)| L~ ds,

for all t € [0, T], with K the Lipschitz constant of g on [—A4, A],

A = max{|[u1|[ze((0.1)x2); U2 L= ((0.1)x ) }-
Uniqueness now follows from Gronwall’s inequality.
Let M = |lug||r~ + 1 and let g be defined by
g(M) if u > M,
g(u) = q g(u) if [u] < M,
g(—M) if u < —M,
so that g : R — R is globally Lipschitz. Applying Theorem 2.1.1, for example with X = L2(2), we obtain a

weak, global solution @ € C([0, 00), L%(Q2)) satisfying
¢
u(t) = T(t)uo + / T(t — s)g(u(s)) ds. (3.1.4)
0
Taking the L°° norm of both sides and applying Theorem 1.4.15, we see that
¢
@Ol < luolli= + [ 1@ 1 ds < ol + Kt
0
where Ky = ||g||Les(—ns,ar)- Choose T' small enough so that
KyT <1.

Then ||u(t)||L= < M for all ¢ € [0,T]; and then w satisfies (3.1.1) on [0,7]. Uniqueness, as in Section 2.4,
implies the existence of a solution defined on a maximal time interval [0, Ty, ).
To establish the blow up alternative, we argue as in the proof of Theorem 2.4.3. Suppose Ty, < oo, and

assume that there is a sequence t; 1 Ty, such that ||u(t;)||z~ < A < co. Fix 6 > 0 such that
5KA+1 S 1

Starting with the initial value u(t;), we have a weak solution v; of (3.1) defined on [0,6]. Gluing together u
with v, we obtain a weak solution of (3.1) defined on [0,t; 4 0] (see Corollary 1.5.18). For j large enough,

t; + 6 > Ty, and this is impossible since u is the maximal solution.
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Finally, we prove the continuous dependence. Given T' < Ty, set My = |[u|L((0,)x0) + 1. Let g be
as above, but with M = My and let Ly be the Lipschitz constant of g. Let @ be the solution of (3.1.4) and,
given vg € L>®(2), let © be the corresponding solution of (3.1.4). It follows that

t
[a(t) =o)L < lluo — vollze + LT/ [i(s) —v(s)| o ds;
0
and so, by Gronwall’s inequality,

@ = Bl Loe 0.1y x2) < €77 [lug = vol| 1< (-

In particular, if [Jup — vo|p=() < € with e = e~ TLr  we have ||u — || poe 0,7y %) < Mr, so that v is the

solution of (3.1.1) on [0, 7] with the initial value vg. The continuous dependence follows easily. O

Remark 3.1.3. Assume ug € L®(Q), and in addition uy € W2P(Q) N W, P(Q) for some p € (1,00).
Then, the above solution belongs to C([0, T,), W22(Q) N W, () N C1([0, Ty), LP(Q)). This is a direct
consequence of Corollary 2.1.2. Note that g is not globally Lipschitz, but one can truncate g outside the
range of u(t,x), z € Q, t € [0,T], for T < Tyy,.

Remark 3.1.4. Assume that g = g(z,u) also depends on x, and consider the problem
w— Du=g(z,u), zeQtel0,T)
u(t,z) =0, xz€dNtel0,T] (3.1.5)
w(0,2) = up(x), =€

If g is measurable in z and locally Lipschitz in u (i.e. |g(z,u) — g(x,v)| < Kalu — v| for almost all z € Q
and all u,v € [—A, A]) and if g(-,0) € L*>°(Q), then the conclusions of Theorem 3.1.1 hold without any

modification.

3.2. Smoothing effect. The weak solution u obtained above for (3.1) (or more generally for (3.1.5)) is
in fact smooth for ¢ € (0,7y,). Here is one such result.
Theorem 3.2.1. Assume ug € L>®(2). Then
(i) u e C((0,T), W2P(Q) N W, () N CH((0, T,), LP () for every p < oo.
C
(ii) For every T < Ty, there exists C' depending on T' and ||ul| e ((0,1yxq) such that |lu(t)|| g2 < T and

C
lu@®)||gr < 7 for all t € (0,T).

Vi

Proof. First, we write

where v(t) = T(t)ug and .
w(t) = /0 T(t — s)g(u(s)) ds.

It follows from the analyticity of (T'(t));>0 in LP(€) (see Proposition 1.4.20) that v(t) € W2?(Q2) N W, ()
for all ¢ > 0. On the other hand, w(t) € LP((0,T), W2P(2) N Wy (Q)) for T < Ty, and every p < oo,
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by Theorem 1.6.1. In particular, u(t) € WP (Q) N WyP(Q) for almost all ¢ € (0,T}y,). Conclusion (i) now
follows from Remark 3.1.3.

The estimates (ii) are consequences of the arguments used in the proof of Theorem 2.6.1. O

Remark 3.2.2. TIterating this argument, one can show that if g € C°(R,R), then u € C°°((0,Ty,) x Q).

Of course, we have to assume that g € C®°(Q x R, R) if g also depends on x.

3.3. The condition ug(z,u) < Cu? + C implies global existence for every ug. In this section, we
assume that

ug(z,u) < Cu?® 4 C’, (3.3.1)

for almost all z € Q2 and for all u € R. The main result is the following.
Theorem 3.3.1. For every ug € L>(£2), the solution u of (3.1.5) is globally defined.
Proof. It relies heavily on the maximum principle, or its variants. We give two different proofs.

Proof 1. Multiplication by powers. For t € (0,T},), we multiply the equation by |u[P~2u, with p > 2,
and we integrate on 2. We find

S [ =1 [k = [ jup-ugte
p
pdt/‘“|p<c/|“|p+c/|u‘p 2

be'
Applying the inequality ab < — + — with ¢ = LQ a=|uP~% and b = 1, we find
q q p

1d

—— up<2C/ ul? 4+ C|9Q.

oo L <ec [ up+ciel
[t < ([ ey + criar) exeres,
Q Q

for all 0 < s < t < Ty,. Passing to the limit as s | 0 (recall that v € C([0,T), LP(€2)) for all p < o0), we

find
[ tor < ( [ ol + cp|ﬂ|) 2,
Q Q

1
for all t € (0,T},). Raising this inequality to the power —, we finally obtain
p

and so,

It follows that

1

ool < ( [ ok + Cl)" e < (uoler + (©ol0)})
Q

Letting p — o0, it follows that
lu(®)llz= < (Juoll L +1)e*",
for all t € (0,Ty,). In view of the blow up alternative in Theorem 3.1.1, this implies Ty, = +o0. O
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Proof 2. Super and sub-solutions. The proof relies on the following comparison principle for nonlinear

heat equations.
Theorem 3.3.2. Assume g : 2 xR — R is locally Lipschitz in u and assume u and u are smooth functions
in (0,T) x Q such that u,u € L*°((0,T) x Q) N C([0,T], L*(Q)) and

uy — Au < g(z,u) in (0,T) x Q,

uy — Au > g(z,w) in (0,T) x Q,

u<win (0,T) x 0L,

u(0,2) <@(0,z) in Q.

Then v <@ in (0,T) x Q.

Proof. Let h € C1(R,R) be such that b’ > 0,

0 for s <0,
h(s) =
> 0 for s > 0,

and sh(s) < CH(s) for every s € R, where H(s) = / h(o)do. For example, h(s) = (s7)2. We have
0

/Q h(u— ) (u — ), + /Q W (u— )|V (u - D) < /Q (9(z,u) — gla,@))h(u — )
SL/Q|u—ﬂ|h(u—ﬂ)SLC/QH(u—ﬂ);

and so,

%/ﬂH(u—ﬂ)SLC/QH(U_U)’

where L is the Lipschitz constant of g on [—M, M| with M = max{||ul| - (0,7)xq); [T/ Lo ((0,7)x ) }. Since
H(u(0,z),w(0,z)) = 0, we conclude by Gronwall’s inequality that H(u — %) < 0in (0,7) x Q. Hence u <@
in (0,7T) x Q. O

Remark. The conclusion of Theorem 3.3.2 holds under weaker assumptions on €2, u, w. See Theorem 1.4.12.

Proof 2 continued. Observe that inequality (3.3.1) implies the existence of a constant D such that
glz,u) < D(u+1), (3.3.2)

for all w > 0. Let v be the solution of the linear problem
vy —Av=D(v+1)in (0,00) x £,
v =01in (0,00) x 0L,
v(0,z) = |ug(x)| in .
By the maximum principle (apply for example Theorem 3.3.2), it follows that v > 0 in (0, 00) x ; and so,

it follows from (3.3.2) that

v — Av > gz, v).
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Theorem 3.3.2 now implies that « < v in (0, T}, ) X Q. Similarly, one obtains a lower bound for « in (0, Ty, ) X £2.

Again by the blow up alternative, we deduce that T}, = +oc. O

Remark 3.3.3. It follows from the proof of Theorem 3.3.1 that
lu()l[z= < Ke“*(1+ [|uo|=),

for all ¢ > 0, where C' is the constant in (3.3.1). In fact, this estimate can be improved. Indeed, if C' < Aq,
A1 the first eigenvalue of —A in H}(Q2), then

[u(®)[Loe < K1+ [Juol[Le)-

(See Exercise 3.13.2.) This estimate is optimal in the sense that in general ||u(t)| L~ may be bounded away
from 0. To see this, consider g(u) = 1. If 1 > 0 is the first eigenfunction of —A in H}(Q) with / w1 =1,
)

<
it follows that

z(t):/ﬂu(t,x)gol(x) dx

verifies the differential equation 2z’ + A1z = 1, so that

1
2(t) = e M2(0) + —(1 — e M),
A
and so, if 2(0) > 0, then z(t) > a > 0 for all ¢ > 0. This implies that %gg [lu(t)|| L= > 0.
If now C' > Ay, then -

lut)||L~ < K(1+ ||UO||L°°)6(C—X1)1&'

(See Exercise 3.13.3.) This estimate is also optimal with respect to the behavior as t — oco. Indeed, take
g(u) = Cu and ug = @1, so that u(t) = el Mty
Finally, if C = Ay, then
[u(®)llzee < K(t+ [luollz=).

(See Exercise 3.13.4.) This estimate is also optimal in the sense that in general ||u(t)||L~ is not bounded
(see Exercise 3.13.7).
Note that if g(u) =1 or if g(u) = A\ju, then all solutions are bounded, but that if g(u) = max{1, \ju},

then some solutions are unbounded (see Exercises 3.13.2, 3.13.5 and 3.13.7).

3.4. Global existence for small initial values. There are two different methods for showing that if
ug is “small”, then the solution of (3.1.5) is globally defined:

- the energy method,

- the comparison method.
They yield different results in that the smallness condition involves different norms. Throughout this section,

we assume that g(z,u) is C* in u and that

g(x,0) =0, (3.4.1)

A (—A = gu(x,0)) > 0. (3.4.2)
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Here, A1 (—/\ — g, (z,0)) denotes the first eigenvalue of the operator v — —Av — g, (z,0)v in HE(Q). If g is

independent of x, then condition (3.4.2) is equivalent to
9'(0) < Ai(=A).

Assumptions (3.4.1) and (3.4.2) mean that 0 is a “stable” solution of the stationary problem —Au—g(x,u) =
0.
We begin with the energy method.

Theorem 3.4.1. Assume (3.4.1), (3.4.2) and

lg(x,u)] < C(1+ |ul?), for all u € R, (3.4.3)

N +2
withl < ¢ < N i_ 5 (no condition on ¢ > 1 if N = 1,2). There exists § > 0 such that if ug € L (Q)NH(Q)

and |lug| g < 6, then the solution u of (3.1.5) is globally defined and belongs to L°°((0, 00), L (Q)NHZ(Q)).

With § > 0 possibly smaller, we even have
|u(t)||p~ < Ce ™ fort >0,
where i is any number strictly less than A\ (—A — g, (x,0)), and C depends on .

Let
G(z,u) z/ g(z,s)ds.
0
The energy

B(u) = % /Q Val? = [ G, (3.4.4)

is naturally associated with (3.1.5) and plays an important role. We will need the following lemma.

Lemma 3.4.2. Assume ug € L>(Q) N H(Q), and let u be the solution of (3.1.5) defined on the maximal
interval [0, Ty,). Then u € C([0,Ty), HE(Q)) and

E(u(t)) < E(uo), (3.4.5)
for all t € [0, Ty).

Proof. We first prove that u € C([0,Ty,), H} (), and by Theorem 3.2.1, it suffices to show that u is con-
tinuous at ¢ = 0. For this purpose, we use the integral formula (3.1.1). Recall that T'(¢)ug € C([0,00), Hi(Q))
(see Theorem 1.4.8 (iii)), and therefore we need only show that ||u(t) — T'(t)uollgr — 0 ast | 0, ie.

H /OtT(t — s)g(z, u(s)) dSHHl —0.

We have by Theorem 1.4.11 (ii)

H / tT(H)g(x,u(s»dsHHl < / t (1+ ﬁ;) gz, u(s)) 2 ds
SC(H\/%)TOO.
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Next, multiply equation (3.1.5) by u;. We find

/Q e %E(u(t)) o, (3.4.6)

for all t € (0,T,). In particular, E(u(t)) < E(u(s)) for all 0 < s < ¢ < Ty, and the result follows by letting

s ] 0. Note that E(u(s)) — E(ug) since u is continuous into H}(2) and by dominated convergence. O
Proof of Theorem 3.4.1. The proof proceeds in six steps.
Step 1. We show that sup{||u(?)||g1; 0 <t < Ty} < co. We observe that by (3.4.1) and (3.4.3),
1
G(z,v) < igu(x,O)v2 + ev? + Clv|7. (3.4.7)

Here £ > 0 is arbitrarily small and C' depends on . On the other hand, assumption (3.4.2) implies the

existence of 7 > 0 such that
/{|Vv\2 — gu(z,0)0?} > 77/{|Vv|2 +v?}. (3.4.8)
Q Q
It follows from the energy inequality (3.4.5), (3.4.7) with £ = 7 and (3.4.8) that

3 [ I9uP < B(uw) +€ [ fult™ < Buo) + Clull
Q Q

2N
by Sobolev’s inequalities, since ¢ + 1 < N

5" Therefore,

1 9 B 1
“Nu(®) ||} < AE ——Ju(@®)|| %5 3.4.9
5w < AE(uo) + qul|IU( ) (34.9)
x? B 1
It is now convenient to draw the graph of the function f: z — o ?xq"' .
q

The graph of f

-1
The maximum of f is achieved for z = BT andis L~ BT,
2(¢g+1)
We now assume that
AE(ug) < 4=l g (3.4.10)
O 2(g+ 1) ’ o
_1
[uollgr < B~ 7T, (3.4.11)

Let 0 < a < 3 be the two solutions of f(z) = AE(ug). In view of (3.4.9), we have for every ¢ € [0,T},)

either ||Ju(t)|| g < « or ||u(t)||gr > 6. Since the function ¢t — ||u(t)|| g1 is continuous and ||up|| g1 < «, we
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conclude that ||u(t)| g1 is trapped in [0, @]. Finally, note that by choosing ||ug|| g sufficiently small, we can
achieve (3.4.10) and (3.4.11).

2N

(N=2)(g—1)
We have from (3.1.1) and Theorem 1.4.15,

N
Step 2. We show that T}, = +oco. Let p= >3 if N > 3 (the case N = 2 is similar).
t
)l < ol + [T (= gt ()1
t
_N
< lualli= +€ [ (¢~ 9) Fllgtu(s)1r ds
0
1 N t N
< Nuolle + €85 4. [ (0= ) Jus) [ ds
0

L Jlu(s)l|z~ ds,

t
< Juollp~ + % ¢ / (t— )% Ju(s)|"
0 LN—2

for all t € (0,T,,). By Step 1, we have
1- X K _N
[u(®)[ee < luollLoe +Ct72 +C [ (£ —5)7 % [|u(s)|| L~ ds.
0
If T,y < oo, then it follows from the generalized Gronwall inequality (see proposition A.5.7) that
sup{|lu(®)||p=; 0 <t < Tpn} < 0.

Impossible. If N =1, then global existence follows immediately from Step 1.

Step 3. We show that u € L*°((0,00), L>(£2)). We know that sup ||u(t)||g1 < co. If N = 1, the L*>®
t>0

bound is immediate. Suppose N > 3 (the case N = 2 is similar). Observe that g(z,0) = 0, so that by

assumption (3.4.3) we have

‘%‘ <C(1+ |ulr™h).

2N
9(w) is bounded in L" () with r =

N
> —, and then the L* estimate follows

It follows that -_
(N=2)(¢g—-1) " 2

u
from Theorem 1.6.6.
Step 4. tgl{u(t)} is relatively compact in Hg(2) and in L®°(£2). Since u € C([1,00), HE(2) N L>()),
we need onl_y show that if ¢, — oo, then there exists a subsequence (t,, )rx>0 such that u(t,, ) is convergent
in both H}(Q) and L*°(Q). Set 7, = t, — 1, and note that u(r,) is bounded in H}(Q2). It follows that

there exists a subsequence, which we still denote by (7,,)n>0, such that u(r,) is convergent in L?(2) (apply

Rellich’s theorem). Next, we write
u(ty +t) —u(me +t) = T()(u(ty) — ulm)) + /0 T(t— s)(g(x,u(rn + 5)) — g(x,u(ry + ))) ds.

It follows from Theorem 1.4.11 (ii) and Step 3 that

i +0) = ulr+ ) < lutr) = wlm)llze + [l + ) = u(r+ 5) |2 ds.

for t < 1. The generalized Gronwall inequality (see proposition A.5.7) yields

/

C
o +8) = ul(me + Dl < 2 llulmn) —ulme)llze,

7
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for t < 1. Taking t = 1, it follows that wu(t,) is a convergent sequence in H}(€). Finally, since u(t)
is bounded in L*(Q) and u(7,) is convergent in L?(Q), it follows from Holder’s inequality that u(r,) is
convergent in LY (£2). Arguing as above but using the L — L smoothing effect (Theorem 1.4.15) instead
of the L? — H' smoothing effect, we deduce that u(t,) is convergent in L>().

Step 5. wu(t) 2 0in H}(Q) and in L®°(2). Since u(t) is bounded in both H{(2) and L>(Q), we have
E(u(t)) > —M > —oo, for all t > 0. Therefore, it follows from (3.4.6) that

E(u(t)) — ¢, (3.4.13)

as t — oo, for some £ € R. Let now t,, — oo be such that u(t,) — v in H}(Q) and in L>(Q). An obvious
argument (see e.g. the estimates of Step 4) shows that u(t, + ) — v(:) in C([0, 1], HE(Q) N L**(£)), where
v is the solution of (3.1.5) corresponding to the initial value vg. We deduce from (3.4.13) that E(v(t)) = ¢

for all ¢t € [0,1], which, by (3.4.6), implies that v; = 0. Therefore, v is independent of ¢ and is a solution of
—Av = g(z,v). (3.4.12)

Note that
g(x,v)v < gu(z,0)v? + ev? + Clv|T for all v € R, (3.4.14)

g > 0 arbitrarily small and C' depending on . Multiplying the equation (3.4.12) by v and applying (3.4.14),
we find

/|Vv|2da:§/gu(x,0)v2+5/ |v|2dx+0/ [v|7Tt d. (3.4.15)
Q Q Q Q

From (3.4.8) and (3.4.15) with € = ), we obtain

17/ |Vv|2dx§0/ o7 da.
Q Q

Therefore, by Sobolev’s inequality,

1
lollFn < Cllollgs

It follows that either ||v||g: > (C”)fq%l or v = 0. Finally, observe that ||v||g < limsup ||u(®)]m < a,
t—oo
where « is as in Step 1. Since clearly o | 0 as § | 0, if we choose § small enough, then v = 0. By Step 4,

this implies that u(t) — 0 in H}(Q) and in L>().

t—o0
Step 6. Exponential decay. Since u(t) b 0in L*°(£2), the exponential decay follows from Theorem 3.4.5

below. O

N+2
Remark 3.4.3. Note that if g verifies (3.4.1)—(3.4.3) with ¢ > ﬁ, then in general u can blow up in
finite time for ug € H}(Q) N L>(Q) arbitrarily small in H}(Q) (see Exercise 3.13.6). However, without any
assumption on g for u large, for every M there exists dp; > 0 such that if ||up||p~ < M and |ugllg: < o,

then u is globally defined (see Exercise 3.13.10).

Remark 3.4.4. Some of the results presented in the steps of Theorem 3.4.1 hold under more general

assumptions. More precisely, let g(z,u) : 2 x R — R be locally Lipschitz in u, and let ug € L>°(£2) be such
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that the solution u of (3.1.5) is global. Assume furthermore that sup ||u(t)|L~ < oo. Then, the following
>0

properties hold.

(i) sup ||u(t)||z: < oo. This follows easily from the boundedness of u and g(u) in L>(2), hence in L?(2),
t>1

and the L? — H! smoothing effect.

(ii) tgl{u(t)} is relatively compact in Hg(Q) and in L*°(9). The proof is the same as in Step 4 of Theo-
rem 3.4.1.

(iii) If ¢, — oo, then there exists a subsequence (ny)r>o and a solution v € H}(Q) N L>(2) of the elliptic
equation

—Av = g(z,v) in Q,

such that u(t,, ) — v in H}(Q) and in L>°(Q). The set of all such limit points v is denoted by w(up) and
is called the w-limit set of wug; see Section 3.12. One shows that w(ug) is a connected, compact subset

of H}(Q) and of L>(2) (see Dafermos [35]).
We now present the comparison method.

Theorem 3.4.5. Assume that (3.4.1) and (3.4.2) hold. There exists 6 > 0 such that if ug € L*(Q) and
|lwol|Lee < 9, then the solution w of (3.1.5) is globally defined.

With § > 0 possibly smaller, we even have
|u(t)||p~ < Ce™™ fort >0,
where i is any number strictly less than A\ (—A — g, (,0)), and C depends on .
Proof. Let v € H}(Q) be the solution of
—Av — gy(z,0)v = |gu(2,0)| + 1.
It follows from Proposition A.4.21 and Theorem A.4.13 that v > 0 and v € L>(f2). Set
w=n(v+1),

with n > 0. We claim that for n sufficiently small, w is a super-solution of (3.1.5). Indeed, fix € > 0 such
that
e(llvllp= +1) < 1.

Then, there exists a > 0 such that
9(@,1) — gu(w, 0)t] < elt], for |#] < a.

Choose 1 so small that n(||v||pe + 1) < . Then we have
9(x,w) < gu(z,0)w + ew
= —Aw—n+en+1) =n(gu(z,0)] = gu(z,0))
< —Aw.
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Similarly, one shows that —w is a sub-solution of (3.1.5). Therefore, if ||ug||p~ < 7, the global existence
follows from Theorem 3.3.2, and

[u(®)ll L= < n(llvllz= + 1),

for all t > 0.
We now prove the exponential decay. Fix any € > 0 such that £ < A\; = A(—=A — gu(2,0)), and then
there exists v > 0 such that
lg(z,t) — gu(2,0)t] < elt], for [t| <.

From the above discussion, we know that we may choose ¢ > 0 sufficiently small so that if ||ug||p~ < d, then

|[u(®)||re < v for all ¢ > 0. Therefore, we have
ug — Au < gy (x,0)u + €lul,

for all ¢ > 0. Let v(¢) be the solution of the problem
vy — Av — gy (x,0)v —ev =0 in (0,00) x Q,
v =01n (0,00) x 99,
v(0) = |Jug||p in .

Then

lu(t, z)| <w(t,z) < C’e_o‘l_s)t,

by Exercise 3.13.5. O

Remark 3.4.6. In particular, if ¢ € C1(R,R) with ¢/(0) < A; and g(0) = 0, then all solutions of (3.1)
with sufficiently small initial values in L°°(€2) are globally defined. This is not anymore true if ¢’(0) > A;.
For example, if g(u) = A\ju + u3, then for any ug > 0, ug # 0, the solution of (3.1) blows up in finite time
(see Remark 3.6.8).

3.5. Global existence near a stable equilibrium point. In this section, we assume that g(z,u) is
C! in u, and that the stationary problem —Au = g(x,u) has a “stable” solution w. In other words, we
assume that w € H} () N L>(Q) verifies

—Aw = g(z,w),
and that
A (=A = gu(z,w)) >0, (3.5.1)

Given ug € L*™(€2) and u the solution of (3.1.5), then & = u — w solves the equation

up — Au=g(x,u), x€Qtel0,T]

u(t,x) =0, ze€0Q,tel0,T]

u(0,2) = up(x) —w(x), =z €,
with

g(z,u) = g(z,w(z) + u) — g(z, w(z)).
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In particular, 0 is a stationary solution and, since g,(z,0) = g,(z,w), it follows from (3.5.1) that
A (—A — gy (z,0)) > 0.

Therefore, we can apply the results of the preceding section and we obtain the following theorems.

N +2
Theorem 3.5.1. Assume that g verifies (3.4.3) with 1 < ¢ < N+ 5

There exists § > 0 such that if ug € L*(2) N H}(Q) and ||ug — w|| g1 < 6, then the solution u of (3.1.5) is
globally defined and belongs to L>((0,00), L>(Q) N H(Q)).

(no condition on ¢ > 1 if N =1,2).

With § > 0 possibly smaller, we even have
|lu(t) — wl|pe < Ce " fort >0,
where i is any number strictly less than A\ (—=A — gy (x,w)), and C' depends on p.

Theorem 3.5.2. There exists 6 > 0 such that if ug € L*(Q) and |jug — w| =~ < J, then the solution u
of (3.1.5) is globally defined.

With § > 0 possibly smaller, we even have
|lu(t) — wl|pe < Ce " fort >0,
where p is any number strictly less than A1 (= — g, (x,w)), and C' depends on .

3.6. Some simple cases where blow up does occur. We begin with the simple model problem
uy — Au = JulP" u in (0,T) x Q,
u=0in (0,T) x 09, (3.6.1)
u(0) = up in .

Recall that if ug is “small enough”, then (3.6.1) has a global solution. Here, we show that if ug is “big

enough”, then the solution does blow up in finite time.
Theorem 3.6.1. Assume p > 1. Let ug € H}(Q) N L>(Q) with
E(ug) = 1/ |Vuo|? da — L/ luo|P™ dx < 0 (3.6.2)
2 Ja p+1Ja - .
and ug # 0. If u is the solution of (3.6.1), then Ty, < occ.

Proof. Suppose T, = +o0o and set
o(t) = / u(t,z)? du. (3.6.3)
Q

We will derive a differential inequality for ¢, which cannot hold for all ¢ > 0. We have

o(t) = 2/ uuy = 2/ w(Au+ |uP~ )
Q Q

:2/ |ufP —2/ |Vu|?
Q Q

2(p—1
— —4B@w) + 2= / julP+!
p+1 Jo
2(p—1
> —a8(u) + 221 [,
p+1 Jo
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where the last inequality follows from (3.4.6). Using the assumption (3.6.2), we are led to

2(p—1 P
(pl(t) > %/ |u|17+1 > aw(t)#,
p Q

with @ > 0, by Holder’s inequality. In particular, ¢ is nondecreasing, and since ¢(0) > 0, whe have p(t) > 0

d 2 _p—1 gO’(t)
—_ _— 2 = > N
dt < QD(t) ) p+1 — O{,

for all ¢ > 0. Finally,

p—1 p(t)
and so,
2 p—1 2 p—1
<o) T < ——p(0)" 7T —at
< ST € 250 —at,
for all £ > 0. Impossible, and therefore T}, < +o0. O

Remark 3.6.2. The previous argument shows that

Ta<— 2

p—

~alp—1)p(0) =
However, the proof does not imply tlTizm p(t) = +o0. In fact, in some cases it can happen that ¢(¢) remains

bounded as ¢ T Ty, (See Section 3.12).

Remark 3.6.3. Note that in some sense (3.6.2) holds for “large” initial values. Indeed, given any vy #Z 0,

then ug = Avg verifies (3.6.2) for |A| large enough.
The previous argument can be extended to more general nonlinearities.
Theorem 3.6.4. Assume g: ) x R — R is locally Lipschitz in u and verifies
ug(z,u) > (24 ¢)G(z,u) = (2 + 5)/ g(z,t)dt, (3.6.4)
0
for all u € R, with € > 0. Let ug € H}(Q) N L>(Q) with
1 2
E(up) = = | |[Vup|®dz — | G(z,up)dx <0
2 Ja Q
and ug Z 0. If u is the solution of (3.1.5), then T, < oc.
Proof. Suppose by contradiction that T), = +00. Let ¢ be given by (3.6.3). We have
o'(t) = —2/ |Vul|* + 2/ ug(x,u) > —2/ |Vu|? +2(2 —l—a)/ G(z,u),
Q Q Q Q
by (3.6.4). On the other hand, it follows from (3.4.6) that
1 2 ! 2
G(z,u(t))de = —E(ug) + = | |Vu(t)|*dz + us(s, ) dx ds;
Q 2 Ja 0 Jo
and so,
t t
o' (t) > a/ |Vul* — (4 + 2¢)E(ug) + (4+25)/ / ui > 5/ |Vul? + (4+25)/ / uy. (3.6.5)
Q 0 Ja Q 0 Ja
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We claim that

1
/ / ug(s,x)>drds =6 > 0. (3.6.6)
0o Ja
Otherwise, we have u; = 0 for t € (0,1); and so, u = ug. This implies that ¢’ = 0 on (0,1), and by (3.6.5)
this gives
/ |Vuo|? dz = 0.
Q

Hence up = 0. Impossible. Hence, we have proved (3.6.6).

It follows from (3.6.5) and (3.6.6) that
olt) > ot — 1), (367

for t > 0. We have
J(t) =2 / wte < 2full 2 o2
Q

go(t)—som)s2/0tm||ut||mdssz(/otw(s>ds); (//udxd)

Since (t) > ¢(0) by (3.6.5), we deduce

(o(t) — 0(0))* < 4 (/ o(s)ds ) (/ [ deas).

b(t) = / o(s) ds.

and so,

Set now

It follows from the above inequalities that

SOV () = (1+5) (o) = p(0))? > (1+ 1) w()?,

for t large enough, by (3.6.7). Therefore,

BOw' ) = (14 7) w2,

for ¢ large, which implies that (¢~%)"” < 0. Since 1~ 7 is positive and converges to 0 as t — oo, we obtain a

contradiction. 0

Remark 3.6.5. Assume that (3.6.4) holds only for |u| large enough. Then there exists K < oo such
that for every ug € H}(Q) N L>(Q) with E(ug) < —K, the solution of (3.1.5) blows up in finite time (see
Exercise 3.13.12).

In the previous Theorems 3.6.1 and 3.6.4, blow up occurs for large initial data. In the next result, blow

up occurs for all initial values.
Theorem 3.6.6. Assume that g : R — R is locally Lipschitz and that

g(u) > Au+ h(u), (3.6.8)

CHAPTER 3—PAGE 15



for all w € R, where h > 0 is a convex function R — R such that

> ds
/1 e < (3.6.9)

and \; is the first eigenvalue of —/\ in H}(Q). If ug € L°°(R), then the solution u of (3.1) blows up in finite

time.
Example 3.6.7. Let g(u) = Ae", then the assumptions of Theorem 3.6.6 are satisfied if Ae > A;.

Proof of Theorem 3.6.6. Suppose T,, = +o0o and let
10 = [ty
Q
where ;> 0 is the first eigenvector of —A\ in HE () such that / p1 = 1. We have
Q

F(t) = / urpy = / (Du+ glw))or = —Arp(t) + / g(w)pr > / h(w)er > h(f(1)),

by Jensen’s inequality. Let

We have
d _ ')
GG = 0 = 1
and so,
I'(f(t) = T(f(0)) +1,
which contradicts (3.6.9) for ¢ large enough. O

Remark 3.6.8. Assume that g : R — R is locally Lipschitz and that
g9(u) = A+ h(u),

for all u > 0, where h : (0, 00) — (0, 00) is a convex function such that (3.6.9) holds. Then for all uy € L (Q),
ug > 0, up # 0, the solution u of (3.1) blows up in finite time.
Indeed, since g(0) > 0, the maximum principle (see Theorem 3.3.2) implies that u > 0, and the above

argument still holds.

Remark 3.6.9. Consider the equation
ug — ANu = A\u+u? in (0,T) x Q,
u=01in (0,T) x 09,
u(0,x) = up(x) in Q.
Then, for every ug > 0, ug #Z 0, blow up occurs in finite time. On the other hand, if ug < 0, then T}, = +o0.
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We just prove the last claim. This amounts to show that the problem
vy — Av =\ —v?in (0,T) x Q,
v=01n (0,T) x 09, (3.6.10)
v = v in §,
has global existence for vy > 0. For this purpose, we consider the problem
wy — Aw = Mw — |wjw in (0,T) x Q,
w=01in (0,T) x 09,
w = vg in €.

First we note that g(w) = A\jw — |w|w verifies the conditions of Theorem 3.3.1; hence w is globally defined.

Furthermore, if vg > 0, then the maximum principle implies that w > 0; and so, w satisfies (3.6.10). O

Remark 3.6.10. Assume that g verifies (3.6.8) for u > « > 0, where h : (a,00) — (0,00) is a convex
function such that (3.6.9) holds. Then, there exists 5 > 0 such that if ug € L>°(£2), ug > 0 and

/ uo(x)1(z) de > B,
Q

then the solution of (3.1) blows up in finite time (see Exercise 3.13.11).

3.7. The study of u; — Au= Ag(u). Consider the problem
uy — Au = Ag(u) in (0,T) x €,
w=0in (0,T) x 09, (3.7.1)
u(0,x) = up(x) in Q.

Here, and throughout this section

A>0,

and g : [0,00) — [0,00) is a C! convex, nondecreasing function with

and

< ds
/0 ) < (3.7.2)

NS e (3.7.3)

s—oco 8

so that in particular

Typical examples of such functions which occur in applications are g(u) = e* and g(u) = (1+u)?, 1 < p < oco.
Solutions u of (3.7.1) are always assumed to be nonnegative. The initial condition wug is always assumed
to be in L*°(2) and ug > 0, so that a classical solution of (3.7.1) exists on a maximal interval (0, Ty,).
Our first result asserts that the existence of a global, classical solution of (3.7.1) implies the existence

of a solution for the corresponding stationary problem:
— Au = Ag(u) in 9,
u =0 in 0.

(3.7.4)
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Unfortunately, this solution need not be a classical solution (see Remark 3.7.5 and Theorem 3.7.6). Therefore,

we are led to the notion of a weak solution.
Definition 3.7.1. A weak solution of (3.7.4) is a function u € L*(), u > 0 such that
g(u)d € LY(Q), (3.7.5)
where § denotes the function distance to the boundary,
0(x) = dist(z, 09Q), (3.7.6)

and

—/QUAC:)\/Qg(u)C, (3.7.7)

for all { € C*(Q) with ¢ =0 on 99Q. (Note that the second integral makes sense since |((x)| < C§(z) for all
z€e)

It is clear that any classical solution of (3.7.4) is a weak solution. Our first result is the following.

Theorem 3.7.2. If there exists a global, classical solution of (3.7.1) for some ug € L*(2), ug > 0, then

there exists a weak solution of (3.7.4).

Remark 3.7.3. Theorem 3.7.2 is quite surprising since we do not assume any bound (as t — oo) for the

global solution u.

The stationary problem has been extensively investigated. See Brezis, Cazenave, Martel and Ramian-
drisoa [20], Brezis and Nirenberg [24], Crandall and Rabinowitz [34], Fujita [44], Gallouet, Gallouét, Mignot
and Puel [49], Gelfand [50], Joseph and Lundgren [62], Keller and Cohen [68], Keller and Keener [69], Mignot
and Puel [81]. We now summarize the main results concerning (3.7.4).

Lemma 3.7.4. There exists 0 < \* < oo such that:

(a) Forevery 0 < A < \* equation (3.7.4) has a minimal, positive classical solution u()), which is the unique

stable solution of (3.7.4); stability means that
AL(=A = Ag'(u(N))) > 0.
(There may exist, for some values of A\ € (0, \*), one or many other solutions, which are all unstable.)
(b) The map X\ — u(\) is increasing.
(¢) For A\ > X\*, there is no weak solution of (3.7.4).

(d) For A = X* there is a weak solution u* = }1&1 u(A) of (3.7.4).

For the proof of Lemma 3.7.4, we refer to the above mentioned references.

CHAPTER 3—PAGE 18



Remark 3.7.5. The solution u* is sometimes a classical solution. For example when g(u) = e and N <9

4 P
N — 4, ——. 7.
<6+p_1+ o (3.7.8)

Note that (3.7.8) holds for any p if N < 10; if N > 11 condition (3.7.8) says that p is strictly less than some

or when g(u) = (14 u)? and

p(N) (see F. Mignot and J.-P. Puel [81]). However, there are cases where there is no classical solution at
A = \*. For example when (Q is the unit ball of RY with N > 10 and g(u) = e%; in this case \* = 2(N — 2)
and u*(z) = log <|$1|2> Similarly, for g(u) = (1 +u)?, if N > 11 and p > p(N), then u*(z) = |:1:|_T31 —1.
See Joseph and Lundgren [62] and Brezis and Vazquez [27].

There is a converse of Theorem 3.7.2.

Theorem 3.7.6. If there exists a weak solution w of (3.7.4), then for any ug € L>®(Q) with 0 < uy < w,
the solution w of (3.7.1) with u(0) = ug is global.

Remark 3.7.7. If w is a classical solution of (3.7.4), then the existence of a global solution of (3.7.1)
follows immediately from the maximum principle. On the other hand, if w ¢ L>°(Q2), then the conclusion
is far from obvious. Indeed, suppose that the solution blows up in finite time T},. Clearly u(t,z) < w(x)
on (0,7y,) x €, but this estimate in itself does not prevent ||u(t)| L from blowing up in finite time. As we
will see in Section 3.12, u(t,x) can converge to a blow up profile u(Ty,, z), which may be finite everywhere

except at one point.
Putting together Theorems 3.7.2 and 3.7.6 and Lemma 3.7.4, we can now state the following.

Corollary 3.7.8. Consider the (classical) solution u of (3.7.1) with ug(xz) = 0. If A < A\*, then u is global.

If A > \*, then u blows up in finite time.

Proof of Theorem 3.7.2. We may assume that ug = 0, so that u > 0 and u; > 0 for all ¢ > 0. (see Step 1
of the proof of Theorem 3.8.3)
Next, observe that by (3.7.3), there exists a constant M > 0 such that

1
g(8) — A1s > 59(8) for s> M, (3.7.9)

where ) is the first eigenvalue of —A in H}(Q). Let ¢ € C?(Q) with ¢ = 0. It follows from (3.7.1) that

d
G [ utes [ uae) = [ e (37.10)
We first claim that
sup/ g(u)pr < (14 M\)M, (3.7.11)
t>0 JQ

where M is as in (3.7.9) and ¢ is the first eigenfunction of —A in H}(Q) such that / ©1 = 1. Indeed,
Q
taking ¢ = ¢ in (3.7.10), we find

u(t)gr + A /

Q

uter = [ gtut)er 2 g ( / u(tm) , (3.7.12)

dt Jo
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by Jensen’s inequality. If there exists ¢ty > 0 such that /u(to)gol > M, then it follows from (3.7.12)
Q

a. d (3.;9) tllat
(t))él >— g / LL(t)Iél I

for t > tg, which is absurd by (3.7.2); and so

[ uter <

for all ¢ > 0. Integrating (3.7.12) on (¢,t + 1) and since u; > 0, we find

[oworer< [ [ swer< [utvgen [ [we<asam,

hence (3.7.11).
We next claim that there exists K such that

sup ||u(t)]| . < K. (3.7.13)
>0
Indeed, let (p be the solution of (3.7.21). Taking ¢ = (o in (3.7.10) and integrating on (¢,¢ + 1), we find

[u< | - [u=[utvco— [ e+ 06+ [ - [ st

and (3.7.13) follows by applying (3.7.11).
By monotone convergence, it follows from (3.7.13) and (3.7.11) that u(¢) has a limit w in L'(Q) and
that g(u) converges to g(w) in L'(Q,8(z)dz), as t — co. Let ¢ € C?(Q), pjsn = 0. Integrating (3.7.10) on

S iﬂ o fucae= [T e
[ wt-20)= [ stwye

Therefore, w is a weak solution of (3.7.4). O

(t,t+ 1), we obtain

Letting t — oo, we find

For the proof of Theorem 3.7.6 we need four lemmas. We begin with a lemma concerning the linear

Laplace equation.

Lemma 3.7.9. Given f € L'(Q,6(z)dx), there exists a unique v € L*(Q) which is a weak solution of

—Av=f in £,
{ (3.7.14)

vjan = 0,

in the sense that

—/ OVANGES / f¢, (3.7.15)
Q Q
for all { € C?(Q) with ¢ = 0 on 9. Moreover,

[vllzr < Cllfllzr@,6(2)da)s (3.7.16)
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for some constant C' independent of f. In addition, if f > 0 a.e. in ), then v > 0 a.e. in ().
Proof. The uniqueness is clear. Indeed, let v; and vs be two solutions of (3.7.14). Then v = v — v

/ngzo,

for all ¢ € C?(Q2) with ¢ = 0 on 9. Given any ¢ € D(2) let ¢ be the solution of

satisfies

{ Al =¢ inQ,
Goa =0.

/v<p=0.
Q

For the existence, we may assume that f > 0 (otherwise we write f = f1 — f_). Given an integer k > 0

set fr(x) = min{f(z), k}, so that f " fin LY(Q, §(x)dx). Let vx be the solution of

It follows that

Since ¢ is arbitrary, we deduce that v = 0.

—A’Uk = fk in Q,
(3.7.17)

v =0 on 99.

The sequence (vg)x>0 is clearly monotone nondecreasing. It is also a Cauchy sequence in L'(€2) since

/Q(Uk—ve):/ﬂ(fk—fe)Co,

{—A(O =1 in Q,
Co=0 on 99.

where (p is defined by

(3.7.18)

Hence
/ g — v < o/ e — Folo(z) da.
Q Q

Passing to the limit in (3.7.17) (after multiplication by (), we obtain (3.7.15). Finally, taking ¢ = (o
in (3.7.15), we obtain

lolls = / v / £6o < ClF Nl @usieyin).
Q Q

and (3.7.16) follows. O

Our next lemma is a variant of Kato’s inequality (see [65] and Theorem A.5.20).

Lemma 3.7.10. Let f € L'(Q,(x)dx), and let u € L'(Q) be the weak solution of (3.7.14). Let ® € C*(R)
be concave, with ® bounded and ®(0) = 0. Then

—AD(u) > d'(u)f,

in the sense that

_/Qq>(u)A<z/Q<1>’(u>f<,
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for all { € C%(2), ¢ > 0 such that ¢ = 0 on 99.
Proof. Consider (f,)n>0 C D(Q) such that f,, — f in L' (2, §(z)dz). Let u, be the solution of

— Auy, = fr, in Q,
u, =0 on 0.

It follows from Lemma 3.7.9 that u, — u in L'(2). On the other hand we have

n—oo

A®(uy) = O (up) Aty + O ()| Vun [* < & (un)Auy = = (uy) f

Therefore,
- [ atuacs [ @wn
Q Q

for all ¢ € C?(2), ¢ > 0 such that ¢ = 0 on 9€; and so the result follows easily by letting n — oo. O

Lemma 3.7.11. Let 0 < ¢ < g(0) and set
b ds bods
ho() = [ et = [ ,
e 9s) 0 9(s)—¢

O (t) = ho' (ho(t)),

and

for all t > 0. Then

(i) ®. € C2(]0,00), ®-(0) =0 and 0 < B(t) < ¢.

P (1)) —
(i) ®. is increasing, concave and ®.(t) = g(ag((t)))E <1 forallt>0.
(iii) sup ®.(t) = C. < o0, for every € € (0, g(0)).

t>0

Proof. Properties (i) and (iii) are clear. We have h.(®.(t)) = ho(t), and thus hL(D.(¢))PL(t) = hy(t),

which is the identity in (ii). Differentiating once more, we deduce

g'(P(t) —g'(t))
g(t)? '

Since ¢'(®(t)) < ¢'(t), it follows that ® is concave. Hence (ii). O

oI(t) = (9(®:(t) —€))

Lemma 3.7.12. Let § be given by (3.7.6). For every 0 < T < oo, there exists €1(T) > 0 such that if

0 < € < €1, then the solution Z of the equation
Zy—NZ =—¢ in (0,00) x £,
Z=0 on (0,00)x 09,
Z(0) =6,

verifies Z > 0 on [0,T] x Q.
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Proof. Consider the solution (y of (3.7.18). We have
t
G =106+ [ T(:)ads
0
for all ¢ > 0. Since T'(t)¢y > 0, it follows that
t
/ T(s)1a ds < Co < C5, (3.7.19)
0

for all £ > 0. On the other hand, we have

and so,

Z(t) > T(t)8 — £Cb.

Consider now cg, ¢; > 0 such that cop1 < § < 101, where @1 > 0 is the first eigenfunction of —A in H& (),

associated to the eigenvalue \;. We have

T(1)5 > coT(t)pr = coe Mgy > Loty

C1
Therefore,
2(t) > (CO —hit go> 5
C1
. . 0 T
It follows that Z(t) > 0 on [0, T], provided & < ¢ ) O
1

Proof of Theorem 3.7.6. If w € L*(f), then by the maximum principle u(t) < w for all ¢t € [0, T,);

and so Ty, = 4+o00. Therefore, we may assume
w ¢ L (Q). (3.7.20)

We proceed in five steps.

Step 1. We claim that u(t) < w for all ¢t € [0,Ty,). This is proved using the maximum principle, but
since w is not smooth, we have to be more careful. Fix T' < Ty,. Let h(t,z) € D((0,T) x Q), h > 0, and let

¢ be the solution of
=Gt = AC= Mg (u)¢ = h,

Caa =0,

¢(T) =0.
Since ¢’ (u) € L*((0,T)x ) we have in particular ¢ € C([0, T], C%(Q)NCy(2)) and ¢ > 0. Multiplying (3.7.1)
by ¢ and integrating on (0,7) x €2, we find

i [ fonerngnf o
—ATAw@—AwQM—
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and

—ATAwAczAAT/fzg(w)c.

Therefore,

[+ [ = [ o o) - e

By convexity,
g9(u) = g(w) — g'(u)(u — w) < 0.

Since ¢ > 0 and ug — w < 0, this yields

/OT/Q(u—w)hSO.

Since h is arbitrary, we conclude that ©v — w < 0.
Step 2. There exist 0 < 7 < Ty, and Cp, cg > 0 such that
u(r) < Cyo, (3.7.21)
and
u(r) < w — ¢pd. (3.7.22)
Set v9 = min{w, 1+ ug}. We have vy > up and vy Z ug by (3.7.20). In particular, there exists a function
v : [0,00) — R such that vy(¢) > 0 for ¢ > 0 and

T(t)(vo — uo) > y(t)4, (3.7.23)

where § is defined by (3.7.6) (see Exercise 1.8.12). Let v be the solution of (3.7.1) with the initial value
v(0) = vy, and let [0,T) be the maximal interval of existence of v. We have v > 0, and by Step 1, v < w.
Let 2(t) = u(t) + T(t)(vo — ug) for 0 <t <T. We have

2z — Nz =Ag(u) < \g(z) in (0,T) xQ,
z=0 on 09,
z(0) =wvg in €,

so that z < v by the maximum principle. Therefore,

u(t) <wv(t) —T(t)(vo —up) < w—T(t)(vo — up) < w—v(t)d, (3.7.24)

for 0 <t < T by (3.7.23). Fix 0 < T < min{T, T,y }. u is bounded by some constant M on [0, T] x 2, so that
t
u(t) < MT(t)lg + Ag(M) / T(s)1q ds.
0

There exists a function C : (0,00) — R such that T(t)1q < C(t)d for t > 0, so that we deduce from (3.7.19)
that
u(t) < MO(1)5 + Ag(M)CS, (3.7.25)
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for 0 <t <T. (3.7.21) and (3.7.22) now follow from (3.7.24) and (3.7.25).

Step 3. We may assume without loss of generality that
ug < Cod, (3.7.26)

and
up < w — ¢o, (3.7.27)
where Cy, ¢g are as in Step 2. Indeed, we need only consider u(- 4+ 7) instead of u(-).

Step 4. Let ®. be as in Lemma 3.7.11, and set we = ®.(w) for 0 < & < g(0). Then

we € L), (3.7.28)
and
[ e = a [ (atw) )¢ (37.29)
for all ¢ € C?(Q2), ¢ >0 on Q and (oo = 0. Moreover, there exists 0 < &1 < ¢(0) such that
%3%—%& (3.7.30)

for 0 < e < &1, where ¢g is as in (3.7.27). Indeed, (3.7.28) and (3.7.29) follow from Lemmas 3.7.10 and 3.7.11.
In order to prove (3.7.30), set
n = min{w, (Cy + ¢o)d},

and
ne = @c(n).

Here, ¢ is given by (3.7.6) and Cj is as in (3.7.26). It follows from (3.7.26) and (3.7.27) that

ug < 1 — cod. (3.7.31)
We claim that
ném+%@ (3.7.32)

for € > 0 small enough. Note that it follows from (3.7.31) and (3.7.32) that

€o
uo S Ne — 563

and (3.7.30) follows since 7. < w, (since ®. is nondecreasing). Thus we need only prove (3.7.32). Note that
ne<n <M,

where M = (Co + ¢o)||0]| L, and that

o’ 1
E(x) E_w) ’

uniformly on [0, M] by Lemma 3.7.11. Therefore,

n—mne<n sup (1—®.(z)) < (Co+co)d sup (1—dL(x)) <
0<z<M 0<z<M

|8
>
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for € small enough, and (3.7.32) follows.
Step 5. Conclusion. Assume by contradiction that T, < co. Let € > 0 be small enough so that

“s
b

ug < we — B

(see Step 4), and so that the solution Z of the equation
Zi—NZ =—eXx in (0,Tm) x Q,

Z =0 on 09,
ﬂmz%éhlﬂ
is nonnegative on [0, T1,] x Q (see Lemma 3.7.12). Let v be the solution of
ve—LOv=Ag(Jv]) —¢) in (0,T) x £,
v=0 on 0%,
v(0) =w, in Q.

Let [0, S,,) be the maximal interval of existence of v. Set z(t) = Z(¢t) + u(t) for 0 < ¢t < T;,. We have

z>wu >0 and
zt — DNz =MNg(u) —e) < Ag(z) —¢) on (0,Tm) x £,

ZloQ = 0,
Co .
2(0) = up + 55 <w. in .

By the maximum principle, we have z < v on [0, min{T},, S, }). In particular, v > 0 on [0, min{T},, S });
by the maximum principle and (3.7.29), v < w,. Since w, € L*°(2), this implies that Ty, < S, = +o0.

Therefore, u < z < v < w, on [0,T},), which is absurd. O

We have the following result.

Theorem 3.7.13. Let A € (0,\*), and let u be the minimal solution of (3.7.4). There exists § > 0 such
that if ug € L>°(Q) verifies 0 < ug < u+ §, then the solution u of (3.7.1) is global. Moreover, there exist
© > 0 and a constant C such that

u(t) — ull e < Ce,

for all t > 0.

Proof. The proof proceeds in three steps.

Step 1. There exists 6 > 0 such that if ||ug — u||~ < 4, then there exist u > 0 and a constant C' such that
lu(t) = uf| = < Ce™,

for all t > 0. This follows from Theorem 3.5.2.

Step 2. The conclusion of the theorem holds when ug = 0. Indeed, u is a super-solution and 0 is a sub-

solution. Therefore, u is global and bounded; moreover, u; > 0 (see Step 1 of the proof of Theorem 3.8.3).
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It follows from Remark 3.4.4 that there exists a solution w of (3.7.4) such that u(t) — w in HZ(2) N L>(Q)
as t — oo. In particular, we have w < u; and so w = u, since u is the minimal solution of (3.7.4). Therefore,

u(t) — w in L*>(Q) as t — oo, and the result follows from Step 1.

Step 3. Conclusion. Let v1(t) be the solution of (3.7.1) with the initial value v1(0) = 0 and let va(t) be
the solution of (3.7.1) with the initial value v2(0) = w+ 6 (0 as in Step 1). By the maximum principle, the

solution u stays between v, and vy. The conclusion follows from Steps 1 and 2. O

Remark 3.7.14. Note that if A € (0, A*) then there exists 8 > 0 such that if ug € L>(2), up > 0 verifies

/ upp1 > f3,
0

then w blows up in finite time (see Remark 3.6.10).

Remark 3.7.15 Suppose g(u) = e* and A = \*.

(i) If N <9, then the equation (3.7.4) has a unique, positive, smooth solution v*, and in addition A;(—A —

e*") = 0. In this case, one can show that for every ug € L>°(Q) such that ug < u*, the solution u
of (3.7.1) is global. Moreover, ||u(t) — u*||pe — 0 as t — oo; and if ug € L>®(), ug > u* and ug # u*,

then w blows up in finite time (see Exercise 3.13.15).

(ii) If N > 10, then the behavior is quite different. Suppose (2 is the unit ball of RY. Then \* = 2(N — 2)
and u*(xz) = —2log |z| (see Remark 3.7.5). If uy € L>°(Q), uyp < u*, then the solution u(¢) of (3.7.1)
converges to u* as ¢t T oo, in LP(Q) for any 1 < p < co. However, if ug > u*, ug #Z u*, then there is
instantaneous blow up: there is no weak solution of (3.7.1) on any interval (0,T) with "> 0. See Peral

and Vazquez [87].

3.8. Analysis of ||u(t)||L« near blow up time. Recall that if u is a solution of (3.1) which blows up
in finite time, then tlTi:,r%) lu(t)|| L = 4+o00. We warn the reader that in general u(t,z) does not blow up as
t 1 Ty, for every x € Q. In fact, it may happen that u(t, ) tm oo only for one point xg € €2, and that
|u(t, z)| remains bounded for x # xg as t T Ty,. (See Section 3.12.)

Here, we prove that ||u(t)||« blows up for ¢ sufficiently large.
Theorem 3.8.1. Assume g : R — R is locally Lipschitz and satisfies
lg(w)| < C(JulP +1) for all u € R, (3.8.1)
for some p € (1,00). Let u be a solution of (3.1) which blows up in finite time. Then,

tlTi%}j ||lu(t)]|Le = +o0

Np-1)

for all co > q > 5

, ¢ > 1. More precisely,
%%mﬂﬂnfﬂﬂm@ﬂhq>0 (3.8.2)
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1 N
with § = —— — —.
p—1 2q

Proof. We proceed in two steps.

Step 1. limsup ||u(t)||zre = c0. We argue by contradiction and assume that
(AN

lim sup ||u(t)||zre < o0, (3.8.3)

m

and we apply Theorem 1.6.4 with f(¢,z) = g(0) and

g(ult,2) — 9(0)

a(t,x) = w(t.7)
It £ - " . g q N
ollows from (3.8.1) and (3.8.3) that a € L>=((0,Ty), L7 (Q)) with o = b1 We have o > p— >
and o > Ll > 1; and so, u € L ((0, T ), L>(£2)). This is impossible by the blow up alternative.
p—

Step 2. Proof of (3.8.2). Let 0 <t < Ty, and 0 < s < T,,, —t. We have
u(t + s) = T(s)u(t) + / T(s—o)g(u(t+0))do.
0

It follows from (3.8.1) and Theorem 1.4.15 that

N(p

_ N(p-1) 1 s _N(p-1)
u(t+s)|par < s 20 M@Mrﬂﬂmmw+0/(&W? 200 [u(t + o)
0

Np-1)

The result
2qp

We now apply Theorem A.5.10 with f(t) = ||u(?)| Lre, g(t) = ||u(t)||re and a =

follows, since

N(p—1)
2
However, in many cases this conclusion holds (see Section 3.12). Here are two such cases.

It is an open problem whether in general ||u(t)|| L« blows up for ¢ = (see Open Problem 3.14.3).

Theorem 3.8.2. Assume that g : R — R is locally Lipschitz and that
lg(w)] < Clul?,  G(u) = alul™,  ug(u) > (2+¢)G(w),
4
for lu| > M, withe >0 and p=1+ N If u is a solution of (3.1) which blows up in finite time, then
li = .
i [lu(t)z2 = +oo

Np-1)
—

Note that 2 =

Proof. We set
o(t) = [ ult.a)? .
Q
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for t € [0,Ty,). We have

S(t) = —2/9\Vu|2—|—2/9ug(u) - —Q/Q|vu|2+2/ul>Mug(u)+2/lu<Mug(u)

> ‘Q/Q‘V“' +2(242) /U|ZMG(u)+2/u|§Mug(u)

=—21;vm2+2m+exéaan+/;9/mmm>—%2+@Gw»

It follows from (3.4.6) that

v

(1) 4ﬂw+%LGw+/qyww—m+wm»

Y

—4F(ug) + 2504/ |u|PT! +/ (2ug(u) — 4G(u) — 2ea|ulP™™)
Q |lu|<M

>2a [ |uf™ - K,
Q

with K = 4E(ug) + |Q| sup {2|ug(u)| + 4|G(u)| + 2ea|u/PT}.
|lu|<M

Therefore, by integrat_ing the above inequality, the conclusion of the theorem follows if we show that

T
/0 /Q lu(t, z)|PT! da dt = occ. (3.8.4)

We prove (3.8.4) by contradiction, and we assume that

T
/0 [ Ju(t. ) dodt < . (3.8.5)

Let g(u) = au + f, with f = ¢g(0) and a = M We have f € L*>((0,Ty,), L>(92)). Furthermore,
u

la] < CQ+[ulP™),

so that (3.8.5) implies that a € L%((O,Tm),L%(Q)). It now follows from Theorem 1.6.11 that u €
L((0,Ty), L9(Y)) for all ¢ < co. Therefore, a € LI((0,Ty,), L1()) for all ¢ < oo; and therefore u €
L>((0,Tw), L>(€2)) by Remark 1.6.5. This contradicts the blow up alternative, thus proving (3.8.4). O

Under more restrictive assumptions on the initial value ug, one can still show that tlqurp lu(t)||ra = 400

Np-1)
2

1

for ¢ = > 1. Here is such a result (see also Weissler [96], Remark 3.9.16and Exercise 3.13.19).
Theorem 3.8.3. Assume that N > 3 and that
l9(uw)] < C(1+ [ul”),

2
with p > 1+ N Let ug € L*>(Q) N H%(Q) N HY(Q) be such that the solution u of (3.1) blows up in finite
time. If Aug + g(ug) > 0 in Q, then

li =
i [[u(t) 10 = +oc,
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Proof. We proceed in three steps.
Step 1. wu(t,z) >0, for all t € [0,T},) and all x € Q. Given 0 < h < Ty, define

_u(t+h) —wu(t)
v(t) = B S—

for 0 <t < T — h. It follows that

oy S R) — g(u(t)

Multiplying the equation by —v~ and integrating on €2, we find

1d — (N2 —2 — (2
— —+ \V4 <
2dt J," ) /Q| v C/QU @,

forall 0 <t < Ty —h, with h < Ty < Ty,. Here, C is the constant of g on [ A, A] where A = |Ju| Lo ((0,1,)x0)-
/ v (1) < eCt/ v (0)2,
Q Q

Step 2. We show that limsup ||u(t)||L« = +o00.  Assume by contradiction that limsup ||u(t)||r« < oo.
t

m m

It follows that
Letting h | 0, we obtain u; > 0.

Since u(t,z) is a nondecreasing function of ¢ for every x € Q, it follows from the monotone convergence
theorem that w(t) has a limit in LY(Q2) as ¢ 1 Tyy; and so, u € C([0,Tw], L9(2)). Let h € C.(R) be such
that g(u) = h(u) for |u| < 1. We now write g(u) = au + f with f = g(u). One verifies easily that
a, f € C([0, Tn], L% (©)). By Exercise 1.8.7 and a bootstrap argument, we deduce that u € L>((0, Ty,) X ),

which contradicts the blow up alternative.

Step 3. Conclusion. Since u(t,x) is a nondecreasing function of ¢ for every = € €, we have clearly

lim sup ||u(t)|| L« = lqurp |lu(t)||Le, and the result follows from Step 2. O
(AN AEEY

3.9. Local existence for initial data in L9, ¢ < co. The bad sign. We now return to the question

of local existence, for the model problem
ug — ANu = [ulP"ru in (0,T) x €,
u=0 1in (0,7) x 09, (3.9.1)
u(0,z) =up(z) in Q,

where p > 1. Recall (See Theorem 3.1.1) that if ug € L°°(2), there is a unique weak solution defined on

a maximal interval [0,7y,). We now address the question of what happens if ug € L*(f2), but instead

ug € LI(Q) for some g < co. The value

_Np-1)
2 b
plays a critical role, and one has to distinguish two cases:
N{p-1
Case 1: ¢ > %
N({p-1
Case 2: ¢< %
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Roughly speaking, in case 1 we obtain the existence and uniqueness of a local solution for any ug € L(€2).
In case 2, it seems that there exists no local solution in any reasonable sense for some initial conditions
ug € LI(Q) (see Weissler [97, 98] and Open Problem 3.14.11).

Our main existence and uniqueness result is the following.

N(p—-1 N(p—-1
Q; ) (resp. g = @; )
ug € L1(Q), there exist a time T = T(ug) > 0 and a unique function v € C([0,T], L1(2)) with u(0) = uo,

which is a classical solution of (3.9.1) on (0,T) x Q.

Theorem 3.9.1. Assume q > )and g >1 (resp. ¢ > 1), N > 1. Given any

Moreover, we have:

(i) Smoothing effect and continuous dependence, namely
N
[u(®) = v(®)l[La + 24 [[u(t) —v(t)|[L= < Clluo = vol L4, (3.9:2)

for all t € (0,T) where T = min{T (ug), T (vo)} and C can be estimated in terms of ||ug| L« and ||vo||La.
iy e LA
() Tim £ (). = 0.
(iii) If ug > 0, then u(t) > 0 for all t € [0, T (up)].

Furthermore, for any bounded set (resp. compact set) K in L1(Y), there is a (uniform) time T = T'(K)
such that for any ug € KC the solution of (3.9.1) exists on [0, T].

Many people have established uniqueness results for nonlinear evolution equations with singular initial
conditions, in particular the Navier-Stokes and the Euler equations (see e.g. Kato and Fujita [66], Kato [64],
Ben-Artzi [10], Weissler [97]). In all these works it is assumed that u € L{2.((0,T), L*°(Q2)) and also that

11%1 t%||u(t)|| L~ = 0 for some appropriate o > 0. Our main point is that such an assumption is redundant.
t

A similar observation has first been made in [18].

Remark 3.9.2. Since u is a classical solution on (0,7) x €, the usual blow up alternative holds: either

Ty, = +o0 or else Ty, < oo and tllerp [lw(®)]| L= = +o0.

N(p—1)
2
widely open (see Remark 3.9.13 below). For example, when N = 1, the very simple equation

Remark 3.9.3. The “doubly critical” case, ¢ = and ¢ = 1, in Theorem 3.9.1 is delicate and

_ .3
Ut — Ugy = U,

with an initial condition ug € L'(f2), enters in this category.

It seems that for some ug € L'(£2) there is not even a local solution. See Open Problem 3.14.7. We
are, at least, able to find some ug € L'(Q), ug > 0 such that equation (3.9.1) has no nonnegative solution

ue C([0,T], L)) N L2 ((0,T), L>(£2)). See Theorem 3.9.14 below.

loc
When ¢ > p, it makes sense to talk about weak solutions u € C([0,T], L%(2)) in the integral sense, i.e.
t
u(t) = T(t)uo + / T(t — s)|u(s)|Ptu(s) ds, (3.9.3)
0
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for all t € [0,T]. Uniqueness holds in that class:

N(p-1
% (resp. q =

uniqueness for (3.9.3) holds in the class C([0,T], L1(2)).

N(p-1)

Theorem 3.9.4. Assume q > 5

) and q > p (resp. ¢ > p), N > 1. Then

Np-1 N
%amdq:p,i.e. q:p:mwithN237

the conclusion of Theorem 3.9.4 fails, i.e. uniqueness fails in the class C([0,T7], L9(2)). See Ni and Sacks [82]
and Remark 3.9.11 below.

Remark 3.9.5. In the “doubly critical” case ¢ =

Remark 3.9.6. The solution u of (3.9.1) given in Theorem 3.9.1 also satisfies (3.9.3); here, there is no
restriction about ¢ except for the assumptions of Theorem 3.9.1. This is not completely obvious since the
integral on the right-hand side of (3.9.3) need not be well-defined. To establish the convergence of this
integral, we rely on the smoothing effect (3.9.2). Clearly we have

t
u(t) =T(t — s)u(s) + / T(t — o)|u(o) P~ u(o) do, (3.9.4)
forall 0 <s<t<T. Welet s | 0in (3.9.4); to justify this passage to the limit it suffices to check that

/0 I7(¢ = o)u(0) P~ (o) | o dor < .

The only difficulty is when o is near 0. But

g—1

IT(t = o)u(@)P~ u(o)lle < (t — o)~ F T u() 5,

by Theorem 1.4.15. We may always assume that p > ¢ (the case ¢ > p has been handled above); and so,

_ _Np-a)
lu(@)IZr < (@) Lallulo) T~ < Co™ 2

Moo0 (- Y2 N <

The result follows, since

2q q

In several places, it is convenient to view the nonlinear equation (3.9.1) as a linear problem

u — Au = au,

and we have collected in the Appendix some useful facts about this linear heat equation with a potential.

Proof of Theorem 3.9.4. We consider separately two cases:

N(p-1

Case A: q>%andq2p,
N(p-1

Case B: q:%andq>p.

Case A. Let u and v be two solutions, u,v € C([0,T], L7(2)). We have

u(t) —ov(t) = /0 T(t —s) (Ju(s)[Pru(s) — |v(s)[P~ o(s)) ds. (3.9.5)
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Thus, by the smoothing effect of T(t) : L¥ () — L($),

t
[u(t) = v(®)][La < C/O (t =) (P~ + P~ H)u— vl || 2 ds

t
— -1 -1
SC/O (=) *(lullza + vz )llw = vllza ds,

N(p-1
where o = % < 1 since we are in case A. Let M = sup |[u(t)|re + ||v(t)]|Ls and
q 0<t<T
P(t) = sup [lu(t) —v(t)l|L,
0<s<t
for t € [0,T]. We deduce that
Tlfa
P(t) < CMP~ ——(t).

Hence v (t) = 0 for ¢ sufficiently small. Repeating the same argument, we see that ¢ (¢) = 0 for ¢ € [0, T.

N(p-1
Case B. Note that ¢ = % > p, thus N > 3. Let u,v be two solutions and let w = u —v. We set
T
if u # v,
a(t,x) = u—v (3.9.6)

plulf~t if u =,
so that
t
wlt) = / T(t — s)a(s)w(s) ds.
0

We claim that

vl2

ae C([0,T], L% (). (3.9.7)

We may then apply Theorem 1.6.12 to conclude that w = 0. Note that (since we are in case B) ¢ > In

N -2

Proof of (3.9.7). We have |a| < p(JulP~! + |[v[r™1), so that a € L>®((0,T), L¥ (€)). We now estab-
lish (3.9.7) by contradiction. Otherwise, there exist ¢ > 0, ¢t € [0,7] and a sequence (t,),>0 € [0,7T] such
that ¢, — t and |la(tn,-) — a(t, )||L% > . On the other hand, by possibly extracting a subsequence, we
may assume that u(t,) — u(t) and v(t,) — v(t) in L2(Q) and almost everywhere, and that there exists
© € L1(Q) such that |u(t,)| + |[v(ts)|] < ¢ almost everywhere. It follows easily that a(t,) — a(t) almost
everywhere and that |a(t,)] < Cle|P~! € L= (). By dominated convergence, we deduce a(t,) — a(t) in
L% (), which is absurd. O

N(p-1)
2
((0,T7),L*1(2)). We use the contraction mapping

Proof of the existence part in Theorem 3.9.1 when ¢ >

the existence of a solution v € L*((0,T), L9(2)) N L

loc

and ¢ > 1. We first establish

principle in a somewhat unusual space (this idea is due to F.B. Weissler [98]). Fix M > ||ug||r« and let
E = L>((0,T), L)) N Lig.((0, T), L*(2)),

and

K=K(T)={u€E;|u®)||lre <M +1and t*||u(t)||pre <M +1forte (0,T)},
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N(p-1)

with a =
2pq

1
< — < 1. We equip K with the distance
p

d(u,v) = sup t%||u(t) — v(t)| Lea,
0<t<T

so that (K, d) is a nonempty complete metric space. Given u € K, we set

B(u)(t) = T(#)uo + /O T(t — 8)|u(s)|P~ u(s) ds.

For u € K, we have

t
1@ (w)()][La < [luollzs +/O [u($) oo ds

Pt
< |luwollze + ( sup t“||u(t)||qu> / sTP%ds
0<t<T 0

1—-pa

< |Juo|lLa + (M + 1)P.

1 —pa

Next,
t
@ (w) ()] Lra < lJuollze +t“/ (t = 5)"Ju(s)|Lrq ds
0

t
< HuOHLq—i—t“(M+1)p/ (t— $)=s~P" ds
0

1
< luol|za + T P*(M + l)p/ (1-0) % Pdo.
0

Similarly, one shows that for u,v € K,
|| @ (u)(t) — ®(v)(t)||Lra < CT7P*(M + 1)P~1d(u,v).

It follows from the above estimates that if 7" is small enough (depending on M), then ® : K — K is a strict
contraction. Thus ® has a unique fixed point in K.

To complete the argument, it suffices to show that v € C([0,T],L1(?)) N L2

loc

((0,T),L>(Q)) (once
u € L2 ((0,T), L>(£2)), it must be a classical solution on (0,7) x ). Since u € K and pa < 1, we have
lulP~tu € L((0,T), L1(Q)). Tltlis implies that w € C([0,T], L%(f2)). (Recall that, in a general setting, if
f € LY(0,T),X) and u(t) = / T(t—s)f(s)ds, then u € C([0,T7], X).)

0
Next, we prove that u € L ((0,T), L>°(Q)). Indeed, we have u € L2 ((0,T), LP1(Y)). Therefore, we

loc loc

may apply Theorem 1.6.7 (with ¢ replaced by pg and o =

pql) on every interval (¢, T —¢), with a = |u[P~L.

Note that the choice of T depends only on M. This establishes the last assertion in Theorem 3.9.1. O

Np-1)

For the proof of the existence part in Theorem 3.9.1 when ¢ = 5

and ¢ > 1, we will use the

following lemma.

Lemma 3.9.7. Given a compact set K C L1(Q) and ¢ < r < oo, there exists a function v : (0,1] — (0, 00)
with

lim ~(t) =
tlff)”() 0,

such that
LT (ol < (1),
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N /1 1
for all t € (0,1) and all ug € K, where o = ) (q - r)'

Proof. If K is reduced to a single point ug, the result is clear. Indeed, for any vy € L>(2)
tNT @uol|r < t*(IT(8) (uo — vo)llzr + [T ()vol
< lluo — wollLa + Ct*|lvol| Los;
and so
lin;lsoup tNT () wollLr < |luo — vol|La-

The assertion follows since vg is arbitrary.
In the general case, given any p > 0, there is a finite covering of IC by balls B(u,,p) in L7(2). Any

ug € K belongs to some B(u;, p), and we then write
tNT (uol|r < | T(8) (o — we) [ r + (T ()il Lr
< lluo = willpa + t*|T(¢)wil| -
< p+ Tl
The conclusion of the lemma then follows from the first assertion. O

Np-1)
2

, with some minor technical differences. Fix any r € (¢, pq), r > p, and set

Proof of the existence part in Theorem 3.9.1 when ¢ = and ¢ > 1. The strategy is the

N(p-1)

same as in the case ¢ = 5

E = L™((0,7), L) N {u € L5.((0,T), L()); t*u € L=((0,T), L"(2))},

E= Loo((O7T)7Lq(Q)) n {u € Lf;c((O,T), L"(Q)); t*u € CO([OvT]v LT‘(Q))L

N /1 1 1

with o = 5 < —— ] < = <1 (since r < pg). Here Cy means that we consider functions which vanish at
qg T p

t=0. Fix M > |lug||pe. Given 6 > 0 to be chosen later, let

K = K(T) = {u € E; |[u(t)||p« <M +1 and t*||u(t)||- <6 for t € (0,T)},

and

K=K(T)=KnE.

We equip K with the distance

d(u,v) = sup *[u(t) = v()|z-,
0<t<T

so that (f( ,d) and (K,d) are nonempty complete metric spaces. Consider the same mapping ® as in the

N(p-1 N 1 ~
%andq>l. Leta2<p>. For u € K, we have by
r o oq

using the smoothing effect Lz — L9 (note that r < pg, so that r/p < q),

proof of the existence part when q =

[@(w)()]lza < [luollzs +/O (t =) Nu(s)L- ds

P t
o —a —pa 3.9.8
< lluolze + ( sup ¢ |u(t)||Lr> /(t—s) 5P s (3.9.8)
o<t<T 0

< |uol|za + C167,
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since a+pa = 1. Here the constant C; (and the constants Cs, Cs below) depends only on p, ¢, 7, N. Therefore,
[@(u)(t)||ra < M +1,

provided
C16F < 1. (3.9.9)
Next, using the smoothing effect Ly — L", we have

N(p—1)

t
@) (@)l < sup t“IIT(t)uOIILrH“/(t*S)’ 7 |lu(s)lILe ds
0<t<T 0

P t B
< sup 1| T(tuollz- + ( sup taumnv‘) " / (t—s) "5 s r0ds (3910)
o<t<T 0<t<T 0
< sup T (E)uo e + Cod?,
0<t<T
Np-1
since pa + % = a + 1. Therefore,
« (0% 5
sup t||®(u)(®)||r- < sup t*||T(#)uollLr + 3 (3.9.11)
0<t<T 0<t<T
provided
1
CoyoP™t < 3 (3.9.12)
Similarly, one shows that for u,v € K ,
1
sup t¥)|®(u)(t) — ®(v)(t)||L- < C36P " d(u,v) < =d(u,v), (3.9.13)
0<t<T 2
provided
1
C30P™1 < 3 (3.9.14)

for some constant Cs. It follows from the above estimates that @ : K—E.

We fix any 6 > 0 small enough so that (3.9.9), (3.9.12) and (3.9.14) are satisfied. The choice of § depends
only on N,p,q,r.

Next, we fix T' > 0 such that

N >

sup t*||T(t)uo]
0<t<T

o < (3.9.15)

In view of Lemma 3.9.7, the choice of T depends only on the compact set K C L9(€2). This establishes the
last assertion in Theorem 3.9.1.

By (3.9.13),(3.9.11) and (3.9.15), ® : K — K is a strict contraction, and thus has a unique fixed point
in K.

Next, we claim that this fixed point belongs to K. For this purpose, it suffices to verify that ® : K — K.
We have to check that ®(u) € C((0,T],L"(2)) and that ltil%l t*®(u)(t) =0 in L"(9). Since by Lemma 3.9.7
T'(t)uo satisfies the above requirements, we may always assume that uwg = 0. It is clear that ®(u) € K

when u € C([0,T], L>(Q)). Since K NC([0,T], L>°(£2)) is dense in K equipped with the metric d, the result
follows from (3.9.13).
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We now show that u € L ((0,T), L>°(Q)). Indeed, we have v € L2 ((0,T), L"(£2)). Therefore, we can

loc loc

apply Theorem 1.6.7 (with o =
N(p—1)
2
Finally, we show that v € C([0,T],L%(2)). Indeed, we have u € K, so that in particular u €
C((0,77,L"(Q)) c C((0,T],L9(82)). Therefore, it remains to show that u(t) — T'(t)ug 30 in LI(Q). As
in (3.9.8) we have

! 1) on every interval (e, T — ¢), with a = |u|P~!. Indeed, r > p > p — 1,

N
sothat o > 1;r > g = ,sothata>E;andTZp,sothatrzo’.

Ju(t) = T(t)uollLa < C1 sup (s*||lu(s)|[L-)? — 0,
0<s<t tlo

since u € F. 0

Proof of the uniqueness in Theorem 3.9.1. For every ug € LI(2), we denote by U(t)u the solution
constructed via the above contraction argument on some interval [0,T(ug)]. We shall need the following

lemma.

Lemma 3.9.8. Let ug € L*(Q) and consider the classical solution u of (3.9.1) defined on the maximal

interval [0, Ty, (ug)). Then T(ug) < Twm(ug) and u(t) = U(t)ug for all t € [0, T (ug)].
Proof. It is clear that u € K (7) for some 0 < 7 < T'(uo) sufficiently small. By uniqueness in K(7) we have
u(t) =U(t)ug, for 0<t <.

After time 7, both @(t) and U(t)ug are classical solutions. Hence the result. O

End of the proof of the uniqueness in Theorem 3.9.1. Here we use the same idea as in [18].
N(p-1)
2
((0,T),L>(2)) be a solution of (3.9.1) with v(0) = ug. Recall that v is a classical

solution of (3.9.1) on (0,7) x Q. We are going to prove that v(t) = U(t)ug on some interval [0,7”). Then,

We give the proof only in the critical case ¢ = and ¢ > 1; the other case is simpler. Let

v e C([0,T], LY(Q)) N LEe

loc

v(t) = U(t)uo as long as both exist, by standard uniqueness in L*°(2).
Set
K = v([0,T]),

and
M = sup ||v(t)|Lq.
0<t<T
Since K is a compact set in L4(§2), there is a uniform 7} > 0 such that U(¢)vg is well defined for all vy € K

and all ¢ € [0, T1]. Moreover, since U(t)v(s) € K(T1) (considered as a function of t), we have

IU@)v(s)llpe <M +1,

(3.9.16)
U@ (s)lr <6,
for all s € (0,7T) and all ¢t € (0,T}).
Fix any 0 < s < T It follows from Lemma 3.9.8 that
v(t+s)=U)v(s) for 0<t<min{T —s,T1}. (3.9.17)
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Combining (3.9.16) and (3.9.17) we obtain
[o(t + 8)lle < M +1,
ot + s)llLr <6,
for t + s < T and t < T;. Passing to the limit as s | 0, we deduce that
lo@))lze < M + 1,
t* o)l <9,
for 0 < t < min{T,Ty}. Therefore, v(t) € K(T’) where T/ = min{T,T;}. We may now argue as in
Remark 3.9.6 to assert that

v(t) = T(t)ug + /0 T(t — s)|v(s) [P~ u(s) ds, (3.9.18)

ie. v=®(v). By (3.9.13) we deduce v(t) = U(t)ug on [0,T"]. O

Proof of (i), (ii) and (iii) in Theorem 3.9.1 (Smoothing effect and stability). To prove (3.9.2)

we consider three cases. The methods are essentially the same in all three cases with some minor technical

changes.

N(p-1
Case a: q>%,q2p—1amdq21;

Np-1
Case b: q>%and1§q<p—l;

N(p-1
Case c: q:% and q > 1;
C ) N(p-1) . .

ase a: q > — and ¢ > p—1. We apply Theorem 1.6.7 with a given by (3.9.6). We have
N
la] < p(JulP~! + |vP~1), so that a € L>((0,T), L°(Q)) with o = Ll > 5,0 > 1. By (1.6.7) we have
p—
lu(®) — v(t)||pe < CeCt“““%w«u,mL“)(f% + D)|Jug — vollLa,
N(p-1)

with o = . By construction, u,v € K where M is chosen such that M > |lug||p« and M > ||jug||Le;

2pq
and thus, the L™ estimate of (3.9.2) follows.

On the other hand, we have.
! 1 1
- ra < |luo — vol| L Ly Lra — v||Lra.
l[u(t) = v(t)l|lze < [luo — voll +C/O (lullpea =+ lvlfEea )lw — vl

Since u,v € K, we have

_ _ C -
lu(s) s + l0(8) s < M+

Therefore,
sup |Ju(t) — v(t)||za < |Jug — vollze + C(M +1)P~1 sup t*|Ju(t) — v(t)||Lra- (3.9.19)
0<t<T 0<t<T

Here, we use the fact that ap < 1. Furthermore, by using the L?(2) — LP9(§)) smoothing effect, we have
¢
[u(t) = v(t)l|Lra <t *|lug — vollLa + CA/ (t—s)"%s PV u — v Lra,
0
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where A = sup s*®D(lu(s)||75e + |v(s)]|h0e ). From the singular Gronwall lemma (Proposition A.5.7),
0<s<T
we deduce

sup t%|u(t) — v(t)||zre < Cllug — vollLa. (3.9.20)
0<t<T

Combining (3.9.19) and (3.9.20) we obtain the L9 estimate of (3.9.2).

Case b. Here, we cannot apply Theorem 1.6.7 since o = Ll < 1. However, the second part of the proof

in unchanged and we deduce as above that
[u(t) = v()llze +t*|lut) = v(t)|[Lra < Clluo — vollLa,

for all ¢ € [0,T]. This establishes the L? estimate of (3.9.2).
We now turn to the proof of the L* estimate of (3.9.2). First note that

lu(t/2) — v(t/2)]|Lra < Ct~||lug — vol|La-

We now apply Theorem 1.6.7 on the interval (¢/2,t) with ¢ replaced by = pg and o = ﬂl > 1 and with a

given by (3.9.6). Since |a| < p(|u[P~! +|v|P~!), we have that a € L>((t/2,t), L7(2)); and ||| Lo ((t/2,6),0) <
C(M + 1)P~ == Tt follows that

o(p—1)

() = v(®)ll1 < Cexp (CHM + 1) 557 (4@ D)7 ) (14 75) u(t/2) — v(t/2)l| 100

and so,

Ju(t) = v(®)llz~ < Cexp (COM + )FF4) (1+7F7) Ju(t/2) - v(t/2) |0,

2 -1
with vy =1— M. Since v > 0, we obtain

20 — N
_ N
() = v(®)ll= < C 4 [u(t/2) = v(t/2)]| Lo

Therefore,

() = v(t)|| e < Ct™ Bt~ lug — vo| s = Ct ™5 |Jug — vo|l s,

which is the L* estimate of (3.9.2).

Np-1
Case c: ¢ = % and ¢ > 1. Since u —v = T(t)(up — vo) + ®(u) — ®(v), it follows from (3.9.13)
that
1
sup % [u(t) —v(®)llz- < sup | T(t)(uo = vo)llz- + 35 sup tu(t) —v(t)lle-,

0<t<T 0<t<T 0<it<
with a = M; and so,

qr

sup t%|u(t) — v(t)]
0<t<T

r <2 sup tY)T(t)(up — vo)|lr < 2||uo — vol|La- (3.9.21)
0<t<T

Furthermore (as in (3.9.8)) we have,
¢
[u(t) = o(®)][La < [luo = vollze + C/O (t =) (lu(s) 1T + lo()IElluls) —v(s)]2r ds

t
o~ vollzs + O~ sup 1 uls) ~ vls)ler [ (=) 4570 s
0<s<t 0
< Cllup — vol|La,

CHAPTER 3—PAGE 39



by (3.9.21). This establishes the L? estimate of (3.9.2).

TN e
_ 1 2 ) o )
and with a given by (3.9.6). We have |a|] < p(JulP~! + |[v|P71), so that a € L®°((t/2,t), L°(2)); and since

u,v € K, ||al|po(t/2.),00) < Ct~2P~D. Tt follows that

To prove the L estimate, we apply Theorem 1.6.7 on the interval (¢/2,t) with o =

() = v(®)]l 1 < Cexp (CH(E )27 ) (1447 5)

u(t/2) — v(t/2)] L

2ca(p — 1)

But 1 —
h 20— N

= 0; and so,

lu() = v() |z < OO+ 5) ult/2) — v(t/2)]

L. (3.9.22)
Combining (3.9.21) and (3.9.22), we obtain
u() = @)l < Ct 5t lug — voll o = Ct~ 34]|ug — vol|a,

which is the desired estimate. In fact in this case the constant C in (3.9.2) is independent of ||ug|/r« and
l[uol|za-
Finally, (i) and (iii) are clearly true when uy € L*°(2), and the general case follows by continuous

dependence (3.9.2). O

Remark 3.9.9. Even when ¢ < p, the uniqueness property in Theorem 3.9.1 holds in a class larger
than C([0,T], L1(Q)) N L2.((0,T), L>()). More precisely, uniqueness holds in the class C([0,T], L¢(Q)) N

loc
[eS)
Lloc

LOO

loc

((0,7),LP(Q)). Indeed, note first that the equation makes sense in that class (since then |u|P~'u €

((0,7),L*())). Furthermore, if u € L. ((0,T),LP(S2)), then |ulP~! € L%C((O,T),Lﬁ(ﬂ)). We
Np—-1 N

have p > ¢q = %, so that —2— > —. Therefore, it follows from Theorem 1.6.7 that u €

p—1 2
Lig.((0,T), L>=(82)).

Remark 3.9.10. The above results hold for more general nonlinearities with similar proofs. More precisely,

one can replace |u[P~1u b u) where g : R — R verifies |g(x) — < C(1+|zP~t + |y|P~ Y|z — yl.
place [u] Y g g g 9(y Y Y

N({p-1
Remark 3.9.11 (The “doubly critical” case ¢ = (P%)

N(p—1) : N
5 and ¢ = p,ie. gq=0p N3 (N > 3), then

the conclusion of Theorem 3.9.4 fails, i.e. uniqueness fails in the class C([0,T], L9(2)). This is a result of Ni

and ¢ = p in Theorem 3.9.4). As we

have already mentioned in Remark 3.9.5, if ¢ =

and Sacks [82], and we sketch their argument. First, a simple lemma.

Lemma 3.9.12. Let o, f € L*() satisfy the equation

{—Agozf in Q,
p=0 in 09,

in the sense that

- /Q PN = /Q 1, (3.9.23)
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for all ¢ € C*(Q) with ¢ =0 on 9. Then

t
e=T(t)p+ / T(s)f ds, (3.9.24)
0
for all t > 0.

Proof. The conclusion is trivial if ¢ is smooth. In the general case, let (fn)n>0 C D(2) be such that
fn — fin LY(Q) and let ¢, be the corresponding solution of (3.9.23). Then ¢, — ¢ in L1(Q) (see e.g.

Lemma 3.7.9 above) and one passes to the limit in (3.9.24). O

In the case ) = the unit ball of R", Ni and Sacks [82] have constructed a radial function ¢ € C%(Q\{0}),
¥ >01in Q, ¥ =0 on 99, ¥ € LP(Q), lim0 P(x) = +oo, satisfying the equation
N

_ — P i i N
AYp=9YP in Q with p N3’

=0 in 09,

—/QqﬁAc:/prc,

for all ¢ € C?*(Q2) with ¢ = 0 on 9Q. In view of Lemma 3.9.12, v(t) = % is a solution of (3.9.18) in
C(]0,00), LP(€2)). On the other hand, the solution w of (3.9.1) (with initial condition ) given by Theo-

in the sense that

rem 3.9.1 has a smoothing effect. Hence, the two solutions are distinct. O
N({p-1
Remark 3.9.13 (the “doubly critical” case ¢ = % and ¢ = 1 in Theorem 3.9.1). If
N(p-1 N+2
q = % and ¢ = 1, ie. p = T+ (N > 1) Theorem 3.9.1 does not apply and we suspect that

the conclusions fail. (This concerns for example the simple case N = 1, p = 3, ¢ = 1.) See Open Prob-
lems 3.14.7—3.14.10. Here is some evidence suggesting that the answers to these open problems might be
positive. (See also Exercise 3.13.20.)

N+2
Theorem 3.9.14. Assume again p = T+, q = 1. There is some ug € L*(£2), ug > 0 such that for every

T > 0 problem (3.9.1) has no nonnegative solution u € C([0,T], L*(2)) N L2 ((0,T), L>=(£2)).

loc

Here N > 1 and €2 can be arbitrary.

Proof. Fix any open ball w C Q with @ C Q. Let up € L'(£2), ug > 0 be such that v(t) = T(t)uq satisfies

1
/ /vp(t,a:) dz dt = +o0. (3.9.25)
0 w

(See Exercise 3.13.21. Note that v > 0 by the maximum principle.)
Assume by contradiction that for some 7' > 0 there is a nonnegative solution u € C([0,T], L*(2)) N
L2 ((0,T), L () of (3.9.1). We have

loc

u(t+s) > T(t)u(s),
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forallt>0,s>0,t+s<T. As s | 0 we find
u(t) > T(t)ug = v(t), (3.9.26)

for all t € [0,T]. Since u is a classical solution of (3.9.1) for ¢ € (0,T), we may multiply (3.9.1) by ¢ € D(Q),

¢(>0o0n €, ¢>1onwand we obtain

%/QHH/Q”(_AO:/QUPCZ/WUP'

Integrating on (g,7) and letting € | 0 (since u € C([0,T7], L(Q))), we deduce that

T
//u”<oo7
0 w

which contradicts (3.9.25) and (3.9.26). O

Remark 3.9.15. Baras [6] has given examples showing that uniqueness for problem (3.9.1) fails in the
Np-1
class C([0,T],L9(2)) N L{<.((0,T), L>(2)) for 1 < g < % Here, the initial condition can be any

smooth function wg, for example ug = 0. Such a phenomenon had been observed earlier by Haraux and

Weissler [59] when Q = RY.

Remark 3.9.16. Let ug € L>°(12), let u be the corresponding solution of (3.9.1) and assume that Ty, < occ.

N(p-1
Suppose in addition that ug € H2(Q) N Hol(Q) and that Aug + |uo|p’1u0 >0 ae. in Q. If (p2 ) > 1,
then lim |lu(t)|| ~w-1 = +oo. Indeed, suppose by contradiction that liminf ||u(t)|| ~e-n < oo and let
¢ L T L

(tn)n>0 be a sequence such that ¢, T Ty, as n — oo and sup Hu(tn)||LN(p71) < o0. We claim that u(t,)
- n>0 2
1

. . . (- . . . .
is contained in a compact set of L% (©2). This is indeed the case since, by the maximum principle,

w(t,z) > 0 on (0,T,,) x ; and thus (u(,))n>0 is a nonincreasing sequence and has a limit in L5 Q).

Applying Theorem 3.9.1 with u(¢,) as initial condition, we obtain a uniform T' > 0. Thus Ty, > ¢, + 7. This

is impossible as n — oo. The same conclusion holds for more general nonlinearities (see Remark 3.9.10).

Note that in the case N > 3, the result follows from Theorem 3.8.3.

3.10. Initial conditions in L!(Q2) or measures. In this section, we consider the two problems
ug — Au = |ulP" 'y in (0,T) x Q,
u=0 in (0,T) x 0%, (3.10.1)
u(0,2) =up(z) in Q,

and
ug — Au A+ [uP'u =0 in (0,T) x Q,

u=0 in (0,T) x 09, (3.10.2)
u(0,2) =up(x) in Q,
and we shall concentrate on the case where ug is either in L!(Q) or a measure. We first recall a special case

of Theorem 3.9.1.
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Theorem 3.10.1. Assume

N+2
N

Then, given any ug € L*(Q), there exist a time T = T(ug) > 0 and a unique function u € C([0,T], L*())

with u(0) = ug, which is a classical solution of (3.10.1) on (0,T) x Q.

p< (3.10.3)

This result can be extended to the case where the initial condition is a measure, ug € M (),
M(2) = Co(Q)7,
and Cp(9) denotes the space of continuous functions on € which vanish on 9.

Theorem 3.10.2. Assume (3.10.3). Then, given any ug € M (), there exist a time T = T'(ug) > 0 and a
unique function u which is a classical solution of (3.10.1) on (0,T) x Q and which satisfies the initial condition

u(0) = ug in the sense

lim | w(t,z)p(z)de = / UoP, (3.10.4)
tlo Ja Q
for every ¢ € Cy(Q).
Moreover, .
/ / lu(t, z)|P dx dt < oo, (3.10.5)
0o Ja
and
¢
u(t) = T(t)uo + / T(t — s)|u(s)|P u(s) ds, (3.10.6)
0

for all t € (0,T). In particular, u(t) — T(t)ug € C([0,T], L*(Q)).

Proof. The proof is almost the same as the proof of Theorem 3.9.1. We first establish the existence of a

solution u € L*>((0,T), L*(Q2)) N L, ((0,T), LP()). Fix M > |uo||a(e) and let

loc

E= LOO(<O’T)7L1(Q>) N L, ((0’ T)’ LP(Q»a

loc

and
K=K(T)={u€E;|ul®)|r: <M+1and t*|u(t)||zr <M +1fort e (0,T)},
N(p—1 1
with a = % < — < 1. We equip K with the distance
P p

d(u,v) = Oigtho‘Hu(t) —v(t)||Le,

so that (K, d) is a nonempty complete metric space. Given u € K, we set
t
B(u)(t) = T(t)uo + / T(t — 8)|u(s)|P~ u(s) ds.
0
For u € K, we have by (1.4.13)
t
[@(w) ()l < fluollare) +/O [u(s)|I7» ds

p t
< luollare) + ( sup tallu(t)|m> / s P g
0<t<T o

1—pa

< M+ 1)P.
< luollar(e) + 1 _pa( +1)
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Next, using again (1.4.13)
t
@ (u) (D) e < [luollre( +t°‘/0 (t =) “llu(s)|IZ, ds
t
< ol aro) + (M + 1)”/ (t—s) " “sPds
0
1
< wollary + TP (M + l)p/ (1-0)"%"P*do.
0
Similarly, one shows that for u,v € K,
t)|®(u)(t) — D) ()| » < CTP¥(M + 1)~ d(u,v).

It follows from the above estimates that if 7" is small enough (depending on M), then ® : K — K is a strict
contraction. Thus ® has a unique fixed point in K, which is a solution of (3.10.6).

Next, we prove that v € L2 ((0,7), L>*°(Q2)). Indeed, we have u € L ((0,7T), LP(Q2)). Therefore, we

loc loc

may apply Theorem 1.6.7 (with ¢ replaced by p and o = P 1) on every interval (¢, T —¢), with a = |u[P~1.

Since u € L2 ((0,T), L>=(£2)), it must be a classical solution on (0,7') x Q; and since u € K and pa < 1,
we have |u|P~1u € L1((0,T) x Q). This implies that u verifies (3.10.5). This also implies (by (3.10.6)) that
u(t) — T(t)up € C([0,T], L*(2)) and using (1.4.15), we deduce (3.10.4).

Note that the choice of T" depends only on M.

We now establish uniqueness. For every ug € M(Q2), we denote by U(t)uo the solution constructed via
the above contraction argument on some interval [0,T(ug)]. Let v be any solution as in the statement of the
theorem. We are going to prove that v(t) = U(t)up on some interval [0,7"). Then, v(t) = U(t)uo as long
as both exist, by standard uniqueness in L>°(2). We observe that (3.10.4) means that v(t) — ug in M(£)
weak-*. This implies (since v is smooth for ¢ > 0) that

M= sup lo(®)llar() < oo
Set
K =v([0,T7).

Since M < oo,there is a uniform T > 0 such that U(t)vg is well defined for all vg € K and all ¢ € [0, T3]

Moreover, since U(t)v(s) € K(T1) (considered as a function of ¢), we have

[U@)v(s)][zr < M +1,

(3.10.7)
U@ o) < M+ 1,
for all s € (0,7) and all ¢ € (0,71).
Fix any 0 < s < T. It follows from Lemma 3.9.8 that
v(t+s)=U@)v(s) for 0<t<min{T —s,T1}. (3.10.8)

Combining (3.10.7) and (3.10.8) we obtain
[o(t + sl < M +1,
ot +s)l[r < M +1,
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for t + s < T and t < T3. Passing to the limit as s | 0, we deduce that

lo@)llpr < M +1,
(3.10.9)
t* @)l < M +1,

for 0 <t < min{T, T} }. Therefore, v(t) € K(T") where T’ = min{T, T} }. Given ¢ € (0,7"), we have
t
v(t+e)=T(t)v(e) — / T(t — s)|v(e + 8)|P " tv(e + s) ds, (3.10.10)
0

forall 0 <t < T —e. We now let € | 0. It follows from (3.10.9) that the integral on the right-hand side
of (3.10.10) converges to

/0 T(t — s)|v(s)[P" v(s) ds,

and it follows from Theorem 1.4.25 (v) (since v(g) o to in M(Q) weak-*) that T'(t)v(e) — T'(t)uo in Cp(£2);

€l0
and so,

o(t) = T(tyuo - / T(t — 5)[v(s) P~ o(s) ds,

which implies that v(¢) = U(t)ug on [0,T"]. O

In the “good case” (3.10.2), we have a similar result with the additional property that the solution is

now global.

Theorem 3.10.3. Assume (3.10.3). Then, given any ug € M(S2), there exists a unique function u which is
a classical solution of (3.10.2) on (0,00) x € and which satisfies the initial condition u(0) = ug in the sense
(3.10.4).

Moreover, u satisfies (3.10.5) and

w(t) = T(tyuy — /0 T(t — 8)|u(s)|P~ u(s) ds, (3.10.11)
for all t > 0. In particular, u(t) — T (t)ug € C(]0,00), L1(Q)).

Local existence and uniqueness follows from the argument of the proof of Theorem 3.10.2. The solution

being classical at ¢ > 0 is global by Theorem 3.3.1.

Condition (3.10.3) is essential in Theorem 3.10.3. We suspect that it is also essential in the “bad case”
Theorem 3.10.2 (see open Problem 3.14.14). More precisely, if ug = dg the Dirac mass at 0 and 0 € 2, there

is no solution of (3.10.2) in the weakest possible sense:

Theorem 3.10.4. Suppose
S N +2
p = N

Given any T > 0, there is no function u € LY ((0,T) x Q satisfying (3.10.2) in D'((0,T) x Q) and such that

loc

ess lim/ u(t, z)p(z) de = ¢(0),
tl0 Q
for all ¢ € C.(2).
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See Brezis and Friedman [21] for the proof of Theorem 3.10.4. The method uses a statement about
removable singularities for the equation (3.10.2). See also Section 3.12.

In particular the equation u; — uz, +u® = 0 in Q = (=1, 1) has no solution with ug = do.

Remark 3.10.5. Note that the nonexistence result is purely local. No boundary condition is prescribed.

N +2
Remark 3.10.6. Consider the problem (3.10.2) with p > ];’[_

smooth initial data which converges weak-x to do. Let (u;);>0 is a sequence of corresponding solutions

Suppose (up,;);>0 is a sequence of

of (3.10.2). Note that we have good estimates on (u;);>0: ||tz ((0,00),21(2)) < C and |lu;(t)[|L~ < Ct==
(see the proof of Theorem 3.10.8). The reader may wonder what happens to the sequence (u;);>0, since the
limiting problem has no solution. The answer is that u; 2 0 uniformly on [g, 00] x Q for any € > 0. See
Brezis and Friedman [21]. This shows that the initial coildition may be lost in the process of passing
to the limit under weak convergence of the initial conditions.

N +2

N
measures ug less singular than &y (for example, a distribution of charges on a surface). Baras and Pierre [§]

Remark 3.10.7. Tt is possible to solve the problem (3.10.2) for some values of p > and some

have described precise conditions on ug.

We conclude this section with an existence result for (3.10.2) where 1 < p < oo is arbitrary and

up € Ll(Q)

Theorem 3.10.8. Given any ug € L'(2), there exists a unique function u € C([0,00), L*(2)) with u(0) =
ug, which is a classical solution of (3.10.2) on (0, 00) x Q.

Moreover, u satisfies (3.10.5) and we continuous dependence and have smoothing effect, namely
[u(t) —v(®)lrr < [[uo — vollrr, (3.10.12)

and

t% [lult) — v(t)l| 2= < lluo — voll1, (3.10.13)

for all t > 0.

Proof. Let (ug;);>0 C D(Q) with ug; — uo in L'(), and let u; be the corresponding global, smooth
j—o0
solutions of (3.10.2). We claim that

t
llw; (t) — up(t)| L +/ / i [P~ My — |k [P g | dadt < luo; — uok| (3.10.14)
0o Ja
for all t > 0. To establish (3.10.14), we multiply the equation
(uj —up)e — Duy —ug) + |ug [P~y — fug[P~ g, = 0,

by O (u; — ug) where 6, is a smooth approximation of the signum function, and we let m — occ.
Thus, (uj);>0 is a Cauchy sequence in C([0,00), L*(2)) and (|u;|P~u;);>0 is a Cauchy sequence in

LY((0,00) x £2). Hence u; Pl in C(]0,00), L*(2)) and |u [P u; = |ulP~ u in L1((0, 00) x ), for some
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u € C([0,00), LY(2)) N LP((0,00) x ). This implies that u satisfies (3.10.11). To obtain further estimates,
we use Kato’s inequality (Theorem A.5.20). Setting ¢; = |u;|, we have

dp; ou; .
a—tj — Ap; < <8tj - Auj> signu; = —|u;|P < 0.

By the maximum principle, ¢;(t) < T(£)|uo ;| <t~ % |Jug;||z:. This implies that u(t) € L>(Q) for all t > 0
and thus is a classical solution.

We now prove uniqueness and the estimates (3.10.12) and (3.10.13). Let u(¢) and v(¢) be two solutions
with initial values ug and vy. Applying Kato’s inequality and the maximum principle as above, we obtain
the pointwise estimate

u(t) = v(®)] < T(t)|uo — vol,

in  for all ¢ > 0. The result follows. O

Remark 3.10.9. The conclusion of Theorem 3.10.8 holds if we replace the nonlinearity |u[P~lu by any

locally Lipschitz function f(u) which is monotone nondecreasing in w.
3.11. Further results.

3.11.1. The necessary (and almost sufficient) condition of Baras and Pierre for the existence

of a solution on (0,7). Consider the problem
w—Au=uP in (0,T)xQ,
u=0 in (0,T)x 0L, (3.11.1)
uw(0) =wup in €,

with ug € L*(2) and ug > 0. It has a solution on (0,Ty,) x . Let us first derive a simple condition relating

ug and Tp,.

Fix T < T, let h € C([0,7] x Q), h > 0, h = 0 on a neighborhood of [0, T] x 9, h(T,-) # 0, and let

T
)= [ 76— nis)ds

for 0 <t < T, so that ( verifies
-G —AC=h in (0,T) x 9,

¢=0 in (0,7) x 09,
(T)=0 in Q
and ¢ > 0on (0,T) x Q.
Multiplying the equation (3.11.1) by ¢ and integrating on (0,7") x €, we obtain

/QC(O)UO=/OT/Quh—/OT/Qu”<. (3.11.2)

Recall Young’s inequality |ab| < |a|? + C,|b[’, with C,, = (p — 1)p~?". We deduce from (3.11.2)

/QC(O)uo SCp/OT/Q (?)p ¢ (3.11.3)
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Note that u has disappeared in inequlity (3.11.3). This is a necessary condition on ug for the existence of
a solution up to time 7. (In particular, this shows that if we fix T and wg, the problem (3.11.1) with the
initial condition Aug does not have a solution for A sufficiently large.)

A remarkable fact is that condition (3.11.3) is almost a sufficient condition. More precisely:

Theorem 3.11.1. Suppose ug € L>=(Q), ug > 0, satisfies

/QC(O)uo <C/OT/Q <Z>p ¢ (3.11.4)

for some constant C' < C, and every h as above. Then (3.11.1) has a classical solution on (0,T) x £, i.e.

Tm(uo) Z T.

Sketch of the proof. There are two main ingredients.

Step 1. A remarkable result of Baras and Pierre [8] asserts that the condition (3.11.3) is also a sufficient
condition for the existence of a weak solution of (3.11.1) on (0,7) x Q. Here, a weak solution of (3.11.1)
on (0,T) x Q is ameasurable function on (0,7) x Q, u > 0, such that for all S < T, u € L((0,5) x Q),
uP§ € L1((0,5) x Q) (where 6(z) = dist(x, 0)), and

/oT/Qup5 B _/OT/Q“(& +A8) - /9“05(0)7 (3.11.5)

for every & € C%(]0,T] x ) such that £ =0 on (0,7) x 9 and &(¢,x) = 0 for all z € Q and all ¢ near T.
At this stage it is not clear that this u is a classical solution. In fact, it is plausible that such a u need

not be a classical solution on (0,7"). See Open Problem 3.14.16.
Step 2. Suppose now that wug satisfies (3.11.4). Then by Step 1 there is a weak solution of the equation
u—Au= P in (0,T)x€Q,
u=0 in (0,7) x 0,
u(0) =wup in £,
for some A > 1.
We claim that for any € € (0,1) the problem
ve—LAv=(1—¢g)” in (0,T) x Q,
v=0 in (0,T) x 0%, (3.11.6)

has a classical solution on (0,7T).
To prove this, one uses the same kind of device as in [20]. Namely, fix A > |lug||r~ and consider the

function
t for 0<t<A,

P(t) = € 1—¢
AT

This function is bounded, monotone increasing and concave. Moreover,

T p-1
) for t> A.

O(t)P

(1) > (1-e) 7

: (3.11.7)
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for all ¢ > 0. Next, observe that w = ®(u) is a supersolution of the problem (3.11.6). Indeed, by Kato’s

inequality (see Lemma 3.7.10 and Theorem A.5.20) w satisfies
wy — Aw > O (u)(uy — Au) = ' (u) P > (1 — ) \w?,

by (3.11.7). (Clearly, w(0) = ug.) By the maximum principle, v < w, thus v is a classical solution on (0,7
(recall that w is bounded).

1
Finally, we choose 1 — ¢ = % O

3.11.2. Complete blow up after T,,: is there a life after death? Let p > 1 and given uy € L>(Q)
consider the solution w of the equation (3.11.1) defined on the maximal interval [0,Ty,). Suppose that
Th < 0.

A natural question is the following: can one extend the solution u after the blow up time T, as a
“weak” solution on [0,T), T, < T < co? For this purpose, we propose a simple strategy: approximate the
nonlinearity g by a sequence of nonlineartities (g, ), >0 which are globally bounded (or globally lipschitz), so

that the solution wu,, of the problem

8;; — Aty = gn(un) in (0,00) x Q,
u, =0 in (0,00) x 99, (3.11.8)

un(0,2) =ug in £,

is global; then let n — oo and study the existence of a pointwise limit of w, (¢, z) for ¢t > Ty,.
Baras and Cohen [7] have shown that in many situations, u blows up completely after T}, in the sense
that for every x € Q and every t > Ty, un(t,z) — oo as n — oco. More precisely, we have the following

result (see Baras and Cohen [7] and Martel [79]).

Theorem 3.11.2. Let ug € L*(Q2), up > 0, and consider the solution u of the equation (3.11.1) defined
on the maximal interval [0, Ty,). Suppose that Ty, < 0o. Suppose furthermore that ug € H?(2)N H} () and
that Aug + ufy > 0 a.e. in Q.

Let (9n)n>0 be any sequence of locally Lipschitz functions [0, 00) — [0, c0) such that

0<gn(s)<n for n>0,s>0,

(3.11.9)
gn(s) Ts¥ as m—oo for s>0,
and for every n > 0, let u,, be the (global) solution of the equation (3.11.8).
Then for every T < Ty, 4, — u uniformly on [0,T] x Q;
and for every T > Ty,
un(tv x)

) 3.11.10
5(z) nome ( )

uniformly on [T, +00) x ), where ¢ is the function distance to the boundary, §(z) = dist(x, 9Q).

Sketch of the proof. We follow the argument of Martel [79]. We first observe that by the maximum
principle (see the proof of Theorem 3.8.3),
up >0, (3.11.11)
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on (0,Ty,) x Q. For convenience, we set
g(s) = s*.
We now proceed in four steps.

Step 1. For every ¢t € (0,Ty,), there exists ¢(t) > 0 such that u(t) > ug + ¢(t)d a.e. in Q.

Fix 7 € (0,Ty,) and let € € (0,1) be such that 7 —& > 0.

We first claim that u(r — &) —ug > 0, u(r — ) — ug # 0. Indeed, note that by (3.11.11) u(t) is a
nondecreasing function of ¢. Therefore, if u(T — €) = wy, it follows that u is constant on (0,7 — ¢), from
which we deduce easily that ug is a stationary solution; and so T, = 400, which is absurd.

Next, we claim that

u(t) > uo + T(e)(u(r — ) — up). (3.11.12)
Indeed, we have
u(t) =T(e)u(r —e) + /E T(e—s)g(u(t —e+s))ds
0
=T(e)(u(r —e) —up) + T(e)ug + /0 T(e —s)g(u(t —e+s))ds.

Since u(t) is a nondecreasing function of ¢, we have g(u(r — e + s)) > g(u(s)) and also

u(e) =T(e)uo + /OE T(e — s)g(u(s)) ds > ug;

and so we deduce (3.11.12).
The result now follows from (3.11.12) and the inequality

T(t)p > e 7 [[pd]| 16, (3.11.13)

for all ¢ > 0 (see Exercise 1.8.12).

Step 2. wu, — win L>((0,T)xQ) for every T < T;,.  Indeed, note that g, — ¢ uniformly on bounded
n—oo n—o0
subsets of [0, 00). Furthermore, note that u,, > 0; and that, since g, < g, u, < w on (0,7Ty,) X Q. The result

now follows from a classical continuous dependence argument.

Step 3. Fix any 7 € (0,7y,) and let T = T}, + 7. Then
lim ||, (T)0| L1 = +o00. (3.11.14)
We argue by contradiction and we assume that

lim [un(T)8| 11 < oo (3.11.15)

The idea is the following. Assuming (3.11.15), we show:
(i) that u, converges to a “weak solution” u of (3.11.1) on [0,7),

(ii) using that weak solution, we construct a bounded supersolution of (3.11.1) on [0, Ty, ), which contradicts

the blow up alternative.
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Proof of (i). Consider f € L>®((1,T) x Q), ¢ € H}(Q) and let £ be the solution of the equation
G- AE=f in (n,T)x 9,
E€=0 in (7,T)x 09, (3.11.16)
E&T)=¢ in Q.

Multiplying the equation (3.11.8) by £ and integrating on (7,7T) x £, we obtain after integration by parts

/TT /sz gn{un)l = /TT /ﬂ “7lf+/Q un(T)C — /S2 un (7)8(7). (3.11.17)

We first choose ¢ = @1 and f = 0, so that £(t) = e=*1(T=Y; (here, A; is the first eigenvalue of —A in

H}(Q) and ¢ is a corresponding, positive eigenvector). We obtain

_MT/ /gn un) 1 < / wn (T) 1.
Q Q

Since ¢; = &, we deduce by applying (3.11.15)

sup/T/an(un)é < 0. (3.11.18)

n>0Jr

We next take ( =0 and f =1 in (3.11.17), and we obtain

/TT/Q“n/TT/an(un)éJr/Qun(r)g(T).

Since &(t) < C¢ for some C independent of ¢ € [0,T] (by (3.7.19)), we obtain from the above inequality
and (3.11.18)

T
sup/ /un < 0. (3.11.19)
n>0Jr JQ

Note that g, is nondecreasing in n, so that wu, is also nondecreasing in n. Therefore, it follows from the
monotone convergence theorem and the estimate (3.11.19), and from Step 2, that there exists a function

ue L'((0,T) x Q) such that
up, 17 in LY((0,T) x Q) and ae. in (0,T) x Q.
In addition,
w=u on (0,Ty) x .

Next, since u,, T @ and g, T g, we deduce that g, (u,) — ¢g(u) a.e. in (0,T) x Q. Therefore, we deduce from
(3.11.18) and the dominated convergence theorem (and Step 2) that g(u)d € L*((0,7T) x ), and that

Gn(tn)6 — g(u)s in LY(0,T) x Q) and a.e. in (0,7T) x Q.

n—oo

Passing to the limit in (3.11.17), we obtain that

[ fome= [ for [

for all f € L>®((r,T) x Q), where ¢ is the solution of (3.11.16) with ¢ = 0. In other words, @ is a weak
solution of the equation (3.11.1) on the interval (0,7) (cf. the proof of Theorem 3.11.1, Step 1).
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Proof of (ii). It follows from Step 1 that there is a constant ¢y > 0 such that
u(T) > up + coo. (3.11.20)

Fix € > 0 small enough so that the solution Z of the equation
Zy—NZ =—¢ in (0,Tyn) xQ,
Z=0 in (0,Ty) x 09, (3.11.21)
Z(0) =cod in €,
satisfies Z > 0 on (0,T1,) x Q (see Lemma 3.7.12). Set z(¢) = u(t) + Z(t) > u(t). We have
n—0Nz=uP —e<F—-e<(2P-e)t in (0,Tyn)xQ,
z=0 in (0,Ty) x 09,
2(0) = ugp + cod.
Fix A > |Ju(7)||p~, A > e7 and consider the function
t for 0<t<A,

O(t) =
( ) hil <pi1(A1p - tlp)> for t Z A,

5 do
h(s) = / -
A O g

The function ® is bounded, monotone increasing and concave. Moreover,

where

(@) —e)*

!
@)z S

(3.11.22)

for all t > 0.
Let w = ®(uw), so that w is bounded on [0,T) x Q. Next, observe that by Kato’s inequality (see

Lemma 3.7.10 and Theorem A.5.20) the function w satisfies (in the weak sense)
wy — Aw > ' (1) (a, — Au) = &' (a)u® > (wP —¢)7,

by (3.11.22). Set now
v(t) = w(t + 1),

for 0 <t < Ty, so that v is bounded on [0,7},) x . We have
v — Av > (P —e)t.

Furthermore, v(0) = w(7) = u(7) > ug + ¢pd = z(0). Therefore, it follows from the maximum principle that
z <won [0,Ty). Since u < z and v is bounded, this yields a contradiction with the blow up alternative.

This completes the proof of Step 3, i.e. lim ||un(¢)d] L1 = +oo for every t € (Ty, 2Tm).
n—oo

Step 4. Proof of (3.11.10). Fix any tg > Ty,. Fix any ¢’ < ¢p with T, <t/ < 2T,,,. By Step 3,
l|tn ()5 21 — Foo.
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Since uy, (tg) > T(to—t")un(t') (here, T'(-) refers to the heat semigroup), it follows from the inequality (3.11.13)
that

unlto) _, |, (3.11.23)

d n—oo
uniformly on €.

It remains to prove that the convergence in (3.11.10) is uniform in ¢ on [tg, +00). We proceed as follows.
Given any K > 0, we construct a function v such that v > K¢ and such that v is a subsolution of the
equation (3.11.8) on [tg, 00).

Let ¢ be a first eigenfunction of —A in H{(2), normalized such that

max 1 = 2. (3.11.24)
Note that there exists a constant v > 0 such that
1 > 70. (3.11.25)

Let 1 be the solution of the elliptic equation
{ - A’(/} = (L)Ol - 1)+7
Yo = 0.

Since (¢1 — 1)* # 0, there exist two constants 0 < ap < a3 < oo such that

a1 <Y <.

1
Let now £ = — and w = £1p. We have
)]
v1 < w < Loy,

and
—Aw="L(py — )T < l(w-1)T,
(3.11.26)
w)jan = 0.
On the other hand,
P >U(s—c)T,
with ¢ = (77T Fix now
K>c+1.
Since g, T g as n — oo, uniformly on bounded sets, it follows that for n large enough
gn(s) > l(s—c—1)T for 0<s<2Kla;. (3.11.27)
Setting
v=Kuw,
we deduce from (3.11.24) and (3.11.26) that
Ko <v< Klayp; <2Klay, (3.11.28)
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and that
{ —Av<lv—K)T <l(v—c—-1)T,

Voo = 0.
By (3.11.27) and (3.11.28), this implies that for n large enough

{ - Av < gy (U)a
Voo = 0.
By (3.11.23) and (3.11.28), we have u,(ty) > v for n large enough; and so, v is a subsolution of the

equation (3.11.8) on [tg,00). It follows from the maximum principle that w,(t) > v for all ¢ > tg; and

by (3.11.25) and (3.11.28) we deduce
un(t)
0

in Q for all t > ¢y, provided n is large enough. Since to > Ty, and K > ¢+ 1 are arbitrary, this completes

> K,

the proof. O

Corollary 3.11.3. Let ug € L°(Q) N H?*(Q) N HE(Q), ug > 0, and assume Aug +uf > 0 a.e. in . Let u
be a weak solution of the equation (3.11.1) on [0,T') for some T > 0, in the sense of (3.11.5). Then T < Ty,.

This corollary settles the question we raised at the beginning of for the special initial conditions ug as
in Corollary 3.11.3, i.e. for nondecreasing (in time) solutions: there is no way of extending the solution after

T, even in the weak sense (3.11.5).

Remark 3.11.4. The reader may wonder whether any weak solution in Corollary 3.11.3 coincides with
the usual solution on [0,7"). This need not be the case: even if ug = 0, there exist nontrivial weak solutions.
(See Baras [6] and Haraux and Weissler [59].) The only property we have is that any weak solution is larger
than or equal to the classical solution (see the proof of Corollary 3.11.3).

A verifier
Proof of Corollary 3.11.3. For any n € N, let
gn(t) = min{t?, n},
and let u,, be the (global, classical) solution of (3.11.8). We claim that
u>u, on (0,7)xQ. (3.11.29)

The conclusion of Corollary 3.11.3 now follows from Theorem 3.11.2.

We now prove claim (3.11.29). Set

v=(u, —u)"

so that by Kato’s inequality (see Lemma 3.7.10 and Theorem A.5.20)
v — 50 < (ga () — g(w))sign* (un — u)
< (gn(un) = gn(u))sign™ (un — u)
< Lyv,
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where L,, is the Lipschitz constant of g,. Since v(0) = 0, we have v < 0 by the maximum principle. O

In Theorem 3.11.2, we made the assumption Aug + uf, > 0. We now discuss whether this assumption

is essential. The answer seems to depend on p.

N+2
Remark 3.11.5. If p < N+2 and ug € L>®(), up > 0, then lim w,(¢t,2) = 4oo for all t > T}, and
un(t)
4]

z € Q (presumably, — +oo uniformly on [T,00) x , T > T, but we have not checked it). See

Baras and Cohen [7]. Incidentally, the proof is rather complicated, and it would be interesting to have a
N +2
simple proof. We suspect that the same conclusion holds for p = ﬁ

consulter Yvan. Si pas de reponse, mettre un probleme ouvert

N +2
Remark 3.11.6. When p > N + % it seems that there might be life after death for some initial conditions.

Under some further restrictions on p, Galaktionov and Vazquez [48] have constructed solutions of
ug — Au=uP in (0,+00) x RV,

which are smooth except at ¢ = T > 0 and with ltlTI;l lu(®)||L= = +oo. It would be very interesting to
investigate whether a similar phenomenon holds in bounded domains. Can one have a situation where
u = lim w, has a “cascade” of blow up times and/or blows up completely after some time T' > T,,7 See

n—oo

Open Problems 3.14.16 and 3.14.17.

3.11.3. 7?77
3.12. Comments.

Even if  is not smooth, the conclusion of Theorem 3.1.1 hold, provided || < oo. Note that in this case,
the solution u belongs to C'((0,Ty,), L*=(€2)) and to C([0,Tw), LP(£2)) for any p € [1,00) (see Remark 3.1.2).

In the case || = oo, then we have the following result.

Theorem 3.12.7. Givenp € [1,00) and ug € LP(Q2)NL>(§2), there exists a unique weak solution u of (3.1),
defined on a maximal time interval [0,T,), i.e. uw € L>®((0,T) x Q) N L>((0,T), L?(Q)) for all T < T, and
u solves (3.1.1) for all t € [0,Ty,). Moreover, we have the alternative

either Ty, = 400,

or Ty, < oo and tlTiYI% lu(t)|| e = +o0.

In addition, u depends continuously on uy. The mapping ug — Ty, is lower semicontinuous LP(2) N
L>(Q) — R, and for every T < T,, there exists ¢ > 0 and C' < oo such that if ||vg — ug||r~ < €, then
llv =l Loe 0,7y x02) < Cllvo —uol| () and |[v —ul| Lo ((0,7),Lr () < Cllvo —uo| Lr(q), Wwhere v is the solution

of (3.1.1) with the initial value vy.

Note that in this case, the solution u belongs to C((0, Ty ), L>(2)) and to C([0, Ty), LP(2)).
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Le Theorem 3.10.3 est du a Brezis and Friedman [21]
La methode de suite de Cauchy du Theorem 3.10.8 est adaptee de Brezis and Strauss [26]
Etudier (evt dans les problemes ouverts) ce qui se passe lorsqu’une suite (ug,y)n>0 converge faiblement

vers ug. (Phenomenes de perte de condition initiale 77?)

3.13. Exercises. Unless otherwise specified, we still assume that () is a smooth bounded open subset of

RY,
Exercise 3.13.1. Let g: 2 x R — R be locally Lipschitz in u, and assume that
ug(z,u) < Au?,

for almost all x € Q and |u] > M. Let up € L*°(£2) and let u be the solution of (3.1.5).

e Show that ||u(t)|pe~ < max{|uo| =, M}e?t for all t > 0. (Hint: Show that max{||ugl|/z~, M }edt is a

super-solution of (3.1.5).)

Exercise 3.13.2. Under the assumptions of Exercise 3.13.1, show that if A < A\, with Ay the first eigen-
value of —A in H}(Q), then ||u(t)||r~ < Cmax{|lug||p=,M} for all t > 0. (Hint: Consider the solution
© € HHQ) of —Ap = A(p + 1), and show that max{|uo| =, M}(1 + ¢) is a super-solution of (3.1.5).)

Exercise 3.13.3. Let g and u be as in Exercise 3.13.1, and assume that A > A\{, with A\; the first eigenvalue
of —A in H(Q). The object of this exercise is to show that ||u(t)|p~ < Cmax{|jug| =, M}eA=2)* for all
t>0.

Let B > 0 and consider the solution v of
vy — Av = Ao+ Be~ A2 in (0, 00) x Q,
v =01n (0,00) x 9,

U(O) = ||U0||Loo in Q.

B
e Show that ||v(t)|pe < M ( |luol|z~ + ) (Observe that 0 is a sub-solution of the equation and that

A

B
eMt (”UO”Loc + Z(l - e_At)> is a super-solution.)

B
e Multiply the equation by v, and show that |[v(¢)||z2 < |Q|2 (||uo||Lac + A)\>
-\

N 1 1
oLeta>?andlgqgrgoobesuchthatf: — —. Show that
T

g

Q| =

1
2",

N s B
[o(t + s)llLr < Cs™27 [|u(t)]|a +A1/ [t +7)llzrdr + —
0 - Al

and that |Jv(t + 1)]

rr <CO(Jo®)]za +1).
e Iterate this estimate, and show that there exists an integer m such that ||v(t+m)||=~ < C(||v(t)]|L2+1).
e Show that ||v(¢)||re < Cmax{]||uo||pe, M}.
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e Show that e(A=* )ty (t) is a super-solution of (3.1.5) provided B is large enough, and conclude.

Exercise 3.13.4. Let g and u be as in Exercise 3.13.1, and assume that A = A1, with A; the first eigenvalue
of =/ in H(£2). The object of this exercise is to show that ||u(t)| L~ < C(||lug||L= +t) for all ¢ > 0.

Consider the solution v of
vy —Av = M\v+ Bin (0,00) x £,

v =01in (0,00) x 0L,
v(0) = |Jugl| L~ in 2.

e Show that [[v(t)| L= < C(||ug||L +t) for all £ > 0, and that v is a super-solution of (3.1.5) provided B

is large enough. (c.f. Exercise 3.13.3.)

Exercise 3.13.5. Let a € L>®(Q), let vy € L>(Q) and let v be the solution of

vy — Av+av = 0in (0,00) x £,
v=01n (0,00) x 01,
v(0) = vg in .

e Show that

(@)l < Ce™lug | L=,

for all ¢ > 0, where C is independent of vy and Ay = A\ (—=A + a). (Hint: Show that ||v(t)]|rz <

e~ |lug| 2, and use the smoothing effect.)

N+2
Exercise 3.13.6. Assume N > 3. Let ¢ > N + 5

show that for every e > 0 there exists ug € Hg (2) N L> () such that |Jug||zr < & and such that the solution

and set g(u) = |u|?"'u. The object of this exercise is to

u of (3.1) blows up in finite time.

e Let B C Q be a ball. Show that there exists vo € D(B), v > 0, such that the solution v of (3.1) with

Q) = B blows up in finite time, say at time T

e Define v in (0,7) x RV by

v(t,x) if x € B,
u(t,x) =
0ifz € RV \ B.

Show that 7, — AT < [3]717 in D'(RN) for all ¢ € (0,T).

e Given A € (0,1), set

Pt x) = AT (;i) .

Let u be the solution of (3.1) with the initial value u} = ©*(0). Show that u*(t) > v*(¢) in Q for all
t € (0, min{\2T, Tr,(u)}), and conclude.

Exercise 3.13.7. Let g and u be as in Exercise 3.13.1, and assume that

ug(u) > M, uglu) # A,
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with A; the first eigenvalue of —A in H{(£2). The object of this exercise is to show that ||u(t)|pe e

for certain uy.

e Assuming g(u) > Mu+¢e for 0 < a < u < b, with & > 0, let ; > 0 be the first eigenvector of —A in
H}(Q) such that |||z~ = b.

Set ug = 1, and show that u > ;.

d
Show that —/ u(t,x)p1(x) de > z—:/ 1.
dt Q {a<u<b}

e Assume by contradiction that sup ||u(t)||z~ < oo, and show that u is bounded in C%2 () (use the
>0

analyticity of the semigroup in L;’(Q)).

d
e Show that there exists § > 0 such that o / u(t, z)p1(x) dz > § and conclude.
Q

Exercise 3.13.8. Let g: R — R be locally Lipschitz, and assume that there exist a < 0 < b such that

Let ug € L*>(Q) and let u be the solution of (3.1). If a < ug < b, show that T, = +o00 and that a < u(t) <b
for all ¢t > 0.

Exercise 3.13.9. Let g : R — R be locally Lipschitz, and assume that there exist a > 0 such that g(a) = 0,
and that
lim sup M < 00.
u

U——00

Let up € L*(€2) and let u be the solution of (3.1). If uy < a, show that T},, = 400 and that u(t) < a for all
t>0.

Exercise 3.13.10. Let g: R — R be a locally Lipschitz function such that

—c
= ? for |u| < a,

ug(u) < 5

with o > 0 and )\ the first eigenvalue of —A in H}(Q). The object of this exercise is to show that for every
constant M, there exists §p; > 0 such that if ug € L (Q) N H}(Q) verifies ||ug||r~ < M and |lug||g: < dar,
then the solution u of (3.1) is globally defined.

Let dp7 > 0 to be chosen, and set T' = sup{t € [0,Twm); [|u(s)|lL~ < 8M on [0,¢]}. In the sequel, the

constants depend on M, but not on u.

With the argument of Step 1 of the proof of Theorem 3.4.1, show that ||u(t)]| g < 28 for all ¢ € [0, T,

Ay —
provided &y is small enough. (Observe that E(u) < C|lul|3: and that ug(u) < nguQ + Clul? for
2N )
N -2
Show that g(u) = fu with f € L*°((0,T), L (€2)) (observe that |g(u)| < Clul).

1<g<

Show that |[u|| g (0, 1),00¢) < 4l|uol|z~ + Cdpr (apply Theorem 1.6.6).

Show that if 657 is small enough, then [|ul| o ((0,7),L) < 6||uo| L=, and conclude.
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Exercise 3.13.11. Assume that g verifies (3.6.8) for u > « > 0, where h : (a,00) — (0,00) is a convex

function such that (3.6.9) holds. Show that there exists 8 > 0 such that if ug € L>=(£2), up > 0 and
[ w@her(@ o= 5,
Q
then the solution of (3.1) blows up in finite time.
Exercise 3.13.12. Let g : R — R be locally Lipschitz, and assume that
ug(u) > (2+¢)G(u) = (2+ 5)/ g(s) ds,
0
for |u| > M, with € > 0. Show that there exists a constant K such that if
1 2
E(UQ) = 5 |VU2| - G(Uo) § 7K,
Q Q
then the solution u of (3.1) blows up in finite time.

Exercise 3.13.13. The object of this exercise is to prove the following result.

Theorem. Let g:R — R be locally Lipschitz. Assume that there exists € > 0 and M < oo such that

ug(u) > (2+¢) /Ou g(s)ds, for |u| > M. (3.13.1)

N +2
If N > 3, assume further that there exists p < N i 5 such that

lg(u)] < C(1 + |ul?), (3.13.2)
for all uw € R; and if N = 2, assume that
Jim e |g(u)| =0, (3.13.3)

for all p > 0 (no condition if N = 1). If ug € L*(Q) is such that the solution u of (3.1) is global, then

sup [[u(t)[[ L= < oco.
t>0

o0
Step 1. Show that u verifies sup ||u(t)|| 2 < oo and / / u? < 0o.
>0 1 Je

To prove this, show that (with the notation of Theorem 3.6.4),

GO 2 & [ [V - 4+ 2 B@) - o0l + @ 2e) [ [

for t > 1. Show that

L)1 > e lu)l3 — (44 22) Bw() - 010,

and conclude.

Step 2. Show that there exists B independent of ¢ > 1 such that if ||u(¢)||z2 <1, then ||u(t)|m < B.

To show this, suppose that ||u:(t)||z2 < 1 for some ¢ > 1, and show that
d
5/ Vul* < Zllu®lzz + (44 20) E(u(1)) + ClQ| < 2fu(®)l| 2 llue(t)] 2 + (4 + 22) E(u(1)) + €12,
Q
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and apply Step 1.

Step 3. Conclude, if N =1or N = 2.
Observe that by the local existence theory (see the proof of Theorem 3.1.1), there exists ; > 0 such that
if [Jvg||Le < Bj, then the solution v of (3.1) with the initial value vy exists on [0,61] and sup ||v(t)||pe <

01

B; + 1. Show that if ¢ > 1 is such that ||us(t)||rz < 1, then

sup |lu(s)||p= < By + 1.
t<s<t+d1

Show that there exists T' < oo such that

/ / ug(t, x)? dadt < 6;.
T Jo

Show that sup |lu(t)||z=~ < By + 1. Conclude.
t>T+61

Step 4. Conclude, if N > 3.

Show that for any M > 0, there exists dps > 0 independent of ¢ > 0 such that if ||u(t)||LAz;§2 < M, then
[lu(t + s)||LN2§2 < M +1 for 0 < s < dp. (Use the growth assumption on g.)

Deduce that sup ||u(t)]| 2x < oo (cf. Step 3).
>0

I,

Apply Theorem 1.6.6 to conclude.

Exercise 3.13.14. Consider the operator L = —A — a(z) with a € L (Q) and A;(L) = 0. Let ¢1 > 0 be
the first eigenfunction of L. Let w € H{ () satisfy

Lw <0, (3.13.4)

in . Prove that
(-) either w <0 on 2
(-) or w = k¢, for some constant k > 0.
Hint: Multiply (3.13.4) by w™ and deduce that w* = k¢; for some constant & > 0.
Exercise 3.13.15. The object of this exercise is to prove the conclusions of Remark 3.7.15 (i). Suppose
that N <9, and for 0 < A < A* consider the minimal solution u) of (3.7.4) with g(u) = e (see Lemma 3.7.4).

e Show that 2k / 2N | Ty |2 = A / e (e2kux — 1) for all k > 0.
Q Q

Show that kz/ 2N Ty | > )\/ e" (e"x —1)% for all k > 0 (apply the property A; (—A—Ae™) > 0).
Q Q

Show that lim sup/ eCRHDus < o0 for 0 < k < 2.
Atas Jo

Show that limsup ||uy||z~ < oo (hint: use the equation to derive that wu) is bounded in W2P(Q) for
A<

every 1 <p <5).

Show that uy converges as A T A\* to a solution u* € L™ of (3.7.4) with A = \*.

Show that Aj(—A — Xe*") = 0 (use the maximality of the interval (0, A*)).
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e Let v be a smooth solution of (3.7.4) with A = A*. Show that v = u*. (Using the convexity of the
exponential, show that f = —A(v —u*) — X\e* (v —u*) > 0. Next, recall that A;(—A — A*e¢* ) = 0 and

let ¢ > 0 be the corresponding eigenfunction. Note that / fo =0 and conclude that f =0.)

e Consider now ug € L*>(Q2) and let u be the solution of (3.7.1) with A = A*. If uy < u*, show that u is

global and converges to u* as t — oo.
. d
e Suppose now ug > u*, ug Z u*. Let ¢ be the first eigenfunction of —A — A*e* . Show that 7 / (u—
Q
. . A"
u*)p = )\*/ (e“ —e" —e" (u— u*)) o> —/(u —u*)?p.
Q 2 Ja
e Show that Ty, < co.
Exercise 3.13.16. Consider the equation (3.7.1) with A > 0, where g(u) = (1 + u)? and 0 < p < 1.
The object of this exercise is to show that there exists a unique stationary solution u), and that for every

ug € L (Q), the solution u of (3.7.1) is global and converges exponentially to uy as t — oo. For convenience,

set g(u) = A(1 + |ul)?.

e Show that there exists a stationary solution (for example, minimize / {|Vul? — G(u)}).

Show that all stationary solutions are nonnegative.

Show that if u is a stationary solution, then A;(—A — ¢'(u)) > 0 (minimize /{|Vw|2 — ¢'(u)w?} on

{w € H}(Q); ||w|r2 = 1}, and show that /w[g(u) —ug' (u)] =M\ /uw)

Show that if w is a stationary solution, then any other stationary solution v verifies v < u (use the

property A1 (—A — ¢'(u)) > 0).

Show the uniqueness of the stationary solution.

Show that for every ug € L (), the solution u of (3.7.1) is global and converges exponentially to wu)

as t — oo (use the energy to show that u is bounded).

Exercise 3.13.17. Consider the equation
ug—Au=XAA—e™) in (0,T) x £,
u=0 in (0,7) x 09, (3.13.5)
u(0,2) = up(x) in Q,

where A > 0 and A > 1.

e Show that there exists a unique stationary solution uy > 0 and that A;(—A — Ae™™*) > 0.

e Show that for every ug € L*>(Q), up > 0, the solution u of (3.13.5) is global and converges exponentially

to u) as t — oo.

Exercise 3.13.18. Consider the equation
U — Uge = [u|P"ru in (0,T) x 9,
u=0 in (0,T) x 0%, (3.13.6)
w(0,2) = up(x) in Q,
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where p > 1 and Q = (0, 1).
e Show that there exists a unique positive stationary solution ¢.

e Show that for every ug € L>®(02), 0 < ug < ¢, ug Z ¢, the solution u of (3.13.6) is global and converges
d
exponentially to 0 as t — co (compute pn / olu—p)).

e Show that for every ug € L™ (Q), ug > ¢, ug £ ¢, the solution u of (3.13.6) blows up in finite time (one

can use the property ug(uP~! — oP~1) > §(p(u — gp))pTH for some 6 > 0).
Exercise 3.13.19. Let g(u) = |u/P~lu with p > 1+ % and (N —2)p < N +2. Let ugp € H3(Q) N
H{(2) N L>(Q) be such that ug > 0 and Aug + ub > 0 a.e. in €, and let u be the corresponding solution
of (3.1). The object of this exercise is to show by an energy method that if Ty, < oo, then ||u(¢)| Lq et
Np-1)

2
e Show that u(t >Oandut()>0ae in Q for all t € [0, T1y,).

for g =

o Set E,( / [Vu Rlr— / uPt?71and show that F,(t) < E,(0) for all ¢ € [0, Ty,).

p(p+1—q)/ ~1
Show that = [ w9 = —g(q— 1)E,(t) + PPTLZD [ yprat,
* Show that 72 | u a(q — 1) Eq(t) 1 )"

e Show that ||u(t)| L et (hint: apply Theorem 3.8.1).

Exercise 3.13.20. The object of this exercise is to show that if Q is a smooth bounded domain of R?,

then there exists ug € L*(£2) such that the equation
u — Au = u?,
(3.13.7)
u(0) = uo,

does not have any solution u € C([0,T], L*(2)) N L{ .((0,T), L*(2)) for any T > 0.

Let w € C([0,T], L*(2)) N LL.((0,T), L*(£2)) be a solution of (3.13.7), and set v(t) = T(t)ug, where
(T'(t))¢>0 is the semigroup of the heat equation.

e Show that w(t) > v(t). (Hint: write Duhamel’s formula between £ > 0 and ¢, then let ¢ | 0.)

e Show that (u € L?((0,T) x ), for every ¢ € D(2), ¢ > 0. (Hint: multiply the equation by ¢ and
integrate on (0,7) x ©.)

e Assuming ug > 0, show that (v € L2((0,T) x Q).

e Conclude. (Apply Exercise 3.13.21 below.)

Exercise 3.13.21. Let N > 1 and let Q C RY be an arbitrary open domain. Fix any open ball w C © with
W C Q. The object of this exercise is to show that there is some uy € L' (Q), ug > 0 such that v(t) = T(t)ug

1
/ /UN;Q(t,x)da:dt =400
0 Jw

Argue by contradiction and suppose that for every ug € L*(€2), ug > 0,

1
/ /UN;Z(t,x)d:Edt < 00.
0 w
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! N2
e Show that / / || > (t,z) dz dt < oo, for every ug € L*(£).
0 Jw

e Show that there is a constant C' such that
1 N+42 Nt2
/ / 052 (¢, 2) de dt < Clluoll 17, (3.13.8)
0 w

for every ug € L*(€2). (Apply the closed graph theorem to the operator ug — V](0,1) xw-)

|z

‘2
7t . Let d

e Let K(t) be the fundamental solution of the heat equation in RN, i.e. K(t,x) = (47t)" e~
be the distance of w to 9, i.e. d = inf{|z — y|; z € w, y € 9N}. Show that for all uy € D(RY) with
supp(u) C w and ug > 0,

(K (t) *uo)jo < T(t)uo + c/ﬂuo,

2
for all ¢ > 0, where ¢ = sup(47rt)_%e_%. (Compare u(t) = T(t)uo and v(t) = (K (t)*xuo)|q — clluol|r1.)
>0

e Show that .
/ /|K(t,x)\¥(a:) da dt < .
0 w

(Consider a sequence (u)n,>0 € D(w) such that ug > 0, |lug|lr: <1 and ug n:;C(S (= the Dirac mass
at xo € w) in the weak* topology of measures, apply (3.13.8) to the corresponding solutions v™ (¢, x) and
use Fatou’s lemma.)

N42
| y

1
e Show by a direct calculation that / / |K(t,x) (t,z) dz dt = oo and conclude.
0 Jw

3.14. Open problems.

N +2
Open Problem 3.14.1. What hapens if ¢ = N + > in Exercise 3.13.67

(cf. Julia)

N +2
Open Problem 3.14.2. What happens in Theorem 3.4.1 if ¢ = N + 2? (See Remark 3.4.3).

(cf. Jilia)

Open Problem 3.14.3. What happens if ¢ =
that limsup | log(Tym — )| #||u(t)||p« > 07
2l

m

in Theorem 3.8.17 Does there exist p > 0 such

Np-1)
2

Open Problem 3.14.4. What happens in Exercise 3.13.13 if g does not satisfy the growth assump-
tions (3.13.2) or (3.13.3)7

Open Problem 3.14.5. Assume N > 3, and let u € C([0, T, Lv—> (€2)) solve the equation
up — Au = |u|ﬁu,
U =0,
u(0,x) =0,

Does one have u = 07

Open Problem 3.14.6. Recall that in the critical case ¢ = and ¢ > 1 in Theorem 3.9.1, the

N(p—1)
2
time of existence T'(ug) depends (in our proof of Theorem 3.9.1) on ug and not only on ||ug|/re. It would
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be interesting to clarify this point. In particular, is it possible to construct a sequence of initial conditions

(ug)n>0 which is bounded in L9(Q) and such that T, (ug) — 07

Open Problem 3.14.7. Is there some ug € L'(Q) for which there is no (local) solution of (3.9.1)? This
means that there is no 7' > 0 and no function u € C([0, T], L*(Q)) N L2, ((0,T), L>=(£2)) satisfying (3.9.1) in

loc

the sense of Theorem 3.9.1.

Open problem 3.14.8. s there some uy € L' (£2) for which uniqueness fails in the class C([0, T], L*(Q)) N
L ((0,T),L>(§)) for some T > 07

loc

Open problem 3.14.9. Could there be failure of the maximum principle? More precisely, is there some

ug € L1(Q), ug > 0 and a solution u € C([0,T], L*(Q2)) N L. ((0,T), L>(£2)) for some T' > 0 which does not

loc

preserve the positivity?

Open problem 3.14.10. Is there some ug € L*(£2), ug > 0 such that problem (3.9.1) with the “truncated”
initial condition
ug = min{ug,n},
has a (classical) solution 4™ on some maximal interval [0, Ty, (uf))) satisfying T, (ug) — 07
Alternatively, consider the “truncated” problem

uy — Au” =g¢"(w") in (0,00) x Q,

u"=0 on (0,00) x 09,

u"(0) =ug in €,

where ¢g"(t) = min{|t|?,n} signt. Is there some ug € L'(Q), ug > 0 such that v"(t,7) — +oo for all z €

n—oo
and all ¢ > 07

Open Problem 3.14.11. Is there some ug € L7(Q) for which there is no (local) solution of (3.9.1)?
This means that given any 7" > 0 (as small as we please) there is no function v € C([0,7T], L%(Q)) N
L ((0,T), L®(R)) satisfying (3.9.1).

Here is a suggestion how to construct such a ug. Let Q be the unit ball in R, and let ¢ = o(r) with
r=lz|, p€ CYQ), p>0in Q, ¢ =0 on I, ¢'(r) <0 for r € (0,1), ¢""(0) <0 and Ap + P >0 in Q be
such that the solution v of (3.9.1) with the initial condition v(0) = ¢ blows up in finite time Ty,. (It is well
known that such a ¢ exists.) By Theorem 2.4 of Friedman and McLeod [43],

N({p-1
sup JJv(t)|le < oo forall 1<g< L
0<t<T,, 2

Set

ug = lim v(t).

1w

This ug belongs to L9(Q2) for all 1 < ¢ < . We suspect that for such an initial condition ug, there

N(p—-1)
2
exists no local solution of (3.9.1) in any reasonable sense. That there is no nonnegative solution follows from
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Baras and Cohen [7]. Indeed, suppose there is a nonnegative solution u of (3.9.1) with the initial condition

u(0) = ug on [0,T] for some T > 0. Set

v(t) for 0<t<Ty,
w(t) = {

u(t —Ty) for T <t<T,+T.

This is an integral solution of (3.9.1) in the sense of Baras-Cohen [7] and Baras-Pierre [8] which blows up
at t = Ty,. From [7], one knows that the only way to continue a solution beyond blow up time is by 400

everywhere.

Open Problem 3.14.12. What happens if N = 1 or N = 2 in Theorem 3.8.37 (Note that by Re-

mark 3.9.16, the conclusion of the theorem holds under more restrictive assumptions on g.)

Open Problem 3.14.13. Does ||u(t)||r« remain bounded as t T Ty, for any uy € L°(Q) with Ty, < oo

N(p-1
(pT)? (The answer is positive in some cases, see Theorem 2.4 of Friedman and

and any ¢, 1 < ¢ <
McLeod [43].)

Attention, suivre les developpements!

N +2
Open Problem 3.14.14. Assume p > +
is a function u € LY ((0,7T) x Q) satisfying (3.10.1) in D’((0,7") x 2) and such that

loc

and 0 € . Prove or disprove that given any 7' > 0, there

ess lim/ u(t, z)p(z) de = ¢(0),
tl0 Q

for all p € C.(£2). (We suspect that the answer is negative. One knows that there is no solution u > 0. The

proof is the same as in Theorem 3.9.14.)

Open Problem 3.14.15. We know by Theorem 3.1.1 that the mapping up +— T (uo) is lower semicon-
tinuous on L (). Prove or disprove that this mapping is continuous on L>(2).

In connection with this problem, we call attention to a positive result of Baras and Cohen [7] when

N +2
g(u) = uP with p < N + > and ug > 0. A possible suggestion to construct a discontinuity of 7, when

N +2
> ﬁ would be the following: consider an initial condition uy > 0 such that the problem

up — Au = uP,
ujpn =0,
U(O) = Ug,

has a “weak” solution u on (0,7) x € which blows up (in the L> norm) at some Ty, < T. For the existence
of such a u, see Open Problem 3.14.16. By Theorem 7?7, Ty, ((1 — €)ug) > T, and thus Ty, ((1 — €)ug) cannot

converge to Ty, (ug).
Open Problem 3.14.16. peaking solutions

Open Problem 3.14.17. peut-on avoir une solution qui explose a Ty,, qui peut etre etendue a [0,7)

Tw < T < o0, et qui explose totalement en 177
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Appendix.

In this chapter, we introduce the basic tools that are necessary for the study of evolution equations.
They concern functional analysis, integration theory, Sobolev spaces, elliptic equations and some inequalities.
As a rule, we only give the proof of those results that do not appear frequently in the litterature in the present

form, or whose proof is especially simple. We give references for the results that we do not prove.

A.1. Functional analysis. = We recall here some useful theorems of functional analysis. Some of those
results are quite classical and can be found in any textbook on elementary functional analysis (see for example

Brezis [17], Yosida [102]).

Theorem A.1.1. (The Banach fixed point Theorem) Let (F,d) be a complete metric space and let
f + E — FE be Lipschitz continuous with Lipschitz constant L. If L < 1, then f has a unique fixed point

xo € F.

Theorem A.1.2. (The closed graph Theorem) Let X and Y be Banach spaces and let A: X — Y be a
linear mapping. Then A € L(X,Y) if and only if the graph of A (i.e. the set of (z,y) € X x Y such that
y = Ax) is a closed subspace of X x Y.

Theorem A.1.3. (The Lax-Milgram Theorem) Let H be a Hilbert space with norm || - ||z and consider

a bilinear functional a : H x H — R. If there exist C' < oo and o > 0 such that
{ la(u,v)| < C|lul| |v||z, for all (u,v) € H x H (continuity),
la(u,u)| > allu||?, for allu € H (coerciveness),

then, for every f € H* (the dual space of H), the equation
a(u,v) = (f,v) g+ m, for allv € H,
has a unique solution u € H.

Proposition A.1.4. Let X and Y be Banach spaces, let E be a subset of X, and let (Ax)xe(—1,1) be a
bounded family in £L(X,Y). If )l\inb Axx =0, for all x € E, then )1\11% Az =0, forallz € E.

Proof. Let z € E and let (n)neny C E converge to z as n — oo. There exists C' < oo such that for all
n €N,
[Axz|| < [[Axzall + Cllz — 24|

Given € > 0, we have C||z — zp, || < /2, for ng large enough. Then for A small enough, we have || Axzy,, || <

£/2. Hence the result. 0

Proposition A.1.5. Let X and Y be two Banach spaces such that X — Y (i.e. X CY with continuous

injection), with dense embedding. Then, the following properties hold:
(i) Y* — X*, where the embedding is defined by (f,z)x+ x = (f,xz)y+y, forallz € X and f € Y*;
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(ii) if X is reflexive, then the embedding Y* «— X* is dense.

Proof. (i) Consider y' € Y* and x € X — Y. Let ®,/(x) = (¥, )y~ y. It is clear that ® € L(Y™*, X*).
Suppose that ®,, = @/, for some y', 2" € Y*. Then (y — 2/, x)y«y = 0, for every z € X. By density, it
follows that (y' — 2/, y)y+y =0, for every y € Y; and so y' = 2z’. Hence (i), ¢ being the embedding.

(i) Assume to the contrary that Y* # X*. Then there exists o € X** = X such that (y/, zo) x+ x =0,
for every ¢y’ € Y (see Brezis [17], Corollary 1.8). Let E = Rzg C Y, and let f € E* be defined by f(Axg) = A,
for A € R. We have || f||g» = 1, and by Hahn-Banach theorem (see Brezis [17], Corollary I.2) there exists ' €
Y™* such that ||y/||y~ = 1 and (y/, zo)y~ y = 1, which is a contradiction, since (v, zo)y+,y = (¢, z0o)x+ x = 0.

|

Remark A.1.6. Reflexivity is important in property (ii). For example, if X = ¢*(N) and Y = ¢?(N), then
X — Y with dense embedding. However, X* = ¢(>°(N) and Y* = /?(N), and the embedding ¢?(N) — ¢>°(N)

is not dense.

If X is a separable Banach space, then its dual X* needs not be separable. (For example X = L(€) is

separable, but it dual L () is not). However, X* is weak* separable, as shows the following result.

Lemma A.1.7. Let X be a separable Banach space and let X* be its dual. There exists a sequence

(77, )nen C X* such that for every x" € X*, there exists a subsequence (z;,, )ren With the following properties:

(i) x;,, — «’ weak-x as k — oo.

(i) [, [x < [l x--

(i) |, lx- — fla/]lx- as k — oo.

Proof. When equipped with the weak-x topology of X*, B’ = {2/ € X*; |z||x+ < 1} is a compact metric
space. In particular, B’ is separable and we denote by (y/,)nen a dense sequence in B’. Let (z),)nen be the
/

. . xr
sequence AU@{)\y;L}. Given z' € X*, there exists a sequence (ny)ren such that y;, — o weak-x as
€ 2! || x+
neN

k — oo. Consider now a sequence (Ap)ren such that Ay — ||2/||x+ as k — oo and 0 < Ay < [|2/[|x+. It
follows that Ay, — 2’ weak-x as k — oo. Furthermore, |[Ary,,, [|x+ < [Mlllyn, [Ix+ < [|2'||x+. Since also

|2'|| x+ < 1ikn_1j£f [ k¥, || x+, the result follows. i

Lemma A.1.8. Let X — Y be two Banach spaces and let (zy,)neny C X. If z,, — x in X, as n — oo, then

T, ~xinY, asn — oo.

Proof. The embedding is continuous X — Y; and so, it is also continuous X — Y for the weak topologies.

The result follows. O

Lemma A.1.9. Let X — Y be two Banach spaces and let (2, )nen C X be a bounded sequence in X such

that x, =y in Y, asn — oo, for some y € Y. If X is reflexive, then y € X and x, — y in X, as n — oo.

APPENDIX—PAGE 2



Proof. Let us first prove that y € X. There exists x € X and a subsequence ny such that x,, — z in X,

as k — oo. Therefore, by Lemma A.1.8, x,,, =~ 2z in Y, as k — oo. It follows that y = x € X.

Let us prove that z,, — y in X by contradiction. If not, there exists 2’ € X*, ¢ > 0 and a subsequence
ny such that [(z/, z,, —y)| > e, for every k € N. On the other hand, there exists z € X and a subsequence
ng,; such that Ty, = in X as j — oo. In particular, x = y; and so Tny, =Y in X as j — oo, which is a

contradiction. O

Corollary A.1.10. Let X — Y be two Banach spaces. If Y is separable and X is reflexive, then X is

separable.

Proof. Let B be the closed unit ball of X. Since B C Y and Y is separable, it follows that B is separable
for the Y norm. Therefore, there exists a sequence (z,,)nen C B such that for every 2 € X, there exists a
subsequence (Z,, )xeny Which converges to x strongly in Y, hence weakly in X by Lemma A.1.9. Therefore,
B is contained in, hence equal to the weak X closure of the set (x,,)nen. In particular, B is also the weak X
closure of the convex hull C of the set (z,,)nen. Since the weak and strong closures of convex sets coincide,
it follows that C' is strongly X dense in B. Since the convex hull of a countable set is clearly separable, it

follows that B is separable, which completes the proof. O

Remark A.1.11. Note that if X is not reflexive, then the conclusion of Corollary A.1.10 may be invalid.
For example, if § is a bounded subset of RY, then L>(2) — L%(Q) but L>(Q) is not separable.

Corollary A.1.12. Let X — Y be two Banach spaces, let I be a bounded, open interval of R, and let

u:I — Y be a weakly continuous function. Assume that there exists a dense subset E of I such that
(i) u(t) € X, for allt € E,

(i) sup{||u(t)||x,t € E} = K < cc.

If X is reflexive, then u(t) € X for allt € I and u: I — X is weakly continuous.

Proof. Lett € I and let (t,)neny C F converge to t, as n — oo. Since u(t,) — u(t) in Y, it follows from

Lemma A.1.9 that u(¢) € X and that
Ju(t) x < limint u(t,)]x < K.

Let now t € I and let (t,),en C I converge to t, as n — oco. Since u(t,) — u(t) in Y and u(t,) is bounded

in X, it follows from Lemma A.1.9 that u(t,) — u(t) in X. Hence the result. O

The proofs of the following two lemmas are similar to the proof of Corollary A.1.12 above and are left

to the reader.

Lemma A.1.13. Let X be a uniformly convex Banach space, let I be a bounded, open interval of R and

let w: I — X be weakly continuous. If t — ||u(t)||x is continuous I — R, then u € C(I, X).
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Lemma A.1.14. Let X be a Banach space, let I be a bounded, open interval of R and let u : I — X
be weakly continuous. If there exists a Banach space B such that X — B with compact embedding, then

u e C(I, B).

The following compactness result is very helpful for passing to the limit in certain nonlinear evolution

equations. Its proof is quite simple.

Proposition A.1.15. Let X — Y be two Banach spaces, let I be a bounded, open interval of R and
let (fn)nen be a bounded sequence in C(I,Y). Assume that f,(t) € X, for all (n,t) € N x I and
sup{||fn(t)llx; (n,t) € Nx I} = K < oo, and that f, is uniformly equicontinuous in Y (i.e. Ye > 0,30 >
0,Vn,s,t € NxIXI,|fo(t) — fu(s)lly <eif|t —s| <6). If X is reflexive, then the following properties
hold:

(i) there exists a function f € C(I,Y) which is weakly continuous I — X and a subsequence ny, such that

foo(t) = f(t) in X as k — oo, for all t € I;

(ii) if there exists a uniformly convex Banach space B such that X «— B < Y and if (f,)nen C C(I, B)
and || fn, ()|l = [|f()||B as k — oo, uniformly on I, then also f € C(I,B) and fo, — fin C(I,B) as

k — oo;

(iii) if there exists a Banach space B such that X «— B <— Y, where the embedding X — B is compact,
then also f € C(I, B) and f,, — f in C(I,B) as k — oo.

Proof. (i) Let (t,)nen be a representation of Q N I. It follows easily from the reflexivity of X and the
diagonal procedure that there exists a subsequence n;, and a function f : QNI — X such that f,, (t;) — f(¢;)
in X (hence in Y) as k — oo, for all j € N. It follows from the uniform equicontinuity of (f,),en and the
weak lower semicontinuity of the norm that f can be extended to a function of C'((I,Y). Furthermore, by
Lemma A.1.9 and Corollary A.1.12, f : I — X is weakly continuous and sup{||f(¢)||x,t € I'} < K. Consider
now t € I, let (t;)jen C QNI converge to t and let y' € Y*. We have

Y frn @) = FE)ye v | < K, fan(8) = o () v |
+ I F @) = fE) vy [+ 1 fan (8) = FE)) vy v |-
Given ¢ > 0, it follows from the uniform equicontinuity that the first and second terms of the right-hand

side are less than e/4 for j large enough. Given such a j, the third term is less than £/2 for k large enough;

and so

(z', fo, (t) — f(t))y+y| — 0, as k — oo.

It follows that f,, (t) = f(t) in Y; and so f,, (t) — f(t) in X, by Lemma A.1.9. Hence (i).

(i) Note first that f : I — B is weakly continuous. Also, ||f||z : I — R is continuous; and so
(Lemma A.1.13) f € C(I, B). It remains to prove that f,, — f in C(I,B). We argue by contradiction,
and we assume that there exists a sequence (t)re/n C I and € > 0 such that || fn, (tx) — f(tx)|B = €, for

every k € N. We may assume that ¢, — t € I, as k — oo. It follows from (i) and uniform continuity that
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foo(te) = f(t) in Y, as k — oo. Since (f,)nen is bounded in C(I, B), we have as well f,, (tx) — f(t) in B,

as k — oco. Furthermore,

@)l = 1F Ol | < [ fax@)llz = [1fE)l5 [+ L E)B = 1f O3]

It follows that || fn, (tx)|lz — ||/ ()]l B; and so, fn, (tx) — f(t) in B, as k — oo, which is a contradiction.
(iii) It follows from Lemma A.1.14 that (f,)nen C C(I, B) and f € C(I, B). It remains to prove that
fn, — fin C(I, B). We argue by contradiction, and we assume that there exists a sequence (tx)keny C I
and € > 0 such that || f,, (tx) — f(tx)|l B > ¢, for every k € N. It follows from (i) and uniform continuity that
frn(te) — f(t) = 0in Y, as k — oo. It follows that || f,, (tx) — f(tx)||z — 0, which is a contradiction. DO

The following compactness result is very helpful for passing to the limit in certain nonlinear evolution

equations. Its proof is quite simple.

Theorem A.1.16. Let X be a Banach space, let T > 0 and let f € C([0,T),X). Assume that f is

, , : d* f 1 df _d*f
right-differentiable for all t € [0,T). IfW e C([0,T),X), then f € C*([0,T),X) and priar
Proof. Set

t d+f

o) = 10~ 10) - [ L as

0

for all ¢t € [0,T). It follows that ¢ € C(]0,T),X), g(0) = 0, g is right-differentiable for all ¢ € [0,T)
+

and % = 0. Let now £ € X*, and set h(t) = (£,9(t))x~,x. We have h € C([0,T)), h(0) = 0, h is

dth
right-differentiable for all ¢ € [0,7) and el 0. We show that h = 0. To see this, let € > 0, set

he(t) = h(t) — et, and let us show that h. < 0. Otherwise, there exists ¢ € [0,T) such that h.(t) > 0. Let
7 =inf{t € [0,T); he(t) > 0}. We have h.(7) = 0, and there exists ¢, | 7 such that h.(¢,) > 0. It follows

that
he(t) —h
lim sup M > 0.
tlT t—rT

+
(S

On the other hand, we have = —¢, which is a contradiction. Therefore, h. < 0. Since € > 0 is arbitrary,

we have h < 0. Applying the same argument to —h, we obtain as well A > 0, hence h = 0. Therefore, given
t €10,T), we have (€, g(t)) x~ x =0 for all £ € X*; and so, g(t) = 0. The result follows easily. O

We will also use some properties of the intersection and sum of Banach spaces. Consider two Banach

spaces X7 and X5 that are subsets of a Hausdorff topological vector space X. Let
leXQZ{LCEX;{EGXl,(EGXQ},
and
X1+ Xo={xeX;3x; € Xy, Jzg € Xo, x =21 + 22}

Define

]l x,nx, = [[2]lx, + |7l x,, for z € X1 N X,
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and

2]+, = Inf{{[z1]lx, + l22llx,; @ = 21 + 22}, for z € Xy + Xo.

We have the following result.

Proposition A.1.17. (X1 N Xs,| ||x,nx,) and (X1 + Xo, ||| x,+x,) are Banach spaces. If furthermore
X1 N X5 is a dense subset of both X7 and X, then the following properties hold:

(1) (Xl ﬂXQ)* = Xf +X§ and (X1 +X2>* = Xf ﬂX;,’

(1) (f,z1 +22)xpnxs, x4+ = (L21)x;.x, + (f,22) x5 x5, for all f € X7 N X3 and (21, 72) € X1 X Xo;

(111) <f1 + f2;x>X1*+X2*,X1ﬁX2 = <f1’x>Xf7X1 + <f27x>X2*,X2; for all (fhfg) € Xf X X; and r € X1 N Xy;

(iv) if Xy and X9 are reflexive, then X1 N Xy and X; + X, are reflexive.

Proof. The first properties follow from Bergh and Lofstrom [13] (Lemma 2.3.1 and Theorem 2.7.1), as well
as properties (ii) and (iii) (proof of Theorem 2.7.1). Finally, it remains to prove Property (iv). By (i), it is
sufficient to show that X; N X, is reflexive. By applying Eberlein-Smulian’s theorem, we need to show that
every bounded sequence (z,)ney C X1 N X5 has a weakly convergent subsequence. Since x,, is bounded in
both X7 and Xo, there exists € X; N X3 and a subsequence, which we still denote by (x,)nen, such that
Zn — z, in X7 and in Xs. Given (f1, f2) € XT x X3, we have

(Frown)xp o+ (F2n)xz .0 —2 (fr @) x50+ (f2, %) x5, %5

By property (iii), this implies that z,, — z in X; N Xo. O

Remark A.1.18. It is clear that the definition of the spaces X1 N X5 and X7+ X5 as well as their properties
described in Proposition A.1.17 are independent of the Hausdorff space X. It follows that an element of
X1 + X5 is equal to zero if and only if it is equal to zero in some Hausdorff space containing X; U X5. In
particular, if X; and X, are spaces of distributions on some open set Q C RY, then an element of X; + Xo

is equal to zero if and only if it is equal to zero in D'(Q).

Finally, we recall below the main properties of the exponential of a linear continuous operator. Consider
a Banach space and a linear continuous operator A € £(X, X). We recall that e (the exponential of A) is

the sum of the series
o0

1 n
gﬁA.

It is clear that the series is normally convergent in £(X) and that |le?|| < el4l. Furthermore, if A and B

commute then eA+5 = e4eB. In addition, the function ¢ + e*4 is in C*(R, £(X)) and

dzttA _ ActA — Ay,

for all ¢t € R.
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Proposition A.1.19. For every x € X, there exists a unique solution u € C(R,X) of the following

problem:
du _ Au(t), for allt € R
dt
u(0) = x.

This solution is given by u(t) = e*4x, fort € R

Proof. It is clear that e’z is a solution of the problem. Let v be another solution and let w(t) = e~*4w(t).

It follows that

d
d—t: = e M Au(t) — Ae u(t) = 0, for every t € R.
Therefore, w(t) = w(0) = z; and so v = e!4z. O

A.2. Vector integration. Vector integration is essential in the study of evolution equation. Even though
most existence and regularity results are stated in terms of continuous functions, weaker regularity classes
often appear in intermediate steps.

We present here a few basic results on vector integration that are essential in the theory of evolution
equations. Throughout this section, X is a Banach space with the norm || || and I is an open interval of
R (bounded or unbounded) equipped with the Lebesgue measure. We will use the basic theorems of real
valued integration (Fatou’s lemma, the monotone convergence theorem, the dominated convergence theorem,
Egorov’s theorem in particular). We will also use the main result of the Lebesgue’s points theory, which we

recall below (see Dunford and Schwartz [39], Theorem I11.12.8, p. 217, Rudin [89], Theorem 8.8, p. 158).
Theorem A.2.1. Let f:R — R be locally integrable and let
t+h
Fn(t) = E/ f(s)ds, for allt € R and all h # 0.
t

There exists a set E of measure 0, such that }llir% Fn(t) = f(t), for allt € R\ E. The set R\ E is called the

set of Lebesgue’s points of f. In particular, the function
t
t— / f(s)ds
0
is differentiable almost everywhere and its derivative is equal to f almost everywhere.
Finally, we will use the following well known property.
Theorem A.2.2. Let f:R — R and 1 < p < oo. If there exists ¢, € LP(R) such that

/St p(o)do

for almost all s,t € R, then the following properties hold:

1f(t) = f(s)] < + [t = s| [¢(s)];

(i) f is differentiable almost everywhere.
(ii) f' € LP(R) and |f'| < |¢| + |¢| almost everywhere.
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(iii) f(t) = f(0) +/0 f(s)ds for all t € R.

Proof. Observe that f € LV (R). We show that there exists g € LP(R) such that

/g(t)o(t) dt = —/f(t)a’(t) dt, (A.2.1)
R R

ft+h) = f(t)
h

for all § € C}(R). For almost all h > 0, define fy,(t) = . Tt follows that

t+h
015 [ leto)ldr+ o)

In particular, fj is bounded in LP(R) (see Proposition A.2.22 below). If p > 1, it follows that there exist
a sequence h, | 0 and g € LP(R) such that f,, — g as n — oo, in LP(R) weak (weak-x if p = 00). In
particular,

/ f o) dt — [ ) dr, (4.2.2)

n—oo R

for all # € C1(R). If p = 1, it follows from Proposition A.2.22 below that

+h
2| eordr )

hl0

in LY(R). In particular, there exists a sequence h,, | 0 and v € L*(R) such that

1 t+h,
| elerdel <00,
n Jt

almost everywhere. Therefore, |fp, (t)] < ~(t) + |1(t)] almost everywhere and it follows from the deep
Dunford-Pettis theorem (see Dunford and Pettis [38]) that there exists g € L!(R) such that (A.2.2) holds.

Anw> /f 0 =ha) =00) 3y, [ sy (1) at.

n—oo R

Now

(A.2.1) follows from (A.2.2) and the above identity. Next7 let (gn)nen C CH(R) be such that g, — ¢ in
LP(R) (in L*=(R) weak-% if p = 00). For every § € C}(R), we have

// s)dst'(t)dt = lim // gn(s) dst(

= lim [ g,(t)0(t)dt = —/Rg(t)Q(t)dt.

n—oo

Therefore, it follows from (A.2.1) that

/R(f(t) - /Otg(s) ds) 0'(t)dt = 0,

for all § € C1(R). It follows from Lemma A.2.26 below that there exists a € R such that

£6) = o+ [ ats)ds

for all t € R. The result now follows from Theorem A.2.1. O

Theorem A.2.2 is not anymore valid for functions f with values in a Banach space X. However, it holds

when X is a reflexive Banach space. (See Theorem A.2.27 below.)
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A.2.1. Measurable functions.

Definition A.2.3. A function f : I — X is measurable if there exists a set N C I of measure 0 and a

sequence (fn)nen C Ce(I,X) such that lim f,(t) = f(¢), for allt € T\ N.
n—oo

Remark A.2.4. It follows easily from Definition A.2.3 that if f : I — X is measurable, then || f|| : I — Ris
also measurable. Many properties of vector valued measurable functions follow either immediately from the
definition or else from the properties of real valued measurable functions applied to ||f — f,||- In particular,

one can show easily the following results.
(i) If f : I — X is measurable and if Y is a Banach space such that X — Y, then f : I — Y is measurable.

(ii) If a sequence (fn)nen of measurable functions I — X converges almost everywhere (in the X topology)

to a function f: I — X, then f is measurable.

(iii) If f: I — X and ¢ : I — R are measurable, then f¢ : I — X is measurable. In particular, if f: I — X

is measurable and if J C I is an open interval, then f; : J — X is measurable (take ¢ = 1;).

(iv) If (@n)nen is a family of elements of X and if (wy,)nen is a family of measurable subsets of I such that

o0
w; Nwj = 0 for ¢ # j, then Z Tnl,, : I — X is measurable.

n=0
In Definition A.2.3 and Remark A.2.4, the strong topology of X is involved. However, in many appli-

cations, one needs to prove measurability of a function which is only the limit in the weak topology of X of

a sequence of measurable functions. For that purpose, a most useful tool is the following result.

Theorem A.2.5. (Pettis’ Theorem) Consider f:I — X. Then f is measurable if and only if it satisfies

the following two conditions:
(i) f is weakly measurable (i.e. for every ' € X*, the function t — (2, f(t)) is measurable I — X);

(ii) there exists a set N C I of measure 0 such that f(I\ N) is separable.

Proof. It is clear that measurability implies weak measurability; and so (i) is necessary. If f is measurable
and if (fn)nen C Cc(I, X) converges to f on I\ N with |[N| = 0, then f,(I\ N) is separable; and so f(I\ N)
is also separable. Therefore (ii) is also necessary.

Let now f satisfy (i) and (ii). By possibly replacing X by the smallest closed subspace of X containing
f(I'\ N), we may assume that X is separable. We first establish that for every z € X, the function

t — || f(t) — x| is measurable. Indeed, for a > 0, we have
{tel |Ift) -zl <a}= () {tel, [/, f(t) - z)| < a},
z’'esS’

where S’ is the unit ball of X*. It follows from Lemma A.1.7 that there exists a sequence (z),)peny C S’such

that
{tel, |f(t) -z <a} = ({tel, [(z, f(t) —2)| <a}.

neN
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The set on the right-hand side of the above identity is clearly measurable by assumption (i); and so the
function ¢ — || f(¢) — x| is measurable.

Consider now n € N. The set f(I) being separable, it can be covered by a countable union of balls B} of

o0
center z} and radius 1/n. Consider f, : I — X defined by f, = Zx?lwy, where wg = {t € I, f(t) € By}
j=0

and wi = {t € I, f(t) € B} \ ﬂi;;B,’;L for j > 1. Tt is immediate that ||f(¢t) — fn(t)] < 1/n, for all
t € I. Furthermore, since the function ¢ — || f(¢) — z|| is measurable for all z € X it follows that the sets
wj are measurable; and so, by Remark A.2.4, (iv), f, is measurable. Therefore, by Remark A.2.4, (ii) f is
measurable. O

Corollary A.2.6. If f : I — X is weakly continuous (i.e. t — (2', f(t))x~ x Is continuous for every

2’ € X*), then f is measurable.

Proof. f is clearly weakly measurable; and so by Theorem A.2.5, it is sufficient to prove that f(I) is
separable. It follows from the weak continuity of f that f(I) C E, where E is the weak closure of the convex

hull of f(I N Q). On the other hand, E = f(I NQ); and so E is separable. Hence the result. O

Corollary A.2.7. Let (fn)nen be a sequence of measurable functions I — X and let f : I — X. If, for

almost all t € I, f,(t) — f(t) in X as n — oo, then f is measurable.

Proof. Let 2/ € X*. Since (z/, f,(t)) — (2/, f(¢)) almost everywhere, it follows that the function ¢ —
(«', f(t)) is measurable; and so f is weakly measurable.

On the other hand, it follows from Theorem A.2.5 that for every n € N, there exists a set N,, of measure
0 such that f,(I \ N,) is separable. Consider the set N = U2 (N,,, which is also of measure 0, and let C
be the convex hull of U £, (I \ E). Clearly f(I\ E) C C, where C is the weak closure of C'. Furthermore,
C = C; and so C is separable. Hence the result, by Theorem A.2.5. O

Corollary A.2.8. Let X — Y be two Banach spaces and let u : I — Y be weakly continuous. Assume
that there exists a dense subset E of I such that

(i) u(t) € X, for allt € E,
(i) sup{||u(t)||x,t € E} = K < cc.

If X is reflexive, then u(t) € X, for allt € I, and u : I — X is measurable.

Proof. The result follows from Corollaries A.1.12 and A.2.6. O

Remark A.2.9. Consider two Banach spaces X — Y, and a measurable function f : I — Y. Assume
that f(¢) € X, for almost all ¢ € I. Tt is natural to ask whether f : I — X is measurable. In general,
the answer is negative, as shows the following example. Let I = © = (0,1) and consider the function
w: I — L(Q) given by u(t) = 1o, for 0 < ¢ < 1. One verifies easily that u € CV/?(I, LP(Q)), for every

p € [1,00). In particular, u : I — LP() is measurable, for every p € [1,00). Furthermore, u(t) € L>®()
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for all t € I. However, u : I — L°°(Q) is not measurable. To see this, observe that ||u(t) — u(s)||p~ = 1,
if t # s. Therefore, u(I) is a discrete subset of L>°(); and so, given any non-countable subset A of I,
u(A) C L*>(Q) is discrete and non-countable, hence non-separable. In particular, given a subset N of I of
measure 0, u(I\ N) is not a separable subset of L>°(2). Therefore, by Theorem A.2.5, u : I — L*°(€2) is not
measurable. Note that u is an elementary example of a non-measurable function. However, one can obtain

measurability results under additional assumptions. This is the object of the following result.

Proposition A.2.10. Let X «— Y be two Banach spaces and let f : I — Y be a measurable function. If
f(t) € X for almost all t € I and if X is reflexive, then f : I — X is measurable.

Proof. By applying Theorem A.2.5 and by modifying f on a set of measure 0, we may assume that
f(I) € X and that f(I) is a separable subset of Y. By replacing X by the smallest closed subspace of X
containing f(I), then by replacing Y by the closure of X in Y, we may assume that Y is separable and that
the embedding X < Y is dense. By applying Lemma A.1.10, it follows that X is separable. Therefore, by
applying again Theorem A.2.5, we need only check that f is weakly measurable I — X. To see this, consider
2’ € X*. Tt follows from Proposition A.1.5 that there exists (y/,)nen C Y* such that vy, e ' in X*. In

particular,

(W, ft)) x+ x — (&', f(t))x~x, forall t € I.

n—oo

On the other hand, it follows from Proposition A.1.5 that (y,, f(¢))x-.x = (y,,f(t))y+y. Therefore,

t— (y), f(t))x~ x is measurable; and so, t — (z’, f(t)) x+ x is measurable. Hence the result. O

A.2.2. Integrable functions.

Definition A.2.11. A measurable function f : I — X is integrable if there exists a sequence (fn)nen C

C.(I,X) such that lim /||fn(t) — f(®)||dt = 0. Note that by Remark A.24, ||f, — f|]| : I — R is a
n—oo I

nonnegative measurable function, so that / I fn(t) — f(¢)|| dt makes sense.
I

Lemma A.2.12. Let f : I — X be integrable. There exists i(f) € X such that for any sequence
(fn)nGN - CC(IvX) Verifying

lim ’ [fn(t) = ()] dt =0,

n—oo
one has

lim [ f, (t) dt = i(f),

n—oo I

the above limit being for the strong topology of X.
Proof. Let (fn)nen C Cc(I,X) verify the assumption of the lemma. We have

H / fult) dt / f(t) di]| < / 1 fult) — F,(0)]] dt
< / 1 £ul) — £ dt + / 1 (0) — £(0)] dt.
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Therefore, / fn(t)dt is a Cauchy sequence, that converges to some element x € X. Consider another
I

sequence (gn)nen C Ce(I, X). We have

||/Ign<t>dt—x||s||/lgn<t>— dt||+H/f falt dt||+||/fn Yt — |
< / lgn () — F(8)] dt + / 1) = FOIldE+ | / fult) dt — a]

Therefore, / gn(t) dt converges also to x, as n — co. Hence the result, with i(f) = z. O
I

Definition A.2.13. The element i(f) constructed in Lemma A.2.12 is called the integral of f on I. We

z/fz/jfz/jf(t)dt
—/abf—/abf(t)dt

As for real-valued functions, it is convenient to note

/jf(t)dt:—/;f(t)dt

note

If I = (a,b), we also note

if B < a.

Theorem A.2.14. (Bochner’s Theorem) Let f: 1 — X be measurable. Then f is integrable if and only
if || f|l : I — R is integrable. In addition,

|| / F(tydt] < / 1£(0)] dt.

for all integrable function f: I — X.

Proof. Assume that f is integrable, and consider a sequence (fy,)neny C Ce(I, X) such that

tim [ [1£u(t) = £(®)] dt = 0.

n—oo
We have
I£I< (1 fnll + 1 fn = £lI5

and so || f]| is integrable.

Conversely, suppose that f is measurable and that ||f|| is integrable. Let (gn)nen C Co(I,R) be a
sequence such that g, — ||f]| in L'(I) and almost everywhere, and such that |g,| < g almost everywhere,
for some g € LY(I). Let (f)nen C Co(I, X) be a sequence such that f,, — f almost everywhere. Finally, let

Inlgn|
[ full +1/n

It is clear that h, € C.(I, X), that ||h,| < g almost everywhere and that h,, — f in X almost everywhere,

hp =

as n — oo. It follows from the dominated convergence theorem that
G [ ha(t) - F] dt =0
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and so f is integrable. Finally,

I [ sael = tim | [ho(oyde] < i [ nalde < [ 5]

where the last inequality follows from the dominated convergence theorem. This completes the proof. O

Remark A.2.15. Theorem A.2.14 allows one to deal with vector valued integrable functions like one deals
with real valued integrable functions. It suffices in general to apply the usual convergence theorems to || f].

For example, one can easily establish the following results.

(i) If f: I — X is integrable and ¢ € L>°(I), then f¢ : I — X is integrable. In particular, if f: I — X is
integrable and if J C I is an open interval, then f|; : J — X is integrable (take ¢ = 1;).

(ii) (the dominated convergence theorem) Let (f,)nen be a sequence of integrable functions I — X, let
f:I— X and let g € L*(I). If
| fn ()|l < g(t), for almost all t € I and all n € N,

lim f,(t) = f(¢) for almost all ¢t € I,

then f is integrable and /f(t) dt = lim [ f,(t)dt.
I n—oo I

(iii) If Y is a Banach space, if A € £(X,Y), and if f : I — X is integrable, then Af : I — Y is integrable

/IAf(t)dt:A(/If(t)dt)

In particular, if X < Y and if f : I — X is integrable, then the integral of f in the sense of X coincides

and

with the integral of f in the sense of Y.
Finally, we have the following important geometric property of integrable functions.

Proposition A.2.16. Suppose |I| < oo, let K C X be a closed convex set, let f : I — X be integrable
1
and let y = m/f(t) dt. If f(t) € K for almost allt € I, theny € K.
I

Proof. We argue by contradiction and we assume that y ¢ K. It follows from Hahn-Banach’s theorem (see
Brezis [17], Théoréme 1.7 p.7) that there exists ' € X* and ¢ > 0 such that {2/, z)x+ x < (&', y)x+ x — €,

for all x € K. In particular,

(@, f(t))x+x < (2, y)x+x — &,

for almost all ¢ € I. Integrating that above inequality and applying Remark A.2.15 (iii), we obtain

(@ ) xe x = ﬁ@s', /1 ) dt)xe x = % /I (@, F(D)x-x dE < (2 9) 5o x — €,

which is a contradiction. Hence the result. O

A.2.3. The spaces LP(I, X).
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Definition A.2.17. Let p € [1,00]. One denotes by LP(I,X) the set of (classes of) measurable functions
f: I — X such that the function t — || f(t)| belongs to LP(I). For f € LP(I, X), one defines

1l = { / ||f(t)||pdt} ifp < oo,

I flleer,x) = esi sIup lf ()] if p= oo.
€

When there is no risk of confusion, we denote || |[z»(1,x) by || l|Le(r) or || [[z» or || ||, One denotes by

LP

loc

(I,X) the set of f : I — X such that f|; € LP(J, X), for every bounded sub-interval .J of I.

Remark A.2.18. The space LP(I, X) enjoys most of the properties of the space LP(I) = LP(I,R), by the

same proofs or by applying the classical results to the function ¢ — || f(¢)||. In particular, one obtains easily
the following results.

(i) [l llz»(z,x) is a norm on the space LP(I, X). LP(I, X) equipped with that norm is a Banach space. If p <

00, then C§°(I, X) is dense in LP (I, X) (apply the classical procedure by truncation and regularization).

In particular, if Y is a Banach space such that Y < X with dense embedding, then C§°(I,Y") is dense

in LP(1, X) (since C§°(1,Y) is dense in C.(I, X) for the norm of Cy, (I, X)).

(ii) A measurable function f : I — X belongs to LP(I, X) if and only if there exists a function g € LP(I)

such that ||f|| < ¢g almost everywhere on I.
1 1
,

1
(iii) If f € LP(I, X) and @ € L(I) with = + = = — < 1, then ¢f € L"(I, X) and
P q

lefllor,xy < I flleer,x)y lellLacr-

In particular, if f € LP(I, X) and if J is an open sub-interval of I, then fi; € LP(J, X).

1 1 1
(iv) If f € LP(I,X) and g € LI, X*) with — + — = = < 1, then the function h defined by h(t) =
b q r

(9(t), f(t))x+ x is in L"(I) and we have [|h||Lr < || fllzr(1,x) I9llLacr,x*)-
(v) If fe LP(I, X)N LI, X) with p < g, then f € L"(I, X), for every r € [p, ¢q|, and

10z < 11y 10 )

1 6 1-0
where — = — + ——.
T p q

(vi) If I is bounded and p < ¢, then L9(1,X) — LP(I, X) and
a=pr
I fller,xy < 175 [ fllLacr,x),

for all f e LI(I,X).

(vii) Suppose f : I — X is measurable. If f € LP(J, X) for all J CC I and if | f||zr(s,x) < C for some C
independent of J, then f € LP(I, X) and || f||r»(7,x) < C.

(viii) If Y is a Banach space and if A € £(X,Y"), then for every f € LP(I,X) we have Af € LP(I,Y) and

NAf e ryy < NAllzex,yy 1fllze,x)-
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(ix)

(x)

In particular, if X < Y and if f € LP(I, X), then f € LP(1,Y).
(The dominated convergence theorem) Let (fn)nen C LP(I,X) and let g € LP(I). If p < 0o and
Ifn(@®)] < g(t), for almost all ¢t € T and all n € N,
lim f,(t) exists for almost all ¢ € I,
n—00
then f := nh_{%of" € LP(I,X) and nh—{gof" = fin L?(I, X).

Let (fn)nen € LP(I,X) and let f € LP(I,X). If lim f, = f in LP(I,X), then there exists g € LP(I)
and a subsequence (ny)nen such that || f, (t)]| < g(t) for almost all t € I and for every k € N.

Remark A.2.19. Duality theorems for the spaces LP(I, X) are much more difficult to obtain than for the

spaces LP(I). However, if X is reflexive and if 1 < p < oo, then it known that L?(I, X) is reflexive and that
(LP(I, X))" ~ L¥' (I, X*) (see Dinculeanu [37], Chapter 13, Corollary 1 of Theorem 8, p. 252). If 1 < p < oo
and if X is reflexive or if X* is separable, then (L?(I, X))* ~ L? (I, X*) (see Dinculeanu [37], Edwards [40]).

Below are some special cases, in which such results are easily obtained.

(i)

(iii)

If X is a Hilbert space with the scalar product (-,-), then L?(I, X) is a Hilbert space, for the scalar
product

(f.9)) = / (F().9(t)) dt, for f.g € L*(I,X).

It follows that L?(I,X) is reflexive, and by Riesz’ representation theorem, we have (L?(I,X))* =~
L3(I,X) (or (L*(I,X))* ~ L*(I, X*) if one does not identify X* with X).

Let © be an open subset of RY and let 1 < p < co. It follows easily from Fubini’s Theorem and a
density argument that the operator T defined on LP(I, LP(2)) by Tu(t,z) = u(t)(z) is an isometry from
LP(I,LP(Q)) onto LP(I x Q); and so, LP(I, LP(Q)) is reflexive and (LP(I, LP()))* ~ L? (I, L? (2)) for

every 1 < p < oo.

The results of (ii) above are not anymore valid for p = co. For example, let I = Q = (0,1) and consider
the function u : I — L*>(Q) given by u(t) = 1¢y), for 0 <t < 1. Evidently Tu € L>(I x Q), but u ¢
L>(I,L>*(£)). In fact, u : I — L*°() is not even measurable, as follows from Remark A.2.9. (However,
observe that u € C%V/?(T, LP(Q)), for every p € [1,00).) It follows in particular that (L*(I, L*(Q)))* %
L (I,L>(£2)) since the linear form f on L'(I, L'(Q2)) defined by

Fv) = /I /Q o(®)ult) da dt

is continuous but cannot be written as

f(v):/l/ﬂv(t)z(t)dxdt

for some 2z € L>®(I,L>=(Q)). Indeed, the definition of f makes sense, since if v € L'(I, L*(f2)), then
vu € LY(I,L(Q)); and on the other hand, if z would exist, we would obtain easily that Tz = Tu, hence

Z = 1U.
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Theorem A.2.20. Let 1 < p < oo and let (f,)nen be a bounded sequence in LP(I,X). If there exists
f: 1 — X such that f,(t) = f(t) in X asn — oo, for almost all t € I, then the following properties hold:

(i) feLP(I,X) and || f|Lr(r,.x) < hminf||anLP(I,X)7'

(ii) if p > 1, then/fn dté/f t)dt as n — oo, for every ¢ € L¥' (I).

Proof. By Corollary A.2.7, f is measurable. If p < oo, it follows from Fatou’s lemma that

/liminf ()7 dt < liminf/ ()P d.
I n—oo n—oo I

By weak lower semicontinuity of the norm, we have

[l < [ tmint 7,07 d
I I

and so,
[l e <tmint [ 1,007 at
I n—oo I
from which (i) follows. The case p = oo follows from an obvious adaptation of this argument. Hence

property (i).
We now prove (ii). Consider first ¢ € C.(I). Let 2’ € X* and set

hn(t) = <x,7fn(t) - f(t)>X*,XQ0(t)a

for almost all ¢ € I. It follows that h,(t) — 0, for almost all ¢ € I and that h,, is bounded in L”(I), as
n — 00. Since h, is supported in a compact interval, it follows easily from Lemma A.3.20 below that h,, — 0

in L(I). In particular,
/fn t)dt) x+ x —_ /f t) dt) x+ x,

from which property (ii) follows, since z’ is arbitrary. In the general case o € L¥' (I), let (p¢)r>0 C Ce(I) be

such that oy P in L¥ (I). Given ' € X*, we have
— 00

[, [ (1) = P00 dt) e x| < (@ [ (100 = FO)ol) = pr(®r x|
#@ [ (a®) = FO)orlt) dt)x
I

Given € > 0, we estimate the first term on the right-hand side by ||@/[|x+ (|| fullzr(r,x) + | fllr(1,x))|l0e —
ol <e/2if £ is large enough. Given such a ¢, the second term on the right-hand side is smaller than €/2

for n large enough by what precedes. Since € > 0 and 2’ € X* are arbitrary, the result follows. O

Lemma A.2.21. Let (fn)neny C LP(I,X) and f € LP(I,X), where 1 < p < co. If f,, — f in LP(I, X) as

/1 fult)p(t) dt — / F(b)p(t) dt
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Proof. Without loss of generality, we may assume that f = 0. Consider ¢ € C5°(I) and 2/ € X* and
define the linear functional F on LP(I, X) by

F(g) = (z, / g()p(t) dt) x- x,

for every g € LP(I, X). It follows from Remark A.2.18 (iii) that F' is continuous. Therefore, F' € (LP(I, X))*,

which implies that F(f,) — 0 as n — co. Since 2’ is arbitrary, this implies the result. O

Proposition A.2.22. Let f € LP(R, X) and set

1 [t+h
Tf(t) = E/ f(s)ds, fort € R and h # 0. (A.2.3)
¢

Then T, f € LP(R,X) N CL(R,X) and T}, is a contraction on LP(R,X). Furthermore, if p < oo, then
}llirr%) Tnf = f in LP(R, X) and almost everywhere.

Proof. It follows easily from the dominated convergence theorem that T, f € C(R,X). Furthermore,
applying Holder’s inequality, we obtain if p < oo

1 t+h 1
T 17 < 1 [ 15 dr < FIS e e Tor 1€ R and b 20

and so Ty, f € Cp(R, X). Furthermore,

+o0o 1 “+o0 t+h 1 “+o0o s
| imsapasg [ [ wepasas g [ repaas
“+oo
<[ Wl

Therefore, T}, is a contraction on LP(R, X). The same holds in the case p = co with an obvious modification
of the argument.

Assume now p < oo. It is well known that if f € C.(R,X), then (T, — I)f — 0 in LP(R,X), as
h — 0. By density (Remark A.2.18 (i)) and uniform boundedness of the operators T}, it follows that for
every f € LP(R, X), (T, — I)f — 0 in L?(R, X), as h — 0 (Proposition A.1.4).

Let now (fn)nen C C§°(R, X) be a sequence such that f,(t) — f(t) as n — oo, for all t € R\ N,
where N is a set of measure 0 (such a sequence exists by Remark A.2.18 (i)). Given n € N, the function

If() = fu()] is in L (R); and so, by Theorem A.2.1, there exists a set N,, of measure 0 such that

loc

1 t+h
Jim E/t [1£(s) = fu(s)llds = [[f(t) = fu(®)] for all € R\ N,

Note also that for every n € N and t € R, ||Thfn(t) — fn(t)]| = 0as h — 0. Let E = N U ( UNNn), so that
ne

E is a set of measure 0. Consider € > 0. For ¢t € R\ E, we have

t+h
g0 = SO <O~ 2@l + 5 [ 156~ (o)l ds "y
+ 1 Thfn(t) = fu (D]
For ng large enough, the first term in the right-hand side of (A.2.4) is less than €/3. Choosing n = ng
in (A.2.4), the second and third terms in the right-hand side are both less than /3 if h is small enough.
Therefore, || T f(t) — f(¢)|| < € if h is small enough. It follows that Tj, f — f almost everywhere, as h — 0.0
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Corollary A.2.23. Let g € L} (I,X), to € I and let the function f € C(I,X) be defined by f(t) =
¢
/ g(s)ds, for t € I. Then, the following properties hold:

to

(i) f is differentiable almost everywhere and f' = g almost everywhere;
(ii) /g /f t)dt for all ¢ € CL(I).
I

Proof. Since properties (i) and (ii) are local, we may assume that I = R and g € L!(I, X). We have

Thy(t) = w,

where Ty, is defined by (A.2.3). Therefore, (i) follows from Proposition A.2.22.

Consider now ¢ € C}(R). Note that w

—/f(t)so’(t)dt:—hm/f t+h plt+h) —e)
R

— ¢’ as h — 0, uniformly on R. Therefore,

h—0
. f(t t)
=1 ————=p(t)dt
lim /]R — h o(t)
- lim 1w®ﬂﬂ£=/ﬂ%ﬂﬂt
h—0 Jr R
where the last inequality is a consequence of Proposition A.2.22. Hence (ii). O

Lemma A.2.24. If f € L] (I, X) is such that

szﬂﬂﬁ:

for every ¢ € C°(I), then f = 0 almost everywhere.

Proof. By Pettis’ theorem, there exists a set N C I of measure 0 such that f(I'\N) is separable. Therefore,
by replacing X by its smallest closed subspace containing f(I\ V), we may assume that X is separable. Let
B’ be the closed unit ball of X* and let (z/,)nen be a weak-x dense sequence of B’ (such a sequence exists

by Lemma A.1.7). For every n € N and every ¢ € C°(I), we have

0= m/f <ﬁwx—ﬁw;ﬂmwxaww

where the last identity follows from Remark A.2.15 (iii). It follows easily that there exists a set N of measure

0 such that (x], f(t))x~ x =0 for all t € I\ N and all n € N. Hence the result. O

Lemma A.2.25. If f € L] (I, X) verifies
[ fo¢ @i =o,
I
for all ¢ € C°(I), then there exists o € X such that f(t) = xo for almost all t € I.

Proof. Let 6 € C°(I) be such that /0 t)dt = 1. Let ¢ € C(I). Consider ty € I such that 0(t) =
P(t) = 0 for t < tg, and let ¢ € C(I) be given by

¢@>Lj{M$(ﬁw@ww)m@}d&
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We have ¢ =) — (/ (o) dO’) 6. Therefore,
I

o:xf@wwdrﬂmﬁ¢wmm

where
20 = [ Fie)ote)de
I
and so,
[0 - mpuyat—o.
I
for every ¢ € C2°(I). The result now follows from Lemma A.2.24. O

Lemma A.2.26. If f,g € L{ (I, X) verify

loc

[otewyae=— [ rewar
1 1

for all ¢ € C°(I), then given to € I there exists xg € X such that

ft) =a0 +/t g(s) ds,

for almost all t € 1.

Proof. By replacing g by £g with £ € C2°(I), we may assume that I = R and that g € L*(R, X). Let
(gn)nen C C°(R, X) be such that g, — g in L(R, X). For every ¢ € C>°(R), we have

Agwwwwzlm. an(t)p(t) dt

n—oo R

— *nllnéo s (/Ot n(s) ds) o' (t) dt

t
— [ ([ sas) ¢ 0a
R \Jo
by integration by parts. It follows that

A(ﬂo—A}@mgwﬁﬁ%:Q

for every ¢ € C°(I), and the result follows from Lemma A.2.25. O

We are now in a position to state and prove a vector valued generalization of Theorem A.2.2.

Theorem A.2.27. Let f: R — X and 1 < p < oco. If there exists ¢ € LP(R) such that

/st p(o)do

for all s,t € R and if X is reflexive, then the following properties hold:

1F(@®) = fs)ll <

)

(i) f is differentiable almost everywhere;
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(ii) f' e LP(R,X) and ||f'|| < |¢| almost everywhere;
(iii) f(t) = f(0) +/ f'(s)ds for all t € R.
0

Proof. For h # 0, set

fn) = w, for all t € R.
It follows that
1 [tth
nnwnsgl o(s)ds|, for all t € R,

and it follows easily from Proposition A.2.22 that || fp| e x) < |[¢llLr®). Since f is clearly continuous,
f(R) is separable. Therefore, by possibly replacing X by its smaller closed subspace containing f(R), we
may assume that X is both reflexive and separable; and so, that X™* is separable. Let (2], )nen be a dense

sequence in X*. For every n € N, the function 1, (-) = (z},, f(-)) verifies

n’

[ (t) — n(s |<Han|/ o)dol|, for all s,t € R.

It follows from Theorem A.2.2 that ¢, is differentiable on R\ N,,, where N,, is a set of measure 0. Considering
N = UNE,L, we have |N| =0 and
ne

hm(fh() x) = (t), forallm e Nand t € R\ N.

? TL

Let F' be the complement of the set of Lebesgue’s points of ¢. We have |F| = 0 and it follows from
Theorem A.2.1 that for every t € R\ F,

Ifn ()| < 2|¢(t)], for h small enough (depending on t).

Take t € R\ (VU F). Since X is reflexive and || f(¢)| is bounded, there exists a sequence h,, — 0 and an
element z(t) € X such that
lim fp,, (t) = z(t), in X weak.

In particular, we have (z],xz(t)) = ¢! (t), for all n € N. Since the sequence (2 )nen is dense in X*, z(t) is
independent of the sequence h,; and so fj,(t) — x(t) in X weak, as h — 0. Since f, is bounded in LP(R, X),
it follows from Theorem A.2.20 that € LP(R, X) and that for every 6 € C°(R),

/th(t) dt}:a/f

| futwoa /f ﬁéf/f
/Rx(t)Q(t) it = —/Rf(t)e’(t) dt

Since 0 is arbitrary, it follows from Lemma A.2.26 that there exists o € X such that

Since

as h | 0, we obtain

f@®) ==z —|—/0 x(s) ds.
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The result now follows from Corollary A.2.23. O

A.2.4. The Sobolev spaces W™P?(I, X). We begin with the case m = 1.

Definition A.2.28. Let 1 < p < oco. We say that f € WYP(I,X) if f € LP(I,X) and if there exists
g € LP(I,X) such that
[otetwyae=— [ roewa
I I

d
for all ¢ € CL(I). By Lemma A.2.24 g is unique, and we set f = d—J; =g. For f e WYP(I,X), we set

I fllwrer,xy = 1o r,x) + 1 orr,x)-
When there is no risk of confusion, we denote || [|wi.»(1,x) by || lwrer) or || [[wre.
Remark A.2.29. The space W1P(I, X) enjoys most properties of the space WP (I) = WHP(I,R), with
essentially the same proofs. In particular, one obtains easily the following results.

(i) [I llwrez,x) is a norm on the space WP(I,X). The space WHP(I, X) equipped with the norm

| llwr(r,x) is a Banach space.
(ii) If f € WHP(I,X) and if J is an open sub-interval of I, then f|; € WhP(J, X).
(iii) If f € WIP(I,X)NWh4(I, X) with p < g, then for every r € [p,q] we have f € W (I, X).
(iv) If I is bounded and p < ¢, then Wh4(I, X) — W1P(I, X).

(v) Suppose f € LP(I,X). If f € WhP(J,X) for all J CC I and if || f|| e (s, x) < C for some C independent
of J, then f € WLP(I, X) and ILf 'l zrr,x) < C.

(vi) If Y is a Banach space and if A € £(X,Y) then for every f € WIP(I,X), Af € WLP(1,Y) and

IAfllwrryy < NAllcxyy 1fllwiea,x)-

In particular, if X — Y and if f € WYP(I, X), then f € WHP(1,Y) (take A to be the embedding).

(vii) If p < oo, then C§°(R,X) is dense in WHP(R, X). (This follows from the classical truncation and

regularization procedure.)
(viii) If (fn)n>1 C WHP(I1, X) is such that f, — f and f, — gin LP(I, X) as n — oo for some f,g € LP(I,X),
then f € WHP(I, X) and f' = g.
Theorem A.2.30. Let 1 <p<oo and f € LP(I, X). The following properties are equivalent:
(i) feWhr(I,X);
(ii) there exists g € LP(I, X) such that for almost all s,t € I we have f(t) = f(s) + /tg(o') do;

In addition, if f satisfies these properties, then one can take g = f' in property (ii).

Proof. (i)=(ii) follows from Lemma A.2.26 and (ii)=(i) follows from Corollary A.2.23. O
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Corollary A.2.31. WY (I, X) < Cyu(I,X). In particular, W*P(I, X) — L*>(I, X).
Proof. Let f € WhP(I, X). It follows from Theorem A.2.30 that

1£(t) — £ < / 1£(0)]| dor,

for almost all s,¢ € I. Since X is complete, one can modify f on a set of measure 0 so that the above
inequality holds for all s,t € I (see the proof of Theorem A.2.37). Hence uniform continuity. Furthermore, if
we set h = || f]], we have |h(t) — h(s)| < ||f(t) — f(s)]|; and so, by Theorem A.2.30 and the above inequality,
h € WHP(I) — L*°(I). By Theorem A.3.34 below, W1P(I) — L°(I), which completes the proof. O

Remark A.2.32. Note that the inclusion W?(I, X) C Cy (I, X) is modulo modification of the functions
on a set of measure 0. In other words, this means that for every u € WP (I, X), there exists v € Cy, (I, X)

such that v = u almost everywhere.

Corollary A.2.33 Let I = (a,b), with —o0 < a < b < oo and let and let Y be a Banach space such
that X — Y. There exists a linear mapping A that maps functions defined almost everywhere I — Y to

functions defined almost everywhere R — Y and that has the following properties:
(i) Af(t) = f(¢), for almost all t € T all f defined almost everywhere I — Y;

(ii) Af is supported in (—a — 1,b+ 1);

(iii) A e LWLP(1Y), WEP(R,Y)), for every 1 < p < o0;

(iv) Ae L(LP(I,X), LP(R, X)), for every 1 < p < oc.

Proof. Suppose I = (0,1). Given f defined almost everywhere I — Y, define ffor almost all t € (—1,2)

by
f(=t), if —1<t<0;

f@) =< f), fo<t<1;
fe2—-19),ifl<t<2
Evidently, f(t) = f(t) for almost all ¢t € I. In addition, one verifies easily that the mapping f +— f is
continuous LP(I, X) — LP((—1,2),X) for all 1 < p < oo. Consider 1 < p < oo and let f € WLP(1,Y). In
particular, f € LP((—1,2),Y). Furthermore, it follows easily from Theorem A.2.30 that f € WP((—1,2),Y)

and that
—fi(=t), if —1<t<0;

(@)= f(t), if0<t<1;
—f2-1),ifl<t<2.
Therefore, the mapping f — f is continuous W'P(I,X) — W'?((~1,2),X) for all 1 < p < occ. Finally,

consider a € D(—1,2) such that a =1 on I. Given f defined almost everywhere I — Y, define Af for almost

all t € (—1,2) by
0, ift < —1;

Af(t) =< a®)f(b), if —1<t<?2;
0, if 2 < t.
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It follows easily from what precedes that properties (i) through (iv) are satisfied. The case I = (a,b) with
—00 < a < b < oo is treated by the same method, and the cases I = (a,+0o0) and I = (—o0,b) follow from

an obvious modification. O

Corollary A.2.34. Ifp < oo, then C°(I, X) is dense in WP(I, X). Moreover, if Y is a Banach space
such that Y < X with dense embedding, then C>°(1,Y) is dense in W1P(I, X).

Proof. Applying Corollary A.2.33, it suffices to consider the case I = R. Density of C°(R, X) follows
from Remark A.2.29 (vii). Finally, density of C>°(R,Y’) follows from the density of C°(R,Y) in C}(R, X)
for the norm of C} (R, X). O

_ -1
Corollary A.2.35. Ifp > 1, then W1P(I, X) — C%%(I, X), with a = L Furthermore,
p

I1f @) = F() < [t = 8|/ | ze,
for all f € WHP(I,X) and s,t € I.

Proof. It follows from Theorem A.2.30 and Holder’s inequality that

. t+h 13 .
If(t+h) = fF@O)] < h¥ (/t ||f'(8)||”d8> < hv || f'llze-

Hence the result, by Corollary A.2.31. O

Corollary A.2.36. If[a,b] C I and p < oo, then

R — f(-
tim LN IO 1 (0, ),

for every f € WhP(I, X).

Proof. By Corollary A.2.33, we may assume I = [a,b] = R. The result now follows from Theorem A.2.30
and Proposition A.2.22. O

Theorem A.2.37. Assume X is reflexive and let f € LP(I,X). Then f € WY (I, X) if and only if there

exists ¢ € LP(I) and a set N of measure 0 such that

1) — f(9)] < |/ p(o)dol, for allt,s € I'\ N. (A.2.5)

In addition,
1 lez,x) < ll@llzerys (A.2.6)

whenever f and ¢ verify (A.2.5).

Proof. It follows from Theorem A.2.30 that (A.2.5) is necessary, with for example ¢ = ||f’||. Conversely,
assume that (A.2.5) holds. We first modify f on the set N in such a way that (A.2.5) holds for all s,t € I.
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To do this, consider ¢t € N and let (¢,)nen € I\ N be such that ¢, — t, as n — oco. It follows from (A.2.5)
that f(t,) is a Cauchy sequence in X. Let x; be its limit. It is clear, again by (A.2.5) that x; is independent
of the sequence (t,). We set f(t) = z¢, for t € N. We may pass to the limit in (A.2.5); and so (A.2.5) holds
for every s,t € I. In particular, f is continuous on I; and so, it is not difficult to extend f to a function of
LP(R, X) having the same properties. Therefore, we may assume that I = R and that (A.2.5) holds for all
s,t € R. The result now follows from Theorems A.2.27 and A.2.30. O

As an immediate consequence of Theorem A.2.37, we have the following result, which is very useful.

Corollary A.2.38. Assume that X is reflexive. If f : I — X is Lipschitz continuous and bounded, then
feWh(I,X) and || f'|| e (1,x) < L, where L is the Lipschitz constant of f.

Corollary A.2.39. Let 1 <p < oo, let (fn)nen be a bounded sequence of WYP(I, X) and let f : [ — X
be such that fn(t) — f(t) in X as n — oo, for almost all t € I. If X is reflexive and if p > 1, then
feWblP(I,X) and

I flleer,x) < hnngf Il frller,x)s
and

1 N e x) < Timinf[| £ ]l Lo x) -
In particular,

I fllwrea,x) < lggiofgf I frllwre,x)-

In addition,

[ ftretde~ [ st an (427)
and

/I FL(E)p(t) dt — / (bl d, (428)

asm — oo, for all ¢ € C.(I).
Proof. It follows from Theorem A.2.20 that f € L?(I, X),

[l x) < Hminf || foll Loz, x),

and that (A.2.7) holds. Let N be a set of measure 0 such that f,,(t) = f(¢t) in X asn — oo, forall t € T\ N.
We have

t
150 = £ < Hmint [a(6) = £u(9)] < it [ g (o) do (4.2.9)

n—oo n—oo s
for all s,t € I'\ N, where ¢, = ||f/||. Since ¢, is bounded in LP(I), there exists a subsequence nj and a

function ¢ € LP(I) such that ¢, — ¢ in LP(I) weak* as k — oo, and
lim inf {|gn, || £r(r) = minf {lon || 2o ).

In particular, we have
lell ey < liminf || £ || Lecr,x)
n—oo
t

¢
lim on, (0)do = / (o) do, for all s,t € I.

k—oo J¢
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Applying (A.2.9), we obtain

IF@&) = f(9)] < /tw(a)do, for all s,t € I'\ N.

We deduce from Theorem A.2.37 that f € WHP(I,X) and ||f'||re(s,x) < liminf||f) | 1e(7,x). Finally, we
prove formula (A.2.8). Let ¢ € CL(I). We have

[rwewa=- [ oroa — - [ sosoa= [ roq
I n—oo
by (A.2.7). This proves (A.2.8) for ¢ € C(I). The general case follows from a density argument (see the

proof of Theorem A.2.20 (ii)). 0

Corollary A.2.40. Letl <p<ooand f € LP(I,X). Assume that there exists K such that for all J CC I
and all |h| < dist (J,01), | f(- +h) — f()|zesx) < K|h|l. If p> 1 and X is reflexive, then f € WhP(I, X)
and || f'||Le1,x) < K.

Proof. Let J CC I, |h| < dist(J,dI), h # 0 and set

1 t+h
no =g [ s
t
for t € J. It follows from Theorem A.2.30 that f;, € W1P(J, X) and

fi(t) = W’

for a.a. ¢t € J. In particular, ||f}[|zr(s,x) < K. Since fi — f a.e. on J (see Corollary A.2.33 and
Proposition A.2.22), we deduce from Corollary A.2.39 that f € W'*(J, X) and || f'||r(s,x) < K. The result

now follows from Remark A.2.29 (v). O

Corollary A.2.41 Consider two Banach spaces X — Y and 1 < p,q < oo. Let (f,)n>0 be a bounded
sequence in LY(1,Y) and let f: I — Y be such that f,(t) = f(t) inY asn — oo, for a.a. t € I. If (fn)n>0
is bounded in LP(I, X) and if X is reflexive, then f € LP(I,X) and || f| rr(r,x) < liminf || fo|| e (7, x)-

Proof. It follows from Theorem A.2.20 (i) that f € LY(I,Y). Given k € N, let I, = IN(—k, k). Fixtp € I

and consider k large enough so that ¢y € I. Set
t t
un(t) = | fu(s)ds, wu(t)= [ f(s)ds
to tO
It follows from Theorem A.2.20 (ii) that u,(f) = u(t) in Y as n — oo, for a.a. ¢ € I. On the other hand,
un(®)llx < [to =t/ fullLe.x),

so that by Lemma A.1.9, u,(t) € X for a.a. t € I}, and u,(t) — u(t) in X as n — oo, for a.a. ¢ € I. Since
uy, is bounded in WP (I, X), we deduce from Corollary A.2.39 that u € LP(I, X) and that

'l 2o (1 x) < Hminf {lu, | o, x)-
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Finally, we have v’ = f in Y. Applying formula (A.2.8) in Y then in X, we obtain that that ' = f in Y.
In particular, f € LP(I}, X) and

1l ) S Hmnf [ fofl Loz, x0) < Tminf [ ol x)-

Since k is arbitrary, the result follows from Fatou’s lemma. O

Remark A.2.42. Note that when X is not reflexive, the conclusions of Theorem A.2.37 may be invalid.
This can be seen easily on the following example. Let 6 = 1j; 9 € L°°(R) and consider the function

() =0(- +t). It is clear that ¢ € C(R, L*(R)). Let now

g(t) = /Ot ¥(s)ds, for t € R.

Note that we have also

x+t
g(t,x) = / 0(s)ds, for all t,x € R.

It is clear that g € C*(I, L*(R)) and that

lg(t) = g(s)l| ooy < [t — ] =/ (o) do, (4.2.10)

where ¢ = 1. Let now Q = (0,1) and let X = C(f), equipped with the L>®-norm. If we set f = gja, we
have f € C*(R, L'(Q)) and f' = 9|q, and it follows from (A.2.10) that

1f(8) = F(s)]x < / (o) do.

Therefore f satisfies (A.2.5) with ¢ € L, but we claim that f ¢ W1((0,1),X). Indeed, if f were in
W11((0,1), X), then the derivatives of f in the senses of X and L'(£) would coincide, since X — L(Q).

Therefore, we would have f’ = 1|, which is absurd since 9o ¢ X, for 0 <t < 2.

Remark A.2.43. Let us observe that if X is not reflexive or if p = 1, the conclusions of Corollary A.2.39
may also be invalid.

Indeed, with the notation of the preceding remark, consider a sequence (6,,)nen C D(R) such that

n—oo

blég 100 oo ®) < 00, and lim 6, = 6 almost everywhere.
t
Let ¥, (t) = 0,(- + 1), gn(t) = / Yn(s)ds and f, = (gn)jo. We have f, € C*(R, X) and it is not difficult
to check that f, is bounded in ISVLOO(R,X). In addition, f, converges to f in C(R, X), but we know that
f¢ Wwhi((0,1), X).
Now if p =1, consider = € X, x # 0 and assume for example that I = [0,2]. Let f, : I — X be defined

by
z, ift <1,

falty =4 (1=nlt =), i 1<t <14

. 1
0,if1+— <t
n
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One verifies easily that f,, is bounded in W11(I, X) and that f,(¢) has a limit f(t) for all t # 1, where

xz, ift <1,
ft) =
0, if 1 <t

Therefore, f ¢ C(I,X), and so f ¢ WH1(I, X).

Remark A.2.44. The mapping f — (f, f') identifies the space W1P(I, X) with a closed subspace of
LP(I,X) x LP(I, X). Therefore, if LP(I, X) is reflexive, then W1P(I, X) is also reflexive.

The compactness properties of the spaces WP(I, X) are rather delicate. One of the first results in
that direction is due to Aubin [4]. For more recent results, see for example Brezis and Browder [19] and

Simon [91]. Below are two quite useful compactness results.

Theorem A.2.45. Consider three Banach spaces X — B — Y, where the embedding X — B is compact.
Let 1 < p,r < oo (withr > 1 if p = 00) and let E be a bounded subset of W*"(I,Y). If E is also bounded
in LP(I,X) (i.e. every f € E belongs to LP(I, X) and sup{||f||z»(1,x), f € E} < o0) and if I is bounded,
then E is a relatively compact subset of LP(I, B) (of C(I, B) if p = 00).

Proof. Observe first that if p = co and f € E, then by Corollary A.2.31 f : I — Y is continuous and
f: I — X is bounded; and so (Lemma A.1.14) f € C(I, B). Therefore, we only have to prove compactness
in LP(I, X).

The proof proceeds in two steps.

Step 1. Let us first show that E is a relatively compact subset of LP(1,Y).
We may assume without loss of generality that I = (0,7), for some T" > 0. Observe that there exists
M < oo such that

sup || fllzee(r,vy +sup [ f'lzrvy + sup [ fllzer,x) < M (A.2.11)
feE fEE fEE

For 0 < € < T/2, we define the set E. = {(T.f)|j0,7/2, f € E}, where T is defined by (A.2.3). For f € E,

we have

T.f(t) — f(t) = 1/06(7'3f — )(t)ds, for every t € [0,T/2],

I3

where 7, f = f(- + s). It follows easily (see the proof of Proposition A.2.22) that

IT-f = flleo.r/2).v) < sup |[7sf = fllze(o.1/2),v)- (A.2.12)
0<s<e
For every t € R, we have
t+s
I f() = @)y < / 1)y do. (A.2.13)
t

Therefore,
T/2 t+s
ref = Sl < [ [ 150 do
0 ¢
1
< sl fllero,m),yy < sT7 M,
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where the last inequality follows from Hoélder’s inequality; and so, if p < oo,
1-1 1
HTsf - fHLP((O,T/Q),Y) < HTSf - f|‘Lm?(o,T/2),y)”Tsf - f”]zjl((o’T/Q),y)
< OMT7# s,
by (A.2.11). If p = oo, it follows from (A.2.13) and Holder’s inequality that ||7,f — f|zr(0,7/2),v) < s+ M.
Therefore, there exists C' < oo such that
. ,1 1
I7sf = fllLeo.z/2).v) < Cmin(si, s7). (A.2.14)

It follows from (A.2.12) and (A.2.14) that for every ¢ > 0, there exists € > 0 such that

sup dist(f, E.) <6, (A.2.15)
feF

where the distance is in L?((0,7/2),Y). Given ¢ > 0 and ¢ € [0,7/2], we have

L

IT-fO)lx < e N fllovirx) < Me™7;

and so

sup sup |[f(t)]|x < Me™ 5. (A.2.16)
fEE: te[0,T/2]

In adition, for every ¢,¢ € [0,T/2],

, 1 [tre 1
ITof(t) = Tof(E)ly = Hg/t (e f = Ol < g||Tt'—tf — fllzrco0,7/2),v)-

When (A.2.14) is applied, it follows that E. is uniformly equicontinuous in Y. Therefore, taking in account
(A.2.16) and the compactness of the embedding X < Y, we may apply Ascoli’s theorem; and so E. is
relatively compact in LP((0,7/2),Y). By (A.2.15), F is also relatively compact in L?((0,7/2),Y), as the
uniform limit of the sets E.. When ¢ is changed to T — t, it follows as well that E is relatively compact in

LrP((T/2,T),Y), hence in LP(1,Y).

Step 2. From the relative compactness in LP(I,Y"), we deduce the relative compactness in LP(I, B). For

this, we need the standard inequality:
V> 0,3C(n) <oo,vz € X, |lzlls < nllzllx + Cn)llzlly- (A4.2.17)

To see this, let 7 > 0 and consider B,, = {z € B, ||z|lg < n+n|lz|]ly}. (Bn)nen is an increasing sequence
of open subsets of B, and its union covers B. Since the unit ball U of X is relatively compact in B, there

exists ng such that U C B,,,. Therefore,
IzllB < n+nollz|ly,Vz € U,

and (A.2.17) follows from homogeneity. Since E is relatively compact in LP(I,Y), for every § > 0, there
exists a finite subset {f;};cs of E such that

sup inf — fille < 4.
fegjeJ”f fillc (ry) s
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It follows easily from (A.2.11) and (A.2.17) that for every f € E, j € J and n > 0,
sup mf ||f — fj”L;D([,B) S 77M + C(T})5
feEJjceJ
Therefore, given € > 0, and chosing n = ¢/2M, § = ¢/2C(n), we get
sup inf || f — fillLe <e.
sup inf 1 = o) <

Thus FE is relatively compact in LP(I,Y). O

Proposition A.2.46. Let X — Y be two Banach spaces and let f, be a bounded sequence of L>° (I, X)N
WLr(1,Y), for some r > 1. If X is reflexive and if I is bounded, then the following properties hold:

(i) there exists f € L>=(I,X), f : I — X being weakly continuous, and a subsequence nj such that

fno(t) = f(t) in X as k — oo, for every t € 1. In particular,

[ rwetya~ [ rewa
asn — oo for every ¢ € C.(I);
(ii) if Y is reflexive, then also f € WH(1,Y);

(iii) if there exists a uniformly convex Banach space B such that X — B < Y and if (f,)nen C C(I, B)
and || f, t)|ls — || f(t)||s as k — oo, uniformly on I, then also f € C(I, B) and f,, — f in C(I, B) as

k — oo.

Proof. By Corollary A.2.35, properties (i) and (iii) follow from Proposition A.1.5. Property (ii) follows
from Corollary A.2.39. O

Remark A.2.47. One can define higher order vector valued Sobolev spaces as follows. For 1 < p < o0,
one defines
daf

WL X) = {f € W' (1,X), 55 € WHP(L, X))},

with the correspinding norm. For f € W1P(I, X), one defines

&ef_ ddf
dt?  dtdt’

&2f B 2o, [dfdg
/Iﬁwu)dt—/lf(t)ﬁ(t)dt— —/@E@)dt,

for all ¢ € C%(I), and it follows from Corollaries A.2.31 and A.2.35 that W21(I, X) — C(I, X) and that

It is clear that

_ ~1
W2P(I,X) — CH*(I, X) with a = b , if p > 1. More generally, one defines by induction on m
p

df

WmP(I,X)={f e W™ 1P(I, X), 7

e Wm=bP(1, X)),

with the correspinding norm. For f € W™P(I, X), one defines

anf ddmf
dt™ T dt de™
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It is clear that
amf dfdm I
-1)m= t)dt
dtm( /f dtm =D dtﬂdtmi() ’
for 1 < j < m and for all p € C(I), and it follows from Corollaries A.2.31 and A.2.35 that W™1(I, X) —
C™ YI,X) and that W™P(I, X) — C™ L[, X) with o = b=

1
yifp> 1.

We know that if p < oo, then C2°(T, X) is dense in LP(I, X) and in W1P(I, X). However, it is sometimes
useful to have density of smooth functions in spaces of the type LP(I, X)NW?14(1,Y). This is the object of

the following result.

Proposition A.2.48. Let 1 < p,q < oo and let X — Y be two Banach spaces. Then C°(I, X) is dense
in LP(I, X) N WY4(1,Y). Moreover, if Z is a Banach space such that Z — X with dense embedding, then
C>(1,7) is dense in LP(I, X) N W14(1,Y).

Proof. By Corollary A.2.33, we may assume that / = R. The first statement now follows from the
standard procedure of truncation an regularization by convolution with a sequence of mollifiers, and the

second statement from density of C2°(R, Z) in C}(R, X) for the norm of C} (R, X). O

Remark A.2.49. Let Q be an open subset of R, and let 1 < p < oo. Consider u € WH1(I, L?(€)). Then,

d d

ditl € L*(I,LP(Q)). In particular, ditL € Li (I x Q) C D'(I x ). On the other hand, u can be considered
d

as a function of L{ (I x Q). In particular, % € D'(I x ). One verifies easily that (;1; = ditt in D'(I x Q).

Therefore, for functions u defined on I x €2, we will in general identify a—u and %

A.3. Sobolev spaces. Sobolev spaces have become an essential tool in the study of partial differential
equations. We recall below the most useful and significant results of the theory. A general reference for

Sobolev spaces is Adams [1].

A.3.1. Definitions. Throughout Section A.3, € is an open subset of RY. We consider only real-valued
functions, and we refer to Section A.3.7 for the case of complez-valued functions. We recall that D(2) is
equipped with the topology induced by the family of seminorms dg ,, where K is a compact subset of 2 and
m € N, defined by

dr.m(p) = sup Z |D%p(x)|, for all ¢ € D(Q).

reK
lal=m

The set of distributions on , D’(Q2), is the dual space of D(Q). If T € D’(Q) and if o € NV is a multi-index,

one defines the distribution
aal aan

DOT = ..
ozt Oapn

T eD'(Q)

by
(DT, ) = (—=1)/°NT, Dp), for all ¢ € D(Q).

A function f € L{ () defines a distribution Ty € D'(2) by

loc
Ty, ) / f(@)p(x) dx, for all ¢ € D(Q).
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It is well known that if T = T, then f = g almost everywhere. A distribution 7' € D’(Q) is said to belong
to LP(Q) if there exists f € LP(f2) such that T = T. In this case, f is unique.
For m € N and 1 < p < oo, the Sobolev space W P(Q) is defined by

W™P(Q) ={u € LP(Q), D*u € LP(Q) for |a| < m}.
W™P(Q) is a Banach space when equipped with the norm || [[ym» = || [[wm.» (o) defined by

lallwms = 57 1D%uloey.

0<|a|<m

For 1 < p < oo, one defines the closed subset W () of W™P?(Q) as the closure of D(£2) in W™ (£2). One
defines W7 (Q) as the set of u € L{, () such that ug, € W™P(), for every ' CC Q. When p = 2, one

loc loc

sets WP(Q) = H™.(Q), W™P(Q) = H™(Q) and WP (Q) = HJ* () and one rather equips H™(Q) with

loc

the equivalent norm
1

2

am={ > /Q\Dau(m)|2dx

0<lal<m

H™(Q) (hence HJ*(92)) is then a Hilbert space with the scalar product

[l zm ey = llul

(u,v)gm = Z D%u(z) D (x) dz.
0<al<m /¢
Note that when Q = RN, H™ can be equivalently defined in terms of the Fourier transform. The following

result is an immediate consequence of Plancherel’s formula.

Proposition A.3.1. For every m € N, the following properties hold:
(i) H™(RY) = {u € &'(RN); (1+ [¢*)™/?0() € L*(RN)};

(i) [[ullzm ~ 1+ [€%)™/2a(E)] e

In the statement of Sobolev’s embedding theorems, we will need the following spaces of continuous
functions. C(Q) is the space of continuous functions Q — R. C},(€2) is the Banach space of continuous and
bounded functions Q — R, equipped with the L> norm. Given a nonnegative integer m, CJ*(£2) is the
Banach space of functions u € C,(2) such that D%u € Cy,(Q), for all @ € NV such that |a| < m, equipped
with the norm of W (Q). C}, ,(Q) is the Banach space of uniformly continuous and bounded functions

Q — R, equipped with the L> norm. C’Q?u(ﬁ) is the Banach space of functions u € Cl,,(€2) such that

Dy € Gy, u(92), for every multi-index a such that |af < m. CJ" (€2) is equipped with the norm of W™ (€2).
C™*(Q) for 0 < a <1, is the Banach space of functions u € G}, (Q) such that

z) — DPu(y)|
x —y|*

| D%u(
cma = ||uflwm. + sup |

[[ul

s,y € Q, Iﬂm}<00-

Finally, Cy(?) is the closure of D(Q2) in L>°(Q).

Remark A.3.2. Note that one alway have the following inclusions: Co(2) C Cbu(2), Cb u(2) C Ch(9),
Chu(Q) C C(Q). Furthermore, Cp(Q) # Cp () # Cu(Q2), but if Q is bounded, then C}, () = C(Q).
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We will need the notion of regularity of the domain Q. Given z € RN, 2 € S¥=1 9 € (0,7/2) and

6 > 0, the cone with vertex z, direction z, polar angle 6 and heigth ¢ is the set

C(x,2,0,0) ={y e RY; IN >0,y — (x + A2)| < Asin(0)} N {y € RY; |y — x| < 6}.

We now make the following definitions.

Definition A.3.3. Let Q be an open subset of RV.

(i)

We say that x € OS2 has the exterior (respectively interior) cone property, if there exists z € SN~1,

0 € (0,7/2) and & > 0 such that C(z,2,0,6) NQ =0 (respectively C(x,z,0,5) C Q).

We say that Q has the cone property, if there exists 6 € (0,7/2) and 6 > 0 such that for every = € €,
there exists z, € SNV ~1 such that C(z, 24, 0,0) C .

We say that Q has a Lipschitz continuous boundary if for any x € 0S) there exists a neighbourhood U,
of x in RN and a Lipschitz continuous function ¢, : RV ~! — R such that for some system of cartesian

coordinates ({y1 -+ ,&x,N), the set QN U, is represented by the equation

gx,N < ¢x(§x,1 T agac,N—l)-

If the Lipschitz constants of ¢, are bounded independently of x € 02 and if there exists § > 0 such

that U, contains the ball of center x and radius §, ) is said to have a uniformly Lipschitz boundary.

Given a positive integer k, we say that Q has a C* boundary if for any x € 0 there exists a neigh-
bourhood U, of z in RY and a one-to-one mapping ®, from U, onto the unit ball B of RN such

that
2, (2NU,) C Rf ={(x1, -, zN); zn > 0},

(I)I(aQ N UI) C 8Rf = {(9317 cee ,.’EN); TN = 0},
®, and &, are CF.
If the C* norms of ®, and ®,! are bounded independently of x € S and if there exists § > 0 such

that U, contains the ball of center x and radius d, Q is said to have a uniformly C* boundary.

Remark A.3.4. Here a few simple observations concerning regularity of domains.

(i)

(i)

(iii)

One verifies easily that if the domain 2 has a bounded (hence compact) boundary, then the local and

uniform regularity properties are equivalent.

It is not difficult to verify that a domain Q with a C! (respectively uniformly C!) boundary has
a Lipschitz (respectively uniformly Lipschitz) boundary. One verifies as well that a domain with a
uniformly Lipschitz boundary posesses the cone property, and that every z € 9f) has both the interior

and exterior cone property.

Note also that the regularity properties are neither stable by intersection nor by union. For example, the
subsets ; and Qg of R? defined by Q; = {(z,y) € R? |z — 1| + |y|*> > 1} and Qs = {(z,y) € R?, |z —
2|2 + |y|? < 2} both have a uniformly C™ boundary for every integer m. However, Q1 UQy = RN\ {0}

does not have a Lipschitz boundary, and €1 N s does not even have the cone property.
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A.3.2. Basic properties of the space W™P(Q).  We begin with the following well known result (see
for example Adams [1], Theorem 3.5.).

Proposition A.3.5. If1 < p < oo, then the spaces W™P(Q) and Wy () are uniformly convex Banach

spaces.

For every function u defined almost everywhere on £, let us define the function @ almost everywhere on RV

by
u, on €,
u= { (A.3.1)
0, on RV \ Q.

For u as above, z € RV \ {0}, h € R\ {0} and i € {1,---, N}, let us set

T.u =U(- + 2)|, (A.3.2)
SR s

where e; is the vector of RY whose components are equal to 0 except the i*" one which is equal to 1. We

have the following characterization of W1?(Q) (see Brezis [17], Proposition I1X.3).
Proposition A.3.6. let 1 < p < oo and let u € LP(2). Then the following properties are equivalent:
(i) uwe WP (Q);
(ii) there exists C' such that for every ¢ € D(Q) and 1 <i < N, |/ udip| < Clloll e
Q

(iii) there exists C' such that for every w CC € and every z € RN \ {0} with |z| < dist(w,RY \ Q) one has

[m=u = ullLr ) < Clzf;

(iv) there exists C such that for every w CC , every 1 < i < N and every h € R\ {0} satisfying
|h| < dist(w, RN \ Q) one has |08 u|| 1) < C.

Furthermore, if u satisfies these properties, then one can take C' = ||Vul|rr(qy in (ii), (iii) and (iv).

Remark A.3.7. If p =1, then (i)=(ii) < (iii)<(iv). The functions satisfying (ii) (or (iii), or (iv)) are the
functions with bounded variation (i.e. the functions of L' whose all derivatives of order 1 in the sense of

distributions are bounded measures). See see Brezis [17], Remarque 6 p. 153.

Lemma A.3.8. Let1<p<oo. Ifu € W'P(Q), then for every w CC Q we have 0'u — d;u in L9(w) as
h |0, for every i € {1,---, N} and every 1 < q < p such that q¢ < oo, where O} is defined by (A.3.3).

Proof. Consider w CC , and let ¢ € D() be such that ¢ = 1 on a neighborhood of w. One verifies easily
that v = pu € WO1 () (apply for example Corollary A.3.33 below). In particular, there exists a sequence
(Vn)nen C D() such that v, — v in W19(Q). For every n € N, we have (9 — 8;)v,, — 01in LI(w), as h | 0.
It follows easily from Proposition A.3.6 (or Remark A.3.7 if p = 1) and Proposition A.1.4 that (0 —9;)v — 0

in LY(w), as h | 0. The result follows, since © = v on a neighborhood of w. O
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Remark A.3.9. Here are some simple consequences of the above results.

(i)

(iii)

Assume (2 is connected. Then it follows from Proposition A.3.6 ((i)«(iii)) that W1>°(Q) is the set
of functions u such that there exists a constant C' for which |u(z) — u(y)| < da(z,y) for almost all
x,y € Q, where dg, is the geodesic distance (i.e. dg(x,y) is the infimum of the length of polygonal lines
in Q joining x to y). In particular, if Q has a uniformly Lipschitz boundary, dq is comparable with the
usual distance in RY; and so W1 (Q) = C%1(Q). If 99 is not Lipschitz, functions of W1>°(Q) are not
necessarily Lipschitz continuous, as shows the following example. Let B be the ball of R? of center 0
and radius 2, and let Q = B\ [-1,1] x {0}. Let ¢ € D(R) be supported in (-1,1) and verify ¢(0) = 1.
Define the function u € C*°(Q) by

o(z), on QN {y > 0},
u(z,y) :{
0, on QN {y <0}.

Then u € W1°°(Q), but u is not Lipschitz continuous. However, note that for any domain 2, Lipschitz

continuous and bounded functions are in W1>°(Q).

It follows from Proposition A.3.6 ((i)=-(iii)) and Remark A.3.7 above that if (u,)nen is a bounded
sequence of WP(Q), 1 < p < oo, then ((un)jw)nen is a relatively compact subset of LY (w), for ev-
ery w CC Q. In particular, there exists a subsequence (uy, )reny converging almost everywhere in w.

Therefore, one constructs easily a subsequence of (u,),en converging almost everywhere in .

It follows immediately from the definition that if u € C™(Q), then v € W,"*°(), and the classical

loc

derivatives of u up to order m coincide vith the distributional derivatives. If furthermore all classical

derivatives of u up to order m belong to LP(Q2) for some 1 < p < oo, then u € W™P(Q).

Corollary A.3.10. Let m >1 and 1 < p < co. If (un)nen is a bounded sequence of W™P(S)), then there

exist u € W™P(Q) and a subsequence (un, )gen such that u,, — u almost everywhere as k — oo and

lullwm.r < lminf ||w,||wm.e.
n—oo

If p < oo, then also u,, — u in W™P. If p < 0o and (un)nen C WiP(Q), then u € WP (Q).

Proof. Consider a subsequence (nj)ren such that

lm ||un, ||[wme = liminf ||u,||wie.
k— o0 n—o0

There exist u € LP(£2) and a subsequence, which we still denote by (ny)ken, such that w,, — win LP weak

(in L weak*, if p = 00). By Remark A.3.9 (ii), we may also assume that u,, — u almost everywhere. Let

a be a multi-index, || < m. From the weak (or weak*) convergence in L?, it follows that u,, — u in D'(Q);

and so D%u,, — D%u in D'(2). Since D*u,, is bounded in L?, it follows that D®u € LP and that for some

subsequence, which we still denote by ng, D%uy,, — D% in LP weak (or weak*). Thus, v € W™P(Q) and

||U||Wm,p S lim ||Unk||Wm,p = liminf HunHWm,p.
k—o0 n—oo

The other properties follow from the reflexivity of WP when 1 < p < oo. O
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Corollary A.3.11. Let m > 0, let 1 < p < oo and let (u,)nen be a bounded sequence of W™P(Q). If

there exits u : 8 — R such that u, — u almost everywhere as n — oo, then u € W™?(Q) and
[lullwm.r < liminf ||w, ||wme.
n—oo
If p < oo, then also u, — u in W™P. If p < oo and (up)nen C Wy""(2), then u € WP (Q).

Proof. The result follows immediately from Corollary A.3.10. O

Theorem A.3.12. Let F : R — R be a Lipschitz continuous function such that F(0) = 0, and let p € [1, 00].
If u € WHP(Q), then F(u) € WHP(Q) and VF(u) = F'(u)Vu almost everywhere on Q. Moreover, if p < 0o
then the mapping u — F(u) is continuous from WP(Q) to W1?(Q).

Remark A.3.13. Theorem A.3.12 is due to Marcus and Mizel [75,76,77]. See also Bourdaud and Meyer [14]
for the case where W1P() is replaced by W*P(Q). Note that the formula VF(u) = F’(u)Vu almost
everywhere makes sense. Indeed, it follows from Step 2 of the proof that if f = g almost everywhere, then
fw)Vu = g(u)Vu almost everywhere. Note that it is important that p < oo in order that the mapping
u — F(u) be continuous. For example, the mapping u — u™ is not continuous W1 (Q) — W>(Q). To see
this, take Q = (0,1). Let u(z) = z, for z € Q and u,(z) = z—1/n, for z € Q. We have ||u,, — u|lw1.~ = 1/n,
but |V (u;} —ut)||L= =1 for every n. On the other hand, one shows easily that the mapping u — F(u) is

continuous from W1 (Q) strong to W1 (Q) weak-.

Proof of Theorem A.3.12. We proceed in four steps.

Step 1. If we assume in addition that F € C1(R), then F(u) € WHP(Q) for every u € W1P(Q), and
VF(u) = F'(u)Vu almost everywhere on Q. This is well known. The idea of the proof is to approximate
u by a sequence (uy)nen C WHP(Q) N C>(Q) (see for example Brezis [17], Proposition I1X.5).

Step 2. Let 1 < p < oo and let f € WLP(Q). If A C R is a set of measure 0, then Vf = 0 almost
everywhere on the set {x € Q; u(z) € A}.  We follow the proof of Almgren and Lieb [3]. Let U C R be an

open set with finite measure and let
t
M(t) :/ 1y (s)ds.
0
We claim that

M(f)V - ¢pdz = —/ lipery VS - ¢ da, (A.3.4)
Q Q

for every ¢ € D(Q)™. To prove this, consider a sequence 0 < g; < --- < g; < --- < 1 of continuous functions

such that g; T 1y almost everywhere and set

It follows from Step 1 that VN;(f) = Ni(f)Vf = g;(f)V f almost everywhere. Therefore,

/Nj(f)vcbdx:—/gj(f)Vf-cbdx- (A.3.5)
Q Q
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It follows from the dominated convergence theorem that N;(f) — M (f) almost everywhere. Since |N;(f)| <
|M(f)| almost everywhere, it follows by dominated convergence that the left-hand side of (A.3.5) converges
to the left-hand side of (A.3.4) as j — oo. As well, since g; — 1y almost everywhere and 0 < g; < 1,
it follows by dominated convergence that the right-hand side of (A.3.5) converges to the right-hand side
of (A.3.4) as j — oo. Hence (A.3.4). Let now Uy D Uz D - -- be a decreasing sequence of open subsets of R
such that A C U; and |U;| — 0 as j — oo, and set E = jQN U; D A. We apply formula (A.3.4) with U = U;.
It follows that

/QMj(f)V~¢dx - —/Ql{erj}Vf-(bdm, (A.3.6)
for every ¢ € D(Q)", where

Mj(t):/o 1y, (s) ds.

It follows from the dominated convergence theorem that M;(f) — 0 almost everywhere. Since |M;(t)| < [¢|
almost everywhere, it follows by dominated convergence that the left-hand side of (A.3.6) converges to zero.
As well, since 1y; — 1g almost everywhere and 0 < 1y; < 1, it follows by dominated convergence that the

right-hand side of (A.3.6) converges to

- /Q l{feE}vf . ¢d$

It follows that

Since ¢ is arbitrary, this implies that 1;;cz Vf = 0 almost everywhere, which is the desired result, since

ACE.

Step 3. We show that F'(u) € WHP(Q2) and VF(u) = 1 almost everywhere on €, where v = F'(u)Vu.
Since F'(u) € LP(Q), we need only show that VF (u) € LP(2) and that VF(u) = ¢. To see this, define

1

Fot) = n/OE(F(t + )= F(s)) ds,

for n € N. Tt follows easily that F,(t) < L|¢| and that F,, — F uniformly as n — oo. Furthermore,
F, € C1(R) and

1
Fl(t) = n/o F'(t+s)ds,

which implies that |F}(t)] < L and that F}(t) — F'(t) as n — oo for every t € L, where £ € R is such
that R\ £| = 0. It now follows from Step 1 that F,(u) € W'P(Q) and that VF,(u) = F,(u)Vu. If
u(z) € L, then F) (u(x)) — F'(u(z)) as n — oo; and so, VF,(u) — F'(u)Vu almost everywhere on the set
{z € Q; u(zr) € L}. Since |R\ L] =0, it follows from Step 2 that VF,, (u) = 0 almost everywhere on the set
{z € Q; u(z) & L}. It follows that VF, (u) — ¢ almost everywhere on Q. Since |VF,(u)| < L|Vu| € LP(Q),
it follows that VF,(u) — ¢ in LP(Q) (in L>=(9) weak-x if p = 00). Since Fy,(u) — F(u) in LP(£2), hence in
D'(Q), it follows that VF(u) = € LP(Q).

Step 4. Continuity. Note that the mapping u — F(u) is continuous LP(Q2) — LP()). Therefore, we need
only show that if u,, — u in W1P(£2), then there exists a subsequence (uy, )xen such that VF(u,, ) — VF(u)
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as k — oo in LP(Q). Suppose first that p > 1. It follows from Step 3 that VF(u,,) is bounded in LP().
Therefore, if p > 1, then there exists z € LP(Q2) and a subsequence, which we still denote by (uy)nen such
that VF(u,) — z in LP(Q) weak. In particular, VF(u,) — z in D’'(Q2), which implies that z = VF(u).
Since LP?(2) is uniformly convex, it remains to show that |VE (up)|zr — [|[VF(u)|r. Let f = 1g where E
is a measurable subset of R. Set now g = f — 1/2, so that |g| = 1/2. We have

1 1
lg(un) V|| Lo = SIVunlle — SIVullze = llg(u)Vul Le;

Therefore, if we set
t
G0 = [ gl
0

then it follows from what precedes that G(u,) — G(u) in W1P(Q), as n — oo (note that G verifies the

assumptions of the theorem); and so,

1 () Vernlle — [1£()Vul o

m

It easily follows that the above property holds when f = Z 1, where the Ej;’s are disjoint measurable
j=1

subsets of R and m < oo. Let now € > 0. Since F’ € L>®(R), we can write F' = f + h where f is as above

and ||| L= < e. It follows that
HIVEun)lle = [1f (un) V| Lo | < e[ Vunl| e,
and
HIVE()[Le = [1f(w)Vul Lo | < el VullLr;

and so,

limsup | | VF(up)|lee — [|VF ()| zr| < elimsup(||Vun| e + || Vul ).
n—oo n—oo

Since ¢ is arbitrary, the result follows. The case p = 1 is more complicated, and we refer the reader to

Marcus and Mizel [77]. O

1 1

Corollary A.3.14. Let1 <p,q,r < oo and o > 0 be such that — = @ + — and let F : R — R be a locally
r P q

Lipschitz function such that F(0) = 0 and

[F(y) = F(2)| < L(y|™ + |2[*)]y — 2|,

for all x,y € R. Then, for every u € Wh4(Q) N LP(Q), we have F(u) € W (Q) and ||F(u)|lw1.» <
2L|u||$s llullwre. Furthermore, |VF(u)| < 2L|u|*|Vu| almost everywhere on §Q.
Proof. Consider the function F,, defined by
F(n), if n <z,
F,(x)=1¢ F(x), if —n<z<n,
F(—n), if —n<uz.
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It follows that F), is globally Lipschitz. The result now follows rather easily by applying Theorem A.3.12

then passing to the limit as n — oo (apply Dunford-Pettis’ theorem to pass to the limit if » = 1). O

Corollary A.3.15. Let p € [1,00]. If u € WHP(Q), then u™,u~, |u] € WHP(Q) and

Vu, if u > 0,
Vu, if u > 0, —Vu, ifu <0,
Vut = Vu~ = Viul = 0, ifu =0,
0, ifu <0; 0, if u > 0;
—Vu, if u < 0;
almost everywhere in Q. In particular, |V|u|| = |Vu| almost everywhere. If p < oo, then the mappings
wr— ut, ur u” and u — |u| are continuous on W1P(Q).

Corollary A.3.16. Letp € [1,00]. Ifu,v € WHP(Q), then max(u,v) € WHP(Q) and min(u,v) € WHP(Q).

Proof. max(u,v) = u+ (v —u)" and min(u,v) = v — (u — v)™; and so, the result follows from Corol-

lary A.3.15. O

Corollary A.3.17. Let p € [1,00]. Consider M € W,P(Q) such that VM e LP(Q). If M~ € L?(RQ), then

loc
(u— M)+t € WHP(Q) for every u € WHP(Q), and
Vu— VM, ifu> M:
V(u— M)t =

0, ifu < M;

almost everywhere. Moreover, if p < co, then the mapping u — (u—M)¥ is continuous W1P(Q) — W1P(Q).

In particular, these results apply to the case where M is a nonnegative constant.

Proof. We have (u— M) € W2?(Q). When Corollary A.3.15 is applied, it follows easily that (u— M)* €

loc
WP(Q) and that
Vu—- VM, if u> M;
V(u—M)" =
0, if u < M;
almost everywhere. In particular, |V(u—M)*| < |Vu|+|VM| € LP(Q). Since (u— M) < |u|+ M~ € LP(Q)

it follows that (u — M) € WP(Q). Continuity is proved by the technique of proof of Theorem A.3.12. O

Remark A.3.18. These properties are specific to the case m = 1. For example, consider 2 = (—1,1),

F(z) = |z| and u(z) = sin(zz). Then u € C°(Q) but F(u) ¢ W1(Q).

Proposition A.3.19. Let 1 < p < co. Ifu,v € WHP(Q) N L*®(Q), then uwv € WP(Q) N L>®(Q) and

V(uv) = uVv + vVu almost everywhere in €.

Proof. See Brezis [17], Proposition IX .4, p.155. O

Finally, we recall below a quite useful result concerning L” spaces.

Lemma A.3.20. Let 1 <p < oo, let u: Q — R and let (u,)neny be a bounded sequence of LP(Q2) such

that u, — wu almost everywhere as n — oo. If p > 1, then u € LP(Q) and u, — u as n — oo in L1(Y),
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for every ' C Q of finite measure and every q € [1,p). In particular, u, — u as n — oo, in L?(Q) weak if

p < 00, and in L>(Q) weak* if p = co.

Proof. By extending the functions by 0 outside Q, we may assume that @ = RY. Observe that by Fatou’s
lemma, we have u € LP(RY). Let Q' C RY have a finite measure and let ¢ € [1,p). Consider € > 0. By

Egorov’s theorem, there exists a measurable subset E of Q' such that w,, — u uniformly on '\ E and

P—q %
|E|™# sup (/ |un—up) <eg/2.
n>0 \JRN

Let ng be large enough so that |u, —u|? < &/2|Q| on '\ E, for n > ng. It follows that

/ |un—u\q:/ |un—u|q+/ [tn, — ul?
o B O\E

<|E|F" (/ |un—u|p> + Q' \ E| sup |u, — ul?
B Q\E
<e.

Hence the result, since € is arbitrary. O

A.3.3. Basic properties of the space W;""(Q2).  Basically, W;""(£2) is the set of functions of W™ (£2)
that “vanish on 9Q”. In this section, we give some characterizations of Wy (). The case Q = R¥ is quite

simple, as shows the following result.

Proposition A.3.21. Let 1 < p,q < oo and let m,j be nonnegative integers. Then, D(RY) is dense in
Wmp(RN) N WI(RY). In particular, WP (RY) = WmP(RY),

Proof. By the standard procedure of truncation and regularization. O

Remark A.3.22. Note that if Q # RN, then W;"P(Q) is a strict subset of W™?(Q).

Proposition A.3.23. Let 1 < p < co. For every u € WHP(Q) N C(Q), the following properties hold:
(i) if u =0 on N, then u € W, *(Q);

(ii) if u € Wy*(Q) and if Q has a C* boundary, then u = 0 on 9.
Proof. See Brezis [17], Theorem IX.17 and Remark 20.

Remark A.3.24. The smoothness assumption on 2 is essential in property (ii). For example, asume
N > 2 let @ = RV \ {0} and consider u € D(RY) such that u(0) = 1. Then it is easily verified that
u € HYQ), but u =1 on 9N.

Proposition A.3.25. Let 1 <p < oo, let u € LP(Q) and let @ be defined by (A.3.1). Then the following
holds:
(i) if u € Wy P(Q), then w € WhHP(RN);
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(ii) ifw e WHP(RN) and if Q has a C' boundary, then u € W, *(Q).
Proof. See Brezis [17], Theorem IX.18 and Remark 21.

Remark A.3.26. Property (ii) is not anymore valid without some smoothness assumption on {2, as shows
the following simple example. Let ¢ € D(R) be such that ¢(0) = 1. Let Q@ = (—o00,0) U (0,00) and let

u = p|o almost everywhere. Obviously, u = ¢ almost everywhere. However, u € WhP(R) but u & WO1 P(Q).

Corollary A.3.27. Let 1 < p,q < co. If u € WyP(Q) N W'4(Q) and if Q has a C' boundary, then
ue Wy (Q).

Proof. Let @ be defined by (A.3.1). It follows from Proposition A.3.25 (i) that w € W1P(RY). We clearly

have @ € LY(RY), and since
Vu on €
Vu =
0 on RM\Q,

we have Va € LI(RN). Therefore 7 € W4 (RN); and so, u € Wy*?(€2) by Proposition A.3.25 (ii). O

Proposition A.3.28. Let 1 < p < co and u € WHP(Q). If there exists Q' CC Q such that u = 0 almost
everywhere on Q\ €, then u € W, *(9Q).

Proof. See Brezis [17], Lemma IX.5.

Corollary A.3.29. Let F' : R — R be a Lipschitz continuous function such that F(0) = 0, and let
p € [1,00). Then the mapping u — F(u) is continuous from Wy?(Q) to W, (Q).

Proof. By assumption, there exists (¢, )nen C D(Q2) such that ¢, — uin WHP(Q). By Proposition A.3.28,
we have F(p,) € WyP(Q). On the other hand, it follows from Theorem A.3.12 that F(p,) — F(u) in
W1LP(Q). Hence the result. O

Corollary A.3.30. Let p € [1,00). If u € Wy P(Q2), then ut,u™,|u| € Wy (Q). Moreover, the mappings

w— ut, u u~ and u— |u| are continuous on W' (€2).
Corollary A.3.31. If1 < p < oo and u,v € W, *(Q), then max(u,v) € Wy *(2) and min(u,v) € Wy* ().

Proof. max(u,v) = u+ (v —u)" and min(u,v) = v — (u — v)™; and so, the result follows from Corol-

lary A.3.30. O
Corollary A.3.32. Let p,q,7,a and F be as in Corollary A.3.14. If q,r < oo, then for every u €

W (Q) N LP(Q), we have F(u) € W) (Q).

Proof. The proof is similar to that of Corollary A.3.14, by applying Corollary A.3.29 instead of Theo-
rem A.3.12. O
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Corollary A.3.33. Let 1<p <oc. Ifue W'P(Q) and ¢ € D(Q), then pu € Wy (Q).

Proof. It follows from Proposition A.3.19 that pu € WP(Q). Since pu is supported in a compact subset
of €, the result follows from Proposition A.3.28. O

Proposition A.3.34. Let 1< p < oo and let u € WHP(Q). If there exists v € W, "* () such that |u| < |v|

almost everywhere, then u € W,"*(Q).

Proof. Tt follows from Corollary A.3.30 that |v| € Wy (). Let (wy)nen C D(Q) be such that w, = [v]
in WhP(Q). It follows from Corollary A.3.15 that (w, — u™)™ — (o] — u™)* in WHP(Q). On the other
hand, supp (w, — u™)* C supp (wy), thus (w, — u™)™ € H}(Q) by Proposition A.3.28. This implies
(Jo] —ut)t € W P(Q). Since |v] > |u| > uT, we have (Jo| —u)* = |v| — u't; and so, [v] — ut € W) P(Q),
from which we get u™ € Wg P(Q). One shows with the same argument that u~ € Wg P(Q). Therefore,

u=ut —u" € WyP(Q). 0

Corollary A.3.35. Let 1 < p < oo and let M € W,5P(Q) be such that VM € LP(Q). If there exists
w € WyP(Q) such that M > w almost everywhere, then (u — M)t € WyP(Q) for every u € Wy P (Q).

Moreover, the mapping u — (u — M)* is continuous W "*(2) — W, *(Q). In particular, the above results

apply to the case where M is a nonnegative constant.

Proof. Note that (u— M)t < |u|+M~ < |u|+w € Wy (Q). Therefore, it follows from Proposition A.3.34
that (u — M)t € W, (). Continuity follows from Corollary A.3.17. O

A.3.4. Sobolev’s inequalities. We recall below the most useful embedding theorems and Sobolev’s

inequalities concerning Sobolev’s spaces.
Remark A.3.36. It may be convenient to approximate functions of W™?(€)) by smooth functions or to
extend functions of W™?(€) to functions of W™P(R¥). This can be done as follows.

(i) If © has a uniformly Lipschitz boundary and if 1 < p < oo, then the restriction to € of functions of
D(RY) is dense in W™P(Q2) (see Adams [1], Theorem 3.18).

(i) If p € [1,00), then W™P(Q) N C>°(Q) is dense in W™P(Q) (see Adams [1], Theorem 3.16).
(iii) If Q has a bounded C™ boundary, then there exists an operator E € L(W™P(Q), W™P?(RM)) such that

Eujg = u, for every u € W™P(Q) (see Adams [1], Theorem 4.26).

Theorem A.3.37. (Poincaré’s inequality) If || is finite (or if Q is bounded in one direction) and if

1 < p < oo, then there exists a constant C' such that
lullr < C[[Vul| s, (A.3.7)

for every u € W, P(9Q).
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Proof. By density, we only have to prove the estimate for u € D(RY) with supp(u) C Q.
Assume first that || < co. In the case p = 1, It follows from (A.3.8) below that Hu||L - < Cl[Vul[p;

N
N—T
and so |lul[zr < C|QYN||Vul|z1, which is the desired estimate. If p > 1, It follows from (A.3.8) that
N(p—1)
Np—-1)+p
Assume now that Q is bounded in one direction. Without loss of generality, we may assume that

[ullze < C|IVul|%,|ul| 7%, with a = € (0,1). Hence the result, since ||[ul[z: < [QY?"||ul|L».
Q C (0,a) x RN=1 for some a > 0. Given (za,---,2y) € RN~ the function z1 + u(xy,---,2y) belongs to
D(0,a). It follows from the first step of the proof that there exists C' such that [[u(-, 22, -+, 2N)|Lr(0,0) <

Cllovu(-, 2, -, 2N)| Lr(0,a), from which we get easily ||ul|z» ) < Cl|01ul|Lr(0)- O

Remark A.3.38. Here are some simple observations concerning Poincaré’s inequality.

i) Inequality (A.3.7) holds under the more general assumption that Q@ C w x R¥N =% where 0 < k < N and
(i) y g

w is an open subset of R¥ of finite measure, the proof being the same.

(i) The boundedness assumption on €2 is essential in Theorem A.3.37. In particular, if Q = R”Y, then

inequality (A.3.7) does not hold. To see this, consider ¢ € D(RY), ¢ # 0. For A > 0, let py(z) = o(z/N).

Then ||px||Lr = )\%H@Hm and ||Vl = )\%71||V<p||Lp. Therefore loallr A Il zr

IVerlle — “lIVellze A—oc

Corollary A.3.39. If Q is as in Theorem A.3.37, then ||Vul|1»(q) is an equivalent norm to |luly1.»(q) on

Wo(9).

Theorem A.3.40. (Sobolev’s embedding theorem) If 2 has the cone property, then the following prop-
erties hold:

Np r

(i) if1 <mp < N and j > 0, then WITm™P(Q) — W4(Q), for every q € | N
—mp

(i) if mp = N and j > 0, then WiT"™P(Q) — W¥4(Q), for every q € [p,0);
(iti) if j > 0, then WitN-1(Q) «— CJ(Q). In particular, WN-1(Q) — L®(Q);
(iv) if mp > N and j > 0, then WIT™P(Q) — C'Z(Q). In particular, W™P(Q) — L>®().

If Q has a uniformly Lipschitz boundary, then also
mp — N

(v) if mp > N > (m —1)p and j > 0, then WIT™P(Q) — CH%(Q), where a =
p

Proof. See Adams [1], Theorem 5.4. O

Theorem A.3.41. (Rellich’s compactness theorem) If Q) is bounded and has a Lipschitz boundary. then
the following properties hold:

Np )

(i) ifmp < N and j > 0, then the embedding W7+t™P(Q) «— W74(Q) is compact, for every q € [p, N —mp
—mp

(ii) if mp > N and j > 0, then the embedding WIT™P(Q) — C’g (Q) is compact;

(iii) if mp > N > (m — 1)p and j > 0, then the embedding Wit™P(Q) — C%(Q) is compact, for all
- N
A€ (0, mp ).
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Proof. See Adams [1], Theorem 6.2. Note that since Q2 is bounded, its boundary is uniformly Lipschitz.D

Theorem A.3.42. The conclusions of Theorems A.3.40 and A.3.41 remain valid without any smoothness
assumption on ) if one replaces W™P(Q2) by W;""*(Q) (note that Q still needs to be bounded for the compact

embedding).

Proof. See Adams [1], Theorem 5.4, part III and Theorem 6.2., part IV. O

Remark A.3.69. If p = N > 1, then WHP(Q) — L(Q) for every p < q < oo, but WhP(Q) & L>®(Q).
However, Sobolev’s embedding theorem can be improved by Trudinger’s inequality. In particular, if N = 2,

then for every M < oo there exists p > 0 and K < oo such that

/ (eullu\|2 N 1) <K
Q

for every u € H}(Q) with [Jul[z1 < M (see Adams [1]).

Theorem A.3.44. (Gagliardo-Nirenberg’s inequality) Let 1 < p,q,r < oo and let j,m be two integers,

L (1 my, (-
p N “\rT N q

j N
for some a € [i, 1] (a<1ifr>1and m—j— — =0), then there exists a constant C(N,m, j,p,q,r) such
m T

0<j<m. If

that

a

YDl <C | Y ID%uller | fullze, (4.3.8)

leel=4 lee|=m

for every u € D(RY).

Proof. See Friedman [42], Theorem 9.3, for the general case. The case a =r =1, m —j = N is treated in

Brezis [17], Chapter IX, Remark 14. O

Remark A.3.45. Here are some simple consequences of Theorem A.3.44.

(i) By density (Proposition A.3.21), inequality (A.3.8) holds for every u € W™ (R™) N LY(RY), provided
q,r < o0o. If ¢ = 0o and N < mr < oo, then W™ (RY) — LI(R"Y), and again by density inequal-
ity (A.3.8) holds for every u € W™ (RN);

(ii) also by density (see Proposition A.3.58 below), inequality (A.3.8) is valid for every u € W™ (Q)NLI(2),

where € is any open domain of RY, provided ¢, < 0o, or ¢ = 0o and N < mr < oo;

(iii) Tt follows easily from (A.3.8) and (ii) above that for every open subset € of RY and every integers
0 < j7 < m, one has
ull sy < Cllull o ey Il 5y

for every u € HJ*(€2). More generally, if p < oo, then

el ) < Ol 1l 5 (4:3.9)
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for every u € Wy ().

(iv) Let © be a domain having a bounded C™ boundary. It follows from Adams [1], Theorem 4.26 that if
q,r < 00, then there exists an operator £ mapping functions defined almost everywhere in € to functions
defined almost everywhere in RY such that E € L(W™"(Q), W™"(RN)), E € L(LI(2), LY(RY)), and
Eu = u almost everywhere in . In fact, the proof of Theorem 4.26 in Adams [1] shows that the same
conclusion holds with the spaces L(Q) and L9(RY) replaced by the spaces Cj, ,(Q) and C, ,(RY),
respectively. Therefore, if u € W™ (Q) N L"(Q) and if ¢, < oo or if ¢ = 00 and N < mr < oo, then it

follows from (i) above and inequality (A.3.8) that

Z [D%ull e () = Z HDQEUHLP(RN < CllEullym. T(RN)HEUHLq(RN)

lo=j o =g

< Cllullfymr @ llull 7o)

and so, the inequality

Y 1Dl o) < Cllullfym @ llull o) (4.3.10)

la|=3

holds for every u € W™ (Q2) N L" (), provided ¢,r < oo or ¢ = 0o and N < mr < oo.
Corollary A.3.46. Ifmp > N, then W;""?(Q) — Cp(9).

Proof. By definition of Cy(£2), this follows immediately from the density of D(Q) in Wy""(Q2) and the
embedding W™P(Q) — L>®(Q). O

Corollary A.3.47. IfQ has a uniformly C' boundary and if mp > N, then W™ (Q) N W, (Q) < Co(€).
Before proceeding to the proof of Corollary A.3.47, we need the following characterization of Cp(£2).

Lemma A.3.48. Cy(Q) is the set of u € C(Q) verifying the following properties:
(i) u(z) =0, for all z € 0Q;

(ii) for all € > 0, there exists M < oo such that |u(x)| < ¢, for all x € § such that |z| > M.

Proof. It follows easily from the definition of Cy(Q2) that every u € Cy(Q2) belongs to C(Q) and verifies (i)
and (ii). Conversely, consider u € C(f) verifying (i) and (ii), and let € > 0. It follows easily from (i) and
(ii) that

{z € Q; |v(z)| > ¢/2} is a compact subset of Q. (A.3.11)

Define v € C(RY) by

v(z) =

{ (u—e/2)" — (u+¢e/2)”, in O

0, in RN\ Q.

We have v € C.(R”Y) and it follows from (A.3.11) that Supp(v) is a compact subset of 2. Furthermore,
|u—vjallLe < €/2. (A.3.12)
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Finally, let (p,)nen be a sequence of mollifiers, and let v,, = p, * v. We have v,, € D(RY), and v,, — v in
L>(RY) (see Brezis [17], Proposition IV.21, p.70). Furthermore, for n large enough, Supp(v,) is a compact

subset of Q. Choose n large enough, so that Supp(v,) is a compact subset of Q and
|l — vp|lLe < e/2, (A.3.13)

and set u. = (vn))o. We have u. € D(Q), and it follows from (A.3.12) and (A.3.13) that ||u — uc[[L=~ < e.

Since ¢ is arbitrary, it follows that u € Cy(£2). Hence the result. O

Remark A.3.49. Here are some simple observations about Lemma A.3.48.

(i) It follows from Lemma A.3.48 that if © is bounded, then Co(Q) = {u € C(Q); ujpo = 0}. If Qis
unbounded, then Cy() is the set of u € C(Q) that vanish on 9 and such that |u(x)| — 0, as |x| — oo,

x € Q.

(ii) It follows immediately from Lemma A.3.48 that if u € Cp(£2), then also u™,u™ € Cy(Q).
Corollary A.3.50 Let 1 <p < co. IfQ has a C' boundary, then Wy () N Cy, () C Co(RQ).

Proof. Consider u € W, ?(Q)NCy.4(). In particular, u is uniformly continuous, and since also u € LP(Q),
it follows easily that |u(z)| — 0, as |z| — oo, x € Q. On the other hand, it follows from Proposition A.3.23 (ii)

that ujpq = 0; and so, u € Co(9). O

Proof of Corollary A.3.47. The result follows from the embedding W™P?(Q) — Cy,(Q) (see Theo-
rem A.3.40 (v)) and from Corollary A.3.50. O

A.3.5. The Sobolev spaces W~"™1%(0Q).

Definition A.3.51. For 1 < p < oo and m € N, one defines W~ (Q) as the (topological) dual of
Wg"P(Q). One defines H=™(Q) = W~"2(Q), so that H-™(Q) = (H*(Q))*.

Remark A.3.52. Here are some simple consequences of Definition A.3.51.

(i) Tt follows from the dense embedding D(Q) < W"P(Q) that W~ (Q) is a space of distributions on

Q. In particular,

<f7 90>W*""ap’,W(;"’p = <f7 <P>D',D»

for every f € W= () and ¢ € D(Q). Furthermore, it follows from the dense embedding Wg™?(Q) <
LP(Q) and Proposition A.1.5 that L (Q) < W™ (Q). If p > 1, then the embedding is dense by
Proposition A.3.5 and Proposition A.1.5. In particular, D(Q) is dense in W% (). Furthermore,

<f7<p>W*myp’,Ws”*p :Afwdxv
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(iii)

for every f € L (Q) and ¢ € D(Q) (and, by density, for every ¢ € WJ"?(€)). Note also that a
distribution T' € D'(Q) defines (by density of D(Q) in W™ (£2)) an element of W~"%'(£2), if and only

if there exists a constant C' such that

(T, @)pr p| < Cllollwme,

for all ¢ € D(2).

Assume that that 1 < ¢ < oo is such that W™ (Q) < L(Q). Then L9 (Q) < W~ (). Further-
more, if p > 1, then the embedding is dense. In the case ¢ < oo, the result follows from Proposition A.1.5
(observe that if p > 1, D(2) € Wy"?(2); and so, the embedding W;"*(Q) < L4(Q) is dense). Suppose
now that ¢ = oo, that is Wg"?(Q) < L>*(Q). It follows that the linear form W;"*(2) — R defined by

os2um [ ule)f(@)d.

is continuous for every f € L*(€). This defines a mapping L'(Q) — W= (Q). This mapping is
injective since D() € WJP(Q); and so L*(Q) — W' (Q). If furthermore p > 1, then by (i) above,
D() is dense in W~ (Q); and so L'(2) D D() is dense in W7 ().

Like any distribution, an element of W~ () can be localized. Indeed, if T € W~ (Q) and €' is
an open subset of 2, then one defines T} as follows. Let ¢ € D(Q') and let ¢ € D(Q) be equal to ¢ on
) and to 0 on 2\ €. Then

U(p) = <¢3T>W(;”’p(9)7W*m,p’(Q)
defines a distribution ¥ € D'(Q'). Since [|¢]|wrr ) < l@llwyr(q), it follows that ¥ € wWmr (),

and one sets Tjor = V. It is clear that the operator

W—m,p/(Q) _ W—TTL,pI(Q/)
PQ/ :
T Lad 1—“9/

is linear and continuous, and is consistent with the usual restriction of functions.

Even though H{*(Q) is a Hilbert space, one generally does not identify H () with HJ*(£2). One
rather identifies L?(Q) with its dual, so that H~™(Q2) becomes a subspace of D’(£2) containing L*().
In particular, if u € HF*(Q) and v € L?(2), then

(u, ) gon gr-m :/Qu(m)v(x) dx. (A.3.14)

Taking u =v € H*(Q) in (A.3.14), it follows that

lul|3. < [wll e lwll g —m, for all w € Hg"(S2). (A.3.15)

In addition, since by definition [lul[g-m = sup{(u,v)g-m gr; [|v||g= = 1}, we deduce from (A.3.14)
that

[l = < [l 22, (A.3.16)

for all u € L*(Q).
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(v) Since D is bounded from H} () to H(’f*j (Q), for every k > j and every multi-index « of length j, it
follows easily from the definition and identity (A.3.14) that D* is a bounded operator from H~™(Q)
to H=™=J(Q), for every m € N. Since also D® is bounded from H*(Q) to H*~7(2), for every k > j, it
follows easily that if k < j, then D® is bounded from H*(Q) to H*=7(Q).

(vi) In particular, A defines a linear, continuous operator from H'(Q) to H~1(£2). Note that for u € H*(Q),
the linear form Au € H~1(2) on H}(Q) is defined by

(Au,v) = — /Q Vu(z) - Vo(x) dz, for v € Hy(Q). (A.3.17)

This is clear for v € D(Q) and follows by density for v € HZ(2). We will see in Section A.5 that for A
not too negative, /A — A\ defines an isomorphism from H$ () onto H ().

Proposition A.3.53. Let 1< p < co. Then a distribution T € D'(Q) belongs to W~ (Q) if and only if
there exists f, g1, -, gn € LP (Q) such that

N
dg; . /
j=1
Furthermore, one can choose f, g1, -+, gn such that [|T |y —mo = [fll0r + l91llper + -+ gzl Lo -
Proof. See Brezis [17], Proposition IX.20.

Remark A.3.54. It is easily verified that the decomposition of Proposition A.3.53 is not unique.

When Q = R, one can define H~™ in terms of the Fourier transform. More precisely, the following

result is an easy consequence of Proposition A.3.1.

Proposition A.3.55. For every m € N, the following properties hold:
(i) H™(RY) = {ue S'(RY); (1+[¢))™/2u(€) € L*(RN)};

(i) flullz-m =~ (14 [6]%)7™/2a(€)l| -

Corollary A.3.56. Ifm,j are nonnegative integers, then

}{ETRN) ||UH};F_";,(RN),

ullz2@yy < Jlul
for all u € H(RV).
Proof. We have
sy = ey = [ 10+ V7200001010 + I ) 7 de.
Applying Holder’s inequality, we get
lullZa ey < 1L+ |- Y200 T L4+ |- )~ 20 5 -
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Hence the result, by Propositions A.3.1 and A.3.55. O

Corollary A.3.57. Ifm,j are nonnegative integers, then

m J
j+m j+m

lull 2@y < Nlull 5o 1l 7m0y

for all u € HJ().

Proof. By density, it suffices to establish the result for u € D(2). Then the result follows by applying
Corollary A.3.56 to u defined by (A.3.1) O

We end this section with a useful density result.

Proposition A.3.58. Let m,j be nonnegative integers and let 1 < p,q < oo. The following properties
hold:

(i) D(Q) is dense in WP () N WL 4(Q);

(i) if ¢ > 1, then D(Q) is dense in WP () N W57 (Q);
(iii) if p,q > 1, then D(Q) is dense in W~ (Q) N W54 (Q);
(iv) D(Q) is dense in W;""(Q) N Cy(Q);

(v) if p > 1, then D(Q) is dense in W~ (Q) N Co(Q);

Proof. Let X = W, ?(Q)NW (). Tt follows from Proposition A.1.17 that X* = W =" (Q)+W 54 (Q).
Suppose that f € X* is such that (f, o) x+ x = 0 for all ¢ € D(Q) and write f = fi1+ fo with f; € W*m’p/(ﬂ)
and f, € W74 (Q). We have (see Proposition A.1.17)

(fro)xsx = (f1, Qwmw wrr + {f2, Q) wsa wie = (f1.0)p.0 + (f2, 0)D D
=(fi+ f2, o) = (f, ) D
It follows that f = 0 in D’(Q), hence in X* (see Remark A.1.18). Therefore, D(f2) is dense in X. This
proves property (i), and properties (ii) and (iii) are proved by the same argument (note that if p > 1, then
WP(Q) is reflexive; and so, (W=7 (Q))* = W;*P(Q)). Properties (iv) and (v) are also proved by the

same argument, since the dual of Cy(12) is also a space of distributions (since D(€2) is dense in Cyp(£2)). O

Remark A.3.59. Since D(f2) is not dense in L>(2), it is clear that D(Q) is neither dense in W™ (2) N
L>(Q) nor in W' (Q) N L>(Q). However, one shows easily, by a standard truncation and regularization
argument, that if u € WP (RY)NL>(RY) for some nonnegative integer m and some p € [1, 00) (respectively,
if w e W2 (RN) N L=(RN)), then there exists a sequence (un)neny C D(RN) such that ||ty || < ||ul| L

and such that u, — u in WJ"?(RN) (respectively, in W= (RN)) as n — co.

A.3.6. Time-dependent functions with values in Sobolev spaces. In this section, we consider an
open interval I of R (bounded or not) and we collect a few results concerning functions from I with values

in Sobolev spaces. We begin with some compactness results.
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Lemma A.3.60. If I is an interval of R and if m, j are nonnegative integers, j > 1, then L> (I, H}(2)) N
Whoo(I, H=™(Q2)) — CO’J%M(T, L?(Q)). Furthermore,

j —m —
1) = F)lIZe < 20t = sI7 1A, o 110G ey
for all f € L>°(I, HJ(Q)) N Wheo(I, H-™(Q)) and s,t € I.
Proof. Let f € L>(I, H}(Q))NWheo(I, H-™(Q)) and s,t € I. By Corollaries A.3.57 and A.2.35, we have

1F(&) = f(s)llz2 < NI F(E) - f(S)II}? 1f(t) = f(S)Ilﬁn

. _m_ 2
< 27w |t — 5| “int:EI,Hg)”f/Hito"ZLH*m)'

Hence the result. O

Proposition A.3.61. Let I be a bounded interval of Rand let m,j be nonnegative integers, j > 1. If
(fa)nen is a bounded sequence of L™ (I, H}(€2)) N W1o°(I, H=™(R)), then the following properties hold:

(i) There exists f € L>°(I, H}(Q)) N Wh(I, H=™(Q)) and a subsequence (f,, )ren such that for every
tel, fu,(t) = f(t) in H(Q), as k — co. In particular,

/mwmmﬁé/mww%
I I

in H)(Q), for every ¢ € Co(I);
(i) if Q is bounded, then also f,, — f in C(I,L*(Q));
(iii) if || fry (O)llz2 — | f(#)|lz2 as k — oo, uniformly on I, then also f,, — f in C(I,L?*(2)) as k — oo;

(iv) if (fo)nen C CT, HL()) and || fn, ()i — |If®)|lgs as k — oo, uniformly on I, then also f €
C(T, H}()) and f,, — f in C(T, H}(Q)) as k — oo.

Proof. (i) follows from Proposition A.2.46 (i) and (ii) applied with 7 = oo, X = HJ(Q) and Y = H~"™(Q).
(ii) follows from Theorem A.3.42 and Proposition A.2.46 (iv) (or Theorem A.2.45) applied with X = HJ (1),
Y = H™(Q) and B = L*(). (iii) follows from Lemma A.3.60 and Proposition A.2.46 (iii) applied
with X = HJ(Q), Y = H-™(Q) and B = L*(Q). (iv) follows from Proposition A.2.46 (iii) applied with
X =B=H}(Q) and Y = H™(Q). O

Proposition A.3.62. Let I be a bounded interval of R, let m,j be nonnegative integers, j > 1 and let
(fn)nen be a bounded sequence of L> (I, H7(Q)) N W1o°(I, H=™(Q)). If Q is bounded and has the cone
property, then there exist f € L°°(I,H’(Q)) N W1>°(I, H=™(f2)) and a subsequence (fn, )ren such that
fon = f in C(T, 2(Q)).

Proof. The result follows from Theorem A.3.41, and Theorem A.2.45 applied with X = H/(Q), Y =
H=™(Q) and B = L*(Q). Property f € L*(I, H/(Q)) N W1>°(I, H=™(Q)) follows from Theorem A.2.20
and Corollary A.2.39. O
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Lemma A.3.63. Let F : R — R be a Lipschitz continuous function such that F(0) = 0 and set
G(z) = / F(s)ds.

Ifu € CY(I,L*(Q)), then the function f(t) / G(u(t)) dz belongs to C1(I), and

JHOE /QF(u(t))ut(t) dx, (A.3.18)
forallt e I.

Proof. Let L denote the Lipschitz constant of F. Since |G(z)| < Lx?/2, it follows that G(u(t)) € L*(£2)
for all ¢ € I; and so, f is well defined. Furthermore, since |G(y) — G(x)| < L|y + z| |y — x|/2, it follows that
f € C(I). Finally, observe that

G() - Gla) ~ (g~ 2)F@)| < oly— 2l

and so,

‘;IL {/QG(U(H' h)) dx — /QG(u(t))dx} - /ng(u(t))de

for all t € T and h # 0 such that t + h € I. The result follows by letting h | 0. O

Corollary A.3.64. Let m be a positive integer and let 1 < p < co. Then the following properties hold:
(i) LP(I, Hy () n W' (I, H=™(Q)) — Cu(T, LA(Q));
(ii) if u € LP(I, HJ*(Q)) N W' (I, H=™(Q)), then the function f(t) = ||u(t)||2> belongs to W1 (I) and
F1(@) = (we(t), u®)) - mg
for almost all t € 1.

Proof. Let u € C}(I, Hi(9)). Applying Lemma A.3.63 with F(z) = x and identity (A.3.14), we get

lu)lZ> = llu(s)ll7- + 2/ (u(0), ut(0)) Hyr 11~ do, (4.3.19)

for all s,t € I. Applying Holder’s inequality in time, we obtain easily

lu)llf2 < Clu()NZ2 + lullfo g gy + luellTo s pr-my)-
a, )
Integration in s yields
el oo (7,12) < CUullTo (g gy + el Lo (g g-my)s

and property (i) follows by density (see Proposition A.2.48). Finally, consider a function v € L?(I, Hy*(Q2))N
WL (I, H=™(Q)) and let (up)neny C CH(T, Hy*(Q)) be such that u, — both in LP(I, HJ*(?)) and in
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WL (I, H=™(Q)). After possibly extracting a subsequence, we may assume that there exist f € LP(I)
and g € LP (I) such that [u,(t)|[g= < f(t) and ||(un)e(t)]|g—m < g(t) for almost all ¢ € I, and that
U (t) — u(t) and (uy,)e(t) —_ u(t) for almost all ¢ € I. Applying identity (A.3.19) to w,, then letting
n — oo and applying property (i) and the dominated convergence theorem, it follows that (A.3.19) holds for

u as well. Hence property (ii). O

Corollary A.3.65. Let F' and G be as in Lemma A.3.63, let m be a positive integer and let 1 < p < co.
Ifu e LP(I, Hy (Q)) N W#' (I, H-™(Q)), then the function f(t) = / G(u(t)) dz belongs to W1(I), and
Q

F(#) = (ue(t), F(u(t)) g s
for almost all t € I.

Proof. The proof is identical to the proof of property (ii) of Corollary A.3.64 above, by applying the

integrated version of formula (A.3.18) instead of formula (A.3.19). O

Proposition A.3.66. Let 1 < p < oo and let f € L'(I,LP(Q)). If f(t) > 0 almost everywhere on ) for
almost all t € 1, then /f(t) dt > 0 almost everywhere on Q.
I

Proof. Since the set {u € LP(2); v > 0 almost everywhere on 2} is a closed convex cone, the result follows

from Proposition A.2.16 if I is bounded, then from an obvious truncation argument if I is unbounded. O

Corollary A.3.67 Let 1 < p < oo and let u € LP(I, H(Q)) n WL (I, H-'(Q)) and v € LP(I, H ()
be such that u(t) < v(t) almost everywhere on ) for almost all t € I. There exist (up)nen C CL(I, HY(Q))
and (vn)neny C CH(I, HE(Q)) such that u,(t) < v,(t) almost everywhere on ) for all t € I and such that
Uy, — u in LP(I, HY(Q)) n W2 (I, H=1(Q)) and v, v in LP(I, H}()).

n—oo

Proof. It is sufficient to repeat the steps of the proof of Proposition A.2.48. By applying the extension
operator constructed in Corollary A.2.33 with a > 0, one is reduced to the case I = R (note that if a > 0,
then the extension operator is order preserving). As well, truncation by a nonnegative function is order
preserving. Finally, it follows from Proposition A.3.66 that convolution with a sequence of nonnegative

mollifiers is order preserving. Hence the result. O

Corollary A.3.68. Let 1 < p < oo and let u € LP(I, H*(Q)) N Wh?' (I, H=*(Q)). If there exists v €
LP(I, H}(2)) such that u(t) < v(t) almost everywhere on ) for almost all t € I and if u € C(I, L?(f)), then
the function f(t) = / u™(t)? dz belongs to W' (I), and

Q

F0) = 200w (0) s
for almost all t € I.

Proof. We proceed in two steps.
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Step 1. Suppose first that u € C1(I, H'(Q2)) and v € C}(I, H}(£2)). Tt follows from Lemma A.3.63 that

/Qu'*'(t)2 alm:/Qqu(s)2 dm—i—/j/ﬂu"'(a)utw) do,

for all s,t € I. By Corollary A.3.35 (applied with v = 0, M = —u and w = —v) and identity (A.3.14), we
get

t
/u+(t)2dx:/u+(s)2dx—|—/ (u™(0),ue(0) g2 -1
Q Q s

for all s,t € 1.

Step 2. Let now u and v satisfy the assumptions of the corollary, and apply Corollary A.3.67. It follows

from step 1 that
t
[urrar= [ uporaes [ 0e), to)u o (4.3.20)
Q Q s

for all s,t € I. After possibly extracting a subsequence, we may assume that there exist f € LP(I) and
g € LP' (I) such that [Ju, ()| g2 < f(t) and ||(un)¢ ()] =1 < g(t) for almost all t € I, and that uy, (t) e u(t)
in HY(Q) and (uy,):(t) 2 ug(t) in H=(Q) for almost all ¢ € I. Note that u (¢) 2 ut(t) in HY(Q) for
almost all ¢t € I, by Corollary A.3.15. Since u™(t) € H}(Q) for almost all t € I (Corollary A.3.35), it follows
that . (t) — ut(t) in HE(Q) for almost all ¢+ € I. Therefore, letting n — oo in identity (A.3.20) and

applying the dominated convergence theorem, we obtain

/Qu+(t)2 dx:/Qqu(s)2 der/S <u+(o),ut(a)>Hé7H71, (A.3.21)

for almost all s,¢ € I. Since the term on the right of (A.3.21) is a continuous function of s,¢ and since

u € C(I,L*(2)), it follows that (A.3.21) holds for all s,t € I. Hence the result. O

A.3.7. The case of complex-valued functions. Throughout Section A.3, we considered real valued
functions but the same theory can be developped for complex valued functions, with obvious modifications

which we describe below.

One has to consider the spaces D(§2,C) and LP(Q2,C) instead of the spaces D(Q2,R) and LP(£2,R). In
particular, a function f € L{ (€2, C) defines a distribution Ty € D’(2, C) by the formula

loc

Ty, ) = /QRe(f(x)M)dx, for all ¢ € D(2,C).

In particular, W™P(2,C) =~ W™P(Q,R) x W™P(,R). In other words, a complex-valued function u
belongs to W™P(Q,C) if, and only if Re(u) € W™P(Q,R) and Im(u) € WP (Q,R). As well, W;""(Q2,C) =
W P(Q,R) x WP(,R), and it follows in particular that W= (Q,C) =~ W% (Q,R) x W~"? (Q,R).
The scalar product on H™ (2, C) is defined by

(u,v)pgm = Re(D%u(z)Dv(x)) dx. (A.3.22)
" O<()¢Z|<WL/Q
Formula (A.3.14) becomes

(w,v) gge g-m = Re (/Q u(:c)v(sc)dx) ) (A.3.23)
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and formula (A.3.17) becomes
(Au,v) = —Re (/ Vu(z) - Vo(z) dx) , for v € H}(Q,C). (A.3.24)
Q

Therefore, most of the results that we established for real-valued functions still hold for complex-valued
functions, and are proved by considering separately the real and imaginary parts. The only exceptions are
Corollaries A.3.16, A.3.17, A.3.30, A.3.31, A.3.35, A.3.68 and Proposition A.3.66 that do not make sense
anymore, and Theorem A.3.12 and Corollaries A.3.14, A.3.15, A.3.29, A.3.30 and A.3.32 which must be

modified as follows.

Theorem A.3.69. IfF:C — C is a Lipschitz continuous function such that F'(0) =0 and if 1 < p < oo,

then the following properties hold.
(i) F(u) € WhP(Q,C), for every u € W1P(Q,C).

(ii) If |F(z1) — F(22)| < L(z1,22)|71 — 22| for all z1,29 € C, where L : C x C — [0,00) is some continous
function, then |VF(u)| < L(u,u)|Vu| a.e. for every u € Wh?(Q,C).

(iii) If F is C* (considered as a function R? — R?) except at a finite number of points, then VF(u) =
DF(u)Vu a.e. for every u € WHP(Q,C). If moreover p < oo, then the mapping u — F(u) is continous
Wtr(Q,C) — WLr(Q,C).

(iv) If p < oo, then in properties (i) and (iii) above, one may replace W'*(,C) by Wy?(Q,C).

Proof. We proceed in five steps.

Step 1. Suppose F is C! (considered as a function R? — R?), then F(u) € W'P(Q,C) and VF(u) =
DF(u)Vu a.e. for every u € WHP(Q,C). This is established as in Brezis [17], Proposition IX.5. The idea
of the proof is to approximate u by a sequence (uy)nen C WHP(Q,C) N C>(Q, C).

Step 2. Proof of Property (i). Consider a sequence of mollifiers (p;)jen C D(R?) and set F; = p; * F.
It follows that F; — F' uniformly on C. Moreover, we have |Fj(z1) — Fj(22)| < L|z1 — 22|, where L is the

J—0

Lipschitz constant of F. Given u € W1?(€, C), it follows from Step 1 that Fj(u) € W?(Q,C) and that
VFj(u) = DF;(u)Vu.

In particular, |VF;(u)] < L|Vu|. This implies that (up to a subsequence) VF};(u) converges in LP weak
(weak-x if p = 00) to some function ¢ (apply Dunford-Pettis’ theorem if p = 1). Since F;(u) — F(u) in
LP(Q,C), it follows that ¢ = VF(u); and so, F(u) € W1P(Q) .

Step 3. Proof of Property (ii). Let F; be as in Step 2. We have |DF}(z)| < L(z,2); and so, |VF;(u)| <
L(u,u)|Vu|. Since VF}(u) converges in L? weak (weak-* if p = 00) to VF(u) (see Step 2), we deduce that
|[VF(u)| < L(u,u)|Vu|. To see this, we need only show that if a sequence (f,,)n>0 C LP(2) verifies f, e f
and |f,| < g a.e., then |f] < g a.e. Let o € L (Q), ¢ > 0. We have

/ng/fnso—> fe;
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and so,
/(g — e >0,
Q

which implies that g > f a.e.

Step 4. Proof of Property (iii). Let E = (z;)1<i<x be such that FF € C'(C\ E,C), and let again F}; be
as in Step 2. Note that DF € L>(C,C?), so that F] = p; x F’ (see Brezis [17], Lemme IX.1). Tt follows
that F/ — F" on C\ E. Since Vu = 0 a.e. on w = {z € Q; u(x) € E}, we see that DFj(u)Vu converges to
DF(u)Vu a.e. It follows that VF(u) = DF(u)Vu. Suppose now u, o in WLP(Q,C). We have

VF(u,) — VF(u) = (DF(u,) — DF(u))Vu+ DF(u)(Vu, — Vu).

Since DF (up(z)) — DF(u(x)) if ¢ ¢ w and Vu = 0 a.e. in w, we see that VF(u,) — VF(u) a.e. If

n—oo

p < oo, then it follows that VF(u,) — VF(u) in LP(£2,C) by dominated convergence.

Step 5. Proof of Property (iv). Let u € W) *(Q,C) and let (uy)n>0 C D(Q,C) be such that u, — wu in
WhP(Q,C). Up to a subsequence, we may assume that there exists ¢ € LP(Q2) such that |Vu,| < a.e. It
follows from (ii) that |VF (u,)| < Lt a.e., where L is the Lipschitz constant of F. We deduce as in Step 1

that F(u,) — F(u) in WP(Q,C) weak; and so F(u) € W, ?(Q,C). o

Remark A.3.70. When F does not satisfy the assumption of (iii), we do not know if the mapping u — F'(u)
is continuous W1?(Q,C) — W1P(Q,C). Note that the formula “VF(u) = DF(u)Vu” does not hold in
general, even for smooth functions u. Indeed, take for example
w if |u] <1,
Flw) = it |ul > 1.
Jul
F is C™, except on the set {|u| = 1} where DF is not defined. Taking for example u(z) = €!**  with
a € RY, we see that F'(u) = u, so that VF(u) = iae’?®, but DF(u)Vu is not defined a.e. What happens is

that (as opposed to the real valued case) if E C C is a set of measure 0, then Vu need not vanish a.e. on

the set {u € E}. Take for example u as above and FE = {|z| = 1}.

Remark A.3.71. Corollaries A.3.15 and A.3.30 must be modified as follows. If u € W1P(Q, C), it follows
that Re(u),Im(u), |u| € WHP(Q,R). In addition, one has almost everywhere VRe(u) = Re(Vu), VIm(u) =

Im(Vu) and
0, if u =0,

(uVu)
Im (| ——
|ul

(In particular, one has |V|u|| < |Vu|, but in general |V|u|| # |Vul|. Note that this is in contrast with

2

V]ul [* = ,
, if u # 0.

Vul? -

the real valued case.) If p < oo, then the mappings u — Re(u), v — Im(u) and v +— |u| are continous
Whr(Q,C) — WhP(Q,R). Moreover, if u € Wy*(€,C), then Re(u), Im(u), |u| € Wy?(Q,R). This follows
from properties (iii) and (iv) of Theorem A.3.69.

1 1

Corollary A.3.72. Let1 <p,q,r < oo and a > 0 be such that — = @ +— and let F': C — C be a locally
r p q

Lipschitz function such that F(0) = 0 and

|F'(21) — F(z2)| < L(|21]" + |22|%) |21 — 22,
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for all 21,z € C. Then, for every u € WH4(Q,C)N LP(Q, C), we have F(u) € W17 (Q,C) and ||F(u)||w1.r <
2L||u||¢s l|lullwre. Furthermore, |VF (u)| < 2L|u|*|Vu| almost everywhere on ). In addition, if ¢,r < oo and

if u € Wyd(€,C), then F(u) € W, (Q,C).

Proof. Consider the function F;, defined by

F(2), if |2 < n,

Fo(z) =
() F(n|z|>, if —n<|z|>n.
z

It follows that Fj, is globally Lipschitz. The result now follows rather easily by applying Theorem A.3.69 (ii)

then passing to the limit as n — oo (apply Dunford-Pettis’ theorem to pass to the limit if r = 1). O

A.4. Elliptic equations. Throughout this section, we consider an open subset QO C RY. We consider
real-valued functions, and we refer to Section A.4.6 for the case of complex-valued functions. We describe
some existence and regularity results of solutions of some second order elliptic equations with Dirichlet

boundary conditions. For that purpose, it is convenient to define Ay = A1 (2) € R by
A\ = inf{/ |Vul?,u € H&(Q),/ lu|? = 1}. (A.4.1)
Q Q

Remark A.4.1. It follows from (A.4.1) that A; > 0. The property A\; > 0 is equivalent to Poincaré’s
inequality (A.3.7) for p = 2 and depends therefore on geometric properties of Q. In particular, if Q is
bounded in one direction or if || is finite, then A; > 0 (see Theorem A.3.37). On the other hand, if
Q =RY, then A\; =0 (see Remark A.3.38, (ii)).

We begin with a simple coercivity inequality.

Lemma A.4.2. Let A\ be defined by (A.4.1). If A > —)\y, then

min {1, o } Jull < [ {Val? + NP} do < max{l, o } ol

for all uw € H}(Q). In particular,
llll* = /{|VU|2 + A} da (A4.4.2)
Q

defines an equivalent norm on H} ().

Proof. Let |||-||| be defined by (A.4.2) (this makes sense by (A.4.1)). Assume first that A > 1. In particular,

A+ A
Rl > 1. Given ¢ > 0, it follows from (A.4.1) that
1+ XM\
alln :(1—5)/ |Vu|2dx+5/ |Vu|2dx+/ luf? dr
Q Q Q
> (1_5)/ |Vu|2dx+(a)\1+l)/ luf? da.
Q Q
A—1
Choosing € = PV we see
1+ XM
2 S 2

a3 = T el
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A+
14+ XM\

Since obviously |[|[u/|[* > |Ju||3;:, the result follows. Assume now that A <1 (i.e. <1). Given ¢ > 0,

it follows from (A.4.1) that

Julll® = (1—5)/ |Vu|2dx+6/ |Vu|2dx+)\/ lu|? da
Q ) )

> (1 —5)/ |Vul? dz + (M +)\)/ lu|? da.
Q Q

1-2X
Choosi = — t
oosing & = 5=, we ge
A4 A
25 2
Ml > 352l
Since obviously [[|ul[|? < |lu||%., the proof is complete. O

We equip H () with the dual norm, that is
ull s = sup{(u, )1 gy, 0 € HAQ), ol gy = 1},
and we denote by ()51 the scalar product of H ().
A.4.1. Existence. We begin with a simple consequence of Lax-Milgram’s theorem.
Lemma A.4.3. For every f € H (Q), there exists a unique solution u € H}(Q) of equation
—Au+u=f, in H Q).

Furthermore,

[l = llwll - (A.4.3)

In particular,

Jullzr < |1 fllze, (A.4.4)

whenever f € L?(€).
Proof. By Theorem A.1.3, for every f € H~!(2) there exists a unique u € H}(f2) such that
(w, ) = (f,v) g1 gy, for every v € Hi(Q). (A.4.5)
(A.4.5) is equivalent, by density, to equation
/QVu Vo +uv = (f,v) g-1 g1, for every v € D(Q),

which is equivalent to

—Au+u=f in H(Q).

Furthermore, taking v = u in (A.4.5) yields ||ul|3 < ||fllg-1/ullg; and so [Jul g < ||f||g-1. In addition,
it follows again from (A.4.5) that

({0 =1 | < [l o]z,
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for all v € HY(Q2). Therefore, ||f|g-1 < ||ullz, from which (A.4.3) follows. (A.4.4) is a consequence
of (A.4.3) and (A.3.16). O

Remark A.4.4. Here are some simple applications of Lemma A.4.3.

(i) It follows from Lemma A.4.3 that the differential operator —A + I defines an isometry from H} () onto
H71(Q).

(i) It follows from (A.4.3) that for every u,v € HE(Q), (u,v) g1 = (=Au+u, —Av +v)g-1.

(iii) It follows from property (ii) above and (A.3.17) that
(—Au+u,u)g-1 = (u,v) g1 = / Vu-Vu+uv = / u(—Lv+v) = / u?,
Q Q
if u € H} () and if v € H}(Q) solves equation —Av + v = u.

Theorem A.4.5. Let \; be defined by (A.4.1). For every A > —\1, the following holds:

(i) for every f € H=Y(Q), there exists a unique element u € H}(Q) such that

—Au+ X u=f, in HH(Q); (A.4.6)

(i) £l = llullgr (o) defines on H~'(Q) an equivalent norm to the H' norm;

(iil) Aullg—r < [[fllm-1;

(iv) if f € L*(Q), then Au € L*(2), the equation makes sense in L*() and A|u r2() < || f]l2()-
Proof. (i) For u,v € H}(Q), let
b(u,v) = / {Vu- Vv + Auv} dx.
Q

It follows easily from Lemma A.4.2 that b verifies the assumptions of Theorem A.1.3; and so, given f €

H~1(Q), there exists a unique u € H{(£2) such that
b(u,v) = (f,v) -1,z for every v € Hi(Q). (A.4.7)
We claim that (A.4.7) is equivalent to (A.4.6). Indeed, by density, (A.4.7) is equivalent to
b(u,v) = (f,v) -1 m3, for every v € D(().
It folows from (A.3.14) and (A.3.15) that the above equation is equivalent to
—Au+du= f, in D'(Q),

which is equivalent to (A.4.6), since all terms in the equation belong to H~(£2). Hence (i).

(ii) Tt follows from Remark A.3.52, (vi) that for some constant C, || f||g-1 < Cllullg: = ||| f]ll- Taking
v=uin (A.4.7) yields || f|l = llullg: < C’'||f||z-1. Hence (ii)
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(iii) Take the scalar product in H () of (A.4.6) with u. It follows that
(—Aut uu) + O D3 = (fuw)mr.
Taking in account Remark A.4.4 (i) and (iii), we obtain
MlullFr-r < llullZs + = Dlllf—2 < -l -1

Hence (iii).
(iv) Assume f € L?(Q). Then \u+ f € L?(Q); and so Au € L?(Q2). Furthermore, taking v = u in

(A.4.7) and applying (A.3.14), it follows that

MM%SAMSMWWW-

Hence the result. O

These results can be generalized in the following way. Consider a function a € L{ () and let

oc=N/2if N >3(c =1if N =1;0 any number > 1if N =2). (A.4.8)

Assume that there exist a; € L7(Q) and ay € L*°(Q2) such that a = a; + as almost everywhere. In other
words, assume that

a€ L7(Q) + L™(Q). (A.4.9)

Note that in this splitting, we may always assume that ||u||- is small. Indeed, given a nonnegative integer

m, we always may write a; = q,, + Bm, where

Ay, =

{al, if lai| > m,

0, if |ai| < m.

Clearly, a,, € L7(Q), B € L®(Q2) and ||a |- — 0, as m — oo.
It follows from Sobolev’s embedding theorem that H}(Q) < L"(£2), with

= A.4.10
Therefore, there exists a constant K such that
‘/ ayuv dz| < Kl|ay|| o ||ul g1 |[v] g1, for every u,v € Hy ().
Q
By the preceding observation, we may assume that
1 1
ajuvdx| < §||u||H1||vHH1, for every u,v € Hy ().
Q
It follows that
1
‘/ auvdzx| < §||u||H1||v||H1 + M||u||p2|[v]| 22, for every u,v € HE(S), (A.4.11)
Q
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where M = ||az||L~. Note also that by Holder’s inequality, ||aqu]
llas||Loe|[ul|z2, for every u € HE(Q). Since H}(Q) — L7(Q), it follows from Remark A.3.52 (ii) that
L™ (Q) < H~(Q). Therefore,

r < llaallzellufzr and flazulr2 <

au € H™1(Q), for every u € H} (). (A.4.12)
Let
A(—A +a) =inf {/ |Vul? —|—/ alul?; u € H&(Q),/ lu|? = 1} . (A.4.13)
Q Q Q
It follows from (A.4.11) that A;(—A + a) is finite, but now A; may be positive, negative or zero. We have

the following result.

Lemma A.4.6. Let a verify (A.4.8) and (A.4.9), and let A\;(—A + a) be defined by (A.4.13). If X >
—A(—=A +a), then

p(u) = (/Q{|Vu|2 + alul® + Aul?} dx) v (A.4.14)

defines on H{ () an equivalent norm to the H' norm.

Proof. It follows from (A.4.13) that (A.4.14) makes sense. Furthermore, given u € H}(€2), it follows from
(A.4.11) that

N w

3
p(u)? < Z||Vul[2s + (M + 14+ N)|jul|?: < max {2,M +14 /\} llul| 1

On the other hand, given e € (0,1), it follows from (A.4.13) and (A.4.11) that for every u € H}(Q),
p(u)? > 5/ |Vul? + alul? dz 4+ (1 — )M (=LA +a) + \) / lu|? da
Q Q
> % / IVul>de+ A+ M (=A4a) —e(M+ 1+ (A + a)))/ lul? dz.
Q Q

For € small enough, we have A + A\ (—=A +a) —e(M + 1+ M (—A + a)) > 0. Therefore, there exists n > 0
such that

p(u)* = nlullz,

for all u € H(Q). This completes the proof. O

Theorem A.4.7. Let a verify (A.4.8) and (A.4.9), and let \(—A + a) be defined by (A.4.13). If A\ >
—A1(=A + a), then for every f € H=1(Q), there exists a unique element u € H}(2) such that

—Au+ au+ lu = f, (A.4.15)
in H=1(Q). In addition, |lu||g: < C||f||z-1, for some constant C independent of f.
Proof. Note first that by (A.4.12), equation (A.4.15) makes sense. For u,v € HJ (), let
b(u,v) = /Q{Vu - Vv + auv + Auwv} de.

It follows from Lemma A.4.6 that b verifies the assumptions of Theorem A.1.3. Therefore, given f € H (),

there exists a unique u € Hg(Q) such that
b(u,v) = (f,v) -1 w1, for every v € H(Q). (A.4.16)
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It is easily verified (see the proof of Theorem A.4.5) that (A.4.16) is equivalent to (A.4.15). The result

follows easily. 0

A.4.2. H™ regularity. The H™ regularity is described by the following result (see Brezis [17], Theo-
rem IX.25, Gilbarg and Trudinger [54], Theorems 8.12 and 8.13).

Theorem A.4.8. Assume Q has a bounded boundary of class C?, let f € H=*(Q2) and let A € R. If
u € HE(Q) solves (A.4.6), then the following properties hold:

(i) if f € L?(2), then u € H*(Q) and there exists a constant C depending only on ) such that |u| gz <
Cllfllz2;

(i) if furthermore f € H™(Q) for some m > 0 and if the boundary of Q is of class C™%2 then u € H™2(2)

and there exists a constant C' depending only on  and m such that ||u||gm+2 < C||fllgm;

(iii) in particular, if f € C*°(Q), and if  is bounded with boundary of class C*°, then u € C*(Q).

Remark A.4.9. Smoothness is required in Theorem A.4.8 in order to apply the method of translations to
obtain estimates of u near the boundary. However, without any regularity assumption on 2, one can still
obtain interior regularity. This is the object of the next result, and follows rather easily from the charac-
terization of H™(R™) in terms of the Fourier transform (see also Gilbarg and Trudinger [54], Theorems 8.8

and 8.10, and Corollary 8.9).

Proposition A.4.10. Let f € D'(Q2) and let A € R. If u € L (Q) solves equation (A.4.6) in D' (), then

loc

the following properties hold:

(i) if f € H".(Q) for some m > 0, then u € H{"-"2(Q). In addition, for every Q" CC Q' CC Q, there exists

a constant C (depending only on m,Q) and Q") such that ||ul

g2y < O fllam @y + lullz));
(i) if f € C*°(Q), then u € C*(Q).

Proof. We proceed in several steps.

Step 1. Let m € Z, v € S'(RY) and h € H™(R") be such that —Av +v = h, in S'(RY). Then,
v € H™2(RY), and there exists a constant C' such that ||[v]|gm+2 < C||h|gm. Indeed, we have (1 +

A72|¢2)0 = h in S'(RY). Tt follows that (1 + 472|¢[2)™°0 = (1 + 472|¢|2)™/25, and the result follows from
Propositions A.3.1 and A.3.55.

Step 2. Consider w” CC w' CC Q. Let k € Z, u € H*(w') and f € H*"!(w’') solve equation (A.4.6) in
D'(w'). Then, u € H*!(w"), and there exists C such that [|ul grr1(ry < C(|fllmr-1(wr) + lullgrn). To
show this, consider p € D(RY) such that p = 1 on w” and Supp(p) C w’ and define v € D'(RY) by

(v, 50>D’(]RN),D(]RN) = (u, pP)pr(Q),D(Q)-

It follows easily that v € H¥(RY) and that ||v||gr@y) < Cllull ). An easy calculation shows that v
solves equation

—AU—FU = T1 —|—T2 +T3, (A417)
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in D'(RY), where the distributions Ty, T, and T3 are defined by
(T1, o)pr @y, pEy) = (f + (1 = N, p)pr (1), D)
(T2, ) (&Y), DRNY = — (U PAP) D (W) D(w')
(T3, 0)pr (&), DRNY = —(VU, VD) D1 (01) D@05

for every ¢ € D(RY). It follows easily that T; € H* '(RY) and that || T} ge-1@yy < CUIfIlgr—1(w) +
lull g wry)s for j = 1,2,3. Applying (A.4.17) and Step 1, we get v € H*(RY) and ||v] gri1@y) <
C(fll zrx=1(wry + llull g5 (o)) The result follows, since the restrictions of u and v to w” coincide.

Step 3. Conclusion. Assume that f € H"' (), for some m > 0. Consider Q” CC Q' CC Q. Note that

u € LY(Q'), so that in particular u € H~*(Q') where ¢ € N is such that 2/ > N. Consider now a family

(wj)o<j<m—+1 of open subsets of €, such that wy,4,41 = Q" and
Wimaer1 CC -+ CCwo CC

(one constructs easily such a family). It follows from Step 2 that v € H**!(wg) and that

lull -e+1 o) < CUS N Er-e=1(0) + Jull ¢ ()
(A.4.18)
< C(Ifllzm @y + llullLr @)
Applying (A.4.18) and Step 1, we get u € HT2(w), and
lullzr-ev2(w) < CUFlE-#(wo) + l[ullr-e+1 ()

< C(llf]

am @y + llullzrr)-

Iterating the above argument, one shows as well that u € H™"2(w,, 1 ¢11) = H™T2(Q"), and that there exists
C such that ||ul| gm+2ry < C(|fllgm @y + lull 1) Hence property (i), since Q' and € are arbitrary.
Property (ii) follows from the inclusion C*°(Q2) C H[7".(Q2), for every m > 0. This completes the proof. O

A.4.3. LP regularity and estimates.

Theorem A.4.11. Let A >0, let f € H=*(Q) and let u € H}(Q) be the solution of (A.4.6). If f € LP(£2)
for some p € [1, 00|, then uw € LP(Q) and A||ul|zr < ||f]|zr.

Proof. Consider ¢ € C*(R,R) and assume that ¢ is nondecreasing and has bounded derivative, and that

©(0) = 0. It follows from (A.4.7), (A.3.14), Corollary A.3.29 and Theorem A.3.12 that

[ @ivupan s [ upde = [ fotu)do
Q Q Q
and so
)\/ up(u) dr < / fo(u) dz.
Q Q
Assume that |o(u)| < |u[P~!. Then |p(u)|7T < up(u); and so

p—1

3 [ wptde < Ul ([ wptwac)
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Since up(u) < Clu|* € L*(€), it follows that

A ([ ot dx)’l’ < fller

p—2

Assume first that p < 2. Given € > 0, take ¢(u) = u(e + u?) = . It follows from the preceding calculations

A (/ W2 (e + u?) T dx) "< e
Q

Letting € | 0 and applying Fatou’s Lemma yields the desired result.

that

Assume now 2 < p < co. We use a duality argument. Given h € C°(Q), let v € HJ(£2) be the solution
of (A.4.6) with f replaced by h. We have

/ uh = (u,=Av + )1 g1 = (Au+ Au,v) g1 g1 = (f,0) g1 = / fu.
Q Q

Therefore,

1
[ ] <11 ol < S1A ol
Q

since p’ < 2. Since h € C2°() is arbitrary, we deduce that ||ullz» < A7 f|lLe- O

Theorem A.4.12. Let a verify (A.4.8) and (A.4.9), and assume that a > 0 almost everywhere. Let A > 0,
let f € HY(Q) and let uw € H}(Q) be the solution of (A.4.15). If f € LP(Q) for some 1 < p < oo, then
u e LP(Q) and )\||u||Lp < ||f||Lp.

Proof. Taking in account that a > 0, the proof is the same as that of Theorem A.4.11. Note that in this

case, we have A (—A + a) > 0, thus in particular, A > =\ (=A + a). O

When A\ < 0, one can still obtain L* regularity results. This is also the case for the solutions of equation

(A.4.15). More precisely, we have the following.

Theorem A.4.13. Let a verify (A.4.8) and (A.4.9), let \1(—A + a) be defined by (A.4.13) and let X >
—A\1(=A +a). Assume further that a= € L1(Q)) + L>° () for some ¢ > 1, ¢ > N/2. Let f € H=1(2) and let
u € HY(Q) be the solution of (A.4.15). If f € LP(Q2) + L*>(Q) for some p > 1, p > N/2, then u € L>(Q).

Moreover, given 1 < r < oo, there exists a constant C' independent of f such that
ullLe < CUS o4 Lo + lJullLr)-
In particular, |[ul|L~ < C(||fl|lzrtro + [Ifllz-1)-

Proof. The proof is adapted from Hartman and Stampacchia [60] (see also Brezis and Lions [23]). By
homogeneity, we may assume that ||u||z- + || f||Lr+L~ < 1. In particular, f = f1 + fo with || f1]lz» <1 and
[ f2]lLe < 1. We also write a~ = g1 + g2 with g1 € LI(2) and g2 € L>(2). Now, since —u solves the same
equation as w, with f replaced by —f (which satisfies the same assumptions), it is sufficient to estimate

lut]|pe. Set T = |[u™||r~ € [0,00], and assume that T > 0. For t € (0,7, set v(t) = (u —t)". We have
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v(t) € HE(Q), by Corollary A.3.35. Let now a(t) = meas{z € Q,u(z) > t}, for t > 0. Note that a(t) is
always finite. In particular, since v(t) € L?(Q) is supported in {x € Q,u(x) > t}, we have v(t) € L' (£2). Set

B(t) = /Q o(t) da. (A.4.19)

On applying Fubini’s Theorem to the function 1, (), we obtain

so that 3 € W21 (0,00) and

loc

B(t) = —alt), (A.4.20)

for almost all ¢ > 0. The idea of the proof is to obtain a differential inequality on 3(¢) which implies that
B(t) must vanish for ¢ large enough. It follows from (A.4.16) that

b(u,v(t)) = (f,v(t)) g1 g1, for every t >0,

with the notation of the proof of Theorem A.4.7. Therefore, by applying Theorem A.3.12 and the property
v(t) € LY(Q), we get

/{|Vv(t)|2 +alv®)|* + No(t)]*} do = /{f —tla+ M) }o(t) dz.
Q Q
Therefore, it folows from Lemma A.4.6 that
()2 < C/ {f —t(a+\)}v(t) da.
Q

We now estimate the right-hand side of the above inequality.

| o0 = [ 1+ 2ot

< fallze 0@ o + [ f2ll e lo(E)]] L0

< @l ger + lo@)llzr-

Furthermore,
—t)\/v(t) §t|)\|/v(t),
Q Q
and
t /Q av(t) <t /Q a~o(t) < Ct(o®)ll e + [o(t)20)-
Therefore,

lo()l3 < 1+ Ol + 0Ol + lo@]lz0)- (4.4.21)

Consider now p > max{q’,1} such that p > 2p’ and p < (p<0if N=1,p<ooif N =2). It follows

N -2
from the assumptions that such a p exists. Furthermore, it follows from Sobolev’s embedding theorem that

HYQ) — LP(Q). Next, given 1 < o < p, it follows from Holder’s inequality that

(@)L < a(®)7 77 o(t)l|e < Calt)” 7 |Ju(t) ] g
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and so, by (A.4.21),
l(®)lF: < CA+8)(at)? +aft)s

Therefore, by Sobolev’s embedding theorem,

<
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Finally, since ||v(t)]| 1 < a(t)k%”v(t)HLp, we obtain

1 1 2
-— —_ 1_7
7 o

Bt) < C(L+)(a(t)? +alt) +a(t))a(t) "7,
which we can write as

B(t) < C(L+ ) F(a(t)),

2 2

with F(s) = s275 70 + 527375 + 274 Tt follows that

1 (8@
—a(t)+ F <C(1+t)> <. (A.4.22)
Setting z(t) = C(ﬁl(l—?t)’ it follows from (A.4.20) and (A.4.22) that
I

with 1(s) = F~1(s) + Cs. Integrating the above differential inequality yields

/f o _ /Z<S> do
s C(l+0’) N z(t) ’(/}(U)’

forall0 < s <t <T.If T <1, then by definition |[u™||z~ < 1. Otherwise, we obtain
/t do _ /Z“) do
1 C+0) = Luw ¥(o)

r do M do
_ %7 < iy
/1 Cl+o) = Jo (o)

Note that by assumption, there exists § < 1 such that F~!(s) > s? for s small, so that 1/¢ is integrable

which implies in particular that

near zero. Since 1/(1 + o) is not integrable at the origin, this implies that T = ||u*| L~ < co. Moreover,

|lut] L= is estimated in terms of z(1), and

1 1 1 1
1)=— -t <= < = T< -
(1) O/Q(“ ) —O/{M“—O e S0

The result follows. O

IN

Open problem. We do not know if, under the assumptions of Theorem A.4.13, the inequality ||u||r~ <
C||fHL1’+L°° holds.

One can improve the LP estimates by using Sobolev’s inequalities. In particular, we have the following

result.
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Theorem A.4.14. Let a verify (A.4.8) and (A.4.9), and assume that a > 0 almost everywhere. Let A > 0,
f € HY(Q) and let u € H}(Q) be the solution of (A.4.15). If f € LP(Q) for some p € (1,00], then the

following properties hold:

(i) If p > N/2, then uw € LP(2) N L*>°(§2), and there exists a constant C' independent of f such that
[uller < CllfllLe,

for all v € [p, o0];

(ii) ifp= N/2 and N > 3, then u € L"(Q2) for all r € [p,0), and there exist constants C(r) independent of
f such that
[ullr < C) fllzr,

for all r € [p,0);

(iii) if 1 <p < N/2 and N > 3, then v € LP(Q2) N L~ (), and there exists a constant C independent of
f such that
luller < Clifllze,

Np .

foral]rG[p,N 5
—<2p

Proof. Property (i) follows from Theorems A.4.12 and A.4.13 and Hélder’s inequality. It remains to
establish properties (ii) and (iii). Note that in this case N > 3. By density (Proposition A.3.58), it
is sufficient to establish these properties for f € D(Q). In this case, we have u € L'(Q) N L>(Q) by
Theorem A.4.11. Consider an odd, increasing function ¢ : R — R, such that ¢’ is bounded. Define

P(z) = /Of V' (s)ds. (A.4.23)

It follows that ¢ is odd, nondecreasing, and that 1’ is bounded. It follows from Theorem A.3.12 and
Corollary A.3.29 that ¢(u) and ¥ (u) belong to HZ(£2), and that

Vo (u)? = ¢ (u)|Vul* = Vu - V(p(u)), (A.4.24)
almost everywhere. Applying formula (A.4.16) with v = ¢(u), it follows from (A.4.24) that
(V@) + dupt) + aupta)) de = (7.0 .

In addition, x¢(x) > 0, and it follows from (A.4.23) and Cauchy-Schwarz inequality that zp(x) > | (x)|%.

Therefore, it follows from Lemma A.4.6 that there exists a constant C such that

@7 < CU () -,y

Therefore, given p € [1, 00|, we have

[ < Cllfllze el
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Since N > 3, we have

2N

Hi(Q) — L¥-2(Q). (A.4.25)
It follows that, after possibly modifying C,
||¢(U)Hi]3§2 < Ol llzelleC@)ll o - (A.4.26)

Consider now 1 < g < oo such that (¢ — 1)p’ > 1. If ¢ < 2, let p.(z) = z(e +x2)¥. If ¢ > 2, take

oe(z) = o|z|T72(1 + Exz)z%q. It follows that |p.(z)] < C|z|771 and that |p.(z)] T |z|97!. One verifies
€
easily that |¢.(z)|?> < C|z|? and that | (2)|> — %Mq. Applying (A.4.26), then letting ¢ | 0 and

applying the dominated convergence theorem, it follows that

lll® o, < C—Hfllmllull (A.4.27)

L(q 1)p’?

for all 1 < g < oo such that (¢ — 1)p’ > 1. We now prove property (ii). Suppose that N > 3 and that
p = N/2. Apply (A.4.27) with ¢ > N/2. Tt follows that

¢
lull? ~, <C ||f||LN/2Hu||q Ny (4.4.28)
LN=2 q—

On the other hand, it follows from Holder’s inequality that

(2¢—N)gq N-—2
|2q N+2 || qu—N+2
LN/2

[ e 1y =l
L N-—

Applying Theorem A.4.12, it follows that

q < 2?1\11\;3 N+2
IIUIILNmfl) IIuII HfIILN/z :

Substitution in (A.4.28) yields
lull | gra. < C(QNFll w2

2

Property (ii) follows from the above estimate and Theorem A.4.12, since ¢ is arbitrary. Finally, we prove

N -2 N N
property (iii). Let ¢ = (N—Z;lp In particular, N _q =(q-1p = N _p2p, and it follows from (A.4.27)
that
!
lull e < Cfller
Property (iii) follows from the above estimate and Theorem A.4.12. O

Corollary A.4.15. Let a and \ be as in Theorem A.4.14. If f € H=1(Q) N L'(Q), then the following
properties hold:

(i) if N =1, then u € L*(2) N L>(Q), and there exists a constant C' independent of f such that

[ullr < ClIfllLrs

for all v € [1, 00];

N
(ii) if N > 2, then u € L™(2) for all r € [1, N2> (r € [1,00) if N = 2), and there exist constants C(r)
independent of f such that
lullr < Cfllzr,
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buﬂre[ )a«JLm)ﬁsz)

N

"N -2
Proof. If N = 1, then we have u € Hi(Q) — L*°(Q). Furthermore, it follows from Lemma A.4.6 (note
that A;(—A + a) > 0, since a > 0) that there exists p > 0 such that

pllullfn < (fouda-my < I fllellullize < ClF Il lfulla

Therefore, ullulln < C|[f]lz1, and (i) follows.
In the case N > 2, we use a duality argument. Let u and f be as in the statement of the theorem. It

follows from Theorem A.4.12 that u € L*(2) and

[uflzr < ClIf]l -

Let now 6 € [1,00) be such that v € LY(Q). Fix ¢ > N/2. Let h € (), and let ¢ € H}(Q) be the
solution of the equation —Ay + ap + Ap = h. It follows from Theorem A.4.14 that

lellze < ClR| L.
Since

(fs ‘P>H—1,H3 = (-Au+au+ )\U7<P>H—1,H(§ = (u, —Ap +ap + >‘(P>H(}7H—1 = <u>h>H01,H—17

‘/uh
Q

Since ¢ € C°(Q) is arbitrary, we obtain

we deduce

< fllerllellize < ClfllzIRllza-

[ull o < Cllf ]l

N N
Since ¢ € (2, oo} is arbitrary, ¢’ € {1, N2) is arbitrary and the result follows. O

Remark A.4.16. The estimates of Theorem A.4.14 and Corollary A.4.15 are optimal in the following

sense.

(i) If N > 2 and f € L>(Q), then u is not necessarily in L(Q). For example, let Q be the unit ball,
and let u(z) = (—log|z|)” with v > 0. Then u ¢ L>°(€). On the other hand, one verifies easily
thatif0<'y<%inthecaseNzQandO<’y< 1—%inthecaseN237 then v € H}(Q) and
—Au+ue LT(Q).

(ii) If N > 3 and f € L*(€2), then there is no estimate of the form ||uHL N

N-—=-2

< C|fllzr- (Note that since

u € HY(Q), we always have u € Lv> (€2).) One constructs easily a counter example as follows. Let
be the unit ball, and let u = zp with ¢ € D(Q), ©(0) # 0, and z(z) = |z|>~V (~log |z|)” with v < 0.
Then —Au+u € LY(Q) and u ¢ L~ (). By approximating u by smooth functions, one deduces that

there is no estimate of the form ||u||L% <C|fllpr-
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(iii) If N > 3 and 1 < p < N/2, then by arguing as above one shows the following properties. There is

N
N _p2p. Moreover, if f € LP(Q), then in general

no estimate of the form |ul|pe < CJf||p: for ¢ >

Np 2N
,q > .
N —2p N -2

u & LI(QY) for ¢ >

Corollary A.4.17. Let A >0, let f € H-*(Q) and let u € H}(Q) be the solution of (A.4.6). If f € LP(Q)
for some p € (N/2,00), p > 1 orif f € Co(2), then u € Cp(Q).

Proof. By density (Proposition A.3.58), the result follows from Theorem A.4.14, Corollary A.4.15 and
Proposition A.4.10. O

Remark A.4.18. Under some smoothness assumptions on €2, one can establish higher order LP estimates.
However, the proof of these estimates is considerably more delicate. In particular, one has the following
results.
(i) If Q has a bounded boundary of class C? (in fact, C*! is enough) and if 1 < p < oo, then one can
show that for every A > 0 and f € LP(f), there exists a unique solution u € Wy (Q) N W?2P(Q) of
equation (A.4.6), and that

[ullw=2 < C(llullze + 11 £l2e),

for some constant C' independent of f (see Gilbarg and Trudinger [54], Theorem 9.15, p.241). One shows
as well that for every f € W~1P(1), there exists a unique solution u € Wy (Q) of equation (A.4.6) (see

Agmon, Douglis and Nirenberg [2]).

(i) Let f € H~Y(Q) and let u € H () be the solution of (A.4.6). It follows from the preceding result that
if in addition f € LP(£2) for some p € (1,00), then u € W2P(Q) N W} *(Q2). Indeed, by density and the
estimate of (i) above, one needs only consider the case ¢ € D(2). In this case, u € H2(Q)NH(Q)NCo(Q)
by Theorem A.4.8 and Theorem A.4.28 below. On the other hand, equation (A.4.6) has a unique solution
v € Wy P(Q) N W2P(Q) by (i) above. So we need only show that u = v. If  is bounded, then both
w and v are solutions in W, %(Q) N W24(Q) with ¢ = min{p,2}, and so u = v by uniqueness in
Wy?(2) N W24(Q). If  is unbounded, then we use uniqueness in Cy(€2) (Corollary A.4.33 below); so
we are reduced to show that v € Cy(€2). We observe that, since 9 is bounded, there exists R < oo such
that {|z| > R} C Q. Chose R possibly larger so that supp(f) C {|z| < R} and consider p € D(RY)
such that p =1 on {|z| < R}. Set v = w + z with w = pz and z = (1 — p)z. We have —Aw + I w =g
with g = pf — vAp — 2Vwv - Vp. Since v € C*(Q) (Proposition A.4.10) and Vp and Ap have compact
support in £, we have g € D(Q2). Since furthermore w and g are supported in {|z| < R}, we are reduced
to the case of a bounded domain, and it follows by uniqueness that w € W, %(Q) N W24(Q) for every
g < oo. In particular, w € Cy(Q2) (Corollary A.3.47). Finally, z € LP({|z|] > R}) N C>*({|z| > R})
verifies —Az + Az = —vAp —2Vv - Vp. In particular, —Az + Az = 0 for |z| large. It follows easily from
Proposition A.4.10 that for every € > 0, there exists § > 0 such that if z(xg) > ¢, then z(z) > /2 for
|z — o] <. Since z € LP(R2), we deduce that z(z) — 0 as |z| — oo. This implies that z € Cp(2) and

completes the proof.
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(iii) Note that if f € LP(Q) and if u € W, () N WP(Q) is the solution of (A.4.6), then
Mullze < [ fllze-

This follows from Theorem A.4.11 and a density argument, by using the estimate of (i) and the regularity
property of (ii).

(iv) One has partial results in the cases p = 1 and p = oco. In particular, if Q is bounded and smooth
enough, then for every A > 0 and f € L*(), there exists a unique solution u € W, (£2), such that
Au € LY(Q), of equation (A.4.6) (see Pazy [85], Theorem 3.10, p.218). It follows that A||u||r1 < ||f|lL:-
Moreover, if f € H=*(2) N LY(Q) and if u € H} () is the solution of (A.4.6), then u € W, (Q). (See
the argument of (i) and (iii)) In general, u ¢ W21(Q). If Q is bounded, it follows from Theorems A.4.5
and A.4.11 that for every A > 0 and f € L>(Q), there exists a unique solution u € HJ(2) N L>(Q),
such that Au € L*®(Q), of equation (A.4.6). It follows from Theorem A.4.11 that Alluljpe < ||f]lLee-
In general, u ¢ W2°°(Q), even if  is smooth. On the other hand, it follows from property (i) above
that u € W, P(Q), for every p < cc.

A.4.4. The maximum principle. Let T € D'(Q). We recall that (by definition), we have T > 0
(respectively T' < 0) if and only if (T, p)p/p > 0 (respectively (T, p) < 0), for every ¢ € D(2), ¢ > 0 on €.
Clearly, if T € L (), then T > 0 as a distribution if and only if T > 0 almost everywhere on (.

loc

Lemma A.4.19. Letu € H}(Q). Ifu > 0 almost everywhere, then there exists a sequence (uy)neny C D()

such that u, > 0 and u, — u in H} ().
n—oo

Proof. Consider ¢ > 0. It follows from the definition of H{(Q2) and Corollary A.3.30 that there exists
v € D(Q) such that ||[vT — ul|z: < e/2. By convolution of v with a sequence of nonnegative mollifiers, one
can construct w € D(Q), w > 0 such that |Jvt — w||z < e/2. It follows that ||u — w| g1 < e. Hence the

result, since ¢ is arbitrary. O

Corollary A.4.20. Consider a distribution f € H=*(Q). Then f > 0 (respectively f < 0) if and only if
(f,@)r-1,m3 = 0 (respectively (f, )1 g1 <0), for every ¢ € H} (), ¢ > 0 almost everywhere on €.

Proof. The result follows immediately from Lemma A.4.19. O

We have the following result (the weak maximum principle).

Proposition A.4.21. Let a verify (A.4.8) and (A.4.9), let \(—A + a) be defined by (A.4.13) and let
A > —X\(=A+a). Let f € H ), and let u € H}(Q) be the solution of (A.4.15). If f > 0 (respectively

f<0)inD'(Q), then u > 0 almost everywhere on Q (respectively u < 0 almost everywhere in Q).

Proof. By considering —u, it is sufficient to establish the result when f > 0. Apply (A.4.16) with v =
—u~ € H}(Q). Tt follows that

b('U, U) = <f’ U>H*1,Hé'
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Since v < 0 almost everywhere on €2, we have (Corollary A.4.20) (f,v)z-1 g3 < 0, and it follows from the

coerciveness of b that v = 0. Hence the result. O

Corollary A.4.22. Let a verify (A.4.8) and (A.4.9), let A\;(—/A + a) be defined by (A.4.13) and let A >
—A1(=A +a). Consider f,g € H 1(Q) and let u,v € H}(Q) be the corresponding solutions of (A.4.15). If

f <ginD'(Q), then u < v almost everywhere in ).

Proof. Apply Proposition A.4.21 to v — u. O
We will need to compare solutions of equation (A.4.15) with functions u that do not satisfy the boundary

condition u = 0 on 9 (by this, we mean that u ¢ H}(Q)). Let a verify (A.4.8) and (A.4.9), and let r be
defined by (A.4.10). Given u € H*(Q) N L"(2), one verifies easily (see the proof of (A.4.11)) that

/ auv dx
Q

au € H1(Q),

< Cllolla,

for all v € H}(Q). It follows that

for every u € HY(Q) N L"(Q). In particular, we have
—Au+au+  u € HH(Q),
for every u € HY(Q) N L"(Q) and every A € R, and
(—Au+au+ A, v) -1 g1 = /QVu - Vv + auv + Auv, (A.4.31)
for all v € H}(Q). We make the following definition.

Definition A.4.23. Let a verify (A.4.8) and (A.4.9), and let r be defined by (A.4.10). Given f € H=1(Q),
a supersolution (respectively subsolution) of equation (A.4.15) is a function v € H*(2) N L"(Q) such that
u™ € HE(Q) (respectively, ut € H}(Q)) and

—Au+ au+ Au > f(respectively < f),
in D'(£2).

Remark A.4.24. The assumption u~ € H}(Q) (respectively, u™ € H{(£2)) is a weak formulation of the
property u > 0 on 99 (respectively, u < 0 on 052).

We have the following characterization of supersolutions and subsolutions.

Lemma A.4.25. Let a verify (A.4.8) and (A.4.9), and let r be defined by (A.4.10). Consider f € H=1(Q)
and u € HY(Q) N L"(Q) such that u~ € H}(Q) (respectively, u™ € H(Q)). Then, u is a supersolution

(respectively, a subsolution) of equation (A.4.15) if, and only if
/ Vu - Vo + auv + Auv > (f, U>H*1,Hé (respectively, < (f, U>H*1,Hé)a (A.4.32)
Q
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for all v € H(2) such that v > 0 almost everywhere.

Proof. The result follows from (A.4.31) and Corollary A.4.20. O

Proposition A.4.26. Let a verify (A.4.8) and (A.4.9), let \(—A + a) be defined by (A.4.13) and let
A> =AM (=A+a). Ifue HY(Q) is a supersolution (respectively, subsolution) of (A.4.15) with f = 0, then

u > 0 almost everywhere on §) (respectively, u < 0 almost everywhere on Q).

Proof. By considering —u, we only have to establish the result for supersolutions. Take v = v~ in formula

(A.4.32). Applying Corollary A.3.15, it follows that
[ v P atu? aw 7 <o
Q

and so u~ = 0, by (A.4.16). Hence the result. O

Corollary A.4.27. Let a verify (A.4.8) and (A.4.9), let A\1(—/\ + a) be defined by (A.4.13) and let A >
—A\(=A+a). Consider f € H-() and let u € H}(Q) be the solution of (A.4.15). If v is a supersolution of
(A.4.15), then u < v almost everywhere on ). Similarly, if v is a subsolution of (A.4.15), then u > v almost

everywhere on ).

Proof. It is clear that u — v is a subsolution of equation (A.4.15) with f = 0 (see Corollary 1.2.28), and

the result follows from Proposition A.4.26. O

When € satisfies some smoothness conditions, the L>° regularity of Theorem A.4.11 can be improved
by making use of super and subsolutions, and in fact u is continuous on Q. More precisely, we have the

following result.

Theorem A.4.28. If N > 2, assume that every x € 0f) has the exterior cone property. Let A > 0,
let f € H7Y(Q) and let u € H}(Q) be the solution of (A.4.6). If f € Co(Q2) or if f € LP(Q) for some
p € (N/2,00), p > 1, then u € Cy(Q).

Proof. Let us first proceed to several reductions. First, note that by density (Proposition A.3.58) and
Theorem A .4.11, it is sufficient to establish the result for f € D(Q2). Consider now f € D(Q). It follows from
Proposition A.4.10 that

u € C™(Q). (A.4.33)

Next, let R > 0 be such that Supp(f) C {z € RY; |z| < R}, and let M = ||f||z~. Choose K large enough,
so that

KXe VI3RS onr

and consider

v(x) = KemVI+3r, (A.4.34)
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where r = |z]. We have v € S(RY); and so, vjq € H*(Q2). Furthermore,

%7‘2) + (1 + %TZ)UZ)
3r2)*?

v >

A@AWN—1N1+ -
_l’_

A
—ANv+dv=| =+ AU
Therefore, v is a supersolution of (A.4.6). Applying Corollary A.4.27, we get u < v almost everywhere in .

Since —v is a subsolution of equation (A.4.6), one obtains as well that « > —v; and so,
lu(z)] — 0 as |z| — oo,z € Q. (A.4.35)
We now claim that for every xg € 992, there exist «,n > 0 such that
lu(z)| < |z — x|, for every x € Q such that |z — x| < . (A.4.36)

Suppose for a moment that (A.4.36) holds. Then, comparing with (A.4.33), we get u € C(2) and ujpq = 0;
and so, it follows from (A.4.35) and Lemma A.3.48 that u € Cy(£2), which is the desired result.
Finally, it remains to establish property (A.4.36). This follows from the concept of barrier function. In

order to construct a local barrier at xo, we need the following two lemmas.

Lemma A.4.29. Given k > 0 and 0 < 0 < /2, there exist v > 0 and a function f € C%([0,7 — 6]), such
that

(i) 1/2< f(t) <1, for allt € [0, — 0];

(i) f'(0) =0;

mnf%ﬂ+k§%f@+vﬂﬂzakmwte@m—ﬂ.

Proof. The idea is to solve equation

PRt —o, (A.4.37)
sint

with the initial conditions f(0) = 1 and f'(0) = 0 (note that the singularity of 1/sint at ¢ = 0 is eliminated by
the condition f’(0) = 0) and to observe that the solution depends contunuously on «, uniformly on compact
subsets of [0,7). The result will follow, since the solution for v = 0 is f(¢) = 1. More precisely, consider
E={fecC([0,m—0]);1/2 < f <1}, and equip E with the distance d(f,g) = [|g — f|lL>(0,r—0). It is clear
that (E,d) is a complete metric space. Given f € E, let

sins

Af(t) :/0 (l)k/os(sina)kf(a) do.

It follows easily that Af € C2([0,7—0]) and f/(0) = 0. Furthermore, consider 0 < o < s <7 —0. If s < 7/2,

sinf sins
one has sino < sins. If s > 7/2, then sins > sin(7m — 6) = sinf; and so, sinc < 1 = — < ——. Therefore,
) sinf ~ sinf
sins
we have in both cases sino < oy It follows that
sin

(m—0)2 72
0< a5t < T e <

2sinek
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In particular, if v is small enough, we have
0<~yAf(t) <1/2, forall f€ EFandte[0,7—0].
It follows that for v small enough, the mapping

e Tf=1-7Af,

maps F — F and is a contraction of Lipschitz constant L < 1/2. Applying Theorem A.1.1, it follows that T'
has a unique fixed point f € E, which solves equation f(t) =1 — yAf(¢), for all ¢ € [0,7 — 6]. One verifies
easily that f solves equation (A.4.37), which completes the proof. O

Lemma A.4.30. Letxg € 09). If N > 2, assume that xy has the exterior cone property. For § > 0, define
Qs = {x € Q; |v — xg| < §}. Then, there exists §,a > 0 and a function h € C(Qs) N C?(s) N H(Qs) such
that

(i) Ah =0, in Qs;

1
i) =l —2zol® < h(zx) < |v — x0|%, for all x € Q5.
2

Proof. If N =1, take o = =1, and h(z) = |x — x¢|. It is clear that h has the desired properties.

In the case N > 2, by assumption, there exist 6 € (0,7/2), z€ S¥~! and § > 0, such that C(zg, z,0,5)N
Q = 0 (compare Definition A.3.3). Without loss of generality, we may assume that zp = 0 and z =

(0,---,0,—1). In particular,
Qs C {x € RY; 0 < |z| < and 2y > —|z|cosf}. (A.4.38)

Given x € Qj, define t € [0, — ) by

IN

x|

One has t € C°°(U) N W2 (), where U = {x € Q4; t # 0}. In addition,

loc

cost =

t
|Vt]? = 1/|z|?, and At = (N — Q)C'ﬁ.
sint

Given a > 0 and f € C?([0, 7 — 6]) such that f'(0) = 0, define

h(z) = || f(t(z)).

We have h € C(Qs). Furthermore, we have Vh = a|z|*(f(t)x + f'(t)Vt). Since f'(0) = 0, it follows easily
that h € C1(Qs), and that |Vh| < Clz|*~! € L?*(Qs). In particular, h € H*(Qs). Furthermore, a tedious
but easy calculation shows that h € C?(Qs), and that

Ah = |z|*? (f”(t) + (V- 2)%]”@) +a(e+ N — 2)f(t)) , forall z € U.

Applying Lemma A.4.29, it follows that there exists @ > 0 such that one can choose f with 1/2 < f <1,

and for which Ah = 0 in 4. This completes the proof. O
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End of the proof of Theorem A.4.28. Consider zy € 01, and let o, ,h be given by Lemma A.4.30.
By choosing ¢ possibly smaller, we may assume, with the notation of Lemma A.4.30, that Q5N Supp(f) = 0.

In particular, we have

—Au+ Au=0, in D'(Qy) (A.4.39)
Let M be large enough, so that
5 «
M <2) > 9)|fll . (A.4.40)
and let
H = MTh (A.4.41)

Setting w = uq,, it follows from Lemma A.4.30 and (A.4.39) that
—Aw—H)+Mw—H)=-XH <0 in D'(Q). (A.4.42)

Therefore, if we show that

(w— H)" € Hj(Qs), (A.4.43)

then it follows from Proposition A.4.26 that w < H, almost everywhere in 5. One shows similarly that
w > —H, so that this proves the estimate (A.4.36) and completes the proof of the theorem. To prove (A.4.43),
consider ¢ € D(RY) such that 0 < ¢ < 1in RY, ¢ = 1 on the set {x € RY; |z| < §/2}, and ¢ = 0 on
the set {z € RY; |z| > §}. Note that AH(z) > || f|lr~, on the set {x € Qs; |z| > §/2} (compare (A.4.40)
and (A.4.41)). On the other hand, it follows from Theorem A.4.12 that A||ul/p~ < ||f||ze; and so, |u| < H
on the set {z € Qs; |z| > §/2}. Therefore, (w — H)* = (pw — H)T in Q5. Let (un)nen C D(Q) be
such that w, ou in Hg(Q), and set v, = (pun)jn,. It is clear that v, T pw in H'(Qs); and so,
(v, — H)T n:;@(gpw — H)" in H'(Qs). Therefore, it only remains to show that (v, — H)* € H}(Qs). This
follows from Proposition A.3.23, since v,, — H = —H < 0 on 9. O

Remark A.4.31. If the smoothness assumption on Q does not hold, the conclusion of Theorem A.4.28
may be invalid, even for f € D(2), as shows the following example. For N > 2, let Q = RY \ {0}. Define
o(z) = coshzy. We have ¢ € C®(RY), and —Ap + ¢ = 0. Let now ¥ € D(RY) be such that ¢ = 1, for
|z] <1 and ¢ = 0, for |z| > 2. Set u = p1b. We have u € D(RY), and also u € H(2) (cf. Remark A.3.24).
On the other hand, —Au 4+ u = 0 for |z| <1 and for |z| > 2. In particular, if we set f = —Au + u, we have
f € D(Q). Finally, u € Cy(Q2), since u = 1 on 9.

Under a more restrictive smoothness assumption on €2, one can improve the conclusion of Theo-

rem A.4.28. More precisely, we have the following result.

Theorem A.4.32. If N > 2 suppose that there exists p > 0 such that for every xq € 0f) there exists
y(zo) € RY such that |zg — y(xo)| = p and such that B(yo, p) N = 0. (In other words, we replace the cone
property by a uniform “ball” property.) Let A\ >0, f € H=1(Q2) N L>(Q) and let u € H}(Q) be the solution
of (A.4.6). It follows that

[u)] < O f 1= dist (z, ),
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for all x € Q, where C' is independent of f.

Proof. We may assume without loss of generality that |f| < 1, so that |u| < A~!. We may also suppose
N > 2, for the case N = 1 is immediate. We now construct a local barrier at every point of 092. Given ¢ > 0,
set

i(p2 — |z?) + clog (|z|> if N=2,

o (2 = o) + e —[aPN) i N >3

It follows that —Aw = 1 in RY \ {0}. Furthermore, we see that if c is large enough, then there exists

w(z) =

p1 > po > p such that w(x) > 0 for p < |z| < p; and w(x) > A~L for pg < |z| < p1. Given c as above, we
observe that there exists a constant K such that w(z) < K(|z| — p) for p < |z| < p;1.

Let now z € € such that 2dist(x,0Q) < p1 — p, and let zg € 9Q be such that |x — zg| < 2dist(x, 0).
Let Q = {z € Q; p < |z — y(x0)| < p1} and set v(z) = w(z — y(xo)) for x € Q. It follows that

0 < v(e) < K|z — y(wo)| - p) < Kl — 2] + 20 — yl(awo)| — p) = K|z — o] < 2Kdlist(z, 99,
for all z € Q. On the other hand,
“Au—v)+Au—v)=f—1+M)<f-1<0,
in Q. We claim that
(u—v)t e H} (D). (A.4.44)

It then follows from the maximum principle that u(z) < v(z) < 2Kdist(z, dQ) for a.a. = € Q. Changing u
to —u, one obtains as well that —u < v, so that |u(z)| < 2Kdist(z, Q) for a.a. = € Q. For 2 € Q such that
2dist(z, 9) > p1 — p, we have u(x) < \~H < 2071 (p; — p)~'dist(z,09Q), and the result follows.

It thus remain to establish the claim (A.4.44). One proceeds as in the proof of Theorem A.4.28. Let
@ € CX(RN) be such that 0 < ¢ < 1, ¢ = 1 on the set {|z — y(zo)] < po} and ¢ = 0 on the set
{|z—y(x0)] > p1}. Since u < A~! < v on QN {|z—y(x0)| > po} and pu—v = u—v on QN {|z—y(z0)| < po},
we see that (u—v)T = (pu—v)T in Q. Let now (Un)n>0 C C°(R2) be such that wu, o in HY(Q). We see
that (ou, —v)* n:;o(gou — o)t = (u—v)" in H*(Q). Thus, we need only verify that (pu, —v)* € H} ().

This is immediate, though, because ¢u,, =0 and v > 0 on 9. O

Corollary A.4.33. If N > 2, assume that every x € 90 has the exterior cone property. For every A\ > (

and for every f € Cy(Q2), there exists a unique solution u € Cy(2) of equation
—Au+ u=f, in D'(Q).
In addition, the following properties hold:
(i) Au e Co(2);
(ii) we H, (Q);
(i) Allullpe < ([ fllze-
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Proof. We proceed in three steps.

Step 1. Uniqueness. Consider two solutions u, v and let w = v — u. We have w € Cp(£2), and
—Aw + dw =0, in D'(Q).

Given € > 0, note that (w—e)™ has a compact support in Q. Let Q' CC Q be such that Supp((w—¢e)*) C .
Since w € H'(Y') by Proposition A.4.10, it follows from Proposition A.3.28 that (w—e)* € H}(€)'). Applying
(A.3.17), we get

Vw - V((w—¢e)") +  w(w —e)t =0.
Q/

Therefore, by Corollary A.3.17,

/

V((w — &) ")2 4+ A(w — &) |2 = —)\e/ (w— £)* < 0;
o

and so, w < € in ', hence in Q. Since ¢ is arbitrary, we get w < 0. Changing w to —w, it follows as well

that w > 0. Therefore, w = 0, which proves uniqueness.

Step 2. Existence. Consider (fn)nen € D(Q) such that f, njgof in Cp(f2), and let (un)nen be the
corresponding solutions of (A.4.6). It follows from Theorem A.4.11 that (u,)nen is a Cauchy sequence in
L>(Q), and since u,, € Cp(Q) by Theorem A.4.28, u,, has a limit u in Co(2). It is clear that w solves
equation —Au + Au = f, in D'(2).

Step 3. Conclusion. Property (i) follows from the equation. Property (ii) follows from Propositon A.4.10,

2

2 .(9). Finally, given a solution w, it follows from uniqueness that u is the limit of the sequence

since u € L
(un)nen constructed in Step 2. Since A||uy || < ||fnlloe by Theorem A.4.11, one obtains (iii) by letting

n — oo. This completes the proof. O

A.4.5. Eigenvalues of the Laplacian. Throughout this section, we assume that € is bounded. It
follows from Poincaré’s inequality that A\, defined by (A.4.1) is positive.
Let f € L*(Q), and let u € H}(Q2) be the solution of the equation

—Au=f, in H1(Q).

Let us set w = K f. By Theorem A.4.5, K is bounded L?(Q) — H}(2). Therefore, by Theorem A.3.42, K is
compact L?(Q) — L?(Q)). We claim that K is self adjoint. Indeed, let f,g € L?(Q) and let u = K f, v = Kg.
We have

(Uag)Lz - (f, U)LZ = —<AU7U>H—1,H(§ + <AU, U)H—l,Hg =0,
by (A.3.17). It is clear that K~1(0) = {0} and that (Kf, f)r2 > 0, for every f € L%*(). Therefore (see

Brezis [17], Theorem VI.11), L?(2) possesses a Hilbert basis (¢, )n>1 of eigenvectors of K and the eigenvalues

of K consist of a sequence (o,,)n>1 C (0,00) converging to 0, as n — oco. Let us set

1
Ap = —, forn > 1.

On
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We have 0 < \; < A < ---, and \,, — 0o as n — oo. In addition, ¢,, € HZ(2) and
—Npn = Apn, in Hil(Q).
Below are some important properties concerning the spectral decomposition of —A.

Proposition A.4.34. Assume 2 is connected. The following properties hold:
(1) on € L=(Q)NC>(Q), for every n > 1;

(ii) A1 is a simple eigenvalue;

(iii) one can chose i such that 1 > 0 on €;

(iv) A1 = A1(R), where A\1(Q) is defined by (A.4.1).

Proof. We will prove these properties in a more general framework in Proposition A.4.35 below, except
for property ¢, € C*(Q). To see this property, write —Ag, = —A\,p,. We have A\, € H}(Q), and it
follows from Proposition A.4.10 that ¢, € HS)C(Q) Therefore, by applying again Proposition A.4.10, we
obtain ¢, € Hp (). An obvious iteration argument shows that ¢, € H/™ (Q2), for every integer m. The

result now follows from Sobolev’s embedding theorem. O

We generalize the above observations. Consider a € L>®(2) and a > —\1(—A + a), where A\ (—A + a)
is defined by (A.4.13). Let f € L?(€), and let u € Hi () be the solution of the equation

—Au+au+ ou = f, in H1(Q).

Let us set u = K, f. By Theorem A.4.7, K, is bounded L?(Q2) — H{(£2). Therefore, by Theorem A.3.42,
K, is compact L?(2) — L?(Q2). We claim that K, is self adjoint. Indeed, let f,g € L?(Q) and let u = K, f,
v = K,g. We have

(uag)L2 - (fav)L2 = <A’U7’U/>H—1,Hé - <AU, U>H—1,H5 =0,

by (A.3.17). It is clear that K, 1(0) = {0} and that (K,f, f)rz > 0, for every f € L?(Q). Therefore
(see Brezis [17], Theorem VI.11), L?(2) possesses a Hilbert basis (¢, )n>1 of eigenvectors of K, and the

eigenvalues of K, consist of a sequence (O‘n)nzl C (0,00) converging to 0, as n — oo. Let us set

1
A= — —a, forn>1.
On

We have \; < Ay < ---, and )\, — oo as n — oco. In addition, ¢,, € H}(Q2) and
—AQOn + apn = Ap@p, in Hﬁl(Q)'
Below are some important properties concerning the spectral decomposition of —A + a.

Proposition A.4.35. Assume Q is connected. If a € L*>(Q2), then the following properties hold:
(i) ¢n € L=®(Q)NC(Q), for every n > 1;
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(ii) A1 is a simple eigenvalue;
(iii) one can chose @1 such that @1 > 0 on ;

(iv) A1 = A1 (=4 + a), where A\ (—A + a) is defined by (A.4.13).
Proof. (i) Let f, = (1+ A\, — a)p,. We have
—Dpn + ¢n = fa.

Note that ¢, € H}(2). If N =1 or N = 2, we have in particular f,, € LP(Q), for all 2 < p < co. Applying
Theorem A.4.14 (i), it follows that ¢, € L>®°(Q). If N > 3, let j be a nonnegative integer such that

2N N 2N
<<
N—2j=2 " N-2(+1)

Starting from the property f, € L?(2) and applying iteratively Theorem A.4.14 (iii), it follows that f, €
L¥3G7D (©). Applying now Theorem A.4.14 (i), we get f,, € L>°(02). Continuity follows from the same
estimates and by approximating f,, in H () by a sequence (h¢)ren C C§°(Q2). Hence (i).

Properties (ii) and (iii) are established in Gilbarg and Trudinger [54], Theorem 8.38.

(iv) It follows from formula (A.4.16) that

b1, 1) = /\1/ lp1]? da;
Q

and so A1 > A\ (—A + a). Consider a minimizing sequence (u;)jen of (A.4.12). By coerciveness, (u;);en
is bounded in H}(2). Therefore (Corollary A.3.10 and Theorem A.3.42) there exists u € H}(Q) and a
subsequence that we still denote by u; such that u; — w strongly in L?(£2), weakly in H{ () and almost

/ |u|? de = 1,
Q

liminf/ |vuj|2d:cg/ |Vul|? da.
Q Q

J—o0

everywhere. In particular, we have
and

One shows easily that also

liminf/a|uj\2da:§/a|u|2dx
Q Q

Jj—oo

It follows that u achieves the minimum in (A.4.12); and so u solves the Euler equation
—Au+au= A\ (A + a)u.

Therefore, A1 (—A + a) is an eigenvalue; and so A\;(—A 4 a) > A;. Hence (iv). This completes the proof. O

Remark A.4.36. Here are some comments concerning the above results.

(i) Connexity of €2 is required only for properties (ii) and (iii) of Proposition A.4.34 and Proposition A.4.35.

Without connexity, these two properties may not hold, as shows the following example. Let 2 =
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(0,7) N (m,27). Then A\; = 1, and the corresponding eigenspace is two-dimensional. More precisely, it

is the spaces spanned by the two functions ¢; and @; defined by

sinz if 0 <z <, N Oif0<x <,
p1(z) = P1(z) =

0if 7 < x < 2m, —sinz if 7 < x < 2.
In particular, both ¢; and ¢, vanish on a connected component of €.
(ii) The conclusions of Theorem A.4.35 still hold in the case where a € L>®(2) 4+ LP(£2), for some p > 1,

p > N/2. The proof (i) has to be slightly modified. The rest of the proof is unchanged.

A.4.6. Complex-valued solutions. Throughout Section A.4, we considered real valued functions but
a similar theory can be developped for complex valued functions, with obvious modifications. In particular,

we have the following results.

Lemma A.4.37. Let v be defined by

o=t { [ [P ue @0, [ =1},
Q Q

Then v = Ay, where Ay is defined by (A.4.1).

Proof. Since H}(,R) C HE(Q,C), it is clear that v < A\;. On the other hand, given u € H}(Q,C) such
that ||ullzz = 1, let v = |u|. Then, v € H}(Q,R), ||ullrz2 = 1 and |Vv| < |Vu| almost everywhere (see

Section A.3.7); and so, v > A. O

Lemma A.4.38. For every f € H~1(,C), there exists a unique solution u € H} (€2, C) of equation
~Au+u=f, in H*(Q,C).

Furthermore,

[l = [l

In addition,

[ulle < (122,

whenever f € L?(Q).

Proof. The proof is the same as that of Lemma A.4.3. O

Remark A.4.39. The conclusions of Remark A.4.4 also hold in the complex case.

Theorem A.4.40. Let A1 be defined by (A.4.1) and let A € C. If ReA > —\q, then the following properties
hold:

(i) For every f € H=1(Q,C), there exists a unique element u € H}(Q, C) such that

—Au+ A u=f, in H(Q,C);
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(i) £l = llullgr o) defines an equivalent norm on H=*(€2, C);
(ii)) ReAljullg— < [[flla-1;

(iv) if f € L*(Q,C), then Au € L*(, C), the equation makes sense in L*(2, C) and ReMl|ul|L2(q) < || fl|L2(0)-
Proof. The proof is the same as that of Theorem A.4.5, by considering the bilinear functional

a(u,v) =Re {/ {Vu- Vv + /\uv}} .
Q
Note that
o, ) = / Vul? + Re()\)/ [ul2,
Q Q

for all u € H(£,C). O

Consider now a € L7(§2,C) + L>(£2, C) for some o verifying (A.4.8), and let

y(a):inf{/QVu|2+/QRe(a)|u2; ueH&(Q,(C),/Q|u|2:1}. (A.4.45)

Note that v(a) = A (—A + Re(a)), where A;(+) is defined by (A.4.13). In particular, v(a) is finite. We have

the following result.

Theorem A.4.41. Let a be as above, let v(a) be defined by (A.4.45) and let A € C. If ReX > =\ (—A+a),
then for every f € H~1(Q, C), there exists a unique solution u € H{ (2, C) of equation (A.4.15) in H=1(Q, C).
In addition,

[ullar < CllfllE-1

for some constant C' independent of f.

Proof. The proof is the same as that of Theorem A.4.7, by considering the bilinear form

b(u,v) = Re {/Q{Vu - VU + \uv + auv}} :

Note that
b(mu):/ |Vu|2+Re()\)/ |u|2—|—/Re(a)|u|27
Q Q Q

for all u € H(£,C). O

Theorem A.4.42. Let a be as in Theorem A.4.41 and let A\ € C. Assume that Re(a) > 0 almost
everywhere and that ReA > 0. Given f € H-1(Q,C), let uw € H(Q, C) be the solution of (A.4.15) given by
Theorem A.4.41. If f € LP(Q,C) for some 1 < p < oo, then u € LP(Q,C) and Re(\)||ullr» < ||f|lze-

Proof. One proceeds as for Theorems A.4.11 and A.4.12, by using the following identity, which generalizes
formula (A.4.24).

Re (Vu - V(f(|Ju))@)) = f(|ul)|Vul* + M\Re(uﬁ)\2 almost everywhere. (A.4.46)

Jul
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Identity (A.4.46) holds for every u € H}(Q2,C) and for every smooth function f : (0,00) — [0,00) such that
f(s) and sf’(s) are bounded on (0,00). In particular, if f, f' > 0, then

fef [ vu-v(sum} >0

for all w € H}(2,C). If 1 < p < 2, one takes f(s) = (¢ + sg)pz;z, and if 2 < p < oo, one takes f(s) =

p—2

2 2
5 . One concludes as for Theorem A.4.11. O
1+es?

Remark A.4.43. We summarize below more results of Section A.4 that still hold true for complex-valued
solutions.

(i) The conclusions of Theorem A.4.8 and Proposition A.4.10 hold for complex-valued solutions, and for

every A € C. The proofs are essentially the same.

(ii) The conclusion of Theorem A.4.13 holds for complex-valued solutions, provided A € R and a > 0. This

is easily seen by considering the real and imaginary parts of the solution.

(iii) The conclusions of Theorem A.4.14 hold for complex-valued solutions, when a and A are as in Theo-
rem A.4.42. The result is obtained by the same method, and by making use of formula (A.4.46) instead
of formula (A.4.24).

(iv) The conclusion of Corollary A.4.17 holds for complex-valued solutions, when A € C and ReX > 0. The

result is obtained by the same method.

(v) The conclusion of Theorem A.4.28 holds for complex-valued solutions, provided A € R and a > 0. This

is obtained by considering the real and imaginary parts of the solution.
A.5. Inequalities. This section is devoted to various useful inequalities.
A.5.1. Jensen’s inequality.

Theorem A.5.1. (Jensen’s inequality) Consider a set X endowed with a positive measure . such that

/ du = 1, and let F : R — R be a convex function. Then for every f € L'(X,du) such that F(f) €
X

LY (X, du), we have
F( /. f(af)du(x)> < [ FU@)duta)

Proof. Since F is convex, F has left and right derivatives F*(t) at every t € R; F'* are nondecreasing

functions and F~(t) < F*(t), for every t € R. For s < ¢ we have

M < F(t) < Ft(1),
and for s > ¢ we have
F(S) _F(t) > F+(t)
s—t a 7

and so

F(t) — F(s) < FT(t)(t — s), for every s,t € R.

APPENDIX—PAGE 81



Take t = / f(z)dp(z) and s = f(x), for z € X. It follows that
X

F ([ s@au) < F) + 70 ([ 1@ duta) - 1@)

for almost all z € X. Integrating the above inequality over X yields the desired estimate. O

Corollary A.5.2. Let Q be an open subset of RN, let ¢ be a nonnegative function of L*(f)) such that
/ o(z)dx =1 and let F : R — R be a convex function. Then,
Q

F( [ s < [ P i
for every f € L (Q) such that fo € L1(Q) and F(f)p € LY(Q).

loc

Proof. Apply Theorem A.5.1 with X = Q and du(x) = p(x)dx. O

A.5.2. A differential inequality.
Theorem A.5.3. Let 0 < T < oo and let ¢ € C*([0,T)), ¢ > 0. If there exist a, A > 0 such that
¢'(t) + Ap(t) T <0,

for all t € [0,T), then

for all t € (0,T).

Proof. Note that ¢/ < 0 on [0,T). Therefore, if p(tg) = 0 for some to € [0,7"), then ¢ = 0 on [to, T).
Therefore, we may assume that there exists to € (0,7") such that ¢ > 0 on [0,%g). It follows that

on [0,t0). Integrating the above inequality, we obtain

! Ly

At — < —
ap(t)® = ap(to)* ~

)

for all ¢ € [0,¢), from which the result follows. O

Remark. Tt is surprising (and very useful) that the estimate of ¢ does not depend on ¢(0).
A.5.3. Gronwall’s lemma.

Theorem A.5.4. (Gronwall’s lemma) Let T > 0, A >0 and let f € L'(0,T) be a nonnegative function.

Consider a nonnegative function ¢ € C([0,T]) such that

¢@§A+Af®w@®
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for every t € [0, T].Then,

olt) < A exp ( / (s) ds) |

for every t € [0,T].

¢

Proof. Set ¢(t) = A +/ f(s)p(s)ds and h(t) = (t)exp < /t f(s) ds). ,h € WhHl and (see Sec-
0 0

tion A.2)

H(t) = (') — FO(E)) exp (— / ) ds)
< (F(e(t) — F(Ey6() exp ( / ) ds> <o.

It follows that h(t) < h(0), from which the result follows. O

In fact, Theorem A.5.4 is a particular case of the following result.

Proposition A.5.5. Let T >0, A >0 and let f € L'(0,T) and g € C([0,T]) be nonnegative functions.
Consider a nonnegative function ¢ € C([0,T]) such that

o0 <o)+ | ' F(s)ils) ds,
for every t € [0,T]. Then,
o <o)+ [ " F(s)a(s) exp ( / (o) do) ds,
for every t € [0, T).
Proof. Let ¢(t) = /ot F(s)¢(s) ds, for t € [0, T]. We have v € W11(0,T) and
V(1) = F(E)e(t) < F(D6(D) + F(B)g(t), for almost all ¢ € [0,T].

Consider now
t
O(t) = exp (—/ f(s) ds> P(t), for t € [0,T].
0

It follows that § € W(0,7) and that

0'(t) < f(t)g(t) exp ( /Ot f(s) ds) almost everywhere.

The result follows by integrating the above inequality. O

Remark A.5.6. In particular, if ¢ verifies the hypotheses of Theorem A.5.4 with A = 0, then ¢ = 0.

Theorem A.5.4 has many variants, in particular in the the case where the integrand is replaced by: An
expression depending on also on ¢ (and possibly with a singular behavior); expressions involving a nonlinear

dependence in . We describe some of them below.
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Proposition A.5.7. LetT >0,A>0,0<a,3 <1 andlet f be a nonnegative function with f € L?(0,T)

for some p > 1 such that p’ max{a, 8} < 1. Consider a nonnegative function ¢ € L*(0,T) such that

pt) <At + /t(t —5)7Pf(s)p(s)ds, for almost all t € [0,T).
0

Then there exists C, depending only on T, «, 3, p and || f||r» such that
p(t) <ACt,

for almost all t € [0, 7.

Proof. Consider to € [0,7] and § € (0, 1) small enough so that

i_g B«
t& (1 —=0) P01 IflLrr) <

N

IN
N = N =

4 -8 —a || ;B
T 7 [ flleeory L =6)"" [l "l 1w (0.6m)

Let 9(t) = ess sup{s®¢(s), s € [0,t]}. We have

12 o(1) §<A»+ta‘/)U~—s)*ﬁs*af@0¢(s)d&

0
For almost all 0 <t < g, we have by (A.5.3) and (A.5.1)

t%(t) < A+t [t = 5) s L 0.0) [1FllLo(o) ¥(2)
L -8 —«
<A+t (1= 0) 0 L o) IF Lm0,y $(1)

§A+%M0

For almost all ¢y <t < T, we have by (A.5.3)

t

(1-6)t
) < e [ =) ) ds 17 00 /( (t— 5) 5~ f(5) ds

1-6)t
<A+L+ D

On (0, (1 — §)t) we have (t —s)~? < (6t)7? < (6tg)~?; and so

« -8 t sTYf(s)yY(s)ds.
T 60) [ ) d
On ((1 —96)t),t) we have s~ < ((1 — 4)t)~“; and so, by (A.5.2)

L <(1—6)"||(t— 5)7ﬁ||Lp’((175)t,t) £l e o,e) ¥ ()
a1 _
< (=8t o™l o gy 1 1m0,y (1)

1

< iw(t)

It follows from (A.5.4), (A.5.5), (A.5.6) and (A.5.7) that
‘ 1
P < A+ Gt T [ s ds + gl
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and so,

vl < A+ (60) P T [ (s)uleds + Gu)

0

and we conclude with Theorem A.5.4, since s~ f(s) € L'(0,T) by our assumption on f. O

Proposition A.5.8. Let F € C([0,00),R) and assume that F is a nondecreasing function such that
F(0) =0 and F(t) > 0 for t > 0. Define the increasing function H € C(0,00) by

H(t):/lth(z).

Let T >0, A >0 and let ¢ € C([0,T]) be a nonnegative function such that

ot) < A+ /Ot F(p(s))ds, forallt e [0,T].

Then
(i) if H(t) — oo ast — oo, then ¢(t) < H Y (H(1+ A) +t) for all t € [0,T;

(ii) if A=0 and H(t) — —o0 ast — 0, then ¢ = 0.

t

Proof. Let y(t)=A —1—/ F(p(s))ds. We have ¢ € WH1(0,T) and 9" < F(3), ¢(0) = A.

Assume first that A - 0 and H(t) - —oo as t — 0. If ¢p = 0, then (ii) holds. Otherwise, there exists
t € [0,T] such that ¢(t) > 0. Let tg be the infimum of such #’s. Without loss of generality we may assume
that ¢o = 0, and since 9 is nondecreasing, we have ¥ (t) > 0 for ¢ > 0. Since (H(¥(¢))’ < 1, we have for

every 0 < s <t <T
H(y(t) < H(y(s)) + (t = s) < H(b(s)) + 1.

Letting s — 0, we obtain H(¢(t)) = —oo, which is absurd. Hence (ii).
Assume now that H(t) — oo as t — oco. Without loss of generality we may assume that A > 0.

Therefore 1 (t) > 0 on [0,7] and (H (¢ (t))’ < 1. It follows that
H(y(t)) < H(A) +t.

Therefore, ¥(t) < H-Y(H(A) +t) < H-Y(H(1 + A) + t). This proves (i). O

Remark A.5.9. If F(t) < C(1+ |Log(t)|) for all ¢ > 0, then H(t) — +o0 as t — +oo and H(t) — —o0 as
t — 0. Therefore we can apply both (i) and (ii).

1
Theorem A.5.10. let T >0 and f,g € C([0,T)) with f,g > 0. Suppose there exist 0 < a < 1,1 <p < >
and C' > 0 such that
ft+5) <579) + O+ C [ (s o) flt+ o) do,
0

forall0<t<t+s<T.If

lim sup f(t) = 400,
1T
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then
o iy
hrg%nf(T t)7g(t) > 0,

1—
with v = ap'
p—1

Proof. We consider two cases.

Case 1. «a > 0. Without loss of generality, we may assume that g(¢t) > 1 for all ¢t € [0,T) (otherwise,
replace g(t) by g(t) + 1). Setting (s) = s*f(t + s), we deduce

0(s) < g(t)+ Cs* + Cs” /Os(s —0) % P(0)P do.

Set now ©(s) = sup 6(o). We have

0<o<s
05) < 9(t) + Cs" + Cs"0(s)” [ (5= 0) 0 " do
0

Since

s 1
d
50‘/ (s—0) % P o = 517”0‘/ S ast=Pe,
0 o (

1 — 7)orpa

for some constant a, we deduce that
0(s) < g(t) + Cs™ + Cs* PO (s)P.

and so,

O(s) < g(t) + Cs* 4 Cs* PO (s)P.

We have ©(0) = 0 and O(T — s) el Therefore, there exists 7 € (0,7 — ¢) such that ©(7) = 2¢(¢). By
applying the above inequality with s = 7, we find

g(t) < CT® + O Pog(t)P < C(T — )™ + C(T — t) 7Pg(t)P.

Note that C(T —t)* < —g(t) for T — ¢ small enough; and so

NN

S9(1) < O = )7 g 0,

which yields the desired estimate.

Case 2. « =0. In this case, we have
flt+s) <g(t) +C+C/ f(t+o0)Pdo.
0

Set
G(s) = 9()+ C+C [ ft+ 0y do
0

so that
G'(s) = Cf(t+s)? < CG(s).
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Integrating this inequality, we obtain

G'P(s) — GLP(0)
1-p

< Cs,
for every 0 < s < T —t. Now we let s T T —t. Note that G(s) — +oo as s T T —t. Indeed, G is nondecreasing

and limsup G(s) > limsup f(7) = +o00. Thus we obtain
sTT—t 1T

G'7P(0) < Clp— 1)(T —t).

On the other hand, G(0) = ¢g(t) + C. This yields the desired conclusion. O

A.5.4. Interpolation inequalities. We begin with the well known Riesz-Thorin interpolation theorem.

Theorem A.5.11. Let Q be an open subset of RV, let 1 < pg, p1,qo, 1 < 00, and let T : LP°(Q)NLP* () —
L% (Q) N L7 () be a linear mapping. If there exist constants My, My such that | Tu||pe; < Mj||u||pe; for
j=0,1and all u e LPo(Q) N LP*(§2), then

| Tull oo < Mo ™" MY |Jull oo,

1 1-60 0 1 1-6 0
for all w € LPo(Q) N LP*(Q) and all 0 < 6 < 1, where — = +—.
Do Po h1 4o do a1

Proof. See for example Bergh and Lofstrom [13], Theorem 5.1.1, p. 106. Note that the theorem is stated
for LP spaces of complex valued functions. However, if one considers real valued spaces, then one can define
T 2 LPi (Q, (C) — L% (Q, (C) by T’U; = Tf ifu= f+Zg It is clear that HT||£(LP9,LQQ) S O(pg, QQ)||T||£(L1797L119).

g

Concerning vector valued LP spaces, we have the following results of Bergh and Lofstrom.

Theorem A.5.12. Let Q2 be an open subset of R, let 1 < pg,p1 < 0o and 1 < qg,q1 < 00, and let I be
an open interval of R. let X be a Banach space and let T : LPo(I, L%(Q)) N LP*(I, L9 (Q)) — X be a linear
mapping. If there exist constants Co,Cy such that ||Tf|x < Cj|fllpri(s,pey) for all f € LPo(I, L%(Q)) N
LP(I,L%(Q)) and j = 1,2, then

ITfllx < Co~ O llwwo 1,10,

1
for every f € LPo(I,L%(Q)) N LP*(I,L9(Q)) and for every 0 < § < 1, where " ’ )
0 0 1
1 1-6 0
= +

q9 q0 q1

Proof. It follows from Bergh and Lofstrom [13], Theorem 4.4.1, p. 90 that T is continuous
(L7, L0 (Q), L7 (1, L (©))) g — (X, X)jg) = X,

with norm C37?CY. Next, It follows from Bergh and Lofstrom [13], Theorems 5.1.1 and 5.1.2, pp. 106
and 107 that

(LPO (1, L)), L7 (I, L% () ) = ¥ (1, (L% (), L () ) = LP* (I, L% ().
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Hence the result. O

Theorem A.5.13. Let ) be an open subset of RY let 1 < p§, p{,p§,pt < 0o and 1 < ¢, ¢, qd, ¢t < oo,

and let I be an open interval of R. let T : LPo(I, L% (2)) N LP1 (I, L% (Q)) — LPo(I, L% () N LPi (I, L% ()
; - ; <

be a linear mapping. If there exist constants Cy,Cy such that ”TfHLP;(I,anl‘) < C]||f|\LP<;(I7Lq?) for all

f € LPS(I, L9 (Q)) N LP (I, L% (Q)) and j = 1,2, then

1T 5 gty < O3 CUN N gy
0 0 0 0 ]. ]. - 9 6
for every f € LPo(I,L% () N L1 (I, L% (Q)) and for every 0 < 6 < 1, where — = —— + — and
Dy Po 5
1106
% % o a
Proof. The proof is the same as that of Theorem A.5.12. O

Remark A.5.14. Theorems A.5.12 and A.5.13 are valid with p; = oo or pf = 00, provided one replaces
the space L>°(I, X) by the closure in L>°(I, X) of the space spanned by the functions of the form 15 where
E is a measurable subset of I (see Bergh and Lofstrom [13]).

A.5.5. Convolution estimates. We begin with the well known Young’s interpolation inequality.

Theorem A.5.15. Let N be a positive integer and let 1 < p,q,r < 0o be such that

If f € LP(RY) and g € LY(RY), then f xg € L"(RY) and

1% gllr < | fllzellgliza,

where
frglx)=| f)g(z—vy)d,
RN
for almost all z € RY.
Note that one cannot apply Young’s inequality to functions of the type f(x) = |z|~%, a > 0 since

this function does not belong to any space LP(R™). The following Riesz potentials inequality extends some

Young’s inequalities in this case.
Theorem A.5.16. Let 0 < a < N. Given u € C.(RY), define I(u) € C(RY) by

1)@ = [ o= sl uly) dy = (|75 ) o)
N 1 1 «a
Then I(u) € LY(R"Y) for every 1 < ¢ < oo. Moreover, for every 1 < p < q < oo such that — = — — N there
q p
exists a constant C(p,q) such that
1 (w)]|Lary < C(p; @) llull r @y,
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for all u € C.(RY).
The following corollary is useful for estimating solutions of nonhomogeneous evolution equations.

Corollary A.5.17. Let I be an interval of R and let X be a Banach space. Let 0 < ¢ < 1 and tg € I, and
given f € C;(I,X), define Ty € C(I,X) by

t
Ti(t)= [ It sl f(s)ds

1 1
Then Iy € L4(1,X) for every 1 < g < oco. Moreover, for every 1 < p < q < oo such that — = —+0 — 1,
q p

there exists a constant C(p, q) such that

IZsllLacr,x) < Clp, ) fllLer.x)
for all f € Co(1,X).

Proof. For f as above, define f € C.(R, X) by

~ f(t)v iftel;
ﬂwz{ |
0, ift¢I;

and g € C.(R) by g(t) = || f(t)]|- We have

+oo -
20l < [ le= s IF ) ds = I9)(0)

where I(g) is defined in Theorem A.5.16. The result now follows by applying Theorem A.5.16 with N =1

anda=1-o. O

Remark A.5.18. Note that the constant C(p,q) in Corollary A.5.17 depends only on p, ¢. In particular,
it is independent of I and tg € I.

A.5.6. Kato’s inequality. Evenifu: RY — Rissmooth, |u| may have singular second order derivatives.
In particular, one cannot compare Au and Alu| as functions. However, one can prove an inequality in the

sense of distributions. This is the object of the following result.

Theorem A.5.19. (Kato’s inequality) Let Q be an open subset of RN and define
1ifx >0,
signz =< 0 ifz =0,
—1lifz <0.

Ifu € LL (Q) is such that Au € L (), then Alu| > (Au)signu in D'(L).

loc loc

Proof. Since the property is local, we may assume that = RY. The proof proceeds in three steps.
Step 1. If j € C*(R,R) is convex and if u € C*(RY), then Aj(u) > j'(u)Au. Indeed, an elementary
calculation shows that Aj(u) = j”(u)|Vu|? + j/(u)Au > j'(u) Aw.

APPENDIX—PAGE 89



Step 2. If j € C*(R,R) N W2>(R) is convex and if u € L{ (R") is such that Au € L| (RY), then
Nj(u) > j'(u)Au in D'(RN).  Let (pn)nen be a sequence of mollifiers and set u,, = p,, x u. It follows that
up, € C2(RY); and so, by Step 1, Aj(u,) > j'(un)Au,. Consider now 0 < R < co and set B = {z €
RYN; |z| < R}. It follows from Brezis [17], Théoreme 1V.22, p. 71 that u, — u and Au, = p, x Au — Au
in L'(B). We also may assume, by possibly substracting a subsequence that u, — u and Au, — Au
almost everywhere and that there exists f € L'(B) such that |u,| + |Au,| < f almost everywhere. It
follows that j(u,) — j(u) in L'(B) and that j'(u,)Au, — j'(u)Au in L*(B). In particular, it follows that
Aj(un) =3 (up)Auy — Aj(u)—37' (u)Auin D'(B). Since R is arbitrary, it follows that Aj(w,)—7 (un) Auy, —
Aj(u) — §'(u)Au in D'(RY). Hence the result.

Step 3. Conclusion. Let u be as in the statement of the theorem and, given € > 0, set j.(x) = (e2+12)1/2.
It follows from Step 2 that Aj.(u) — j.(uw)Au > 0 in D'(RY). The result follows, since j.(z) — |z| and

jl(z) — signz as € | 0 (see the proof of Step 2). O

Kato’s inequality has a parabolic version which we describe below.

Theorem A.5.20. Let T > 0 and let 2 be an open subset of RN . If u(t,z) € Li ((0,T) x Q) is such that

loc

0 0
ug € LL ((0,T) x Q) and Au € L ((0,T) x Q), then §|u\ — Alu| < <({;: - Au) signu in D'((0,T) x Q),
where sign is as defined in Theorem A.5.19.
Proof. The proof is the same as the proof of Theorem A.5.19. O
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