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Notation.

1E the function defined by 1E(x) = 1 if x ∈ E and 1E(x) = 0 if x 6∈ E;

E the closure of the subset E of the topological space X;

C(E,F ) the space of continuous functions from the topological space E to the topological space F ;

Cb(E,F ) the Banach space of continuous, bounded functions from the topological space E to the Banach

space F , equipped with the topology of uniform convergence;

Cc(E,F ) the space of continuous functions E → F compactly supported in E.

L(E,F ) the Banach space of linear, continuous operators from the Banach space E to the Banach space

F , equipped with the norm topology;

L(E) the space L(E,E);

X? the topological dual of the space X;

X ↪→ Y if X ⊂ Y with continuous injection;

Ω an open subset of RN ;

Ω the closure of Ω in RN ;

∂Ω the boundary of Ω, that is ∂Ω = Ω \ Ω;

ω ⊂⊂ Ω if ω ⊂ Ω and ω is compact;

∂tu = ut =
∂u

∂t
=
du

dt
;

∂iu = uxi =
∂u

∂xi
;

∂ru = ur =
∂u

∂r
=

1
r
x · ∇u, where r = |x|;

Dα =
∂α1

∂xα1
1

· · · ∂
αN

∂xαN

N

;

∇u = (∂1u, · · · , ∂Nu);

4 =
N∑

i=1

∂2

∂x2
i

;

F the Fourier transform in RN , defined by* Fu(ξ) =
∫

RN

e−2πix·ξu(x) dx;

F = F−1 given by Fv(x) =
∫

RN

e2πiξ·xv(ξ) dξ;

û = Fu;

Cc(Ω) = Cc(Ω,R) (or Cc(Ω,C));

Cb(Ω) = Cb(Ω,R) (or Cb(Ω,C));

* with this definition of the Fourier transform, ‖F‖L(L2) = 1, F(u ? v) = FuFv and F(Dαu) =

(2πi)|α|
∏N

j=1 x
αj

j Fu.
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Cm
b (Ω) = {u ∈ Cb(Ω); Dαu ∈ Cb(Ω) for all α ∈ NN such that |α| ≤ m}, equipped with the norm

‖u‖Cm
b (Ω) =

∑
|α|≤m

‖Dαu‖L∞ ;

C(Ω) the space of continuous functions Ω → R (or Ω → C). When Ω is bounded, C(Ω) is a Banach space

when equipped with the L∞ norm;

Cb,u(Ω) the Banach space of uniformly continuous and bounded functions Ω → R (or Ω → C) equipped

with the topology of uniform convergence;

Cm
b,u(Ω) the Banach space of functions u ∈ Cb,u(Ω) such that Dαu ∈ Cb,u(Ω), for every multi-index α such

that |α| ≤ m. Cm
b,u(Ω) is equipped with the norm of Wm,∞(Ω);

C0(Ω) the closure of D(Ω) in L∞(Ω);

Cm,α(Ω) for 0 ≤ α ≤ 1, the Banach space of functions u ∈ Cm
b,u(Ω) such that

‖u‖Cm,α = ‖u‖W m,∞ + sup
{
|Dβu(x)−Dβu(y)|

|x− y|α
; x, y ∈ Ω, |β| = m

}
<∞.

D(Ω) = C∞c (Ω) the Fréchet space of C∞ functions Ω → R (or Ω → C) compactly supported in Ω, equipped

with the topology of uniform convergence of all derivatives on compact subsets of Ω;

D′(Ω) the space of distributions on Ω, that is the topological dual of D(Ω);

S(RN ) the Schwartz space, that is the space of u ∈ C∞(RN ,R) (or C∞(RN ,C)) such that for every

nonnegative integer m and every multi-index α,

pm,α(u) = sup
x∈RN

(1 + |x|2)m/2|Dαu(x)| <∞.

S(RN ) is a Fréchet space when equipped with the seminorms pm,α;

S ′(RN ) the space of tempered distributions on RN , that is the topological dual of S(RN ). S ′(RN ) is a

subspace of D′(RN );

p′ the conjugate of p given by
1
p

+
1
p′

= 1;

Lp(Ω) the Banach space of (classes of) measurable functions u : Ω → R (or C) such that
∫

Ω

|u(x)|p dx <∞

if 1 ≤ p <∞, or ess sup
Ω

|u| <∞ if p = ∞. Lp(Ω) is equipped with the norm

‖u‖Lp =


(∫

Ω

|u(x)|p dx
)1/p

, if p <∞;

ess sup
Ω

|u|, if p = ∞.

Wm,p(Ω) the Banach space of (classes of) measurable functions u : Ω → R (or Ω → C) such that Dαu ∈

Lp(Ω) in the sense of distributions, for every multi-index α with |α| ≤ m. Wm,p(Ω) is equipped with the

norm

‖u‖W m,p =
∑
|α|≤m

‖Dαu‖Lp .

Wm,p
0 (Ω) the closure of D(Ω) in Wm,p(Ω);
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W−m,p′(Ω) the dual of Wm,p
0 (Ω);

Hm(Ω) = Wm,2(Ω) Hm(Ω) is equipped with the equivalent norm

‖u‖Hm =

 ∑
|α|≤m

∫
Ω

|Dαu(x)|2 dx

1/2

.

Hm(Ω) is a Hilbert space for the scalar product

(u, v)Hm =
∫

Ω

Re(u(x)v(x)) dx.

Hm
0 (Ω) = Wm,2

0 (Ω);

H−m(Ω) = W−m,2(Ω);

D(I,X) = C∞c (I,X) the Fréchet space of C∞ functions I → X compactly supported in I, equipped with

the topology of uniform convergence of all derivatives on compact subintervals of I;

Lp(I,X) the Banach space of (classes of) measurable functions u : I → X such that
∫

I

‖u(t)‖p
X dt <∞ if

1 ≤ p <∞, or ess sup
I

‖u(t)‖X <∞ if p = ∞. Lp(I,X) is equipped with the norm

‖u‖Lp =


(∫

I

‖u(t)‖p
X dt

)1/p

, if p <∞;

ess sup
I

‖u(t)‖X , if p = ∞.

Wm,p(I,X) the Banach space of (classes of) measurable functions u : I → X such that
dju

dtj
∈ Lp(I,X) for

every 0 ≤ j ≤ m. Wm,p(I,X) is equipped with the norm

‖u‖W m,p =
m∑

j=1

‖d
ju

dtj
‖Lp .

Cb,u(I,X) the Banach space of uniformly continuous and bounded functions I → X, equipped with the

topology of uniform convergence;

Cm
b,u(I,X) the Banach space of functions u ∈ Cb,u(I,X) such that

dju

dtj
∈ Cb,u(I,X), for every 0 ≤ j ≤ m.

Cm
b,u(I,X) is equipped with the norm of Wm,∞(I,X);

Cm,α(I,X) for 0 ≤ α ≤ 1, the Banach space of functions u ∈ Cm
b,u(I,X) such that

‖u‖Cm,α = ‖u‖W m,∞ + sup

{
|d

mu(t)
dtm − dmu(s)

dtm |
|t− s|α

; s, t ∈ I

}
<∞.

C(I,X) the space of continuous functions I → X. When I is bounded, C(I,X) is a Banach space when

equipped with the norm of L∞(I,X).

D(A) the domain of the operator A.

R(A) the range of the operator A.

Jλ(A) = (I + λA)−1, when A is an m-accretive operator.

Aλ = A(I + λA)−1, the Yosida approximation of the m-accretive operator A.
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Chapter 1. Linear semigroups of contractions; the Hille-Yosida theory and some

applications.

1.1. m-accretive operators. Throughout this section, X is a Banach space, endowed with the norm

‖ ‖.

1.1.1. Unbounded operators in Banach spaces.

Definition 1.1.1. A linear unbounded operator in X is a pair (D,A), where D is a linear subspace of X

and A is a linear mapping D → X. If sup{‖Ax‖; x ∈ D, ‖x‖ ≤ 1} < ∞, A is bounded. If sup{‖Ax‖; x ∈

D, ‖x‖ ≤ 1} = ∞, A is not bounded.

Remark 1.1.2. It is clear that A is bounded if, and only if there exists a closed linear subspace Y of X

such that D ⊂ Y and an operator A ∈ L(Y,X) such that Ax = Ax, for all x ∈ D.

Definition 1.1.3. Let (D,A) be a linear unbounded operator in X. The domain D(A) of A is the set

D(A) = D,

the range R(A) of A is the set

R(A) = A(D),

the nullspace N(A) of A is the set

N(A) = {u ∈ D(A); Au = 0},

and the graph G(A) of A is the set

G(A) = {(x, f) ∈ X ×X; x ∈ D and f = Ax}.

D(A), R(A) and N(A) are linear subspaces of X, and G(A) is a linear subspace of X ×X. If G(A) is closed

in X ×X, we say that A is closed.

Remark 1.1.4. The pair (D,A) is often called “the operator A with domain D(A) = D” or just “the

operator A”. However, one must be aware that an operator is not only defined by the values Ax, but also

with its domain. In other words, when one defines an operator, it is absolutely necessary to define its

domain. In particular, the same “formula” can define several operators, depending on what the domain

is. For example, let X = L2(RN ). Let A1 be defined by D(A1) = X and A1u = u, for all u ∈ X (A1 is

the identity on X) and let A2 be defined by D(A2) = {u ∈ H1(RN ); u(x) = 0 for almost all |x| ≥ 1} and

A2u = u, for all u ∈ D(A2). Both A1 and A2 are defined by the same formula, but A1 and A2 have different

properties. For example, the domain of A1 is dense in X, while the domain of A2 is not. The graph of A1

is closed in X ×X, while the graph of A2 is not. It is a good exercise for the reader to determine D(A) and

G(A). A1 is m-accretive, while A2 is not (see below).That example is rather trivial, but we will see some

nontrivial examples in Section 1.2.
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Remark 1.1.5. When there is no risk of confusion, a linear unbounded operator in X is just called a linear

operator in X or even an operator in X.

1.1.2. m-accretive operators in Banach spaces.

Definition 1.1.6. An operator A in X with domain D(A) is accretive1 if

‖x+ λAx‖ ≥ ‖x‖,

for all x ∈ D(A) and all λ > 0.

Definition 1.1.7. An operator A in X is m-accretive1 if the following holds:

(i) A is accretive,

(ii) for all λ > 0 and all f ∈ X, there exists x ∈ D(A) such that x+ λAx = f .

Lemma 1.1.8. If A is an m-accretive operator in X, then for every λ > 0 and every f ∈ X, there exists a

unique solution x ∈ D(A) of equation

x+ λAx = f.

In addition ‖x‖ ≤ ‖f‖. In particular, given λ > 0, the mapping f 7→ x is a contraction X → X, and is one

to one X → D(A).

Proof. The result follows immediately from Definitions 1.1.6 and 1.1.7.

Definition 1.1.9. Let A be an m-accretive operator in X. Given λ > 0, the mapping f 7→ x defined

in Lemma 1.1.8 is denoted by Jλ(A) (or Jλ when there is no risk of confusion), or (I + λA)−1. We have

Jλ ∈ L(X), ‖Jλ‖L(X) ≤ 1, and R(Jλ) = D(A). Jλ is called the resolvent of A

Proposition 1.1.10. If A is an m-accretive operator in X, then the graph G(A) of A is closed in X ×X.

Proof. Since the operator J1 is continuous, its graph is closed, and since R(J1) = D(A), this means that

the set {(x, f) ∈ X × X; x ∈ D(A) and f = x + Ax} is closed in X × X. Therefore, the set {(x, f) ∈

X ×X; x ∈ D(A) and f = Ax} is closed in X ×X. This proves the result.

Remark 1.1.11. Let A be an m-accretive operator in X (or, more generally, a closed operator), and

suppose X is reflexive. Consider a family (xε)ε>0 ⊂ D(A). If xε ⇀ x in X as ε ↓ 0, and if Axε is bounded

in X, then x ∈ D(A) and Axε ⇀ Ax in X as ε ↓ 0. Indeed, there exists a sequence εn ↓ 0 and y ∈ X such

that Axεn
⇀ y in X, as n → ∞. In particular, (xεn

, Axεn
) ⇀ (x, y) in X × X, as n → ∞. On the other

hand, since G(A) is closed in X ×X, it is also closed for the weak topology of X ×X; and so, x ∈ D(A) and

y = Ax. Finally, one shows easily with the same argument that the whole family (Axε)ε>0 converges to Ax.

1 Some authors say that A is dissipative (respectively, m-dissipative), if and only if −A is accretive

(respectively, m-accretive).
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Corollary 1.1.12. Let A be an m-accretive operator in X. For every x ∈ D(A), let ‖x‖D(A) = ‖x‖+‖Ax‖

and ‖|x‖|D(A) = ‖x+Ax‖. It follows that

(i) ‖ ‖D(A) is a norm on D(A), and (D(A), ‖ ‖D(A)) is a Banach space. ‖ · ‖D(A) is called the graph norm;

(ii) D(A) ↪→ X (with the graph norm);

(iii) the restriction of A to D(A) is continuous D(A) → X, (with the graph norm) and ‖A‖L(D(A),X) ≤ 1.

(iv) ‖| ‖|D(A) is an equivalent norm on D(A);

(v) J1 is an isomorphism from X to D(A) (with the graph norm).

Proof. It is clear that ‖ ‖D(A) is a norm on D(A). Furthermore, the mapping

D(A) → X ×X

g : x 7→ (x,Ax)

satisfies ‖g(x)‖X×X = ‖x‖D(A). Since g(D(A)) = G(A), which is closed by Proposition 1.1.10, it follows

that (D(A), ‖ ‖D(A)) is a Banach space. This proves (i). (ii) follows from inequality ‖x‖ ≤ ‖x‖D(A), while

(iii) follows from inequality ‖Ax‖ ≤ ‖x‖D(A). It is clear that ‖|x‖|D(A) ≤ ‖x‖D(A), and also

‖x‖D(A) ≤ 2‖x‖+ ‖|x‖|D(A) ≤ 3‖x‖D(A),

since A is accretive. This proves (iv). Finally, since R(J1) = D(A) by Lemma 1.1.8, it is immediate that

‖|J1x‖|D(A) = ‖x‖, for all x ∈ X. Thus, J1 is an isometry from X onto D(A) equipped with the equivalent

norm ‖| ‖|D(A). This completes the proof.

Remark 1.1.13. Throughout the rest of this book, we will always consider D(A) as the Banach space

(D(A), ‖ ‖D(A)).

Corollary 1.1.14. If A is an m-accretive operator in X, then

(i) ‖J1x‖D(A) defines a norm on X, which is equivalent to the original norm ‖ ‖;

(ii) Jλ ∈ L(X,D(A)), for every λ > 0.

Proof. It follows from Corollary 1.1.12 (iv) that ‖|J1x‖|D(A) = ‖x‖. Hence (i). Given λ > 0 and x ∈ X,

we have λAJλx = x− Jλx; and so,

‖Jλx‖D(A) = ‖Jλx‖+
1
λ
‖x− Jλx‖ ≤

(
1 +

2
λ

)
‖x‖.

Hence (ii).

Definition 1.1.15. Let A be an m-accretive operator in X, and let Jλ be as in Definition 1.1.9. For every

x ∈ X and λ > 0, one defines Aλx ∈ X by Aλx = AJλx. Aλ is called the Yosida approximation of A.

Lemma 1.1.16. Let A be an m-accretive operator in X, and let Aλ be as above. The following properties

hold:
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(i) Aλx =
x− Jλx

λ
, for every x ∈ X;

(ii) Aλ ∈ L(X) and ‖Aλ‖L(X) ≤
2
λ

, for all λ > 0;

(iii) Aλx = JλAx, for every x ∈ D(A);

(iv) (Jλ)|D(A) ∈ L(D(A)) and ‖(Jλ)|D(A)‖L(D(A)) ≤ 1, for every λ > 0;

(v) Aλ is m-accretive.

Proof. Let x ∈ X and z = Jλx. Since z + λAz = x, we have λAλx = λAz = x − z. This proves (i), and

(ii) follows immediately. Finally, if x ∈ D(A) and z = Jλx, then

z + λAz = x.

Since both x and z belong to D(A), it follows that Az ∈ D(A) and that

Az + λA(Az) = Ax.

Now let w = JλAx. Since

w + λAw = Ax,

we have

(w −Az) + λ(w −Az) = 0.

Since A is accretive, it follows that w = Az, which proves (iii). Next,

‖Jλx‖D(A) = ‖Jλx‖+ ‖Aλx‖ = ‖Jλx‖+ ‖AJλx‖ ≤ ‖x‖+ ‖Ax‖ = ‖x‖D(A),

from which (iv) follows. Consider now µ > 0. Given x ∈ X, it follows from (i) that

x+ µAλx =
(
1 +

µ

λ

)
x− µ

λ
Jλx;

and so,

‖x+ µAλx‖ ≥
(
1 +

µ

λ

)
‖x‖ − µ

λ
‖Jλx‖ ≥

(
1 +

µ

λ

)
‖x‖ − µ

λ
‖x‖ = ‖x‖.

Therefore, Aλ is accretive. Since Aλ ∈ L(X), it follows that Aλ is m-accretive (see Remark 1.1.22).

Remark 1.1.17. If A is an m-accretive operator in X, and if X is reflexive, then one can show that D(A)

is dense in X. See Corollary 1.1.37 for the case of Hilbert spaces and Exercise 1.8.2 for the general case.

Remark 1.1.18. If X is a Hilbert space, then one can improve the estimate in (ii) above. In this case,

‖Aλ‖L(X) ≤ 1/λ. Indeed, given x ∈ X, let f = Jλx, so that f + λAf = x. Taking the scalar product with

Af , we obtain λ‖Af‖2 + (x,Af) ≤ ‖x‖ ‖Af‖, and the result follows from Lemma 1.1.36 below. However, in

the general case, one can have ‖Aλ‖L(X) = 2/λ for all λ > 0 (see Exercise 1.8.1).

The purpose of the following proposition is to show that Jλ is a good approximation of the identity, and

that the (bounded) operator Aλ is a good approximation of the (unbounded) operator A, as λ ↓ 0.
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Proposition 1.1.19. Let A be an m-accretive operator in X. If D(A) is dense in X, then

(i) ‖Jλx− x‖ ≤ λ‖Ax‖, for all λ > 0 and all x ∈ D(A);

(ii) ‖Jλx− x‖−→
λ↓0

0, for all x ∈ X;

(iii) ‖Aλx−Ax‖−→
λ↓0

0, for all x ∈ D(A);

(iv) ‖Jλx− x‖D(A)−→
λ↓0

0, for all x ∈ D(A).

Proof. Let x ∈ D(A). Since Jλx−x = −λAλx, (i) follows from Lemma 1.1.16 (iii). Since ‖Jλ−I‖L(X) ≤ 2

and D(A) is dense in X, (ii) follows from Proposition A.1.4. Given x ∈ D(A), it follows from (ii) that

JλAx−Ax−→
λ↓0

0 in X. (iii) follows, since JλAx = Aλx, by Lemma 1.1.16. Finally, (iv) follows from (ii) and

(iii).

Remark 1.1.20. Property (i) holds as well if D(A) is not dense. Therefore, if A is an m-accretive operator,

then Jλx→ x as λ ↓ 0, for every x ∈ D(A), hence for every x ∈ D(A) (see Proposition A.1.4).

Finally, the following proposition gives a quite useful characterization of m-accretive operators.

Proposition 1.1.21. If A is an accretive operator in X, then the following properties are equivalent:

(i) A is m-accretive,

(ii) there exists λ0 > 0 such that for all f ∈ X, there exists a solution x ∈ D(A) of equation x+ λ0Ax = f .

Proof. It is clear that (i)⇒(ii). Let us show that (ii)⇒(i). Since A is accretive, it follows from property

(ii) that given f ∈ X, there exists a unique x ∈ D(A) such that x + λ0Ax = f . In addition, ‖x‖ ≤ ‖f‖.

Therefore, the mapping f 7→ is continuous X → X, and its norm is ≤ 1. Let us denote this operator by J .

Let now λ > 0 and f ∈ X. Note that the equation

x+ λAx = f,

is equivalent to

x+ λ0Ax =
λ0

λ
f +

(
1− λ0

λ

)
x.

This last equation is equivalent to

x = F (x),

where

F (x) = J

(
λ0

λ
f +

(
1− λ0

λ

)
x

)
.

Note that F is Lipschitz continuous X → X with a Lipschitz constant L ≤
∣∣∣∣1− λ0

λ

∣∣∣∣. Therefore, if λ > λ0/2,

then L < 1; and so, it follows from Theorem A.1.1 that there exists x ∈ X such that x = F (x). Therefore,

for every λ > λ0/2 and every f ∈ X, there exists x ∈ D(A) such that x + λAx = f . Iterating n times this

argument, it follows that for every λ > λ0/2n and every f ∈ X, there exists x ∈ D(A) such that x+λAx = f .

Since n is arbitrary, the result follows.
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Remark 1.1.22. Let A be an accretive operator in X. In order to check that A is m-accretive, we have in

principle to solve equation x+ λAx = f for all f ∈ X and all λ > 0. Proposition 1.1.15 means that in fact,

we only have to solve the equation for all f ∈ X and some λ > 0. It follows in particular that if A ∈ L(X)

is accretive, then A is m-accretive. Indeed, if λ‖A‖L(X) < 1, then R(I + λA) = X.

Corollary 1.1.23. Let A and B be two operators in X. If R(I + A) = X, if B is accretive and if

G(A) ⊂ G(B), then A = B and A is m-accretive.

Proof. Let (x, f) ∈ G(B), and let g = f+x. In particular, x ∈ D(B) and x+Bx = g. Since R(I+A) = X,

there exists y ∈ D(A) such that y + Ay = g. Since G(A) ⊂ G(B), it follows that y ∈ D(B) such that

y + By = g. In particular, (x − y) + B(x − y) = 0. Therefore, y = x, since B is accretive. It follows that

(x, f) ∈ G(A). Therefore, A = B. Finally, A is accretive and R(I + A) = X; and so, A is m-accretive by

Proposition 1.1.21.

Corollary 1.1.24. Let A and B be two m-accretive operators in X. If G(A) ⊂ G(B), then A = B.

1.1.3. Accretive operators and duality maps; sums of accretive operators. We recall the

definition of the duality map F . For every x ∈ X, we define the duality set F (x) ⊂ X? by

F (x) = {ξ ∈ X?; ‖ξ‖X? = ‖x‖ and 〈ξ, x〉X?,X = ‖x‖2}.

It follows from the Hahn-Banach theorem that F (x) 6= ∅.

Lemma 1.1.25. Let A be a linear operator in X. The following properties are equivalent:

(i) A is accretive;

(ii) for all x ∈ D(A) there exists ξ ∈ F (x) such that 〈ξ,Ax〉X?,X ≥ 0.

Proof. Assume A is accretive. Let x ∈ D(A) and set y = Ax. We have ‖x + λy‖ ≥ ‖x‖ for all λ > 0.

Given λ > 0, let ξλ ∈ F (x+ λy) and set fλ = ξλ/‖ξλ‖. We have

‖x‖ ≤ ‖x+ λy‖ = 〈fλ, x+ λy〉X?,X = 〈fλ, x〉X?,X + λ〈fλ, y〉X?,X ≤ ‖x‖+ λ〈fλ, y〉X?,X .

In particular, 〈fλ, y〉X?,X ≥ 0 and lim inf
λ↓0

〈fλ, x〉X?,X ≥ ‖x‖. On the other hand, since ‖fλ‖ ≤ 1, there exist

a sequence λn ↓ 0 and f ∈ X? such that ‖f‖ ≤ 1, lim
n→∞

〈fλn
, x〉X?,X = 〈f, x〉X?,X and lim

n→∞
〈fλn

, y〉X?,X =

〈f, y〉X?,X . It follows that 〈f, y〉X?,X ≥ 0 and that 〈f, x〉X?,X ≥ ‖x‖. Since 〈f, x〉X?,X ≤ ‖x‖, we obtain

〈f, x〉X?,X = ‖x‖. Setting ξ = ‖x‖f , we deduce ξ ∈ F (x) and 〈ξy〉X?,X ≥ 0, hence (ii). Conversely,

assume (ii) holds. Let x ∈ D(A) and let ξ ∈ F (x) be such that 〈ξ, Ax〉X?,X ≥ 0. Set f = x+λAx. It follows

that

〈ξ, f〉X?,X = 〈ξ, x〉X?,X + λ〈ξ, Ax〉X?,X ≥ 〈ξ, x〉X?,X .

Therefore,

‖x‖2 = 〈ξ, x〉X?,X ≤ 〈ξ, f〉X?,X ≤ ‖ξ‖ ‖f‖ = ‖x‖ ‖f‖;
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and so, A is accretive, which completes the proof.

Lemma 1.1.26. Let A be an m-accretive operator in X. Then 〈ξ,Ax〉X?,X ≥ 0, for every x ∈ D(A) and

every ξ ∈ F (x).

Proof. Let x ∈ D(A) and ξ ∈ F (x). For every λ > 0, we have

〈ξ, (I − λA)−1x〉X?,X ≤ ‖x‖ ‖(I − λA)−1x‖ ≤ ‖x‖2 = 〈ξ, x〉X?,X ;

and so,

〈ξ, x− (I − λA)−1x〉X?,X ≥ 0.

Dividing the above inequality by λ and letting λ ↓ 0, it follows from Remark 1.1.27 that 〈ξ,Ax〉X?,X ≥ 0.

This completes the proof.

Corollary 1.1.27. Let A and B be linear operators in X. Define the operator A + B by D(A + B) =

D(A) ∩D(B) and (A+B)x = Ax+Bx. If A is m-accretive and if B is accetive, then A+B is accretive.

Proof. The result follows immediately from Lemmas 1.1.25 and 1.1.26 above.

1.1.4. Restriction and extrapolation. In this section we show that, given an m-accretive operator

with a dense domain, one can restrict it to a smaller space, or extend it to a larger space in such a way that

the restricted or extended operator is m-accretive. These considerations will be useful in the next sections

for characterizing the “weak solutions”.

Theorem 1.1.28. Let A be an m-accretive operator in X with dense domain and let X1 be the Banach

space (D(A), ‖ ‖D(A)). The operator A(1) in X1 defined by{
D(A(1)) = {x ∈ X1; Ax ∈ X1},

A(1)x = Ax, for all x ∈ D(A(1));

is m-accretive in X1, and D(A(1)) is dense in X1.

Proof. Consider x ∈ D(A(1)), f ∈ X1 and λ > 0 such that

x+ λA(1)x = f.

In particular

x+ λAx = f. (1.1.1)

It follows that Ax ∈ D(A) and that

Ax+ λA(Ax) = Af. (1.1.2)

Since A is accretive, it follows from (1.1.1) and (1.1.2) that ‖x‖ ≤ ‖f‖ and that ‖Ax‖ ≤ ‖Af‖. Therefore,

‖x‖X1 ≤ ‖f‖X1 , and A(1) is accretive.
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Let now λ > 0 and f ∈ X1, and let x = Jλf . It follows that

x+ λAx = f.

In particular, Ax ∈ D(A) (i.e. x ∈ D(A(1))) and

x+ λA(1)x = f ;

and so, A(1) is m-accretive.

Finally, let x ∈ X1 and let xλ = Jλx. One verifies as above that xλ ∈ D(A(1)). Furthermore, it follows

from Proposition 1.1.19 (iv) that

xλ−→
λ↓0

x, in X1.

Therefore, D(A(1)) is dense in X1. This completes the proof.

Remark 1.1.29. Here are some observations concerning Theorem 1.1.28.

(i) One can iterate Theorem 1.1.28 and construct a family (Xn)n∈N of Banach spaces such that

· · · ↪→ Xn+1 ↪→ Xn ↪→ · · · ↪→ X0 = X,

all embeddings being dense, and a family (A(n))n∈N of operators such that A(n) is m-accretive in Xn

with domain Xn+1 and A(n)x = Ax for all x ∈ Xn+1. Note that if A is bounded, then Xn = X for all

n ∈ N, while if A is not bounded the family (Xn)n∈N is strictly decreasing.

(ii) It follows from Corollary 1.1.14 that X1 = J1(X) and that ‖J1x‖X1 ≈ ‖x‖. One verifies easily by

iteration that Xn = Jn
1 (X) for every nonnegative integer n and that ‖Jn

1 x‖Xn ≈ ‖x‖.

Remark 1.1.30. Given an operator A on X, one can define powers of A as follows. One define A2 by{
D(A2) = {x ∈ D(A); Ax ∈ D(A)},

A2x = A(Ax), for x ∈ D(A2).

More generally, one defines by induction the operator An, for n ≥ 2 by{
D(An) = {x ∈ D(An−1); An−1x ∈ D(A)},

Anx = A(An−1x), for x ∈ D(An).

One verifies quite easily that the spaces Xn defined in Remark 1.1.29 coincide with D(An), with equivalent

norms if D(An) is equipped with the norm ‖x‖D(An) =
n∑

j=0

‖Ajx‖. It follows in praticular from Remark

1.1.29 (i) that if A is an m-accretive operator with dense domain, then D(Am) is dense in X for every

nonnegative integer m.

Theorem 1.1.31. If A is an m-accretive operator in X with dense domain, then there exist a Banach

space X−1 and an operator A(−1) in X−1 such that

(i) X ↪→ X−1, with dense embedding;
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(ii) for all x ∈ X, the norm of x in X−1 is equal to ‖J1x‖;

(iii) A(−1) is m-accretive in X−1;

(iv) D(A(−1)) = X, with equivalent norms;

(v) for all x ∈ D(A), A(−1)x = Ax.

In addition, X−1 and A(−1) verifying (i) to (v) are unique.

Proof. Let ‖|x‖| = ‖J1x‖, for all x ∈ X. It is clear that ‖| ‖| is a norm on X and that ‖|x‖| ≤ ‖x‖. Let X−1

be the completion of X for the norm ‖| ‖|. Note that X−1 is unique, and that (i) and (ii) hold. Furthermore,

note that

AJ1x = x− J1x, for all x ∈ X.

It follows that (see Lemma 1.1.16)

J1Ax = x− J1x, for all x ∈ D(A);

and so,

‖|Ax‖| ≤ ‖|x‖|+ ‖x‖ ≤ 2‖x‖, for all x ∈ D(A).

Therefore, one can construct by continuity a unique operator A ∈ L(X,X−1) such that Ax = Ax for all

x ∈ D(A) and

‖|Ax‖| ≤ 2‖x‖, for all x ∈ X. (1.1.3)

Define the operator A(−1) in X−1 by {
D(A(−1)) = X,

A(−1)x = Ax, for all x ∈ X.

It is clear that (v) holds and that we have the algebraic identity D(A(−1)) = X. The equivalence of the

norms follows easily from (1.1.3), which proves (iv). Consider next λ > 0. Let x ∈ D(A) and v = J1x. We

have

v + λAv = J1(x+ λAx).

Since A is accretive, it follows that

‖|x+ λAx‖| = ‖v + λAv‖ ≥ ‖v‖ = ‖|x‖|.

By density of D(A) in X and continuity of A, we obtain

‖|x+ λAx‖| ≥ ‖|x‖|, for all x ∈ X;

and so, A(−1) is accretive. Consider now f ∈ X−1. Let fn ∈ X be such that fn −→
n→∞

f in X−1, and let

xn = J1fn. In particular, xn is a Cauchy sequence in X. Let x be its limit. Since

fn = xn +Axn = xn +Axn,

CHAPTER 1—PAGE 9



it follows that

f = x+Ax.

Applying Proposition 1.1.21, it follows that A(−1) is m-accretive in X−1. Finally, uniqueness of A(−1) follows

from uniqueness of A. This completes the proof.

Remark 1.1.32. One can iterate Theorem 1.1.31 and construct a family (X−n)n∈N of Banach spaces such

that

X0 = X ↪→ · · · ↪→ X−n+1 ↪→ X−n ↪→ · · · ,

all embeddings being dense, and a family (A(−n))n∈N of operators such that A(−n) is m-accretive in X−n

with domain X−n+1 and A(−n)x = Ax for all x ∈ D(A). Note that if A is bounded, then X−n = X for all

n ∈ N, while if A is not bounded the family (X−n)n∈N is strictly increasing. Applying now Remark 1.1.29,

we obtain the family

· · · ↪→ Xn+1 ↪→ Xn ↪→ · · · ↪→ X0 = X ↪→ · · · ↪→ X−n+1 ↪→ X−n ↪→ · · · ,

all embeddings being dense, and the family (A(n))n∈Z of operators such that A(n) is m-accretive in Xn with

domain Xn+1 and A(n)x = A(j)x for all x ∈ Xn ∩Xj .

Remark 1.1.33. Here are a few simple observations about Theorem 1.1.31 and Remark 1.1.32.

(i) Note that the restrictions and extrapolations commute. In particular, (X1)−1 = (X−1)1 = X and

(A(1))(−1) = (A(−1))(1) = A. This follows immediately from Corollary 1.1.14.

(ii) Note also that X−n is the completion of X for the norm ‖Jn
λx‖. In particular, Jn

λ can be extended by

continuity, to an isomorphism X−n → X. One verifies easily that for every x ∈ D(A(−n)) = X−n+1,

A(−n)x is the limit in X−n of A(Jn
λx). Note that Jn

λx ∈ D(A).

Corollary 1.1.34. With the notation of Theorem 1.1.31, if x ∈ X is such that A(−1)x ∈ X, then x ∈ D(A)

and Ax = A(−1)x.

Proof. Set f = x+A(−1)x ∈ X. Since A is m-accretive, there exists y ∈ D(A) such that y +Ay = f ; and

so, y +A(−1)y = f . Since A(−1) is accretive, it follows that x = y ∈ D(A). Hence the result.

Corollary 1.1.35. If A is an m-accretive operator in X with dense domain, then

(i) ‖Jλx− x‖X−1 ≤ 2λ‖x‖, for all x ∈ X;

(ii) if (xλ)λ>0 is a bounded family in X and if X is reflexive, then Jλxλ − xλ ⇀ 0 in X, as λ ↓ 0.

Proof. (i) follows from Proposition 1.1.19 (i) applied to A(−1) and from (1.1.3). (ii) follows from (i) and

Lemma A.1.9.

1.1.5. The case of Hilbert spaces. Self-adjoint and skew-adjoint operators. Throughout this

section, we assume that X is a Hibert space, and we denote by ( , ) its scalar product. We have the following

characterization of accretive operators.
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Lemma 1.1.36. If A is a linear operator in X, then the following properties are equivalent:

(i) A is accretive;

(ii) (Ax, x) ≥ 0, for all x ∈ D(A).

Proof. Assume that A is accretive and let x ∈ D(A). For all λ > 0, we have

(Ax, x) +
λ

2
‖Ax‖2 =

‖x+ λAx‖2 − ‖x‖2

2λ
≥ 0.

(ii) follows by letting λ ↓ 0. Conversely, assume that (ii) holds, and let λ > 0 and x ∈ D(A). We have

‖x+ λAx‖2 = ‖x‖2 + 2λ(Ax, x) + λ2‖Ax‖2 ≥ ‖x‖2;

and so, A is accretive.

Corollary 1.1.37. If A is an m-accretive operator in X, then D(A) is dense in X.

Proof. Let z be in the orthogonal of D(A) in X, and let x = J1z ∈ D(A). We have

0 = (z, x) = (x+Ax, x) = (Ax, x) + ‖x‖2 ≥ ‖x‖2;

and so, x = 0, thus z = 0. Therefore, D(A) is dense.

Remark 1.1.38. One verifies easily that the spaces Xn defined in Remark 1.1.32 are all Hilbert spaces.

In particular, the scalar product in X1 is defined by (x, y)X1 = (x, y) + (Ax,Ay), for all x, y ∈ X1, and the

scalar product in X−1 is defined by (x, y)X−1 = (J1x, J1y), for all x, y ∈ X.

Given an operator A in X with dense domain, we recall that its adjoint A∗ is defined as follows. We

set

D(A∗) = {x ∈ X; ∃C <∞,∀y ∈ D(A), |(Ay, x)| ≤ C‖y‖}.

Given x ∈ D(A), the linear mapping {
D(A) → R

y 7→ (Ay, x)

can be extended by continuity to a linear, continuous mapping X → R. This defines an element of X? = X,

which we denote by A∗x. It is well known that if B ∈ L(X), then (A + B)∗ = A∗ + B∗. In particular,

(I + A)∗ = I + A∗. Finally, we recall (see Brezis [17], Corollary II.17) that (R(A))⊥ = N(A∗) = {x ∈

D(A∗); A∗x = 0}.

Remark 1.1.39. Note that if A is m-accretive in X, it follows from Corollary 1.1.37 that D(A) is dense

in X; and so, A∗ is well defined.

Lemma 1.1.40. If A is an operator in X with dense domain and if A∗ is its adjoint, then

(i) G(A∗) = {(x, f) ∈ X ×X; (f, y) = (x, g),∀(y, g) ∈ G(A)}, i.e. (x, f) ∈ G(A∗) if and only if (−f, x) ∈

G(A)⊥;
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(ii) G(A∗) is closed in X ×X.

Proof. Let

Z = {(x, f) ∈ X ×X; (f, y) = (x, g),∀(y, g) ∈ G(A)}.

Let (x, f) ∈ Z. Since

(x,Ay) = (f, y),

for all y ∈ D(A), we deduce

|(x,Ay)| ≤ ‖f‖ ‖y‖.

It follows that x ∈ D(A∗) and that f = A∗x. Therefore, Z ⊂ G(A∗). Consider now x ∈ D(A∗), and let

f = A∗x. We have

(f, y) = (x,Ay),

for all x ∈ D(A). This means that

(f, y) = (x, g),

for all (y, g) ∈ G(A); and so, G(A∗) ⊂ Z. This proves (i), and (ii) follows immediately.

Propositon 1.1.41. If A is an m-accretive operator in X, then

(i) A∗ is m-accretive in X;

(ii) (I + λA∗)−1 =
(
(I + λA)−1

)∗
, for all λ > 0;

(iii) (A∗)λ = (Aλ)∗, for all λ > 0;

(iv) e−t(A∗)λ = (e−tAλ)∗, for all λ > 0 and t ∈ R.

Proof. Let us first show that A∗ is accretive. Let x ∈ D(A∗) and λ > 0. Applying Lemma 1.1.16, we

obtain

(A∗x, Jλx) = (x,AJλx) = (x,Aλx) =
1
λ

(‖x‖2 − (x, Jλx)) ≥ 0.

Letting λ ↓ 0, it follows from Lemma 1.1.36 that A∗ is accretive. Consider now λ > 0 and let Lλ =(
(I + λA)−1

)∗ ∈ L(X). Let z ∈ X and x = Lλz. For every (y, g) ∈ G(A), we have

(x, g) =
1
λ

((x, y + λg)− (x, y)) =
1
λ

((Lλz, (I + λA)y)− (x, y))

=
1
λ

((z, (I + λA)−1(I + λA)y)− (x, y)) =
1
λ

(z − x, y).

It follows that
(
x,
z − x

λ

)
∈ G(A∗). Therefore, x ∈ D(A∗) and x + λA∗x = z. This proves (i) and (ii).

Applying Lemma 1.1.16, we obtain

(A∗)λ =
I − (I + λA∗)−1

λ
=
I −

(
(I + λA)−1

)∗
λ

=
(I −

(
I + λA)−1

)∗
λ

= (Aλ)∗.

Hence (iii). (iv) follows easily.
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Proposition 1.1.42. Let A be a closed, accretive operator in X with dense domain. If N(I +A∗) = {0},

then A is m-accretive. In particular, if A∗ is accretive, then A is m-accretive.

Proof. We have

(R(I +A))⊥ = N((I +A)∗) = N(I +A∗) = {0};

and so, R(I +A) is dense in X. We now show that R(I +A) is closed. Let (fn)n∈N ⊂ R(I +A) be such that

fn −→
n→∞

f in X. We have fn = xn + Axn where xn ∈ D(A). Since A is accretive, it follows that (xn)n∈N is

a Cauchy sequence in X. Let x be its limit. Note that (Axn)n∈N is a Cauchy sequence in X. Since G(A) is

closed, it follows that x ∈ D(A) and that f = (I+A)x; and so, R(I+A) is closed. Therefore, R(I+A) = X,

and it follows from Proposition 1.1.21 that A is m-accretive.

Definition 1.1.43. An operator A in X with dense domain is symmetric (respectively skew-symmetric)

if G(A) ⊂ G(A∗) (respectively G(A) ⊂ G(−A∗)). An operator A in X with dense domain is self-adjoint

(respectively skew-adjoint) if A = A∗ (respectively A = −A∗).

Remark 1.1.44. It follows from Definition 1.1.43 that A is symmetric if and only if (Ax, y) = (x,Ay) for

all x, y ∈ D(A). As well, A is skew-symmetric if and only if (Ax, y) = −(x,Ay) for all x, y ∈ D(A). It

is also clear that if A is self-adjoint (respectively, skew-adjoint), then A is symmetric (respectively, skew-

symmetric). However, the converse is not true (see Exercises 1.8.4 and 1.8.5). Indeed, the identity A = ±A∗

is an identity between operators. It means that G(A) = ±G(A∗), or as well that D(A) = D(A∗) and that

Ax = ±A∗x, for all x ∈ D(A).

Corollary 1.1.45. If A is a densely defined operator in X, then the following properties hold:

(i) if A is skew-adjoint, then A and −A are m-accretive and (Ax, x) = 0 for all x ∈ D(A);

(ii) if A is self-adjoint and accretive, then A is m-accretive.

Proof. (i) If x ∈ D(A), then (Ax, x) = (x,A∗x) = −(x,Ax); and so, (Ax, x) = 0. In particular, it

follows from Lemma 1.1.36 that A and −A are accretive. Since G(A) = −G(A∗) is closed by Lemma 1.1.40,

property (i) follows from Proposition 1.1.42

(ii) A∗ = A is accretive. Furthermore, G(A) = G(A∗) is closed by Lemma 1.1.40. Applying Proposition

1.1.42, it follows that A is m-accretive. Hence (ii).

Corollary 1.1.46. If A is an m-accretive operator in X, then the following properties are equivalent:

(i) A is self-adjoint;

(ii) (Ax, y) = (x,Ay), for all x ∈ D(A).

Proof. Assume that A is self-adjoint. Then, G(A) = G(A∗), from which (ii) follows. Conversely, assume

that A verifies (ii). This means that G(A) ⊂ G(A∗). Let (x, f) ∈ G(A∗), and let g = x + A∗x = x + f .

Since A is m-accretive, there exists y ∈ D(A) such that g = y + Ay. Since G(A) ⊂ G(A∗), it follows that
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y ∈ D(A∗) and that g = y + A∗y; and so, x = y, since A∗ is accretive by Proposition 1.1.41. Therefore,

G(A∗) ⊂ G(A); and so, A = A∗.

Corollary 1.1.47. If A is an m-accretive operator in X, then the following properties are equivalent:

(i) A is skew-adjoint;

(ii) (Ax, x) = 0, for all x ∈ D(A);

(iii) −A is m-accretive.

Proof. It follows from Corollary 1.1.45 that (i)⇒(ii) and that (i)⇒(iii). It remains to show that (iii)⇒(ii)

and (ii)⇒(i). Assume that A and −A are m-accretive. Applying Lemma 1.1.36 to both A and −A, it follows

that (Ax, x) = 0, for all x ∈ D(A). Hence (ii). Finally, assume that (ii) holds, and let x, y ∈ D(A). We have

(Ax, y) + (x,Ay) = (A(x+ y), x+ y)− (Ax, x)− (Ay, y) = 0.

This means that G(A) ⊂ G(−A∗). Next, consider (x, f) ∈ G(−A∗) and let g = x − A∗x = x + f . Since

A is m-accretive, there exists y ∈ D(A) such that g = y + Ay. Since G(A) ⊂ G(−A∗), it follows that

y ∈ D(A∗) and that g = y−A∗y; and so, x = y, since −A∗ is accretive by (ii) and Proposition 1.1.41. Thus,

x ∈ D(A) and Ax = −A∗x. Therefore, G(−A∗) ⊂ G(A); and so, G(−A∗) = G(A). Therefore (i) holds,

which completes the proof.

Corollary 1.1.48. Let A be an m-accretive operator, and let A(n) be the operators defined in Re-

mark 1.1.32, for n ∈ Z. If A is self-adjoint (respectively, skew-adjoint), then A(n) is self-adjoint (respectively,

skew-adjoint).

Proof. Assume that A is self-adjoint, the proof being similar if A is skew-adjoint. Arguing by induction, we

only need to show that A(1) and A(−1) are self-adjoint. Given x, y ∈ D(A(1)), it follows from Remark 1.1.38

that

(A(1)x, y)X1 = (Ax, y) + (A(Ax), Ay).

Therefore, (A(1)x, y)X1 = (A(1)y, x)X1 . Since A(1) is m-accretive, it follows from Corollary 1.1.46 that A(1)

is self-adjoint. One shows as well that A(−1) is self-adjoint, by applying Remarks 1.1.33 and 1.1.38.

Proposition 1.1.49. If A is a densely defined operator, then the following properties hold.

(i) If A is self-adjoint and if ` is a nonnegative integer, then A2` is self-adjoint and accretive (hence m-

accretive).

(ii) If A is self-adjoint and accretive and if ` is a positive integer, then A2`+1 is self-adjoint and accretive

(hence m-accretive).

(iii) If A is skew-adjoint and if ` is a positive integer, then (−1)`A2` is self-adjoint and accretive (hence

m-accretive).

(iv) If A is skew-adjoint and if ` is a positive integer, then A2`+1 is skew-adjoint (hence m-accretive).
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Proof. Let A be as in (i), (ii), (iii) or (iv), so that in particular A∗ = εA with ε = ±1. We proceed in five

steps.

Step 1. If m is a nonnegative integer, then

‖Ajx‖ ≤ ‖Amx‖
j
m ‖x‖

m−j
m , (1.1.4)

for all 0 ≤ j ≤ m and for all x ∈ D(Am).

We argue by induction on m. (1.1.4) is clearly true for m = 1. Assume (1.1.4) for some m0 ≥ 1, and

let x ∈ D(Am0+1). We have

‖Am0x‖2 = (Am0x,Am0x) = ε(Am0−1x,Am0+1x) ≤ ‖Am0−1x‖ ‖Am0+1x‖.

Since by (1.1.4), ‖Am0−1x‖ ≤ ‖Am0x‖
m0−1

m0 ‖x‖
1

m0 , we deduce that

‖Am0x‖ ≤ ‖Am0+1x‖
m0

m0+1 ‖x‖
1

m0+1 . (1.1.5)

Let now 0 ≤ j ≤ m0. Since by (1.1.4), ‖Ajx‖ ≤ ‖Am0x‖
j

m0 ‖x‖
m0−j

m0 , we obtain by applying (1.1.5)

‖Ajx‖ ≤ ‖Am0+1x‖
j

m0+1 ‖x‖
m0+1−j

m0+1 , which is (1.1.4) for m = m0 + 1 and 0 ≤ j ≤ m0. The case j = m0 + 1

being trivial, this shows (1.1.4) for m = m0 + 1.

Step 2. If m is a nonnegative integer, then Am is closed. Indeed, suppose (xn)n≥0 ∈ D(Am) satisfies

xn −→
n→∞

x and Amxn −→
n→∞

y in X. By Step 1, ‖Ajxn‖ is bounded for all j ≤ m. In particular, ‖Axn‖ is

bounded. Since A is closed, it follows from Remark 1.1.11 that x ∈ D(A) and Axn ⇀ Ax. Since ‖A(Axn)‖

is bounded, we may apply again Remark 1.1.11, and it follows that x ∈ D(A2) and A2xn ⇀ A2x. By

induction, we deduce easily that x ∈ D(Am) and Amxn ⇀ Amx. Thus y = Amx and Am is closed.

Step 3. Let m be a nonnegative integer and let σ = ε
m
2 if m is even, σ = 1 if m is odd and ε = 1, σ = ±1

if m is odd and ε = −1. It follows that σAm is accretive. Consider x, y ∈ D(Am). If m = 2`, we write

(σAmx, y) = σε`(A`x,A`y) = (A`x,A`y). (1.1.6)

If m = 2`+ 1, we write

(σAmx, y) = σε`(A(A`x), A`y) = ε`(A(A`x), A`y). (1.1.7)

If m is even, we deduce from (1.1.6) that (σAmx, x) = ‖A`x‖2 ≥ 0. If m is odd and ε = 1, then A ≥ 0 and

we deduce from (1.1.7) that (σAmx, x) = (A(A`x), A`x) ≥ 0. If m is odd and ε = −1, then A is skew-adjoint

and we deduce from (1.1.7) that (σAmx, x) = 0.

Step 4. Let m be a nonnegative integer and let σ be as in Step 3. It follows that N(I + σ(Am)∗) = {0}.

Indeed, consider y ∈ N(I+σ(Am)∗). (Note that Am is densely defined by Remark 1.1.30, so that I+σ(Am)∗

is well-defined.) We have

(y, x+ σAmx) = 0, (1.1.8)

for all x ∈ D(Am). Fix z ∈ X and, given λ > 0, let xλ = (I+ελA)−mz ∈ D(Am). (Note that if ε = −1, then

−A is also m-accretive). We now let x = xλ in (1.1.8). Since A∗ = εA and ((I + ελA)−1)∗ = (I + λA)−1,

we find

σεm(Amyλ, z) = −(y, xλ), (1.1.9)
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where yλ = (I + λA)−my. Since ‖xλ‖ ≤ ‖z‖. Since z is arbitrary, we deduce in particular that

‖Amyλ‖ ≤ ‖y‖.

Note also that yλ−→
λ↓0

y. Since Am is closed by Step 2, we deduce from Remark 1.1.11 that y ∈ D(Am) and

that Amyλ ⇀ Amy. Letting λ ↓ 0 in (1.1.9), we deduce

(y + σεmAmy, z) = 0.

Since z ∈ X is arbitrary, we have then y + σεmAmy = 0. Setting σ̃ = σεm, we see that σ̃ is as in Step 3,

and we conclude that y = 0.

Step 5. Conclusion. Let m be a nonnegative integer and let σ be as in Step 3. It follows from Steps 2,

3 and 4 that σAm is densely defined, closed, accretive, and that N(I + σ(Am)∗) = {0}. It follows from

Proposition 1.1.42 that σAm is m-accretive. If ε = 1, then it follows from (1.1.6) and (1.1.7) that σAm is

symmetric, hence self-adjoint by Corollary 1.1.46. If ε = −1 and m is even, then it follows from (1.1.6) that

σAm is symmetric, hence self-adjoint by Corollary 1.1.46. Finally, if ε = −1 and m is odd, then it follows

from (1.1.7) that (σAmx, x) = 0 for all x ∈ D(Am). Therefore, σAm is skew-adjoint by Corollary 1.1.47.

This completes the proof.

Let A be an m-accretive operator in X and let A∗ be its adjoint. It follows from Proposition 1.1.41 that

A∗ is also m-accretive. In particular, D((A∗)n) is dense in X, for every nonnegative integer n. Therefore, if

D((A∗)n) is equipped with the norm ‖x‖D((A∗)n) =
n∑

j=1

‖(A∗)jx‖, then D((A∗)n) ↪→ X ↪→ D((A∗)n)? with

dense embeddings. We have the following results.

Proposition 1.1.51. If A is as above and (X−n)n≥0 are the spaces defined in Remark 1.1.32, then X−n =

D((A∗)n)? with equivalent norms.

Proof. It suffices to show that ‖x‖X−n
≈ ‖x‖D((A∗)n)? . By density, we may assume that x ∈ X. It follows

from Remark 1.1.33 (ii), Proposition 1.1.42, Remark 1.1.30 and Remark 1.1.29 (ii) that

‖x‖X−n = ‖J1(A)nx‖ = sup
‖y‖=1

(J1(A)nx, y)X,X

= sup
‖y‖=1

(x, J1(A∗)ny)X,X = sup
‖y‖=1

(x, J1(A∗)ny)D((A∗)n)?,D((A∗)n)

= sup
‖z‖D((A∗)n)=1

(x, z)D((A∗)n)?,D((A∗)n) = ‖x‖D((A∗)n)? .

Hence the result.

Corollary 1.1.52. Let A be a self-adjoint accretive or a skew-adjoint operator in X and let (Xn)n∈Z be

the spaces introduced in Remark 1.1.32. Then, X−n = X?
n with equivalent norms, for every n ∈ Z.

Proof. Consider n ≥ 0. It follows from Remark 1.1.30 that Xn = D(An) = D((A∗)n); and so, X−n = X?
n

by Proposition 1.1.51. Since the speces Xn are Hilbert spaces (see Remark 1.1.38), they are reflexive.

Therefore, X?
−n = X??

n = Xn. Hence the result.
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Finally, we establish a useful property of self-adjoint operators in complex Hilbert spaces. Let X is a

C-linear vector space, endowed with a norm ‖ ‖ that makes it a real Banach space. We recall that X is a

complex Hilbert space if there exists a mapping b : X ×X → C with the following properties:

b(λx+ µy, z) = λb(x, z) + µb(y, z), for all x, y, z ∈ X and all λ, µ ∈ R;

b(y, x) = b(x, y), and all x, y ∈ X;

b(ix, y) = ib(x, y), and all x, y ∈ X;

b(x, x) = ‖x‖2, and all x ∈ X.

It follows easily that X equipped with the scalar product

(x, y) = Re(b(x, y)),

is a real Hilbert space.

Lemma 1.1.53. Let X be a complex Hilbert space, and let A be an operator in X. Assume that A is

C-linear, and let iA be defined by {
D(iA) = D(A),

(iA)x = iAx, for all x ∈ D(A).

If D(A) is dense in X, then A∗ is C-linear and (iA)∗ = −iA∗.

Proof. Let (x, f) ∈ G(A∗). For all (y, g) ∈ G(A) and all λ ∈ C, we have

(λf, y) = (f, λy) = (x,A(λy)) = (x, λAy) = (λx,Ay).

It follows that (λx, λf) ∈ G(A∗); and so, A∗ is C-linear. Furthermore, Given (x, f) ∈ G(A∗) and (y, g) ∈

G(A), we have

(−if, y) = (f, iy) = (x,A(iy)) = (x, ig).

It follows that (x, if) ∈ G((iA)∗); and so, G(−iA∗) ⊂ G((iA)∗). Applying that result to iA, we find

G(−i(iA)∗) ⊂ G(−A∗). By C-linearity, it follows that G((iA)∗) ⊂ G(−iA∗); and so, G((iA)∗) = G(−iA∗).

Hence the result.

Corollary 1.1.54. Let X be a complex Hilbert space, and let A be an operator in X. If A is C-linear,

then the following properties are equivalent:

(i) A is self-adjoint;

(ii) iA is skew-adjoint.

Proof. Assume that A is self-adjoint. It follows from Lemma 1.1.53 that

(iA)∗ = −iA∗ = −iA;

and so, iA is skew-adjoint. Conversely, if iA is skew-adjoint, then

A∗ = (−i(iA))∗ = i(iA)∗ = −i(iA) = A;
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and so, A is self-adjoint.

1.2. Examples of m-accretive partial differential operators. In this section, we describe some

examples of partial differential operators that are related to classical evolution equations.

1.2.1. First order operators. Here are a few examples related to transport equations.

Example 1. A first order operator in R. Let X = Cb(R), and define the operator A in X byD(A) = {u ∈ C1(R) ∩X; u′ =
du

dx
∈ X},

Au = u′, for u ∈ D(A).
(1.2.1)

We have the following result.

Proposition 1.2.1. If A is defined by (1.2.1), then both A and −A are m-accretive.

Proof. Let us first show that A is accretive. Let λ > 0 and let (u, f) ∈ D(A)×X verify u+ λAu = f . It

follows that

u+ λu′ = f, for all x ∈ R. (1.2.2)

Let

Lf(x) =
1
λ

∫ x

−∞
e

s−x
λ f(s) ds. (1.2.3)

We have

|Lf(x)| ≤ 1
λ
‖f‖L∞

∫ x

−∞
e

s−x
λ ds = ‖f‖L∞ .

Therefore,

‖Lf‖L∞ ≤ ‖f‖L∞ . (1.2.4)

Note that the general solution of (1.2.2) is given by

u(x) = Lf(x) + ae
x
λ .

Since both u and Lf are bounded, it follows that a = 0. Therefore, u = Lf , and it follows from (1.2.4) that

A is accretive.

Consider now λ > 0 and f ∈ X. It follows from (1.2.4) that Lf ∈ X. Furthermore, Lf ∈ C1(R), and

Lf verifies equation (1.2.2). Therefore, Lf ∈ D(A) and Lf + λ(Lf)′ = f . Therefore, A is m-accretive. One

shows as well that −A is m-accretive.

Remark 1.2.2. Note that in the above example, D(A) is not dense in X. For example, u(x) = sin(x2)

belongs to X. However, one checks easily that if z ∈ C1(R) verifies ‖z − u‖L∞ ≤ 1/4, then sup
x∈R

|z′(x)| = ∞,

and so z 6∈ D(A). Therefore, u cannot be approximated by elements of D(A).

Remark 1.2.3. One can modify the above example as follows.
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(i) Let X = L∞(R), and let A be defined by{
D(A) = W 1,∞(R),

Au = u′, for u ∈ D(A).
(1.2.5)

Then, both A and−A arem-accretive. The proof is essentially the same as the proof of Proposition 1.2.1.

Note that in the above example also, one can show easily that D(A) is not dense in X.

(ii) Let now X = C0(R), and let A be defined by{
D(A) = {u ∈ C1(R) ∩X; u′ ∈ X},

Au = u′, for u ∈ D(A).
(1.2.6)

Then, both A and −A are m-accretive, with dense domain. Since D(R) ⊂ D(A), it follows that D(A)

is dense in X. The rest of the proof follows that of Proposition 1.2.1.

(iii) Consider now 1 ≤ p <∞, let X = Lp(R), and let A be defined by{
D(A) = W 1,p(R),

Au = u′, for u ∈ D(A).
(1.2.7)

Then, both A and −A are m-accretive, with dense domain. If p = 2, then A is skew-adjoint. Since

D(R) ⊂ D(A), it follows that D(A) is dense in X. In order to show that A is m-accretive, and following

the proof of Proposition 1.2.1, we only have to show that L ∈ L(Lp), and that ‖L‖L(Lp) ≤ 1. Let p′ be

the conjugate of p. It follows from Hölder’s inequality that

|Lf(x)| =
∣∣∣∣ 1λ
∫ 0

−∞
e

s
λ f(x+ s) ds

∣∣∣∣ ≤ 1
λ

∫ 0

−∞
e

s
λp′
(
e

s
λ |f(x+ s)|p

)1/p
ds

≤ λ−
1
p

∫ 0

−∞
e

s
λ |f(x+ s)|p ds;

and so, ∫
R
|Lf(x)|p dx ≤ 1

λ

(∫ 0

−∞
e

s
λ ds

)(∫
R
|f(s)|p ds

)
= ‖f‖p

Lp ,

which is the desired estimate. One shows by the same method that −A is m-accretive. Finally, when

p = 2, it follows from Corollary 1.1.47 that A is skew-adjoint.

Example 2. A first order operator in a bounded interval. Consider X = {u ∈ C([0, 1]); u(0) = 0},

equipped with the sup norm. Define the operator A in X by{
D(A) = {u ∈ C1([0, 1]); u(0) = u′(0) = 0},

Au = u′, for u ∈ D(A).
(1.2.8)

We have the following result.

Proposition 1.2.4. The operator A defined by (1.2.8) is m-accretive with dense domain.

Proof. Following the proof of Proposition 1.2.1, one shows easily that, given f ∈ X and λ > 0, the unique

solution u ∈ D(A) of equation

u+ λu′ = f,
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is given by

u(x) =
1
λ

∫ x

0

e
s−x

λ f(s) ds,

from which it follows that A is m-accretive. It remains to show that D(A) is dense in X. Consider u ∈ X

and δ > 0, and let uδ ∈ X be defined by uδ(x) = 0, on [0, δ] and uδ(x) = u(x − δ) for x ≥ δ. We have

‖uδ − u‖ → 0 in X, as δ ↓ 0. Given ε > 0, let δ be small enough so that ‖uδ − u‖ ≤ ε/2. Let vδ ∈ Cc(R)

be defined by vδ(x) = 0, for x ≤ 0, vδ(x) = uδ(x), for 0 ≤ x ≤ 1, vδ(x) = (2 − x)uδ(1), for 1 ≤ x ≤ 2, and

vδ(x) = 0, for x ≥ 2. Given a sequence ρn of mollifiers, we have (see Brezis [17], Proposition IV.21, p.70)

ρn ∗ vδ → vδ = uδ, uniformly on [0, 1]. Therefore, for n large enough, we have ‖u − (ρn ∗ vδ)|[0,1]‖ ≤ ε. On

the other hand, it is clear that (ρn ∗ vδ)|[0,1] ∈ D(A) for n large enough. This completes the proof.

Remark 1.2.5. One can modify the above example as follows.

(i) Let X = L∞(0, 1), and let A be defined by{
D(A) = {u ∈W 1,∞(0, 1); u(0) = 0},

Au = u′, for u ∈ D(A).

Then, A is m-accretive. The proof is an adaptation of the proof of Proposition 1.2.4. Note that D(A)

is not dense in X.

(ii) Let 1 ≤ p <∞, let X = Lp(0, 1), and let A be defined by{
D(A) = {u ∈W 1,p(0, 1); u(0) = 0},

Au = u′, for u ∈ D(A).
(1.2.9)

Then, A is m-accretive with dense domain. Since D(0, 1) ⊂ D(A), it follows that D(A) is dense in X.

The rest of the proof is an adaptation of the proof of Proposition 1.2.4 (see also Remark 1.2.3 (iii)).

(iii) Let X = {u ∈ C([0, 1]); u(0) = u(1)}, and let A be defined by{
D(A) = {u ∈ C1([0, 1]); u(0) = u(1) and u′(0) = u′(1)},

Au = u′, for u ∈ D(A).

Then both A and −A are m-accretive with dense domain.

(iv) Let 1 ≤ p <∞, let X = Lp(0, 1), and let A be defined by{
D(A) = {u ∈W 1,p; u(0) = u(1)},

Au = u′, for u ∈ D(A).

Then, both A and −A are m-accretive with dense domain. If p = 2, then A is skew-adjoint.

Example 3. First order operators on R+. One can modify the above examples by considering opera-

tors on the half line. The proofs of the corresponding results are almost the same as in the case of the whole

line or a bounded interval. For example, let X = C0(R+) = {u ∈ C([0,∞); u(0) = 0 and lim
x→∞

u(x) = 0},

and let A be defined by {
D(A) = {u ∈ C1([0,∞)) ∩X; u′ ∈ X},

Au = u′, for u ∈ D(A).
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We have the following result.

Proposition 1.2.6. If A is as above, then A is m-accretive with dense domain.

Remark 1.2.7. One can modify the above example as follows.

(i) Let p = ∞, let X = L∞(R+), and let A be defined by{
D(A) = {u ∈W 1,∞(R+); u(0) = 0},

Au = u′, for u ∈ D(A).

Then, A is m-accretive, and D(A) is not dense in X.

(ii) Let 1 ≤ p <∞, let X = Lp(R+), and let A be defined by{
D(A) = {u ∈W 1,p(R+); u(0) = 0},

Au = u′, for u ∈ D(A).

Then, A is m-accretive with dense domain.

One can modify the above examples by considering the operator −u′ instead of u′. For example, let

X = {u ∈ C([0,∞); lim
x→∞

u(x) = 0}, and let A be defined by

{
D(A) = {u ∈ C1([0,∞)); lim

x→∞
u(x) = lim

x→∞
u′(x) = 0},

Au = −u′, for u ∈ D(A).

We have the following result.

Proposition 1.2.8. If A is as above, then A is m-accretive with dense domain.

Remark 1.2.9. One can modify the above example as follows.

(i) Let X = Cb([0,∞)), and let A be defined by{
D(A) = {u ∈ C1([0,∞)) ∩X; u′ ∈ X},

Au = −u′, for u ∈ D(A).

Then, A is m-accretive, and D(A) is not dense in X.

(ii) Let X = L∞(0,∞), and let A be defined by{
D(A) = W 1,∞(0,∞),

Au = −u′, for u ∈ D(A).

Then, A is m-accretive, and D(A) is not dense in X.

(iii) Let 1 ≤ p <∞, X = Lp(0,∞), and let A be defined by{
D(A) = W 1,p(0,∞),

Au = −u′, for u ∈ D(A).

Then, A is m-accretive with dense domain.
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Remark 1.2.10. Note that when A is as in Proposition 1.2.4, Remarks 1.2.9, 1.2.5 and 1.2.7, −A is not

m-accretive.

Example 4. A first order operator in RN . Let X = Cb(RN ), and let a ∈ RN . Define the operator

A in X by 
D(A) = {u ∈ X; a · ∇u ∈ X},

Au = a · ∇u =
N∑

j=1

aj
∂u

∂xj
, for u ∈ D(A).

(1.2.10)

The condition a · ∇u ∈ X is understood in the sense of distributions. We have the following result.

Proposition 1.2.11. If A is defined by (1.2.10), then both A and −A are m-accretive.

The proof relies on the following two lemmas.

Lemma 1.2.12. Let λ > 0 and 1 ≤ p ≤ ∞. If u ∈ Lp(RN ) verifies

u+ λa · ∇u = 0, in D′(RN ),

then u = 0 almost everywhere.

Proof. Let (ρn)n∈N be a sequence of mollifiers (see Brezis [17], p.70), and let un = ρn ∗ u. We have

un ∈ C∞(RN ) ∩ L∞(RN ), and

un + λa · ∇un = 0, in RN .

Given x ∈ RN , let

h(t) = etun(x+ λat), for t ∈ R.

It follows that

h′(t) = et(un(x+ λat) + λa · ∇un(x+ λat)) = 0;

and so, h is constant. Letting t → −∞, and since un is bounded, it follows that h ≡ 0. In particular,

un(x) = 0. Since x is arbitrary, we have un ≡ 0. Hence the result, since un → u in L1
loc(RN ), as n→∞.

Lemma 1.2.13. Given λ > 0 and f ∈ Cb(RN ), let

Lf(x) =
1
λ

∫ ∞

0

e−
s
λ f(x− as) ds.

Then,

Lf + λa · ∇(Lf) = f, (1.2.11)

in D′(RN ). In addition,

‖Lf‖Lp ≤ ‖f‖Lp , (1.2.12)

for all 1 ≤ p ≤ ∞ such that f ∈ Lp(RN ).

Proof. Define

Mf(x) =
1
λ

∫ ∞

0

e−
s
λ f(x+ as) ds,
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for f ∈ Cb(RN ). It follows easily from Fubini’s theorem that for every f ∈ Cb(RN ) and ϕ ∈ D(RN ), we have

〈Lf, ϕ〉 =
∫

RN

fMϕdx.

Furthermore,

M(λa · ∇ϕ)(x) =
∫ ∞

0

e−
s
λ a · ∇ϕ(x+ as) ds =

∫ ∞

0

e−
s
λ
d

ds
(ϕ(x+ as)) ds

= −ϕ(x) +Mϕ(x);

and so,

〈Lf, ϕ〉 =
∫

RN

fMϕdx =
∫

RN

fM(λa · ∇ϕ) dx+ 〈f, ϕ〉

= 〈Lf, λa · ∇ϕ〉+ 〈f, ϕ〉 = 〈−λa · ∇(Lf) + f, ϕ〉.

Hence (1.2.11). Finally,

|Lf(x)| ≤ 1
λ
‖f‖L∞

∫ ∞

0

e−
s
λ ds = ‖f‖L∞ .

(1.2.12) follows for p = ∞. For p <∞, we have

|Lf(x)| ≤ 1
λ

∫ ∞

0

e
− s

λp′
(
e−

s
λ |f(x− as)|p

)1/p
ds ≤ λ−

1
p

(∫ ∞

0

e−
s
λ |f(x− as)|p ds

)1/p

.

Therefore, ∫
RN

|Lf |p ≤ 1
λ
‖f‖p

Lp

∫ ∞

0

e−
s
λ ds = ‖f‖p

Lp .

This completes the proof.

Proof of Proposition 1.2.11. Let us first show that A is accretive. Let λ > 0, f ∈ X and u ∈ D(A)

verify u+ λAu = f . Let w = Lf , where L is defined in Lemma 1.2.13. It follows that

(u− w) + a · ∇(u− w) = 0, in D′(RN ).

Applying Lemma 1.2.12, we find u = w, and accretivity follows from (1.2.12). Finally, given λ > 0 and

f ∈ X, it is clear that u = Lf belongs to D(A) and it follows from Lemma 1.2.13 that u + λAu = f .

Therefore, A is m-accretive. One shows as well that −A is m-accretive.

Remark 1.2.14. Note that in Proposition 1.2.11, D(A) is not dense in X.

Remark 1.2.15. One can modify slightly the above example as follows.

(i) Let X = C0(RN ), and let a ∈ RN . Define the operator A in X by
D(A) = {u ∈ X; a · ∇u ∈ X},

Au = a · ∇u =
N∑

j=1

aj
∂u

∂xj
, for u ∈ D(A).

(1.2.13)

Then, both A and −A are m-accretive with dense domain. The proof is easily adapted from the proof

of Proposition 1.2.11.

(ii) Let X = L∞(RN ), and let a ∈ RN . Define the operator A in X by (1.2.13). Then, both A and

−A are m-accretive, and D(A) is not dense in X. The proof is easily adapted from the proof of

Proposition 1.2.11.
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(iii) Let X = Lp(RN ), 1 ≤ p < ∞, and let a ∈ RN . Define the operator A in X by (1.2.13). Then, both

A and −A are m-accretive, with dense domain. If X = L2(RN ), then A is skew-adjoint. The proof is

easily adapted from the proof of Proposition 1.2.11. Skew-adjointness of A when p = 2 follows from

Corollary 1.1.47.

Remark 1.2.16. Note that for all the examples of Section 1.2.1, one can work either in the spaces of

real-valued functions, or in the spaces of complex-valued functions.

1.2.2. The Laplacian with Dirichlet boundary condition. The following examples are important

in the study of the heat equation.

Example 1. H−1 theory. Let Ω be any open subset of RN . Set X = H−1(Ω), and define the operator

A on X by {
D(A) = H1

0 (Ω),

Au = −4u, for all u ∈ D(A).
(1.2.14)

We equip H1
0 (Ω) with the usual norm (‖u‖2L2 + ‖∇u‖2L2)1/2. We have the following result.

Proposition 1.2.17. The operator A defined by (1.2.14) is self-adjoint, accretive, and ‖·‖D(A) is equivalent

to ‖ · ‖H1 . In particular, A is m-accretive with dense domain.

Proof. It follows from Lemma A.4.3 that for every f ∈ X, there exists a unique u ∈ H1
0 (Ω) such that

−4u+ u = f, in X.

Let us denote by J the operator f 7→ u. It follows from Remark A.4.4 (i) that J is an isometry from X onto

H1
0 (Ω). In particular,

(u, v)H−1 = (Ju, Jv)H1
0
. (1.2.15)

Let u, v ∈ H1
0 (Ω). It follows from (A.3.17) and (A.3.14) that

(u, Jv)H1
0

=
∫

Ω

∇u · ∇(Jv) dx+ (u, Jv)L2

= 〈u,−4(Jv)〉H1
0 ,H−1 + 〈u, Jv〉H1

0 ,H−1 = 〈u, v〉H1
0 ,H−1 = (u, v)L2 .

(1.2.16)

Furthermore, it follows from (1.2.15) that

(−4u, v)H−1 = (−4u+ u, v)H−1 − (u, v)H−1 = (J(−4u+ u), Jv)H1
0
− (u, v)H−1

= (−4(Ju) + Ju, Jv)H1
0
− (u, v)H−1 = (u, Jv)H1

0
− (u, v)H−1 .

Applying (1.2.16), it follows that

(−4u, v)H−1 = (u, v)L2 − (u, v)H−1 . (1.2.17)

In particular, for every u ∈ H1
0 (Ω), we have

(Au, u)H−1 = ‖u‖2L2 − ‖u‖2H−1 ≥ 0,
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by (A.3.16); and so, A is accretive, by Lemma 1.1.36. Given f ∈ X, it follows from the preceding observations

that u = Jf ∈ D(A) and that u + Au = f . Therefore, A is m-accretive (Proposition 1.1.21). Finally, it

follows from (1.2.17) that

(Au, v)H−1 = (u,Av)H−1 ,

for all u, v ∈ D(A). Applying Corollary 1.1.46, it follows that A is self-adjoint. Finally, it follows from

Corollary 1.1.12 that ‖u‖D(A) ≈ ‖u−4u‖H−1 , on D(A). By Remark A.4.4 (i), we obtain ‖u‖D(A) ≈ ‖u‖H1
0
,

on D(A). This completes the proof.

We now describe some useful properties of (I + λA)−1.

Proposition 1.2.18. Let A be defined by (1.2.14) and let Jλ = (I + λA)−1 for λ > 0. The following

properties hold:

(i) Jλ ∈ L(H−1(Ω)) and ‖Jλ‖L(H−1) ≤ 1, for every λ > 0;

(ii) Jλ ∈ L(H−1(Ω),H1
0 (Ω)), for every λ > 0;

(iii) (Jλ)|H1
0 (Ω) ∈ L(H1

0 (Ω)) and ‖(Jλ)|H1
0 (Ω)‖L(H1

0 ) ≤ 1, for every λ > 0;

(iv) Jλu−→
λ↓0

u in H−1(Ω), for every u ∈ H−1(Ω);

(v) Jλu−→
λ↓0

u in H1
0 (Ω), for every u ∈ H1

0 (Ω).

Proof. (i) follows from Definition 1.1.9, (ii) follows from Corollary 1.1.14, (iii) follows from Lemma 1.1.16,

(iv) and (v) follow from Proposition 1.1.19.

Proposition 1.2.19. Let A be defined by (1.2.14), let Jλ = (I + λA)−1 for λ > 0 and let 1 ≤ p <∞. For

every u ∈ H−1(Ω) ∩ Lp(Ω), the following properties hold:

(i) Jλu ∈ Lp(Ω) and ‖Jλu‖Lp ≤ ‖u‖Lp , for every λ > 0;

(ii) Jλu−→
λ↓0

u in Lp(Ω).

Proof. (i) follows from Theorem A.4.11 and definition of Jλ. The proof of (ii) is more delicate. Note that,

in view of (i) and Proposition A.1.4, we only have to establish the result for u ∈ D(Ω). Therefore, consider

u ∈ D(Ω), and assume that u is supported in ΩR = {x ∈ Ω; |x| < R}. Set uλ = Jλu. It follows that

uλ ∈ H1
0 (Ω) and

−λ4uλ + uλ = u.

Define v(x) = 2‖u‖L∞e
√

1+R2
e−
√

1+|x|2 . One has v ≥ 2|u|, and one verifies easily that v ≥ 4v. It follows

that v is a supersolution of the above equation, and that −v is a subsolution, for 0 < λ ≤ 1/2. Applying

Corollary A.4.27 and Proposition A.3.34, we obtain

|uλ| ≤ v ∈ Lp(Ω), almost everywhere in Ω. (1.2.18)

We now argue by contradiction, and we assume that there exists a sequence λn ↓ 0 and ε > 0 such that

‖Jλnu − u‖Lp ≥ ε. It follows from Proposition 1.2.18 that Jλnu −→n→∞
u in H1

0 (Ω). In particular, it follows
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from Corollary A.3.10 that there exists a subsequence, which we still denote by λn, such that Jλnu −→n→∞
u

almost everywhere in Ω. Applying (1.2.18) and the dominated convergence theorem, we find Jλnu −→n→∞
u in

Lp(Ω), which is a contradiction. This completes the proof.

Remark 1.2.20. Under the assumptions of Proposition 1.2.19, assume that u ∈ L∞(Ω). Then, it follows

from Theorem A.4.11 that Jλu ∈ L∞(Ω), for every λ > 0. However, note that in general Jλu 6→ u in L∞(Ω),

as λ ↓ 0. Indeed, assuming that Ω is bounded, it follows from Corollary A.4.17 that every limit point in

L∞(Ω) of the family (Jλu)λ>0 belongs to Cb(Ω); and so, lim inf
λ↓0

‖Jλu−u‖L∞ > 0 if u 6∈ Cb(Ω). On the other

hand, if Ω verifies the assumptions of Theorem A.4.28 and if u ∈ C0(Ω), then it follows from Theorem A.4.28

that Jλu ∈ C0(Ω), and an obvious adaptation of the proof of Proposition 1.2.19 shows that Jλu−→
λ↓0

u in

C0(Ω).

Example 2. L2 theory. Let Ω be any open subset of RN . Set X = L2(Ω), and define the operator A

on X by {
D(A) = {u ∈ H1

0 (Ω); 4u ∈ L2(Ω)},

Au = −4u, for all u ∈ D(A).
(1.2.19)

We have the following result.

Proposition 1.2.21. The operator A defined by (1.2.19) is self-adjoint and accretive. In particular, A

is m-accretive with dense domain. In addition, D(A) ↪→ H1
0 (Ω); and in particular, if Ω is bounded, then

D(A) ↪→ L2(Ω) with compact injection.

Proof. Let u, v ∈ D(A). It follows from formulas (A.3.14) and (A.3.17) that

(Au, v)L2 = −(4u, v)L2 = −〈v,4u〉H1
0 ,H−1 =

∫
Ω

∇u · ∇v. (1.2.20)

In particular, (Au, u)L2 ≥ 0, for all u ∈ D(A); and so, A is accretive, by Lemma 1.1.36. Given f ∈ L2(Ω) ↪→

H−1(Ω), it follows from Proposition 1.2.17 that there exists u ∈ H1
0 (Ω) such that

u−4u = f, in H−1(Ω).

In particular, we have 4u = u− f ∈ L2(Ω); and so, u ∈ D(A) and u+Au = f . Therefore, A is m-accretive

(Proposition 1.1.21). Furthermore, it follows from (1.2.20) that

(Au, v)L2 = (u,Av)L2 ,

for all u, v ∈ D(A). Applying Corollary 1.1.46, it follows that A is self-adjoint. Finally, given u ∈ D(A), it

follows from (1.2.20) that

‖u‖2H1 = ‖∇u‖2L2 + ‖u‖2L2 = (Au, u)L2 + ‖u‖2L2 ≤ ‖u‖D(A)‖u‖L2 .

This completes the proof.

Proposition 1.2.22. Let A be as in Proposition 1.2.18. If Ω has a bounded boundary of class C2, then

D(A) = H2(Ω) ∩H1
0 (Ω), with equivalent norms.
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Proof. This follows from Theorem A.4.8.

Remark 1.2.23. Here are some simple regularity properties of the domain of A.

(i) It follows from Proposition A.4.10 that D(A) ⊂ H2
loc(Ω), without any restriction on Ω.

(ii) An iterative application of Proposition A.4.10 shows that D(An) ⊂ H2n
loc(Ω) and that D(An) ↪→ H2n(Ω′)

for every Ω′ ⊂⊂ Ω (cf. Remark 1.1.30). Furthermore, D(An) = {u ∈ H2n
loc(Ω); 4ju ∈ H1

0 (Ω), for 0 ≤

j ≤ n− 1 and 4nu ∈ L2(Ω)}. In particular, ∩
n≥1

D(An) ⊂ C∞(Ω) (cf. Theorem A.3.40).

(iii) Applying Theorem A.4.8 one obtains as well that, if Ω has a bounded boundary of class C2n, then

D(An) ↪→ H2n(Ω), and D(An) = {u ∈ H2n(Ω); 4ju ∈ H1
0 (Ω), for 0 ≤ j ≤ n − 1}. In particular, if Ω

has a bounded boundary of class C∞, then ∩
n≥1

D(An) ⊂ C∞(Ω) (cf. Theorem A.3.40). Therefore, if we

assume further that Ω is bounded, then ∩
n≥1

D(An) = {u ∈ C∞(Ω); u = 4u = 42u = · · · = 0 on ∂Ω}

(see Proposition A.3.23).

Remark 1.2.24. If A is defined by (1.2.19), then it follows easily from Theorem A.4.8 (uniqueness) that

(I + λA)−1 coincides with the restriction to L2(Ω) of the operator Jλ defined in Proposition 1.2.19.

Corollary 1.2.25. Let A be defined by (1.2.19), let I be an interval of R and let 1 < p < ∞. Then, the

following properties hold:

(i) Lp(I,D(A)) ∩W 1,p′(I, L2(Ω)) ↪→ Cb(I,H1
0 (Ω));

(ii) for every u ∈ Lp(I,D(A)) ∩W 1,p′(I, L2(Ω)), the function t 7→ ‖∇u(t)‖2L2 belongs to W 1,1(I), and

d

dt
‖∇u(t)‖2L2 = −2(4u(t), ut(t))L2 ,

for almost all t ∈ I.

Proof. Consider u ∈ C1
c (I,D(A)). It follows from (1.2.20) that

d

dt
‖∇u(t)‖2L2 = 2(∇u(t),∇ut(t))L2 = −2(4u(t), ut(t))L2 ,

for all t ∈ I. One concludes as in Corollary A.3.64.

Remark 1.2.26. If A is defined by (1.2.19), then it follows from Proposition 1.2.21 and Proposition 1.1.49

that An is self-adjoint and accretive, for every positive integer n.

Example 3. Lp theory. Let Ω be any open subset of RN . We will apply Proposition 1.2.19 in order to

construct a realization of the Laplacian in Lp(Ω). We begin with the following observation.

Lemma 1.2.27. Let 1 ≤ p < ∞, and for λ > 0 let Jλ be defined in Proposition 1.2.19. There exists

a unique operator Iλ ∈ L(Lp(Ω)) such that Iλf = Jλf , for every f ∈ H−1(Ω) ∩ Lp(Ω). In addition, the

following properties hold:

(i) ‖Iλ‖L(Lp) ≤ 1, for all λ > 0;
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(ii) for all f ∈ Lp(Ω) and all λ > 0, we have 4Iλf ∈ Lp(Ω) and −λ4Iλf + Iλf = f ;

(iii) R(Iλ) = R(Iµ), for all λ, µ > 0.

Proof. Since H−1(Ω) ∩ Lp(Ω) is dense in Lp(Ω), it follows from Proposition 1.2.19 that Jλ has a unique

extension Iλ ∈ Lp(Ω), which verifies (i). Consider now f ∈ Lp(Ω), and let (fn)n∈N ⊂ D(Ω) be such

that fn −→
n→∞

f in Lp(Ω). It follows that Iλfn −→
n→∞

Iλf in Lp(Ω), and since −λ4Iλfn + Iλfn = fn in

H−1(Ω), we have −λ4Iλf + Iλf = f in D′(Ω). Hence (ii). Finally, let f ∈ H−1(Ω) ∩ Lp(Ω), and let

u = Iλf ∈ H−1(Ω) ∩ Lp(Ω). Given µ > 0, we have

−µ4u+ u =
λ− µ

λ
u+

µ

λ
f.

Set g =
λ− µ

λ
u+

µ

λ
f and let v = Iλg ∈ H−1(Ω) ∩ Lp(Ω). It follows that

−µ4(v − u) + v − u = 0, in H−1(Ω);

and so, u = v. Therefore, Iλ(H−1(Ω) ∩ Lp(Ω)) ⊂ Iµ(H−1(Ω) ∩ Lp(Ω)). Exchanging the roles of µ and λ,

we find Iλ(H−1(Ω) ∩ Lp(Ω)) = Iµ(H−1(Ω) ∩ Lp(Ω)). Since both Iλ and Iµ are continuous on Lp(Ω) and

H−1(Ω) ∩ Lp(Ω) is dense in Lp(Ω), (iii) follows.

Proposition 1.2.28. Let 1 ≤ p < ∞, and for λ > 0 let Iλ be defined by Lemma 1.2.27. The operator A

in Lp(Ω) defined by {
D(A) = R(I1);

Au = −4u, for u ∈ D(A);
(1.2.21)

is m-accretive with dense domain.

Remark. Note that for u ∈ D(A), we have 4u ∈ Lp(Ω) by Lemma 1.2.27; and so, definition (1.2.21) makes

sense.

Proof. Let u ∈ D(A) and λ > 0, and let f = λAu + u = −λ4u + u. It follows from Lemma 1.2.27 (iii)

that there exists g ∈ Lp(Ω) such that u = Iλg. In particular, g = −λ4u+ u; and so, f = g. Applying again

Lemma 1.2.27, we find ‖u‖Lp ≤ ‖f‖Lp . Therefore, A is accretive. Let now f ∈ Lp(Ω), and let u = I1f .

It follows that u ∈ D(A) and that Au + u = f ; and so, A is m-accretive. Finally, let u ∈ D(Ω), and let

f = −4u+ u ∈ D(Ω). It follows that u = I1f . Therefore, D(Ω) ⊂ D(A), and it follows that D(A) is dense

in Lp(Ω).

Proposition 1.2.29. Let 1 < p < ∞ and let A be defined by (1.2.21). If Ω has a bounded boundary of

class C2, then D(A) = W 2,p(Ω) ∩W 1,p
0 (Ω) with equivalent norms.

Proof. Define the operator B in Lp(Ω) byD(B) = W 2,p(Ω) ∩W 1,p
0 (Ω);

Bu = −4u, for u ∈ D(B).
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It follows easily from Remark A.4.18 (i) and (iii) that B is m-accretive. Consider now u ∈ D(B) and let

f = −4u+u. Let (fn)n∈N ⊂ D(Ω) be such that fn −→
n→∞

f in Lp(Ω), and let un = I1fn, where I1 is defined in

Lemma 1.2.27. It follows from Remark A.4.18 (i) and (ii) that un −→
n→∞

u in W 2,p(Ω), then from Lemma 1.2.27

that u = I1f . Therefore, u ∈ D(A), and it follows that G(B) ⊂ G(A). Applying Corollary 1.1.23, we obtain

that A = B. Equivalence of the norms follows from Remark A.4.18 (i).

Remark 1.2.30. Let p = 1 and let A be defined by (1.2.21). If Ω has a bounded boundary of class

C2, then D(A) = {u ∈ W 1,1
0 (Ω); 4u ∈ L1(Ω)}. This follows from Remark A.4.18 (iv) (cf. the proof of

Proposition 1.2.29). Note that in general D(A) is not contained in W 2,1(Ω) (see Remark A.4.18 (ii)).

Remark 1.2.31. One can consider the case p = ∞. Let Ω be a bounded open subset of RN , and define

the operator A on L∞(Ω) by{
D(A) = {u ∈ L∞(Ω) ∩H1

0 (Ω); 4u ∈ L∞(Ω)},

Au = −4u, for all u ∈ D(A).

It follows easily from Remark A.4.18 (iv) that A is m-accretive. Note that D(A) ⊂ C(Ω), as follows

easily from Corollary A.4.17. Note also that if Ω satisfies the assumptions of Theorem A.4.28, we have

D(A) ⊂ C0(Ω). In particular D(A) is not dense in L∞(Ω), and this justifies Example 4 below.

Example 4. C0 theory. Let Ω be an open subset of RN , and define the operator A in C0(Ω) by{
D(A) = {u ∈ C0(Ω); 4u ∈ C0(Ω)};

Au = −4u, for u ∈ D(A).
(1.2.22)

We have the following result.

Proposition 1.2.32. If N ≥ 2, assume that every x ∈ ∂Ω has the exterior cone property. Then, the

operator A defined by (1.2.22) is m-accretive with dense domain.

Proof. m-accretiveness follows from Corollary A.4.33. Since D(Ω) ⊂ D(A), it follows that D(A) is dense.

This completes the proof.

Remark 1.2.33. Note that all the results of Section 1.2.2 hold true as well in the corresponding spaces of

complex-valued functions. The proofs are the same (cf. Section A.4.6).

1.2.3. The Schrödinger operator. The following examples are related to Schrödinger’s equation.

Example 1. H−1 theory. Let Ω be any open subset of RN . Set X = H−1(Ω), and define the operator

A on X by {
D(A) = H1

0 (Ω),

Au = −i4u, for all u ∈ D(A).
(1.2.23)

We have the following result.
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Proposition 1.2.34. The operator A defined by (1.2.23) is skew-adjoint, and D(A) = H1
0 (Ω) with equiv-

alent norms. In particular, A and −A are m-accretive with dense domain.

Proof. The result follows from Proposition 1.2.17, Corollary 1.1.54 and Remark 1.2.33.

Example 2. L2 theory. Let Ω be any open subset of RN . Set X = L2(Ω), and define the operator A

on X by {
D(A) = {u ∈ H1

0 (Ω); 4u ∈ L2(Ω)},

Au = −i4u, for all u ∈ D(A).
(1.2.24)

We have the following result.

Proposition 1.2.35. The operator A defined by (1.2.24) is skew-adjoint. In particular, A and −A are

m-accretive with dense domain. In addition, D(A) ↪→ H1
0 (Ω).

Proof. The result follows from Proposition 1.2.21, Corollary 1.1.54 and Remark 1.2.33.

Remark 1.2.36. Note that if Ω has a bounded boundary of class C2, then, D(A) = H2(Ω)∩H1
0 (Ω), with

equivalent norms. This follows from Proposition 1.2.22.

1.2.4. The wave operator. The following examples are related to the wave equation and to Klein-

Gordon equation.

Example 1. L2 ×H−1 theory. Let Ω be any open subset of RN . Set

Y = L2(Ω)×H−1(Ω), (1.2.25)

with its natural scalar product, and define the operator B on Y by{
D(B) = H1

0 (Ω)× L2(Ω),

B(u, v) = (−v,−4u+ u), for all (u, v) ∈ D(B).
(1.2.26)

We have the following result.

Proposition 1.2.37. The operator B defined by (1.2.26) is skew-adjoint, and ‖ · ‖D(B) is equivalent to

‖ · ‖H1
0×L2 . In particular, B and −B are m-accretive with dense domain.

Proof. Let U ∈ D(B), and write U = (u, v). Let w ∈ H1
0 (Ω) be the solution of −4w + w = v

(cf. Lemma A.4.2). It follows from Remark A.4.3 (iii) and (A.3.17) that

(BU,U)Y = (−v, u)L2 + (−4u+ u, v)H−1 = (−v, u)L2 + (u,w)H1
0

= (−v, u)L2 +
∫

Ω

{∇u · ∇w + uw} dx

= (−v, u)L2 + 〈u,−4w + w〉H1
0 ,H−1 = (−v, u)L2 + 〈u, v〉H1

0 ,H−1 ;

and so, by (A.3.14),

(BU,U)Y = 0. (1.2.27)
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In particular, B is accretive (cf. Lemma 1.1.36). Finally, given F = (f, g) ∈ Y, equation U + BU = F is

equivalent to the system {
u− v = f ;

−4u+ u+ v = g;

or equivalently {−4u+ 2u = f + g;

v = u− f.

It follows from Lemma A.4.3 that there exists u ∈ H1
0 (Ω) solving the first equation. Then, v given by the

second equation belongs to L2(Ω). It follows that B is m-accretive. The result now follows from (1.2.27)

and Corollary 1.1.47.

One can extend Proposition 1.2.37 as follows. Let λ1 be defined by

λ1 = inf
{∫

Ω

|∇u|2, u ∈ H1
0 (Ω),

∫
Ω

|u|2 = 1
}
. (1.2.28)

(note that λ1 is the first eigenvalue of −4 in H1
0 (Ω) if Ω is bounded) and consider λ > −λ1. Consider on

H1
0 (Ω) the norm ‖| · ‖| defined by (A.4.2), that is

‖|u‖| =
(∫

Ω

{|∇u|2 + λ|u|2} dx
)1/2

,

and consider on H−1(Ω) the corresponding dual norm. Define the operator B on Y by{
D(B) = H1

0 (Ω)× L2(Ω),

B(u, v) = (−v,−4u+ λu), for all (u, v) ∈ D(B).
(1.2.29)

We have the following result.

Proposition 1.2.38. Let λ1 be defined by (1.2.28) and let λ > −λ1. The operator B defined by (1.2.29)

is skew-adjoint, and ‖ · ‖D(B) is equivalent to ‖ · ‖H1
0×L2 . In particular, B and −B are m-accretive with dense

domain.

Proof. The proof is easily adapted from that of Proposition 1.2.36, by using in particular Lemma A.4.2

and Theorem A.4.5.

Remark 1.2.39. If Ω is bounded, then it follows from Poincaré’s inequality (A.3.4) that λ1 > 0. In

particular, one can take λ = 0 in Proposition 1.2.38.

Example 2. H1
0 × L2 theory. Let Ω be any open subset of RN . Set

H = H1
0 (Ω)× L2(Ω), (1.2.30)

and define the operator A on H by{
D(A) = {(u, v) ∈ H,4u ∈ L2(Ω) and v ∈ H1

0 (Ω)},

A(u, v) = (−v,−4u+ u), for all (u, v) ∈ D(A).
(1.2.31)
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We have the following result.

Proposition 1.2.40. The operator A defined by (1.2.31) is skew-adjoint. In particular, A and −A are

m-accretive with dense domain. In addition, D(A) ↪→ H1
0 (Ω)×H1

0 (Ω).

Proof. Let U ∈ D(A), and write U = (u, v). It follows from formulas (A.3.14) and (A.3.17) that

(AU,U)H = −
∫

Ω

{∇u · ∇w + v4u} dx = 0. (1.2.32)

In particular, A is accretive (cf. Lemma 1.1.36). Finally, given F = (f, g) ∈ H, equation U + AU = F is

equivalent to the system {
u− v = f ;

−4u+ u+ v = g;

or equivalently {−4u+ 2u = f + g;

v = u− f.

It follows from Lemma A.4.3 that there exists u ∈ H1
0 (Ω) with 4u ∈ L2(Ω) solving the first equation. Then,

v given by the second equation belongs to H1
0 (Ω). It follows that A is m-accretive. The result now follows

from (1.2.32) and Corollary 1.1.47. Property D(A) ↪→ H1
0 (Ω)×H1

0 (Ω) follows from Proposition 1.2.21.

Remark 1.2.41. It follows from Theorem A.4.8 that if Ω has a bounded boundary of class C2, then

D(A) = (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω) with equivalent norms.

Corollary 1.2.42. Let A be defined by (1.2.31) and let H−1 and A(−1) be defined by Theorem 1.1.31. If

Y and B are defined by (1.2.25) and (1.2.26), then H−1 = Y with equivalent norms, and A(−1) = B.

Proof. Let V = (u, v) ∈ D(A) ⊂ X ⊂ Y. We have

‖AV ‖2Y = ‖v‖2L2 + ‖ −4u+ u‖2H−1 = ‖v‖2L2 + ‖u‖2H1
0

= ‖V ‖2H;

and so, since B is skew-adjoint,

‖(I −A)V ‖2Y = ‖(I − B)V ‖2Y = ‖BV ‖2Y + ‖V ‖2Y = ‖V ‖2H + ‖V ‖2Y .

Given U ∈ H, and applying the above inequality to V = J1(A), we obtain

‖U‖2Y = ‖J1(A)U‖2H + ‖J1(A)U‖2Y .

Since H ↪→ Y, it follows that

‖U‖2Y ≈ ‖J1(A)U‖2H.

On the other hand, note that H is dense in Y, since D(Ω) × D(Ω) ⊂ H; and so, Y is the completion of H

for the norm ‖J1(A)U‖H. It follows that Y verifies properties (i) and (ii) of Theorem 1.1.31. Furthermore,

it follows from Proposition 1.2.37 that B verifies properties (iii) and (iv). Finally, property (v) follows by

definition. Hence the result, by Theorem 1.1.31.
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One can extend Proposition 1.2.40 and Corollary 1.2.42 as follows. Let λ1 be defined by (1.2.28), and

consider λ > −λ1. Consider on H1
0 (Ω) the norm ‖| · ‖| defined by (A.4.2), that is

‖|u‖| =
(∫

Ω

{|∇u|2 + λ|u|2} dx
)1/2

.

Define the operator A on H by{
D(A) = {(u, v) ∈ H,4u ∈ L2(Ω) and v ∈ H1

0 (Ω)},

A(u, v) = (−v,−4u+ λu), for all (u, v) ∈ D(A).
(1.2.33)

We have the following result.

Proposition 1.2.43. Let λ1 be defined by (1.2.28). If λ > −λ1, then the operator A defined by (1.2.33)

is skew-adjoint. In particular, A and −A are m-accretive with dense domain. Furthermore, H−1 = Y with

equivalent norms and A(−1) = B, where H−1 and A(−1) are defined by Theorem 1.1.31, and Y and B are

defined by (1.2.25) and (1.2.29).

Proof. The proof is easily adapted from the proofs of Proposition 1.2.40 and Corollary 1.2.42, by making

use in particular of Lemma A.4.2 and Theorem A.4.5.

Remark 1.2.44. If Ω is bounded, then it follows from Poincaré’s inequality (A.3.7) that λ1 > 0. In

particular, one can take λ = 0 in Proposition 1.2.43.

Remark 1.2.45. Here are some simple regularity properties of the domain of A.

(i) It follows from Proposition A.4.10 that D(A) ⊂ H2
loc(Ω)×H1

0 (Ω), without any restriction on Ω.

(ii) One verifies easily that if n ≥ 1, then D(A2n) = {(u, v) ∈ H1
0 (Ω)×L2(Ω); 4ju,4j−1v ∈ H1

0 (Ω) for 1 ≤

j ≤ n and 4nv ∈ L2(Ω)}, and that D(A2n+1) = {(u, v) ∈ H1
0 (Ω) × L2(Ω); 4ju,4jv ∈ H1

0 (Ω) for 0 ≤

j ≤ n and 4n+1u ∈ L2(Ω)}. An iterative application of Proposition A.4.10 shows that D(An) ⊂

Hn+1
loc (Ω) × Hn

loc(Ω) and that D(An) ↪→ Hn+1(Ω′) × Hn(Ω′) for every Ω′ ⊂⊂ Ω. In particular,

∩
n≥1

D(An) ⊂ C∞(Ω)× C∞(Ω) (cf. Theorem A.3.40).

(iii) Applying Theorem A.4.8 one obtains as well that, if Ω has a bounded boundary of class Cn+1, then

D(An) ⊂ Hn+1(Ω)×Hn(Ω). In particular, if Ω has a bounded boundary of class C∞, then ∩
n≥1

D(An) ⊂

C∞(Ω) × C∞(Ω) (cf. Theorem A.3.40). Therefore, if we assume further that Ω is bounded, then

∩
n≥1

D(An) = {u ∈ C∞(Ω) × C∞(Ω); u = 4u = 42u = · · · = 0 and v = 4v = 42v = · · · = 0 on ∂Ω}

(see Proposition A.3.23).

Remark 1.2.46. Note that all the results of Section 1.2.4 hold true as well in the corresponding spaces of

complex-valued functions. The proofs are the same (cf. Section A.4.6).

1.2.5. The Stokes operator. We introduce here the Stokes operator, which is essential in the study

of the Navier-Stokes equation. For simplicity, we begin with the Stokes operator in RN . Let N ≥ 2, and

consider the Hilbert space

E =
(
L2(RN )

)N
.
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A vector of E has the form u = (u1, . . . , uN ). We write

∇ · u = divu =
N∑

i=1

∂ui

∂xi
,

and

4u = (4u1, . . . ,4uN ).

Let

X = {u ∈ E; ∇ · u = 0}.

Here, the condition ∇ · u = 0 is understood in the sense of distributions. It is clear that X is a closed

subspace of E. Therefore, X is also a Hilbert space with the scalar product of E, that is

(u,v) =
N∑

i=1

∫
RN

uivi dx.

We define the Stokes operator A byD(A) = {u ∈
(
H2(RN )

)N ∩X; 4u ∈ X};

Au = −4u, for u ∈ D(A).

We have the following result.

Theorem 1.2.47. The operator A defined above is self-adjoint and accretive, hence m-accretive with dense

domain.

Proof. We first show that R(I +A) = X. Let f ∈ X. In particular, fi ∈ L2(RN ) for every i ∈ {1, . . . , N}.

Therefore, it follows from Propositions 1.2.21 and 1.2.22 that there exists ui ∈ H2(RN ) such that −4ui +

ui = fi. Setting u = (u1, . . . , un), we have u ∈
(
H2(RN )

)N
and −4u + u = f. On the other hand,

setting vi =
∂ui

∂xi
∈ H1(RN ) and gi =

∂fi

∂xi
∈ H−1(RN ), it follows from equation −4ui + ui = fi that

−4vi + vi = gi. Note that ∇ · u =
∑N

j=1 vi and
∑N

j=1 gi = ∇ · f = 0. Setting w = ∇ · u ∈ H−1(RN ), it

follows that −4w + w = 0. This implies that w = 0 (see Proposition 1.2.17); and so, u ∈ X. Furthermore,

4u = u − f ∈ X; and so, u ∈ D(A) and u + Au = f, which implies that R(I + A) = X. Finally, it follows

from Proposition 1.2.21 that (Au,u) ≥ 0 and (Au,v) = (u, Av) for all u,v ∈ D(A), which completes the

proof.

Remark 1.2.48. Let 1 < p < ∞. One can consider the Stokes operator in Lp. More precisely, let

E =
(
Lp(RN )

)N , and set X = {u ∈ E; ∇ · u = 0}. X is a closed subspace of E, therefore, X is also a

Banach space. We define the Stokes operator A (in Lp) byD(A) = {u ∈
(
W 2,p(RN )

)N ∩X; 4u ∈ X};

Au = −4u, for u ∈ D(A).

Arguing as above, one shows that A is m-accretive with dense domain.
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The definition of the Stokes operator in a domain Ω is more technical. Let Ω ⊂ RN be a bounded

domain with boundary of class C2. Let E =
(
L2(Ω)

)N , and let

F = {u ∈ (D(Ω))N ; ∇ · u = 0}.

Let X be the closure of F in E. It is clear that X is a closed subspace of E. Therefore, X is also a Hilbert

space with the scalar product of E, that is

(u,v) =
N∑

i=1

∫
Ω

uivi dx.

One can show that the trace u · ν makes sense for every u ∈ E such that ∇ · u ∈ L2(Ω) (where ν(x) ∈ RN

is the outward unit normal vector at the point x ∈ ∂Ω), and that

X = {u ∈ E; ∇ · u = 0 in Ω and u · ν = 0 on ∂Ω}.

Furthermore, the orthogonal X⊥ of X in E is X⊥ = {u ∈ E; ∃p ∈ H1(Ω),u = ∇p} (see Temam [94],

Theorems 1.4 and 1.5, pp.15—16). Let P : E → X be the orthogonal projection on X. We define the Stokes

operator A by D(A) =
(
H2(Ω) ∩H1

0 (Ω)
)N ∩X;

Au = −P (4u), for u ∈ D(A).

We have the following result (see Fujita and Kato [46] for a proof).

Theorem 1.2.49. The operator A defined above is self-adjoint and accretive, hence m-accretive with dense

domain.

Remark 1.2.50. It is clear from what precedes that (u, f) ∈ D(A)×X verify Au = f if and only if there

exists p ∈ H1(Ω) such that −4u +∇p = f. It is clear that p is determined up to a constant; and so, if we

define

Y = {p ∈ H1(Ω);
∫

Ω

p = 0},

then given (u, f) ∈ D(A) × X such that Au = f, there exists a unique p ∈ H1(Ω) such that −4u =

f +∇p. Moreover, the mapping f 7→ (u, p) is continous X → H2(Ω) ×H1(Ω), as follows from Temam [94,

Proposition I.2.2].

Remark 1.2.51. Let 1 < p <∞. As above, one can consider the Stokes operator in Lp. See McCracken [80]

Fujiwara and Morimoto [47] and Giga [51].

1.2.6. The Airy operator. We introduce here the Airy operator, which is essential in the study of the

Korteweg-De Vries equation. Let X = L2(R), and define the operator A on X by
D(A) = H3(R);

Au = uxxx =
d3u

dx3
, for u ∈ D(A).

We have the following result.
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Theorem 1.2.52. The operator A defined above is skew-adjoint. In particular, both A and −A are

m-accretive with dense domain.

Proof. Consider the operator B on L2(R) defined by{
D(B) = H1(R),

Bu = u′, for u ∈ D(B).

It follows that A = B3. Since B is skew-adjoint (see Remark 1.2.3 (iii)), it follows from Proposition 1.1.49 (iv)

that A is skew-adjoint.

Remark 1.2.53. It is not difficult to show that the space X−1 and the operator A(−1) introduced in

Theorem 1.1.31 are given by X−1 = H−3(R), and
D(A(−1)) = L2(R);

A(−1)u = uxxx =
d3u

dx3
, for u ∈ D(A).

In particular, the operator A(−1) defined above is skew-adjoint.

Remark 1.2.54. One can modify the above example as follows. Let m ∈ Z be an integer, and let

X = Hm(R) (as a matter of fact, m could be any real number). Define the operator A on X by
D(A) = Hm+3(R);

Au = uxxx =
d3u

dx3
, for u ∈ D(A).

As above, one shows that the operator A is skew-adjoint. In particular, both A and −A are m-accretive with

dense domain. Note that the space X−1 and the operator A(−1) introduced in Theorem 1.1.31 are given by

X−1 = Hm−3(R), and 
D(A(−1)) = Hm(R);

A(−1)u = uxxx =
d3u

dx3
, for u ∈ D(A).

The above definitions make sense since if u ∈ Hm(R) for some m ∈ Z, then uxxx ∈ Hm−3(R) (here uxxx is

defined in the sense of distributions).

We next consider the Airy operator with periodic boundary conditions. Let ` be a positive real number,

and set X = L2(0, `). Define the operator A on X by
D(A) = {u ∈ H3(0, `); u(0) = u(`), u′(0) = u′(`), u′′(0) = u′′(`)}

Au = uxxx =
d3u

dx3
, for u ∈ D(A).

We observe that the definition of D(A) makes sense, since H3(0, `) ↪→ C2([0, `]). We have the following

result.

Theorem 1.2.55. The operator A defined above is skew-adjoint. In particular, both A and −A are

m-accretive with dense domain.
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Proof. Consider the operator B on L2(0, `) defined by{
D(B) = {u ∈ H1(0, `); u(0) = u(`)},

Bu = u′, for u ∈ D(B).

It follows that A = B3. Since B is skew-adjoint (see Remark 1.2.5 (iv)), it follows from Proposition 1.1.49 (iv)

that A is skew-adjoint.

1.3. The Hille-Yosida-Phillips theorem. This section is devoted to the study of the linear evolution

equation
du

dt
+Au = 0, where A is an m-accretive operator with dense domain.

1.3.1. The semigroup generated by −A, where A is an m-accretive operator. Throughout this

section, X is a Banach space, endowed with the norm ‖ · ‖. We begin with the following lemma.

Lemma 1.3.1. If A is an m-accretive operator in X with dense domain, then for every λ > 0, the operator

Aλ ∈ L(X) introduced in Definition 1.1.15 enjoys the following properties:

(i) ‖e−tAλ‖L(X) ≤ 1, for all t ≥ 0 and all λ > 0;

(ii) ‖e−tAλx− e−tAµx‖ ≤ t‖Aλx−Aµx‖, for all x ∈ X, all t ≥ 0 and all λ, µ > 0.

Proof. Consider the operator Jλ introduced in Definition 1.1.9, and let x ∈ X. By Lemma 1.1.16, we have

e−tAλx = e−
tI
λ +

tJλ
λ x = e−

t
λ e

tJλ
λ x;

and so,

‖e−tAλx‖ ≤ e−
t
λ ‖e

tJλ
λ x‖ ≤ e−

t
λ e

t‖Jλ‖L(X)
λ ‖x‖ ≤ e−

t
λ e

t
λ ‖x‖ ≤ ‖x‖.

Hence property (i). Consider now λ, µ > 0. It follows easily from Definition 1.1.15 and Lemma 1.1.16 that

Aλ and Aµ commute; and so,

e−stAλe−(1−s)tAµx = e−tAµe−st(Aλ−Aµ)x,

for all x ∈ X, t ≥ 0 and s ∈ [0, 1]. Applying Proposition A.1.19, we obtain

d

ds

{
e−stAλe−(1−s)tAµx

}
= −te−tAλe−st(Aλ−Aµ)(Aλx−Aµx)

= −te−stAλe−(1−s)tAµ(Aλx−Aµx).

In particular, it follows from property (i) that∣∣∣∣∣∣∣∣ dds {e−stAλe−(1−s)tAµx
}∣∣∣∣∣∣∣∣ ≤ t‖Aλx−Aµx‖.

Therefore,

‖e−tAλx− e−tAµx‖ =
∣∣∣∣∣∣∣∣∫ 1

0

d

ds

{
e−stAλe−(1−s)tAµx

}
ds

∣∣∣∣∣∣∣∣ ≤ t‖Aλx−Aµx‖.

Hence (ii). This completes the proof.
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Corollary 1.3.2. Let A be an m-accretive operator in X, with dense domain. Given λ > 0, consider the

operator Aλ ∈ L(X) introduced in Definition 1.1.15. There exists a family (T (t))t≥0 ⊂ L(X) such that

(i) ‖T (t)‖L(X) ≤ 1, for all t ≥ 0;

(ii) e−tAλx−→
λ↓0

T (t)x for all x ∈ X, uniformly on bounded subsets of [0,∞).

Proof. Let Tλ(t) = e−tAλ . It follows from Lemma 1.3.1 (i) that

‖Tλ(t)‖L(X) ≤ 1, (1.3.1)

for all t ≥ 0. Consider now x ∈ D(A). It follows from Lemma 1.3.1 (ii) and Proposition 1.1.19 (iii) that,

given T > 0, the function Tλ(t)x is a Cauchy sequence in C([0, T ], X). Let T (t)x = lim
λ↓0

Tλ(t)x. It is clear

that T (t) is a linear mapping D(A) → X. Furthermore, it follows from (1.3.1) that ‖T (t)x‖ ≤ ‖x‖, for all

x ∈ D(A). Since D(A) is dense in X, it follows that T (t) can be extended to an operator of L(X), which we

still denote by T (t). Property (ii) now follows from Proposition A.1.4, and property (i) follows from (1.3.1).

This completes the proof.

Remark 1.3.3. The family (T (t))t≥0 constructed in Corollary 1.3.2 is sometimes denoted by e−tA. Note

that if A is bounded, this is consistent with the usual definition of the exponential, as follows immediately

from Proposition A.1.19 and Proposition 1.3.4 below.

Proposition 1.3.4. Let A be an m-accretive operator in X, with dense domain, and consider the family

(T (t))t≥0 constructed in Corollary 1.3.2. For every x ∈ D(A) and every t ≥ 0, the following properties hold:

(i)
∣∣∣∣∣∣∣∣T (t)x− x

t

∣∣∣∣∣∣∣∣ ≤ ‖Ax‖, for all t > 0;

(ii) the mapping t 7→ T (t)x belongs to C([0,∞), D(A)) ∩ C1([0,∞), X);

(iii) AT (t)x = T (t)Ax, for all t ≥ 0.

In addition, the function u(t) = T (t)x is the unique solution of the problem
du

dt
+Au = 0, for all t ≥ 0;

u(0) = x;
(1.3.2)

in the space C([0,∞), D(A)) ∩ C1([0,∞), X).

Proof. Consider x ∈ D(A). With the notation introduced in the proof of Corollary 1.3.2, let u(t) = T (t)x,

uλ(t) = Tλ(t)x and vλ(t) = −u′λ(t) = Aλuλ(t) = Tλ(t)Aλx. We have

vλ(t)− T (t)Ax = Tλ(t)(Aλx−Ax) + (Tλ(t)Ax− T (t)Ax);

and so, by Corollary 1.3.2 and Proposition 1.1.19 (iii),

‖vλ(t)− T (t)Ax‖ ≤ ‖Aλx−Ax‖+ ‖T (t)Ax− Tλ(t)Ax‖−→
λ↓0

0,
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uniformly on bounded intervals. Passing to the limit, as λ ↓ 0 in identity

uλ(t) = x−
∫ t

0

vλ(s) ds,

we obtain

u(t) = x−
∫ t

0

T (s)Axds.

Hence (i). It follows also that u ∈ C1([0,∞), X) and that

du

dt
= −T (t)Ax. (1.3.3)

Let now wλ(t) = Jλuλ(t), where Jλ is introduced Definition 1.1.9. It follows from Corollary 1.1.14 (ii)

and Proposition 1.1.19 (ii) that wλ(t) ∈ D(A) and wλ(t)−→
λ↓0

u(t) in X, for every t ≥ 0. Note also that

Awλ(t) = vλ(t); and so, (wλ, Awλ)−→
λ↓0

(u(t), T (t)Ax) in X×X. Since G(A) is closed (cf. Proposition 1.1.10),

it follows that u(t) ∈ D(A), and that

Au(t) = T (t)Ax. (1.3.4)

(1.3.3) and (1.3.4) yield property (iii). In addition, it follows from (1.3.4) that Au ∈ C([0,∞), X); and

so, u ∈ C([0,∞), D(A)). Hence property (ii). Furthermore, it follows from (1.3.3) and (1.3.4) that u solves

problem (1.3.2). It remains to establish uniqueness. Consider a solution u ∈ C([0,∞), D(A))∩C1([0,∞), X)

of (1.3.2). Given t > 0, let z(s) = T (t− s)u(s) for s ∈ [0, t]. It follows that z ∈ C([0, t], D(A))∩C1([0, t], X),

and that
dz

ds
= T (t− s)

(
du

ds
+Au

)
= 0;

and so, z(t) = z(0). This means that u(t) = T (t)x. Since t > 0 is arbitrary, the result follows.

1.3.2. Semigroups and their generators. We begin by introducing semigroups of contractions, and

their generators.

Definition 1.3.5. A family (T (t))t≥0 ⊂ L(X) is called a semigroup of contractions if it satisfies the

following properties:

(i) T (0) = I;

(ii) T (t+ s) = T (t)T (s), for all s, t ≥ 0;

(iii) the mapping t 7→ T (t)x is continuous [0,∞) → X, for all x ∈ X;

(iv) ‖T (t)‖L(X) ≤ 1, for all t ≥ 0.

Remark. Note that in our definition, we include the continuity of the mapping t 7→ T (t)x. A number

of authors do not inclufde this in their definition ant then they use the terminology “C0 semigroups of

contractions”.

Definition 1.3.6. Let (T (t))t≥0 ⊂ L(X) be a semigroup of contractions. The generator L of (T (t))t≥0 is

the linear operator in X defined by
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(i) D(L) =
{
x ∈ X;

T (t)x− x

t
has a limit in X as t ↓ 0

}
;

(ii) Lx = lim
t↓0

T (t)x− x

t
, for all x ∈ D(L).

Remark 1.3.7. Note that if (T (t))t≥0 ⊂ L(X) is a semigroup of contractions, then for every x ∈ X, the

function t 7→ ‖T (t)x‖ is nonincreasing on [0,∞). Indeed, ‖T (t+ s)x‖ = ‖T (s)T (t)x‖ ≤ ‖T (t)x‖.

The introduction of m-accretive operators is justified by the following result.

Proposition 1.3.8. If (T (t))t≥0 ⊂ L(X) is a semigroup of contractions in X and if L is its generator, then

−L is m-accretive with dense domain.

The proof of Proposition 1.3.8 relies on the following lemma.

Lemma 1.3.9. If (T (t))t≥0 ⊂ L(X) is a semigroup of contractions in X and if L is its generator, then the

following properties hold:

(i) given x ∈ X and t > 0, set I(t, x) =
∫ t

0

T (s)x ds. Then, I(t, x) ∈ D(L) and LI(t, x) = T (t)x− x;

(ii) given x ∈ X, set Jx =
∫ ∞

0

e−tT (t)x dt. Then, Jx ∈ D(L) and Jx− LJx = x.

Proof. Given h > 0, we have

T (h)− I

h
I(t, x) =

1
h

∫ t+h

h

T (t)x dt− 1
h

∫ t

0

T (t)x dt =
1
h

∫ t+h

t

T (t)x dt− 1
h

∫ h

0

T (t)x dt.

Letting h ↓ 0, it follows that I(t, x) ∈ D(L) and that LI(t, x) = T (t)x − x. Hence (i). On the other hand,

we have
T (h)− I

h
Jx =

1
h

∫ ∞

0

e−t(T (t+ h)x− T (t)x) dt

=
1
h

∫ ∞

h

e−(t−h)T (t)x dt− 1
h

∫ ∞

0

e−tT (t)x dt

=
eh − 1
h

∫ ∞

0

e−tT (t)x dt− e−h 1
h

∫ h

0

e−tT (t)x dt.

Letting h ↓ 0, we obtain

lim
h↓0

T (h)− I

h
Jx = Jx− x,

in X. It follows that Jx ∈ D(L) and that Jx− LJx = x. Hence (ii).

Proof of Proposition 1.3.8 Let x ∈ D(L) and λ, h > 0. We have

x− λ
T (h)x− x

h
=
(

1 +
λ

h

)
x− λ

h
T (h)x;

and so,

‖x− λ
T (h)x− x

h
‖ ≥

(
1 +

λ

h

)
‖x‖ − λ

h
‖x‖ = ‖x‖.

Letting h ↓ 0 in the above inequality, it follows that −L is accretive. Furthermore, given f ∈ X, let x = Jf

where J is defined in Lemma 1.3.9. It follows that x ∈ D(L) and that x − Lx = f . Therefore, −L is
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m-accretive (see Proposition 1.1.21). Finally, given x ∈ X and ε > 0, consider xε =
1
ε
I(ε, x), where I(ε, x)

is defined in Lemma 1.3.9. It is clear that xε−→
ε↓0

x in X. Since xε ∈ D(L), it follows that D(L) is dense in

X. This completes the proof.

Conversely, the introduction of semigroups of contractions is justified by the following result.

Proposition 1.3.10. Let A be an m-accretive operator in X with dense domain. The family (T (t))t≥0 ⊂

L(X) introduced in Corollary 1.3.2 enjoys the following properties:

(i) (T (t))t≥0 is a semigroup of contractions in X;

(ii) the generator of (T (t))t≥0 is −A;

(iii) if a semigroup of contractions (S(t))t≥0 admits −A as its generator, then S(t) = T (t) for all t ≥ 0.

Proof. It follows from Corollary 1.3.2 that ‖T (t)‖L(X) ≤ 1. Furthermore, it follows from Proposition 1.3.4

that T (t+s)x = T (t)T (s)x, for all s, t ≥ 0 and all x ∈ D(A). SinceD(A) is dense, we find T (t+s) = T (t)T (s).

Furthermore, it follows from Corollary 1.3.2 that the function T (t)x is continuous [0,∞) → X, for all x ∈ X.

Hence (i). Let L be the generator of (T (t))t≥0, and consider x ∈ D(A). Applying Proposition 1.3.4, we

obtain

T (t)x = x−
∫ t

0

T (s)Ax.

It follows that x ∈ D(L) and that Lx = −Ax. In other words, G(A) ⊂ G(−L). Since both −L and A

are m-accretive, it follows from Corollary 1.1.24 that A = −L. Hence (ii). Finally, assume that another

semigroup of contractions (S(t))t≥0 admits −A as its generator. Consider x ∈ D(A), and let u(t) = S(t)x.

Given t ≥ 0 and h > 0, we have

u(t+ h)− u(t)
h

=
S(h)− I

h
u(t) = S(t)

S(h)x− x

h
−→
h↓0

−S(t)Ax.

It follows that u(t) ∈ D(A) and that
d+u

dt
exists, for all t ≥ 0, and that

Au(t) = S(t)Ax =
d+u

dt
.

Therefore, u ∈ C([0,∞), D(A)) ∩ C1([0,∞), X) (see Theorem A.1.16), and u solves equation (1.3.2). It

follows from Proposition 1.3.4 that S(t)x = T (t)x, for all t ≥ 0. By density, we find T (t) = S(t). This

completes the proof.

Remark 1.3.11. Property (iii) of Proposition 1.3.10 means that if A is an m-accretive operator, then

the semigroup of contractions generated by −A is unique. In particular, there is a one-to-one and onto

correspondance between semigroups of contractions and m-accretive operators with dense domain.

By applying Propositions 1.3.8 and 1.3.10, we obtain the following result (the Hille-Yosida-Phillips

theorem).
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Theorem 1.3.12. A linear operator A in X is the generator of a semigroup of contractions in X if and

only if −A is m-accretive with dense domain.

We now establish an invariance result. That result will be helpful for showing that, when the operator

and the initial data have some symmetry properties, then the solutions of (1.3.2) have the same properties.

Proposition 1.3.13. Let A be an m-accretive operator in X with dense domain, and let (T (t))t≥0 be the

semigroup of contractions generated by −A. Let L ∈ L(X) be such that L|D(A) ∈ L(D(A)). If ALx = LAx

for all x ∈ D(A), then T (t)L = LT (t) for all t ≥ 0. In particular, if Lx = 0, then LT (t)x = 0 for all t ≥ 0.

Proof. Let x ∈ D(A), and let u(t) = T (t)x. Then, u solves problem (1.3.2). If we set v(t) = Lu(t), we

have v ∈ C([0,∞), D(A)) ∩ C1([0,∞), X),
dv

dt
+ Av = 0, and v(0) = Lx. Therefore, v(t) = T (t)Lx; and so,

T (t)Lx = LT (t)x, for all x ∈ D(A). The result now follows by density.

Corollary 1.3.14. Let A be an m-accretive operator in X with dense domain, and let (T (t))t≥0 be the

semigroup of contractions generated by −A. If Jλ is the operator introduced in Definition 1.1.9, then

T (t)Jλ = JλT (t) for all λ > 0 and all t ≥ 0.

Proof. It follows from Lemma 1.1.16 that one can apply Proposition 1.3.13 with L = Jλ. Hence the result.

We conclude this section with a characterization of the domain of m-accretive operators in reflexive

Banach spaces.

Proposition 1.3.15. Let A be an m-accretive operator in X and let (T (t))t≥0 be the semigroup of con-

tractions generated by −A. If X is reflexive, then every x ∈ X such that

sup
h>0

1
h
‖T (h)x− x‖ <∞

belongs to D(A). In particular, D(A) = {x ∈ X; ∃C, ‖T (h)x− x‖ ≤ Ch, for all h > 0}.

Proof. Let x be as in the statement, and let u(t) = T (t)x. Given 0 ≤ s < t, we have

‖u(t)− u(s)‖ = ‖T (s)(T (t− s)x− x)‖ ≤ ‖T (t− s)x− x‖ ≤ C(t− s).

It follows that u is Lipschitz continuous [0,∞) → X. Since u is also bounded, we have u ∈W 1,∞((0,∞), X)

(cf. Corollary A.2.38). In particular, there exists tn ↓ 0 such that u is differentiable at every tn and

‖u′(tn)‖ ≤ C (Theorem A.2.30 and Corollary A.2.23). In particular,

u(tn + h)− u(tn)
h

=
T (h)− I

h
T (tn)x

has a limit as h ↓ 0, for every n ∈ N. This implies that T (tn)x ∈ D(A), and ‖AT (tn)x‖ ≤ C, for all n ∈ N. In

particular, there exists a subsequence, which we still denote by (tn)n∈N and y ∈ X such that AT (tn)x ⇀ y,
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as n → ∞. Since T (tn)x → x, as n → ∞, it follows that (T (tn)x,AT (tn)x) ⇀ (x, y) in X ×X. Since the

graph of A is closed, it is also closed for the weak topology; and so, x ∈ D(A). Hence the result.

Remark. WhenX is not reflexive, the conclusion of the above proposition fails. For example, letX = L1(R),

let A be the operator defined in Remark 1.4.2 (i) below and let (T (t))t∈R be the group of isometries generated

by −A. Let x = 1(0,1). It follows from Remark 1.4.2 (i) below that T (t)x = 1(t,t+1). In particular,

‖T (h)x− x‖ ≤ 2h, for all h > 0. On the other hand, note that D(A) = W 1,1(R) ⊂ C(R); and so, x 6∈ D(A).

1.3.3. Regularity properties. In this section, we show that certain subspaces of X are invariant under

the action of semigroups of contractions. We begin with a simple result.

Proposition 1.3.16. Let A be an m-accretive operator in X, and let (T (t))t≥0 be the semigroup of con-

tractions in X generated by −A. If T(1)(t) = T (t)|D(A) and if A(1) is the operator defined by Theorem 1.1.28,

then (T(1)(t))t≥0 is a semigroup of contractions in D(A) and its generator is −A(1).

Proof. It follows from Proposition 1.3.4 that T (t) maps D(A) into itself. In addition, for every t ≥ 0 and

x ∈ D(A), we have

‖T (t)x‖D(A) = ‖T (t)x‖+ ‖AT (t)x‖ = ‖T (t)x‖+ ‖T (t)Ax‖ ≤ ‖x‖+ ‖Ax‖ = ‖x‖D(A).

Therefore, T (t)|D(A) ∈ L(D(A)), and ‖T (t)|D(A)‖L(D(A)) ≤ 1. In particular, the definition of (T(1)(t))t≥0

makes sense. Furthermore, it follows from Proposition 1.3.4 that (T(1)(t))t≥0 is a semigroup of contractions

in D(A). Let L be its generator, and consider x ∈ D(A(1)) = D(A2). We have

T(1)(h)x− x

h
=
T (h)x− x

h
−→
h↓0

−Ax,

in X. Furthermore, Ax ∈ D(A); and so, by Proposition 1.3.4

A
T(1)(h)x− x

h
=
T(1)(h)Ax−Ax

h
−→
h↓0

−A(Ax),

in X. Therefore,
T(1)(h)x− x

h
=
T (h)x− x

h
−→
h↓0

−Ax,

in D(A); and so, x ∈ D(L) and Lx = −Ax. It follows that G(A(1)) ⊂ G(−L). Since both −L and A(1) are

m-accretive in D(A), it follows from Corollary 1.1.24 that A(1) = −L. Hence the result.

Corollary 1.3.17. Let A be an m-accretive operator in X, and let (T (t))t≥0 be the semigroup of con-

tractions in X generated by −A. Given a positive integer n, consider the space Xn and the operator A(n)

defined by Remark 1.1.29. If T(n)(t) = T (t)|Xn
for t ≥ 0, then (T(n)(t))t≥0 is a semigroup of contractions in

Xn and its generator is −A(n).

Proof. This follows from applying iteratively Proposition 1.3.16 and Remark 1.1.29.
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Corollary 1.3.18. Let A be an m-accretive operator in X, and consider the spaces (Xn)n≥0 defined by

Remark 1.1.29. Let x ∈ D(A), and let u ∈ C([0,∞), D(A))∩C1([0,∞), X) be the solution of problem (1.3.2).

If x ∈ Xn for some n ≥ 1, then

u ∈
n⋂

j=0

Cj
b ([0,∞), Xn−j). (1.3.5)

Furthermore,
dju

dtj
= (−1)jT (t)Ajx = (−1)jAju(t), (1.3.6)

for all t ≥ 0 and all 0 ≤ j ≤ n, and
d

dt

(
dju

dtj

)
+A

(
dju

dtj

)
= 0, (1.3.7)

for all t ≥ 0 and all 0 ≤ j ≤ n − 1. In particular, if x ∈
⋂
n≥0

D(An), we have u ∈ C∞([0,∞), Xn), for all

n ≥ 0.

Proof. Let us first establish (1.3.5) and (1.3.6). We argue by induction. The case n = 1 follows from

Proposition 1.3.4. Assume now that the result holds up to some n ≥ 1. Let x ∈ Xn+1. In particular, we

have Ajx ∈ Xn−j+1, for every 0 ≤ j ≤ n+1; and so, u ∈ Cb([0,∞), Xn+1), by Corollary 1.3.17. Furthermore,

it follows from (1.3.6) that
dju

dtj
= (−1)jT (t)Ajx, for every 0 ≤ j ≤ n. Applying Corollary 1.3.17 and Propo-

sition 1.3.4, it follows that
dju

dtj
∈ C([0,∞), Xn−j+1) ∩ C1([0,∞), Xn−j), for every 0 ≤ j ≤ n. Therefore,

(1.3.5) holds at order n + 1. It follows easily that (1.3.6) also holds at order n + 1, by applying Proposi-

tion 1.3.4 (iii). Finally, (1.3.7) is a consequence of (1.3.5) and (1.3.6), by by applying Proposition 1.3.4 (iii).

This completes the proof.

1.3.4. Weak solutions and extrapolation. If x ∈ D(A), then u(t) = T (t)x is the solution of problem

(1.3.2) (cf. Proposition 1.3.4). On the other hand, if x ∈ X \ D(A), then u 6∈ C([0,∞), D(A)), and in

particular, u cannot solve (1.3.2) on [0,∞). The object of this section is to show that u solves a weak form

of problem (1.3.2).

Lemma 1.3.19. Let A be an m-accretive operator in X, and let (T (t))t≥0 be the semigroup of contractions

in X generated by −A. Consider the space X−1 and the operator A(−1) defined by Theorem 1.1.31. If

(T(−1)(t))t≥0 is the semigroup of contractions in X−1 generated by A(−1), then T(−1)(t)|X = T (t) for all

t ≥ 0.

Proof. This follows from Remark 1.1.33, Proposition 1.3.16 and Proposition 1.3.10 (iii).

Corollary 1.3.20. Let A be an m-accretive operator in X, and let (T (t))t≥0 be the semigroup of contrac-

tions in X generated by −A. Consider the space X−1 and the operator A(−1) defined by Theorem 1.1.31.

Let x ∈ X, and set u(t) = T (t)x, for all t ≥ 0. Then, u is the unique solution of problem
du

dt
+A(−1)u = 0;

u(0) = x;
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in the space C([0,∞), X) ∩ C1([0,∞), X−1).

Proof. This follows from Proposition 1.3.4, applied to the operator A(−1), and from Lemma 1.3.19.

Corollary 1.3.21. Let A be an m-accretive operator in X, and let (T (t))t≥0 be the semigroup of con-

tractions in X generated by −A. Given n ≥ 0, consider the space X−n and the operator A(−n) de-

fined by Remark 1.1.32. If (T(−n))t≥0 is the semigroup of contractions in X−n generated by A(−n), then

T(−n)(t)|X−j
= T(−j)(t) for all 0 ≤ j ≤ n and all t ≥ 0.

Proof. The result follows by applying iteratively Lemma 1.3.19 and Remark 1.1.33.

Corollary 1.3.22. Let A be an m-accretive operator in X, and let (T (t))t≥0 be the semigroup of con-

tractions in X generated by −A. Given n ≥ 0, consider the space X−n and the operator A(−n) defined by

Remark 1.1.32, and let (T(−n))t≥0 be the semigroup of contractions in X−n generated by A(−n). Let x ∈ X,

and set u(t) = T (t)x, for t ≥ 0. Then, u ∈ Cn
b ([0,∞), X−n) for all n ≥ 0. In addition,

dnu

dtn
= (−1)nT(−n)(t)An

(−n)x = (−1)nAn
(−n)u(t),

and
d

dt

(
dn−1u

dtn−1

)
+ (−1)n+1A(−n)

(
dn−1u

dtn−1

)
= 0,

for all t ≥ 0 and all n ≥ 1.

Proof. The result follows by applying Corollary 1.3.18 to the operator A(−n), for every n ≥ 0.

1.3.5. Groups of isometries. We will show that, under some appropriate assumptions, some semi-

groups of contractions can be embedded in larger families of operators. We begin with the following definition.

Definition 1.3.23. A family (T (t))t∈R ⊂ L(X) is called a group of isometries if it satisfies the following

properties:

(i) T (0) = I;

(ii) T (t+ s) = T (t)T (s), for all s, t ∈ R;

(iii) the mapping t 7→ T (t)x is continuous R → X, for all x ∈ X;

(iv) ‖T (t)x‖ = ‖x‖, for all t ∈ R and all x ∈ X.

Remark 1.3.24. Here are some immediate consequences of Definition 1.3.23.

(i) If (T (t))t∈R ⊂ L(X) is a group of isometries, then (T (t))t≥0 is a semigroup of contractions. In addition,

if one sets S(t) = T (−t), for all t ∈ R, then (S(t))t∈R ⊂ L(X) is also a group of isometries; and so,

(S(t))t≥0 is a semigroup of contractions.

(ii) Recall that in a Banach space an isometry, i.e. a linear map T : X → X such that ‖Tx‖ = ‖x‖ for

all x ∈ X need not be surjective. For example, Tϕ(t) = ϕ(t + h) on X = Lp(0,∞) with h > 0. Note
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also that if (T (t))t∈R ⊂ L(X) is a group of isometries, then T (t)X = X, for all t ∈ R. Indeed, we

have T (t)X ⊂ X. On the other hand, given t ∈ R and x ∈ X, we have x = T (t)y with y = T (−t)x;

and so, X ⊂ T (t)X. Conversely, if (T (t))t≥0 ⊂ L(X) is a semigroup of contractions such that T (t) is

a surjective isometry for all t ≥ 0, then (T (t))t∈R cen be embedded in a group of isometries (S(t))t∈R.

Indeed, set S(t) = T (t) for t ≥ 0 and S(t) = (T (−t))−1 for t < 0.

Lemma 1.3.25. Let (T (t))t∈R ⊂ L(X) be a group of isometries. If L is the generator of the semigroup of

contractions (T (t))t≥0, and if L̃ is the generator of the semigroup of contractions (S(t))t≥0, where S(t) =

T (−t), then L = −L̃. In particular, both L and −L are m-accretive with dense domain.

Proof. Let x ∈ D(L). Given h > 0, we have

S(h)x− x

h
=
T (−h)x− x

h
= −T (−h)T (h)x− x

h
−→
h↓0

−Lx.

It follows that x ∈ D(L̃) and that L̃x = −Lx; and so, G(L) ⊂ G(−L̃). As well, given x ∈ D(L̃) and h > 0,

we have
T (h)x− x

h
= −T (h)

T (−h)x− x

h
= −T (h)

S(h)x− x

h
−→
h↓0

−L̃x.

It follows that x ∈ D(L) and that Lx = −L̃x; and so, G(L̃) ⊂ G(−L). Therefore, L̃ = −L. Hence the result,

by Proposition 1.3.8.

Lemma 1.3.26. Let A be an m-accretive with dense domain, such that −A is m-accretive. Let (T (t))t≥0

be the the semigroup of contractions in X generated by −A, and let (S(t))t≥0 be the the semigroup of

contractions in X generated by A. Define (U(t))t∈R ⊂ L(X) by

U(t) =

{
T (t), if t ≥ 0;

S(−t), if t ≥ 0.

Then, (U(t))t∈R is a group of isometries.

Proof. Given x ∈ D(A), let u(t) = U(t)x for t ∈ R. Applying Proposition 1.3.4 to both A and −A, we see

that u is the unique solution in C(R, D(A)) ∩ C1(R \ {0}, X) of the equation u′ +Au = 0 for all t 6= 0 with

the initial condition u(0) = x. Since
d+u

dt
(0) =

d−u

dt
(0) = Ax,

we see that in fact u ∈ C1(R, X). It follows that U(t + s)x = U(t)U(s)x for all t, s ∈ R and all x ∈ D(A);

hence for all x ∈ X by density. Next, since by construction U(t) is a contraction for all t ∈ R, we have

‖U(t)x‖ ≤ ‖x‖ = ‖U(−t)U(t)x‖ ≤ ‖U(t)x‖,

for all t ∈ R and all x ∈ X. Therefore, U(t) is an isometry. The other properties are immediate.

Applying Lemmas 1.3.25 and 1.3.26, one obtains the following result.
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Proposition 1.3.27. If (T (t))t≥0 is a semigroup of contractions in X with the generator −A, then the

following properties are equivalent:

(i) −A is m-accretive;

(ii) there exists a group of isometries (U(t))t∈R such that T (t) = U(t), for all t ≥ 0.

Corollary 1.3.28. Let (T (t))t∈R ⊂ L(X) be a group of isometries, and let −A be the generator of the

semigroup of contractions (T (t))t≥0. Then, for every x ∈ D(A), the function u(t) = T (t)x, t ∈ R is the

unique solution of problem 
du

dt
+Au = 0;

u(0) = x;

in the space C(R, D(A)) ∩ C1(R, X).

Proof. It follows from Proposition 1.3.27, Lemma 1.3.26 and Proposition 1.3.4 that u ∈ C(R, D(A)) ∩

C1(R \ {0}, X), that
du

dt
= −Au for all t 6= 0, and that

d+u

dt
(0) =

d−u

dt
(0) = Ax.

The result follows easily.

Remark 1.3.29. Consider a group of isometries (T (t))t∈R ⊂ L(X), and let x ∈ X. It follows immediately

from the group property and Corollary 1.3.28 that if T (t0)x ∈ D(A) for some t0 ∈ R, then T (t)x ∈ D(A) for

all t ∈ R. Therefore, if x 6∈ D(A), then T (t)x 6∈ D(A) for all t ∈ R.

1.3.6. The case of Hilbert spaces. Throughout this section, we assume that X is a Hilbert space,

endowed with the scalar product (·, ·). We will apply the results of Section 1.1.5 to obtain further properties.

Lemma 1.3.30. If (T (t))t≥0 is a semigroup of contractions with the generator −A, then

(i) (T (t)∗)t≥0 is a semigroup of contractions;

(ii) the generator of (T (t)∗)t≥0 is −A∗.

Proof. It follows from Proposition 1.1.41 and Corollary 1.1.37 that A∗ is m-accretive with dense domain.

Let (S(t))t≥0 be the semigroup of contractions generated by −A∗. Applying Corollary 1.3.2 and Proposi-

tion 1.1.41, we obtain easily

S(t)x = lim
λ↓0

e−t(A∗)λx = lim
λ↓0

(e−tAλ)∗x = (T (t))∗x,

for all t ≥ 0 and all x ∈ X. Hence the result.

Remark 1.3.31. Here are some comments on Lemma 1.3.30. Let (T (t))t≥0 be a semigroup of contractions

in a general Banach space X, and let A be its generator.
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(i) One may always consider T (t)∗. The family (T (t)∗)t≥0 satisfies properties (i), (ii) and (iv) of Defi-

nition 1.3.5. This is easily verified. However, property (iii) (continuity) may fail. For example, let

X = L1(R) and let (T (t)∗)t≥0 be defined by T (t)ϕ(x) = ϕ(x − t) (see Remark 1.4.2 (i)). (T (t)∗)t≥0

is defined on X? = L∞(R) by T (t)∗ϕ(x) = ϕ(x + t), and one verifies easily that (T (t)∗)t≥0 is not

continuous on X?.

(ii) Since D(A) is dense in X, one may consider the operator A∗ on X?, and A∗ is m-accretive (see Exer-

cise 1.8.3). If D(A∗) is dense in X? then the proof of Lemma 1.3.30 shows that (T (t)∗)t≥0 is indeed a

semigroup of contractions in X? and that its generator is −A∗.

(iii) In particular, if X is reflexive, then A∗ is m-accretive with dense domain (see Exercise 1.8.2); and so,

(T (t)∗)t≥0 is a semigroup of contraction, and its generator is −A∗.

Corollary 1.3.32. If A be a self-adjoint, accretive operator in X and if (T (t))t≥0 is the semigroup of

contractions generated by −A, then T (t) = (T (t))∗ for all t ≥ 0.

Proof. It follows from Corollary 1.1.45 that A is m-accretive with dense domain. The result now follows

from Lemma 1.3.30.

Corollary 1.3.33. If A is a skew-adjoint operator in X, then there exists a group of isometries (T (t))t∈R

such that −A is the generator of the semigroup of contractions (T (t))t≥0. In addition, (T (t))∗ = T (−t), for

all t ∈ R.

Proof. It follows from Corollary 1.1.47 that A and −A are m-accretive with dense domain. The result

now follows easily from Proposition 1.3.27 and Lemmas 1.3.26 and 1.3.30.

Finally, we describe below a fundamental property of self-adjoint operators.

Theorem 1.3.34. Let A be a self-adjoint, accretive operator in X, and let (T (t))t≥0 be the semigroup

of contractions generated by −A. For every x ∈ X, the function u(t) = T (t)x for t ≥ 0 has the following

properties:

(i) u ∈ C([0,∞), X) ∩ C((0,∞), D(A)) ∩ C1((0,∞), X) and u is the unique solution of problem
du

dt
+Au = 0, for all t > 0;

u(0) = x;
(1.3.8)

in that class;

(ii) ‖Au(t)‖ ≤ 1
t
√

2
‖x‖, for all t > 0. Moreover, the function t 7→

√
t‖Au(t)‖ belongs to L2(0,∞) and∫ ∞

0

s‖Au(s)‖2 ds ≤ 1
4
‖x‖2;

(iii) (Au(t), u(t)) ≤ 1
2t
‖x‖2, for all t > 0. Moreover, the function t 7→ (Au(t), u(t)) belongs to L2(0,∞) and∫ ∞

0

(Au(t), u(t)) ds ≤ 1
2
‖x‖2;
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(iv) if x ∈ D(A), then also ‖Au(t)‖2 ≤ 1
2t

(Ax, x), for all t > 0. Moreover, Au ∈ L2((0,∞), X) and

‖Au‖2L2((0,∞),X) ≤
1
2
(Ax, x).

Proof. Let x ∈ X, and let u(t) = T (t)x. Given λ > 0, let Aλ be the operator introduced in Defi-

nition 1.1.15, and set uλ(t) = e−tAλx. It follows from Lemma 1.1.16 and Proposition 1.1.42 that Aλ is

self-adjoint and acretive. Therefore, (e−tAλ)t≥0 is a semigroup of contractions. Applying Remark 1.3.7, we

obtain the following property:

The mapping t 7→ ‖u′λ(t)‖ = ‖e−tAλAλx‖ is nonincreasing. (1.3.9)

In addition, the following identities hold:

d

dt
‖uλ(t)‖2 = −2(Aλuλ(t), uλ(t)), for all t ≥ 0, (1.3.10)

d

dt
(Aλuλ(t), uλ(t)) = 2(Aλuλ(t), u′λ(t)) = −2‖u′λ(t)‖2, for all t ≥ 0. (1.3.11)

It follows from (1.3.11) that (Aλuλ(t), uλ(t)) is a nonincreasing function of t; and so, integrating (1.3.10)

between 0 and t > 0, we obtain

t(Aλuλ(t), uλ(t)) ≤
∫ t

0

(Aλuλ(s), uλ(s)) ds ≤ 1
2
‖x‖2. (1.3.12)

Applying (1.3.9) and integrating (1.3.11) between 0 and t > 0, we obtain

2t‖u′λ(t)‖2 ≤ 2
∫ t

0

‖u′λ(s)‖2 ds = (Aλx, x)− (Aλuλ(t), uλ(t)) ≤ (Aλx, x), (1.3.13)

where the last inequality follows from Lemma 1.1.36. As well, multiplying (1.3.11) by t and integrating, we

find

t2‖u′λ(t)‖2 ≤ 2
∫ t

0

s‖u′λ(s)‖2 ds ≤ −2
∫ t

0

s
d

ds
(Aλuλ(s), uλ(s)) ds

≤
∫ t

0

(Aλuλ(s), uλ(s)) ds.

Applying (1.3.12), it follows that

2t2‖u′λ(t)‖2 ≤ ‖x‖2. (1.3.14)

Consider now t > 0. It follows from Corollary 1.3.2 and Proposition 1.1.19 that

Jλuλ(t)−→
λ↓0

u(t),

in X. On the other hand, it follows from (1.3.14) that A(Jλuλ(t)) = u′λ(t) is bounded in X. Applying

Remark 1.1.11, we find u(t) ∈ D(A) and Aλuλ(t) ⇀ Au(t), as λ ↓ 0. Property (i) now follows by applying

Proposition 1.3.4 with the initial value u(ε), for arbitrary ε > 0, and letting ε ↓ 0. Other properties are

obtained by passing to the limit in (1.3.12), (1.3.13) and (1.3.14) and using the weak lower-semicontinuity

of the norm, then equation (1.3.8).

Corollary 1.3.35. Let A be a self-adjoint, accretive operator in X, let (T (t))t≥0 be the semigroup of

contractions generated by −A, and consider the spaces (Xn)n≥0 defined by Remark 1.1.29. Let x ∈ X and

set u(t) = T (t)x. Then, u ∈ C∞((0,∞), Xn), for every n ≥ 0. In addition,

‖Anu(t)‖ ≤
(
n√
2

)n 1
tn
‖x‖, (1.3.15)
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for all n ≥ 1 and all t > 0.

Proof. Consider the operators A(n) defined by Remark 1.1.29. It follows from Corollary 1.1.48 and Re-

mark 1.1.29 that A(n) is a self-adjoint, accretive operator in Xn. Consider t > 0. It follows from Theo-

rem 1.3.34 that u(t/n) ∈ X1 and that

‖Au(t/n)‖ ≤ n

t
√

2
‖x‖.

Applying now Theorem 1.3.34 to the operator A(1), one obtains as well that u(2t/n) = T (t/n)u(t/n) ∈ X2

and that

‖A2u(2t/n)‖ ≤
(

n

t
√

2

)2

‖x‖.

By induction, one finds u(t) ∈ Xn and

‖Anu(t)‖ ≤
(

n

t
√

2

)n

‖x‖.

Hence (1.3.15). Since t and n are arbitrary, the result now follows from Corollary 1.3.18, applied to u(t+ ε),

ε > 0.

Remark 1.3.36. Corollary 1.3.35 describes a smoothing effect. For every x ∈ X and every t > 0, T (t)x

belongs to ∩
n≥0

D(An). This property displays the irreversible character of equation (1.3.2), when A is self-

adjoint and accretive. More precisely, if y ∈ X \ ∩
n≥0

D(An), there does not exist any pair (x, t) ∈ X × (0,∞)

such that y = T (t)x. This is in great contrast with the case of skew adjoint operators, for which T (t)X = X.

1.3.7. Analytic semigroups. Throughout this section, we assume that X is a complex Banach space.

We recall that every real Banach space has a canonical complexification, and that conversely, any complex

Banach space has an underlying real Banach space structure. Let A be a linear unbounded operator in X

(considered as a real Banach space), and assume that A is C-linear (i.e. λx ∈ D(A) and A(λx) = λAx for

all λ ∈ C and x ∈ D(A)). The numerical range S(A) of A is the set

S(A) = {〈ξ, Ax〉X?,X ; x ∈ D(A), ‖x‖ = 1, ξ ∈ F (x)}.

Here, 〈·, ·〉X?,X is the complex duality bracket between X? and X, and F is the duality mapping. Assume

that A is m-accretive with dense domain, and let (T (t))t≥0 be the semigroup of contractions generated by

−A. Since A is C-linear, it follows easily that (T (t))t≥0 ⊂ L(X), with X considered as a complex Banach

space. Given 0 < θ ≤ π, we define the sector Cθ by

Cθ = {z ∈ C \ {0}; −θ < arg z < θ},

so that Cθ = {0} ∪ {z ∈ C \ {0}; −θ ≤ arg z ≤ θ}.

Definition 1.3.37. Let (T (t))t≥0 be as above. We say that (T (t))t≥0 is an analytic semigroup if there

exists 0 < θ ≤ π and a mapping T̃ : Cθ → L(X) with the following properties:

(i) T (t) = T̃ (t) for all t ≥ 0;
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(ii) T̃ (z1 + z2) = T̃ (z1)T̃ (z2) for all z1, z2 ∈ Cθ;

(iii) lim
z∈Cθ,z→0

T̃ (z)x = x for all x ∈ X;

(iv) the mapping z 7→ T̃ (z) is holomorphic Cθ → L(X).

We have the following characterization of analytic semigroups (see Pazy [85], Theorem 5.2, p. 61).

Theorem 1.3.38. Let A be a C-linear, m-accretive operator with dense domain and let (T (t))t≥0 be the

semigroup of contractions generated by −A. The following properties are equivalent:

(i) (T (t))t≥0 is an analytic semigroup;

(ii) the mapping t 7→ T (t) is differentiable (0,∞) → L(X) and there exists a constant C such that

‖tT ′(t)‖L(X) ≤ C for all t ∈ (0, 1].

Remark 1.3.39. It follows in particular from Theorems 1.3.38 and 1.3.34 that if A is a self-adjoint,

accretive operator in a complex Hilbert space X, then the semigroup of contractions generated by −A is

analytic. (Note that A has a canonical C-linear, self-adjoint and accretive extension).

Finally, we have the following useful sufficient condition (see Haraux [58], Theorem 7.5, p. 116).

Theorem 1.3.40. Let A be a C-linear, m-accretive operator with dense domain and let (T (t))t≥0 be

the semigroup of contractions generated by −A. If the numerical range of A verifies S(A) ⊂ Cθ for some

0 < θ < π/2, then (T (t))t≥0 is an analytic semigroup.

1.4. Examples of semigroups generated by partial differential operators. In this section, we

apply the results of the preceding section to the examples described in Section 1.2.

1.4.1. First order equations. We consider the operators introduced in Section 1.2.1. We first study

the one-dimensional case.

Let X = C0(R), and let A be defined by{
D(A) = {u ∈ C1(R) ∩X; u′ ∈ X},

Au = u′, for u ∈ D(A).
(1.4.1)

It follows from Remark 1.2.3 (ii) that both A and −A are m-accretive with dense domain. It follows from

the results of Section 1.3.5 that −A generates a group of isometries (T (t))t∈R in X. For every ϕ ∈ D(A),

u(t) = T (t)ϕ is the unique solution in C(R, D(A)) ∩ C1(R, X) of the problem{
ut + ux = 0, t, x ∈ R;

u(0, x) = ϕ(x), x ∈ R.

Furthermore, we have the following characterization of (T (t))t∈R.

Proposition 1.4.1. If A is as above and if (T (t))t∈R is the group of isometries generated by −A, then

T (t)ϕ(x) = ϕ(x− t), for all t, x ∈ R, (1.4.2)

CHAPTER 1—PAGE 51



for every ϕ ∈ X.

Proof. Given ϕ ∈ D(A), define v(t), for t ∈ R, by

v(t, x) = ϕ(x− t), for x ∈ R.

One verifies easily that v ∈ C(R, D(A)) ∩ C1(R, X), that v(0) = ϕ and that

dv

dt
+Av = 0,

for all t ∈ R. Applying Corollary 1.3.28, it follows that v(t) = T (t)ϕ. The result now follows by density.

Remark 1.4.2. One has similar results for the other one-dimensional examples of Section 1.2.1. In par-

ticular, one has the following results.

(i) Consider 1 ≤ p <∞, let X = Lp(R), and let A be defined by{
D(A) = W 1,p(R),

Au = u′, for u ∈ D(A).

It follows from Remark 1.2.3 (iii) that both A and −A are m-accretive with dense domain, and it follows

from the results of Section 1.3.5 that −A generates a group of isometries (T (t))t∈R in X. Arguing as in

the proof of Proposition 1.4.1, one shows easily that, for every ϕ ∈ X, T (t)ϕ is given by formula (1.4.2).

(ii) Consider X = {u ∈ C([0, 1]); u(0) = 0}, equipped with the sup norm. Define the operator A in X by{
D(A) = {u ∈ C1([0, 1]); u(0) = u′(0) = 0},

Au = u′, for u ∈ D(A).

It follows from Proposition 1.2.4 that A is m-accretive with dense domain, and it follows from the results

of Section 1.3.2 that −A generates a semigroup of contractions (T (t))t≥0 in X. Arguing as in the proof

of Proposition 1.4.1, one shows easily that, for every ϕ ∈ X, T (t)ϕ is given by

T (t)ϕ(x) =

{
0, if x ≤ min{t, 1};

ϕ(x− t), if min{t, 1} ≤ x ≤ 1.
(1.4.3)

Note that in particular, T (t) = 0 for t ≥ 1.

(iii) Consider 1 ≤ p <∞, and let X = Lp(0, 1). Define the operator A in X by{
D(A) = {u ∈W 1,p(0, 1); u(0) = 0};

Au = u′, for u ∈ D(A).

It follows from Remark 1.2.5 (ii) that A is m-accretive with dense domain, and it follows from the results

of Section 1.3.2 that −A generates a semigroup of contractions (T (t))t≥0 in X. Arguing as in the proof

of Proposition 1.4.1, one shows easily that, for every ϕ ∈ X, T (t)ϕ is given by formula (1.4.3). Note

that here also, T (t) = 0 for t ≥ 1.
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(iv) Let X = {u ∈ C([0, 1]); u(0) = u(1)}, and let A be defined by{
D(A) = {u ∈ C1([0, 1]); u(0) = u(1) and u′(0) = u′(1)},

Au = u′, for u ∈ D(A).

It follows from Remark 1.2.5 (iii) that A is m-accretive with dense domain, and it follows from the

results of Section 1.3.2 that −A generates a semigroup of contractions (T (t))t≥0 in X. Arguing as in

the proof of Proposition 1.4.1, one shows easily that, for every ϕ ∈ X, T (t)ϕ is given by the following

formula. Define ϕ̃ ∈ C(R) by ϕ̃(x) = ϕ(x−E(x)), for all x ∈ R. Here, E(x) denotes the integer part of

x, i.e. E(x) = m if m ≤ x < m+ 1. Note that ϕ̃ is periodic with period 1. Then, T (t) is given by

T (t)ϕ(x) = ϕ̃(x− t),

for all t, x ∈ R. Note that here, T (t+m) = T (t) for t ∈ R and all m ∈ Z.

(v) Let X = C0(R+) = {u ∈ C([0,∞); u(0) = 0 and lim
x→∞

u(x) = 0}, and let A be defined by

{
D(A) = {u ∈ C1([0,∞)) ∩X; u′ ∈ X},

Au = u′, for u ∈ D(A).

It follows from Proposition 1.2.6 that A is m-accretive with dense domain, and it follows from the results

of Section 1.3.2 that −A generates a semigroup of contractions (T (t))t≥0 in X. Arguing as in the proof

of Proposition 1.4.1, one shows easily that, for every ϕ ∈ X, T (t)ϕ is given by

T (t)ϕ(x) =

{
0, if x ≤ t;

ϕ(x− t), if x ≥ t.
(1.4.4)

Note that T (t) is an isometry in X. However, clearly T (t) is not surjective, and thus (T (t))t≥0 cannot

be embedded in a group of isometries (see Remark 1.3.24 (ii)).

(vi) Let X = Lp(0,∞). Define the operator A in X by{
D(A) = {u ∈W 1,p(0,∞); u(0) = 0};

Au = u′, for u ∈ D(A).

It follows from Remark 1.2.7 (ii) that A is m-accretive with dense domain, and it follows from the results

of Section 1.3.2 that −A generates a semigroup of contractions (T (t))t≥0 in X. Arguing as in the proof

of Proposition 1.4.1, one shows easily that, for every ϕ ∈ X, T (t)ϕ is given by formula (1.4.4). Note

that here also, T (t) is an isometry in X.

(vii) Let X = {u ∈ C([0,∞); lim
x→∞

u(x) = 0}, and let A be defined by

{
D(A) = {u ∈ C1([0,∞)); lim

x→∞
u(x) = lim

x→∞
u′(x) = 0},

Au = −u′, for u ∈ D(A).

It follows from Proposition 1.2.8 that A is m-accretive with dense domain, and it follows from the results

of Section 1.3.2 that −A generates a semigroup of contractions (T (t))t≥0 in X. Arguing as in the proof

of Proposition 1.4.1, one shows easily that T (t) is given by

T (t)ϕ(x) = ϕ(x+ t), for all x ≤ 0 and all t ≥ 0, (1.4.5)
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for every ϕ ∈ X. Note that in general ‖T (t)ϕ‖ < ‖ϕ‖ for all t > 0. The reader can easily construct a ϕ

with this property.

(viii) Let 1 ≤ p <∞, X = Lp(0,∞), and let A be defined by

{
D(A) = W 1,p(0,∞),

Au = −u′, for u ∈ D(A).

It follows from Remark 1.2.9 (iii) that A is m-accretive with dense domain, and it follows from the

results of Section 1.3.2 that −A generates a semigroup of contractions (T (t))t≥0 in X. Arguing as in

the proof of Proposition 1.4.1, one shows easily that, for every ϕ ∈ X, T (t)ϕ is given by formula (1.4.5).

Note that here also, in general ‖T (t)ϕ‖ < ‖ϕ‖ for all t > 0.

Let now X = C0(RN ). Given a ∈ RN , consider the operator A defined by

{
D(A) = {u ∈ X; a · ∇u ∈ X},

Au = a · ∇u, for u ∈ D(A).
(1.4.6)

It follows from Remark 1.2.15 (i) that both A and −A are m-accretive with dense domain, and it follows

from the results of Section 1.3.5 that −A generates a group of isometries (T (t))t∈R in X. Then, we have the

following result.

Proposition 1.4.3. If A be as above and if (T (t))t∈R is the group of isometries generated by −A, then

T (t)ϕ(x) = ϕ(x− ta), (1.4.7)

for all ϕ ∈ X and all t ∈ R.

Proof. The proof is easily adapted from that of Proposition 1.4.1.

Remark 1.4.4. Consider 1 ≤ p < ∞, and let X = Lp(RN ). Define the operator A in X by (1.4.6). It

follows from Remark 1.2.15 (iii) that both A and −A are m-accretive with dense domain, and it follows from

the results of Section 1.3.5 that −A generates a group of isometries (T (t))t∈R in X. Arguing as in the proof

of Proposition 1.4.1, one shows easily that, for every ϕ ∈ X, T (t)ϕ is given by formula (1.4.7).

1.4.2. The heat equation. Throughout this section, Ω is an arbitrary open subset of RN . For some

of the results, we will make further assumptions on Ω which we will specify. We will apply the results of

Section 1.3 to the examples of Section 1.2.2, in order to solve the initial value problem for the heat equation

ut = 4u.

Consider the operator A defined on H−1(Ω) by (1.2.14), that is

{
D(A) = H1

0 (Ω),

Au = −4u, for all u ∈ D(A).
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It follows from Proposition 1.2.17 that A is self adjoint and accretive. Therefore, −A is the generator of a

semigroup of contractions on H−1(Ω), which we denote by (T (t))t≥0. On the other hand, the operator B

defined on L2(Ω) by (1.2.19), that is{
D(B) = {u ∈ H1

0 (Ω); 4u ∈ L2(Ω)},

Bu = −4u, for all u ∈ D(B),

is self adjoint and accretive by Proposition 1.2.21. Therefore, −B is the generator of a semigroup of con-

tractions on L2(Ω), which we denote by (S(t))t≥0.

Lemma 1.4.5. With the above notation, T (t)ϕ = S(t)ϕ for all t ≥ 0 and all ϕ ∈ L2(Ω).

Proof. Since G(B) ⊂ G(A) as subsets of H−1(Ω) ×H−1(Ω), the result follows immediately from Propo-

sition 1.3.4 when ϕ ∈ D(B) ⊂ D(A). Since both S(t) and T (t) are continous L2(Ω) → H−1(Ω), the result

follows, by density of D(B) in L2(Ω).

Remark 1.4.6. Since (T (t))t≥0 and (S(t))t≥0 coincide where they are both defined, that is on L2(Ω), we

will by denote also by (T (t))t≥0 the semigroup of contractions generated by −B.

Remark 1.4.7. By Corollary 1.3.32, T (t) is self-adjoint in L2(Ω) for all t ≥ 0, i.e.

(T (t)ϕ,ψ)L2 = (ϕ, T (t)ψ)L2 ,

for all t ≥ 0 and all ϕ,ψ ∈ L2(Ω).

Theorem 1.4.8. Let A and (T (t))t≥0 be as above. Given ϕ ∈ H−1(Ω), set u(t) = T (t)ϕ for t ≥ 0. Then,

the following properties hold:

(i) u ∈ C([0,∞),H−1(Ω))∩C((0,∞),H1
0 (Ω))∩C1((0,∞),H−1(Ω)), and u is the unique solution of problem{

ut −4u = 0 for all t > 0,

u(0) = ϕ;
(1.4.8)

in that class. Moreover, 4nu ∈ C∞((0,∞),H1
0 (Ω)) for every nonnegative integer n;

(ii) u ∈ C∞((0,∞)× Ω);

(iii) if ϕ ∈ L2(Ω), then u ∈ C([0,∞), L2(Ω)). If ϕ ∈ H1
0 (Ω), then u ∈ C([0,∞),H1

0 (Ω))∩C1([0,∞),H−1(Ω)).

If moreover 4ϕ ∈ L2(Ω), then 4u ∈ C([0,∞), L2(Ω)) and u ∈ C1([0,∞), L2(Ω)).

Proof. Since D(A) = H1
0 (Ω) with equivalent norms (Proposition 1.2.17), property (i) follows from Theo-

rem 1.3.34 and Corollary 1.3.35. Next, it follows from property (i), Corollary 1.3.35 and Lemma 1.4.5 that

u ∈ C∞((0,∞), D(Bn)) for every nonnegative integer n; and so property (ii) follows from Remark 1.2.23 (ii)

and Sobolev’s embedding theorem. Finally, property (iii) follows from Lemma 1.4.5.

When Ω satisfies certain regularity assumptions, the semigroup has better regularity properties. Some

of these properties are described in the following proposition.
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Theorem 1.4.9. Let A and (T (t))t≥0 be as in Theorem 1.4.8. Given ϕ ∈ H−1(Ω), set u(t) = T (t)ϕ for

t ≥ 0. Then the following properties hold:

(i) if Ω has a bounded boundary of class C2 and if ϕ ∈ H2(Ω) ∩ H1
0 (Ω), then u ∈ C([0,∞),H2(Ω)) ∩

C1([0,∞), L2(Ω));

(ii) if Ω has a bounded boundary of class C2m for some positive integer m, then u ∈ C∞((0,∞),H2m(Ω));

(iii) if Ω has a bounded boundary of class C∞, then u ∈ C∞([ε,∞)× Ω), for every ε > 0;

(iv) if Ω is bounded with boundary of class C∞, and if ϕ ∈ C∞(Ω) satisfies the compatibility relations

u = 4u = · · ·4nu = · · · = 0 on ∂Ω, then u ∈ C∞([0,∞)× Ω).

Proof. If ϕ ∈ D(B), then it follows from Lemma 1.4.5 that u ∈ C([0,∞), D(B))∩C1([0,∞), L2(Ω)). Since

D(B) ↪→ H2(Ω) whenever Ω has a bounded boundary of class C2 (Remark 1.2.23), property (i) follows. On

the other hand, u ∈ C∞((0,∞), D(Bn)) for every nonnegative integer n (see the proof of Theorem 1.4.8).

Therefore, properties (ii) and (iii) follow from Remark 1.2.23 and Sobolev’s embedding theorem. Finally, if

ϕ ∈ ∩
n≥0

D(Bn), then it follows from Corollary 1.3.17 that u ∈ ∩
n≥0

C∞([0,∞), D(Bn)). Hence property (iv),

by applying Remark 1.2.23 and Sobolev’s embedding theorem.

Remark 1.4.10. Note that the compatibility relations of property (iv) of Theorem 1.4.9 are necessary

conditions if u ∈ C∞([0,∞) × Ω). Indeed, we have u =
du

dt
= · · · =

dnu

dtn
= · · · = 0 on (0,∞) × ∂Ω. Since

dnu

dtn
= 4nu, the compatibility relations follow.

We next describe some pointwise estimates that are consequences of Theorem 1.3.34.

Theorem 1.4.11. Let A and (T (t))t≥0 be as in Theorem 1.4.8. Given ϕ ∈ L2(Ω), set u(t) = T (t)ϕ for

t ≥ 0. Then the following properties hold:

(i) ‖4u(t)‖L2 ≤ 1
t
√

2
‖ϕ‖L2 for all t > 0 and

∫ ∞

0

s‖4u(s)‖2 ds ≤ 1
4
‖ϕ‖2L2 ;

(ii) ‖∇u(t)‖L2 ≤ 1√
2t
‖ϕ‖L2 for all t > 0 and

∫ ∞

0

‖∇u(s)‖2 ds ≤ 1
2
‖ϕ‖2L2 ;

(iii) if ϕ ∈ H1
0 (Ω), then ‖4u(t)‖L2 ≤ 1√

2t
‖∇ϕ‖L2 for all t > 0 and

∫ ∞

0

‖4u(s)‖2 ds ≤ 1
2
‖∇ϕ‖2L2 .

Proof. By density, we need only consider the case ϕ ∈ D(Ω). In this case, the resuls follow from Theo-

rem 1.3.34, Lemma 1.4.5 and identity (A.3.17).

The following result, which is a form of the weak maximum principle for the heat equation, is essential

for the study of both the linear and the nonlinear heat equations.

Theorem 1.4.12. Let T > 0, 1 < p < ∞ and f ∈ L1
loc((0, T ),H−1(Ω)). Assume u ∈ C([0, T ], L2(Ω)) ∩

Lp((0, T ),H1(Ω)) ∩W 1,p′((0, T ),H−1(Ω)) solves equation

ut −4u = f, for almost all t ∈ (0, T ),

CHAPTER 1—PAGE 56



and that

(i) there exists v ∈ Lp((0, T ),H1
0 (Ω)) such that u(t) ≤ v(t) almost everywhere in Ω for almost all t ∈ (0, T );

(ii) f = g + h, with g ∈ L1
loc((0, T ),H−1(Ω)), g(t) ≤ 0 for almost all t ∈ (0, T ), and h ∈ L1

loc((0, T ), L2(Ω)),

h(t) ≤ C|u(t)| almost everywhere in Ω for almost all t ∈ (0, T ) where C is independent of t;

(iii) u(0) ≤ 0 almost everywhere in Ω.

It follows that u(t) ≤ 0 almost everywhere in Ω for all t ∈ (0, T ).

Proof. Since u+(t) ∈ H1
0 (Ω) for almost all t ∈ (0, T ) by Proposition A.3.34, it follows that

〈ut(t), u+(t)〉H−1,H1
0
− 〈4u(t), u+(t)〉H−1,H1

0
= 〈f(t), u+(t)〉H−1,H1

0
,

for almost all t ∈ (0, T ). It follows from Corollary A.3.15 and formula (A.3.17) that 〈4u(t), u+(t)〉H−1,H1
0
≤ 0,

and it follows from assumption (ii) and formula (A.3.14) that

〈f(t), u+(t)〉H−1,H1
0
≤ 〈h(t), u+(t)〉H−1,H1

0
≤ C

∫
Ω

|u(t)|u+(t) dx = C

∫
Ω

u+(t)2 dx.

Therefore, applying Corollary A.3.68, we obtain

d

dt

∫
Ω

u+(t)2 dx ≤ C

∫
Ω

u+(t)2 dx,

for almost all t ∈ (0, T ). Integrating the above inequality and using assumption (iii), we obtain∫
Ω

u+(t)2 dx ≤ C

∫ t

0

∫
Ω

u+(s)2 dx ds,

for all t ∈ (0, T ); and so, u+(t) ≡ 0 by Gronwall’s lemma. Hence the result.

Remark 1.4.13. Here are some comments concerning Theorem 1.4.12.

(i) Assumption (ii) can be slightly weakened. In fact, in the proof of Theorem 1.4.12 we only need that

〈f(t), u+(t)〉H−1,H1
0
≤ C‖u+(t)‖2L2 for almost all t ∈ (0, T ), where C is independent of t.

(ii) Assumption (i) means that u ≤ 0 on ∂Ω. This assumption is essential, as the following example shows.

Take Ω = (−1, 1) and u(t, x) = t+
x2

2
−1

2
. It is clear that u satisfies all the assumptions of Theorem 1.4.12

(with f = 0) except (i), but u(t) takes some positive values on Ω for each t > 0.

(iii) One must be very careful about the regularity assumptions on u, which are essential. Consider for

example the equation 
ut −4u = 0,

u|∂Ω = 0,

u(0) = −1,

in a bounded, smooth domain Ω ⊂ RN . Theorem 1.4.12 asserts that u(t) ≤ 0 in Ω. On the other hand,

we have u ∈ C∞([ε,∞)× Ω) and if we set v(t) = ut(t), then
vt −4v = 0,

v|∂Ω = 0,

v(0) = 0.
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Note that the condition v(0) = 0 makes sense since v ∈ C([0,∞),H−2(Ω)) (because v = 4u and u ∈

C([0,∞), L2(Ω)). On the other hand, we have v(t) ≥ 0 in Ω, v(t) 6≡ 0 for all t > 0 (see Exercise 1.8.18).

In particular, the conclusion of Theorem 1.4.12 does not hold, due to the lack of regularity of v at t = 0.

(iv) Let (T (t))t≥0 be as in Theorem 1.4.8 and let ϕ ∈ D(Ω). If ϕ ≥ 0 in Ω, then T (t)ϕ ≥ 0 in Ω for all

t ≥ 0. This follows from Theorem 1.4.12 applied to u = −T (t)ϕ with f ≡ 0 and v = u. By density, it

follows that T (t)ϕ ≥ 0 almost everywhere in Ω for all t ≥ 0 and all ϕ ∈ L2(Ω) such that ϕ ≥ 0 almost

everywhere in Ω.

When Ω = RN , one can compute T (t)ϕ in terms of a kernel, as shows the following result.

Proposition 1.4.14. Suppose that Ω = RN and let (T (t))t≥0 be as in Theorem 1.4.8. For every t > 0,

define the function St ∈ S(RN ) by St(x) = (4πt)−N/2e−
|x|2
4t for x ∈ RN . If ϕ ∈ L2(RN ) and if u(t) = T (t)ϕ

for t ≥ 0, then the following properties hold:

(i) T (t)ϕ = St ? ϕ for all t > 0;

(ii) if ϕ ∈ Lp(RN ) for some 1 ≤ p ≤ ∞, then u(t) ∈ Lq(RN ) for all p ≤ q ≤ ∞, and

‖u(t)‖Lq ≤ (4πt)−
N
2 ( 1

p−
1
q )‖ϕ‖Lp

for all t > 0.

Proof. Let ϕ ∈ L2 and set u(t) = St ? ϕ, for t > 0. We will check that u(t) ∈ D(A) for all t > 0,

u ∈ C([0,∞), L2(RN ))∩C1((0,∞), L2(RN )), u(0) = ϕ and ut = 4u for all t > 0. This will show property (i)

(see Theorem 1.3.34 (i)). The regularity properties are easily verified. Furthermore, a direct calculation

shows that ∂tSt −4St = 0 for all t > 0, which shows that u verifies the equation ut −4u = 0 for all t > 0.

Therefore, it remains to show that u(t) → ϕ in L2(RN ) as t ↓ 0. Note that

‖St‖L1 =
1

πN/2

∫
RN

e−|x|
2
dx =

(
1
π

∫
R2
e−|x|

2
dx

)N/2

=
(

2
∫ ∞

0

e−r2
r dr

)N/2

= 1.

It follows from Young’s inequality that ‖St ? ϕ‖L2 ≤ ‖ϕ‖L2 . Therefore, by density and Lemma A.1.4, we

need only show the result for ϕ ∈ D(RN ). Suppose now that ϕ ∈ D(RN ). Note that

St ? ϕ(x) =
1

πN/2

∫
RN

e−|z|
2
ϕ(x− 2

√
tz) dz.

It follows from the above formula and the dominated convergence theorem that St ? ϕ(x) → ϕ(x) as t ↓ 0.

Let R be large enough so that Supp(ϕ) ⊂ {|x| ≤ R}. For |x| ≥ 2R and |y| ≤ R, we have |x− y| ≥ 1
2
|x|. For

|x| ≥ 2R, it follows that

|St ? ϕ(x)| = 1
(4πt)N/2

∣∣∣∣ ∫
{|x|≤R}

e−
|x−y|2

4t ϕ(y) dy
∣∣∣∣ ≤ 1

(4πt)N/2

∫
{|x|≤R}

e−
|x|2
16t |ϕ(y)| dy ≤ Ct−N/2e−

|x|2
16t .

Therefore, there exists ε > 0 such that |St ? ϕ(x)| ≤ Ce−ε|x|2 for |x| ≥ 2R. Since ‖St ? ϕ‖L∞ ≤ ‖ϕ‖L∞ ,

we have as well |St ? ϕ(x)| ≤ Ce−ε|x|2 for all x ∈ RN . By the dominated convergence theorem, we obtain
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that St ? ϕ → ϕ in L2(RN ) as t ↓ 0, which shows (i). Property (ii) follows from property (i) and Young’s

inequality, since an easy calculation shows that ‖St‖Lr = r−
N
2r (4πt)−

N
2 (1− 1

r ) ≤ (4πt)−
N
2 (1− 1

r ).

Theorem 1.4.15. Let (T (t))t≥0 be as in Theorem 1.4.8 for a general domain Ω, let ϕ ∈ L2(Ω) and let

u(t) = T (t)ϕ. If ϕ ∈ Lp(Ω) for some 1 ≤ p ≤ ∞, then u(t) ∈ Lq(Ω) for all p ≤ q ≤ ∞, and

‖u(t)‖Lq ≤ (4πt)−
N
2 ( 1

p−
1
q )‖ϕ‖Lp

for all t > 0.

Proof. Suppose first that p <∞. By density, we need only prove the result for ϕ ∈ H1
0 (Ω)∩Lp(Ω). Define

ψ ∈ H1(RN ) ∩ Lp(RN ) by

ψ(x) =

{ |ϕ(x)| if x ∈ Ω,

0 if x 6∈ Ω,

and let v(t) = St ? ψ where St is defined in Proposition 1.4.14. It follows from Theorem 1.4.8 that v ∈

C([0,∞),H1(RN ))∩C1([0,∞),H−1(RN )) and vt−4v = 0 in H−1(RN ). In addition, v(t) ≥ 0; and so, if we

set w(t) = v(t)|Ω, then w ∈ C([0,∞),H1(Ω))∩C1([0,∞),H−1(Ω)), wt−4v = 0 in H−1(Ω) and w(t) ≥ 0. It

follows easily that z1(t) = u(t)−w(t) and z2(t) = −u(t)−w(t) verify the assumptions of Theorem 1.4.12 (take

v = |u|). Therefore, z1(t), z2(t) ≤ 0, which implies that |u(t)| ≤ w(t) almost everywhere on Ω for all t ≥ 0.

In particular, ‖u(t)‖Lq(Ω) ≤ ‖w(t)‖Lq(Ω) ≤ ‖v(t)‖Lq(RN ) and the result follows from Proposition 1.4.14. If

p = ∞, apply the result for finite p, with q = ∞, then let p ↑ ∞.

Remark. The Lp − Lq estimates of Theorem 1.4.15 can be also obtained by a technique of multipliers.

Since that technique can be applied to certain nonlinear problems to which the comparison argument is not

applicable, we describe it in Section 1.7.3 below.

Remark 1.4.16. It follows in particular from Theorem 1.4.15 that for arbitrary domains Ω, T (t) is con-

tinuous Lp(Ω) → Lq(Ω), for every t > 0 and every 1 ≤ p ≤ q ≤ ∞ with p < ∞. In particular, if Ω has

finite measure, then, given t > 0 and 1 ≤ p < ∞, T (t) is continuous Lp(Ω) → Lq(Ω) for every 1 ≤ q ≤ ∞.

However, if for example Ω = RN , then T (t) does not map Lp(Ω) to Lq(Ω) if q < p. Indeed, let 1 < p < ∞

and let

ϕ(x) =
1

(1 + |x|)N/pLog(2 + |x|)
, for x ∈ RN .

One verifies easily that ϕ ∈ Lq(RN ) for q ≥ p and that ϕ 6∈ Lq(RN ) for q < p. On the other hand, given

t > 0,

T (t)ϕ(x) = (4πt)−N/2

∫
RN

e−
|x−y|2

4t ϕ(y) dy ≥ (4πt)−N/2e−
1
4t

∫
{|x−y|≤1}

ϕ(y) dy.

One verifies easily that inf
x∈RN

inf
|x−y|≤1

ϕ(y)
ϕ(x)

> 0. Therefore, there exists ε > 0 such that T (t)ϕ ≥ εt−N/2e−
1
4tϕ;

and so, T (t)ϕ 6∈ Lq(RN ) for q < p.

Corollary 1.4.17. Let (T (t))t≥0 be as in Theorem 1.4.8, let ϕ ∈ L2(Ω) and let u(t) = T (t)ϕ. If ϕ ∈ Lp(Ω)

for some 1 ≤ p <∞, then u ∈ C([0,∞), Lp(Ω)).
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Proof. By density and Theorem 1.4.15, we need only consider the case ϕ ∈ D(Ω). Suppose that ϕ

is supported in the ball of RN with center 0 and radius R < ∞, and define w ∈ S(RN ) by w(x) =

‖ϕ‖L∞e
√

1+R2
e−
√

1+|x|2 . An easy calculation shows that 4w ≤ w; and so, if we set z(t, x) = etw(x), then

zt −4z ≥ 0. Therefore, if we apply Theorem 1.4.12 to u1 = u− z|Ω and u2 = −u− z|Ω (take v = |u|), then

we obtain |u(t)| ≤ z(t). Therefore, given T > 0, we have |u(t, x)| ≤ eTw(x) almost everywhere in Ω for all

t ∈ [0, T ]. Continuity of u(t) in Lp(Ω) now follows from continuity in L2(Ω) and the dominated convergence

theorem.

Remark 1.4.18. It follows from Corollary 1.4.17 that for every 1 ≤ p < ∞, (T (t))t≥0 can be uniquely

extended by continuity to a semigroup of contractions in Lp(Ω), which we still denote by (T (t))t≥0. On the

other hand, the operator A in Lp(Ω) defined by (1.2.21) also defines a semigroup of contractions in Lp(Ω).

It turns out that the two semigroups coincide, as shows the following result.

Proposition 1.4.19. Let (T (t))t≥0 be as in Theorem 1.4.8, let 1 ≤ p < ∞ and let (S(t))t≥0 be the

semigroup of contractions in Lp(Ω) generated by −A, where A is the operator defined by (1.2.21). Then,

T (t)ϕ = S(t)ϕ for every ϕ ∈ L2(Ω) ∩ Lp(Ω) and every t ≥ 0.

Proof. By density, we need only show the result for ϕ ∈ D(Ω). Set ψ = −4ϕ+ϕ, so that ϕ = J1ψ where

J1 is as in Lemma 1.2.27. If u(t) = T (t)ϕ, then it follows from Corollary 1.3.18 that ut(t) = T (t)4ϕ; and

so, by Corollary 1.4.17, that u ∈ C1([0,∞), Lp(Ω)). Since ut = 4u, we have also 4u ∈ C([0,∞), Lp(Ω)).

Furthermore, if v(t) = T (t)ψ ∈ C([0,∞), Lp(Ω)), then it follows from Corollary 1.3.14 that u(t) = T (t)J1ψ =

J1T (t)ψ = J1v(t). Therefore, u ∈ C([0,∞), D(A)) ∩ C1([0,∞), Lp(Ω)). Since ut = 4u = −Au, it follows

from Proposition 1.3.4 that u(t) = S(t)ψ. Hence the result.

(T (t))t≥0 is in fact an analytic semigroup in Lp(Ω) for all 1 < p < ∞. This property is the object of

the following result.

Proposition 1.4.20. Let (T (t))t≥0 be as in Theorem 1.4.8 and let 1 < p < ∞. Then (T (t))t≥0 is an

analytic semigroup in Lp(Ω).

If Ω has a bounded boundary of class C2, then in addition

‖T (t)ϕ‖W 2,p ≤ C

(
1 +

1
t

)
‖ϕ‖Lp , (1.4.9)

and

‖T (t)ϕ‖W 1,p ≤ C

(
1 +

1√
t

)
‖ϕ‖Lp , (1.4.10)

for all t > 0 and all ϕ ∈ Lp(Ω).

Proof. Note that by Theorem 1.4.11 and Remark 1.2.23, we need only prove the result for p 6= 2. We

proceed in three steps.

Step 1. We show that (T (t))t≥0 is analytic in Lp(Ω) for p > 2. Let A be the operator in Lp(Ω) defined

by (1.2.21), so that −A is the generator of (T (t))t≥0 considered as a semigroup of contractions in Lp(Ω).
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(See Proposition 1.4.19.) We extend A to complex valued functions by C-linearity. It is clear that A is

also m-accretive in Lp(Ω,C), and that the semigroup generated by −A is the natural extension of (T (t))t≥0

to Lp(Ω,C). For the rest of the proof, we denote by Lp(Ω) and W 1,p(Ω) the spaces of complex valued

functions. Let 〈·, ·〉Lp,Lp′ denote the complex duality bracket between Lp(Ω) and Lp′(Ω). Let f ∈ D(Ω), and

set u = I1f , with the notation of Lemma 1.2.27. We have u ∈ H1
0 (Ω) ∩ L∞(Ω). Let M = ‖u‖L∞ and let

F : C → C be defined by

F (z) =

{ |z|p−2z, if |z| ≤M,

Mp−2z, if |z| ≥M,

so that F is Lipschitz continuous. We have in particular F (u) = |u|p−2u, and it follows easily from Corol-

lary A.3.29 (see also Section A.3.7) that |u|p−2u ∈ H1
0 (Ω). Furthermore, it follows from Theorem A.3.12 and

an easy calculation that

∇(|u|p−2u) =

 |u|p−4

(
|u|2|∇u|2 +

p− 2
2

(u2∇u2 + |u|2|∇u|2)
)

if u 6= 0,

0 if u = 0,

almost everywhere. Therefore,

Re(∇u · ∇(|u|p−2u)) ≥ |u|p−2|∇u|2,

and

|Im(∇u · ∇(|u|p−2u))| ≤ p− 2
2

|u|p−2|∇u|2,

almost everywhere. Setting Cθ = {z ∈ C; −θ < argz < θ} with tan θ =
p− 2

2
, we have ∇u · ∇(|u|p−2u) ∈ Cθ

almost everywhere. Therefore,

〈Au, |u|p−2u〉Lp,Lp′ =
∫

Ω

∇u · ∇(|u|p−2u) dx ∈ Cθ.

Since I1 is an isomorphism from Lp(Ω) onto D(A) (Theorem 1.1.12), and since the mapping u 7→ |u|p−2u is

continuous Lp(Ω) → Lp′(Ω), it now follows by density of D(Ω) in Lp(Ω) that

〈Au, |u|p−2u〉Lp,Lp′ ∈ Cθ,

for all u ∈ D(A). The result now follows from Theorem 1.3.39, since the duality map in Lp is given by

F (u) = ‖u‖2−p
Lp |u|p−2u.

Step 2. We show that (T (t))t≥0 is analytic in Lp(Ω) for 1 < p < 2. Let now 1 < p < 2. Given ϕ,ψ ∈ D(Ω),

we set u(t) = T (t)ϕ and v(t) = T (t)ψ. Note that ϕ ∈ D(A), so that v ∈ C([0,∞), D(A))∩C1([0,∞), Lp(Ω)).

We have for t > 0

(u(t), ψ)Lp,Lp′ = (u(t), ψ)L2,L2 = (ϕ, v(t))L2,L2 = (ϕ, v(t))Lp,Lp′ ,

since T (t) is self-adjoint in L2(Ω) (see Corollary 1.3.32). Therefore, it follows from Step 1 and Theorem 1.3.38

that

|(u′(t), ψ)Lp,Lp′ | = |(ϕ, v′(t))Lp,Lp′ | ≤
C

t
‖ϕ‖Lp‖ψ‖Lp′ .
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Since u′(t) = −Au(t) , we obtain

‖Au(t)‖Lp ≤ C

t
‖ϕ‖Lp .

Let now ϕ ∈ Lp(Ω), let (ϕn)n≥1 ⊂ D(Ω) be such that ϕn −→
n→∞

ϕ in Lp(Ω), and set u(t) = T (t)ϕ and

un(t) = T (t)ϕn. Fix t > 0. It follows from the above inequality that there exists a subsequence (nk)k≥1 and

ξ ∈ Lp(Ω) with ‖ξ‖Lp ≤ C/t such that Aunk
(t) ⇀ ξ. Since the graph of A is closed, it is also closed for the

weak topology, so that u(t) ∈ D(A) and ‖Au(t)‖Lp ≤ C

t
‖ϕ‖Lp . It follows easily that the mapping t 7→ T (t)

is differentiable (0,∞) → L(Lp(Ω)) and that ‖tT ′(t)‖L(Lp(Ω)) ≤ C for all t > 0; and so, (T (t))t≥0 is analytic

in Lp(Ω) by Theorem 1.3.38.

Step 3. We show formulas (1.4.9) and (1.4.10). Formula (1.4.9) follows from Steps 1 and 2 and Theo-

rem 1.3.38. Formula (1.4.10) follows from (1.4.9) and the Gagliardo-Nirenberg inequality (A.3.10). This

completes the proof.

Remark 1.4.21. Here are some comments on the above results.

(i) It follows from Proposition 1.4.20 that if ϕ ∈ Lp(Ω) for some 1 < p < ∞ and if u(t) = T (t)ϕ, then

4nu ∈ C∞((0,∞), Lp(Ω)) for every integer n ≥ 0. Moreover ‖∂m
t 4nu(t)‖ ≤ Ct−(m+n)‖ϕ‖Lp for all

t > 0, where C is a constant depending on m and n. By applying Theorem 1.4.15, we obtain that if

ϕ ∈ Lp(Ω) for some 1 ≤ p <∞, then 4nu ∈ C∞((0,∞), Lq(Ω)), for all p ≤ q <∞, q > 1. Moreover,

‖∂m
t 4nu(t)‖Lq ≤ Ct−(m+n)t−

N
2 ( 1

p−
1
q )‖ϕ‖Lp ,

for all t > 0, where C is a constant depending on m and n.

(ii) The conclusion of Corollary 1.4.17 does not hold for p = ∞. To see this, consider Ω′ ⊂⊂ Ω and let

ϕ = 1Ω′ ∈ L2(Ω) ∩ L∞(Ω). Given t > 0, it follows in particular from Theorem 1.4.8 that u(t) ∈ C(Ω).

Therefore, ‖u(t) − ϕ‖L∞ ≥ 1/2; and so, u 6∈ C([0,∞), L∞(Ω)). However, we have the following L∞

regularity result.

Proposition 1.4.22. Let (T (t))t≥0 be as in Theorem 1.4.8, let ϕ ∈ Lp(Ω) for some 1 ≤ p < ∞, and let

u(t) = T (t)ϕ. Then 4mu ∈ C∞((0,∞), L∞(Ω)), for every nonnegative integer m. Moreover,

‖∂m
t 4nu(t)‖L∞ ≤ Ct−(m+n)t−

N
2p ‖ϕ‖Lp ,

for all t > 0, where C is a constant depending on m and n.

Proof. Note that we need only prove the continuity properties, since the estimates then follow from Re-

mark 1.4.21 (i), by letting q ↑ ∞. We proceed in two steps.

Step 1. u ∈ C((0,∞), L∞(Ω)). Let ε > 0 and let t0, t ≥ ε. We have u(t)−u(t0) = T (ε)(u(t−ε)−u(t0−ε));

and so, by Theorem 1.4.15,

‖u(t)− u(t0)‖L∞ ≤ (4πε)−N/2p‖u(t− ε)− u(t0 − ε)‖Lp .

Since u ∈ C([0,∞), Lp(Ω)), it follows that u ∈ C([ε,∞), L∞(Ω)). Hence the result, since ε is arbitrary.
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Step 2. Conclusion. Given ε > 0, it follows from Remark 1.4.21 (i) that 4m+nu(ε) ∈ Lp(Ω) for every

nonnegative integers m,n. Since
dn

dtn
4mu(t + ε) = T (t)4m+nu(ε) (see Corollary 1.3.18), it follows from

Step 1 that 4mu ∈ Cn((ε,∞), L∞(Ω)). Hence the result, since ε,m and n are arbitrary.

Under the assumptions of Proposition 1.2.32, the operator A defined by (1.2.22) defines a semigroup

of contractions in C0(Ω). The following result shows that this semigroup coincides with the semigroup

generated by the heat equation in L2(Ω), on L2(Ω) ∩ C0(Ω)

Proposition 1.4.23. If N ≥ 2, suppose that every x ∈ ∂Ω has the exterior cone property. Let (T (t))t≥0

be as in Theorem 1.4.8 and let (S(t))t≥0 be the semigroup of contractions in C0(Ω) generated by −A, where

A is the operator defined by (1.2.22). Then, T (t)ϕ = S(t)ϕ for every ϕ ∈ L2(Ω) ∩ C0(Ω) and every t ≥ 0.

Proof. By density (see Proposition A.3.58), we need only show the result for ϕ ∈ D(Ω). Set u(t) = S(t)ϕ

and let T > 0. Since D(Ω) ⊂ ∩
n≥0

D(An), it follows from Corollary 1.3.18 that 4mu ∈ C∞([0,∞), C0(Ω))

for every nonnegative integer m. In particular, given any Ω′ ⊂⊂ Ω, we have u|Ω′ ∈ C∞([0,∞),H2(Ω′)) (see

Proposition A.4.10). On the other hand, since u ∈ C([0,∞), C0(Ω)), ∪
0≤t≤T

{u(t)} is in a compact subset

of C0(Ω). It follows easily (apply Lemma A.3.48) that for every ε > 0, there exists a compact subset K

of Ω such that (u(t) − ε)+ is supported in K. Consider now Ω′ ⊂⊂ Ω such that K ⊂ Ω′. It follows that

(u− ε)+ ∈ C([0, T ],H1
0 (Ω′)). Therefore, by Lemma A.3.63,

d

dt

∫
Ω′

[(u(t)− ε)+]2 = 2
∫

Ω′
(u(t)− ε)+ut = 2

∫
Ω′

(u(t)− ε)+4u

= −2
∫

Ω′
∇(u(t)− ε)+ · ∇u = −2

∫
Ω′
|∇(u(t)− ε)+|2;

and so, there exists a constant C such that

‖(u− ε)+‖L∞(0,T ;L2(Ω′)) + ‖∇(u− ε)+‖L2(0,T ;L2(Ω′)) ≤ C‖(ϕ− ε)+‖L2(Ω′).

Since (u− ε)+ is supported in Ω′, this implies

‖(u− ε)+‖L∞(0,T ;L2(Ω)) + ‖∇(u− ε)+‖L2(0,T ;L2(Ω)) ≤ C‖(ϕ− ε)+‖L2(Ω). (1.4.11)

Note that (u− ε)+ ↑ u+ as ε ↓ 0. Therefore, it follows from (1.4.11) and the monotone convergence theorem

that u+(t) ∈ L2(Ω) and that (u(t) − ε)+−→
ε↓0

u+(t) in L2(Ω) for every t ∈ [0, T ]. Since (u − ε)+ is bounded

in L∞(0, T ;L2(Ω)) by (1.4.11), it follows from Theorem A.2.20, that u+ ∈ L∞(0, T ;L2(Ω)) and that∫ t

0

(u(t)− ε)+θ(t) dt ⇀
∫ t

0

u(t)+θ(t) dt,

in L2(Ω) as ε ↓ 0 for every θ ∈ Cc((0, T )). It follows also from (1.4.11) that (u − ε)+ is bounded in

L2(0, T ;H1
0 (Ω)). By Remark A.2.19 (i), there exists a sequence (εn)n≥0 and v ∈ L2(0, T ;H1

0 (Ω)) such that

(u− εn)+ ⇀ v in L2(0, T ;H1
0 (Ω)), from which it follows (see Lemma A.2.21) that u+ = v ∈ L2(0, T ;H1

0 (Ω)).

Applying this result to −u, we obtain as well that u− ∈ L2(0, T ;H1
0 (Ω)); and so, u = u+ − u− ∈

L2(0, T ;H1
0 (Ω)). Applying this result to v(t) =

dnu

dtn
= S(t)4nϕ for arbitrary integers n, it follows that

u ∈ Wn,2((0, T ),H1
0 (Ω)) for any n. Therefore, u ∈ C∞([0, T ],H1

0 (Ω)). Since T is arbitrary, we obtain
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u ∈ C∞([0,∞),H1
0 (Ω)), and since ut = 4u for all t ≥ 0 and u(0) = ϕ, it follows from Theorem 1.3.34 that

u(t) = T (t)ϕ. Hence the result.

Corollary 1.4.24. If N ≥ 2, suppose that every x ∈ ∂Ω has the exterior cone property, and let (T (t))t≥0

be as in Theorem 1.4.8. If ϕ ∈ L2(Ω) and if u(t) = T (t)ϕ, then u ∈ C∞((0,∞), C0(Ω)), and in particular

u ∈ C([ε,∞) × Ω) for every ε > 0. If furthermore ϕ ∈ C0(Ω), then u ∈ C([0,∞), C0(Ω)), and in particular

u ∈ C([0,∞)× Ω).

Proof. We proceed in several steps, and we use the notation of Proposition 1.4.23.

Step 1. If ϕ ∈ C0(Ω), then u ∈ C([0,∞), C0(Ω)). This follows immediately from Proposition 1.4.23, since

S(t)ϕ ∈ C([0,∞), C0(Ω)) by construction.

Step 2. If ϕ ∈ L2(Ω), then u ∈ C((0,∞), C0(Ω)). Consider (ϕn)n∈N ⊂ D(Ω) such that ϕn −→
n→∞

ϕ in

L2(Ω), and set un(t) = T (t)ϕn. Given ε > 0, it follows from Proposition 1.4.14 that ‖u(ε) − unε)‖L∞ ≤

(4πε)−N/4‖ϕ− ϕn‖L2 . Since un(ε) ∈ C0(Ω), it follows easily that u(ε) ∈ C0(Ω) and the result follows from

Step 1.

Step 3. Conclusion. By Step 1, it remains to show that, given ϕ ∈ L2(Ω), we have u ∈ C∞((0,∞), C0(Ω)).

Let n ∈ N and ε > 0. It follows from Theorem 1.4.8 that 4nu(ε) ∈ L2(Ω). Therefore, by Step 2 and

formula (1.3.6),
dnu

dtn
∈ C((ε,∞), C0(Ω)). This completes the proof, since n and ε are arbitrary.

By Proposition 1.4.23, (T (t))t≥0 can be extended to a semigroup of contractions in C0(Ω) provided Ω

is smooth enough. Set

M(Ω) = C0(Ω)∗.

We now extend (T (t))t≥0 by duality to M(Ω).

Theorem 1.4.25. If N ≥ 2, suppose that every x ∈ ∂Ω has the exterior cone property. Given any

ϕ ∈M(Ω), we define S(t)ϕ ∈M(Ω) by

〈S(t)ϕ,ψ〉M(Ω),C0 = 〈ϕ, T (t)ψ〉M(Ω),C0 , (1.4.12)

for all ϕ ∈ C0(Ω). (S(t)ϕ is well defined by Proposition 1.4.23.). The following properties hold.

(i) S(t)ϕ = T (t)ϕ for all t ≥ 0, if ϕ ∈ Lp(Ω) for some 1 ≤ p <∞, or if ϕ ∈ C0(Ω).

(ii) If u(t) = S(t)ϕ for all t ≥ 0, then u ∈ C((0,∞)Lp(Ω)) for all 1 ≤ p < ∞ and u ∈ C((0,∞)C0(Ω)).

Moreover,

‖u(t)‖Lp ≤ (4πt)−
N
2 (1− 1

p )‖ϕ‖M(Ω), (1.4.13)

for all t > 0 and all 1 ≤ p ≤ ∞.

(iii) If u is as above, then u ∈ C∞((0,∞)× Ω) ∩ C∞((0,∞),H1
0 (Ω)) and u satisfies the equation

ut −4u = 0, (1.4.14)
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in (0,∞)× Ω, and ∫
Ω

u(t)ϕψ−→
t↓0

∫
Ω

ϕψ, (1.4.15)

for all ψ ∈ C0(Ω).

(iv) If v ∈ C((0,∞),H1
0 (Ω)) ∩ C((0,∞), L1(Ω)) satisfies the equation (1.4.14) in H−1(Ω) for all t > 0, and

satisfies the initial condition (1.4.15), then v(t) = S(t)ϕ for all t ≥ 0.

(v) If Ω is bounded and if ϕn −→
n→∞

ϕ in M(Ω) weak-?, then S(t)ϕn −→
n→∞

S(t)ϕ for all t > 0, in C0(Ω).

Remark 1.4.26. In view of property (i) of Theorem 1.4.25, we will denote by (T (t))t≥0 the family (S(t))t≥0.

Remark 1.4.27. Note that (T (t))t≥0 is not a semigroup of contractions on M(Ω), because it does not

satisfy the continuity property S(t)ϕ−→
t↓0

ϕ in M(Ω) for all ϕ ∈ M(Ω). Indeed, let ϕ ∈ M(Ω) and suppose

that T (t)ϕ−→
t↓0

ϕ in M(Ω). Since T (t)ϕ ∈ L1(Ω) for all t > 0 and L1(Ω) is a closed subspace of M(Ω), it

follows that ϕ ∈ L1(Ω) and T (t)ϕ−→
t↓0

ϕ in L1(Ω). Thus, if ϕ ∈ M(Ω) but ϕ 6∈ L1(Ω), then T (t)ϕ does not

converge to ϕ in M(Ω).

Remark 1.4.28. Let x0 ∈ Ω and let δx0 be the Dirac mass at x0. We have δx0 ∈ M(Ω), so that T (t)δx0

is well defined.

Remark 1.4.29. Note that the boundedness assumption in property (v) is essential. Consider for example

Ω = R and let ϕn = 1(n,n+1). We have ϕn −→
n→∞

0 in M(R) weak-?. On the other hand, T (t)ϕn(x) =

T (t)ϕ0(x− n) does not have any strong limit in Lp(Ω) for any p > 1.

Proof of Theorem 1.4.25. (i) Let ϕ,ψ ∈ D(Ω). It follows from Remark 1.4.7 that

〈S(t)ϕ,ψ〉M(Ω),C0 = 〈ϕ, T (t)ψ〉M(Ω),C0 = (ϕ, T (t)ψ)L2 = (T (t)ϕ,ψ)L2 = 〈T (t)ϕ,ψ〉M(Ω),C0 .

(i) now follows by density and the estimate of Theorem 1.4.15.

(ii) Let ϕ ∈M(Ω) and ψ ∈ D(Ω). We have by (1.4.12) and Theorem 1.4.15

|〈T (t)ϕ,ψ〉M(Ω),C0 | ≤ ‖ϕ‖M(Ω)‖T (t)ψ‖L∞ ≤ (4πt)−
N
2 (1− 1

p )‖ϕ‖M(Ω)‖ψ‖Lp′ , (1.4.16)

for all t > 0 and all 1 ≤ p ≤ ∞. Let p > 11. We deduce from (1.4.16) that S(t)ϕ ∈ Lp(Ω) for all t > 0 and

that estimate (1.4.13) holds for all p > 1. Letting now p ↓ 1 we deduce that S(t)ϕ ∈ L1(Ω) for all t > 0 and

that (1.4.13) holds for p = 1. The regularity properties of (ii) now follow from Corollaries 1.4.17 and 1.4.24.

(iii) The regularity of u and the equation (1.4.14) follow from (ii) and Theorem 1.4.8. Let ψ ∈ C0(Ω).

We have ∫
Ω

u(t)ψ = 〈S(t)ϕ,ψ〉M(Ω),C0 = 〈ϕ, T (t)ψ〉M(Ω),C0 −→
t↓0

〈ϕ,ψ〉M(Ω),C0 ,

since T (t)ψ−→
t↓0

ψ in C0(Ω). This proves (1.4.15)

(iv) Let v be as in (iv). Given 0 < ε < t <∞, we have by Theorem 1.4.8 v(t) = T (t− ε)v(ε); and so,

〈v(t), ψ〉M(Ω),C0 = 〈v(ε), T (t− ε)ψ〉M(Ω),C0 ,
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for every ψ ∈ C0(Ω). We let ε ↓ 0, and we observe that by (1.4.15) v(ε)−→
ε↓0

ϕ in M(Ω) weak-? and that

T (t− ε)ψ−→
ε↓0

T (t)ψ in C0(Ω). Therefore,

〈v(t), ψ〉M(Ω),C0 = 〈ϕ, T (t)ψ〉M(Ω),C0 = 〈S(t)ϕ,ψ〉M(Ω),C0 ,

which implies that u(t) = S(t)ϕ.

(v) Suppose ϕn −→
n→∞

ϕ in M(Ω) weak-?. It follows from (1.4.12) that S(t)ϕn −→
n→∞

S(t)ϕ in M(Ω)

weak-?, and in particular in D′(Ω). Note that sup
n≥0

‖ϕn‖M(Ω) < ∞. Therefore, it follows from (1.4.13) and

Theorem 1.4.11 that (S(t)ϕn)n≥0 belongs to a bounded subset of H1
0 (Ω), hence to a compact subset of

L2(Ω). In particular, S(t)ϕn −→
n→∞

S(t)ϕ in L2(Ω) for every t > 0. It follows from Theorem 1.4.15 that

S(t)ϕn = S(t/2)S(t/2)ϕn −→
n→∞

S(t/2)S(t/2)ϕ = S(t)ϕ in L∞(Ω).

We describe below some decay properties as t→∞ of (T (t))t≥0.

Theorem 1.4.30. Assume that |Ω| < ∞, let λ1 > 0 be defined by (1.2.28), and let (T (t))t≥0 be as in

Theorem 1.4.8. Then, ‖T (t)‖L(L2) ≤ e−λ1t for all t ≥ 0.

Proof. Let ϕ ∈ D(Ω) and set u(t) = T (t)ϕ. It follows from Theorem 1.4.8 and Corollary A.3.54 that

d

dt
‖u(t)‖2L2 = 2〈u(t), ut(t)〉H1

0 ,H−1 = 2〈u(t),4u(t)〉H1
0 ,H−1 = −2‖∇u(t)‖2L2 ;

and so, by (1.2.28) and Proposition A.4.34,

d

dt
‖u(t)‖2L2 ≤ −2λ1‖u(t)‖2L2 .

Integrating the above differential inequality, we obtain ‖u(t)‖2L2 ≤ e−2λ1t‖ϕ‖2L2 . The result now follows by

density.

Remark 1.4.31. Instead of assuming |Ω| < ∞ in Theorem 1.4.30, one may assume as well that Ω is

bounded in one direction, or more generally that Ω verifies the assumptions of Remark A.3.38 (i).

Corollary 1.4.32. Assume that |Ω| < ∞, let λ1 > 0 be defined by (1.2.28), and let (T (t))t≥0 be as in

Theorem 1.4.8. For every 1 ≤ p ≤ ∞, there exists a constant Cp such that ‖T (t)ϕ‖Lp ≤ Cpe
−λ1t‖ϕ‖Lp , for

every t ≥ 0 and every ϕ ∈ Lp(Ω). In addition, one can take C = e
λ1|Ω|

2/N

4π .

Proof. Suppose first that p <∞. By density, we need only show the result for ϕ ∈ D(Ω). Consider t0 > 0.

For t ≤ t0, it follows from that

‖T (t)ϕ‖Lp ≤ ‖ϕ‖Lp = eλ1t0e−λ1t0‖ϕ‖Lp ≤ eλ1t0e−λ1t‖ϕ‖Lp .

Next, if p > 2, it follows from Theorems 1.4.15 and 1.4.30 that

‖T (t)ϕ‖Lp ≤ (4πt0)−
N
2 ( 1

2−
1
p )‖T (t− t0)ϕ‖L2

≤ (4πt0)−
N
2 ( 1

2−
1
p )eλ1t0e−λ1t‖ϕ‖L2

≤
(
(4πt0)−N/2|Ω|

) 1
2−

1
p

eλ1t0e−λ1t‖ϕ‖Lp .
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If p < 2, one obtains as well

‖T (t)ϕ‖Lp ≤ |Ω|−( 1
2−

1
p )‖T (t)ϕ‖L2

≤ |Ω|−( 1
2−

1
p )eλ1t0e−λ1t‖T (t0)ϕ‖L2

≤
(
(4πt0)−N/2|Ω|

)−( 1
2−

1
p )
eλ1t0e−λ1t‖ϕ‖Lp ,

and the result follows by taking t0 =
λ1|Ω|2/N

4π
. For p = ∞, apply the result for finite p then make p ↑ ∞.

(Note that, for example, L∞(Ω) ↪→ L2(Ω), so that T (t)ϕ is well defined for ϕ ∈ L∞(Ω).)

Remark 1.4.33. Note that one can never take Cp = 1 if p 6= 2 (see Cazenave and Haraux [29], Corol-

laire 3.5.10 and the remark that follows).

When Ω is bounded, one can express the solution of the heat equation in terms of the decomposition

of the initial value on the basis of L2(Ω) of the eigenvectors of −4 in H1
0 (Ω). More precisely, we have the

following result.

Proposition 1.4.34. Let (λn)n≥1 be the family of eigenvalues of −4 in H1
0 (Ω), let (ϕn)n≥1 be a Hilbert

basis of L2(Ω) made of eigenvectors (see Section A.4.5), and let (T (t))t≥0 be as in Theorem 1.4.8. Given

ϕ ∈ L2(Ω), set an = (ϕ,ϕn)L2 for all n ≥ 1, so that ϕ =
∞∑

n=1

anϕn, and let u(t) = T (t)ϕ. Then, u(t) =

∞∑
n=1

ane
−λntϕn, for all t ≥ 0.

Proof. Consider an integer k ≥ 1. Given a family (an)1≤n≤k, let ϕ =
k∑

n=1

anϕn and set

u(t) =
k∑

n=1

ane
−λntϕn,

for t ≥ 0. Since (ϕn)n≥1 ⊂ H1
0 (Ω), it follows that u ∈ C∞([0,∞),H1

0 (Ω)) and that u(0) = ϕ. Furthermore,

du

dt
= −

k∑
n=1

ane
−λntλnϕn =

k∑
n=1

ane
−λnt4ϕn = 4u;

and so, u(t) = T (t)ϕ by Theorem 1.4.8. The result follows easily, since the set

⋃
k≥1

{
k∑

n=1

anϕn; (an)1≤n≤k ⊂ Rk

}

is dense in L2(Ω).

Remark 1.4.35. Note that the results of this section are true as well in the corresponding spaces of

complex-valued functions, as follows easily by considering Reu and Imu. The only exception is Theo-

rem 1.4.12 that does not make sense anymore. (See Section A.4.6 and Remark 1.2.33.)

Remark 1.4.36. We can apply Proposition 1.3.13 to show that if Ω and ϕ have some symmetry properties,

then T (t)ϕ has the same properties. For example, assume that Ω ⊂ RN is symmetric with respect to the
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hyperplane {xN = 0}. Let ω be the corresponding symmetry, i.e. ωx = (x1, . . . , xN−1,−xN ). Define the op-

erator L ∈ L(L2(Ω)) by Lu(x) = u(x)−u(ωx). Considering the operator A on L2(Ω) defined byD(A) = {u ∈

H1
0 (Ω); 4u ∈ L2(Ω)} and Au = 4u for u ∈ D(A), straightforward calculations show that A and L fulfill the

assumptions of Proposition 1.3.13. Therefore, if ϕ(x1, . . . , xN ) = ϕ(x1, . . . , xN−1,−xN ) almost everywhere,

then u(t) = T (t)ϕ verifies u(t, x1, . . . , xN ) = u(t, x1, . . . , xN−1,−xN ) almost everywhere for all t ≥ 0. By

considering Lu(x) = u(x)+u(ωx), one shows as well that if ϕ(x1, . . . , xN ) = −ϕ(x1, . . . , xN−1,−xN ) almost

everywhere, then u(t) = T (t)ϕ verifies u(t, x1, . . . , xN ) = −u(t, x1, . . . , xN−1,−xN ) almost everywhere for all

t ≥ 0. By considering the rotations, one shows that if Ω is a ball centered at the origin and if ϕ is spherically

symmetric, then u(t) is also spherically symmetric.

1.4.3. Schrödinger’s equation. Throughout this section, Ω is an arbitrary open subset of RN . For

some of the results, we will make further assumptions on Ω which we will specify. We will apply the results

of Section 1.3 to the examples of Section 1.2.3, in order to solve the initial value problem for the Schrödinger

equation iut +4u = 0.

Consider the operator A defined on H−1(Ω) by (1.2.23), that is{
D(A) = H1

0 (Ω),

Au = −i4u, for all u ∈ D(A).

It follows from Proposition 1.2.34 that A is skew adjoint. Therefore, −A is the generator of a group of

isometries on H−1(Ω), which we denote by (T (t))t∈R. On the other hand, the operator B defined on L2(Ω)

by (1.2.24), that is {
D(B) = {u ∈ H1

0 (Ω); 4u ∈ L2(Ω)},

Bu = −i4u, for all u ∈ D(B),

is skew adjoint by Proposition 1.2.35. Therefore,−B is the generator of a group of isometries on L2(Ω),

which we denote by (S(t))t∈R.

Lemma 1.4.37. With the above notation, T (t)ϕ = S(t)ϕ for all t ∈ R and all ϕ ∈ L2(Ω).

Proof. Since G(B) ⊂ G(A) as subsets of H−1(Ω)×H−1(Ω), the result follows from Proposition 1.3.4(see

the proof of Lemma 1.4.5).

Remark 1.4.38. Since (T (t))t∈R and (S(t))t∈R coincide where they are both defined, that is on L2(Ω), we

will by denote also by (T (t))t∈R the group of isometries generated by −B.

Theorem 1.4.39. Let A and (T (t))t∈R be as above. Given ϕ ∈ H1
0 (Ω), set u(t) = T (t)ϕ for t ∈ R. Then,

the following properties hold:

(i) u ∈ C(R,H1
0 (Ω)) ∩ C1(R,H−1(Ω)) and u is the unique solution of problem{

iut +4u = 0 for all t ∈ R,

u(0) = ϕ;
(1.4.17)

in that class; moreover, ‖u(t)‖H−1 = ‖ϕ‖H−1 , ‖u(t)‖L2 = ‖ϕ‖L2 and ‖∇u(t)‖L2 = ‖∇ϕ‖L2 for every

t ∈ R;
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(ii) if furthermore 4ϕ ∈ L2(Ω), then u ∈ C1(R, L2(Ω)) and 4u ∈ C(R, L2(Ω)); moreover, ‖4u(t)‖L2 =

‖4ϕ‖L2 for every t ∈ R;

(iii) if furthermore there exists a positive integer m such that 4jϕ ∈ H1
0 (Ω) for all 0 ≤ j ≤ m − 1 and

4mϕ ∈ L2(Ω), then 4ju ∈ Cm−j(R, L2(Ω)) for all 0 ≤ j ≤ m; moreover, ‖4ju(t)‖L2 = ‖4jϕ‖L2 for

every t ∈ R and every 1 ≤ j ≤ m.

Proof. Since D(A) = H1
0 (Ω) with equivalent norms (Proposition 1.2.17), the first part of property (i)

follows from Corollary 1.3.28. Since (T (t))t∈R is a group of isometries in both H−1(Ω) and L2(Ω), con-

servation of the H−1 and L2 norms follow. On the other hand, it follows from Proposition 1.3.4 that

T (t)Aϕ = AT (t)ϕ. Therefore, T (t)4ϕ = 4u(t); and so, Therefore, T (t)(−4ϕ + ϕ) = −4u(t) + u(t). It

follows that ‖ − 4u(t) + u(t)‖H−1 = ‖ − 4ϕ + ϕ‖H−1 . By property (iii) of Remark A.4.4, this implies

that ‖u(t)‖H1
0

= ‖ϕ‖H1
0
. Since ‖u(t)‖L2 is conserved, conservation of ‖∇u(t)‖L2 follows, which completes

the proof of (i). Property (ii) follows from Lemma 1.4.37 and Corollary 1.3.28 applied to the operator B.

Finally, property (iii) follows from Remarks 1.1.30 and 1.2.23 (ii), and Corollary 1.3.18.

Remark 1.4.40. One can apply Corollary 1.3.20 (or even Corollary 1.3.22) to obtain existence and unique-

ness of solutions to (1.4.11) when ϕ ∈ L2(Ω) or ϕ ∈ H−1(Ω) (or even in larger spaces). However, the spaces

in which lies the solution may be complicated. For example, if ϕ ∈ L2(Ω), the solution is unique in the class

C(R, L2(Ω))∩C1(R, Y ) where Y = (D(B))? in the duality D(B) ↪→ L2(Ω) ↪→ (D(B))?. Note that 4 defines

a continuous mapping L2(Ω) → Y by 〈4u, v〉 = Re
∫

Ω

u4v dx, for all u ∈ L2(Ω) and all v ∈ D(B).

When Ω satisfies certain regularity assumptions, we have better regularity properties. Some of these

properties are described in the following result.

Theorem 1.4.41. Let A and (T (t))t∈R be as in Theorem 1.4.39. Given ϕ ∈ H−1(Ω), set u(t) = T (t)ϕ for

t ∈ R. Then, the following properties hold:

(i) if Ω has a bounded boundary of class C2 and if ϕ ∈ H2(Ω) ∩H1
0 (Ω), then u ∈ C(R,H2(Ω) ∩H1

0 (Ω)) ∩

C1(R, L2(Ω));

(ii) if Ω is bounded with boundary of class C∞, and if ϕ ∈ C∞(Ω) satisfies the compatibility relations

u = 4u = · · ·4nu = · · · = 0 on ∂Ω, then u ∈ C∞(R× Ω).

Proof. If ϕ ∈ D(B), then it follows from Lemma 1.4.5 that u ∈ C([0,∞), D(B)) ∩ C1([0,∞), L2(Ω)).

Since D(B) ↪→ H2(Ω) whenever Ω has a bounded boundary of class C2 (Remark 1.2.36), property (i)

follows. Finally, if ϕ ∈ ∩
n≥0

D(Bn), then it follows from Corollary 1.3.17 that u ∈ ∩
n≥0

C∞([0,∞), D(Bn)).

Hence property (ii), by applying Remark 1.2.23 and Sobolev’s embedding theorem.

Remark 1.4.42. Note that the compatibility relations of property (ii) of Theorem 1.4.41 are necessary

conditions if u ∈ C∞([0,∞) × Ω). Indeed, we have u =
du

dt
= · · · =

dnu

dtn
= · · · = 0 on (0,∞) × ∂Ω. Since

dnu

dtn
= in4nu, the compatibility relations follow.
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Remark 1.4.43. When Ω is bounded, one can express the solution of Schrödinger’s equation in terms of

the decomposition of the initial value on the basis of L2(Ω) made of the eigenvectors of −4 in H1
0 (Ω). More

precisely, let (λn)n≥1 be the family of eigenvalues of −4 in H1
0 (Ω), let (ϕn)n≥1 be a Hilbert basis of L2(Ω)

made of eigenvectors (see Section A.4.5), and let (T (t))t≥0 be as in Theorem 1.4.39. Given ϕ ∈ L2(Ω), set

an = (ϕ,ϕn)L2 for all n ≥ 1, so that ϕ =
∞∑

n=1

anϕn, and let u(t) = T (t)ϕ. Then, u(t) =
∞∑

n=1

ane
−iλntϕn, for

all t ≥ 0. See the proof of Proposition 1.4.34.

Remark 1.4.44. We can apply Proposition 1.3.13 to show that if Ω and ϕ have some symmetry properties,

then T (t)ϕ has the same properties (see Remark 1.4.36).

1.4.4. Schrödinger’s equation in RN . We devote a section to Schrödinger’s equation in the special

case Ω = RN , since in this case many more properties of the equation are known.

Lemma 1.4.45. Let ϕ ∈ S(RN ). If u ∈ C(R;S(RN )) is defined by

û(t)(ξ) = ϕ̂(ξ)e−4π2it|ξ|2 , for all ξ ∈ RN ,

then

u(t) = St ? ϕ, for all t 6= 0,

with

St(x) = (4πit)−N/2e
i|x|2
4t ,

where we set i−N/2 = e−
iNπ

8 .

The proof relies on the following lemma.

Lemma 1.4.46. Let z ∈ C verify Rez > 0. If ρ ∈ S(RN ) is defined by

ρ̂(ξ) = e−4π2z|ξ|2 , for ξ ∈ RN ,

then

ρ(x) = (4πz)−N/2e−
|x|2
4z , for x ∈ RN ,

where we set z−N/2 = |z|−N/2e−
iNθ
2 , if z = |z|eiθ with −π/2 < θ < π/2.

Proof. Let

ϕ(θ) =
∫

RN

exp(−πeiθ|ξ|2) dξ, for − π/2 < θ < π/2.

Integration over RN of identity ∇ ·
(
exp(−πeiθ|ξ|2)ξ

)
= exp(−πeiθ|ξ|2)[N − 2πeiθ|ξ|2] shows that ϕ solves

the differential equation ϕ′(θ) = −Ni
2
ϕ(θ); and so, ϕ(θ) = e−

iNθ
2 ϕ(0). Since it is well known that ϕ(0) = 1,

we find ϕ(θ) = e−
iNθ
2 . Therefore, if we set z = |z|eiθ with −π/2 < θ < π/2, then∫

RN

e−4π2z|ξ|2 dξ = (4π|z|)−N/2ϕ(θ) = (4πz)−N/2. (1.4.18)
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Next, note that

ρ(x) =
∫

RN

e2πix·ξe−4π2z|ξ|2 dξ.

Integrating over RN identity

∇ · (e2πix·ξe−4π2z|ξ|2x) = 4πiz
(
|x|2

2z
+ 2πix · ξ

)
e2πix·ξe−4π2z|ξ|2 ,

where the divergence is with respect to ξ, it follows that

x · ∇ρ(x) = −|x|
2

2z
ρ(x).

Therefore, if we fix x ∈ RN and if we set

f(s) = ρ(sx), for s ≥ 0,

then f solves the ordinary differential equation f ′(s) = −|x|
2

2z
sf(s); and so,

ρ(x) = f(1) = e−
|x|2
4z f(0) = e−

|x|2
4z

∫
RN

e−4π2z|ξ|2 dξ.

The result now follows from (1.4.18).

Proof of Lemma 1.4.45. It is clear that the function t 7→ û(t) is continuous R → S(RN ); and so,

u ∈ C(R;S(RN )). Consider t 6= 0. Given ε > 0, define uε by

ûε(t)(ξ) = ϕ̂(ξ)e−4π2(i+ε)t|ξ|2 , for all ξ ∈ RN .

It is also clear that uε ∈ C(R;S(RN )). It follows from the dominated convergence theorem that ûε(t)

converges to û(t) in L2(RN ), as ε ↓ 0; and so, uε(t) converges to u(t) in L2(RN ) as ε ↓ 0. In particular,

there exists a sequence εn ↓ 0 such that uεn(t) converges to u(t) almost everywhere in RN , as n → ∞.

Furthermore,

uε(t) = F−1
(
ϕ̂(·)e−4π2(i+ε)t|·|2

)
= ϕ ? F−1

(
e−4π2(i+ε)t|·|2

)
;

and so, by Lemma 1.4.46, uε(t) = Kε(t) ? ϕ, where Kε(t) = (4π(i + ε))−N/2e−
|x|2

4(i+ε) . Therefore, by the

dominated convergence theorem, uε(t) converges pointwise to St ? ϕ, as ε ↓ 0. Hence the result.

Corollary 1.4.47. If ϕ ∈ S(RN ) and if u(t) = T (t)ϕ for all t ∈ R, then

u(t) = St ? ϕ, for all t 6= 0,

with St as in Lemma 1.4.45.

Proof. Set v(t) = û(t), for all t ∈ R. We have v ∈ C(R;L2(RN )). Furthermore, since iut + 4u = 0, it

follows that

ivt(t, ξ)− 4π2v(t, ξ) = 0.
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Integration of the above differential equation in t for every ξ ∈ RN yields

û(t, ξ) = v(t, ξ) = e−4π2it|ξ|2 ϕ̃. (1.4.19)

The result now follows from Lemma 1.4.45.

Remark 1.4.48. It follows immediately from formula (1.4.19) that for every ϕ ∈ S(RN ), we have T (·)ϕ ∈

C(R,S(RN )). By duality, T (t) can be extended to S ′(RN ), and T (·)ϕ ∈ C(R,S ′(RN )) for every ϕ ∈ S ′(RN ).

Furthermore, if ϕ ∈ Hs(RN ) for some s ∈ R, then u(t) = T (t)ϕ verifies u ∈
∞
∩

j=0
Cj(R,Hs−2j(RN )), as follows

immediately from formula (1.4.19) and the definition of the Sobolev spaces Hs(RN ) by the Fourier transform.

Corollary 1.4.49. For every t 6= 0, define the dilation operator Dt by Dtu(x) = (4πt)−N/2u
( x

4πt

)
and

the multiplier Mt by Mt(x) = ei
|x|2
4t . Then,

T (t)ϕ = i−N/2MtDt (F(Mtϕ)) ,

for all t 6= 0 and all ϕ ∈ L2(RN ).

Proof. By density, we need only establish the result for ϕ ∈ S(RN ). In this case, it follow from Corol-

lary 1.4.47 that

T (t)ϕ(x) = (4πit)−N/2

∫
RN

ei
|x−y|2

4t ϕ(y) dy

= i−N/2(4πt)−N/2ei
|x|2
4t

∫
RN

e−2πi( x
4πt )·yei

|y|2
4t ϕ(y) dy.

Hence the result.

The above formulation is the basic step for establishing the following fundamental estimate for Schrö-

dinger’s equation in RN :

Theorem 1.4.50. Let 2 ≤ p ≤ ∞. If ϕ ∈ L2(RN ) ∩ Lp′(RN ) and u(t) = T (t)ϕ, then u ∈ C(R \

{0}, Lp(RN )). Moreover,

‖u(t)‖Lp ≤ (4π|t|)−N( 1
2−

1
p )‖ϕ‖Lp′ , (1.4.20)

for all t 6= 0.

Proof. It follows from Corollary 1.4.49 that

‖u(t)‖Lp = ‖Dt(FMtϕ)‖Lp .

An easy calculation shows that ‖Dtu‖Lp = (4πt)−N( 1
2−

1
p )‖u‖Lp ; and so,

‖u(t)‖Lp = (4πt)−N( 1
2−

1
p )‖FMtϕ‖Lp .

Therefore,

‖u(t)‖Lp ≤ (4πt)−N( 1
2−

1
p )‖Mtϕ‖Lp′ = (4πt)−N( 1

2−
1
p )‖ϕ‖Lp′ ,
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which proves estimate (1.4.20). To prove continuity, consider (ϕn)n∈N ∈ S(RN ) such that ϕn → ϕ in

L2(RN ) ∩ Lp′(RN ) as n → ∞. We have T (·)ϕn ∈ C(R;S(RN )); and so, T (·)ϕn ∈ C(R;Lp(RN )). Fur-

thermore, it follows from (1.4.20) applied to ϕn − ϕ that T (·)ϕn − u(·) converges to 0 in C((−∞,−ε] ∪

[ε,∞);Lp(RN )) for every ε > 0. Hence the result.

Lemma 1.4.51. Consider 1 ≤ p, q ≤ ∞. If F ∈ L(Lp(RN ), Lq(RN )), then 2 ≤ q ≤ ∞ and p = q′.

Proof. Given z ∈ C such that Rez > 0, let ρz(x) = (4πz)−N/2e−
|x|2
4z . It follows from Lemma 1.4.46 that

ρ̂z(ξ) = e−4π2z|ξ|2 . Therefore, if z = a + ib with a > 0, then |ρz(x)| =
(
4π(a2 + b2)1/2

)−N/2

e
− a|x|2

4(a2+b2) and

|ρ̂z(ξ)| = e−4π2a|ξ|2 . An easy calculation shows that

‖ρ̂z‖Lq

‖ρz‖Lp

= (q−1/qp1/p)N/2(4πa)−
N
2 ( 1

p + 1
q−1)

(
a2

a2 + b2

)N
2 ( 1

2−
1
p )
. (1.4.21)

Note that if (i) holds, then the right-hand side of (1.4.21) must remain bounded independently of a > 0 and

b ∈ R. First fix a > 0 and make b→∞. If
1
2
− 1
p
> 0, then the right-hand side of (1.4.21) goes to ∞, which

is a contradiction. Therefore, p ≤ 2. Take now b = 0. If
1
p

+
1
q
6= 1, then the right-hand side of (1.4.21) goes

to ∞ as a ↑ ∞ or as a ↓ 0. Therefore, p = q′, which completes the proof.

Remark 1.4.52. It follows from Theorem 1.4.50 that for every t 6= 0, one can extend by continuity T (t)

to an operator of L(Lp′(RN ), Lp(RN )) for every 2 ≤ p ≤ ∞. It follows easily from Proposition 1.4.47 and

Lemma 1.4.51 that if p, q are such that T (t) ∈ L(Lq(RN ), Lp(RN )) for some t 6= 0, then one must have

2 ≤ p ≤ ∞ and q = p′. This is a major difference between Schrödinger’s equation and the heat equation

(c.f. Theorem 1.4.15). Furthermore, note that estimate (1.4.20) does not hold in a bounded domain (if

p > 2). Indeed, if T (t) ∈ L(Lp′(Ω), Lp(Ω)) with |Ω| < ∞, then in particular T (t) ∈ L(Lp′(Ω), L2(Ω)). It

follows that I = T (−t)T (t) ∈ L(Lp′(Ω), L2(Ω)), which is absurd.

The following result, which is known as Strichartz estimate (see Strichartz [93]), is a consequence of

estimate (1.4.20). The proof, which makes use of estimates for the nonhomogeneous problem, is given in

Section 1.6 below. (We do not give the original proof of [93], but we follow the much simpler proof of Ginibre

and Velo [56].) Before stating the estimate, we make the following definition.

Definition 1.4.53. We say that a pair (q, r) of real numbers is admissible if the following holds:

(i) 2 ≤ r <
2N
N − 2

(2 ≤ r ≤ ∞ if N = 1, 2 ≤ r ≤ ∞ if N = 2);

(ii)
2
q

= N

(
1
2
− 1
r

)
(and so, 2 ≤ q ≤ ∞).

In particular, the pair (∞, 2) is always admissible.

Theorem 1.4.54. For every ϕ ∈ L2(Rn) and for every admissible pair (q, r), the function t 7→ T (t)ϕ

belongs to Lq(R, Lr(RN )) ∩ C(R, L2(RN )). Furthermore, there exists a constant C, depending only on q

such that

‖T (·)ϕ‖Lq(R,Lr) ≤ C‖ϕ‖L2 ,
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for every ϕ ∈ L2(RN ).

Remark 1.4.55. Theorem 1.4.54 describes a quite remarkable smoothing effect. Indeed, for all t ∈ R,

T (t)L2 = L2. In particular, given t 6= 0 and p ∈ (2,
2N
N − 2

), there exists a dense subset Ep of L2 such that

T (t)ϕ 6∈ Lp, for every ϕ ∈ Ep. However, it follows from Theorem 1.4.54 that for every ϕ ∈ L2, T (t)ϕ ∈ Lp,

for almost all t ∈ R. Note that by the preceding observation, the restriction “for almost all t ∈ R” cannot

be reduced to “for all t 6= 0” in general. Note also that by considering a sequence (pn)n≥0 ⊂ [2,
2n
n− 2

) such

that pn →
2N
N − 2

as n→∞, it follows that given ϕ ∈ L2, there exists a set Nϕ ⊂ R of measure 0 such that

for every t ∈ R \Nϕ, one has T (t)ϕ ∈ Lp for every p ∈ [2,
2N
N − 2

) (p ∈ [2,∞], if N = 1).

Remark 1.4.56. We do not know if the estimate of Theorem 1.4.54 holds in the limiting case r =
2N
N − 2

,

q = 2. However, a similar estimate holds with the space and time integration reversed. More precisely, we

have (∫
RN

(∫ +∞

−∞
|u(t, x)|2 dt

) N
N−2

dx

)N−2
2N

≤ C‖ϕ‖L2 ,

for every ϕ ∈ L2(RN ), that is ‖u‖
L

2N
N−2 (RN ,L2(R))

≤ C‖ϕ‖L2 (see Ruiz and Vega [90]).

Corollary 1.4.57. Let ϕ ∈ H1(RN ) and let r ∈ (2,
2N
N − 2

) (r ∈ (2,∞), if N = 2, r ∈ (2,∞], if N = 1).

Then, ‖T (t)ϕ‖Lr → 0, as t→ ±∞.

Proof. Let q be such that (q, r) is an admissible pair (see Definition 1.4.5). It follows from Gagliardo-

Nirenberg’s inequality (see Theorem A.3.44 and Remark A.3.45) that there exists C such that for every

t, s ∈ R,

‖u(t)− u(s)‖Lr ≤ C‖u(t)− u(s)‖
2
q

H1‖u(t)− u(s)‖
q−2

q

L2 .

Since ϕ ∈ H1(RN ), it follows from Theorem 1.4.39 that u(t) is bounded in H1(RN ); and so,

‖u(t)− u(s)‖Lr ≤ C‖u(t)− u(s)‖
q−2

q

L2 .

Furthermore, ut = i4u is bounded in H−1(RN ); and so, there exists C such that (see Lemma A.3.60)

‖u(t)− u(s)‖L2 ≤ C|t− s|1/2.

Therefore,

‖u(t)− u(s)‖Lr ≤ C|t− s|
q−2
2q .

In particular, u : R → Lr(RN ) is uniformly continuous. The result now follows from the property u ∈

Lq(R, Lr(RN )) (Theorem 1.4.54), since q <∞.

We now study a different smoothing effect. One verifies easily with the formula of Corollary 1.4.47 that

for every ϕ ∈ L2(RN ) with compact support, the function (t, x) 7→ T (t)ϕ(x) is analytic in (0,+∞)×RN . In

other words, T (t) being essentially the Fourier transform (see Corollary 1.4.49), maps functions having a nice
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decay as |x| → ∞ to smooth functions. We now establish precise estimates describing this smoothing effect,

which will enable us to prove similar results in the nonlinear case. Let us first introduce some notation. For

j ∈ {1, · · · , N}, let Pj be the partial differential operator on RN+1 defined by

Pju(t, x) = (xj + 2it∂j)u(t, x) = xju(t, x) +
∂ju

∂xj
(t, x). (1.4.22)

For a multi-index α, we define the partial differential operator Pα on RN+1 by

Pα =
N∏

i=1

Pαi
i .

Furthermore, for x ∈ RN , we set

xα =
N∏

i=1

xαi
i .

Consider a smooth function u : RN+1 → C. A direct calculation shows that

Pju(t, x) = 2itei
|x|2
4t

∂

∂xj

(
e−i

|x|2
4t u

)
,

from which it follows by an obvious iteration argument that

Pαu(t, x) = (2it)|α|ei
|x|2
4t Dα

(
e−i

|x|2
4t u

)
. (1.4.23)

We have the following result.

Theorem 1.4.58. Let α be a multi-index. Let ϕ ∈ L2(RN ) be such that xαϕ ∈ L2(RN ), and let u(t) =

T (t)ϕ ∈ C(R, L2(RN )). The following properties hold:

(i) T (t)xαϕ = Pαu(t), and in particular Pαu ∈ C(R, L2(RN )) and ‖Pαu(t)‖L2 = ‖xαϕ‖L2 for all t ∈ R.

(ii) Dα

(
e−i

|x|2
4t u(t)

)
∈ C(R \ {0}, L2(RN )) and

(2|t|)|α|‖Dα

(
e−i

|x|2
4t u(t)

)
‖L2 = ‖xαϕ‖L2 .

for every t 6= 0.

Proof. By density, we need only establish the result for ϕ ∈ S(RN ), in which case both u and Pαu

belong to C(R,S(RN )) (see Remark 1.4.48). A direct calcularion shows that [Pα, i∂t +4] = 0, where [·, ·]

is the commutator bracket. Therefore, Pαu is also a solution of Schrödinger’s equation; and so, Pαu(t) =

T (t)Pαu(0) for all t ∈ R. (i) follows, since Pαu(0) = xαϕ. Property (ii) follows from property (i) and

identity (1.4.23).

Remark 1.4.59. Property (i) of Theorem 1.4.58 means that T (t)xα = PαT (t).

Corollary 1.4.60. Let ϕ ∈ L2(RN ), and assume that for some nonnegative integerm, we have (1+|x|m)ϕ ∈

L2(RN ). Then, e−i
|x|2
4t u(t) ∈ C(R \ {0},Hm(RN )), and if k is the integer part of m/2, we have

u ∈
⋂

0≤j≤k

Cj(R \ {0},Hm−2j
loc (RN )).
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In particular, if (1 + |x|m)ϕ ∈ L2(RN ) for every nonnegative integer m, then u ∈ C∞(R \ {0} × RN ).

Proof. The Hm-regularity of e−i
|x|2
4t u(t) follows from Theorem 1.4.58. Since ei

|x|2
4t ∈ C∞(R \ {0} ×Rn),

it follows that u ∈ C(R \ {0},Hm
loc(R

n)). The regularity of the time derivatives follows from the equation.

Corollary 1.4.61. Let ϕ ∈ L2(RN ) be such that | · |ϕ(·) ∈ L2(RN ), and let u(t) = T (t)ϕ. The following

properties hold:

(i) The function t 7→ (x+ 2it∇)u(t, x) belong to Lq(R, Lr(RN )) for every admissible pair (q, r);

(ii) for every r ∈ [2,
2N
N − 2

) (r ∈ [2,∞), if N = 2, r ∈ [2,∞], if N = 1), we have u ∈ C(R/{0}, Lr(RN ))

and there exists C, depending only on r and N such that

‖u(t)‖Lr ≤ C|t|−N( 1
2−

1
r )(‖ϕ‖L2 + ‖xϕ‖L2),

for every t 6= 0.

Proof. It follows from identity (1.4.22) and Remark 1.4.59 that

(x+ 2it∇)u(t, x) = T (t)ψ,

where ψ(x) = xϕ(x); and so, property (i) follows from Theorem 1.4.54. Consider now the function v(t, x) =

e−i
|x|2
4t u(t, x). It follows from Theorem 1.4.58 that ∇v ∈ C(R/{0}, L2(RN )) and that

‖∇v(t)‖L2 ≤ C|t|−1‖xϕ‖L2 .

The result now follows from Gagliardo-Nirenberg’s inequality, since |u(t, x)| ≡ |v(t, x)|.

Finally, we describe a third kind of smoothing effect, of Sobolev type. It says that for every ϕ ∈ L2(RN ),

T (t)ϕ belongs to H
1/2
loc (RN ) for almost all t ∈ R. It was discovered simultaneously by Constantin and

Saut [30], Sjölin [92] and Vega [95]. See also Ben Artzi and Devinatz [11], Ben Artzi and Klainerman [12],

Kato and Yajima [67] for further developments, as well as Kenig, Ponce and Vega [70] for a related smoothing

effect. A typical result in this direction is the following (see Ben Artzi and Klainerman [12] for a rather

simple proof).

Theorem 1.4.62. There exists a constant C such that for every ϕ ∈ L2(RN ), u(t) = T (t)ϕ verifies∫ +∞

−∞

∫
RN

1
(1 + |x|2)

|Pu(t, x)|2 dx dt ≤ C‖ϕ‖2L2 ,

where P = (I −4)1/4 is the pseudo-differential operator defined by P̂ u(ξ) = (1 + 4π2|ξ|2)1/4û(ξ).

1.4.5. The wave equation. Throughout this section, Ω is an arbitrary open subset of RN . For some

of the results, we will make further assumptions on Ω which we will specify. We will apply the results of

Section 1.3 to the examples of Section 1.2.4, in order to solve the initial value problem for the wave equation
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utt − 4u = 0 or the Klein-Gordon equation utt − 4u + m2u = 0. Consider H = H1
0 (Ω) × L2(Ω) with its

natural scalar product, and define the operator A on H by{
D(A) = {(u, v) ∈ H,4u ∈ L2(Ω) and v ∈ H1

0 (Ω)},

A(u, v) = (−v,−4u+ u), for all (u, v) ∈ D(A).

It follows from Proposition 1.2.40 that A is skew-adjoint. Therefore, −A is the generator of a group of

isometries (T (t))t∈R. Furthermore, it follows from Corollary 1.2.42 that, with the notation of Theorem 1.1.31,

H−1 = L2(Ω)×H−1(Ω) with equivalent norms, and A(−1) is the operator B defined by{
D(B) = H1

0 (Ω)× L2(Ω),

B(u, v) = (−v,−4u+ u), for all (u, v) ∈ D(B).

Therefore, (T (t))t∈R can be extended to a group of isometries on L2(Ω)×H−1(Ω), which we still denote by

(T (t))t∈R. We have the following result.

Theorem 1.4.63. Let (T (t))t∈R be as above. Given (ϕ,ψ) ∈ H1
0 (Ω)×L2(Ω), set T (t)(ϕ,ψ) = (u(t), v(t)).

The following properties hold:

(i) u ∈ C(R,H1
0 (Ω)) ∩ C1(R, L2(Ω)) ∩ C2(R,H−1(Ω)) and u is the unique solution of the problem{

utt −4u+ u = 0 for all t ∈ R,

u(0) = ϕ, ut(0) = ψ,
(1.4.24)

in that class. Furthermore, v = ut and∫
Ω

{ut(t, x)2 + |∇u(t, x)|2 + u(t, x)2} dx =
∫

Ω

{ψ(x)2 + |∇ϕ(x)|2 + ϕ(x)2} dx, (1.4.25)

for all t ∈ R;

(ii) if furthermore 4ϕ ∈ L2(Ω) and ψ ∈ H1
0 (Ω), then in addition 4u ∈ C(R, L2(Ω)) and u ∈ C1(R,H1

0 (Ω))∩

C2(R, L2(Ω)) and∫
Ω

{|∇ut(t, x)|2 +4u(t, x)2 + |∇u(t, x)|2} dx =
∫

Ω

{|∇ψ(x)|2 +4ϕ(x)2 + |∇ϕ(x)|2} dx, (1.4.26)

for all t ∈ R.

Proof. Since (ϕ,ψ) ∈ D(B), it follows that (u, v) ∈ C(R,H1
0 (Ω) × L2(Ω)) ∩ C1(R, L2(Ω) ×H−1(Ω)) and

that (u, v) is the unique solution in that class of the equation (ut, vt) +B(u, v) = 0 with the initial condition

(u, v)(0) = (ϕ,ψ). Therefore, (u, v) is the unique solution of the system
ut = v,

vt −4u+ u = 0,

u(0) = ϕ, v(0) = ψ.

The first part of property (i) follows. Since v = ut, the conservation law (1.4.25) follows from the property

‖(u, v)(t)‖H1
0×L2 = ‖(ϕ,ψ)‖H1

0×L2 ((T (t))t∈R is a group of isometries in H1
0 (Ω)×L2(Ω)). Under the assump-

tions of (ii), we have (ϕ,ψ) ∈ D(A); and so, (u, v) ∈ C(R, D(A)) ∩ C1(R,H), from which the first part of
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property (ii) follows. It remains to establish the conservation law (1.4.26). Note that T (t)A = AT (t) (see

Proposition 1.3.4). Therefore, ‖A(u, v)(t)‖H1
0×L2 = ‖A(ϕ,ψ)‖H1

0×L2 ; and so,∫
Ω

{|∇ut|2 + u2
t + |u−4u|2} dx =

∫
Ω

{|∇ψ|2 + ψ2 + |ϕ−4ϕ|2} dx.

It follows that∫
Ω

{|∇ut|2 + u2
t + u2 − 2u4u+4u2} dx =

∫
Ω

{|∇ψ|2 + ψ2 + ϕ2 − 2ϕ4ϕ+4ϕ2} dx.

The result now follows from the above identity, after integrating by part the terms −2u4u and −2ϕ4ϕ (see

identity (A.3.17)) and substracting identity (1.4.25).

Remark 1.4.64. One can obtain higher order regularity and higher order conservation laws by applying

Remark 1.2.45 and 1.1.30, and Corollary 1.3.18.

When Ω satisfies certain regularity assumptions, we have better regularity properties. Some of these

properties are described in the following result.

Theorem 1.4.65. Let (T (t))t∈R be as above. Given (ϕ,ψ) ∈ H1
0 (Ω)× L2(Ω), set (u(t), v(t)) = T (t)(ϕ,ψ)

for t ∈ R. The following properties hold:

(i) If Ω has a bounded boundary of class C2 and if ϕ ∈ H2(Ω) and ψ ∈ H1
0 (Ω), then u ∈ C(R,H2(Ω) ∩

H1
0 (Ω)) ∩ C1(R,H1

0 (Ω)) ∩ C2(R, L2(Ω));

(ii) if Ω is bounded with boundary of class C∞, and if ϕ,ψ ∈ C∞(Ω) satisfy the compatibility relations

u = 4u = · · ·4nu = · · · = 0 and v = 4v = · · ·4nv = · · · = 0 on ∂Ω, then u ∈ C∞(R× Ω).

Proof. Property (i) follows from Theorem 1.4.63 (ii) and Remark 1.2.41. If (ϕ,ψ) ∈ ∩
n≥0

D(An), then

it follows from Corollary 1.3.17 that (u, v) ∈ ∩
n≥0

C∞([0,∞), D(An)). Hence property (ii), by applying

Remark 1.2.45.

Remark 1.4.66. Note that the compatibility relations of property (ii) of Theorem 1.4.65 are necessary

conditions if u ∈ C∞([0,∞) × Ω). Indeed, we have u =
du

dt
= · · · =

dnu

dtn
= · · · = 0 on (0,∞) × ∂Ω. Since

d2nu

dt2n
= (4− I)nu and

d2n+1u

dt2n+1
=
d2nv

dt2n
= (4− I)nv, the compatibility relations follow.

We now extend the previous results. Let λ1 ≥ 0 be defined by (1.2.28), and let λ > −λ1. (Note that if

Ω is bounded (or bounded in one direction), then it follows from Poincaré’s inequality that λ1 > 0, so that

we can chose λ = 0.) Consider on H1
0 (Ω) the equivalent norm

‖|u‖| =
(∫

Ω

{|∇u|2 + λu2} dx
)1/2

.

We still consider H = H1
0 (Ω)×L2(Ω), but with the scalar product associated with the above norm on H1

0 (Ω),

and we define the operator A on H by{
D(A) = {(u, v) ∈ H,4u ∈ L2(Ω) and v ∈ H1

0 (Ω)},

A(u, v) = (−v,−4u+ λu), for all (u, v) ∈ D(A).
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It follows from Proposition 1.2.43 that A is skew-adjoint. Therefore, −A is the generator of a group of isome-

tries (T (t))t∈R. Furthermore, it follows from Proposition 1.2.43 that, with the notation of Theorem 1.1.31,

H−1 = L2(Ω)×H−1(Ω) with equivalent norms, and A(−1) is the operator B defined by

{
D(B) = H1

0 (Ω)× L2(Ω),

B(u, v) = (−v,−4u+ λu), for all (u, v) ∈ D(B).

Therefore, (T (t))t∈R can be extended to a group of isometries on L2(Ω)×H−1(Ω), which we still denote by

(T (t))t∈R. We have the following result.

Theorem 1.4.67. Let (T (t))t∈R be as above. Given (ϕ,ψ) ∈ H1
0 (Ω)×L2(Ω), set T (t)(ϕ,ψ) = (u(t), v(t)).

The following properties hold:

(i) u ∈ C(R,H1
0 (Ω)) ∩ C1(R, L2(Ω)) ∩ C2(R,H−1(Ω)) and u is the unique solution of the problem{

utt −4u+ λu = 0 for all t ∈ R,

u(0) = ϕ, ut(0) = ψ,
(1.4.27)

in that class. Furthermore, v = ut and∫
Ω

{ut(t, x)2 + |∇u(t, x)|2 + λu(t, x)2} dx =
∫

Ω

{ψ(x)2 + |∇ϕ(x)|2 + λϕ(x)2} dx,

for all t ∈ R;

(ii) if furthermore 4ϕ ∈ L2(Ω) and ψ ∈ H1
0 (Ω), then in addition 4u ∈ C(R, L2(Ω)) and u ∈ C1(R,H1

0 (Ω))∩

C2(R, L2(Ω)) and∫
Ω

{|∇ut(t, x)|2 +4u(t, x)2 + λ|∇u(t, x)|2} dx =
∫

Ω

{|∇ψ(x)|2 +4ϕ(x)2 + λ|∇ϕ(x)|2} dx,

for all t ∈ R.

(iii) If Ω has a bounded boundary of class C2 and if ϕ ∈ H2(Ω) and ψ ∈ H1
0 (Ω), then u ∈ C(R,H2(Ω) ∩

H1
0 (Ω)) ∩ C1(R,H1

0 (Ω)) ∩ C2(R, L2(Ω));

(iv) if Ω is bounded with boundary of class C∞, and if ϕ,ψ ∈ C∞(Ω) satisfy the compatibility relations

u = 4u = · · ·4nu = · · · = 0 and v = 4v = · · ·4nv = · · · = 0 on ∂Ω, then u ∈ C∞(R× Ω).

Proof. The proof is easily adaptated from the proofs of Theorems 1.4.63 and 1.4.65.

Remark 1.4.68. One can solve problem (1.4.27) for any value of the parameter λ, even for λ ≤ −λ1.

Indeed, (1.4.27) is equivalent to {
utt −4u+ u = (1− λ)u,

u(0) = ϕ, ut(0) = ψ.

This can be written in the form

Ut +AU = F (U),
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with U = (u, v) and A the operator associated with λ = 1. Here F (u, v) = (0, (1 − λ)u). Since F is linear,

it is in particular globally Lipschitz, and it follows from the results of Chapter 2 that this problem can be

solved. The mapping (ϕ,ψ) 7→ (u(t), ut(t)) defines a continuous group (T (t))t∈R, which is not of isometries

in general (see Section 1.7.1). With this notation, all the conclusions of Theorem 1.4.67 hold for any value

of λ. The conclusions of Theorem 1.4.70 and Corollary 1.4.72 below also hold for any value of λ (the proof

is the same).

Remark 1.4.69. One can obtain higher order regularity and higher order conservation laws by applying

Remark 1.2.45 and 1.1.30, and Corollary 1.3.18. Note also that the compatibility relations of property (ii)

of Theorem 1.4.65 are necessary conditions if u ∈ C∞([0,∞)× Ω). Indeed, we have u =
du

dt
= · · · = dnu

dtn
=

· · · = 0 on (0,∞) × ∂Ω. Since
d2nu

dt2n
= (4 − λI)nu and

d2n+1u

dt2n+1
=
d2nv

dt2n
= (4 − λI)nv, the compatibility

relations follow.

One of the most important features of the wave equation is the finite speed propagation phenomenon.

It says that if Ω contains the ball B(x0, T0), then the values of the solution in the cone {(t, x) ∈ [0, T0] ×

Ω; |x − x0| + t ≤ T0} are determined only by the initial values in the ball B(x0, T0). This phenomenon is

described in the following theorem.

Theorem 1.4.70. Let (T (t))t∈R be as in Theorem 1.4.67. Let T0 > 0 and x0 ∈ Ω, and assume that

B(x0, T0) := {|x − x0| < T0} ⊂ Ω. Let (ϕ,ψ) ∈ H1
0 (Ω) × L2(Ω) and let u be the corresponding solution

of (1.4.27). If ϕ and ψ vanish almost everywhere on B(x0, T0), then u vanishes almost everywhere on the

cone ∪
−T0<t<T0

B(x0, T0 − |t|) = {(t, x) ∈ (−T0, T0)× Ω; |x− x0| < T0 − |t|}.

Proof. Without loss of generality, we may assume that x0 = 0. Assume first that u ∈ C2([0, T0] × Ω), so

that the equation utt − 4u + λu = 0 holds everywhere in [0, T0] × Ω. Multiplying the equation by ut, we

obtain
∂

∂t

(
1
2
u2

t

)
−∇ · (ut∇u) +

∂

∂t

(
1
2
|∇u|2

)
+ λuut = 0,

which we rewrite in the form

1
2
∂

∂t
(u2

t + |∇u|2 + u2) = ∇ · (ut∇u) + (1− λ)uut.

Given 0 < t < T0, we integrate the above identity on B(0, T0 − t). It follows that

1
2

∫
B(0,T0−t)

∂

∂t
(u2

t + |∇u|2 + u2) = (T0 − t)N−1

∫
SN−1

ν · [ut∇u)((T0 − t)ξ)] dξ +
∫

B(0,T0−t)

(1− λ)uut,

where SN−1 is the unit sphere of RN and ν is the outward unit vector at SN−1. Given a smooth function

φ(t, x), note that

d

dt

∫
B(0,T0−t)

φ(t, x) dx =
d

dt

∫ T0−t

0

rN−1dr

∫
SN−1

φ(t, rξ) dξ

=
∫

B(0,T0−t)

∂φ

∂t
(t, x) dx− (T0 − t)N−1

∫
SN−1

φ(t, (T0 − t)ξ) dξ.
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Therefore,

1
2
d

dt

∫
B(0,T0−t)

(u2
t + |∇u|2 + u2) =

−1
2
(T0 − t)N−1

∫
SN−1

(u2
t + |∇u|2 + u2 − 2ut∇u · ν)(t, (T0 − t)ξ) dξ + (1− λ)

∫
B(0,T0−t)

uut.

Since |2ut∇u · ν| ≤ 2|ut∇u| ≤ u2
t + |∇u|2, it follows that

1
2
d

dt

∫
B(0,T0−t)

(u2
t + |∇u|2 + u2) ≤ (1− λ)

∫
B(0,T0−t)

uut ≤
|1− λ|

2

∫
B(0,T0−t)

(u2
t + u2).

Integrating the above differential inequality, we obtain∫
B(0,T0−t)

(u2
t + |∇u|2 + u2)(t, x) dx ≤ e|1−λ|t

∫
B(0,T0)

(u2
t + |∇u|2 + u2)(0, x) dx

= e|1−λ|t
∫

B(0,T0)

(ψ2 + |∇ϕ|2 + ϕ2)(x) dx,
(1.4.28)

for all t ∈ [0, T0]. Let now m ≥ 2 +
N

2
, so that Hm

loc(Ω) ⊂ C2(Ω). It follows from Remark 1.2.45 that

D(Am) ⊂ C2(Ω)2. Given (ϕ,ψ) ∈ H1
0 (Ω) × L2(Ω), it follows from Remarks 1.1.29 and 1.1.30 that there

exists a sequence (ϕn, ψn) ⊂ D(Am+2) such that (ϕn, ψn) → (ϕ,ψ) inH1
0 (Ω)×L2(Ω) as n→∞. On the other

hand, if we set (un, vn) = T (t)(ϕn, ψn), it follows from Corollary 1.3.18 that (un, vn) ∈ C2([0, T0], D(Am)),

so that un ∈ C2([0, T0]× Ω). Applying (1.4.28) to un and letting n→∞, it follows that inequality (1.4.28)

holds for every (ϕ,ψ) ∈ H1
0 (Ω) × L2(Ω) (note that un → u in C([0, T0],H1

0 (Ω)) ∩ C1([0, T0], L2(Ω))). The

result for t ≥ 0 follows, since the right-hand side of (1.4.28) vanishes when ϕ and ψ are as in the statement

of the theorem (with x0 = 0). Since the equation is time reversible (i.e. it is invariant under the change of

variable t 7→ −t), it follows that u(−t) is the solution of the problem (1.4.27) corresponding to the initial

values (ϕ,−ψ), and this proves the result for t ≤ 0.

Remark 1.4.71. Theorem 1.4.70 says that if (ϕ1, ψ1) and (ϕ2, ψ2) coincide almost everywhere in B(x0, T0),

then the corresponding solutions u1, u2 of problem (1.4.27) coincide almost everywhere in the cone {(t, x) ∈

(0, T0)×Ω; |x− x0|+ |t| < T0}. To see this, take (ϕ,ψ) = (ϕ2 −ϕ1, ψ2 −ψ1). In other words, it means that

u(t, x) depends only on the values of ϕ and ψ in the ball B(x, |t|), as long as B(x, |t|) ⊂ Ω. When N ≥ 3 is

odd, there is even a stronger property in the case λ = 0 (see Remark 1.4.68); namely, u(t, x) depends only

on the values of ϕ and ψ in the sphere S(x, |t|) = {(t, x); |x| = |t|}, as long as S(x, |t|) ⊂ Ω. This property

is called Huygens’ principle (see Courant and Hilbert [33]).

Corollary 1.4.72. Let x0 ∈ Ω, let R > 0 be such that B(x0, R) ⊂ Ω and set T = sup{r > 0; B(x0, R+r) ⊂

Ω}. Let (ϕ,ψ) ∈ H1
0 (Ω)×L2(Ω) and let u be the corresponding solution of (1.4.27). If ϕ and ψ are supported

in the ball B(x0, R), then u(t) is supported in the ball B(x0, R+ |t|) for all t ∈ (−T, T ).

Proof. We proceed in two steps. We first establish the result when Ω = RN , then in the general case.

Step 1. The case Ω = RN . We need to show that u(t) vanishes almost everywhere on the ball B(y, ρ) for

every y ∈ RN and ρ > 0 such that |x0−y| ≥ R+|t|+ρ. By assumption, we have B(y, ρ+|t|)∩B(x0, R) = ∅. It
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now follows from Theorem 1.4.70 that u(t) vanishes almost everywhere on the ball B(y, ρ+|t|−|t|) = B(y, ρ).

Hence the result.

Step 2. The general case. Let ϕ,ψ and u be as in the statement. Define ϕ̃, ψ̃ by

ϕ̃ =

{
ϕ on Ω,

0 on RN \ Ω,
and ψ̃ =

{
ψ on Ω,

0 on RN \ Ω,

It is clear that ϕ̃, ψ̃ ∈ L2(RN ), and it follows from Proposition A.3.25 that ϕ̃ ∈ H1(RN ). Let ũ(t)

be the solution of (1.4.27) with Ω = RN with the initial values (ϕ̃, ψ̃). It follows in particular that

ũ ∈ C(R,H1(RN )) ∩ C1(R, L2(RN )) ∩ C2(R,H−1(RN )). Finally, let w(t) = ũ(t)|Ω. It follows that w ∈

C(R,H1(Ω)) ∩ C1(R, L2(Ω)) ∩ C2(R,H−1(Ω)). Furthermore, it follows from Step 1 that w(t) is supported

in the ball B(x0, R+ |t|) for |t| < T . Therefore, by Proposition A.3.28, w ∈ C(R,H1
0 (Ω)). Finally, it is clear

that w solves the following problem. {
wtt −4w + λw = 0

w(0) = ϕ, wt(0) = ψ.

Therefore, w(t) = u(t) for |t| < T , by uniqueness. This completes the proof.

Remark 1.4.73. When Ω = RN , one can establish Lp−Lq estimates for the solutions of problem (1.4.27).

The proofs are based on sharp Fourier analysis, and are much more difficult than the proof of Theorem 1.4.50.

(i) A typical estimate is the following. Let ϕ = 0, ψ ∈ L2(RN ) and let u be the corresponding solution

of (1.4.27) with λ > 0. There exists a constant C independant of ϕ such that

‖u(t)‖
L

2(N+1)
N−1

≤ C|t|−
N−1
N+1 ‖ψ‖

L
2(N+1)

N+3
,

for all t ∈ R \ {0}. See Marshall, Strauss and Wainger [78] for a complete study of these properties.

(ii) One can obtain estimates of the solution of the wave equation (i.e. when λ = 0, see Remark 1.4.68) in

homogeneous Besov spaces. For example,

‖u(t)‖Ḃ−β
r,2

≤ C|t|−(N−1)( 1
2−

1
r )‖ϕ‖Ḃβ

r′,2
,

for all t 6= 0. Here, u is the solution of (1.4.27) with λ = 0 and ψ = 0, 2 ≤ r ≤ ∞ and β =
N + 1

2

(
1
2
− 1
r

)
. See Brenner [15] and Pecher [86] for these estimates. For the Klein-Gordon equation

(i.e. when λ > 0), similar estimates hold with the homoheneous Besov spaces Ḃβ
r,2 replaced by the Besov

spaces Bβ
r,2 (see Brenner [16]).

Remark 1.4.74. One can obtain for the wave equation in RN (i.e. (1.4.27) with λ = 0, see Remark 1.4.68)

estimates of the type described in Theorem 1.4.54. These estimates were discovered by Strichartz [93],

and are called Strichartz estimates. The simplest proof makes use of the estimates in the Besov spaces, as

described in Remark 1.4.73 (ii). A typical estimate is the following. Let 2 ≤ r ≤ ∞, 2 < q ≤ ∞ and ρ ∈ R

satisfy
1
q

= ρ− 1 +N

(
1
2
− 1
r

)
and ρ+

N + 1
2

(
1
2
− 1
r

)
≤ 1.
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For every (ϕ,ψ) ∈ H1(RN )×L2(RN ), the solution u of (1.4.27) with λ = 0 belongs to Lq(R, Ḃρ
r,2(RN ), and

there exists a constant C independant of (ϕ,ψ) such that

‖u‖Lq(R,Ḃρ
r,2)

≤ C(‖∇ϕ‖L2 + ‖ψ‖L2).

(Note that for the Klein-Gordon equation, i.e. when λ > 0, similar estimates hold with the homoheneous

Besov spaces Ḃρ
r,2 replaced by the Besov spaces Bρ

r,2, see Brenner [16].) By applying Sobolev’s inequalities for

the homogeneous Besov spaces, one obtains estimates for space-time integrals of u. For example, if N ≥ 3,

let
2N
N − 2

≤ r <
2N
N − 3

and let q be defined by
1
q

= N

(
1
2
− 1
r

)
− 1. By applying the above estimate

with ρ = 0 and since Ḃ0
r,2(RN ) ↪→ Lr(RN ) (see Bergh and Löfström [13] or the appendix of Ginibre and

Velo [56]), it follows that

‖u‖Lq(R,Lr) ≤ C(‖∇ϕ‖L2 + ‖ψ‖L2).

See Ginibre and Velo [57, Lemma 2.2] for these questions.

Remark 1.4.75. When Ω is bounded, one can express the solution of problem (1.4.27) in terms of the

decomposition of the initial values on the basis of L2(Ω) made of the eigenvectors of −4 in H1
0 (Ω). More

precisely, let (λn)n≥1 be the family of eigenvalues of −4 in H1
0 (Ω), let (ϕn)n≥1 be a Hilbert basis of

L2(Ω) made of eigenvectors (see Section A.4.5). Given (ϕ,ψ) ∈ H1
0 (Ω) × L2(Ω), set an = (ϕ,ϕn)L2 and

bn = (ψ,ϕn)L2 for all n ≥ 1, so that ϕ =
∞∑

n=1

anϕn and ψ =
∞∑

n=1

bnϕn, and let u be the corresponding

solution of (1.4.27). Then,

u(t) =
∞∑

n=1

(
an cos

(
t
√
λn + λ

)
+

bn√
λn + λ

sin
(
t
√
λn + λ

))
ϕn,

for all t ≥ 0. See the proof of Proposition 1.4.34.

Remark 1.4.76. We can apply Proposition 1.3.13 to show that if Ω and ϕ,ψ have some symmetry prop-

erties, then T (t)(ϕ,ψ) has the same properties (see Remark 1.4.36).

Remark 1.4.77. Note that the results of this section (and of the following section) hold true as well in

the corresponding spaces of complex-valued functions, as follows easily by considering Reu and Imu (see

Section A.4.6 and Remark 1.2.46).

1.4.6. Stokes’ equation. In this section, we will apply the results of Section 1.3 to the examples of

Section 1.2.5, in order to solve the initial value problem for the Stokes equation. We begin with the stokes

equation in RN . Let N ≥ 2, and consider the Hilbert space E =
(
L2(RN )

)N . Let

X = {u ∈ E; ∇ · u = 0}.

Here, the condition ∇·u = 0 is understood in the sense of distributions. X is a Hilbert space when endowed

with the scalar product of E (see Section 1.2.5). We consider the Stokes operator A defined byD(A) = {u ∈
(
H2(RN )

)N ∩X; 4u ∈ X};

Au = −4u, for u ∈ D(A).
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It follows from Theorem 1.2.47 that A is self-adjoint. Therefore, −A is the generator of a semigroup of

contractions in X which we denote (T (t))t≥0. We have the following result.

Theorem 1.4.78. Let Φ ∈ X and set u(t) = T (t)Φ. Then u ∈ C([0,∞), X) ∩ C1((0,∞), X), 4u ∈

C((0,∞), X), and u is the unique solution of problem{
ut −4u = 0, for all t ≥ 0,

u(0) = Φ,

in that class. Moreover, 4mu ∈ C∞((0,∞), X) for every nonnegative integer m, and in particular u ∈

C∞((0,∞)× RN )N .

Proof. The result follows from Corollary 1.3.35, except for the last property u ∈ C∞((0,∞) × RN )N ,

which follows easily from Sobolev’s embedding theorem.

Remark 1.4.79. Note that all the components ui of u solve the heat equation in RN ; and so, we may

apply all the results of Section 1.4.2. In particular, (T (t))t≥0 verifies the conclusions of Proposition 1.4.14

with the spaces Lp(RN ) replaced by (L2(RN ))N .

We now study the Stokes equation in a domain. Let Ω ⊂ RN be a bounded domain with boundary of

class C2. Let E =
(
L2(Ω)

)N , and let F = {u ∈ (D(Ω))N ; ∇ · u = 0}. Let X be the closure of F in E. X is

also a Hilbert space with the scalar product of E. Let P : E → X be the orthogonal projection on X. We

consider the Stokes operator A defined byD(A) =
(
H2(Ω) ∩H1

0 (Ω)
)N ∩X;

Au = −P (4u), for u ∈ D(A).

It follows from Theorem 1.2.49 that A is self-adjoint. Therefore, −A is the generator of a semigroup of

contractions in X which we denote (T (t))t≥0. We have the following result.

Theorem 1.4.80. Let Φ ∈ X and set u(t) = T (t)Φ. Then u ∈ C([0,∞), X) ∩ C1((0,∞), X), 4u ∈

C((0,∞), X), and u is the unique solution of problem{
ut − P (4u) = 0, for all t ≥ 0,

u(0) = Φ,
(1.4.29)

in that class.

Proof. The result follows from Corollary 1.3.35.

Remark 1.4.81. Note that u ∈ C([0,∞), X)∩C1((0,∞), X)∩C((0,∞), D(A)) solves problem (1.4.29) if

and only if there exists p ∈ C((0,∞),H1(Ω)) such that{
ut −4u +∇p = 0, for all t ≥ 0,

u(0) = Φ,
(1.4.30)
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Indeed, if u solves (1.4.29), given t > 0 let p ∈ Y ↪→ H1(Ω) (see Remark 1.2.50) be such that −4u +∇p =

−ut ∈ X. It follows from Remark 1.2.50 that the mapping ut 7→ p is continuous X → H1(Ω), so that

p ∈ C((0,∞),H1(Ω)) and u solves (1.4.30). The converse statement follows by applying the projection P

to (1.4.30), since ∇p ∈ X⊥ (see Section 1.2.5).

Remark 1.4.82. The semigroup (T (t))t≥0 verifies the same Lp − Lq estimate as the heat semigroup.

Namely,

‖T (t)ϕ‖Lq ≤ Ct−
N
2 ( 1

p−
1
q )‖ϕ‖Lp ,

for all t > 0 and for all 1 ≤ p ≤ q ≤ ∞ (see Coulhon and Lamberton [32]). The Stokes operator in Lp (see

Remark 1.2.51) generates a bounded analytic semigroup (see Giga [51]). It seems that one does not know

whether or not this semigroup is of contractions.

1.4.7. Airy’s equation. In this section, we will apply the results of Section 1.3 to the examples of

Section 1.2.6, in order to solve the initial value problem for the Airy equation ut +uxxx = 0. Let X = L2(R),

and define the operator A on X by
D(A) = H3(R);

Au = −uxxx = −d
3u

dx3
, for u ∈ D(A).

It follows from Theorem 1.2.52 that A is skew-adjoint; and so −A is the generator of a group of isometries

(T (t))t∈R on X. We have the following result.

Theorem 1.4.83. Let (T (t))t∈R be as above. Given ϕ ∈ L2(R), set u(t) = T (t)ϕ for all t ∈ R. The

following properties hold:

(i) u ∈ C(R, L2(R)) ∩ u ∈ C1(R,H−3(R)), and u is the unique solution of the problem{
ut + uxxx = 0, for all t ∈ R,

u(0) = ϕ,
(1.4.31)

in that class. Moreover, ‖u(t)‖L2 = ‖ϕ‖L2 for all t ∈ R;

(ii) If ϕ ∈ Hm(R) for some integer m ≥ 0 and if p is the integer part of m/3, then

u ∈ ∩
0≤j≤p

Cj(R,Hm−3p(R)),

and equation (1.4.31) holds in Hm−3(R). Moreover,
∥∥∥ ∂j

∂xj
u(t)

∥∥∥
L2

=
∥∥∥djϕ

dxj

∥∥∥
L2

for all t ∈ R and all

0 ≤ j ≤ p.

Proof. The result follows from Theorem 1.2.52 and Remarks 1.2.53 and 1.2.54.

Remark 1.4.84. One can show that T (t)ϕ = St ? ϕ for all t 6= 0, where the kernel St is given by

St(x) =
1

(3t)1/3
Ai

(
x

(3t)1/3

)
.
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Here, Ai is the classical Airy function. It follows in particular from the above formula that ‖T (t)ϕ‖Lr ≤

C|t|−
1
3 (1− 2

r )‖ϕ‖Lr′ , for all 2 ≤ r ≤ ∞. (See Kato [63], Ginibre and Tsutsumi [55].) By applying this inequal-

ity, one obtains easily Strichatrz type estimates (the proof is an adaptation of the proof of Theorem 1.4.54).

Namely,

‖T (·)ϕ‖Lq(R,Lr(R)) ≤ C‖ϕ‖L2 ,

for all 2 ≤ r ≤ ∞ and all 6 ≤ q ≤ ∞ such that
2
q

=
1
3

(
1− 2

r

)
.

Remark 1.4.85. Airy’s equation has another remarkable smooting effect. For every ϕ ∈ L2(R), T (t)ϕ

belongs to H1
loc(R) for almost all t ∈ R. More precisely, setting u(t) = T (t)ϕ, we have the estimate

sup
x∈R

(∫ +∞

−∞

∂u

∂x
(t, x)2dt

)1/2

≤ C‖ϕ‖L2 .

It follows in particular that ‖u‖L2(R,H1(−R,R)) ≤ C‖ϕ‖L2 for all 0 < R < ∞. (See Kato [63], Kenig, Ponce

and Vega [70].)

Finally, we describe a third smoothing effect for the Airy equation.

Theorem 1.4.86. Let (T (t))t∈R be as above. Given ϕ ∈ L2(R), set u(t) = T (t)ϕ for all t ∈ R. If there

exists b > 0 such that ebxϕ(x) ∈ L2(R), then ebxu(t) ∈ C∞((0,∞),Hm(R)) for all nonnegative integers m.

In particular, u ∈ C∞((0,∞)× R).

Proof. Let (S(t))t≥0 be the semigroup of the heat equation in Ω = R, let (R(t))t∈R be the group of

translations defined by R(t)w(x) = w(x − t), and set v(t) = etb3S(bt)R(b2t)T (t)ψ with ψ(x) = ebxϕ(x) ∈

L2(R). Since both (R(t))t≥0 and (T (t))t≥0 are semigroup of contractions in L2(R), it follows easily from

the smoothing effect of the heat equation that v(t) ∈ C∞((0,∞),Hm(R)) for all nonnegative integers m.

Moreover, we have

‖v(t)‖Hm ≤ Cetb3(b|t|)−m
2 ‖ψ‖L2 . (1.4.32)

On the other hand, a direct calculation shows that vt + vxxx − bvxx + b2vx − b3v = 0. Therefore, if we set

z(t, x) = e−bxv(t, x), then zt + zxxx = 0. In addition, z(0) = ϕ in D′(R). Assume that ϕ ∈ S(R). One

verifies (using the Fourier transform) that T (·)ψ ∈ C(R,S(R)), which implies easily that v ∈ C(R,S(R)).

We deduce in particular that z ∈ C(R, L2(R)); and so, z(t) ≡ u(t). It follows that ebxu(t) ≡ v(t), and we

deduce from (1.4.32) that

‖ebxu(t)‖Hm ≤ Cetb3(b|t|)−m
2 ‖ebxϕ‖L2 .

The general case (1 + ebx)ϕ ∈ L2(R) follows from the above inequality and an obvious density argument.

1.5. Nonhomogeneous equations. Throughout this section, X is a Banach space, endowed with the

norm ‖·‖, and A is an m-accretive operator in X, with dense domain. We denote by (T (t))t≥0 the semigroup

of contractions generated by −A (cf. Section 1.3).
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Given T > 0, x ∈ X and f ∈ C([0, T ], X), we want to solve the following problem:
u ∈ C([0, T ], D(A)) ∩ C1([0, T ], X);
du

dt
+Au = f, for all t ∈ [0, T ];

u(0) = x.

(1.5.1)

We begin with the following result (the variation of the parameter formula), which is fundamental.

Theorem 1.5.1. (Duhamel’s principle) Let T > 0, x ∈ D(A) and f ∈ C([0, T ], X). If u is a solution of

problem (1.5.1), then

u(t) = T (t)x+
∫ t

0

T (t− s)f(s) ds, (1.5.2)

for every t ∈ [0, T ].

Proof. Note first that the mapping s 7→ T (t − s)f(s) is continuous [0, t] → X; and so, formula (1.5.2)

makes sense. Consider now t ∈ (0, T ], and set w(s) = T (t − s)u(s) for 0 ≤ s ≤ t. Given s ≤ s + h ≤ t, we

have
w(s+ h)− w(s)

h
= T (t− s− h)

{
u(s+ h)− u(s)

h
− T (h)− I

h
u(s)

}
.

It follows from Definition 1.3.6 that

w(s+ h)− w(s)
h

−→
h↓0

T (t− s)(u′(s) +Au(s)) = T (t− s)f(s).

Since T (t − ·)f(·) ∈ C([0, t], X), it follows that w ∈ C1([0, t], X) (see Theorem A.1.16) and that w′(s) =

T (t− s)f(s). Integration over [0, t] yields (1.5.2) for t ∈ (0, T ]. On the other hand, it is clear that (1.5.2) is

verified for t = 0. Hence the result.

Corollary 1.5.2. Let T > 0, x ∈ D(A) and f ∈ C([0, T ], X). Then, problem (1.5.1) has at most one

solution, given by formula (1.5.2).

Given T > 0, x ∈ X and f ∈ C([0, T ], X), it is clear that formula (1.5.2) defines a function u ∈

C([0, T ], X). We will now establish sufficient conditions on x and f so that u is the solution of (1.5.1). Note

that it is necessary that x ∈ D(A). However, this is not sufficient. Indeed, if (T (t))t≥0 is the restriction of a

group of isometries (U(t))t∈R, take x = 0 ∈ D(A), y ∈ X, and set f(t) = T (t)y. It follows that the solution

of (1.5.2) is u(t) = tT (t)y. Therefore, if y 6∈ D(A), it follows from Remark 1.3.29 that u 6∈ C([0, T ], D(A)).

In particular, u does not solve (1.5.1).

Lemma 1.5.3. Let T > 0, x ∈ X and f ∈ L1((0, T ), X). Then, formula (1.5.2) defines a function

u ∈ C([0, T ], X). In addition,

‖u‖C([0,T ],X) ≤ ‖x‖+ ‖f‖L1((0,T ),X),

for all x ∈ X and f ∈ L1((0, T ), X).

Proof. The result is immediate if f ∈ C([0, T ], X). The general case follows from an obvious density

argument (cf. Remark A.2.18 (i)).
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Proposition 1.5.4. Let T > 0, f ∈ C1([0, T ];X) and set

v(t) =
∫ t

0

T (t− s)f(s) ds, for 0 ≤ t ≤ T. (1.5.3)

Then, the following properties hold:

(i) v ∈ C1([0, T ], X);

(ii) v′(t) = f(0) +
∫ t

0

T (t− s)f ′(s) ds, for all t ∈ [0, T ];

(iii) v ∈ C([0, T ], D(A));

(iv) v′(t) +Av(t) = f(t), for all t ∈ [0, T ].

Proof. Note that

v(t) =
∫ t

0

T (s)f(t− s) ds, for 0 ≤ t ≤ T.

Properties (i) and (ii) follow easily. Let now 0 ≤ t < T , and 0 < h ≤ T − t. Applying (1.5.3), we obtain

v(t+ h)− v(t)
h

=
T (h)− I

h
v(t) +

1
h

∫ t+h

t

T (t+ h− s)f(s) ds. (1.5.4)

Letting h ↓ 0 and using the fact that v ∈ C1([0, T ], X), it follows that v(t) ∈ D(A) and that v′(t) =

−Av(t) + f(t). Since f − v′ ∈ C([0, T ], X) and G(A) is closed, it follows that v(T ) ∈ D(A) and that

Av(T ) = f(T )− v′(T ). Hence (iii) and (iv).

Proposition 1.5.5. Let T > 0, f ∈ C([0, T ];D(A)) and let v be defined by (1.5.3). Then, the following

properties hold:

(i) v ∈ C([0, T ], D(A));

(ii) Av(t)(t) =
∫ t

0

T (t− s)Af(s) ds, for all t ∈ [0, T ];

(iii) v ∈ C1([0, T ], X);

(iv) v′(t) +Av(t) = f(t), for all t ∈ [0, T ].

Proof. (i) and (ii) follow from Corollary 1.1.12 (iii), Remarks A.2.18 (vii) and A.2.15 (iii), and Proposi-

tion 1.3.4 (iii). Letting h ↓ 0 in formula (1.5.4) and using the fact that v ∈ C([0, T ], D(A)), (iii) and (iv)

follow easily (cf. the proof of Proposition 1.5.4.

Corollary 1.5.6. Let T > 0, x ∈ D(A), f ∈ C([0, T ];X) and let u be defined by formula (1.5.2). If either

f ∈ C1([0, T ], X) or f ∈ C([0, T ];D(A)), then, the following properties hold:

(i) u solves problem (1.5.1);

(ii) if f ∈ C1([0, T ], X), then u′(t) = −T (t)Ax+ f(0) +
∫ t

0

T (t− s)f ′(s) ds, for all t ∈ [0, T ];

(iii) if f ∈ C([0, T ], D(A)), then Au(t) = T (t)Ax+
∫ t

0

T (t− s)Af(s) ds, for all t ∈ [0, T ].
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Proof. Note that u(t) = T (t)x + v(t), where v(t) is defined by (1.5.3). Therefore, the result follows from

Propositions 1.3.4, 1.5.4 and 1.5.5.

Theorem 1.5.7. Let T > 0, x ∈ D(A), f ∈ C([0, T ], X) and let u be defined by formula (1.5.2). If one of

the following properties hold:

(i) f ∈ L1((0, T ), D(A));

(ii) f ∈W 1,1((0, T ), X);

then u is the solution of problem (1.5.1).

Proof. Assume first that (i) holds. Let (fn)n≥0 ⊂ C1([0, T ], D(A)) converge to f in L1((0, T ), D(A)),

and let (un)n≥0 be the corresponding solutions of (1.5.2). It follows from Lemma 1.5.3 that un −→
n→∞

u in

C([0, T ], X). Furthermore, it follows from Lemma 1.5.3 and Corollary 1.5.6 (iii) that (un)n≥0 is a Cauchy

sequence in C([0, T ], D(A)). Therefore, u ∈ C([0, T ], D(A)), and un −→
n→∞

u in C([0, T ], D(A)). On the other

hand, since un solves (1.5.1), u′n is a Cauchy sequence in C([0, T ], X); and so, u′n −→
n→∞

u′ in C([0, T ], X)

(cf. Corollary A.2.39). It follows that u solves problem (1.5.1).

If (ii) holds, let (fn)n≥0 ⊂ C1([0, T ], X) converge to f in W 1,1((0, T ), X), and let (un)n≥0 be the

corresponding solutions of (1.5.2). Applying Lemma 1.5.3, we find un −→
n→∞

u in C([0, T ], X). On the other

hand, it follows from Lemma 1.5.3 and Corollary 1.5.6 (ii) that (un)n≥0 is a Cauchy sequence in C1([0, T ], X).

Therefore, u ∈ C1([0, T ], X), and un −→
n→∞

in C1([0, T ], X). On the other hand, since un solves (1.5.1), Aun

is a Cauchy sequence in C([0, T ], X). By closedness of G(A), it follows easily that u ∈ C([0, T ], D(A)), and

that un −→
n→∞

in C([0, T ], D(A)). It follows that u solves problem (1.5.1). This completes the proof.

Corollary 1.5.8. Let T > 0 and x ∈ D(A). Consider a Lipschitz continuous function f : [0, T ] → X, and

let u be defined by formula (1.5.2). If X is reflexive, then u is the solution of problem (1.5.1).

Proof. The result follows from Theorem 1.5.7 and Corollary A.2.38.

Remark 1.5.9. Note that it is essential that X be reflexive in Corollary 1.5.8, as shows the following

example. Let X = L1(R), let A be the operator defined in Remark 1.4.2 (i) and let (T (t))t∈R be the group

if isometries generated by −A. Let f(t) = T (t)1(0,1), for all t ∈ R. It follows from Remark 1.4.2 (i) that

f(t) = 1(t,t+1). In particular, ‖f(t) − f(s)‖ ≤ 2|t − s|, for all t, s; and so, f is Lipschitz continuous. The

function u defined by (1.5.2) with x = 0 is

u(t) =
∫ t

0

T (t)1(0,1) ds = tT (t)1(0,1) = t1(t,t+1).

Note that D(A) = W 1,1(R) ⊂ C(R). Therefore, u(t) 6∈ D(A), if t 6= 0. In particular, u does not solve (1.5.1).

Corollary 1.5.10. Let T > 0, x ∈ X, f ∈ C([0, T ], X) and let u ∈ C([0, T ], X) be defined by (1.5.2).

Consider the space X−1 and the operator A(−1) defined by Theorem 1.1.31. Then, u is the unique solution
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of the following problem: 
u ∈ C([0, T ], X) ∩ C1([0, T ], X−1);
du

dt
+A(−1)u = f, for all t ∈ [0, T ];

u(0) = x.

(1.5.5)

Proof. Apply Theorem 1.5.7 to the operator A(−1). Uniqueness follows from Corollary 1.5.2, applied to

the operator A(−1).

Remark 1.5.11. Theorem 1.5.7 means that, given x ∈ D(A) and f ∈ C([0, T ], X), problems (1.5.1)

and (1.5.2) are equivalent under the extra assumption f ∈W 1,1((0, T ), X)+L1((0, T ), D(A)). It can also be

useful to have equivalence of problems (1.5.1) and (1.5.2) under extra assumptions on u instead of f . This

is the object of the following result.

Proposition 1.5.12. Let T > 0, x ∈ X, f ∈ C([0, T ], X) and let u ∈ C([0, T ], X) be defined by (1.5.2). If

one of the following assumptions holds:

(i) u ∈ C([0, T ], D(A));

(ii) u ∈ C1([0, T ], X);

then u solves problem (1.5.1).

Proof. Let v(t) be given by (1.53). Since u(t) = v(t) + T (t)x, we deduce from (1.54) that

u(t+ h)− u(t)
h

=
T (h)− I

h
u(t) +

1
h

∫ t+h

t

T (t+ h− s)f(s) ds.

Then we argue as in the proofs of Propositions 1.54 and 1.55.

Until now we have always assumed that f is continuous. However, note that formula (1.5.2) makes

sense if we assume only f ∈ L1((0, T ), X) (cf. Lemma 1.5.3). We have similar results in this case, which we

describe below.

Lemma 1.5.13. Let T > 0, x ∈ X and f ∈ L1((0, T ), X). If u solves the following problem:
u ∈ L1((0, T ), D(A)) ∩W 1,1((0, T ), X);
du

dt
+Au = f, for almost all t ∈ (0, T );

u(0) = x;

(1.5.6)

then u is given by (1.5.2) for all t ∈ [0, T ].

Proof. Note first that u ∈ W 1,1((0, T ), X) ↪→ C([0, T ], X); and so, condition u(0) = x makes sense. Also,

it follows from Lemma 1.5.3 that (1.5.2) makes sense. Given t ∈ (0, T ], set w(s) = T (t−s)u(s) for 0 ≤ s ≤ t.

Given 0 ≤ s ≤ t− h, we have

w(s+ h)− w(s)
h

= T (t− s− h){u(s+ h)− u(s)
h

− T (h)− I

h
u(s)}. (1.5.7)
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Since

T (t− s− h)
T (h)− I

h
u(s)−→

h→0
−T (t− s)Au(s) ∈ L1((0, t), X),

and

‖T (t− s− h)
T (h)− I

h
u(s)‖ ≤ ‖Au(s)‖ ∈ L1(0, T ),

for almost all s (see Proposition 1.3.4), it follows from the dominated convergence theorem that

T (t− · − h)
T (h)− I

h
u−→

h→0
−T (t− ·)Au,

in L1((ε, t− ε), X) for every ε > 0. On the other hand, it follows easily from Corollary A.2.36 that also

T (t− · − h)
u(·+ h)− u(·)

h
−→
h→0

T (t− ·)u′(·),

in L1((ε, t− ε), X). Therefore,

w(·+ h)− w(·)
h

−→
h→0

T (t− ·)(u′ +Au) = T (t− ·)f,

in L1((ε, t − ε), X) for every ε > 0. It follows easily that w ∈ W 1,1((ε, t − ε), X) and that w′ = T (t − ·)f .

Since T (t− ·)f ∈ L1((0, t), X), it follows that w ∈ W 1,1((0, t), X) and that w′ = T (t− ·)f . Integrating the

last identity between 0 and t, we obtain (1.5.2).

Corollary 1.5.14. Let T > 0, x ∈ X and f ∈ L1((0, T ), X). Then, problem (1.5.6) has at most one

solution, given by formula (1.5.2).

Lemma 1.5.15. Let T > 0, x ∈ D(A), f ∈ L1((0, T ), D(A)), and let u be defined by (1.5.2). Then,

u ∈ C([0, T ], D(A)) and u solves (1.5.6).

Proof. It follows from Lemma 1.5.3, applied in the space D(A), that u ∈ C([0, T ], D(A)). Consider

(fn)n∈N ⊂ C([0, T ], D(A)) such that fn −→
n→∞

f , in L1((0, T ), D(A)), and let un be given by (1.5.2) relative

to fn. It follows from Lemma 1.5.3 (applied in the space D(A)) that un −→
n→∞

u in C([0, T ], D(A)). On the

other hand, it follows from Theorem 1.5.7 that un solves (1.5.1). Therefore,

u′n = −Aun + fn −→
n→∞

−Au+ f,

in L1((0, T ), X). It follows from Remark A.2.29 that u ∈W 1,1((0, T ), X) and that u solves (1.5.6).

Corollary 1.5.16. Let T > 0, x ∈ X, f ∈ L1((0, T ), X), u ∈ C([0, T ], X), and consider the space X−1 and

the operator A(−1) defined by Theorem 1.1.31. Then, u solves the following problem:
u ∈ C([0, T ], X) ∩W 1,1((0, T ), X−1);
du

dt
+A(−1)u = f, for almost all t ∈ (0, T );

u(0) = x;

(1.5.8)

if, and only if u is given by (1.5.2).
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Proof. The result follows from Lemmas 1.5.13 and 1.5.15 applied in the space X−1.

Corollary 1.5.17. Let T > 0, x ∈ X, f ∈ L1((0, T ), X) and let u ∈ C([0, T ], X) be defined by (1.5.2). If

one of the following assumptions holds:

(i) u ∈ L1((0, T ), D(A));

(ii) u ∈W 1,1((0, T ), X);

then u solves problem (1.5.6).

Proof. Assume first that (i) holds. Then, it follows from Corollary 1.5.16 that

du

dt
= −A(−1)u+ f = −Au+ f ∈ L1((0, T ), X);

and so, u ∈ W 1,1((0, T ), X) and u solves (1.5.1). Assume now that (ii) holds. Then, it follows from

Corollary 1.5.16 that A(−1)u ∈ L1((0, T ), X). Applying Corollary 1.1.34, we find u ∈ L1((0, T ), D(A)). This

completes the proof.

Corollary 1.5.18. Let T > 0, x ∈ X, f ∈ L1((0, T ), X) and let u ∈ C([0, T ], X) be defined by (1.5.2). For

every 0 ≤ s < T , we have

u(t+ s) = T (t)u(s) +
∫ t

0

T (t− σ)f(s+ σ) dσ, (1.5.9)

for all t ∈ [0, T − s]. Equivalently,

u(t) = T (t− s)u(s) +
∫ t

s

T (t− σ)f(σ) dσ, (1.5.10)

for all t ∈ [s, T ].

Proof. It is clear that (1.5.9) and (1.5.10) are equivalent. Let v(t) be equal to the right-hand side of (1.5.9).

It follows from Corollary 1.5.16 that v is the unique solution of
v ∈ C([0, T − s], X) ∩W 1,1((0, T − s), X−1);
dv

dt
+A(−1)v = f, for almost all t ∈ (0, T − s);

v(0) = u(s).

On the other hand, it it follows from Corollary 1.5.16 that u(s+ ·) also solves the above problem. Hence the

result.

Remark. Evidently, one could prove easily formula (1.5.9) by using only (1.5.2). However, our proof of

Corollary 1.5.16 explains quite clearly why (1.5.9) holds.

Remark 1.5.19. Assume that the operator −A is the generator of a group of isometries (T (t))t∈R. Then

all the results of this section hold if one replaces the interval [0, T ] by the interval [−S, T ] with S ≥ 0. In

particular, formulas (1.5.2) and (1.5.6) hold for −S ≤ t ≤ T .
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1.6. Specific properties of various nonhomogeneous partial differential equations. We know

that the nonhomogeneous problem ut + Au = f can be solved, under appropriate assumptions on A and f

(see Section 1.5). We now investigate specific estimates of u, ut and Au in various examples.

1.6.1. The heat equation. Throughout this section, Ω is an arbitrary open subset of RN . Consider the

operator A defined on L2(Ω) by {
D(A) = {u ∈ H1

0 (Ω); 4u ∈ L2(Ω)},

Au = −4u, for all u ∈ D(A).

It follows from the results of Section 1.4.2 that −A is the generator of a semigroup of contractions on L2(Ω),

which we denote by (T (t))t≥0. Moreover, (T (t))t≥0 is analytic and verifies the estimate ‖T (t)ϕ‖Lp ≤ ‖ϕ‖Lp

for all 1 ≤ p ≤ ∞ (in fact, (T (t))t≥0 is a semigroup of contractions in Lp(Ω) for 1 ≤ p <∞). Therefore, for

every T < 0, 1 ≤ p <∞ and for every f ∈ L1((0, T ), Lp(Ω)) the function

u(t) =
∫ t

0

T (t− s)f(s) ds, (1.6.1)

belongs to C([0, T ], Lp(Ω)) and is the weak solution of the problem
ut −4u = f,

u|∂Ω = 0,

u(0) = 0.

We have the following result.

Theorem 1.6.1. Let T > 0, 1 < p, q < ∞ and f ∈ Lq((0, T ), Lp(Ω)). If u is defined by (1.6.1), then

u ∈W 1,q((0, T ), Lp(Ω)) and 4u ∈ Lq((0, T ), Lp(Ω)). Moreover, there exists a constant C such that

‖ut‖Lq((0,T ),Lp) + ‖4u‖Lq((0,T ),Lp) ≤ C‖f‖Lq((0,T ),Lp),

for all f ∈ Lq((0, T ), Lp(Ω)).

Proof. The result is an immediate consequence of the following abstract theorem.

Theorem 1.6.2. Let Ω be an open subset of RN and let (T (t))t≥0 be a semigroup of contractions on L2(Ω)

and let −A be its generator. Assume further that

(i) (T (t))t≥0 is an analytic semigroup;

(ii) for all 1 ≤ p ≤ ∞, ‖T (t)ϕ‖Lp ≤ ‖ϕ‖Lp for all t ≥ 0 and all ϕ ∈ L2(Ω) ∩ Lp(Ω).

Let 1 < p, q <∞ and T > 0. For every f ∈ Lq((0, T ), Lp(Ω)), the function

u(t) =
∫ t

0

T (t− s)f(s) ds

is well defined, u ∈ C([0, T ], Lp(Ω)). Moreover u ∈ W 1,q((0, T ), Lp(Ω), Au ∈ Lq((0, T ), Lp(Ω) and there

exists a constant C such that

‖ut‖Lq((0,T ),Lp) + ‖Au‖Lq((0,T ),Lp) ≤ C‖f‖Lq((0,T ),Lp),
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for every f ∈ Lq((0, T ), Lp(Ω)).

Proof. See Coulhon and Lamberton [31] and Lamberton [74].

Remark 1.6.3. The type of regularity property described in the above theorem is called “maximal regu-

larity”, since it implies that all the members of the equation ut +Au = f have the same regularity.

1.6.2. The heat equation with a potential. Here we consider the equation
ut −4u− a(t, x)u = f(t, x),

u|∂Ω = 0,

u(0) = u0,

(1.6.2)

under various assumptions on the potential a. We write equation (1.6.2) in the form

u(t) = T (t)u0 +
∫ t

0

T (t− s)(a(s)u(s) + f(s)) ds, (1.6.3)

For simplicity, we assume throughout this section that |Ω| <∞.

If a(t, x) ∈ L∞((0, T ), L∞(Ω)) many results concerning the heat equation extend to this case. In

particular, the smoothing effect Lp(Ω)−Lq(Ω) (Theorem 1.4.15) can be obtained by a very simple comparison

argument. Indeed, the solution u of (1.6.3) with f = 0 satisfies |u| ≤ eKtv, where v(t) = T (t)|u0| and

K = ‖a‖L∞((0,T )×Ω).

However, one can do better. A natural assumption is that a ∈ L∞((0, T ), Lσ(Ω)) with σ ≥ 1, σ >
N

2
.

Indeed, there are two reasons why this assumption is natural:

First reason. Assume for simplicity N ≥ 3. If one multiplies the equation (1.6.2) by u, one is lead to

estimate ∫ T

0

∫
Ω

au2.

This can be done using the following device: for all ε > 0, there exists C(ε) such that∫ T

0

∫
Ω

au2 ≤ ε

∫ T

0

∫
Ω

|∇u|2 + C(ε)
∫ T

0

∫
Ω

u2.

Indeed, by Hölder, we have ∫
Ω

au2 ≤ ‖a‖Lσ‖u‖2
L

2
σ′
≤ ‖a‖Lσ‖u‖α

L
2N

N−2
‖u‖1−α

L2 ,

with 0 < α < 1, since 2 < 2σ′ <
2N
N − 2

. The desired conclusion follows from Young’s and Sobolev’s

inequalities. Finally, we choose ε = 1/2 and we obtain the estimates

‖u(t)‖L2 ≤ eCt‖u0‖L2 ,∫ T

0

∫
Ω

|∇u|2 ≤ eCt‖u0‖2L2 .

Similarly, if one multiplies by powers of u one can establish Lp − Lq estimates as in the proof of Proposi-

tion 1.7.3.
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Second reason. The assumption that a ∈ L∞((0, T ), Lσ(Ω)) with σ ≥ 1, σ >
N

2
is also natural from

the point of view of the integral equation (1.6.3). Indeed, note that the operator

u 7→ Ψ(u)(t) =
∫ t

0

T (t− s)a(s)u(s) ds

is a bounded linear operator C([0, T ], Lq(Ω)) → C([0, T ], Lq(Ω)), for every q ≥ σ′. This follows from the fact

that

‖T (t− s)a(s)u(s)‖Lq ≤ (t− s)−
N
2σ ‖a(s)‖Lσ‖u(s)‖Lq ,

and σ > N/2.

The same reasonning applies if instead a ∈ L1((0, T ), L∞(Ω)), or more generally, a ∈ L1((0, T ), L∞(Ω))+

L∞((0, T ), Lσ(Ω)). This space contains all the spaces of the form Lβ((0, T ), Lγ(Ω)) with γ > N/2, γ ≥ 1

and
1
β

+
N

2γ
< 1 (since σ can be arbitrarily chosen, σ > N/2).

Note that the above argument breaks down when σ takes the critical value N/2. However, we will be

able to conclude in some “critical cases” when a ∈ Lβ((0, T ), Lγ(Ω)) with
1
β

+
N

2γ
= 1 and γ > N/2, γ ≥ 1.

Here, the key ingredient is to use the singular convolution estimates of Marcinkiewicz. Such an a belongs to

L1((0, T ), L∞(Ω)) + L∞((0, T ), L
N
2 (Ω)) but we cannot replace

N

2
by some σ >

N

2
.

We first give a result of the form ‖u(t)‖L∞ ≤ A‖u0‖L∞ + B‖f‖L∞((0,T ),Lσ). It will be useful for later

purpose to have an explicit dependence for A and B in terms of a and t.

Theorem 1.6.4. Let 0 < T <∞, let σ >
N

2
, σ ≥ 1, and let a, f ∈ L∞((0, T ), Lσ(Ω)). Given u0 ∈ L∞(Ω),

there exists a unique solution u ∈ L∞((0, T ), L∞(Ω)) of (1.6.3) on (0, T ), and it satisfies

‖u(t)‖L∞ ≤ 2eCt‖a‖α
L∞((0,t),Lσ)

(
‖u0‖L∞ + t1−

N
2σ ‖f‖L∞((0,t),Lσ)

)
, (1.6.4)

for all t ∈ (0, T ), with α =
2σ

2σ −N
.

Moreover, uniqueness holds in the class L∞((0, T ), Lσ′(Ω)).

Proof. We first show that (1.6.3) has at most one solution in L∞((0, T ), Lσ′(Ω)). (Note that au ∈

L∞((0, T ), L1(Ω)), so that the equation (1.6.3) makes sense in L1(Ω).) Indeed, if u and v are two solu-

tions, we have

‖u(t)− v(t)‖Lσ′ ≤ C

∫ t

0

(t− s)−
N
2 (1− 1

σ′ )‖a(u− v)‖L1 ds

≤ C

∫ t

0

(t− s)−
N
2σ ‖a‖Lσ‖u− v‖Lσ′ ds

≤ C‖a‖L∞((0,T ),Lσ)

∫ t

0

(t− s)−
N
2σ ‖u− v‖Lσ′ ds,

and it follows from Proposition A.5.7 that u = v.

We now prove that the equation (1.6.3) has a solution in L∞((0, T ), L∞(Ω)). We apply the contraction

mapping principle to the map Φ : L∞((0, T ), L∞(Ω)) → L∞((0, T ), L∞(Ω)) defined by

Φ(u)(t) = T (t)u0 +
∫ t

0

T (t− s)(a(s)u(s) + f(s)) ds, (1.6.5)
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for t ∈ (0, T ). Note that

‖Φ(u)(t)− Φ(v)(t)‖L∞ ≤ C

∫ t

0

(t− s)−
N
2σ ‖a(s)‖Lσ‖u(s)− v(s)‖L∞ ds

≤ CT 1− N
2σ ‖a‖L∞((0,T ),Lσ)‖u− v‖L∞((0,T ),L∞).

Hence, Φ is a strict contraction for example if

C‖a‖L∞((0,T ),Lσ)T
1− N

2σ ≤ 1
2
.

Therefore, Φ has a fixed point, which is a solution of (1.6.3). In this case, the conclusion of the theorem

follows with ‖u(t)‖L∞ ≤ 2(‖u0‖L∞ + CT 1− N
2σ ‖f‖L∞((0,T ),Lσ)). The general case follows by a standard

iteration argument.

Remark 1.6.5. Let 0 < T < ∞, let σ >
N

2
and let β ≥ 1 be such that

1
β
< 1 − N

2σ
. Let a, f ∈

Lβ((0, T ), Lσ(Ω)) and let u0 ∈ L∞(Ω). Then, there exists a unique solution u ∈ L∞((0, T ), L∞(Ω)) of (1.6.3)

on (0, T ), and it satisfies

‖u(t)‖L∞ ≤ 2e
Ct‖a‖µ

Lβ((0,t),Lσ)

(
‖u0‖L∞ + Ct1−

N
2σ−

1
β ‖f‖Lβ((0,t),Lσ)

)
,

for all t ∈ (0, T ), with
1
µ

= 1− N

2σ
− 1
β

. Moreover, uniqueness holds in the class L∞((0, T ), Lσ′(Ω)). This is

proved by the same argument as in Theorem 1.6.4.

The next result concerns the same equation (1.6.3) except that we now consider the case T = ∞, and

we are interested in obtaining a bound for ‖u‖L∞((0,∞),L∞). Note that (1.6.4) does not give any uniform

bound as t→∞.

Theorem 1.6.6. Let σ >
N

2
, σ ≥ 1, and let a, f ∈ L∞((0,∞), Lσ(Ω)). Let u0 ∈ L∞(Ω) and u ∈

L∞loc([0,∞), Lσ′(Ω)) verify (1.6.3) for all t > 0. If u ∈ L∞((0,∞), L1(Ω)), then u ∈ L∞((0,∞), L∞(Ω)) and

‖u‖L∞((0,∞),L∞) ≤ 4‖u0‖L∞ + C
(
‖u‖L∞((0,∞),L1) + ‖f‖L∞((0,∞),Lσ)

)
,

where C is independent of u.

Proof. It follows from (1.6.4) that

‖u‖L∞((0,T1),L∞) ≤ 4
(
‖u0‖L∞ + ‖f‖L∞((0,∞),Lσ)

)
,

for T1 > 0 small enough. Next, we have

u(t+ s) = T (t)u(s) +
∫ t

0

T (t− τ)(a(s+ τ)u(s+ τ) + f(s+ τ)) dτ.

Let 1 ≤ q ≤ r ≤ ∞ be such that
1
q

=
1
r

+
1
σ

. It follows from Theorem 1.4.15 that

‖u(t+ s)‖Lr ≤ Ct−
N
2σ ‖u(s)‖Lq + C

∫ t

0

(t− τ)−
N
2σ ‖a(s+ τ)‖Lσ‖u(s+ τ)‖Lr dτ

+C
∫ t

0

(t− τ)−
N
2σ ‖f(s+ τ)‖Lq dτ.
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Note that q ≤ σ, so that∫ t

0

(t− τ)−
N
2σ ‖f(s+ τ)‖Lq dτ ≤ Ct1−

N
2σ ‖f‖L∞((0,∞),Lσ) ≤ Ct−

N
2σ ‖f‖L∞((0,∞),Lσ),

for t ≤ 1. From the generalized Gronwall inequality (Proposition A.5.7), we deduce that there exists C such

that

‖u(t+ s)‖Lr ≤ Ct−
N
2σ (‖u(s)‖Lq + ‖f‖L∞((0,∞),Lσ)),

for all s ≥ 0 and t ∈ (0, 1].

In particular, for any ε > 0, there exists C such that for every τ ≥ 0,

‖u‖L∞(τ+ε,∞),Lr) ≤ C
(
‖u‖L∞((τ,∞),Lq) + ‖f‖L∞((0,∞),Lσ)

)
. (1.6.6)

Finally, let m = [σ]. Starting from ‖u‖L∞((0,∞),L1) and iterating m times the estimate (1.6.6), we find

‖u‖
L∞(( mT1

m+1 ,∞),Lγ) ≤ C
(
‖u‖L∞((0,∞),L1) + ‖f‖L∞((0,∞),Lσ)

)
,

with 1− 1
γ

=
m

σ
. In particular, γ ≥ σ. Applying finally (1.6.6) with q = σ and r = ∞, we deduce

‖u‖L∞(T1,∞),L∞) ≤ C
(
‖u‖L∞((0,∞),L1) + ‖f‖L∞((0,∞),Lσ)

)
.

This completes the proof.

We now return to the same equation (1.6.3) but on a finite interval [0, T ], and we assume that u0 ∈ Lq(Ω),

for some q <∞. We study the smoothing effect.

Theorem 1.6.7. Let 0 < T <∞, let σ >
N

2
, σ ≥ 1, and let a, f ∈ L∞((0, T ), Lσ(Ω)). Given u0 ∈ Lq(Ω),

1 ≤ q < ∞, there exists a unique solution u ∈ C([0, T ], Lq(Ω)) ∩ L∞loc((0, T ), L∞(Ω)) of equation (1.6.2).

Moreover, there is a constant C depending only on N,σ, q, |Ω| such that u satisfies

‖u(t)‖L∞ ≤ CeCt‖a‖α
L∞((0,t),Lσ)

(
(t−

N
2q + 1)‖u0‖Lq + t1−

N
2σ ‖f‖L∞((0,t),Lσ)

)
, (1.6.7)

for all t ∈ (0, T ], with α =
(

1− N

2σ

)−1

.

Uniqueness also holds in the class L∞((0, T ), Lq(Ω)) provided q ≥ σ′ (without having to assume u ∈

L∞loc((0, T ), L∞(Ω))).

Proof. By a solution u ∈ C([0, T ], Lq(Ω)) ∩ L∞loc((0, T ), L∞(Ω)) of equation (1.6.2), we mean that
u(t) = T (t− ε)u(ε) +

∫ t

ε

T (t− s)(a(s)u(s) + f(s)) ds for 0 < ε ≤ t ≤ T,

u(t)−→
t↓0

u0 in Lq(Ω).
(1.6.8)

Note that (1.6.8) makes sense for u ∈ C([0, T ], Lq(Ω)) ∩ L∞loc((0, T ), L∞(Ω)). Furthermore, if q ≥ σ′ and

u ∈ L∞((0, T ), Lq(Ω)), then au ∈ L∞((0, T ), L1(Ω)), so that the equation (1.6.3) makes sense in L1(Ω) and

is equivalent to (1.6.8). We now proceed in six steps.
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Step 1. Uniqueness in the class L∞((0, T ), Lσ′(Ω)). The argument is the same as in the proof of Theo-

rem 1.6.4.

Step 2. We show that for every q ≥ 1, there exists a constant C depending only on N, q, σ, |Ω| such that

if u0 ∈ L∞(Ω) and if

CT
1− N

2σ
1 ‖a‖L∞((0,T1),Lσ) ≤ 1,

then the solution u ∈ L∞((0, T ), L∞(Ω)) of (1.6.3) verifies

t
N
2σ ‖u(t)‖L∞ ≤ C(‖u0‖Lq + t‖f‖L∞((0,t),Lσ)), (1.6.9)

for all t ∈ (0, T1).

Indeed, consider 1 ≤ θ ≤ σ, and let ρ ∈ [θ,∞] be such that
1
θ

=
1
ρ

+
1
σ

. We have

‖u(t)‖Lρ ≤ t−
N
2σ ‖u0‖Lθ +

∫ t

0

(t− s)−
N
2σ ‖a(s)‖Lσ‖u(s)‖Lρ ds+

∫ t

0

(t− s)−
N
2σ ‖f(s)‖Lθ ds;

and so,

‖u(t)‖Lρ ≤ t−
N
2σ ‖u0‖Lθ

+t1−
N
σ

(∫ 1

0

(1− τ)−
N
2σ τ−

N
2σ dτ

)
‖a‖L∞((0,t)Lσ) ess sup

0<s<t
t

N
2σ ‖u(s)‖Lρ + t1−

N
2σ |Ω|

1
ρ ‖f‖L∞((0,t)Lσ).

Therefore, if

T
1− N

2σ
1 ‖a‖L∞((0,T1),Lσ)

(∫ 1

0

(1− τ)−
N
2σ τ−

N
2σ dτ

)
≤ 1

2
,

then

t
N
2σ ‖u(t)‖Lρ ≤ 2‖u0‖Lθ + 2t|Ω|

1
ρ ‖f‖L∞((0,t),Lσ), (1.6.10)

for all t ∈ (0, T1). A similar argument in the case θ ≥ σ, ρ = ∞ shows that if

T
1− N

2σ
1 ‖a‖L∞((0,T1),Lσ)

(∫ 1

0

(1− τ)−
N
2σ τ−

N
2θ dτ

)
≤ 1

2
,

then

t
N
2θ ‖u(t)‖L∞ ≤ 2‖u0‖Lθ + 2t‖f‖L∞((0,t),Lσ), (1.6.11)

for all t ∈ (0, T1). If q ≥ σ, then (1.6.9) follows from (1.6.11). If q < σ, then let m = [σ/q]. Applying m

times the estimate (1.6.10) to u0, u(t/m),. . . , respectively, we find

t
Nm
2σ ‖u(t)‖Lγ ≤ C(‖u0‖Lq + t‖f‖L∞((0,t),Lσ)),

with
1
q
− 1
γ

=
m

σ
. Now γ ≥ σ, and we conclude by applying (1.6.11).

Step 3. If u0 ∈ L∞(Ω), then for every 1 ≤ q ≤ ∞ the estimate (1.6.7) holds. This is obtained by

combining Step 2 and (1.6.4).

Step 4. There exists C such that for every q ∈ [1,∞] and every u0, v0 ∈ L∞(Ω), the corresponding solutions

u and v of (1.6.3) verify

‖u(t)− v(t)‖Lq ≤ 2eCt‖a‖α
L∞((0,t),Lσ)‖u0 − v0‖Lq ,
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for all t ∈ (0, T ), with α =
2σ

2σ −N
.

This is equivalent to the estimate

‖u(t)‖Lq ≤ 2eCt‖a‖α
L∞((0,t),Lσ)‖u0‖Lq , (1.6.12)

for the solution u of (1.6.3) with f = 0. We recall that, by Theorem 1.6.4, we have

‖u(t)‖L∞ ≤ 2eCt‖a‖α
L∞((0,t),Lσ)‖u0‖L∞ . (1.6.13)

We now prove, by a duality argument, that

‖u(t)‖L1 ≤ 2eCt‖a‖α
L∞((0,t),Lσ)‖u0‖L1 . (1.6.14)

Indeed, fix t0 ∈ (0, T ], let ψ ∈ D(Ω), and let w be the solution of

w(t) = T (t)ψ +
∫ t

0

T (t− s)(b(s)w(s))) ds,

for t ∈ (0, t0), where b(t) = a(t0 − t). Setting v(t) = w(t0 − t) for 0 ≤ t ≤ t0, it follows that v solves the

equation 
− vt −4v = av,

v|∂Ω = 0,

v(t0) = ψ.

Now if u is the solution of (1.6.3) with f ≡ 0 and the initial value u0, we have[∫
Ω

uv

]t0

0

=
∫ t0

0

∫
Ω

(uvt + utv) =
∫ t0

0

∫
Ω

(u(−4v − av) + v(4u+ au))

=
∫ t0

0

∫
Ω

(−u4v + v4u) =
∫ t0

0

∫
Ω

(∇u · ∇v −∇v · ∇u) = 0.

(These calculations are valid provided u0 and a are sufficiently smooth, and then the result is obtained for

general u0 ∈ L∞(Ω) and a ∈ L∞((0, T ), Lσ(Ω)) by a density argument.) Therefore,∫
Ω

u(t0)ψ =
∫

Ω

u0w(t0).

It follows that

‖u(t0)‖L1 = sup
{∫

Ω

u(t0)ψ; ψ ∈ D(Ω) and ‖ψ‖L∞ ≤ 1
}

≤ ‖u0‖L1‖w(t0)‖L∞

≤ 2eCs‖a‖α
L∞((0,t0),Lσ)‖u0‖L1 ,

where the last inequality follows from (1.6.13). Since t0 ∈ (0, T ) is arbitrary, this proves (1.6.14). The

general case 1 < q <∞ now follows from (1.6.13), (1.6.14) and Riesz-Thorin’s interpolation theorem (The-

orem A.5.11).

Step 5. Existence in the class C([0, T ], Lq(Ω)) ∩L∞loc((0, T ), L∞(Ω)). Let u0 ∈ Lq(Ω), and let (un
0 )n≥0 ⊂

L∞(Ω) be such that un
0 −→

n→∞
u0 in Lq(Ω). Let un be the corresponding solutions of (1.6.3). It follows from

Steps 3 and 4 that un converges to a limit u in C([0, T ], Lq(Ω)) and in C([ε, T ], L∞(Ω)) for every 0 < ε < T .

Therefore, u solves the equation (1.6.8) and satisfies the estimate (1.6.7).
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Step 6. Uniqueness in the class C([0, T ], Lq(Ω)) ∩ L∞loc((0, T ), L∞(Ω)). Let u and v be two solutions.

Given 0 < ε < T , u(· + ε) − v(· + ε) is the solution of the equation (1.6.3) with f = 0 and the initial value

u(ε)− v(ε), respectively. It follows from Step 3 that

‖u(t+ ε)− v(t+ ε)‖L∞ ≤ CeCt‖a‖α
L∞((0,T ),Lσ)(t−

N
2q + 1)‖u(ε)− v(ε)‖Lq ,

for all t ∈ (0, T − ε). Letting ε ↓ 0, we obtain u(t) = v(t) for all t ∈ (0, T ). This completes the proof.

The next results concern the “critical case” a ∈ Lβ((0, T ), Lγ(Ω)) with
1
β

+
N

2γ
= 1 and γ > N/2. We

begin by showing that “weak solutions” of ut −4u = au+ f are “almost” in L∞.

Theorem 1.6.8. Let 0 < T < ∞, let γ >
N

2
, γ ≥ 1, and let a, f ∈ Lβ

loc((0, T ), Lγ(Ω)) with
1
β

+
N

2γ
= 1.

If u ∈ Lµ
loc((0, T ), Lγ′(Ω)), with µ > β′, satisfies the equation{

ut −4u = au+ f,

u|∂Ω = 0,
(1.6.15)

on (0, T ), then u ∈ Lp
loc((0, T ), L∞(Ω)) ∩ L∞loc((0, T ), Lp(Ω)), for every p <∞.

Remark 1.6.9. Note that in general u 6∈ L∞loc((0, T ), L∞(Ω)) under the assumptions of Theorem 1.6.8 (see

Exercise 1.8.16).

Remark 1.6.10. One limiting case (which is not allowed, see Exercise 1.8.17) in Theorem 1.6.8 is β = ∞

and γ =
N

2
. Assume for simplicity f ≡ 0, and let a ∈ L∞((0, T ), L

N
2 (Ω)). Let u ∈ L∞((0, T ), Lq(Ω)) for

some q <∞ but possibly very large. We don’t know whether u belongs to Lp
loc((0, T ), Lp(Ω)) for every finite

p. We believe that the answer is negative.

Proof of Theorem 1.6.8. By a solution u ∈ Lµ
loc((0, T ), Lγ′(Ω)) of equation (1.6.15), we mean that

u(t) = T (t− ε)u(ε) +
∫ t

ε

T (t− s)(a(s)u(s) + f(s)) ds, (1.6.16)

for 0 < ε ≤ t < T . Note that au + f ∈ L1
loc((0, T ), L1(Ω)), so that (1.6.16) makes sense in L1(Ω). We

proceed in four steps.

Step 1. For every τ > 0, r ∈ [γ′,∞] and p ∈ (β′,∞), the operator Ψ defined by

Ψ(u)(t) =
∫ t

0

T (t− s)(a(s)u(s) + f(s)) ds,

is bounded Lp((0, τ), Lr(Ω)) → Lp((0, τ), Lr(Ω)). More precisely, there exists a constant C(p, γ) such that

‖Ψ(u)‖Lp((0,τ),Lr) ≤ C(p, γ)
(
‖a‖Lβ((0,τ),Lγ)‖u‖Lp((0,τ),Lr) + τ

1
p |Ω| 1r ‖f‖Lβ((0,τ),Lγ).

)
(1.6.17)

Indeed, we have by Theorem 1.4.15

‖Ψ(u)(t)‖Lr ≤
∫ t

0

(t− s)−
N
2γ

(
‖a(s)‖Lγ‖u(s)‖Lr + |Ω| 1r ‖f‖Lγ

)
;
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and so, (1.6.17) follows from the Marcinkiewicz convolution theorem (see Theorem A.5.16). Here, we have

used the assumption that p > β′ for, if p = β′ then ‖a(s)‖Lγ‖u(s)‖Lr only belongs to L1(0, T ), and the

convolution of |t|−
1
p with L1 does not belong to Lp.

Step 2. If u(t0) ∈ Lρ(Ω) for some t0 ∈ (0, T ) and some ρ ∈ [γ′,∞], then u ∈ Lp((t0, t1), Lr(Ω)), provided

p ∈ (µ,∞), r ∈ [ρ,∞] and t1 ∈ (t0, T ) are such that

max{C(p, γ), C(µ, γ)}‖a‖Lβ((t0,t1)Lγ < 1, (1.6.18)

and
N

2

(
1
ρ
− 1
r

)
<

1
p
. (1.6.19)

Indeed, note that v(t) = u(t0 + t) verifies

v(t) = T (t)u(t0) +
∫ t

0

T (t− s)(a(t0 + s)v(s) + f(t0 + s)) ds. (1.6.20)

By (1.6.19) and Theorem 1.4.15, we have T (·)u(t0) ∈ Lp((0, T − t0), Lr(Ω)). Therefore, by applying (1.6.18),

(1.6.17) and a fixed point argument (see the proof of Theorem 1.6.4), we deduce that the equation (1.6.20)

has a solution w ∈ Lp((t0, t1), Lr(Ω)). The same estimate (1.6.17) applied with p = µ and r = γ′, alongwith

the assumption (1.6.18), shows uniqueness in the class Lµ((t0, t1), Lγ′(Ω)). Since Lp((t0, t1), Lr(Ω)) ↪→

Lµ((t0, t1), Lγ′(Ω)), we deduce that v ≡ w.

Step 3. u ∈ Lp
loc((0, T ), L∞(Ω)) for every p < ∞. Fix ε > 0, ε < T . We may always assume that

a ∈ Lβ((0, T ), Lγ(Ω)). there exists 0 < τ < T such that

C(µ, γ) sup
0≤s≤T−τ

‖a‖Lβ((s,s+τ),Lγ) < 1. (1.6.21)

Since u ∈ Lµ
loc((0, T ), Lγ′(Ω)), we have u(t) ∈ Lγ′(Ω) for almost all t ∈ (0, T ). Therefore, given any

t ∈ (ε, T ), there exists t − τ < t′ ≤ t such that u(t′) ∈ Lγ′(Ω). By (1.6.21) and Step 2, we deduce that

u ∈ Lµ((t′, t′ + τ), Lr(Ω)), for any r ∈ [γ′,∞] such that

N

2

(
1
γ′
− 1
r

)
<

1
µ
.

Therefore, since ε > 0 is arbitrary, we have u ∈ Lµ
loc((0, T ), Lr(Ω)). An obvious iteration of this argument

shows that u ∈ Lµ
loc((0, T ), L∞(Ω)). Then, applying once more Step 2, we obtain u ∈ Lp

loc((0, T ), L∞(Ω)),

for every p <∞.

Step 4. u ∈ L∞loc((0, T ), Lp(Ω)) for all p <∞. By Step 3, we may assume that au+f ∈ Lρ((0, T ), Lγ(Ω))

for every ρ < β and u0 ∈ L∞(Ω). We have to estimate

‖u(t)‖Lq ≤ C +
∫ t

0

(t− s)−
N
2 ( 1

γ−
1
q )‖au+ f‖Lγ ds.

By Hölder, the right-hand side is bounded as soon as we can find ρ ∈ [1, β) such that

N

2

(
1
γ
− 1
q

)
ρ′ < 1. (1.6.25)
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Note that
N

2γ
β′ = 1, so that

N

2

(
1
γ
− 1
q

)
β′ < 1. Hence, we can always find some r′ > β′, i.e. ρ > β

satisfying (1.6.25).

Next, we consider a situation which is still “critical”. The main point is to establish an estimate for u

near t = T , without assuming any a priori behavior of u near T .

Theorem 1.6.11. Let 0 < T < ∞, let γ >
N

2
, γ ≥ 1, let a, f ∈ Lβ((0, T ), Lγ(Ω)) with

1
β

+
N

2γ
= 1 and

let u0 ∈ L∞(Ω). If u ∈ Lµ
loc([0, T ), L∞(Ω)), with µ > γ′ is solution of the equation (1.6.3) on (0, T ), then

u ∈ Lp((0, T ), L∞(Ω)) ∩ L∞((0, T ), Lp(Ω)), for every p <∞.

Proof. Fix p ∈ [γ′,∞). We consider the operator defined by (1.6.5). By (1.6.17), we deduce

‖Φ(u)‖Lp((0,T ),L∞) ≤ C‖u0‖L∞ + C‖a‖Lβ((0,T ),Lγ)‖u‖Lp((0,T ),L∞) + C‖f‖Lβ((0,T ),Lγ). (1.6.23)

In view of this estimate, we now proceed as follows. We choose T0 < T such that

C‖a‖Lβ((T0,T ),Lγ) ≤
1
2
. (1.6.24)

This is always possible, since β < ∞. Given t ∈ (T0, T ), we use equation (1.6.3) on (T0, T ). It follows

from (1.6.23) and (1.6.23) that

‖u‖Lp((T0,t),L∞) ≤ C‖u(T0)‖L∞ +
1
2
‖u‖Lp((T0,t),L∞) + C‖h‖Lβ((T0,t),Lγ);

and thus,

‖u‖Lp((T0,T ),L∞) ≤ 2C
(
‖u(T0)‖L∞ + ‖h‖Lβ((T0,t),Lγ)

)
.

For the other estimate, we proceed as in Step 4 of the proof of Theorem 1.6.8.

Finally, we show a uniqueness result when a ∈ C([0, T ], L
N
2 (Ω)).

Theorem 1.6.12. Assume N ≥ 3 and that Ω is of class C2. Let T > 0 and a ∈ C([0, T ], L
N
2 (Ω)). If

u ∈ L∞((0, T ), Lq(Ω)) with q >
N

N − 2
satisfies

u(t) =
∫ t

0

T (t− s)a(s)u(s) ds,

for all t ∈ [0, T ], then u(t) ≡ 0.

Proof. We have au ∈ L∞((0, T ), Lr0(Ω)), with
1
r0

=
1
q

+
2
N

. In particular, 1 < r0 < ∞, so that by

maximal regularity (Theorem 1.6.1) we have u ∈ Lp((0, T ),W 2,r0(Ω) ∩W 1,r0
0 (Ω)) for every p < ∞, and u

satisfies

ut −4u = au, (1.6.25)

in Lr0Ω) for almost all t ∈ (0, T ).

We now use a duality argument. Fix t0 ∈ (0, T ), and ψ ∈ D(Ω). Let an = min{n,max{a,−n}}. We

have (an)n≥0 ⊂ C([0, T ], L
N
2 (Ω))∩L∞((0, T )×Ω). Moreover, an → a in C([0, T ], L

N
2 (Ω)) as n→∞. Indeed,
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|a| ≤ p(|u|p−1 + |v|p−1), so that a ∈ L∞((0, T ), L
N
2 (Ω)). We now argue by contradiction. Otherwise, there

exist ε > 0, t ∈ [0, T ] and a sequence (tn)n≥0 ∈ [0, T ] such that tn → t and ‖a(tn, ·) − a(t, ·)‖
L

N
2
≥ ε. On

the other hand, by possibly extracting a subsequence, we may assume that u(tn) → u(t) and v(tn) → v(t)

in Lq(Ω) and almost everywhere, and that there exists ϕ ∈ Lq(Ω) such that |u(tn)| + |v(tn)| ≤ ϕ almost

everywhere. It follows easily that a(tn) → a(t) almost everywhere and that |a(tn)| ≤ C|ϕ|p−1 ∈ LN
2 (Ω). By

dominated convergence, we deduce a(tn) → a(t) in L
N
2 (Ω), which is absurd.

Let vn be the solution of 
− (vn)t −4vn = anvn, in (0, t0)× Ω,

vn = 0 in (0, t0)× ∂Ω,

vn(t0) = ψ in Ω.

We now multiply the equation (1.6.25) by vn and integrate on (0, t0)× Ω. We obtain

[∫
Ω

uvn

]t0

0

=
∫ t0

0

∫
Ω

(u(vn)t + utvn) =
∫ t0

0

∫
Ω

(u(−4vn − anvn) + vn(4u+ au)) =
∫ t0

0

∫
Ω

(a− an)uvn.

Therefore, ∫
Ω

u(t0)ψ =
∫ t0

0

∫
Ω

(a− an)uvn.

Hence ∣∣∣∣∫
Ω

u(t0)ψ
∣∣∣∣ ≤ t0‖a− an‖

C([0,t0],L
N
2 )
‖u‖L∞(0,t0),Lq)‖vn‖L∞((0,t0),Lθ), (1.6.26)

with
1
θ

= 1− 1
q
− 2
N

> 0. In particular, we have θ <∞. We claim that for every 2 ≤ r <∞ there exists a

constant C (C depends on r) such that

sup
n≥0

‖vn‖L∞((0,t0),Lr) ≤ C‖ψ‖Lr . (1.6.27)

Assuming the claim, we let n→∞ in (1.6.26) and we obtain∫
Ω

u(t0)ψ = 0.

Since t0 ∈ (0, T ) and ψ ∈ D(Ω) are arbitrary, we deduce that u ≡ 0.

Proof of Claim (1.6.27). We use the same method as in Brezis and Kato [22]. It is convenient to

introduce wn(t) = vn(t0 − t) so that wn satisfies
(wn)t −4wn = bnwn in (0, t0)× Ω,

wn = 0 in (0, t0)× ∂Ω,

wn(0) = ψ in Ω,

(1.6.28)

with bn(s) = an(t0 − s). We multiply the equation (1.6.28) by |wn|r−2wn to obtain

1
r

d

dt

∫
Ω

|wn(t)|r +
4(r − 1)
r2

∫
Ω

|∇|wn|
r
2 |2 ≤

∫
Ω

|bn| |wn|r ≤
∫

Ω

|b| |wn|r, (1.6.29)
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where b(t) = a(t0 − t) for 0 ≤ t ≤ t0. Given j ≥ 0 to be chosen large enough, we write b = b− bj + bj , and

we estimate ∫
Ω

|b| |wn|r ≤
∫

Ω

|b− bj | |wn|r +
∫

Ω

|bj | |wn|r

≤ ‖b− bj‖
L

N
2
‖wn‖r

L
Nr

N−2
+ j‖wn‖r

Lr

≤ C‖b− bj‖
L

N
2

∫
Ω

|∇|wn|
r
2 |2 + j‖wn‖r

Lr ,

(1.6.30)

where the last inequality follows from Sobolev’s inequality. We now choose j large enough (independent of

n) so that

C‖b− bj‖
L

N
2
≤ 4(r − 1)

r2
.

(Recall that bj −→
j→∞

b in C([0, t0], L
N
2 (Ω)). It is here that we use the assumption a ∈ C([0, T ], L

N
2 (Ω));

a ∈ L∞((0, T ), L
N
2 (Ω)) would not be sufficient.) It now follows from (1.6.29) and (1.6.30) that

1
r

d

dt

∫
Ω

|wn(t)|r ≤ j‖wn‖r
Lr ,

from which we deduce ‖wn(t)‖r
Lr ≤ ‖ψ‖r

Lrejrt.

Remark 1.6.13. The conclusion of Theorem 1.6.12 fails if q =
N

N − 2
. To construct such an example, we

use the technique of Ni and Sacks [82]. Let ψ be as in Remark 3.9.11 and let v be the solution of (3.9.1)

with the initial condition v(0) = ψ. Set u = v − ψ and

a =


vp − ψp

v − ψ
if v 6= ψ,

vp−1 if v = ψ.

u satisfies

u(t) =
∫ t

0

T (t− s)a(s)u(s) ds,

for all t ∈ [0, T ], but u 6= 0.

1.6.3. Schrödinger’s equation. Throughout this section, we consider the group of isometries (T (t))t∈R

associated with Schrödinger’s equation, and we assume Ω = RN . We use the notation of Sections 1.4.3

and 1.4.4, and in particular the notion of admissible pair (see Definition 1.4.53). We begin with a Strichartz’

estimate in the nonhomogeneous case (see Strichartz [93] and Yajima [101]). We also give the proof of

Theorem 1.4.54.

Theorem 1.6.14. Let I be an interval of R (bounded or not), let J = I and let t0 ∈ I. Let (γ, ρ) be an

admissible pair, and let f ∈ Lγ′(I, Lρ′(RN )). Then, for every admissible pair (q, r), the function

t 7→ Φf (t) =
∫ t

t0

T (t− s)f(s) ds, for t ∈ I,

belongs to Lq(I, Lr(RN ))∩C(J, L2(RN )). Furthermore, there exists a constant C, depending only on γ and

q such that

‖Φf‖Lq(I,Lr) ≤ C‖f‖Lγ′ (I,Lρ′ ),

for every f ∈ Lγ′(I, Lρ′(RN )).
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Remark 1.6.15. Note that the definition of Φf makes sense. Indeed, Lρ′(RN ) ↪→ H−1(RN ), and so

f ∈ L1(I ′,H−1(RN )), for every bounded interval I ′ ⊂ I. In particular, we have Φf ∈ C(I ′,H−1(RN )).

Evidently, Theorem 1.6.14 gives an estimate of the solution of the nonhomogeneous Schrödinger equation{
iut +4u+ f = 0,

u(0) = 0,

in terms of f and ϕ.

Proof of Theorem 1.6.14. We divide the proof into six steps. For convenience, we assume that I = [0, T ),

for some T ∈ (0,∞) and that t0 = 0, the proof being the same in the general case. It is convenient to define,

in the same way as Φ, the operators Ψ and Θt (where t ∈ (0, T ) is a parameter) by

Ψf (s) =
∫ T

s

T (s− t)f(t) dt,∀s ∈ [0, T ),

and

Θt,f (s) =
∫ t

0

T (s− σ)f(σ) dσ,∀s ∈ [0, T ).

It is clear that both Ψ and Θt map continuously L1
loc([0, T );H−1(RN )) to C([0, T ),H−1(RN )).

Step 1. For every admissible pair (q, r), Φ ∈ L(Lq′(0, T ;Lr′(RN )), Lq(0, T ;Lr(RN ))), with a norm de-

pending only on q. By density, it is sufficient to consider the case f ∈ Cc([0, T ), Lr′(RN )). In this case, it

follows easily from Theorem 1.4.49 that Φf ∈ C([0, T ), Lr(RN )), and that

‖Φf (t)‖Lr ≤
∫ t

0

|t− s|−N( 1
2−

1
r )‖f(s)‖Lr′ ds ≤

∫ T

0

|t− s|
−2
q ‖f(s)‖Lr′ ds.

It follows from the classical Riesz’ potential inequalities (see Corollary A.5.17) that

‖Φf‖Lq(0,T ;Lr) ≤ C‖f‖Lq′ (0,T ;Lr′ ),

where C depends only on q.

Step 2. By the same argument, one shows that both Ψ and Θt are continuous from Lq′(0, T ;Lr′(RN )) to

Lq(0, T ;Lr(RN )), with norms depending only on q.

Step 3. For every admissible pair (q, r), Φ ∈ L(Lq′(0, T ;Lr′(RN )), C([0, T ], L2(RN ))), and its norm de-

pends only on q. By density, it is sufficient to consider the case f ∈ Cc([0, T ), Lr′(RN ))∩Cc([0, T ), L2(RN )).

It follows that Φf ∈ C([0, T ), L2(RN )); and so,

‖Φf (t)‖2L2 = (
∫ t

0

T (t− s)f(s) ds,
∫ t

0

T (t− σ)f(σ) dσ)L2

=
∫ t

0

∫ t

0

(T (t− s)f(s), T (t− σ)f(σ))L2 dσ ds

=
∫ t

0

∫ t

0

(f(s), T (s− σ)f(σ))L2 dσ ds =
∫ t

0

(f(s),Θt,f (s))L2 ds,

where we used the property T (t)∗ = T (−t) (see Corollary 1.3.33). Applying Hölder’s inequality in space,

then in time, and applying Step 2, it follows that

‖Φf (t)‖2L2 ≤ ‖f‖Lq′ (0,T ;Lr′ )‖Θt,f‖Lq(0,T ;Lr) ≤ C(q)‖f‖2
Lq′ (0,T ;Lr′ )

.
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Hence the result, since t is arbitrary.

Step 4. By the same argument, one shows that both Ψ and Θt are continuous from Lq′(0, T ;Lr′(RN )) to

C([0, T ], L2(RN )), with norms depending only on q.

Step 5. For every admissible pair (q, r), Φ ∈ L(L1(0, T ;L2(RN )), Lq(0, T ;Lr(RN ))), and its norm depends

only on q. Let f ∈ L1(0, T ;L2(RN )) and consider ϕ ∈ Cc([0, T ),D(RN )). We have∫ T

0

(Φf (t), ϕ(t))L2 dt =
∫ T

0

∫ t

0

(T (t− s)f(s), ϕ(t))L2 ds dt

=
∫ T

0

∫ T

s

(f(s), T (s− t)ϕ(t))L2 dt ds

=
∫ T

0

(f(s),Ψϕ(s))L2 ds;

and so, by Cauchy-Schwartz’ inequality and Step 4,

|
∫ T

0

(Φf (t), ϕ(t))L2 dt| ≤ ‖f‖L1(0,T ;L2)‖Ψϕ‖L∞(0,T ;L2)

≤ C(q)‖f‖L1(0,T ;L2)‖ϕ‖Lq′ (0,T ;Lr′ ).

(1.6.31)

On the other hand, one verifies easily that for every g ∈ Lq(0, T ;Lr(RN )), one has

‖g‖Lq(0,T ;Lr(Rn)) = sup{
∫ T

0

(g(t), ϕ(t))L2 dt; ϕ ∈ Cc([0, T ),D(Rn)), ‖ϕ‖Lq′ (0,T ;Lr′ (Rn)) = 1}.

The result follows from (1.6.31), and the above relation applied with g = Φf .

Step 6. Conclusion. Let (γ, ρ) be an admissible pair. It follows from steps 1 and 3 that Φ is continuous

from Lγ′(0, T ;Lρ′(RN )) to L∞(0, T ;L2(RN )) and from Lγ′(0, T ;Lρ′(RN )) to Lγ(0, T ;Lρ(RN )). Consider an

admissible pair (q, r) for which 2 ≤ q ≤ ρ, and let θ ∈ [0, 1] be such that

1
r

=
θ

ρ
+

1− θ

2
, and

1
q

=
θ

γ
+

1− θ

∞
.

By applying Hölder’s inequality in space, then in time, we obtain

‖Φf‖Lq(0,T ;Lr) ≤ ‖Φf‖θ
Lγ(0,T ;Lρ)‖Φf‖1−θ

L∞(0,T ;L2) ≤ C‖f‖Lγ′ (0,T ;Lρ′ ),

where C depends only on γ and q. Therefore, Φ maps continuously Lγ′(0, T ;Lρ′(RN )) to Lq(0, T ;Lr(RN )).

Let now (q, r) be an admissible pair for which ρ < r and let µ ∈ [0, 1] be such that

1
γ′

=
µ

1
+

1− µ

q′
and

1
ρ′

=
µ

2
+

1− µ

r′
.

By steps 1 and 5, Φ is continuous from Lq′(0, T ;Lr′(RN )) to Lq(0, T ;Lr(RN )) and from L1(0, T ;L2(RN ))

to Lq(0, T ;Lr(RN )). By Interpolation, it follows that Φ is continuous Lσ(0, T ;Lδ(RN )) → Lq(0, T ;Lr(RN ))

for every pair (σ, δ) such that, for some θ ∈ [0, 1],

1
σ

=
θ

1
+

1− θ

q′
and

1
δ

=
θ

2
+

1− θ

r′
.

(see Theorem A.5.12.) The result follows by choosing θ = µ.
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Proof of Theorem 1.4.54. The proof is parallel to the proof of Theorem 1.6.14, and we describe only

the main steps. Let

Λf (t) =
∫ +∞

−∞
T (t− s)f(s) ds, and Γf =

∫ +∞

−∞
T (−t)f(t) dt.

One shows (see proof of Theorem 1.6.14, Step 1) that

‖Λf‖Lq(0,T ;Lr) ≤ C(q)‖f‖Lq′ (0,T ;Lr′ ),

for every admissible pair (q, r). It follows (see (see proof of Theorem 1.6.14, Step 3) that

‖Γf‖L2 ≤ C(q)‖f‖Lq′ (0,T,Lr′ ),

from which one obtains easily that

|
∫ +∞

−∞
(T (t)ϕ,ψ(t))L2 dt| = (ϕ,

∫ +∞

−∞
T (−t)ψ(t) dt)L2 ≤ C(q)‖ϕ‖L2‖ψ‖Lq′ (0,T ;Lr′ ),

for every ϕ ∈ L2(RN ) and ψ ∈ Cc([0, T ),D(RN )). The result follows easily (see proof of Theorem 1.6.14,

Step 5).

Remark 1.6.16. One can obtain estimates of u(t) =
∫ t

0

T (t − s)f(s) ds of the type obtained in Theo-

rem 1.4.62. More precisely, if f ∈ L2([0, T ], L2(RN )), then u ∈ L2([0, T ],H1/2(B)) for every bounded open

set B ⊂ RN (see Constantin and Saut [30]). Therefore, there is locally a gain of half a derivative. As a

matter of fact, if one is willing to reverse the time and space integrations, then the gain is one derivative.

More precisely, if {Qα}α∈ZN is a family of disjoint open cubes of size R such that R = ∪
α∈ZN

Qα, then (see

Kenig, Ponce and Vega [70])

sup
α∈ZN

(∫
Qα

∫ +∞

−∞
|∇u(t, x)|2dt dx

)1/2

≤ CR
∑

α∈ZN

(∫
Qα

∫ +∞

−∞
|f(t, x)|2dt dx

)1/2

.

See also Ruiz and Vega [90] for related estimates.

1.6.4. The wave equation. Throughout this section, we assume Ω = RN and we consider the continuous

group (T (t))t∈R in L2(RN ) × H−1(RN ) associated with the wave equation (i.e. (1.4.27) with λ = 0, see

Remark 1.4.68). We use the notation of Section 1.4.4. Given T > 0 and f ∈ L1((0, T ),H−1(RN )), the

solution u of the problem {
utt −4u = f,

u(0) = ut(0) = 0,
(1.6.32)

is the first component of U given by

U(t) =
∫ t

0

T (t− s)F (s) ds,

where F (s) = (0, f(s)). The Strichartz estimate for the solutions of (1.6.32) are best stated in the homoge-

neous Besov spaces. A typical result is the following (see Ginibre and Velo [57, Lemma 2.1]).
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Theorem 1.6.17. Assume N ≥ 3, let 0 < T ≤ ∞ and set I = (0, T ). Let 2 ≤ r, ρ <
2(N − 1)
N − 3

and let

2 < q, γ ≤ ∞ and 0 ≤ s, σ <
N + 1

2(N − 1)
be defined by

2
q

=
2(N − 1)
N + 1

s = (N − 1)
(

1
2
− 1
r

)
and

2
γ

=
2(N − 1)
N + 1

σ = (N − 1)
(

1
2
− 1
ρ

)
.

If f ∈ Lγ′(I, Ḃσ
ρ′,2(RN )), then the solution u of (1.6.32) verifies ωu ∈ Lq(I, Ḃ−s

r,2 (RN )), where ω = (−4)1/2

is the pseudo-differential operator defined by ω̂u(ξ) = 2π|ξ|û(ξ). Moreover, there exists a constant C such

that

‖ωu‖Lq(I,Ḃ−s
r,2) ≤ C‖f‖Lγ′ (I,Ḃσ

ρ′,2
), (1.6.33)

for all f ∈ Lγ′(I, Ḃσ
ρ′,2(RN )).

Proof. The proof is very similar to the proof of Theorem 1.6.1, by using the estimates of Remark 1.4.74.

See Ginibre and Velo [57, Lemma 2.1].

Remark 1.6.18. Note that for Klein-Gordon’s equation (i.e. (1.4.27) with λ > 0), similar estimates hold

with the homogeneous Besov spaces replaced by the Besov spaces.

By applying Sobolev’s inequalities in the homogeneous Besov spaces, one can deduce Lp estimates from

Theorem 1.6.17. For example, we have the following result.

Corollary 1.6.19. Assume N ≥ 3, let 0 < T ≤ ∞ and set I = (0, T ). Let 2 ≤ r, ρ <
2(N − 1)
N − 3

and let

2 < q, γ ≤ ∞ be defined by

2
q

= (N − 1)
(

1
2
− 1
r

)
and

2
γ

= (N − 1)
(

1
2
− 1
ρ

)
.

Assume further that
1
r

+
1
ρ

=
N + 1
N − 1

.

If f ∈ Lγ′(I, Lρ′(RN )), then the solution u of (1.6.32) verifies u ∈ Lq(I, Lr(RN )). Moreover, there exists a

constant C such that

‖ωu‖Lq(I,Lr) ≤ C‖f‖Lγ′ (I,Lρ′ ),

for all f ∈ Lγ′(I, Lρ′(RN )).

Proof. Let s and σ be as in Theorem 1.6.17. Since r ≥ 2 and ρ′ ≤ 2, we have (see Bergh and Löfström [13])

Ḣσ
ρ′(RN )) ↪→ Ḃσ

ρ′,2(RN )) and Ḃ−s
r,2 (RN ) ↪→ Ḣ−s

r (RN ). Therefore, it follows from (1.6.33) that

‖ωu‖Lq(I,Ḣ−s
r ) ≤ C‖f‖Lγ′ (I,Ḣσ

ρ′
).

Since ω−σ commutes with 4, it follows that if u is the solution corresponding to f , then ω−σu is the solution

corresponding to ω−σf ; and so,

‖ω1−σu‖Lq(I,Ḣ−s
r ) ≤ C‖ω−σf‖Lγ′ (I,Ḣσ

ρ′
).
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By definition of the homogeneous Sobolev spaces Ḣ−s
r (RN ), this implies that

‖u‖Lq(I,Ḣ1−σ−s
r ) ≤ C‖f‖Lγ′ (I,Ḣ0

ρ′
).

Finally, it follows from the assumptions that s + σ = 1. Hence the result, since Ḣ0
r (RN ) = Lr(RN ) and

Ḣ0
ρ′(RN ) = Lρ′(RN ).

Remark 1.6.20. Note that in particular, one can choose r = ρ = q = γ =
2(N + 1)
N − 1

in Theorem 1.6.19,

so that ‖u‖
L

2(N+1)
N−1 (RN+1)

≤ C‖f‖
L

2(N+1)
N+3 (RN+1)

.

1.6.5. Stokes’ equation. Let Ω ⊂ RN be a bounded domain with boundary of class C2. Let E =(
L2(Ω)

)N , and let F = {u ∈ (D(Ω))N ; ∇·u = 0}. Let X be the closure of F in E. X is also a Hilbert space

with the scalar product of E. Let P : E → X be the orthogonal projection on X. We consider the Stokes

operator A defined by D(A) =
(
H2(Ω) ∩H1

0 (Ω)
)N ∩X;

Au = −P (4u), for u ∈ D(A).

It follows from Theorem 1.2.49 that A is self-adjoint. Therefore, −A is the generator of a semigroup of

contractions in X which we denote (T (t))t≥0. Given T > 0 and f ∈ L1((0, T ), X), u defined by

u(t) =
∫ t

0

T (t− s)f(s) ds

is the weak solution of the problem {
ut +Au = f,

u(0) = 0.
(1.6.34)

For this problem, there is a maximal regularity result similar to the one obtained for the heat equation.

Theorem 1.6.21. Let T > 0, 1 < p, q < ∞ and f ∈ Lq((0, T ), Lp(Ω)N ∩ L1((0, T ), X). If u is the

corresponding solution of (1.6.34), then u ∈ W 1,q((0, T ), Lp(Ω)N ) and 4u ∈ Lq((0, T ), Lp(Ω)N ). Moreover,

there exists a constant C such that

‖ut‖Lq((0,T ),(Lp)N ) + ‖4u‖Lq((0,T ),(Lp)N ) ≤ ‖f‖Lq((0,T ),(Lp)N ),

for all f ∈ Lq((0, T ), Lp(Ω)N ∩ L1((0, T ), X).

For a proof of Theorem 1.6.21, see Coulhon and Lamberton [32].

Remark 1.6.22. A similar result holds when Ω = RN , since every component ui of u solves the heat

equation (see Remark 1.4.79 and Theorem 1.6.1), and when Ω = RN \ D, where D is a smooth bounded

domain (see Giga and Sohr [53]).

1.6.6. Airy’s equation. Let X = L2(R), and define the operator A on X by
D(A) = H3(R);

Au = −uxxx = −d
3u

dx3
, for u ∈ D(A).
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It follows from Theorem 1.2.52 that A is skew-adjoint; and so −A is the generator of a group of isometries

(T (t))t∈R on X. Given T > 0 and f ∈ L1((0, T ), L2(R)), u given by

u(t) =
∫ t

0

T (t− s)f(s) ds,

is the weak solution of the problem {
ut + uxxx = f,

u(0) = 0.
(1.6.35)

We have the following Strichartz estimate for the problem (1.6.35) (See Ginibre and Tsutsumi [55]).

Theorem 1.6.23. Let 0 < T ≤ ∞ and let 2 ≤ r, ρ ≤ ∞. Define q, γ ∈ [6,∞] by

2
q

=
1
3

(
1− 2

r

)
and

2
γ

=
1
3

(
1− 2

ρ

)
.

If f ∈ Lγ′((0, T ), Lρ′(R)), then the corresponding solution u of (1.6.35) belongs to Lq((0, T ), Lr(R)) ∩

C((0, T ), L2(R)). Furthermore, there exists a constant C such that

‖u‖Lq((0,T ),Lr) ≤ C‖f‖Lγ′ ((0,T ),Lρ′ ),

for every f ∈ Lγ′((0, T ), Lρ′(R)).

Proof. The proof is similar to the proof of Theorem 1.6.14, by applying the estimates of Remark 1.4.84

(see Ginibre and Tsutsumi [55]).

Remark 1.6.24. One can obtain estimates of the type described in Remark 1.4.85 for the nonhomogeneous

problem (1.6.35). See in particular Kenig, Ponce and Vega [70] and Ginibre and Tsutsumi [55].

1.7. Comments.

1.7.1. Semigroups of contractions are not the most general form of continuous semigroups. In particular,

one can define C0 semigroups (T (t))t≥0. They satisfy the following properties (cf. Pazy [85], Chapter 1):

(i) T (t) ∈ L(X), for all t ≥ 0;

(ii) T (0) = I;

(iii) T (t+ s) = T (t)T (s), for all s, t ≥ 0;

(iv) the function t 7→ T (t)x is continuous [0,∞) → X, for all x ∈ X.

It is easily verified that there exists constants M ≥ 1 and ω ≥ 0 such that ‖T (t)‖L(X) ≤ Meωt, for all

t ≥ 0 (see Pazy [85], Theorem 2.1, p.4). The generator of a C0 semigroup is defined as for semigroups of

contractions. However, it is sufficient to consider semigroups of contraction since an operator −A in X is

the generator of a C0 semigroup of type (M,ω) if, and only if there exists an equivalent norm ‖| · ‖| on X

such that A + ωI is m-accretive in (X, ‖| · ‖|) (see Pazy [85], Chapter 1, Lemma 5.1 and Theorems 5.2 and

5.3).
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1.7.2. Baillon’s theorem. In view of Theorem 1.3.34, one may ask if there are semigroups for which

the solution of (1.5.2) solves (1.5.1) for every x ∈ D(A) and every f ∈ C([0, T ], X). It turns out that under

fairly general assumptions, the only case for which such a property holds is when A is bounded, as shows

the following result of Baillon [5].

Theorem 1.7.1. Let (T (t))t≥0 ⊂ L(X) be a semigroup of contractions and let −A be its generator.

Assume there exists t0 > 0 such that ∫ t0

0

T (t0 − s)f(s) ds ∈ D(A), (1.7.1)

for every f ∈ C([0, t0], X). If X does not contain any subspace isomorphic to c0, then A is bounded. In

particular, if X is reflexive, then A is bounded.

In fact, Baillon’s result asserts that the conclusion holds under (apparently) stronger conditions. How-

ever, it can be weakened by using the following lemma.

Lemma 1.7.2. Let (T (t))t≥0 ⊂ L(X) be a semigroup of contractions and let −A be its generator. If there

exists t0 > 0 such that (1.7.1) holds for every f ∈ C([0, t0], X), then the following properties hold:

(i)
∫ t

0

T (t− s)f(s) ds ∈ D(A), for every f ∈ C([0, t0], X) and every t ∈ [0, t0];

(ii) there exists a constant C such that ‖
∫ t

0

T (t − s)f(s) ds‖D(A) ≤ C‖f‖L∞((0,t0),X), for every f ∈

C([0, t0], X) and every t ∈ [0, t0].

Proof. Define the operator L : C([0, t0], X) → D(A) by

Lf =
∫ t0

0

T (t0 − s)f(s) ds.

If fn −→
n→∞

f in C([0, t0], X), then it follows from Lemma 1.5.3 that Lfn −→
n→∞

Lf in X. Therefore, if further-

more Lfn −→
n→∞

g in D(A), then g = Lf . It follows that the graph of L is closed; and so, by the closed graph

theorem, there exists a constant C such that

‖
∫ t0

0

T (t0 − s)f(s) ds‖D(A) ≤ C‖f‖L∞((0,t0),X), (1.7.2)

for every f ∈ C([0, t0], X). Given f ∈ C([0, t0], X) and t ∈ [0, t0], define g ∈ C([0, t0], X) by

g(s) =

{
f(0), if 0 ≤ s ≤ t0 − t;

f(s− t0 + t), if t0 − t ≤ s ≤ t0.

It follows easily that ∫ t

0

T (t− s)f(s) ds =
∫ t0

0

T (t0 − s)g(s) ds−
∫ t0

t

T (s)f(0) ds;

and so, by (1.7.2) and Lemma 1.3.9,

‖
∫ t

0

T (t− s)f(s) ds‖D(A) ≤ (C + 3)‖f‖L∞((0,t0),X).
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The result follows, since t and f are arbitrary.

1.7.3. We give below an alternative proof of the Lp−Lq estimates of Theorem 1.4.15, based on a technique of

multipliers. That technique can be applied to certain nonlinear problems to which the comparison argument

is not applicable. We have the following result, inspired by Fabes and Stroock’s proof (see Fabes and

Stroock [41] and Davies [36]) of the L1 − L∞ estimate.

Proposition 1.7.3. Let Ω be an arbitrary open subset of RN and let T > 0. Let f ∈ C([0, T ],H−1(Ω))

and let u ∈ C([0, T ],H1
0 (Ω)) ∩ C1([0, T ],H−1(Ω)) solve equation

ut −4u = f, for all 0 ≤ t ≤ T.

Assume that for every ϕ ∈ C1(R)∩W 1,∞(R) such that ϕ(0) = 0 and ϕ′ ≥ 0, one has 〈ϕ(u(t)), f(t)〉H1
0 ,H−1 ≤ 0

for almost all t ∈ [0, T ]. Then, the following properties hold:

(i) If u(0) ∈ Lq(Ω) for some 1 ≤ q ≤ ∞, then u(t) ∈ Lq(Ω) for every t ∈ (0, T ], and

‖u(t)‖Lq ≤ ‖u(0)‖Lq ,

for all t ∈ (0, T ];

(ii) if u(0) ∈ L1(Ω) ∩ L∞(Ω), then u(t) ∈ Lp(Ω) for every 1 ≤ p ≤ ∞ and every t ∈ (0, T ]. In addition,

‖u(t)‖Lp ≤ Ct−
N
2 (1− 1

p )‖u(0)‖L1 ,

for all t ∈ (0, T ], where the constant C depends only on p and N .

Proof. We proceed in several steps.

Step 1. Preliminary estimates. Let ϕ be as in the assumption. Define φ and ψ by

φ(x) =
∫ x

0

ϕ(s) ds, for x ∈ R, (1.7.3)

and

ψ(x) =
∫ x

0

√
ϕ′(s) ds, for x ∈ R. (1.7.4)

It follows that φ and ψ verify the same assumptions as ϕ. By taking the H−1 −H1
0 scalar product of the

equation with ϕ(u) ∈ C([0, T ],H1
0 (Ω)) and by applying Corollary A.3.65 and identity (A.4.24), one obtains

d

dt

∫
Ω

φ(u(t)) dx+
∫

Ω

|∇ψ(t)|2 dx ≤ 0, (1.7.5)

for all t ∈ [0, T ], from which it follows in particular that∫
Ω

φ(u(t)) dx ≤
∫

Ω

φ(u(s)) dx, (1.7.6)

for 0 ≤ s ≤ t ≤ T .
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Step 2. Proof of property (i). If q ≤ 2, let ε > 0 and define

ϕ(x) =
1
q

qx3 + 2εx

(ε+ x2)
4−q
2

,

so that φ defined by (1.7.3) is given by

φ(x) =
1
q

x2

(ε+ x2)
2−q
2

.

Applying now (1.7.6), letting ε ↓ 0 and applying the dominated convergence theorem to the right-hand side

and Fatou’s lemma to the left-hand side, one obtains property (i). If 2 ≤ q <∞, let ε > 0 and define

ϕ(x) =
1
q

q|x|q−2x+ 2ε|x|qx
(ε+ x2)q/2

,

so that φ defined by (1.7.3) is given by

φ(x) =
1
q

|x|q

(ε+ x2)
q−2
2

.

The same argument as above shows that the conclusions of property (i) hold. Finally, if q = ∞, apply the

previous result for finite q and make q ↑ ∞.

Step 5. Proof of property (ii). We recall that there exists A, depending only on N , such that

(∫
Ω

v2

)N+2
N

≤ A

∫
Ω

|∇v|2
(∫

Ω

|v|
) 4

N

, (1.7.7)

for all v ∈ H1
0 (Ω) ∩ L1(Ω). This follows from Gagliardo-Nirenberg’s inequality (see Theorem A.3.44 and

Remark A.3.45 (ii)). Consider ϕ, φ and ψ as in step 1. It follows from inequality (1.7.7) that

(∫
Ω

|ψ(u(t))|2
)N+2

N

≤ A

∫
Ω

|∇ψ(u(t))|2
(∫

Ω

|ψ(u(t))|
) 4

N

.

Therefore, inequality (1.7.5) yields

d

dt

∫
Ω

φ(u(t)) +
1

A
(∫

Ω
|ψ(u(t))|

) 4
N

(∫
Ω

|ψ(u(t))|2
)N+2

N

≤ 0. (1.7.8)

Consider now 2 ≤ p < ∞. Note that by property (i), we have u(t) ∈ L1(Ω) ∩ L∞(Ω) and ‖u(t)‖L∞ ≤

‖u(0)‖L∞ , for all 0 ≤ t ≤ T . Set M = ‖u(0)‖L∞ and let ϕ as at step 1 be such that ϕ(x) = |x|p−1x

for |x| ≤ M . It follows that φ(x) =
1
p
|x|p for |x| ≤ M and that ψ(x) =

2
p
|x|

p
2 for |x| ≤ M . Therefore,

inequality (1.7.8) yields

d

dt

∫
Ω

|u(t)|p +
4(p− 1)
Ap

1(∫
Ω
|u(t)| p

2
) 4

N

(∫
Ω

|u(t)|p
)1+ 2

N

≤ 0,

for all 0 < t < T . Note that by property (i),
∫

Ω

|u(t)|
p
2 ≤

∫
Ω

|u(0)|
p
2 ; and so,

d

dt

∫
Ω

|u(t)|p +
4(p− 1)
Ap

1(∫
Ω
|u(0)| p

2
) 4

N

(∫
Ω

|u(t)|p
)1+ 2

N

≤ 0.
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Applying Theorem A.5.3, we then obtain∫
Ω

|u(t)|p ≤
(

NAp

8(p− 1)

)N/2

t−N/2

(∫
Ω

|u(0)|
p
2

)2

. (1.7.9)

Note that since p ≥ 2, we have
p

(p− 1)
≤ 2. Therefore, if we set p = 2q with 1 ≤ q < ∞, inequality (1.7.9)

yields

‖u(t)‖L2q ≤
(
NA

4

) N
4q

t−
N
4q ‖u(0)‖Lq ,

for 0 < t ≤ T . Applying the result to u(·+ s), one obtains in fact

‖u(t+ s)‖L2q ≤
(
NA

4

) N
4q

s−
N
4q ‖u(t)‖Lq ,

for 0 ≤ t < s ≤ T . Choosing s of the form τ2−(n+1) and q = 2n, we obtain

‖u(t+ τ2−(n+1))‖L2n+1 ≤
(
NA

4

)N2−(n+2)

2N(n+1)2−(n+2)
‖u(t)‖L2n .

An obvious iteration argument based on the above inequality shows that

‖u(τ(2−1 + · · ·+ 2−n))‖L2n+1 ≤
n−1∏
j=0

[(
NA

4τ

)N2−(j+2)

2N(j+1)2−(j+2)

]
‖u(0)‖L1 ,

for all 0 < τ ≤ T and n ≥ 0. Note that 2−1+ · · ·+2−n ≤ 1; and so, by step 1, ‖u(τ(2−1+ · · ·+2−n))‖L2n+1 ≥

‖u(τ)‖L2n+1 . Therefore,

‖u(τ)‖L2n+1 ≤ Kn‖u(0)‖L1 , (1.7.10)

with

Kn =
(
NA

4τ

)N
∑n−1

j=0
2−(j+2) (

2N/2
)∑n−1

j=0
(j+1)2−(j+1)

.

Since
∞∑

j=0

2−(j+2) =
1
2

and
∞∑

j=0

(j + 1)2−(j+1) = 2, it follows that

lim
n→∞

Kn = 2N

(
NA

4τ

)N/2

.

Therefore, inequality (1.7.10) yields

‖u(τ)‖L∞ ≤ 2N

(
NA

4τ

)N/2

‖u(0)‖L1 =
(
NA

τ

)N/2

‖u(0)‖L1 ,

for all 0 < τ ≤ T , and property (ii) follows, by applying property (i) and Hölder’s inequality.

1.8. Exercises.

Exercise 1.8.1. The object of this exercise is to show that the estimate of Lemma 1.1.16 (ii) is optimal in

the sense that one can have ‖Aλ‖L(X) = 2/λ for all λ > 0. Let X = C0(0,∞) equipped with the sup norm.

Define the operator A on X by {
D(A) = {u ∈ C1([0,∞)) ∩X; u′ ∈ X},

Au = u′ for all u ∈ D(A).
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It follows from Proposition 1.2.6 that A is m-accretive. Let 0 < δ < M and define f ∈ X as follows.

f(x) =



x/δ if 0 ≤ x ≤ δ,

1 if δ ≤ x ≤M,

1− 2
δ
(x−M) if M ≤ x ≤M + δ,

−1 + x−M − δ if M + δ ≤ x ≤M + δ + 1,

0 if M + δ + 1 ≤ x.

Let λ > 0 and let u = Jλf .

• Show that u(M + δ) ≥ 1− e−
M+δ

λ − 3
λ

δ
.

• Show that ‖Aλf‖L(X) ≥ 2− e−
M+δ

λ − 3
λ

δ
.

• Show that ‖Aλf‖L(X) = 2/λ, for all λ > 0.

Exercise 1.8.2. Let A be an m-accretive operator in a Banach space X, and assume that X is reflexive.

The object of this exercise is to show that D(A) is dense in X. Let x∗ ∈ X? be such that 〈x∗, f〉X?,X = 0

for all f ∈ D(A). Let x ∈ X, and set f = (I +A)−1x.

• Show that 〈x∗, x〉X?,X = 〈x∗, Af〉X?,X .

• For λ > 0, define fλ = (I + λA)−1f . Show that fλ → f as λ ↓ 0, that ‖Afλ‖ ≤ ‖Af‖ and that

Afλ ∈ D(A) (see Lemma 1.1.16).

• Show that 〈x∗, Af〉X?,X = 0 and conclude.

Exercise 1.8.3. Let A be an m-accretive operator in a Banach space X, and assume that D(A) is dense

in X. Therefore, we may consider the operator A∗ in X? (see Brezis [17], Proposition II.16). The object of

this exercise is to show that A∗ is m-accretive in X?. Consider λ > 0.

• Show that R(I + λA∗) = X? (see Brezis [17], Theorem II.20). Let x ∈ D(A∗) and f ∈ X? be such that

x+ λA∗x = f .

• Show that 〈x, z〉X?,X = 〈f, (I + λA)−1z〉X?,X for all z ∈ X.

• Show that ‖x‖X? ≤ ‖f‖X? .

• Conclude.

Exercise 1.8.4. Let X = L2(0, 1). Define the operator A on X by{
D(A) = H1

0 (0, 1),

Au = u′, for all u ∈ D(A).

• Show that A is skew-symmetric.

• Determine D(A∗) and A∗u for all u ∈ D(A∗).

• Show that A is not skew-adjoint.
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Exercise 1.8.5. Let X = L2(0, 1). Define the operator A on X by{
D(A) = {u ∈ H2(0, 1); u(0) = u′(0) = u(1) = u′(1) = 0},

Au = −u′′, for all u ∈ D(A).

• Show that A is symmetric.

• Determine D(A∗) and A∗u for all u ∈ D(A∗).

• Show that A is not self-adjoint.

Exercise 1.8.6. Let 1 ≤ p <∞, X = Lp(0, 1). Consider the m-accretive operator A on X defined by{
D(A) = {u ∈W 1,p(0, 1); u(0) = 0},

Au = u′, for all u ∈ D(A).

(See Remark 1.2.5 (ii).)

• Determine D(A∗) and A∗x for all x ∈ D(A∗).

Exercise 1.8.7. Assume N ≥ 3. Let 0 < T <∞ and a, f ∈ C([0, T ], L
N
2 (Ω)). The object of this exercise is

to show that if u0 ∈ L∞(Ω) and u ∈ L∞loc([0, T ), L∞(Ω))∩L∞loc((0, T ),H1
0 (Ω)) satisfy (1.6.3) for all t ∈ (0, T ),

then u ∈ L∞((0, T ), Lq(Ω)) for every q ∈ [1,∞).

• Show that for every ε > 0, there exists aε ∈ L∞((0, T ), L
N
2 (Ω)) such that ‖aε‖

L∞(0,T ),L
N
2 )

≤ ε and

a− aε ∈ L∞((0, T )×Ω). (Consider for example aε = a if |a| ≥M and aε = 0 if |a| < M , with M large

enough.)

• Given 2 ≤ q <∞, multiply the equation ut −4u = au+ f by |u|q−2u, and show that

1
q

d

dt

∫
Ω

|u(t)|q +
4(q − 1)
q2

∫
Ω

|∇|u|
q
2 |2 ≤

∫
Ω

{|a| |u|q + |f | |u|q−1}.

• Conclude.

Exercise 1.8.8. Assume N ≥ 3. Let 0 < T <∞, let a ∈ C([0, T ], L
N
2 (Ω)), and let u be a smooth solution

on (0, T ) of {
ut −4u = au,

u|∂Ω = 0,

The object of this exercise is to show that if ‖u(t)‖Lq −→
t↓0

0 for some q > 1, then u(t) ≡ 0.

• Show that if an → a in C([0, T ], L
N
2 (Ω)), then there exists b ∈ C([0, T ], L

N
2 (Ω)) and a subsequence

nk → ∞ such that |ank
(t)| ≤ b(t) a.e. in Ω for all t ∈ [0, T ]. (Hint: consider a subsequence (nk)k≥0

such that ‖ank+1 − ank
‖

C([0,T ],L
N
2 )
≤ 2−k and let b = |a0|+

∞∑
k=0

|ank+1 − ank
|.)

• Show that, given τ ∈ (0, T ) and f ∈ C∞c ((0, T )×Ω), there exists v ∈ L∞((0, T ), Lr(Ω)) for every r <∞

which is a solution of the equation 
− vt −4v = av + f,

u|∂Ω = 0,

v(τ) = 0.
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(Hint: approximate a by a sequence (an)n≥0 ⊂ C∞c ((0, T ) × Ω), apply the first question then Exer-

cise 1.8.7 to obtain estimates independent of n, and let n→∞.)

• Conclude. (Hint: use the preceding question and apply a duality argument.)

Exercise 1.8.9. Assume N ≥ 3. Let 0 < T < ∞, let a ∈ L∞((0, T ), Lp(Ω)) for some p ≥ 1, p >
N

2
, and

let u be a smooth solution on (0, T ) of {
ut −4u = au,

u|∂Ω = 0,

Show that if ‖u(t)‖L1 −→
t↓0

0, then u(t) ≡ 0. (Hint: given τ ∈ (0, T ) and f ∈ C∞c ((0, T ) × Ω), consider the

solution v ∈ L∞((0, T ), L∞(Ω)) of the equation
− vt −4v = av + f,

v|∂Ω = 0,

v(τ) = 0,

and apply a duality argument.)

Exercise 1.8.10. Let 0 < ρ < R <∞, and set Ω = B(0, R) and ω = B(0, ρ). Let u(t) be the solution of
ut −4u = 0 in (0,∞)× Ω,

u = 0 in (0,∞)× ∂Ω,

u(0, x) = 1ω.

The object of this exercise is to show that there exist c1, c2 > 0 independent of R and ρ such that

u(t, x) ≥ c1t
−N

2 e−
c2
R2 te−

R2
t R−1ρN (R− |x|), (1.8.1)

for all t > 0 and x ∈ Ω.

• Let λ1 be the first eigenvalue of −4 in H1
0 (Ω) and let ϕ1 be the corresponding eigenvector such that

ϕ1(0) = 1. Show that ϕ1(x) ≥ c1R
−1(R− |x|) and λ1 = c2R

−2.

• Let v(t, x) = e−λ1tϕ1(x)z(t, x), where z(t) is the solution of zt −4z = 0 in (0,∞)× RN ,

z(0, x) = 1ω.

Show that u(t, x) ≥ v(t, x) for (t, x) ∈ (0,∞)× Ω and conclude.

Exercise 1.8.11. The object of this exercise is to show that if (T (t))t≥0 is the heat semigroup in a connected

open set Ω ⊂ RN and if u0 ∈ L1(Ω), u0 ≥ 0 and u0 6≡ 0, then T (t)u0 > 0 in Ω for all t > 0.

• Let x0, x ∈ Ω and let γ ∈ C1([0, 1],Ω) be such that γ(0) = x0 and γ(1) = x. Let ` be the length of the

arc γ, let

ρ = min
0≤t≤1

dist(γ(t), ∂Ω),
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and set µ =
ρ

4
. Show that there exists a constant K(`, µ,N) such that if u0 ≥ 1 on B(x0, µ), then

T (t)u0(x) ≥ e−
K
t on B(x, µ), (1.8.2)

for all 0 < t ≤ 1. (Hint: apply j times the estimate (1.8.1), with j =
[
`

µ

]
+ 1).

• Conclude.

Exercise 1.8.12. The object of this exercise is to show that if (T (t))t≥0 is the heat semigroup in a bounded,

smooth, connected domain of RN then there exists a constant K depending on Ω such that for all u0 ∈M(Ω),

u0 ≥ 0,

T (t)u0(x) ≥ e−
K
t

(∫
u0δ

)
δ(x),

in Ω for all 0 < t ≤ 1. Here δ(x) is the distance of x to ∂Ω.

• Show that there exists ρ > 0 such that for every x ∈ ∂Ω the ball of radius ρ and center x − ρ~n(x)

is contained in Ω. Here, ~n(x) is the outward unit normal vector at x. Show that there exists ` such

that given any x0, x ∈ Ω such that δ(x0) ≥ ρ, δ(x) ≥ ρ, there exists a function γ ∈ C1([0, 1],Ω) with

γ(0) = x0 and γ(1) = x,

ρ ≤ min
0≤t≤1

dist(γ(t), ∂Ω),

and the length of γ is ≤ `.

• Fix any x0 ∈ Ω such that δ(x0) ≥ ρ, let µ =
ρ

4
and set ψ = 1B(x0,µ). Show that there exists a constant

K0 depending on Ω such that

T (t)ψ(x) ≥ e−
K0

t , (1.8.3)

for all 0 < t ≤ 1 and for all x ∈ Ω such that δ(x) ≥ 3µ. (Hint: apply the estimate (1.8.2).) Show that

there exists a constant K1 depending on Ω such that

T (t)ψ ≥ e−
K1

t δ, (1.8.4)

for all 0 < t ≤ 1. (Hint: apply the estimates (1.8.3) and (1.8.1))

• Let x ∈ B(x0, µ) and let δx be the Dirac mass at x. Show that

T (t)δx ≥
1
2
(4πt)−

N
2 e−

µ2

4t ψ, (1.8.5)

for all 0 < t ≤ 9µ2

2N
. (Hint: show that if t ≤ 9µ2

2N
, then T (t)δx(x) ≥ (4πt)−

N
2 (e−

|x−x|2
4t − e−

9µ2

4t ).) Show

that there exists a constant K2 depending on Ω such that

T (t)δx ≥ e−
K2

t δ, (1.8.6)

for all 0 < t ≤ 1. (Hint: combine the estimates (1.8.5) and (1.8.4).)

• Show that for every ϕ ∈ D(Ω), ϕ ≥ 0,

T (t)ϕ ≥ e−
K2

t

(∫
Ω

ϕδ

)
ψ, (1.8.7)
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for 0 < t ≤ 1. (Hint: apply the identity T (t)ϕ(x) =
∫

Ω

ϕT (t)δx and the estimate (1.8.6).)

• Conclude. (Hint: establish the result for u0 ∈ D(Ω) by combining the estimates (1.8.7) and (1.8.4).)

Exercise 1.8.13. Let 0 < ρ < R <∞, and set Ω = B(0, R) and ω = B(0, ρ).

• Let u be the solution of 
−4u = 0 in Ω \ ω,

u = 0 in ∂Ω,

u = 1 in ∂ω.

Show that

u(x) =


|x|−N+2 −R−N+2

ρ−N+2 −R−N+2
if N 6= 2,

logR− log |x|
logR− log ρ

if N = 2.

• Let v be the solution of { −4v = 1ω in Ω,

v = 0 in ∂Ω.

Show that

v(x) =


ρN

N(N − 2)
(ρ−N+2 −R−N+2) +

ρ2 − |x|2

2N
if |x| ≤ ρ,

ρN

N(N − 2)
(|x|−N+2 −R−N+2) if ρ ≤ |x| ≤ R,

if N 6= 3 and

v(x) =


ρ2

2
(logR− log ρ) +

ρ2 − |x|2

4
if |x| ≤ ρ,

ρ2

2
(logR− log |x|) if ρ ≤ |x| ≤ R,

if N = 2.

Exercise 1.8.14. The object of this exercise is to show that if u ∈ H1
0 (Ω) ∩ C(Ω) verifies

−4u = f in Ω,

where Ω ⊂ RN is a connected domain and f ∈ H1− (Ω), f ≥ 0, f 6≡ 0, then u > 0 in Ω.

• Let x0 ∈ Ω. If u(x0) = 0, show that u > 0 on B, where B is any ball centered at x0 and contained in Ω

(apply the first part of Exercise 1.8.13).

• Conclude.

Exercise 1.8.15. The object of this exercise is to show that if u ∈ H1
0 (Ω) ∩ C(Ω) verifies

−4u = f in Ω,

where Ω ⊂ RN is a smoth, connected domain and f ∈ H−1(Ω), f ≥ 0, f 6≡ 0, then u(x) ≥ Cδ(x) in Ω. Here

C > 0 and δ(x) is the distance of x to ∂Ω.
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• Show that there exist η > 0 and ε > 0 such that u(x) ≥ ε for all x ∈ Ω such that δ(x) ≥ η/2 (apply the

first part of Exercise 1.8.12 and Exercise 1.8.14).

• Conclude (apply the first part of Exercise 1.8.13).

Exercise 1.8.16. The object of this exercise is to construct f ∈ L2((0, T ), L2(Ω)), where Ω ⊂ R2 is a

smooth domain, such that the solution u of 
ut −4u = f,

u|∂Ω = 0,

u(0) = 0,

(1.8.8)

belongs to Lp((0, T ), L∞(Ω)) for every p <∞, but does not belong to L∞((0, T )× Ω).

• Given f ∈ L2((0, T ), L2(Ω)), show that u ∈ Lp((0, T ), L∞(Ω)) for every p <∞.

• Let ϕ ∈ H1
0 (Ω) \ L∞(Ω), and let v(t) = T (t)ϕ, where (T (t))t≥0 is the heat semigroup. Define u ∈

C([0, 2], L2(Ω)) by

u(t) =

{
tv(1− t) if 0 ≤ t ≤ 1,

v(t− 1) if 1 ≤ t ≤ 2.

Show that u is the solution of (1.8.8) for some f ∈ L2((0, 2), L2(Ω)), and that u 6∈ L∞((0, 2)× Ω).

Exercise 1.8.17. The object of this exercise is to construct a, f ∈ C([0, T ], L
N
2 (Ω)), where Ω is the unit

ball of RN , N ≥ 3, such that the solution u of (1.6.2) with u0 = 0 does not belong to L∞(Ω) for any t ∈ [0, T ].

• Consider a decreasing function θ ∈ C2((0, 1)) such that θ(r) = − log r for r small and θ(r) = r2−N − 1

for 1− r small. Define ϕ : Ω → R by ϕ(x) = θ(|x|). Show that ϕ ∈ H1
0 (Ω) and that

−4ϕ = aϕ,

for some a ∈ LN
2 (Ω).

• For a as above, construct f ∈ C([0, T ], L
N
2 (Ω)) and a solution u of (1.6.2) with u0 = 0 such that

u(t) 6∈ L∞(Ω) for any t ∈ [0, T ].

Exercise 1.8.18. The object of this exercise is to show that if Ω ⊂ RN is a bounded domain and if u is

the solution of the equation 
ut −4u = 0 in Ω,

u = 0 in ∂Ω,

u(0) = 1,

then ut ≤ 0 in Ω and ut 6≡ 0 for all t > 0.

• Show that u is smooth in (0,∞)× Ω.

• Show that
∫

Ω

uϕ1 = e−λ1t and
∫

Ω

utϕ1 = −λ1e
−λ1t (and in particular ut 6≡ 0 for all t > 0) where λ1 is

the first eigenvalue of −4 in H1
0 (Ω) and ϕ1 is the first eigenvector, normalized so that ϕ1 > 0 in Ω and

‖ϕ1‖L1 = 1.
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• Let ζε be the solution of { − ε4ζε + ζε = 1 in Ω,

ζε = 0 in ∂Ω.

Show that ζε ⇀ 1 in L2(Ω) as ε ↓ 0.

• Let uε be the solution of 
uε

t −4uε = 0 in Ω,

uε = 0 in ∂Ω,

uε(0) = ζε.

Show that uε
t (t) ≤ 0 for all t ≥ 0 and conclude.

1.9. Open Problems.

Open Problem 1.9.1. Let a ∈ L∞((0, T ), L
N
2 (Ω)). Let u ∈ L∞((0, T ), Lq(Ω)) for some q possibly very

large (but finite) verify 
ut −4u = au,

u|∂Ω = 0,

u(0, x) = u0(x) ∈ L∞(Ω).

Does u belong to Lp
loc((0, T ), Lp(Ω)) for every finite p?

Open Problem 1.9.2. A related question is: can one replace the assumption a ∈ C([0, T ], L
N
2 (Ω)) by

a ∈ L∞((0, T ), L
N
2 (Ω)) in Theorem 1.6.12? The problem is open even under the additional assumption

u ∈ C∞c ((0, T )× Ω).

Open Problem 1.9.3. Assume N ≥ 3. Let a ∈ C([0, T ], L
N
2 (Ω)) and u ∈ C([0, T ], L1(Ω)) ∩ L∞loc((0, T ),

L∞(Ω)) satisfy the equation {
ut −4u = au,

u∂Ω = 0.

If ‖u(t)‖L1 −→
t↓0

0, does one have u ≡ 0? Note that this is the case if one replaces L1(Ω) by L1+ε(Ω) or

L
N
2 (Ω)) by L

N
2 +ε(Ω)) for some ε > 0, see Exercises 1.8.8 and 1.8.9.

Open Problem 1.9.4. Assume N ≥ 3, and let a ∈ LN
2 (Ω) and u ∈ L

N
N−2 (Ω) solve the equation{ −4u = au,

u∂Ω = 0.

Let s be the best constant in Sobolev’s inequality s‖u‖
L

2N
N−2

≤ ‖∇u‖L2 . If ‖a‖
L

N
2
< s2, does one have

u ≡ 0? (Note that formally, the result would follow by multiplying the equation by u and applying Hölder’s

and Sobolev’s inequality.)
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Chapter 2. Abstract semilinear problems: global and local existence.

In this chapter, we consider abstract initial value problems of the form
du

dt
+Au = F (u),

u(0) = u0.

(2.1)

Throughout this chapter, A is a densely defined linear m-accretive operator in a Banach space X with the

norm ‖ · ‖, F is a nonlinear mapping, and u0 is a given initial value. We will consider various situations. For

example, the easiest case is when F : X → X is globally Lipschitz, and then (2.1) has a solution defined for

all times t ≥ 0. Another case is when F : D(A) → D(A) is globally Lipschitz (for the graph norm), and then

again (2.1) has a solution defined for all times t ≥ 0. Next, we consider the case where F is not globally

Lipschitz, but only Lipschitz continuous on every bounded set; in this case, we establish that (2.1) has a

local solution defined on a maximal time interval [0, Tm) and in addition, if Tm <∞, then u(t) blows up as

t ↑ Tm.

2.1. The case F : X → X is globally Lipschitz. Assume F : X → X is globally Lipschitz in the

sense that there exists a constant L such that

‖F (v)− F (u)‖ ≤ L‖v − u‖,

for all u, v ∈ X. The main result of this section is the following.

Theorem 2.1.1. Given any u0 ∈ X, there exists a unique global weak solution u of (2.1) in the sense that

u ∈ C([0,∞), X) and

u(t) = T (t)u0 +
∫ t

0

T (t− s)F (u(s)) ds, (2.1.1)

for all t ≥ 0.

In addition, there is continuous dependence of u with respect to u0:

‖v(t)− u(t)‖ ≤ eLt‖v0 − u0‖, (2.1.2)

for all t ≥ 0, where v is the solution of (2.1.1) with the initial value v0.

Moreover, if u0 ∈ D(A) then u is Lipschitz continuous on bounded sets of [0,∞); i.e. for every T <∞,

there exists a constant MT such that

‖u(t2)− u(t1)‖ ≤MT |t2 − t1|, (2.1.3)

for all 0 ≤ t1, t2 ≤ T .

Corollary 2.1.2. Assume that X is reflexive and that u0 ∈ D(A). Then (2.1) has a unique global, classical

solution, i.e.

u ∈ C1([0,∞), X) ∩ C([0,∞), D(A)), (2.1.4)

where D(A) is equipped with the graph norm.
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Proof of Corollary 2.1.2. We already know by Theorem 2.1.1 that the solution u of (2.1.1) is Lipschitz

continuous on bounded sets, hence F (u) is also Lipschitz continuous on bounded sets. The conclusion (2.1.4)

follows from Corollary 1.5.8.

Proof of Theorem 2.1.1. The proof proceeds in four steps.

Step 1. Uniqueness. Assume u and v are two solutions of (2.1.1). Then

‖u(t)− v(t)‖ ≤ L

∫ t

0

‖u(s)− v(s)‖ ds,

thus by Gronwall’s inequality, ‖u(t)− v(t)‖ ≤ ‖u(0)− v(0)‖eLt = 0.

Step 2. Existence. This is proved by using the contraction mapping principle in the space

E = {u ∈ C([0,∞), X); sup
t≥0

e−kt‖u(t)‖ <∞},

where k > 0 is to be chosen. E equipped with the norm

‖u‖E = sup
t≥0

e−kt‖u(t)‖,

is a Banach space. Given u ∈ E, set

Φ(u)(t) = T (t)u0 +
∫ t

0

T (t− s)F (u(s)) ds,

for all t ≥ 0. We first claim that Φ(u) ∈ E. It is clear that Φ(u) ∈ C([0,∞), X). Next, we have

‖Φ(u)(t)‖ ≤ ‖u0‖+
∫ t

0

‖F (u(s))‖ ds.

But ‖F (u(s))‖ ≤ L‖u(s)‖+ ‖F (0)‖; and so,

‖Φ(u)(t)‖ ≤ ‖u0‖+ t‖F (0)‖+ L‖u‖E

∫ t

0

eks ds = ‖u0‖+ t‖F (0)‖+ L
ekt − 1
k

‖u‖E .

Therefore, Φ(u) ∈ E and

‖Φ(u)‖E ≤ ‖u0‖+
1
ek
‖F (0)‖+

L

k
‖u‖E .

We claim that Φ is a contraction on E provided k > L. Indeed, we have

‖Φ(u)(t)− Φ(v)(t)‖ ≤ L

∫ t

0

‖u(s)− v(s)‖ ds ≤ L‖u− v‖E

∫ t

0

eks ds = L
ekt − 1
k

‖u− v‖E .

Thus,

‖Φ(u)− Φ(v)‖E ≤ L

k
‖u− v‖E .

Choosing any k > L, we conclude that Φ has a fixed point u ∈ E, which is a solution of equation (2.1.1).

Step 3. Continuous dependence. Assume that u and v are two solutions of (2.1.1) associated to the initial

values u0 and v0, respectively. Then,

‖u(t)− v(t)‖ ≤ ‖u0 − v0‖+ L

∫ t

0

‖u(s)− v(s)‖ ds,
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and (2.1.2) follows from Gronwall’s inequality.

Step 4. Lipschitz continuity when u0 ∈ D(A). Let h > 0. By Corollary 1.5.18 we know that u(t+ h) is

the weak solution of (2.1) with the initial value u(h). By (2.1.2), we have

‖u(t+ h)− u(t)‖ ≤ ‖u(h)− u(0)‖eLt, (2.1.5)

for all t ≥ 0. On the other hand, we have

u(h) = T (h)u0 +
∫ h

0

T (h− s)F (u(s)) ds;

and so,

‖u(h)− u0‖ ≤ ‖T (h)u0 − u0‖+ h sup
0<s<h

‖F (u(s))‖ ≤ h‖Au0‖+ h sup
0<s<h

‖F (u(s))‖, (2.1.6)

by Proposition 1.3.4 (i). On the other hand,

‖u(t)‖ ≤ ‖u0‖+
∫ t

0

‖F (u(s))‖ ds ≤ ‖u0‖+ t‖F (0)‖+ L

∫ t

0

‖u(s)‖ ds.

By Gronwall’s inequality, this implies

‖u(t)‖ ≤ (‖u0‖+ t‖F (0)‖)eLt;

and so,

sup
0<s<h

‖F (u(s))‖ ≤ ‖F (0)‖+ LeLh(‖u0‖+ h‖F (0)‖).

(2.1.3) follows from (2.1.5), (2.1.6) and the above inequality.

Remark 2.1.3. Instead of applying the contraction mapping principle in E, one could work in C([0, T ], X)

equipped with its usual norm, and then Φ is a contraction provided LT < 1. Fix any such T , then (2.1.1)

has a solution of [0, T ], and by iteration (2.1.1) has a global solution.

Remark 2.1.4. It is essential to assume in Corollary 2.1.2 that X is reflexive. Here is an example showing

that if X is not reflexive, then the weak solution of (2.1.1) needs not be a classical solution even if u0 ∈ D(A).

Let X = C0(R) and let A be defined by{
D(A) = {u ∈ C1(R) ∩X; u′ ∈ X},

Au = u′ for u ∈ D(A).

Recall that T (t)ϕ(x) = ϕ(x − t) (see Proposition 1.4.1). Let F (u) = u+. Clearly, F : X → X is globally

Lipschitz. We claim that in this case the weak solution of (2.1.1) is given by

u(t, x) = etu+
0 (x− t)− u−0 (x− t).

Indeed, F (u(s)) = esu+
0 (x− s), and T (t− s)F (u(s)) = esu+

0 (x− t); and so,

T (t)u0 +
∫ t

0

T (t− s)F (u(s)) ds = u0(x− t) +
∫ t

0

esu+
0 (x− t) ds

= u0(x− t) + (et − 1)u+
0 (x− t)

= −u−0 (x− t) + etu+
0 (x− t) = u(t).
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Choosing for example u0(x) = e−x2
sinx ∈ D(A), it follows that u(t) 6∈ D(A) for t > 0 since the function

x 7→ u(t, x) is not C1.

Remark 2.1.5. Throughout this section, we have assumed that F is independent of t. It is very easy to

extend the above results to the case where F also depends on t, under various assumptions. For example,

assume that F (t, u) : [0,∞)×X → X is continuous and that for every T <∞ there exists LT such that

‖F (t, v)− F (t, u)‖ ≤ LT ‖v − u‖,

for all t ∈ [0, T ] and all u, v ∈ X. Then, given any u0 ∈ X, the problem
du

dt
+Au = F (t, u),

u(0) = u0,

has a unique global weak solution. For every T > 0, we consider the space

ET = {u ∈ C([0, T ], X); sup
0≤t≤T

e−kt‖u(t)‖ <∞},

with k > LT , and then the map Φ defined by

Φ(u)(t) = T (t)u0 +
∫ t

0

T (t− s)F (s, u(s)) ds,

has a unique fixed point in ET .

2.2. The case F : X → X is globally Lipschitz and C1. Assume F : X → X is globally Lipschitz

and that F ∈ C1(X,X). The main result of this section is the following.

Theorem 2.2.1. Given u0 ∈ D(A), there exists a unique global, classical solution u of (2.1), i.e. u ∈

C1([0,∞), X) ∩ C([0,∞), D(A)).

Remark 2.2.2. In contrast with Corollary 2.1.2, we do not assume here that X is reflexive, but instead

we assume that F ∈ C1(X,X).

Proof of Theorem 2.2.1. The idea is the following. Consider the problem (2.1), and formally differentiate

it with respect to t. Thus we have

d

dt

(
du

dt

)
+A

du

dt
= F ′(u) · du

dt
;

hence v =
du

dt
satisfies 

dv

dt
+Av = F ′(u) · v,

v(0) = F (u0)−Au0.

(2.2.1)

So far, we do not know whether
du

dt
really exist, but on the other hand the existence of v satisfying (2.2.1)

in the weak sense follows from Remark 2.1.5. Therefore, we define v to be the weak solution of (2.2.1), and

our aim is to prove that u ∈ C1([0,∞), X) with v =
du

dt
.
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From (2.1.1), we have

u(t+ h)− u(t)
h

= T (t)
T (h)− I

h
u0

+
∫ t

0

T (t− s)
F (u(s+ h))− F (u(s))

h
ds+

1
h

∫ h

0

T (t+ h− s)F (u(s)) ds.

On the other hand, from (2.2.1) we have

v(t) = T (t)(F (u0)−Au0) +
∫ t

0

T (t− s)F ′(u(s)) · v(s) ds.

It follows that ∥∥∥u(t+ h)− u(t)
h

− v(t)
∥∥∥ ≤ x1 + x2 + x3,

with

x1 =
∥∥∥T (t)

(T (h)− I

h
u0 +Au0

)∥∥∥,
x2 =

∫ t

0

T (t− s)
∥∥∥F (u(s+ h))− F (u(s))

h
− F ′(u(s)) · v(s)

∥∥∥ ds,
x3 =

∥∥∥ 1
h

∫ h

0

T (t+ h− s)F (u(s)) ds− T (t)F (u0)
∥∥∥.

Since u0 ∈ D(A), we have x1 → 0 as h ↓ 0. Next, we estimate x2. Using the fact that F ∈ C1(X,X), we

have for every a ∈ X

‖F (a+ z)− F (a)− F ′(a) · z‖ ≤ εa(‖z‖)‖z‖,

with εa(‖z‖) → 0 as ‖z‖ → 0. Moreover, this estimate is uniform for a in a compact set of X. Given T <∞,

it follows that

‖F (u(s+ h))− F (u(s))− F ′(u(s)) · (u(s+ h)− u(s))‖ ≤ ε(‖u(s+ h)− u(s)‖)‖u(s+ h)− u(s)‖,

for all s ∈ [0, T ] and all h ∈ [0, 1]. Using Theorem 2.1.1, we obtain

‖F (u(s+ h))− F (u(s))− F ′(u(s)) · (u(s+ h)− u(s))‖ ≤ ε(h)h;

and thus∥∥∥F (u(s+ h))− F (u(s))
h

− F ′(u(s)) · v(s)
∥∥∥ ≤ ε(h) +

∥∥∥F ′(u(s)) · (u(s+ h)− u(s)
h

− v(s)
)∥∥∥.

Therefore,

x2 ≤ Tε(h) + C

∫ t

0

∥∥∥u(s+ h)− u(s)
h

− v(s)
∥∥∥ ds,

with C = sup
0≤s≤T

‖F ′(u(s))‖.

Finally,

x3 ≤
∥∥∥ 1
h

∫ h

0

T (h− s)F (u(s)) ds− F (u0)
∥∥∥ ≤ η(h),

with η(h) → 0 as h ↓ 0. Set

ϕh(t) =
∥∥∥u(t+ h)− u(t)

h
− v(t)

∥∥∥.
Combining the above inequalities, we find

ϕh(t) ≤ Tε(h) + η(h) + C

∫ t

0

ϕh(s) ds.
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By Gronwall’s lemma, this implies that

ϕh(t) ≤ (Tε(h) + η(h))eCt,

for all t ∈ [0, T ]. It follows that ϕh(t) → 0 as h ↓ 0. This means that u is right differentiable for all t ∈ [0, T )

and that
d+u

dt
= v(t). Since v ∈ C([0,∞), X), it follows from Theorem A.1.16 that u ∈ C1([0, T ), X). This

implies that F (u) ∈ C1([0, T ), X). Going back to equation (2.1.1), we may now assert, using Proposition 1.5.4

that u ∈ C([0, T ), D(A)) and that
du

dt
+Au = F (u),

for all t ∈ [0, T ). The result follows, since T is arbitrary.

2.3. The case F : D(A) → D(A) is globally Lipschitz for the graph norm. In this section, we

assume F : D(A) → D(A) is globally Lipschitz, i.e. that there exists a constant L such that

‖F (v)− F (u)‖+ ‖A(F (v)− F (u))‖ ≤ L(‖v − u‖+ ‖Av −Au‖),

for all u, v ∈ D(A). The main result is the following.

Theorem 2.3.1. Given any u0 ∈ D(A), there exists a unique global, classical solution u of (2.1), i.e.

u ∈ C1([0,∞), X) ∩ C([0,∞), D(A)).

In addition, if u0 ∈ D(A2) then
du

dt
and Au are Lipschitz continuous from bounded sets of [0,∞) to X.

Moreover, if X is reflexive and u0 ∈ D(A2), then u ∈ C1([0,∞), D(A)) ∩ C([0,∞), D(A2)).

Proof. As in Theorem 1.1.28, set X1 = D(A) and consider the operator A(1) defined by

{
D(A(1)) = {x ∈ X1; Ax ∈ X1},

A(1)x = Ax for all x ∈ D(A(1)).

Recall that A(1) is a densely defined m-accretive operator in X1 (Theorem 1.1.28) and that the semigroup

generated by −A(1) coincides with the restriction of (T (t))t≥0 to X1 (Proposition 1.3.16). Applying The-

orem 2.1.1, there exists a unique, global weak solution in the sense that u ∈ C([0,∞), D(A)) and u veri-

fies (2.1.1). In particular, F (u) ∈ C([0,∞), D(A)), and it follows from Corollary 1.5.6 that u ∈ C1([0,∞), X)

and that u solves (2.1) in the classical sense.

In the case u0 ∈ D(A2), it follows from Theorem 2.1.1 that

‖u(t2)− u(t1)‖D(A) ≤MT |t2 − t1|,

for all T < ∞ and 0 ≤ t1, t2 ≤ T , i.e. Au is Lipschitz continuous on bounded sets of [0,∞) into X. Going

back to the equation (2.1), we see that
du

dt
= F (u) − Au is also Lipschitz continuous on bounded sets of

[0,∞) into X.

Finally, if X is reflexive, so is X1; and from Corollary 2.1.2 we deduce that if u0 ∈ D(A2), then

u ∈ C1([0,∞), X1) ∩ C([0,∞), D(A(1))), i.e. u ∈ C1([0,∞), D(A)) ∩ C([0,∞), D(A2)).
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2.4. The case F : X → X is Lipschitz continuous on bounded sets. Maximal interval of

existence. The blow up alternative. Assume F : X → X is Lipschitz continuous on bounded sets,

i.e. for every constant M , there exists LM such that

‖F (v)− F (u)‖ ≤ LM‖v − u‖, (2.4.1)

for all u, v ∈ X such that ‖u‖ ≤M and ‖v‖ ≤M . The first result of this section is the following.

Theorem 2.4.1. For every u0 ∈ X, there exists 0 < T <∞ and a unique weak solution u of (2.1) defined

on [0, T ], i.e. u ∈ C([0, T ], X) and (2.1.1) holds for all t ∈ [0, T ].

Proof. Set E = C([0, T ], X) with its usual norm, where T > 0 is to be chosen later. Set

K = {u ∈ E; ‖u(t)‖ ≤ ‖u0‖+ 1 for all t ∈ [0, T ]},

so that K is a closed subset of the Banach space E. Given any u ∈ K, set

Φ(u)(t) = T (t)u0 +
∫ t

0

T (t− s)F (u(s)) ds,

for all t ∈ [0, T ], so that Φ(u) ∈ E. We claim that

a) ‖Φ(v)−Φ(u)‖E ≤ LT‖v − u‖E for all u, v ∈ K, where L = LM with M = ‖u0‖+ 1. This is an obvious

consequence of (2.4.1).

b) Φ : K → K, provided T (‖F (0)‖+ L(‖u0‖+ 1)) ≤ 1. Indeed,

‖Φ(u)(t)‖ ≤ ‖u0‖+
∫ t

0

‖F (u(s))‖ ds.

On the other hand,

‖F (u(s))− F (0)‖ ≤ L‖u(s)‖ ≤ L(‖u0‖+ 1),

since u ∈ K. Therefore,

‖Φ(u)(t)‖ ≤ ‖u0‖+ T (‖F (0)‖+ L(‖u0‖+ 1)),

and the conclusion follows.

We now choose T small enough so that

T (‖F (0)‖+ L(‖u0‖+ 1)) < 1, (2.4.2)

which implies in particular that LT < 1. Then Φ has a unique fixed point u ∈ K. This u is a weak solution

of (2.1). The uniqueness of u follows from (2.4.1) and Gronwall’s inequality, as in the proof of Theorem 2.1.1.

Remark 2.4.2. It is tempting to iterate this construction. We first get existence on an interval [0, T1] as

above. Next, we have a weak solution of (2.1) starting from the initial value u(T1), and it is defined on [0, δ1]

with

δ1(‖F (0)‖+ C1(‖u(T1)‖+ 1)) < 1,
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where C1 = LM with M = ‖u(T1)‖ + 1. Gluing these two functions, and using Corollary 1.5.18, we now

obtain a weak solution of (2.1) defined on [0, T2] with T2 = T1 + δ1. We define inductively the increasing

sequence (Tn)n≥1. It can very well happen that sup
n≥1

Tn <∞ (see Remark 2.4.4).

Maximal interval of existence. Let T1 < T2 and let u1 and u2 be weak solutions of (2.1) on [0, T1] and

[0, T2], respectively. By uniqueness, we know that u1 = u2 on [0, T1]. Consider now the family (ui(t))i∈I of

all weak solutions of (2.1) defined on some interval [0, Ti]. Set

Tm = sup
i∈I

Ti.

Note that Tm may be +∞. We define the function u(t) on [0, Tm) by

u(t) = ui(t), if t ∈ [0, Ti], i ∈ I.

This function is well defined by the uniqueness property mentioned above. Note that u ∈ C([0, Tm), X) and

that u verifies (2.1.1) for all t ∈ [0, Tm). This solution is called the maximal solution of (2.1).

Theorem 2.4.3. Assume (2.4.1) and let u be the maximal solution of (2.1). Then, the following alternative

holds.

Either Tm = +∞,

or Tm <∞ and lim
t↑Tm

‖u(t)‖ = +∞.

In the first case, we say that u is a global solution, in the second case we say that u blows up in finite

time.

Proof. Suppose that Tm < ∞ and that there exists a sequence tj ↑ Tm such that ‖u(tj)‖ ≤ C < ∞. Fix

any δ > 0 such that

δ(‖F (0)‖+ L(C + 1)) < 1,

where L = LM with M = C + 1. Starting from u(tj), we have a weak solution vj of (2.1) defined on [0, δ].

Gluing together u with vj , we obtain a weak solution of (2.1) defined on [0, tj + δ] (see Corollary 1.5.18).

For j sufficiently large, tj + δ > Tm, and this is impossible since u is the maximal solution.

Remark 2.4.4. For a given equation (2.1), the maximal time of existence Tm depends on u0. Here are

some simple examples with X = R and A = 0 showing that many situations may occur.

Example 1:
du

dt
= −u3. Here, the solution is given by u(t) =

u0√
1 + 2tu2

0

, so that Tm = +∞ for every

u0 ∈ R.

Example 2:
du

dt
= u3. Here, the solution is given by u(t) =

u0√
1− 2tu2

0

, so that Tm =


+∞ if u0 = 0,
1

2u2
0

<∞ if u0 6= 0.

Example 3:
du

dt
= u2. Here, the solution is given by u(t) =

u0

1− tu0
, so that Tm =


+∞ if u0 ≤ 0,
1
u0

<∞ if u0 > 0.
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Example 4:
du

dt
= u3 − u. Here, the solution is given by u(t) =

u0√
u2

0 − e2t(u2
0 − 1)

, so that

Tm =


+∞ if |u0| ≤ 1,

1
2

log
(

u2
0

u2
0 − 1

)
<∞ if |u0| > 1.

Theorem 2.4.5. Assume (2.4.1).

(i) The mapping u0 7→ Tm(u0) is lower semicontinuous.

(ii) The solution u depends continuously on the initial value u0 in the sense that if uj
0 −→

j→∞
u0 and if uj is

the corresponding maximal solution of (2.1) defined on the interval [0, Tj), then given any T < Tm, uj

is defined on [0, T ] for j large enough and uj −→
j→∞

u in C([0, T ], X). More precisely, there exists CT such

that ‖uj(t)− u(t)‖ ≤ CT ‖uj
0 − u0‖ for all t ∈ [0, T ].

Proof. Given u0, let T < Tm(u0), C = max
0≤t≤T

‖u(t)‖ and M = C + 1. Let δ > 0 be small enough so that

δ(‖F (0)‖+ L(M + 1)) < 1,

with L = LM+1, and let j be large enough so that

‖uj
0 − u0‖eLT < 1. (2.4.3)

We claim that Tj = Tm(uj
0) > T and that

‖uj(t)− u(t)‖ ≤ ‖uj
0 − u0‖eLT , (2.4.4)

for all t ∈ [0, T ]. Indeed, it follows from (2.4.3) and Theorem 2.4.1 (see in particular formula (2.4.2)) that

Tj > δ and sup
0≤t≤δ

‖uj(t)‖ ≤ M + 1. It follows from (2.4.1) and Gronwall’s inequality that (2.4.4) holds for

all t ∈ [0, δ]. In particular, ‖uj(t)‖ ≤ M , and one can iterate this construction k times with k = [T/δ].

Therefore, uj is defined on [0, (k + 1)δ], and in particular Tj > T , and the estimate (2.4.4) holds for all

t ∈ [0, T ]. The result follows.

Theorem 2.4.6. Assume (2.4.1). Suppose u0 ∈ D(A) and let u be the maximal solution of (2.1).

(i) u is Lipschitz continuous on compact intervals of [0, Tm).

(ii) If X is reflexive, then u is a classical solution of (2.1) on [0, Tm), i.e. u ∈ C1([0, Tm), X) ∩ C([0, Tm),

D(A)).

(iii) If F ∈ C1(X,X), then u is a classical solution of (2.1) on [0, Tm).

We omit the proof, since it is similar to the proofs of the corresponding statements when F is globally

Lipschitz.

Theorem 2.4.7. Assume (2.4.1) and set C(M) = sup{‖F (x)‖; ‖x‖ ≤ M}. If u is the maximal weak

solution of (2.1), then
C(‖u(t)‖+ β)

β
>

1
Tm − t

, (2.4.5)
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for all β > 0 and all t ∈ [0, Tm).

Proof. The proof proceeds in two steps.

Step 1. Let t ∈ [0, Tm) and β > 0. If 0 ≤ s ≤ β

C(‖u(t)‖+ β)
is such that t+ s < Tm, then

‖u(t+ s)‖ ≤ ‖u(t)‖+ β.

Indeed, otherwise there exists s0 <
β

C(‖u(t)‖+ β)
such that t + s0 < Tm, ‖u(t + s)‖ ≤ ‖u(t)‖ + β for

0 ≤ s ≤ s0 and ‖u(t+ s0)‖ = ‖u(t)‖+ β. However, it follows from (2.1.1) that

‖u(t+ s0)‖ ≤ ‖u(t)‖+
∫ s0

0

‖F (u(s))‖ ds ≤ ‖u(t)‖+ s0C(‖u(t)‖+ β) < ‖u(t)‖+ β,

which is absurd.

Step 2. Note that (2.4.5) is equivalent to

Tm > t+
β

C(‖u(t)‖+ β)
.

If the above inequality does not hold, there exists β0 > 0 and t0 ∈ [0, Tm) such that

Tm ≤ t+
β0

C(‖u(t0)‖+ β0)
;

then by Step 1, u is bounded on [0, Tm). Therefore, F (u(·)) ∈ L∞((0, Tm), X) and it follows from for-

mula (2.1.1) that u(t) has a limit as t ↑ ∞, which is impossible. The result follows.

Remark 2.4.8. Observe that (2.4.5) gives a lower bound of blow up which is independent of the solution.

Note that this estimate often provides an optimal rate. This is the case for the examples of Remark 2.4.4

(choose β = ‖u(t)‖).

Remark 2.4.9. The case where F is locally Lipschitz. Assume F : X → X is locally Lipschitz,

i.e. for every x ∈ X, there exists r > 0 such that F is Lipschitz continuous B(x, r) → X. Note that this

assumption is weaker than the assumption that F is Lipschitz continuous on every bounded set. (It does

not even imply that F is bounded on bounded sets.) The same argument as in the proof of Theorem 2.4.1

shows that for every u0 ∈ X there is a unique weak solution defined on a maximal interval [0, Tm). We call

attention on the following.

Open problem. Assume F is locally Lipschitz, and let u0 ∈ X be such that Tm <∞. Does ‖u(t)‖ → +∞

as t ↑ Tm? (It is not even clear that lim sup
t↑Tm

‖u(t)‖ = +∞.)

Note that if F is bounded on bounded sets, then the answer is yes. Indeed, the conclusion of Theorem 2.4.7

holds without assumption (2.4.1), and estimate (2.4.5) implies blow up by choosing β = 1.

Theorem 2.4.10. Assume F : X → X is locally Lipschitz and in addition that F grows at most linearly,

i.e.

‖F (u)‖ ≤ C1‖u‖+ C2, (2.4.6)
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for all x ∈ X. Then, for every u0 ∈ X, Tm(u0) = +∞.

Proof. First observe that by Remark 2.4.9, estimate (2.4.5) holds. The conclusion follows by taking

β = ‖u(t)‖+ 1 in (2.4.5), and using assumption (2.4.6).

Here is another situation where u is globally defined for every u0 ∈ X.

Theorem 2.4.11. Assume that X is a Hilbert space with scalar product (·, ·) and that F : X → X is

Lipschitz continuous on bounded sets. If

(F (u), u) ≤ C1‖u‖2 + C2, (2.4.7)

for all u ∈ X, then Tm(u0) = +∞ for every u0 ∈ X.

Proof. Assume first that u0 ∈ D(A), so that u is a classical solution of (2.1). We claim that Tm = +∞

and that

‖u(t)‖2 ≤ (‖u0‖2 + 2C2)e2C1t, (2.4.8)

for all t ≥ 0. Indeed, by taking the scalar product of the equation with u, we obtain using (2.4.7)

1
2
d

dt
‖u(t)‖2 ≤ C1‖u‖2 + C2,

from which (2.4.8) follows.

Let now u0 ∈ X and uj
0 → u0 with uj

0 ∈ D(A). The corresponding solutions uj are global and

verify (2.4.8), which implies that they are uniformly bounded on bounded sets of [0,∞). By continuous

dependence, we see that (2.4.8) holds for all t ∈ [0, Tm), and thus Tm = +∞.

2.5. The case F : D(A) → D(A) is Lipschitz continuous on bounded sets. In this section, we

assume that F : D(A) → D(A) is Lipschitz continuous on bounded sets, i.e. for every constant M , there

exists LM such that

‖F (v)− F (u)‖+ ‖A(F (v)− F (u))‖ ≤ LM (‖v − u‖+ ‖Av −Au‖), (2.5.1)

for all u, v ∈ D(A) such that ‖u‖+ ‖Au‖ ≤M and ‖v‖+ ‖Av‖ ≤M .

Theorem 2.5.1. Assume (2.5.1). For every u0 ∈ D(A), there exists a unique classical solution u of (2.1)

defined on a maximal interval [0, Tm), with the alternative that

either Tm = +∞,

or Tm <∞ and lim
t↑Tm

‖u(t)‖+ ‖Au(t)‖ = +∞.

In addition, if u0 ∈ D(A2), then
du

dt
and Au are Lipschitz continuous on compact subsets of [0, Tm) into

X.

Moreover, if X is reflexive and u0 ∈ D(A2), then u ∈ C1([0, Tm), D(A)) ∩ C([0, Tm), D(A2)).
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We omit the proof, since it is similar to the proof of Theorem 2.3.1; instead of using Theorem 2.1.1, we

now use the results of Section 2.4.

Remark 2.5.2. In some concrete examples, it is possible to apply several existence results, and in principle

they could lead to defferent values of Tm. Often, one can prove that the Tm is the same for all methods.

Suppose for example F : X → X is Lipschitz continuous on bounded sets and, given u0 ∈ D(A), let T1

be the maximal time of existence. Suppose that in addition F : D(A) → D(A) is Lipschitz continuous on

bounded sets and let T2 be the corresponding maximal time of existence. Then T1 = T2.

Proof. T2 ≤ T1. Indeed, if T1 < T2, then lim
t↑T1

‖u(t)‖ = +∞, but on the other hand, u ∈ C([0, T2), X).

Impossible.

T2 ≥ T1. Suppose not, that T2 < T1. Then, lim
t↑T2

‖u(t)‖ + ‖Au(t)‖ = +∞. Fix T3 ∈ (T2, T1). It

follows from Theorem 2.4.6 (i) that u is Lipschitz continuous [0, T3] → X. On the other hand, we know

that u ∈ C1([0, T2), X), and thus
∥∥∥du
dt

(t)
∥∥∥ ≤ C for all t ∈ [0, T2) and some constant C. Going back to the

equation, we have

‖Au(t)‖ ≤
∥∥∥du
dt

(t)
∥∥∥+ ‖F (u(t))‖ ≤ C ′,

for all t ∈ [0, T2). Impossible.

Conclusion. In many concrete problems the first question is to determine whether for a given initial value

u0 the solution is global or whether it blows up in finite time. In view of the above results, the global

existence follows from a priori estimates on every bounded set of [0,∞). In the case where F : X → X is

Lipschitz continuous on bounded sets, then we can apply Theorem 2.4.3 and it suffices to estimate ‖u(t)‖.

However, in a number of important situations, F does not map X → X but it maps D(A) → D(A). In view

of Theorem 2.5.1, global existence then follows from an estimate of ‖u(t)‖+ ‖Au(t)‖ on every bounded set

of [0,∞). Of course, this can be a rather delicate task.

The next question is the following.

(i) If the solution is global, then it is of interest to study its asymptotic behavior as t→∞.

(ii) If finite time blow up occurs, then one wants to know how u(t) behaves near blow up time.

Here is still another variant of the local existence theory.

Theorem 2.5.3. Assume X is reflexive and F : D(A) → D(A) verifies the following properties.

(i) F maps bounded sets of D(A) into bounded sets of D(A).

(ii) For every M , there exists LM such that

‖F (v)− F (u)‖ ≤ LM‖v − u‖,

for all u, v ∈ D(A) such that ‖u‖D(A) ≤M and ‖v‖D(A) ≤M .

Then, for every u0 ∈ D(A), there exists a unique, classical solution of (2.1) defined on a maximal interval

[0, Tm), with the alternative that

either Tm = +∞,
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or Tm <∞ and lim
t↑Tm

‖u(t)‖+ ‖Au(t)‖ = +∞.

Proof. Given T > 0, let E = C([0, T ], D(A)), and set

K = {u ∈ E; ‖u(t)‖D(A) ≤ ‖u0‖D(A) + 1, for t ∈ [0, T ]}.

K is equipped with the distance induced by the norm of C([0, T ], X). Note that K is a complete metric

space, since X (hence D(A)) is reflexive.

Consider Φ as in the proof of Theorem 2.1.1. Φ : K → K is a strict contraction provided TLM < 1

and T sup{‖F (u)‖D(A); ‖u‖D(A) ≤ M} ≤ 1, with M = ‖u0‖D(A) + 1. The alternative is proved as in

Theorem 2.4.3.

2.6. Smoothing effect for self-adjoint operators in Hilbert spaces. In this section, we assume

that X is a Hilbert space with the scalar product (·, ·) and that A is a self-adjoint accretive operator.

Theorem 2.6.1. Assume F : X → X is Lipschitz continous on bounded sets. Then, for every u0 ∈ X,

the weak solution of (2.1) defined on the maximal interval [0, Tm) satisfies in addition u ∈ C1((0, Tm), X) ∩

C((0, Tm), D(A)). In particular, u is a classical solution of (2.1) on (0, Tm).

Proof. The proof is an adaptation of the proof of Theorem 1.3.34 to the nonlinear case. We first assume

u0 ∈ D(A), so that by Theorem 2.4.6 u is a classical solution of (2.1) on [0, Tm), and we obtain estimates

that are independent of ‖Au0‖. Taking the scalar product of the equation with u, we find

1
2
d

dt
‖u(t)‖2 + (Au, u) = (F (u), u);

and so, for every t ∈ [0, Tm),

1
2
‖u(t)‖2 +

∫ t

0

(Au(s), u(s)) ds =
1
2
‖u0‖2 +

∫ t

0

(F (u(s)), u(s)) ds. (2.6.1)

Next, we take the scalar product of the equation with t
du

dt
, and we obtain

t
∥∥∥du
dt

∥∥∥2

+ t(Au,
du

dt
) = t(F (u),

du

dt
).

Since A is self-adjoint,

(Au,
du

dt
) =

1
2
d

dt
(Au, u);

and so,
1
2
d

dt
(t(Au, u)) + t

∥∥∥du
dt

∥∥∥2

=
1
2
(Au, u) + t(F (u),

du

dt
).

Since (F (u),
du

dt
) ≤ 1

2
‖F (u)‖2 +

1
2

∥∥∥du
dt

∥∥∥2

, this yields after integration on (0, t), 0 < t < Tm,

t(Au(t), u(t)) +
∫ t

0

s
∥∥∥du
dt

∥∥∥2

ds ≤
∫ t

0

(Au(s), u(s)) ds+
∫ t

0

s‖F (u(s))‖2 ds.

Using now (2.6.1) we obtain

t(Au(t), u(t)) +
∫ t

0

s
∥∥∥du
dt

∥∥∥2

ds ≤ 1
2
‖u0‖2 +

∫ t

0

{s‖F (u(s))‖2 + (F (u(s), u(s))} ds. (2.6.2)
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Next, given 0 < h < Tm, we set uh(t) =
u(t+ h)− u(t)

h
for all 0 < t < Tm − h. We have by equation (2.1)

duh

dt
+Auh =

F (u(t+ h))− F (u(t))
h

.

Taking the scalar product of this equation with uh, we find

1
2
d

dt
‖uh‖2 + (Auh, uh) =

(
F (u(t+ h))− F (u(t))

h
, uh

)
.

It follows from (2.4.1) that
1
2
d

dt
‖uh‖2 ≤ C(t+ h)‖uh‖2,

where C(s) = LM(s) with M(s) = sup
0≤σ≤s

‖u(σ)‖. It follows that

‖uh(t)‖2 ≤ ‖uh(s)‖2e2(t−s)C(t+h).

Letting h ↓ 0 and using the fact that u ∈ C1([0, Tm), X), we find∥∥∥du
dt

(t)
∥∥∥2

≤
∥∥∥du
dt

(s)
∥∥∥2

e2(t−s)C(t),

for 0 ≤ s ≤ t < Tm. It follows that

s
∥∥∥du
dt

(s)
∥∥∥2

≥ se−2tC(t)
∥∥∥du
dt

(t)
∥∥∥2

,

and (2.6.2) yields

t(Au(t), u(t)) +
t2

2
e−2tC(t)

∥∥∥du
dt

(t)
∥∥∥2

≤ 1
2
‖u0‖2 +

∫ t

0

{s‖F (u(s))‖2 + (F (u(s), u(s))} ds. (2.6.3)

for all 0 ≤ t < Tm.

Let now u0 ∈ X, let uj
0 → u0 with uj

0 ∈ D(A), and let uj be the corresponding maximal solutions

of (2.1). Given any t ∈ (0, Tm), it follows from (2.6.3) and the continuous dependence (Theorem 2.4.5) that

there exists CT such that

t2
∥∥∥duj

dt
(t)
∥∥∥2

≤ CT ,

for all t ∈ [0, T ] and all j sufficiently large. Using the equation, it follows that there exists KT such that

t2‖Auj(t)‖2 ≤ KT ,

for all t ∈ [0, T ] and all j sufficiently large. Since uj(t) → u(t) in X as j →∞, this implies that u(t) ∈ D(A)

for all t ∈ (0, T ]. Therefore, by Theorem 2.4.6, u is a classical solution of (2.1) on [t, T ]. The result follows,

since 0 < t < T < Tm are arbitrary.

2.7. Some simple examples where global existence holds.

Example 1. Consider the equation
ut + ux = g(u), 0 < x < 1, t ≥ 0,

u(t, 0) = 0, t ≥ 0,

u(0, x) = u0(x), 0 < x < 1,

(2.7.1)
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where g : R → R is locally Lipschitz and

|g(u)| ≤ C|u|+ C, (2.7.2)

for all u ∈ R and some constant C. Assume u0 ∈ W 1,p(0, 1) with 1 < p < ∞ and u0(0) = 0. Then, there

exists a unique global, classical solution u of (2.7.1), i.e. u ∈ C1([0,∞), Lp(0, 1)) ∩ C([0,∞),W 1,p(0, 1)).

Fix T > 0 and M > 0, and let

g̃(u) =


g(M) if u > M,

g(u) if −M ≤ u ≤M,

g(−M) if u < −M,

so that g̃ is globally Lipschitz and verifies (2.7.2). Applying Corollary 2.1.2 with X = Lp(0, 1) and Re-

mark 1.4.2 (iii), we obtain a unique global, classical solution ũ of (2.7.1) where g is replaced by g̃. From the

equation

ũ(t) = T (t)u0 +
∫ t

0

T (t− s)g̃(ũ(s)) ds,

and the fact that T (t) is a contraction in L∞(0, 1) (by formula (1.4.3)), it follows that

‖ũ(t)‖L∞ ≤ ‖u0‖L∞ +
∫ t

0

(C‖ũ(s)‖L∞ + C) ds.

By Gronwall’s inequality, we obtain

‖ũ(t)‖L∞ ≤ (‖u0‖L∞ + Ct)eCt,

for all t ≥ 0. We choose M = (‖u0‖L∞ + CT )eCT , so that g̃(ũ(t, x)) = g(ũ(t, x)) for all x ∈ (0, 1) and all

t ∈ [0, T ]. Therefore, ũ is a classical solution of (2.7.1) on [0, T ]. The result follows, since T is arbitrary.

Assume in addition that g ∈ C2(R,R) with g(0) = 0, and that u0 ∈ W 2,p(0, 1) with u0(0) = u′0(0) = 0.

Then u ∈ C([0,∞),W 2,p(0, 1)) ∩ C1([0,∞),W 1,p(0, 1)). This follows from Theorem 2.5.1. We only have to

verify that F : D(A) → D(A) is Lipschitz continuous on bounded sets. Here, D(A) = {u ∈W 1,p(0, 1); u(0) =

0}. Given M , we have to evaluate ‖g(u) − g(v)‖D(A), i.e. ‖g(u) − g(v)‖Lp + ‖g′(u)ux − g′(v)vx‖Lp , with

‖u‖D(A), ‖v‖D(A) ≤M . First, we have

‖g(u)− g(v)‖Lp ≤ L‖u− v‖Lp .

Next, we write
‖g′(u)ux − g′(v)vx‖Lp ≤ ‖g′(u)(ux − vx)‖Lp + ‖(g′(u)− g′(v))vx‖Lp

≤ L‖v − u‖D(A) + ‖g′(u)− g′(v)‖L∞‖v‖D(A).

On the other hand,

‖g′(u)− g′(v)‖L∞ ≤ K‖u− v‖L∞ ≤ K‖u− v‖D(A),

where K = sup{|g′′(s)|; |s| ≤ ‖u‖L∞ + ‖v‖L∞}. Combining all these estimates, we see that ‖g(u) −

g(v)‖D(A) ≤ LM‖u− v‖D(A).
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Example 2. Consider the equation
ut −4u = g(u), x ∈ Ω, t ≥ 0,

u(t, x) = 0, x ∈ ∂Ω, t ≥ 0,

u(0, x) = u0(x), x ∈ Ω,

(2.7.3)

where g : R → R is locally Lipschitz and

|g(u)| ≤ C|u|+ C,

for all u ∈ R and some constant C. Here, Ω is a smooth bounded domain of RN . Assume u0 ∈ W 2,p(Ω) ∩

W 1,p
0 (Ω) with

max
{

1,
N

2

}
< p <∞.

Then, there exists a unique global, classical solution u of (2.7.3), i.e. u ∈ C([0,∞),W 2,p(Ω) ∩W 1,p
0 (Ω)) ∩

C1([0,∞), Lp(Ω)).

The argument is the same as in the previous example, except that instead of Remark 1.4.2 (iii) we

apply Proposition 1.4.19, and also Theorem 1.4.15. The assumption p >
N

2
implies that D(A) = W 2,p(Ω)∩

W 1,p
0 (Ω) ↪→ L∞(Ω) (see Appendix, Section A.3.4).

Assume in addition that g ∈ C3(R,R) with g(0) = 0, and that u0 ∈W 4,p(Ω) with u0 = 4u0 = 0 on ∂Ω.

Then u ∈ C1([0,∞),W 2,p(Ω)) ∩ C([0,∞),W 4,p(Ω)). The argument is the same as in the previous example,

except that we now apply the following lemma.

Lemma 2.7.1. Assume g ∈ C3(R,R) and let max
{

1,
N

2

}
< p < ∞. Then the map F : u 7→ g(u) maps

W 2,p(Ω) →W 2,p(Ω) and is Lipschitz continuous on bounded sets.

Proof. Assume ‖u‖W 2,p , ‖u‖W 2,p ≤M , so that in particular ‖u‖L∞ , ‖v‖L∞ ≤ KM . Clearly,

‖g(u)− g(v)‖Lp ≤ C‖u− v‖Lp .

Next, we estimate ‖Dg(u)−Dg(v)‖Lp , where D =
∂

∂xj
for some 1 ≤ j ≤ N . We write

‖g′(u)Du− g′(v)Dv‖Lp ≤ ‖g′(u)(Du−Dv)‖Lp + ‖(g′(u)− g′(v))Dv‖Lp

≤ C‖u− v‖Lp + C‖u− v‖L∞‖v‖W 1,p

≤ C‖u− v‖W 2,p .

Finally, we estimate ‖D2g(u)−D2g(v)‖Lp , where D2 =
∂2

∂xj∂xk
for some 1 ≤ j, k ≤ N . We write

‖g′(u)D2u+ g′′(u)(Du)2 − g′(v)D2v + g′′(v)(Dv)2‖Lp ≤ A+B,

with
A = ‖g′(u)D2u− g′(v)D2v‖Lp ,

B = ‖g′′(u)(Du)2 − g′′(v)(Dv)2‖Lp .

First, we have
A ≤ ‖g′(u)(D2u−D2v)‖Lp + ‖(g′(u)− g′(v))D2v‖Lp

≤ C‖u− v‖Lp + C‖u− v‖L∞‖v‖W 2,p ≤ C‖u− v‖W 2,p
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Next, we have
B ≤ ‖g′′(u)(Du+Dv)(Du−Dv)‖Lp + ‖(g′′(u)− g′′(v))(Dv)2‖Lp

≤ C(‖Du‖L2p + ‖Dv‖L2p)‖Du−Dv‖L2p + C‖u− v‖L∞‖Dv‖2L2p .

The result now follows from the Gagliardo-Nirenberg inequality

‖Du‖2L2p ≤ C‖u‖L∞‖u‖W 2,p .

(See (A.3.10).)

Example 3. Consider the equation
iut +4u = g(u), x ∈ Ω, t ≥ 0,

u(t, x) = 0, x ∈ ∂Ω, t ≥ 0,

u(0, x) = u0(x), x ∈ Ω,

(2.7.4)

where g : C → C is globally Lipschitz. Here, Ω is either a smooth bounded domain of RN , or Ω = RN (and

in that case, we also assume g(0) = 0). For every u0 ∈ H2(Ω)∩H1
0 (Ω), there exists a unique global, classical

solution u of (2.7.4), i.e. u ∈ C1([0,∞), L2(Ω)) ∩ C([0,∞),H2(Ω) ∩H1
0 (Ω)).

This is a direct consequence of Theorem 2.1.1, Corollary 2.1.2, Proposition 1.2.35 and Remark 1.2.36.

Assume in addition that N ≤ 3, g ∈ C3 with g(0) = 0, and u0 ∈ H4(Ω) with u0 = 4u0 = 0 on ∂Ω.

Then, u ∈ C([0,∞),H4(Ω)) ∩ C1([0,∞),H2(Ω) ∩ H1
0 (Ω)). The argument is the same as in the preceding

example. The assumption N ≤ 3 allows us to apply Lemma 2.7.1 with p = 2.

Example 4. Consider the equation
utt −4u = g(u, ut,∇u), x ∈ Ω, t ≥ 0,

u(t, x) = 0, x ∈ ∂Ω, t ≥ 0,

u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ Ω,

(2.7.5)

where g : R × R × RN → R is globally Lipschitz. Here, Ω is either a smooth bounded domain of RN , or

Ω = RN (and in that case, we also assume g(0) = 0). Assume u0 ∈ H2(Ω) ∩H1
0 (Ω) and v0 ∈ H1

0 (Ω). Then,

there exists a unique global, classical solution u of (2.7.5), i.e. u ∈ C2([0,∞), L2(Ω)) ∩ C1([0,∞),H1
0 (Ω)) ∩

C([0,∞),H2(Ω)).

As in Section 1.4.5, we write (2.7.5) as the system
ut − v = 0,

vt −4u+ u = g(u, v,∇u) + u,

u(0) = u0, v(0) = v0,

and we work in the space X = H1
0 (Ω)× L2(Ω) with

F (u, v) = (0, g(u, v,∇u) + u).

It is clear that F : X → X is globally Lipschitz.
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In order to get further regularity results, we have to make further assumptions. Here are some typical

situations.

(i) Assume N = 1, g ∈ C2(R3,R) and g(0, p, q) ≡ 0. If u0 ∈ H3(Ω) with u0 = u′′0 = 0 on ∂Ω and

v0 ∈ H2(Ω) ∩H1
0 (Ω), then u ∈ C2([0,∞),H1

0 (Ω)) ∩ C1([0,∞),H2(Ω)) ∩ C([0,∞),H3(Ω)).

(ii) Assume N ≤ 3, g(u, p, q) = g(u) depends only on u, g ∈ C2(R,R) with g(0) = 0. If u0 ∈ H3(Ω) with

u0 = 4u0 = 0 on ∂Ω and v0 ∈ H2(Ω) ∩ H1
0 (Ω), then u ∈ C2([0,∞),H1

0 (Ω)) ∩ C1([0,∞),H2(Ω)) ∩

C([0,∞),H3(Ω)).

(iii) Assume N ≤ 5, g(u, p, q) = g(u) depends only on u, g ∈ C2(R,R) with g(0) = 0 and g′′ ∈ L∞(R).

If u0 ∈ H3(Ω) with u0 = 4u0 = 0 on ∂Ω and v0 ∈ H2(Ω) ∩ H1
0 (Ω), then u ∈ C2([0,∞),H1

0 (Ω)) ∩

C1([0,∞),H2(Ω)) ∩ C([0,∞),H3(Ω)).

The proof consists in showing that under the above assumptions, F maps D(A) → D(A) and is Lipschitz

continuous on bounded sets. We carry the details just for the case (ii). We show that the mapping u 7→

g(u) maps H2(Ω) ∩ H1
0 (Ω) → H1

0 (Ω) and is Lipschitz continuous on bounded sets. The fact that g maps

H2(Ω) ∩ H1
0 (Ω) → H1

0 (Ω) (in fact H1
0 (Ω) → H1

0 (Ω)) is proved in Corollary A.3.29. Fix M and assume

u1, u2 ∈ H2(Ω) ∩ H1
0 (Ω) with ‖u1‖H2 , ‖u2‖H2 ≤ M , so that in particular ‖u1‖L∞ , ‖u2‖L∞ ≤ KM . We

estimate

‖g(u1)− g(u2)‖H1 ≤ ‖g(u1)− g(u2)‖L2 + ‖g′(u1)Du1 − g′(u2)Du2‖L2

≤ C‖u1 − u2‖L2 + ‖g′(u1)(Du1 −Du2)‖L2 + ‖(g′(u1)− g′(u2))Du2‖L2

≤ C‖u1 − u2‖L2 + C‖u1 − u2‖H1 + C‖u1 − u2‖L∞‖Du2‖L2

≤ C‖u1 − u2‖H2 .
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Chapter 3. The nonlinear heat equation.

Throughout this chapter, we assume that Ω is a smooth, bounded, connected open subset of RN , and

we consider the equation 
ut −4u = g(u), x ∈ Ω, t ∈ [0, T ],

u(t, x) = 0, x ∈ ∂Ω, t ∈ [0, T ],

u(0, x) = u0(x), x ∈ Ω,

(3.1)

where we assume systematically that g : R → R is locally Lipschitz.

3.1. A general local existence result. The main result of this section is the following.

Theorem 3.1.1. Given u0 ∈ L∞(Ω), there exists a unique weak solution u of (3.1), defined on a maximal

time interval [0, Tm), i.e. u ∈ L∞((0, T )× Ω) for all T < Tm and

u(t) = T (t)u0 +
∫ t

0

T (t− s)g(u(s)) ds, (3.1.1)

for all t ∈ [0, Tm). Moreover, we have the blow up alternative

either Tm = +∞,

or Tm <∞ and lim
t↑Tm

‖u(t)‖L∞ = +∞.

In addition, u depends continuously on u0. More precisely, the mapping u0 7→ Tm(u0) is lower semi-

continuous, and for every T < Tm there exists ε > 0 and C < ∞ such that if ‖v0 − u0‖L∞ ≤ ε, then

‖v − u‖L∞((0,T )×Ω) ≤ C‖v0 − u0‖L∞(Ω), where v is the solution of (3.1.1) with the initial value v0.

Remark 3.1.2. Note that from (3.1.1), it follows that

u ∈ C((0, Tm)× Ω), (3.1.2)

so that in particular u(t) ∈ C(Ω) for all t ∈ (0, Tm).

First, note that T (t)u0 ∈ C((0,∞)× Ω) (Corollary 1.4.24). Next, let T < Tm; we claim that

v(t) =
∫ t

0

T (t− s)h(s) ds, (3.1.3)

belongs to C([0, T ]× Ω) whenever h ∈ Lp((0, T )× Ω) with p > 1 +
N

2
. Indeed, we have

‖v(t)‖L∞(Ω) ≤
∫ t

0

‖T (t− s)h(s)‖L∞(Ω) ds

≤ C

∫ t

0

(t− s)−
N
2p ‖h(s)‖Lp(Ω) ds

≤ C‖h‖Lp((0,T )×Ω)

(∫ t

0

(t− s)−
N

2(p−1) ds

) p−1
p

,

by Theorem 1.4.15. It follows from the standard linear theory that if h is smooth, then so is v; and so the

result follows from the above estimate. Finally, we observe that h(s) = g(u(s)) belongs to Lp((0, T ) × Ω)

for every p <∞. Note also that, since (T (t))t≥0 is a semigroup of contractions in Lp(Ω) for 1 ≤ p <∞, we

have u ∈ C([0, Tm), Lp(Ω)) for all p ∈ [1,∞).
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Proof of Theorem 3.1.1. We first prove uniqueness. Suppose that u1 and u2 are two solutions of (3.1.1)

on [0, T ]. Then,

u1(t)− u2(t) =
∫ t

0

T (t− s)(g(u1(s))− g(u2(s))) ds.

Taking the L∞ norm of both sides, and using the fact that

‖T (t)ϕ‖L∞ ≤ ‖ϕ‖L∞ ,

we find

‖u1(t)− u2(t)‖L∞ ≤
∫ t

0

‖g(u1(s))− g(u2(s))‖L∞ ds ≤ K

∫ t

0

‖u1(s)− u2(s)‖L∞ ds,

for all t ∈ [0, T ], with K the Lipschitz constant of g on [−A,A],

A = max{‖u1‖L∞((0,T )×Ω), ‖u2‖L∞((0,T )×Ω)}.

Uniqueness now follows from Gronwall’s inequality.

Let M = ‖u0‖L∞ + 1 and let g̃ be defined by

g̃(u) =


g(M) if u > M,

g(u) if |u| ≤M,

g(−M) if u < −M,

so that g̃ : R → R is globally Lipschitz. Applying Theorem 2.1.1, for example with X = L2(Ω), we obtain a

weak, global solution ũ ∈ C([0,∞), L2(Ω)) satisfying

ũ(t) = T (t)u0 +
∫ t

0

T (t− s)g̃(ũ(s)) ds. (3.1.4)

Taking the L∞ norm of both sides and applying Theorem 1.4.15, we see that

‖ũ(t)‖L∞ ≤ ‖u0‖L∞ +
∫ t

0

‖g̃(ũ(s))‖L∞ ds ≤ ‖u0‖L∞ +KM t,

where KM = ‖g‖L∞(−M,M). Choose T small enough so that

KMT ≤ 1.

Then ‖ũ(t)‖L∞ ≤ M for all t ∈ [0, T ]; and then ũ satisfies (3.1.1) on [0, T ]. Uniqueness, as in Section 2.4,

implies the existence of a solution defined on a maximal time interval [0, Tm).

To establish the blow up alternative, we argue as in the proof of Theorem 2.4.3. Suppose Tm <∞, and

assume that there is a sequence tj ↑ Tm such that ‖u(tj)‖L∞ ≤ A <∞. Fix δ > 0 such that

δKA+1 ≤ 1.

Starting with the initial value u(tj), we have a weak solution vj of (3.1) defined on [0, δ]. Gluing together u

with vj , we obtain a weak solution of (3.1) defined on [0, tj + δ] (see Corollary 1.5.18). For j large enough,

tj + δ > Tm, and this is impossible since u is the maximal solution.
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Finally, we prove the continuous dependence. Given T < Tm, set MT = ‖u‖L∞((0,T )×Ω) + 1. Let g̃ be

as above, but with M = MT and let LT be the Lipschitz constant of g̃. Let ũ be the solution of (3.1.4) and,

given v0 ∈ L∞(Ω), let ṽ be the corresponding solution of (3.1.4). It follows that

‖ũ(t)− ṽ(t)‖L∞ ≤ ‖u0 − v0‖L∞ + LT

∫ t

0

‖ũ(s)− ṽ(s)‖L∞ ds;

and so, by Gronwall’s inequality,

‖ũ− ṽ‖L∞((0,T )×Ω) ≤ eTLT ‖u0 − v0‖L∞(Ω).

In particular, if ‖u0 − v0‖L∞(Ω) ≤ ε with ε = e−TLT , we have ‖ũ − ṽ‖L∞((0,T )×Ω) ≤ MT , so that ṽ is the

solution of (3.1.1) on [0, T ] with the initial value v0. The continuous dependence follows easily.

Remark 3.1.3. Assume u0 ∈ L∞(Ω), and in addition u0 ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω) for some p ∈ (1,∞).

Then, the above solution belongs to C([0, Tm),W 2,p(Ω) ∩W 1,p
0 (Ω)) ∩ C1([0, Tm), Lp(Ω)). This is a direct

consequence of Corollary 2.1.2. Note that g is not globally Lipschitz, but one can truncate g outside the

range of u(t, x), x ∈ Ω, t ∈ [0, T ], for T < Tm.

Remark 3.1.4. Assume that g = g(x, u) also depends on x, and consider the problem
ut −4u = g(x, u), x ∈ Ω, t ∈ [0, T ]

u(t, x) = 0, x ∈ ∂Ω, t ∈ [0, T ]

u(0, x) = u0(x), x ∈ Ω.

(3.1.5)

If g is measurable in x and locally Lipschitz in u (i.e. |g(x, u) − g(x, v)| ≤ KA|u − v| for almost all x ∈ Ω

and all u, v ∈ [−A,A]) and if g(·, 0) ∈ L∞(Ω), then the conclusions of Theorem 3.1.1 hold without any

modification.

3.2. Smoothing effect. The weak solution u obtained above for (3.1) (or more generally for (3.1.5)) is

in fact smooth for t ∈ (0, Tm). Here is one such result.

Theorem 3.2.1. Assume u0 ∈ L∞(Ω). Then

(i) u ∈ C((0, Tm),W 2,p(Ω) ∩W 1,p
0 (Ω)) ∩ C1((0, Tm), Lp(Ω)) for every p <∞.

(ii) For every T < Tm, there exists C depending on T and ‖u‖L∞((0,T )×Ω) such that ‖u(t)‖H2 ≤ C

t
and

‖u(t)‖H1 ≤ C√
t

for all t ∈ (0, T ).

Proof. First, we write

u(t) = v(t) + w(t).

where v(t) = T (t)u0 and

w(t) =
∫ t

0

T (t− s)g(u(s)) ds.

It follows from the analyticity of (T (t))t≥0 in Lp(Ω) (see Proposition 1.4.20) that v(t) ∈W 2,p(Ω)∩W 1,p
0 (Ω)

for all t > 0. On the other hand, w(t) ∈ Lp((0, T ),W 2,p(Ω) ∩ W 1,p
0 (Ω)) for T < Tm and every p < ∞,
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by Theorem 1.6.1. In particular, u(t) ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) for almost all t ∈ (0, Tm). Conclusion (i) now

follows from Remark 3.1.3.

The estimates (ii) are consequences of the arguments used in the proof of Theorem 2.6.1.

Remark 3.2.2. Iterating this argument, one can show that if g ∈ C∞(R,R), then u ∈ C∞((0, Tm) × Ω).

Of course, we have to assume that g ∈ C∞(Ω× R,R) if g also depends on x.

3.3. The condition ug(x, u) ≤ Cu2 + C implies global existence for every u0. In this section, we

assume that

ug(x, u) ≤ Cu2 + C ′, (3.3.1)

for almost all x ∈ Ω and for all u ∈ R. The main result is the following.

Theorem 3.3.1. For every u0 ∈ L∞(Ω), the solution u of (3.1.5) is globally defined.

Proof. It relies heavily on the maximum principle, or its variants. We give two different proofs.

Proof 1. Multiplication by powers. For t ∈ (0, Tm), we multiply the equation by |u|p−2u, with p ≥ 2,

and we integrate on Ω. We find

1
p

d

dt

∫
Ω

|u|p + (p− 1)
∫

Ω

|u|p−2|∇u|2 =
∫

Ω

|u|p−2ug(x, u);

and so,
1
p

d

dt

∫
Ω

|u|p ≤ C

∫
Ω

|u|p + C

∫
Ω

|u|p−2.

Applying the inequality ab ≤ aq

q
+
bq
′

q′
with q =

p

p− 2
, a = |u|p−2 and b = 1, we find

1
p

d

dt

∫
Ω

|u|p ≤ 2C
∫

Ω

|u|p + C|Ω|.

It follows that ∫
Ω

|u(t)|p ≤
(∫

Ω

|u(s)|p + Cp|Ω|
)
e2Cp(t−s),

for all 0 < s < t < Tm. Passing to the limit as s ↓ 0 (recall that u ∈ C([0, Tm), Lp(Ω)) for all p < ∞), we

find ∫
Ω

|u(t)|p ≤
(∫

Ω

|u0|p + Cp|Ω|
)
e2Cpt,

for all t ∈ (0, Tm). Raising this inequality to the power
1
p
, we finally obtain

‖u(t)‖Lp ≤
(∫

Ω

|u0|p + Cp|Ω|
) 1

p

e2Ct ≤
(
‖u0‖Lp + (Cp|Ω|)

1
p

)
e2Ct.

Letting p→∞, it follows that

‖u(t)‖L∞ ≤ (‖u0‖L∞ + 1)e2Ct,

for all t ∈ (0, Tm). In view of the blow up alternative in Theorem 3.1.1, this implies Tm = +∞.
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Proof 2. Super and sub-solutions. The proof relies on the following comparison principle for nonlinear

heat equations.

Theorem 3.3.2. Assume g : Ω×R → R is locally Lipschitz in u and assume u and u are smooth functions

in (0, T )× Ω such that u, u ∈ L∞((0, T )× Ω) ∩ C([0, T ], L2(Ω)) and

ut −4u ≤ g(x, u) in (0, T )× Ω,

ut −4u ≥ g(x, u) in (0, T )× Ω,

u ≤ u in (0, T )× ∂Ω,

u(0, x) ≤ u(0, x) in Ω.

Then u ≤ u in (0, T )× Ω.

Proof. Let h ∈ C1(R,R) be such that h′ ≥ 0,

h(s) =

{
0 for s ≤ 0,

> 0 for s > 0,

and sh(s) ≤ CH(s) for every s ∈ R, where H(s) =
∫ s

0

h(σ) dσ. For example, h(s) = (s+)2. We have

∫
Ω

h(u− u)(u− u)t +
∫

Ω

h′(u− u)|∇(u− u)|2 ≤
∫

Ω

(g(x, u)− g(x, u))h(u− u)

≤ L

∫
Ω

|u− u|h(u− u) ≤ LC

∫
Ω

H(u− u);

and so,
d

dt

∫
Ω

H(u− u) ≤ LC

∫
Ω

H(u− u),

where L is the Lipschitz constant of g on [−M,M ] with M = max{‖u‖L∞((0,T )×Ω), ‖u‖L∞((0,T )×Ω)}. Since

H(u(0, x), u(0, x)) = 0, we conclude by Gronwall’s inequality that H(u− u) ≤ 0 in (0, T )× Ω. Hence u ≤ u

in (0, T )× Ω.

Remark. The conclusion of Theorem 3.3.2 holds under weaker assumptions on Ω, u, u. See Theorem 1.4.12.

Proof 2 continued. Observe that inequality (3.3.1) implies the existence of a constant D such that

g(x, u) ≤ D(u+ 1), (3.3.2)

for all u ≥ 0. Let v be the solution of the linear problem
vt −4v = D(v + 1) in (0,∞)× Ω,

v = 0 in (0,∞)× ∂Ω,

v(0, x) = |u0(x)| in Ω.

By the maximum principle (apply for example Theorem 3.3.2), it follows that v ≥ 0 in (0,∞)× Ω; and so,

it follows from (3.3.2) that

vt −4v ≥ g(x, v).
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Theorem 3.3.2 now implies that u ≤ v in (0, Tm)×Ω. Similarly, one obtains a lower bound for u in (0, Tm)×Ω.

Again by the blow up alternative, we deduce that Tm = +∞.

Remark 3.3.3. It follows from the proof of Theorem 3.3.1 that

‖u(t)‖L∞ ≤ KeCt(1 + ‖u0‖L∞),

for all t ≥ 0, where C is the constant in (3.3.1). In fact, this estimate can be improved. Indeed, if C < λ1,

λ1 the first eigenvalue of −4 in H1
0 (Ω), then

‖u(t)‖L∞ ≤ K(1 + ‖u0‖L∞).

(See Exercise 3.13.2.) This estimate is optimal in the sense that in general ‖u(t)‖L∞ may be bounded away

from 0. To see this, consider g(u) ≡ 1. If ϕ1 > 0 is the first eigenfunction of −4 in H1
0 (Ω) with

∫
Ω

ϕ1 = 1,

it follows that

z(t) =
∫

Ω

u(t, x)ϕ1(x) dx

verifies the differential equation z′ + λ1z = 1, so that

z(t) = e−λ1tz(0) +
1
λ1

(1− e−λ1t);

and so, if z(0) > 0, then z(t) ≥ α > 0 for all t > 0. This implies that inf
t≥0

‖u(t)‖L∞ > 0.

If now C > λ1, then

‖u(t)‖L∞ ≤ K(1 + ‖u0‖L∞)e(C−λ1)t.

(See Exercise 3.13.3.) This estimate is also optimal with respect to the behavior as t → ∞. Indeed, take

g(u) = Cu and u0 = ϕ1, so that u(t) = e(C−λ1)tϕ1.

Finally, if C = λ1, then

‖u(t)‖L∞ ≤ K(t+ ‖u0‖L∞).

(See Exercise 3.13.4.) This estimate is also optimal in the sense that in general ‖u(t)‖L∞ is not bounded

(see Exercise 3.13.7).

Note that if g(u) = 1 or if g(u) = λ1u, then all solutions are bounded, but that if g(u) = max{1, λ1u},

then some solutions are unbounded (see Exercises 3.13.2, 3.13.5 and 3.13.7).

3.4. Global existence for small initial values. There are two different methods for showing that if

u0 is “small”, then the solution of (3.1.5) is globally defined:

- the energy method,

- the comparison method.

They yield different results in that the smallness condition involves different norms. Throughout this section,

we assume that g(x, u) is C1 in u and that

g(x, 0) = 0, (3.4.1)

λ1(−4− gu(x, 0)) > 0. (3.4.2)
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Here, λ1(−4− gu(x, 0)) denotes the first eigenvalue of the operator v 7→ −4v − gu(x, 0)v in H1
0 (Ω). If g is

independent of x, then condition (3.4.2) is equivalent to

g′(0) < λ1(−4).

Assumptions (3.4.1) and (3.4.2) mean that 0 is a “stable” solution of the stationary problem −4u−g(x, u) =

0.

We begin with the energy method.

Theorem 3.4.1. Assume (3.4.1), (3.4.2) and

|g(x, u)| ≤ C(1 + |u|q), for all u ∈ R, (3.4.3)

with 1 < q <
N + 2
N − 2

(no condition on q > 1 if N = 1, 2). There exists δ > 0 such that if u0 ∈ L∞(Ω)∩H1
0 (Ω)

and ‖u0‖H1 ≤ δ, then the solution u of (3.1.5) is globally defined and belongs to L∞((0,∞), L∞(Ω)∩H1
0 (Ω)).

With δ > 0 possibly smaller, we even have

‖u(t)‖L∞ ≤ Ce−µt for t ≥ 0,

where µ is any number strictly less than λ1(−4− gu(x, 0)), and C depends on µ.

Let

G(x, u) =
∫ u

0

g(x, s) ds.

The energy

E(u) =
1
2

∫
Ω

|∇u|2 −
∫

Ω

G(x, u), (3.4.4)

is naturally associated with (3.1.5) and plays an important role. We will need the following lemma.

Lemma 3.4.2. Assume u0 ∈ L∞(Ω) ∩H1
0 (Ω), and let u be the solution of (3.1.5) defined on the maximal

interval [0, Tm). Then u ∈ C([0, Tm),H1
0 (Ω)) and

E(u(t)) ≤ E(u0), (3.4.5)

for all t ∈ [0, Tm).

Proof. We first prove that u ∈ C([0, Tm),H1
0 (Ω)), and by Theorem 3.2.1, it suffices to show that u is con-

tinuous at t = 0. For this purpose, we use the integral formula (3.1.1). Recall that T (t)u0 ∈ C([0,∞),H1
0 (Ω))

(see Theorem 1.4.8 (iii)), and therefore we need only show that ‖u(t)− T (t)u0‖H1 → 0 as t ↓ 0, i.e.∥∥∥∫ t

0

T (t− s)g(x, u(s)) ds
∥∥∥

H1
−→
t↓0

0.

We have by Theorem 1.4.11 (ii)∥∥∥∫ t

0

T (t− s)g(x, u(s)) ds
∥∥∥

H1
≤
∫ t

0

(
1 +

1√
t− s

)
‖g(x, u(s))‖L2 ds

≤ C(t+
√
t)−→

t↓0
0.
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Next, multiply equation (3.1.5) by ut. We find∫
Ω

u2
t +

d

dt
E(u(t)) = 0, (3.4.6)

for all t ∈ (0, Tm). In particular, E(u(t)) ≤ E(u(s)) for all 0 < s ≤ t < Tm, and the result follows by letting

s ↓ 0. Note that E(u(s)) → E(u0) since u is continuous into H1
0 (Ω) and by dominated convergence.

Proof of Theorem 3.4.1. The proof proceeds in six steps.

Step 1. We show that sup{‖u(t)‖H1 ; 0 ≤ t < Tm} <∞. We observe that by (3.4.1) and (3.4.3),

G(x, v) ≤ 1
2
gu(x, 0)v2 + εv2 + C|v|q+1. (3.4.7)

Here ε > 0 is arbitrarily small and C depends on ε. On the other hand, assumption (3.4.2) implies the

existence of η > 0 such that ∫
Ω

{|∇v|2 − gu(x, 0)v2} ≥ η

∫
Ω

{|∇v|2 + v2}. (3.4.8)

It follows from the energy inequality (3.4.5), (3.4.7) with ε = η and (3.4.8) that

η

2

∫
Ω

|∇u|2 ≤ E(u0) + C

∫
Ω

|u|q+1 ≤ E(u0) + C‖u‖q+1
H1 ,

by Sobolev’s inequalities, since q + 1 ≤ 2N
N − 2

. Therefore,

1
2
‖u(t)‖2H1 ≤ AE(u0) +

B

q + 1
‖u(t)‖q+1

H1 . (3.4.9)

It is now convenient to draw the graph of the function f : x 7→ x2

2
− B

q + 1
xq+1.

The graph of f

The maximum of f is achieved for x = B−
1

q−1 and is
q − 1

2(q + 1)
B−

2
q−1 .

We now assume that

AE(u0) <
q − 1

2(q + 1)
B−

2
q−1 , (3.4.10)

‖u0‖H1 ≤ B−
1

q−1 . (3.4.11)

Let 0 < α < β be the two solutions of f(x) = AE(u0). In view of (3.4.9), we have for every t ∈ [0, Tm)

either ‖u(t)‖H1 ≤ α or ‖u(t)‖H1 ≥ β. Since the function t 7→ ‖u(t)‖H1 is continuous and ‖u0‖H1 ≤ α, we
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conclude that ‖u(t)‖H1 is trapped in [0, α]. Finally, note that by choosing ‖u0‖H1 sufficiently small, we can

achieve (3.4.10) and (3.4.11).

Step 2. We show that Tm = +∞. Let p =
2N

(N − 2)(q − 1)
>
N

2
if N ≥ 3 (the case N = 2 is similar).

We have from (3.1.1) and Theorem 1.4.15,

‖u(t)‖L∞ ≤ ‖u0‖L∞ +
∫ t

0

‖T (t− s)g(x, u(s))‖L∞ ds

≤ ‖u0‖L∞ + C

∫ t

0

(t− s)−
N
2p ‖g(u(s))‖Lp ds

≤ ‖u0‖L∞ + Ct1−
N
2p + C

∫ t

0

(t− s)−
N
2p ‖u(s)‖q

Lpq ds

≤ ‖u0‖L∞ + Ct1−
N
2p + C

∫ t

0

(t− s)−
N
2p ‖u(s)‖q−1

L
2N

N−2
‖u(s)‖L∞ ds,

for all t ∈ (0, Tm). By Step 1, we have

‖u(t)‖L∞ ≤ ‖u0‖L∞ + Ct1−
N
2p + C

∫ t

0

(t− s)−
N
2p ‖u(s)‖L∞ ds.

If Tm <∞, then it follows from the generalized Gronwall inequality (see proposition A.5.7) that

sup{‖u(t)‖L∞ ; 0 < t < Tm} <∞.

Impossible. If N = 1, then global existence follows immediately from Step 1.

Step 3. We show that u ∈ L∞((0,∞), L∞(Ω)). We know that sup
t≥0

‖u(t)‖H1 < ∞. If N = 1, the L∞

bound is immediate. Suppose N ≥ 3 (the case N = 2 is similar). Observe that g(x, 0) = 0, so that by

assumption (3.4.3) we have ∣∣∣g(u)
u

∣∣∣ ≤ C(1 + |u|q−1).

It follows that
g(u)
u

is bounded in Lr(Ω) with r =
2N

(N − 2)(q − 1)
>
N

2
, and then the L∞ estimate follows

from Theorem 1.6.6.

Step 4. ∪
t≥1
{u(t)} is relatively compact in H1

0 (Ω) and in L∞(Ω). Since u ∈ C([1,∞),H1
0 (Ω) ∩ L∞(Ω)),

we need only show that if tn →∞, then there exists a subsequence (tnk
)k≥0 such that u(tnk

) is convergent

in both H1
0 (Ω) and L∞(Ω). Set τn = tn − 1, and note that u(τn) is bounded in H1

0 (Ω). It follows that

there exists a subsequence, which we still denote by (τn)n≥0, such that u(τn) is convergent in L2(Ω) (apply

Rellich’s theorem). Next, we write

u(τn + t)− u(τk + t) = T (t)(u(τn)− u(τk)) +
∫ t

0

T (t− s)(g(x, u(τn + s))− g(x, u(τk + s))) ds.

It follows from Theorem 1.4.11 (ii) and Step 3 that

‖u(τn + t)− u(τk + t)‖H1 ≤ C√
t
‖u(τn)− u(τk)‖L2 +

∫ t

0

C√
t− s

‖u(τn + s)− u(τk + s)‖L2 ds,

for t ≤ 1. The generalized Gronwall inequality (see proposition A.5.7) yields

‖u(τn + t)− u(τk + t)‖H1 ≤ C ′√
t
‖u(τn)− u(τk)‖L2 ,
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for t ≤ 1. Taking t = 1, it follows that u(tn) is a convergent sequence in H1
0 (Ω). Finally, since u(t)

is bounded in L∞(Ω) and u(τn) is convergent in L2(Ω), it follows from Hölder’s inequality that u(τn) is

convergent in LN (Ω). Arguing as above but using the LN → L∞ smoothing effect (Theorem 1.4.15) instead

of the L2 → H1 smoothing effect, we deduce that u(tn) is convergent in L∞(Ω).

Step 5. u(t) −→
t→∞

0 in H1
0 (Ω) and in L∞(Ω). Since u(t) is bounded in both H1

0 (Ω) and L∞(Ω), we have

E(u(t)) ≥ −M > −∞, for all t ≥ 0. Therefore, it follows from (3.4.6) that

E(u(t)) → `, (3.4.13)

as t→∞, for some ` ∈ R. Let now tn →∞ be such that u(tn) → v0 in H1
0 (Ω) and in L∞(Ω). An obvious

argument (see e.g. the estimates of Step 4) shows that u(tn + ·) → v(·) in C([0, 1],H1
0 (Ω) ∩ L∞(Ω)), where

v is the solution of (3.1.5) corresponding to the initial value v0. We deduce from (3.4.13) that E(v(t)) = `

for all t ∈ [0, 1], which, by (3.4.6), implies that vt ≡ 0. Therefore, v is independent of t and is a solution of

−4v = g(x, v). (3.4.12)

Note that

g(x, v)v ≤ gu(x, 0)v2 + εv2 + C|v|q+1 for all v ∈ R, (3.4.14)

ε > 0 arbitrarily small and C depending on ε. Multiplying the equation (3.4.12) by v and applying (3.4.14),

we find ∫
Ω

|∇v|2 dx ≤
∫

Ω

gu(x, 0)v2 + ε

∫
Ω

|v|2 dx+ C

∫
Ω

|v|q+1 dx. (3.4.15)

From (3.4.8) and (3.4.15) with ε = η, we obtain

η

∫
Ω

|∇v|2 dx ≤ C

∫
Ω

|v|q+1 dx.

Therefore, by Sobolev’s inequality,

‖v‖2H1 ≤ C ′‖v‖q+1
H1 .

It follows that either ‖v‖H1 ≥ (C ′)−
1

q−1 or v = 0. Finally, observe that ‖v‖H1 ≤ lim sup
t→∞

‖u(t)‖H1 ≤ α,

where α is as in Step 1. Since clearly α ↓ 0 as δ ↓ 0, if we choose δ small enough, then v = 0. By Step 4,

this implies that u(t) −→
t→∞

0 in H1
0 (Ω) and in L∞(Ω).

Step 6. Exponential decay. Since u(t) −→
t→∞

0 in L∞(Ω), the exponential decay follows from Theorem 3.4.5

below.

Remark 3.4.3. Note that if g verifies (3.4.1)—(3.4.3) with q >
N + 2
N − 2

, then in general u can blow up in

finite time for u0 ∈ H1
0 (Ω) ∩ L∞(Ω) arbitrarily small in H1

0 (Ω) (see Exercise 3.13.6). However, without any

assumption on g for u large, for every M there exists δM > 0 such that if ‖u0‖L∞ ≤ M and ‖u0‖H1 ≤ δM ,

then u is globally defined (see Exercise 3.13.10).

Remark 3.4.4. Some of the results presented in the steps of Theorem 3.4.1 hold under more general

assumptions. More precisely, let g(x, u) : Ω× R → R be locally Lipschitz in u, and let u0 ∈ L∞(Ω) be such
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that the solution u of (3.1.5) is global. Assume furthermore that sup
t≥0

‖u(t)‖L∞ < ∞. Then, the following

properties hold.

(i) sup
t≥1

‖u(t)‖H1 <∞. This follows easily from the boundedness of u and g(u) in L∞(Ω), hence in L2(Ω),

and the L2 → H1 smoothing effect.

(ii) ∪
t≥1
{u(t)} is relatively compact in H1

0 (Ω) and in L∞(Ω). The proof is the same as in Step 4 of Theo-

rem 3.4.1.

(iii) If tn → ∞, then there exists a subsequence (nk)k≥0 and a solution v ∈ H1
0 (Ω) ∩ L∞(Ω) of the elliptic

equation

−4v = g(x, v) in Ω,

such that u(tnk
) → v in H1

0 (Ω) and in L∞(Ω). The set of all such limit points v is denoted by ω(u0) and

is called the ω-limit set of u0; see Section 3.12. One shows that ω(u0) is a connected, compact subset

of H1
0 (Ω) and of L∞(Ω) (see Dafermos [35]).

We now present the comparison method.

Theorem 3.4.5. Assume that (3.4.1) and (3.4.2) hold. There exists δ > 0 such that if u0 ∈ L∞(Ω) and

‖u0‖L∞ ≤ δ, then the solution u of (3.1.5) is globally defined.

With δ > 0 possibly smaller, we even have

‖u(t)‖L∞ ≤ Ce−µt for t ≥ 0,

where µ is any number strictly less than λ1(−4− gu(x, 0)), and C depends on µ.

Proof. Let v ∈ H1
0 (Ω) be the solution of

−4v − gu(x, 0)v = |gu(x, 0)|+ 1.

It follows from Proposition A.4.21 and Theorem A.4.13 that v ≥ 0 and v ∈ L∞(Ω). Set

w = η(v + 1),

with η > 0. We claim that for η sufficiently small, w is a super-solution of (3.1.5). Indeed, fix ε > 0 such

that

ε(‖v‖L∞ + 1) ≤ 1.

Then, there exists α > 0 such that

|g(x, t)− gu(x, 0)t| ≤ ε|t|, for |t| ≤ α.

Choose η so small that η(‖v‖L∞ + 1) ≤ α. Then we have

g(x,w) ≤ gu(x, 0)w + εw

= −4w − η + εη(v + 1)− η(|gu(x, 0)| − gu(x, 0))

≤ −4w.
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Similarly, one shows that −w is a sub-solution of (3.1.5). Therefore, if ‖u0‖L∞ ≤ η, the global existence

follows from Theorem 3.3.2, and

‖u(t)‖L∞ ≤ η(‖v‖L∞ + 1),

for all t ≥ 0.

We now prove the exponential decay. Fix any ε > 0 such that ε < λ1 = λ1(−4 − gu(x, 0)), and then

there exists γ > 0 such that

|g(x, t)− gu(x, 0)t| ≤ ε|t|, for |t| ≤ γ.

From the above discussion, we know that we may choose δ > 0 sufficiently small so that if ‖u0‖L∞ ≤ δ, then

‖u(t)‖L∞ ≤ γ for all t ≥ 0. Therefore, we have

ut −4u ≤ gu(x, 0)u+ ε|u|,

for all t ≥ 0. Let v(t) be the solution of the problem
vt −4v − gu(x, 0)v − εv = 0 in (0,∞)× Ω,

v = 0 in (0,∞)× ∂Ω,

v(0) = ‖u0‖L∞ in Ω.

Then

|u(t, x)| ≤ v(t, x) ≤ Ce−(λ1−ε)t,

by Exercise 3.13.5.

Remark 3.4.6. In particular, if g ∈ C1(R,R) with g′(0) < λ1 and g(0) = 0, then all solutions of (3.1)

with sufficiently small initial values in L∞(Ω) are globally defined. This is not anymore true if g′(0) ≥ λ1.

For example, if g(u) = λ1u + u3, then for any u0 ≥ 0, u0 6≡ 0, the solution of (3.1) blows up in finite time

(see Remark 3.6.8).

3.5. Global existence near a stable equilibrium point. In this section, we assume that g(x, u) is

C1 in u, and that the stationary problem −4u = g(x, u) has a “stable” solution w. In other words, we

assume that w ∈ H1
0 (Ω) ∩ L∞(Ω) verifies

−4w = g(x,w),

and that

λ1(−4− gu(x,w)) > 0, (3.5.1)

Given u0 ∈ L∞(Ω) and u the solution of (3.1.5), then ũ = u− w solves the equation
ũt −4ũ = g̃(x, ũ), x ∈ Ω, t ∈ [0, T ]

ũ(t, x) = 0, x ∈ ∂Ω, t ∈ [0, T ]

ũ(0, x) = u0(x)− w(x), x ∈ Ω,

with

g̃(x, u) = g(x,w(x) + u)− g(x,w(x)).
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In particular, 0 is a stationary solution and, since g̃u(x, 0) = gu(x,w), it follows from (3.5.1) that

λ1(−4− g̃u(x, 0)) > 0.

Therefore, we can apply the results of the preceding section and we obtain the following theorems.

Theorem 3.5.1. Assume that g verifies (3.4.3) with 1 < q <
N + 2
N − 2

(no condition on q > 1 if N = 1, 2).

There exists δ > 0 such that if u0 ∈ L∞(Ω) ∩H1
0 (Ω) and ‖u0 − w‖H1 ≤ δ, then the solution u of (3.1.5) is

globally defined and belongs to L∞((0,∞), L∞(Ω) ∩H1
0 (Ω)).

With δ > 0 possibly smaller, we even have

‖u(t)− w‖L∞ ≤ Ce−µt for t ≥ 0,

where µ is any number strictly less than λ1(−4− gu(x,w)), and C depends on µ.

Theorem 3.5.2. There exists δ > 0 such that if u0 ∈ L∞(Ω) and ‖u0 − w‖L∞ ≤ δ, then the solution u

of (3.1.5) is globally defined.

With δ > 0 possibly smaller, we even have

‖u(t)− w‖L∞ ≤ Ce−µt for t ≥ 0,

where µ is any number strictly less than λ1(−4− gu(x,w)), and C depends on µ.

3.6. Some simple cases where blow up does occur. We begin with the simple model problem
ut −4u = |u|p−1u in (0, T )× Ω,

u = 0 in (0, T )× ∂Ω,

u(0) = u0 in Ω.

(3.6.1)

Recall that if u0 is “small enough”, then (3.6.1) has a global solution. Here, we show that if u0 is “big

enough”, then the solution does blow up in finite time.

Theorem 3.6.1. Assume p > 1. Let u0 ∈ H1
0 (Ω) ∩ L∞(Ω) with

E(u0) =
1
2

∫
Ω

|∇u0|2 dx−
1

p+ 1

∫
Ω

|u0|p+1 dx ≤ 0, (3.6.2)

and u0 6≡ 0. If u is the solution of (3.6.1), then Tm <∞.

Proof. Suppose Tm = +∞ and set

ϕ(t) =
∫

Ω

u(t, x)2 dx. (3.6.3)

We will derive a differential inequality for ϕ, which cannot hold for all t ≥ 0. We have

ϕ′(t) = 2
∫

Ω

uut = 2
∫

Ω

u(4u+ |u|p−1u)

= 2
∫

Ω

|u|p+1 − 2
∫

Ω

|∇u|2

= −4E(u) +
2(p− 1)
p+ 1

∫
Ω

|u|p+1

≥ −4E(u0) +
2(p− 1)
p+ 1

∫
Ω

|u|p+1,
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where the last inequality follows from (3.4.6). Using the assumption (3.6.2), we are led to

ϕ′(t) ≥ 2(p− 1)
p+ 1

∫
Ω

|u|p+1 ≥ αϕ(t)
p+1
2 ,

with α > 0, by Hölder’s inequality. In particular, ϕ is nondecreasing, and since ϕ(0) > 0, whe have ϕ(t) > 0

for all t ≥ 0. Finally,
d

dt

(
− 2
p− 1

ϕ(t)−
p−1
2

)
=

ϕ′(t)

ϕ(t)
p+1
2

≥ α;

and so,

0 ≤ 2
p− 1

ϕ(t)−
p−1
2 ≤ 2

p− 1
ϕ(0)−

p−1
2 − αt,

for all t ≥ 0. Impossible, and therefore Tm < +∞.

Remark 3.6.2. The previous argument shows that

Tm ≤ 2

α(p− 1)ϕ(0)
p−1
2

.

However, the proof does not imply lim
t↑Tm

ϕ(t) = +∞. In fact, in some cases it can happen that ϕ(t) remains

bounded as t ↑ Tm (See Section 3.12).

Remark 3.6.3. Note that in some sense (3.6.2) holds for “large” initial values. Indeed, given any v0 6≡ 0,

then u0 = λv0 verifies (3.6.2) for |λ| large enough.

The previous argument can be extended to more general nonlinearities.

Theorem 3.6.4. Assume g : Ω× R → R is locally Lipschitz in u and verifies

ug(x, u) ≥ (2 + ε)G(x, u) = (2 + ε)
∫ u

0

g(x, t) dt, (3.6.4)

for all u ∈ R, with ε > 0. Let u0 ∈ H1
0 (Ω) ∩ L∞(Ω) with

E(u0) =
1
2

∫
Ω

|∇u0|2 dx−
∫

Ω

G(x, u0) dx ≤ 0

and u0 6≡ 0. If u is the solution of (3.1.5), then Tm <∞.

Proof. Suppose by contradiction that Tm = +∞. Let ϕ be given by (3.6.3). We have

ϕ′(t) = −2
∫

Ω

|∇u|2 + 2
∫

Ω

ug(x, u) ≥ −2
∫

Ω

|∇u|2 + 2(2 + ε)
∫

Ω

G(x, u),

by (3.6.4). On the other hand, it follows from (3.4.6) that∫
Ω

G(x, u(t)) dx = −E(u0) +
1
2

∫
Ω

|∇u(t)|2 dx+
∫ t

0

∫
Ω

ut(s, x)2 dx ds;

and so,

ϕ′(t) ≥ ε

∫
Ω

|∇u|2 − (4 + 2ε)E(u0) + (4 + 2ε)
∫ t

0

∫
Ω

u2
t ≥ ε

∫
Ω

|∇u|2 + (4 + 2ε)
∫ t

0

∫
Ω

u2
t . (3.6.5)
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We claim that ∫ 1

0

∫
Ω

ut(s, x)2 dx ds = δ > 0. (3.6.6)

Otherwise, we have ut = 0 for t ∈ (0, 1); and so, u ≡ u0. This implies that ϕ′ = 0 on (0, 1), and by (3.6.5)

this gives ∫
Ω

|∇u0|2 dx = 0.

Hence u0 ≡ 0. Impossible. Hence, we have proved (3.6.6).

It follows from (3.6.5) and (3.6.6) that

ϕ(t) ≥ δ(t− 1), (3.6.7)

for t ≥ 0. We have

ϕ′(t) = 2
∫

Ω

uut ≤ 2‖u‖L2 ‖ut‖L2 ;

and so,

ϕ(t)− ϕ(0) ≤ 2
∫ t

0

√
ϕ(s) ‖ut‖L2 ds ≤ 2

(∫ t

0

ϕ(s) ds
) 1

2
(∫ t

0

∫
Ω

u2
t dx ds

) 1
2

.

Since ϕ(t) ≥ ϕ(0) by (3.6.5), we deduce

(ϕ(t)− ϕ(0))2 ≤ 4
(∫ t

0

ϕ(s) ds
)(∫ t

0

∫
Ω

u2
t dx ds

)
.

Set now

ψ(t) =
∫ t

0

ϕ(s) ds.

It follows from the above inequalities that

ψ(t)ψ′′(t) ≥
(
1 +

ε

2

)
(ϕ(t)− ϕ(0))2 ≥

(
1 +

ε

4

)
ϕ(t)2,

for t large enough, by (3.6.7). Therefore,

ψ(t)ψ′′(t) ≥
(
1 +

ε

4

)
ψ′(t)2,

for t large, which implies that (ψ−
ε
4 )′′ ≤ 0. Since ψ−

ε
4 is positive and converges to 0 as t→∞, we obtain a

contradiction.

Remark 3.6.5. Assume that (3.6.4) holds only for |u| large enough. Then there exists K < ∞ such

that for every u0 ∈ H1
0 (Ω) ∩ L∞(Ω) with E(u0) ≤ −K, the solution of (3.1.5) blows up in finite time (see

Exercise 3.13.12).

In the previous Theorems 3.6.1 and 3.6.4, blow up occurs for large initial data. In the next result, blow

up occurs for all initial values.

Theorem 3.6.6. Assume that g : R → R is locally Lipschitz and that

g(u) ≥ λ1u+ h(u), (3.6.8)
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for all u ∈ R, where h > 0 is a convex function R → R such that∫ ∞

1

ds

h(s)
<∞, (3.6.9)

and λ1 is the first eigenvalue of −4 in H1
0 (Ω). If u0 ∈ L∞(Ω), then the solution u of (3.1) blows up in finite

time.

Example 3.6.7. Let g(u) = λeu, then the assumptions of Theorem 3.6.6 are satisfied if λe > λ1.

Proof of Theorem 3.6.6. Suppose Tm = +∞ and let

f(t) =
∫

Ω

u(t, x)ϕ1(x) dx,

where ϕ1 > 0 is the first eigenvector of −4 in H1
0 (Ω) such that

∫
Ω

ϕ1 = 1. We have

f ′(t) =
∫

Ω

utϕ1 =
∫

Ω

(4u+ g(u))ϕ1 = −λ1ϕ(t) +
∫

Ω

g(u)ϕ1 ≥
∫

Ω

h(u)ϕ1 ≥ h(f(t)),

by Jensen’s inequality. Let

Γ(t) =
∫ t

1

ds

h(s)
.

We have
d

dt
Γ(f(t)) =

f ′(t)
h(f(t))

≥ 1;

and so,

Γ(f(t)) ≥ Γ(f(0)) + t,

which contradicts (3.6.9) for t large enough.

Remark 3.6.8. Assume that g : R → R is locally Lipschitz and that

g(u) ≥ λ1u+ h(u),

for all u ≥ 0, where h : (0,∞) → (0,∞) is a convex function such that (3.6.9) holds. Then for all u0 ∈ L∞(Ω),

u0 ≥ 0, u0 6≡ 0, the solution u of (3.1) blows up in finite time.

Indeed, since g(0) ≥ 0, the maximum principle (see Theorem 3.3.2) implies that u ≥ 0, and the above

argument still holds.

Remark 3.6.9. Consider the equation
ut −4u = λ1u+ u2 in (0, T )× Ω,

u = 0 in (0, T )× ∂Ω,

u(0, x) = u0(x) in Ω.

Then, for every u0 ≥ 0, u0 6≡ 0, blow up occurs in finite time. On the other hand, if u0 ≤ 0, then Tm = +∞.
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We just prove the last claim. This amounts to show that the problem
vt −4v = λ1v − v2 in (0, T )× Ω,

v = 0 in (0, T )× ∂Ω,

v = v0 in Ω,

(3.6.10)

has global existence for v0 ≥ 0. For this purpose, we consider the problem
wt −4w = λ1w − |w|w in (0, T )× Ω,

w = 0 in (0, T )× ∂Ω,

w = v0 in Ω.

First we note that g(w) = λ1w − |w|w verifies the conditions of Theorem 3.3.1; hence w is globally defined.

Furthermore, if v0 ≥ 0, then the maximum principle implies that w ≥ 0; and so, w satisfies (3.6.10).

Remark 3.6.10. Assume that g verifies (3.6.8) for u ≥ α > 0, where h : (α,∞) → (0,∞) is a convex

function such that (3.6.9) holds. Then, there exists β > 0 such that if u0 ∈ L∞(Ω), u0 ≥ 0 and∫
Ω

u0(x)ϕ1(x) dx > β,

then the solution of (3.1) blows up in finite time (see Exercise 3.13.11).

3.7. The study of ut −4u = λg(u). Consider the problem
ut −4u = λg(u) in (0, T )× Ω,

u = 0 in (0, T )× ∂Ω,

u(0, x) = u0(x) in Ω.

(3.7.1)

Here, and throughout this section

λ > 0,

and g : [0,∞) → [0,∞) is a C1 convex, nondecreasing function with

g(0) > 0,

and ∫ ∞

0

ds

g(s)
<∞, (3.7.2)

so that in particular

lim
s→∞

g(s)
s

= +∞. (3.7.3)

Typical examples of such functions which occur in applications are g(u) = eu and g(u) = (1+u)p, 1 < p <∞.

Solutions u of (3.7.1) are always assumed to be nonnegative. The initial condition u0 is always assumed

to be in L∞(Ω) and u0 ≥ 0, so that a classical solution of (3.7.1) exists on a maximal interval (0, Tm).

Our first result asserts that the existence of a global, classical solution of (3.7.1) implies the existence

of a solution for the corresponding stationary problem:{ −4u = λg(u) in Ω,

u = 0 in ∂Ω.
(3.7.4)
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Unfortunately, this solution need not be a classical solution (see Remark 3.7.5 and Theorem 3.7.6). Therefore,

we are led to the notion of a weak solution.

Definition 3.7.1. A weak solution of (3.7.4) is a function u ∈ L1(Ω), u ≥ 0 such that

g(u)δ ∈ L1(Ω), (3.7.5)

where δ denotes the function distance to the boundary,

δ(x) = dist(x, ∂Ω), (3.7.6)

and

−
∫

Ω

u4ζ = λ

∫
Ω

g(u)ζ, (3.7.7)

for all ζ ∈ C2(Ω) with ζ = 0 on ∂Ω. (Note that the second integral makes sense since |ζ(x)| ≤ Cδ(x) for all

x ∈ Ω.)

It is clear that any classical solution of (3.7.4) is a weak solution. Our first result is the following.

Theorem 3.7.2. If there exists a global, classical solution of (3.7.1) for some u0 ∈ L∞(Ω), u0 ≥ 0, then

there exists a weak solution of (3.7.4).

Remark 3.7.3. Theorem 3.7.2 is quite surprising since we do not assume any bound (as t → ∞) for the

global solution u.

The stationary problem has been extensively investigated. See Brezis, Cazenave, Martel and Ramian-

drisoa [20], Brezis and Nirenberg [24], Crandall and Rabinowitz [34], Fujita [44], Gallouet, Gallouët, Mignot

and Puel [49], Gelfand [50], Joseph and Lundgren [62], Keller and Cohen [68], Keller and Keener [69], Mignot

and Puel [81]. We now summarize the main results concerning (3.7.4).

Lemma 3.7.4. There exists 0 < λ∗ <∞ such that:

(a) For every 0 < λ < λ∗ equation (3.7.4) has a minimal, positive classical solution u(λ), which is the unique

stable solution of (3.7.4); stability means that

λ1(−4− λg′(u(λ))) > 0.

(There may exist, for some values of λ ∈ (0, λ∗), one or many other solutions, which are all unstable.)

(b) The map λ 7→ u(λ) is increasing.

(c) For λ > λ∗, there is no weak solution of (3.7.4).

(d) For λ = λ∗ there is a weak solution u∗ = lim
λ↑λ∗

u(λ) of (3.7.4).

For the proof of Lemma 3.7.4, we refer to the above mentioned references.
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Remark 3.7.5. The solution u∗ is sometimes a classical solution. For example when g(u) = eu and N ≤ 9

or when g(u) = (1 + u)p and

N < 6 +
4

p− 1
+ 4
√

p

p− 1
. (3.7.8)

Note that (3.7.8) holds for any p if N ≤ 10; if N ≥ 11 condition (3.7.8) says that p is strictly less than some

p(N) (see F. Mignot and J.-P. Puel [81]). However, there are cases where there is no classical solution at

λ = λ∗. For example when Ω is the unit ball of RN with N ≥ 10 and g(u) = eu; in this case λ∗ = 2(N − 2)

and u∗(x) = log
(

1
|x|2

)
. Similarly, for g(u) = (1 + u)p, if N ≥ 11 and p ≥ p(N), then u∗(x) = |x|−

2
p−1 − 1.

See Joseph and Lundgren [62] and Brezis and Vazquez [27].

There is a converse of Theorem 3.7.2.

Theorem 3.7.6. If there exists a weak solution w of (3.7.4), then for any u0 ∈ L∞(Ω) with 0 ≤ u0 ≤ w,

the solution u of (3.7.1) with u(0) = u0 is global.

Remark 3.7.7. If w is a classical solution of (3.7.4), then the existence of a global solution of (3.7.1)

follows immediately from the maximum principle. On the other hand, if w 6∈ L∞(Ω), then the conclusion

is far from obvious. Indeed, suppose that the solution blows up in finite time Tm. Clearly u(t, x) ≤ w(x)

on (0, Tm)× Ω, but this estimate in itself does not prevent ‖u(t)‖L∞ from blowing up in finite time. As we

will see in Section 3.12, u(t, x) can converge to a blow up profile u(Tm, x), which may be finite everywhere

except at one point.

Putting together Theorems 3.7.2 and 3.7.6 and Lemma 3.7.4, we can now state the following.

Corollary 3.7.8. Consider the (classical) solution u of (3.7.1) with u0(x) ≡ 0. If λ ≤ λ∗, then u is global.

If λ > λ∗, then u blows up in finite time.

Proof of Theorem 3.7.2. We may assume that u0 = 0, so that u ≥ 0 and ut ≥ 0 for all t ≥ 0. (see Step 1

of the proof of Theorem 3.8.3)

Next, observe that by (3.7.3), there exists a constant M > 0 such that

g(s)− λ1s ≥
1
2
g(s) for s ≥M, (3.7.9)

where λ1 is the first eigenvalue of −4 in H1
0 (Ω). Let ϕ ∈ C2(Ω) with ϕ|∂Ω = 0. It follows from (3.7.1) that

d

dt

∫
Ω

u(t)ϕ+
∫

Ω

u(t)(−4ϕ) =
∫

Ω

g(u(t))ϕ. (3.7.10)

We first claim that

sup
t≥0

∫
Ω

g(u)ϕ1 ≤ (1 + λ1)M, (3.7.11)

where M is as in (3.7.9) and ϕ1 is the first eigenfunction of −4 in H1
0 (Ω) such that

∫
Ω

ϕ1 = 1. Indeed,

taking ϕ = ϕ1 in (3.7.10), we find

d

dt

∫
Ω

u(t)ϕ1 + λ1

∫
Ω

u(t)ϕ1 =
∫

Ω

g(u(t))ϕ1 ≥ g

(∫
Ω

u(t)ϕ1

)
, (3.7.12)
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by Jensen’s inequality. If there exists t0 ≥ 0 such that
∫

Ω

u(t0)ϕ1 > M , then it follows from (3.7.12)

and (3.7.9) that
d

dt

∫
Ω

u(t)ϕ1 ≥
1
2
g

(∫
Ω

u(t)ϕ1

)
,

for t ≥ t0, which is absurd by (3.7.2); and so ∫
Ω

u(t)ϕ1 ≤M,

for all t ≥ 0. Integrating (3.7.12) on (t, t+ 1) and since ut ≥ 0, we find∫
Ω

g(u(t))ϕ1 ≤
∫ t+1

t

∫
Ω

g(u)ϕ1 ≤
∫

Ω

u(t+ 1)ϕ1 + λ1

∫ t+1

t

∫
Ω

uϕ1 ≤ (1 + λ1)M,

hence (3.7.11).

We next claim that there exists K such that

sup
t≥0

‖u(t)‖L1 ≤ K. (3.7.13)

Indeed, let ζ0 be the solution of (3.7.21). Taking ϕ = ζ0 in (3.7.10) and integrating on (t, t+ 1), we find∫
Ω

u(t) ≤
∫ t+1

t

∫
Ω

u =
∫

Ω

u(t)ζ0 −
∫

Ω

u(t+ 1)ζ0 +
∫ t+1

t

∫
Ω

g(u)ζ0,

and (3.7.13) follows by applying (3.7.11).

By monotone convergence, it follows from (3.7.13) and (3.7.11) that u(t) has a limit w in L1(Ω) and

that g(u) converges to g(w) in L1(Ω, δ(x)dx), as t → ∞. Let ϕ ∈ C2(Ω), ϕ|∂Ω = 0. Integrating (3.7.10) on

(t, t+ 1), we obtain [∫
Ω

uϕ

]t+1

t

+
∫ t+1

t

∫
Ω

u(t)(−4ϕ) =
∫ t+1

t

∫
Ω

g(u(t))ϕ.

Letting t→∞, we find ∫
Ω

w(−4ϕ) =
∫

Ω

g(w)ϕ.

Therefore, w is a weak solution of (3.7.4).

For the proof of Theorem 3.7.6 we need four lemmas. We begin with a lemma concerning the linear

Laplace equation.

Lemma 3.7.9. Given f ∈ L1(Ω, δ(x)dx), there exists a unique v ∈ L1(Ω) which is a weak solution of{−4v = f in Ω,

v|∂Ω = 0,
(3.7.14)

in the sense that

−
∫

Ω

v4ζ =
∫

Ω

fζ, (3.7.15)

for all ζ ∈ C2(Ω) with ζ = 0 on ∂Ω. Moreover,

‖v‖L1 ≤ C‖f‖L1(Ω,δ(x)dx), (3.7.16)
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for some constant C independent of f . In addition, if f ≥ 0 a.e. in Ω, then v ≥ 0 a.e. in Ω.

Proof. The uniqueness is clear. Indeed, let v1 and v2 be two solutions of (3.7.14). Then v = v1 − v2

satisfies ∫
Ω

v4ζ = 0,

for all ζ ∈ C2(Ω) with ζ = 0 on ∂Ω. Given any ϕ ∈ D(Ω) let ζ be the solution of{ 4ζ = ϕ in Ω,

ζ|∂Ω = 0.

It follows that ∫
Ω

vϕ = 0.

Since ϕ is arbitrary, we deduce that v = 0.

For the existence, we may assume that f ≥ 0 (otherwise we write f = f+− f−). Given an integer k ≥ 0

set fk(x) = min{f(x), k}, so that fk −→
k→∞

f in L1(Ω, δ(x)dx). Let vk be the solution of

{−4vk = fk in Ω,

vk = 0 on ∂Ω.
(3.7.17)

The sequence (vk)k≥0 is clearly monotone nondecreasing. It is also a Cauchy sequence in L1(Ω) since∫
Ω

(vk − v`) =
∫

Ω

(fk − f`)ζ0,

where ζ0 is defined by {−4ζ0 = 1 in Ω,

ζ0 = 0 on ∂Ω.
(3.7.18)

Hence ∫
Ω

|vk − v`| ≤ C

∫
Ω

|fk − f`|δ(x) dx.

Passing to the limit in (3.7.17) (after multiplication by ζ), we obtain (3.7.15). Finally, taking ζ = ζ0

in (3.7.15), we obtain

‖v‖L1 =
∫

Ω

v =
∫

Ω

fζ0 ≤ C‖f‖L1(Ω,δ(x)dx),

and (3.7.16) follows.

Our next lemma is a variant of Kato’s inequality (see [65] and Theorem A.5.20).

Lemma 3.7.10. Let f ∈ L1(Ω, δ(x)dx), and let u ∈ L1(Ω) be the weak solution of (3.7.14). Let Φ ∈ C2(R)

be concave, with Φ′ bounded and Φ(0) = 0. Then

−4Φ(u) ≥ Φ′(u)f,

in the sense that

−
∫

Ω

Φ(u)4ζ ≥
∫

Ω

Φ′(u)fζ,
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for all ζ ∈ C2(Ω), ζ ≥ 0 such that ζ = 0 on ∂Ω.

Proof. Consider (fn)n≥0 ⊂ D(Ω) such that fn −→
n→∞

f in L1(Ω, δ(x)dx). Let un be the solution of

{ −4un = fn in Ω,

un = 0 on ∂Ω.

It follows from Lemma 3.7.9 that un −→
n→∞

u in L1(Ω). On the other hand we have

4Φ(un) = Φ′(un)4un + Φ′′(un)|∇un|2 ≤ Φ′(un)4un = −Φ′(un)fn.

Therefore,

−
∫

Ω

Φ(un)4ζ ≥
∫

Ω

Φ′(un)fnζ,

for all ζ ∈ C2(Ω), ζ ≥ 0 such that ζ = 0 on ∂Ω; and so the result follows easily by letting n→∞.

Lemma 3.7.11. Let 0 < ε < g(0) and set

h0(t) =
∫ t

0

ds

g(s)
, hε(t) =

∫ t

0

ds

g(s)− ε
,

and

Φε(t) = h−1
ε (h0(t)),

for all t ≥ 0. Then

(i) Φε ∈ C2([0,∞), Φε(0) = 0 and 0 ≤ Φε(t) ≤ t.

(ii) Φε is increasing, concave and Φ′ε(t) =
g(Φε(t))− ε

g(t)
≤ 1 for all t ≥ 0.

(iii) sup
t≥0

Φε(t) = Cε <∞, for every ε ∈ (0, g(0)).

Proof. Properties (i) and (iii) are clear. We have hε(Φε(t)) = h0(t), and thus h′ε(Φε(t))Φ′ε(t) = h′0(t),

which is the identity in (ii). Differentiating once more, we deduce

Φ′′ε (t) = (g(Φε(t)− ε))
g′(Φε(t))− g′(t))

g(t)2
.

Since g′(Φ(t)) ≤ g′(t), it follows that Φ is concave. Hence (ii).

Lemma 3.7.12. Let δ be given by (3.7.6). For every 0 < T < ∞, there exists ε1(T ) > 0 such that if

0 < ε ≤ ε1, then the solution Z of the equation
Zt −4Z = −ε in (0,∞)× Ω,

Z = 0 on (0,∞)× ∂Ω,

Z(0) = δ,

verifies Z ≥ 0 on [0, T ]× Ω.
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Proof. Consider the solution ζ0 of (3.7.18). We have

ζ0 = T (t)ζ0 +
∫ t

0

T (s)1Ω ds,

for all t ≥ 0. Since T (t)ζ0 ≥ 0, it follows that∫ t

0

T (s)1Ω ds ≤ ζ0 ≤ Cδ, (3.7.19)

for all t ≥ 0. On the other hand, we have

Z(t) = T (t)δ − ε

∫ t

0

T (s)1Ω ds;

and so,

Z(t) ≥ T (t)δ − εCδ.

Consider now c0, c1 > 0 such that c0ϕ1 ≤ δ ≤ c1ϕ1, where ϕ1 > 0 is the first eigenfunction of −4 in H1
0 (Ω),

associated to the eigenvalue λ1. We have

T (t)δ ≥ c0T (t)ϕ1 = c0e
−λ1tϕ1 ≥

c0
c1
e−λ1tδ.

Therefore,

Z(t) ≥
(
c0
c1
e−λ1t − εC

)
δ.

It follows that Z(t) ≥ 0 on [0, T ], provided ε ≤ c0
c1C

e−λ1T .

Proof of Theorem 3.7.6. If w ∈ L∞(Ω), then by the maximum principle u(t) ≤ w for all t ∈ [0, Tm);

and so Tm = +∞. Therefore, we may assume

w 6∈ L∞(Ω). (3.7.20)

We proceed in five steps.

Step 1. We claim that u(t) ≤ w for all t ∈ [0, Tm). This is proved using the maximum principle, but

since w is not smooth, we have to be more careful. Fix T < Tm. Let h(t, x) ∈ D((0, T )× Ω), h ≥ 0, and let

ζ be the solution of 
− ζt −4ζ − λg′(u)ζ = h,

ζ|∂Ω = 0,

ζ(T ) = 0.

Since g′(u) ∈ L∞((0, T )×Ω) we have in particular ζ ∈ C([0, T ], C2(Ω)∩C0(Ω)) and ζ ≥ 0. Multiplying (3.7.1)

by ζ and integrating on (0, T )× Ω, we find

−
∫

Ω

u0ζ(0) +
∫ T

0

∫
Ω

u[h+ λg′(u)ζ] = λ

∫ T

0

∫
Ω

g(u)ζ.

On the other hand,

−
∫ T

0

∫
Ω

wζt −
∫

Ω

wζ(0) = 0,
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and

−
∫ T

0

∫
Ω

w4ζ = λ

∫ T

0

∫
Ω

g(w)ζ.

Therefore,

−
∫

Ω

(u0 − w)ζ(0) +
∫ T

0

∫
Ω

(u− w)h = λ

∫ T

0

∫
Ω

(g(u)− g(w)− g′(u)(u− w))ζ.

By convexity,

g(u)− g(w)− g′(u)(u− w) ≤ 0.

Since ζ ≥ 0 and u0 − w ≤ 0, this yields ∫ T

0

∫
Ω

(u− w)h ≤ 0.

Since h is arbitrary, we conclude that u− w ≤ 0.

Step 2. There exist 0 < τ < Tm and C0, c0 > 0 such that

u(τ) ≤ C0δ, (3.7.21)

and

u(τ) ≤ w − c0δ. (3.7.22)

Set v0 = min{w, 1 + u0}. We have v0 ≥ u0 and v0 6≡ u0 by (3.7.20). In particular, there exists a function

γ : [0,∞) → R such that γ(t) > 0 for t > 0 and

T (t)(v0 − u0) ≥ γ(t)δ, (3.7.23)

where δ is defined by (3.7.6) (see Exercise 1.8.12). Let v be the solution of (3.7.1) with the initial value

v(0) = v0, and let [0, T ) be the maximal interval of existence of v. We have v ≥ 0, and by Step 1, v ≤ w.

Let z(t) = u(t) + T (t)(v0 − u0) for 0 ≤ t < T . We have
zt −4z = λg(u) ≤ λg(z) in (0, T )× Ω,

z = 0 on ∂Ω,

z(0) = v0 in Ω,

so that z ≤ v by the maximum principle. Therefore,

u(t) ≤ v(t)− T (t)(v0 − u0) ≤ w − T (t)(v0 − u0) ≤ w − γ(t)δ, (3.7.24)

for 0 ≤ t < T by (3.7.23). Fix 0 < T < min{T , Tm}. u is bounded by some constant M on [0, T ]×Ω, so that

u(t) ≤MT (t)1Ω + λg(M)
∫ t

0

T (s)1Ω ds.

There exists a function C : (0,∞) → R such that T (t)1Ω ≤ C(t)δ for t > 0, so that we deduce from (3.7.19)

that

u(t) ≤MC(t)δ + λg(M)Cδ, (3.7.25)
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for 0 < t ≤ T . (3.7.21) and (3.7.22) now follow from (3.7.24) and (3.7.25).

Step 3. We may assume without loss of generality that

u0 ≤ C0δ, (3.7.26)

and

u0 ≤ w − c0δ, (3.7.27)

where C0, c0 are as in Step 2. Indeed, we need only consider u(·+ τ) instead of u(·).

Step 4. Let Φε be as in Lemma 3.7.11, and set wε = Φε(w) for 0 < ε < g(0). Then

wε ∈ L∞(Ω), (3.7.28)

and ∫
Ω

ζ(−4wε) ≥ λ

∫
Ω

(g(wε)− ε)ζ, (3.7.29)

for all ζ ∈ C2(Ω), ζ ≥ 0 on Ω and ζ|∂Ω = 0. Moreover, there exists 0 < ε1 ≤ g(0) such that

u0 ≤ wε −
c0
2
δ, (3.7.30)

for 0 < ε < ε1, where c0 is as in (3.7.27). Indeed, (3.7.28) and (3.7.29) follow from Lemmas 3.7.10 and 3.7.11.

In order to prove (3.7.30), set

η = min{w, (C0 + c0)δ},

and

ηε = Φε(η).

Here, δ is given by (3.7.6) and C0 is as in (3.7.26). It follows from (3.7.26) and (3.7.27) that

u0 ≤ η − c0δ. (3.7.31)

We claim that

η ≤ ηε +
c0
2
δ, (3.7.32)

for ε > 0 small enough. Note that it follows from (3.7.31) and (3.7.32) that

u0 ≤ ηε −
c0
2
δ,

and (3.7.30) follows since ηε ≤ wε (since Φε is nondecreasing). Thus we need only prove (3.7.32). Note that

ηε ≤ η ≤M,

where M = (C0 + c0)‖δ‖L∞ , and that

Φ′ε(x)−→
ε↓0

1,

uniformly on [0,M ] by Lemma 3.7.11. Therefore,

η − ηε ≤ η sup
0≤x≤M

(1− Φ′ε(x)) ≤ (C0 + c0)δ sup
0≤x≤M

(1− Φ′ε(x)) ≤
c0
2
δ,
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for ε small enough, and (3.7.32) follows.

Step 5. Conclusion. Assume by contradiction that Tm <∞. Let ε > 0 be small enough so that

u0 ≤ wε −
c0
2
δ,

(see Step 4), and so that the solution Z of the equation
Zt −4Z = −ελ in (0, Tm)× Ω,

Z = 0 on ∂Ω,

Z(0) =
c0
2
δ in Ω,

is nonnegative on [0, Tm]× Ω (see Lemma 3.7.12). Let v be the solution of
vt −4v = λ(g(|v|)− ε) in (0, T )× Ω,

v = 0 on ∂Ω,

v(0) = wε in Ω.

Let [0, Sm) be the maximal interval of existence of v. Set z(t) = Z(t) + u(t) for 0 ≤ t < Tm. We have

z ≥ u ≥ 0 and 
zt −4z = λ(g(u)− ε) ≤ λ(g(z)− ε) on (0, Tm)× Ω,

z|∂Ω = 0,

z(0) = u0 +
c0
2
δ ≤ wε in Ω.

By the maximum principle, we have z ≤ v on [0,min{Tm, Sm}). In particular, v ≥ 0 on [0,min{Tm, Sm});

by the maximum principle and (3.7.29), v ≤ wε. Since wε ∈ L∞(Ω), this implies that Tm < Sm = +∞.

Therefore, u ≤ z ≤ v ≤ wε on [0, Tm), which is absurd.

We have the following result.

Theorem 3.7.13. Let λ ∈ (0, λ∗), and let u be the minimal solution of (3.7.4). There exists δ > 0 such

that if u0 ∈ L∞(Ω) verifies 0 ≤ u0 ≤ u + δ, then the solution u of (3.7.1) is global. Moreover, there exist

µ > 0 and a constant C such that

‖u(t)− u‖L∞ ≤ Ce−µt,

for all t ≥ 0.

Proof. The proof proceeds in three steps.

Step 1. There exists δ > 0 such that if ‖u0−u‖L∞ ≤ δ, then there exist µ > 0 and a constant C such that

‖u(t)− u‖L∞ ≤ Ce−µt,

for all t ≥ 0. This follows from Theorem 3.5.2.

Step 2. The conclusion of the theorem holds when u0 = 0. Indeed, u is a super-solution and 0 is a sub-

solution. Therefore, u is global and bounded; moreover, ut ≥ 0 (see Step 1 of the proof of Theorem 3.8.3).
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It follows from Remark 3.4.4 that there exists a solution w of (3.7.4) such that u(t) → w in H1
0 (Ω)∩L∞(Ω)

as t→∞. In particular, we have w ≤ u; and so w = u, since u is the minimal solution of (3.7.4). Therefore,

u(t) → u in L∞(Ω) as t→∞, and the result follows from Step 1.

Step 3. Conclusion. Let v1(t) be the solution of (3.7.1) with the initial value v1(0) = 0 and let v2(t) be

the solution of (3.7.1) with the initial value v2(0) = u+ δ (δ as in Step 1). By the maximum principle, the

solution u stays between v1 and v2. The conclusion follows from Steps 1 and 2.

Remark 3.7.14. Note that if λ ∈ (0, λ∗) then there exists β > 0 such that if u0 ∈ L∞(Ω), u0 ≥ 0 verifies∫
Ω

u0ϕ1 > β,

then u blows up in finite time (see Remark 3.6.10).

Remark 3.7.15 Suppose g(u) = eu and λ = λ∗.

(i) If N ≤ 9, then the equation (3.7.4) has a unique, positive, smooth solution u∗, and in addition λ1(−4−

eu∗) = 0. In this case, one can show that for every u0 ∈ L∞(Ω) such that u0 ≤ u∗, the solution u

of (3.7.1) is global. Moreover, ‖u(t)− u∗‖L∞ → 0 as t→∞; and if u0 ∈ L∞(Ω), u0 ≥ u∗ and u0 6≡ u∗,

then u blows up in finite time (see Exercise 3.13.15).

(ii) If N ≥ 10, then the behavior is quite different. Suppose Ω is the unit ball of RN . Then λ∗ = 2(N − 2)

and u∗(x) = −2 log |x| (see Remark 3.7.5). If u0 ∈ L∞(Ω), u0 ≤ u∗, then the solution u(t) of (3.7.1)

converges to u∗ as t ↑ ∞, in Lp(Ω) for any 1 ≤ p < ∞. However, if u0 ≥ u∗, u0 6≡ u∗, then there is

instantaneous blow up: there is no weak solution of (3.7.1) on any interval (0, T ) with T > 0. See Peral

and Vazquez [87].

3.8. Analysis of ‖u(t)‖Lq near blow up time. Recall that if u is a solution of (3.1) which blows up

in finite time, then lim
t↑Tm

‖u(t)‖L∞ = +∞. We warn the reader that in general u(t, x) does not blow up as

t ↑ Tm for every x ∈ Ω. In fact, it may happen that u(t, x) −→
t↑Tm

∞ only for one point x0 ∈ Ω, and that

|u(t, x)| remains bounded for x 6= x0 as t ↑ Tm. (See Section 3.12.)

Here, we prove that ‖u(t)‖Lq blows up for q sufficiently large.

Theorem 3.8.1. Assume g : R → R is locally Lipschitz and satisfies

|g(u)| ≤ C(|u|p + 1) for all u ∈ R, (3.8.1)

for some p ∈ (1,∞). Let u be a solution of (3.1) which blows up in finite time. Then,

lim
t↑Tm

‖u(t)‖Lq = +∞

for all ∞ ≥ q >
N(p− 1)

2
, q ≥ 1. More precisely,

lim inf
t↑Tm

(Tm − t)δ‖u(t)‖Lq > 0 (3.8.2)
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with δ =
1

p− 1
− N

2q
.

Proof. We proceed in two steps.

Step 1. lim sup
t↑Tm

‖u(t)‖Lpq = ∞. We argue by contradiction and assume that

lim sup
t↑Tm

‖u(t)‖Lpq <∞, (3.8.3)

and we apply Theorem 1.6.4 with f(t, x) = g(0) and

a(t, x) =
g(u(t, x))− g(0)

u(t, x)
.

It follows from (3.8.1) and (3.8.3) that a ∈ L∞((0, Tm), Lσ(Ω)) with σ =
pq

p− 1
. We have σ ≥ q

p− 1
>
N

2
and σ ≥ p

p− 1
> 1; and so, u ∈ L∞((0, Tm), L∞(Ω)). This is impossible by the blow up alternative.

Step 2. Proof of (3.8.2). Let 0 ≤ t < Tm and 0 ≤ s < Tm − t. We have

u(t+ s) = T (s)u(t) +
∫ s

0

T (s− σ)g(u(t+ σ)) dσ.

It follows from (3.8.1) and Theorem 1.4.15 that

‖u(t+ s)‖Lqp ≤ s−
N(p−1)

2qp ‖u(t)‖Lq + CTm|Ω|
1

qp + C

∫ s

0

(s− σ)−
N(p−1)

2qp ‖u(t+ σ)‖p
Lqp .

We now apply Theorem A.5.10 with f(t) = ‖u(t)‖Lpq , g(t) = ‖u(t)‖Lq and α =
N(p− 1)

2qp
. The result

follows, since

γ =
1− αp

p− 1
=

1
p− 1

− N

2q
.

It is an open problem whether in general ‖u(t)‖Lq blows up for q =
N(p− 1)

2
(see Open Problem 3.14.3).

However, in many cases this conclusion holds (see Section 3.12). Here are two such cases.

Theorem 3.8.2. Assume that g : R → R is locally Lipschitz and that

|g(u)| ≤ C|u|p, G(u) ≥ α|u|p+1, ug(u) ≥ (2 + ε)G(u),

for |u| ≥M , with ε > 0 and p = 1 +
4
N

. If u is a solution of (3.1) which blows up in finite time, then

lim
t↑Tm

‖u(t)‖L2 = +∞.

Note that 2 =
N(p− 1)

2
.

Proof. We set

ϕ(t) =
∫

Ω

u(t, x)2 dx,
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for t ∈ [0, Tm). We have

ϕ′(t) = −2
∫

Ω

|∇u|2 + 2
∫

Ω

ug(u) = −2
∫

Ω

|∇u|2 + 2
∫
|u|≥M

ug(u) + 2
∫
|u|≤M

ug(u)

≥ −2
∫

Ω

|∇u|2 + 2(2 + ε)
∫
|u|≥M

G(u) + 2
∫
|u|≤M

ug(u)

= −2
∫

Ω

|∇u|2 + 2(2 + ε)
∫

Ω

G(u) +
∫
|u|≤M

(2ug(u)− 2(2 + ε)G(u)).

It follows from (3.4.6) that

ϕ′(t) ≥ −4E(u0) + 2ε
∫

Ω

G(u) +
∫
|u|≤M

(2ug(u)− 2(2 + ε)G(u))

≥ −4E(u0) + 2εα
∫

Ω

|u|p+1 +
∫
|u|≤M

(2ug(u)− 4G(u)− 2εα|u|p+1)

≥ 2εα
∫

Ω

|u|p+1 −K,

with K = 4E(u0) + |Ω| sup
|u|≤M

{2|ug(u)|+ 4|G(u)|+ 2εα|u|p+1}.

Therefore, by integrating the above inequality, the conclusion of the theorem follows if we show that∫ Tm

0

∫
Ω

|u(t, x)|p+1 dx dt = ∞. (3.8.4)

We prove (3.8.4) by contradiction, and we assume that∫ Tm

0

∫
Ω

|u(t, x)|p+1 dx dt <∞. (3.8.5)

Let g(u) = au+ f , with f = g(0) and a =
g(u)− g(0)

u
. We have f ∈ L∞((0, Tm), L∞(Ω)). Furthermore,

|a| ≤ C(1 + |u|p−1),

so that (3.8.5) implies that a ∈ L
p+1
p−1 ((0, Tm), L

p+1
p−1 (Ω)). It now follows from Theorem 1.6.11 that u ∈

Lq((0, Tm), Lq(Ω)) for all q < ∞. Therefore, a ∈ Lq((0, Tm), Lq(Ω)) for all q < ∞; and therefore u ∈

L∞((0, Tm), L∞(Ω)) by Remark 1.6.5. This contradicts the blow up alternative, thus proving (3.8.4).

Under more restrictive assumptions on the initial value u0, one can still show that lim
t↑Tm

‖u(t)‖Lq = +∞

for q =
N(p− 1)

2
≥ 1. Here is such a result (see also Weissler [96], Remark 3.9.16and Exercise 3.13.19).

Theorem 3.8.3. Assume that N ≥ 3 and that

|g(u)| ≤ C(1 + |u|p),

with p ≥ 1 +
2
N

. Let u0 ∈ L∞(Ω) ∩H2(Ω) ∩H1
0 (Ω) be such that the solution u of (3.1) blows up in finite

time. If 4u0 + g(u0) ≥ 0 in Ω, then

lim
t↑Tm

‖u(t)‖Lq = +∞,

for q =
N(p− 1)

2
.
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Proof. We proceed in three steps.

Step 1. ut(t, x) ≥ 0, for all t ∈ [0, Tm) and all x ∈ Ω. Given 0 < h < Tm, define

v(t) =
u(t+ h)− u(t)

h
,

for 0 ≤ t < T − h. It follows that

vt −4v =
g(u(t+ h))− g(u(t))

h
.

Multiplying the equation by −v− and integrating on Ω, we find

1
2
d

dt

∫
Ω

v−(t)2 +
∫

Ω

|∇v−|2 ≤ C

∫
Ω

v−(t)2,

for all 0 ≤ t < T1−h, with h < T1 < Tm. Here, C is the constant of g on [−A,A] where A = ‖u‖L∞((0,T1)×Ω).

It follows that ∫
Ω

v−(t)2 ≤ eCt

∫
Ω

v−(0)2.

Letting h ↓ 0, we obtain ut ≥ 0.

Step 2. We show that lim sup
t↑Tm

‖u(t)‖Lq = +∞. Assume by contradiction that lim sup
t↑Tm

‖u(t)‖Lq < ∞.

Since u(t, x) is a nondecreasing function of t for every x ∈ Ω, it follows from the monotone convergence

theorem that u(t) has a limit in Lq(Ω) as t ↑ Tm; and so, u ∈ C([0, Tm], Lq(Ω)). Let h ∈ Cc(R) be such

that g(u) = h(u) for |u| ≤ 1. We now write g(u) = au + f with f = g(u). One verifies easily that

a, f ∈ C([0, Tm], L
N
2 (Ω)). By Exercise 1.8.7 and a bootstrap argument, we deduce that u ∈ L∞((0, Tm)×Ω),

which contradicts the blow up alternative.

Step 3. Conclusion. Since u(t, x) is a nondecreasing function of t for every x ∈ Ω, we have clearly

lim sup
t↑Tm

‖u(t)‖Lq = lim
t↑Tm

‖u(t)‖Lq , and the result follows from Step 2.

3.9. Local existence for initial data in Lq, q <∞. The bad sign. We now return to the question

of local existence, for the model problem
ut −4u = |u|p−1u in (0, T )× Ω,

u = 0 in (0, T )× ∂Ω,

u(0, x) = u0(x) in Ω,

(3.9.1)

where p > 1. Recall (See Theorem 3.1.1) that if u0 ∈ L∞(Ω), there is a unique weak solution defined on

a maximal interval [0, Tm). We now address the question of what happens if u0 6∈ L∞(Ω), but instead

u0 ∈ Lq(Ω) for some q <∞. The value

q =
N(p− 1)

2
,

plays a critical role, and one has to distinguish two cases:

Case 1: q ≥ N(p− 1)
2

.

Case 2: q <
N(p− 1)

2
.
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Roughly speaking, in case 1 we obtain the existence and uniqueness of a local solution for any u0 ∈ Lq(Ω).

In case 2, it seems that there exists no local solution in any reasonable sense for some initial conditions

u0 ∈ Lq(Ω) (see Weissler [97, 98] and Open Problem 3.14.11).

Our main existence and uniqueness result is the following.

Theorem 3.9.1. Assume q >
N(p− 1)

2
(resp. q =

N(p− 1)
2

) and q ≥ 1 (resp. q > 1), N ≥ 1. Given any

u0 ∈ Lq(Ω), there exist a time T = T (u0) > 0 and a unique function u ∈ C([0, T ], Lq(Ω)) with u(0) = u0,

which is a classical solution of (3.9.1) on (0, T )× Ω.

Moreover, we have:

(i) Smoothing effect and continuous dependence, namely

‖u(t)− v(t)‖Lq + t
N
2q ‖u(t)− v(t)‖L∞ ≤ C‖u0 − v0‖Lq , (3.9.2)

for all t ∈ (0, T ] where T = min{T (u0), T (v0)} and C can be estimated in terms of ‖u0‖Lq and ‖v0‖Lq .

(ii) lim
t↓0

t
N
2q ‖u(t)‖L∞ = 0.

(iii) If u0 ≥ 0, then u(t) ≥ 0 for all t ∈ [0, T (u0)].

Furthermore, for any bounded set (resp. compact set) K in Lq(Ω), there is a (uniform) time T = T (K)

such that for any u0 ∈ K the solution of (3.9.1) exists on [0, T ].

Many people have established uniqueness results for nonlinear evolution equations with singular initial

conditions, in particular the Navier-Stokes and the Euler equations (see e.g. Kato and Fujita [66], Kato [64],

Ben-Artzi [10], Weissler [97]). In all these works it is assumed that u ∈ L∞loc((0, T ), L∞(Ω)) and also that

lim
t↓0

tα‖u(t)‖L∞ = 0 for some appropriate α > 0. Our main point is that such an assumption is redundant.

A similar observation has first been made in [18].

Remark 3.9.2. Since u is a classical solution on (0, T ) × Ω, the usual blow up alternative holds: either

Tm = +∞ or else Tm <∞ and lim
t↑Tm

‖u(t)‖L∞ = +∞.

Remark 3.9.3. The “doubly critical” case, q =
N(p− 1)

2
and q = 1, in Theorem 3.9.1 is delicate and

widely open (see Remark 3.9.13 below). For example, when N = 1, the very simple equation

ut − uxx = u3,

with an initial condition u0 ∈ L1(Ω), enters in this category.

It seems that for some u0 ∈ L1(Ω) there is not even a local solution. See Open Problem 3.14.7. We

are, at least, able to find some u0 ∈ L1(Ω), u0 ≥ 0 such that equation (3.9.1) has no nonnegative solution

u ∈ C([0, T ], L1(Ω)) ∩ L∞loc((0, T ), L∞(Ω)). See Theorem 3.9.14 below.

When q ≥ p, it makes sense to talk about weak solutions u ∈ C([0, T ], Lq(Ω)) in the integral sense, i.e.

u(t) = T (t)u0 +
∫ t

0

T (t− s)|u(s)|p−1u(s) ds, (3.9.3)
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for all t ∈ [0, T ]. Uniqueness holds in that class:

Theorem 3.9.4. Assume q >
N(p− 1)

2
(resp. q =

N(p− 1)
2

) and q ≥ p (resp. q > p), N ≥ 1. Then

uniqueness for (3.9.3) holds in the class C([0, T ], Lq(Ω)).

Remark 3.9.5. In the “doubly critical” case q =
N(p− 1)

2
and q = p, i.e. q = p =

N

N − 2
with N ≥ 3,

the conclusion of Theorem 3.9.4 fails, i.e. uniqueness fails in the class C([0, T ], Lq(Ω)). See Ni and Sacks [82]

and Remark 3.9.11 below.

Remark 3.9.6. The solution u of (3.9.1) given in Theorem 3.9.1 also satisfies (3.9.3); here, there is no

restriction about q except for the assumptions of Theorem 3.9.1. This is not completely obvious since the

integral on the right-hand side of (3.9.3) need not be well-defined. To establish the convergence of this

integral, we rely on the smoothing effect (3.9.2). Clearly we have

u(t) = T (t− s)u(s) +
∫ t

s

T (t− σ)|u(σ)|p−1u(σ) dσ, (3.9.4)

for all 0 < s < t < T . We let s ↓ 0 in (3.9.4); to justify this passage to the limit it suffices to check that∫ t

0

‖T (t− σ)|u(σ)|p−1u(σ)‖Lq dσ <∞.

The only difficulty is when σ is near 0. But

‖T (t− σ)|u(σ)|p−1u(σ)‖Lq ≤ (t− σ)−
N
2 ( q−1

q )‖u(σ)‖p
Lp ,

by Theorem 1.4.15. We may always assume that p > q (the case q ≥ p has been handled above); and so,

‖u(σ)‖p
Lp ≤ ‖u(σ)‖q

Lq‖u(σ)‖p−q
L∞ ≤ Cσ−

N(p−q)
2q .

The result follows, since
N(p− q)

2q
= 1− 1

q

(
q − N(p− 1)

2

)
− N

2q
(q − 1) < 1.

In several places, it is convenient to view the nonlinear equation (3.9.1) as a linear problem

ut −4u = au,

and we have collected in the Appendix some useful facts about this linear heat equation with a potential.

Proof of Theorem 3.9.4. We consider separately two cases:

Case A: q >
N(p− 1)

2
and q ≥ p,

Case B: q =
N(p− 1)

2
and q > p.

Case A. Let u and v be two solutions, u, v ∈ C([0, T ], Lq(Ω)). We have

u(t)− v(t) =
∫ t

0

T (t− s)
(
|u(s)|p−1u(s)− |v(s)|p−1v(s)

)
ds. (3.9.5)
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Thus, by the smoothing effect of T (t) : L
q
p (Ω) → Lq(Ω),

‖u(t)− v(t)‖Lq ≤ C

∫ t

0

(t− s)−α‖ (|u|p−1 + |v|p−1)|u− v| ‖
L

q
p
ds

≤ C

∫ t

0

(t− s)−α(‖u‖p−1
Lq + ‖v‖p−1

Lq )‖u− v‖Lq ds,

where α =
N(p− 1)

2q
< 1 since we are in case A. Let M = sup

0≤t≤T
‖u(t)‖Lq + ‖v(t)‖Lq and

ψ(t) = sup
0≤s≤t

‖u(t)− v(t)‖Lq ,

for t ∈ [0, T ]. We deduce that

ψ(t) ≤ CMp−1 T
1−α

1− α
ψ(t).

Hence ψ(t) = 0 for t sufficiently small. Repeating the same argument, we see that ψ(t) = 0 for t ∈ [0, T ].

Case B. Note that q =
N(p− 1)

2
> p, thus N ≥ 3. Let u, v be two solutions and let w = u− v. We set

a(t, x) =


|u|p−1u− |v|p−1v

u− v
if u 6= v,

p|u|p−1 if u = v,

(3.9.6)

so that

w(t) =
∫ t

0

T (t− s)a(s)w(s) ds.

We claim that

a ∈ C([0, T ], L
N
2 (Ω)). (3.9.7)

We may then apply Theorem 1.6.12 to conclude that w ≡ 0. Note that (since we are in case B) q >
N

N − 2
.

Proof of (3.9.7). We have |a| ≤ p(|u|p−1 + |v|p−1), so that a ∈ L∞((0, T ), L
N
2 (Ω)). We now estab-

lish (3.9.7) by contradiction. Otherwise, there exist ε > 0, t ∈ [0, T ] and a sequence (tn)n≥0 ∈ [0, T ] such

that tn → t and ‖a(tn, ·) − a(t, ·)‖
L

N
2
≥ ε. On the other hand, by possibly extracting a subsequence, we

may assume that u(tn) → u(t) and v(tn) → v(t) in Lq(Ω) and almost everywhere, and that there exists

ϕ ∈ Lq(Ω) such that |u(tn)| + |v(tn)| ≤ ϕ almost everywhere. It follows easily that a(tn) → a(t) almost

everywhere and that |a(tn)| ≤ C|ϕ|p−1 ∈ L
N
2 (Ω). By dominated convergence, we deduce a(tn) → a(t) in

L
N
2 (Ω), which is absurd.

Proof of the existence part in Theorem 3.9.1 when q >
N(p− 1)

2
and q ≥ 1. We first establish

the existence of a solution u ∈ L∞((0, T ), Lq(Ω)) ∩ L∞loc((0, T ), Lpq(Ω)). We use the contraction mapping

principle in a somewhat unusual space (this idea is due to F.B. Weissler [98]). Fix M ≥ ‖u0‖Lq and let

E = L∞((0, T ), Lq(Ω)) ∩ L∞loc((0, T ), Lpq(Ω)),

and

K = K(T ) = {u ∈ E; ‖u(t)‖Lq ≤M + 1 and tα‖u(t)‖Lpq ≤M + 1 for t ∈ (0, T )},
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with α =
N(p− 1)

2pq
<

1
p
< 1. We equip K with the distance

d(u, v) = sup
0<t<T

tα‖u(t)− v(t)‖Lpq ,

so that (K, d) is a nonempty complete metric space. Given u ∈ K, we set

Φ(u)(t) = T (t)u0 +
∫ t

0

T (t− s)|u(s)|p−1u(s) ds.

For u ∈ K, we have

‖Φ(u)(t)‖Lq ≤ ‖u0‖Lq +
∫ t

0

‖u(s)‖p
Lpq ds

≤ ‖u0‖Lq +
(

sup
0<t<T

tα‖u(t)‖Lpq

)p ∫ t

0

s−pα ds

≤ ‖u0‖Lq +
T 1−pα

1− pα
(M + 1)p.

Next,

tα‖Φ(u)(t)‖Lpq ≤ ‖u0‖Lq + tα
∫ t

0

(t− s)−α‖u(s)‖p
Lpq ds

≤ ‖u0‖Lq + tα(M + 1)p

∫ t

0

(t− s)−αs−pα ds

≤ ‖u0‖Lq + T 1−pα(M + 1)p

∫ 1

0

(1− σ)−ασ−pα dσ.

Similarly, one shows that for u, v ∈ K,

tα‖Φ(u)(t)− Φ(v)(t)‖Lpq ≤ CT 1−pα(M + 1)p−1d(u, v).

It follows from the above estimates that if T is small enough (depending on M), then Φ : K → K is a strict

contraction. Thus Φ has a unique fixed point in K.

To complete the argument, it suffices to show that u ∈ C([0, T ], Lq(Ω)) ∩ L∞loc((0, T ), L∞(Ω)) (once

u ∈ L∞loc((0, T ), L∞(Ω)), it must be a classical solution on (0, T ) × Ω). Since u ∈ K and pα < 1, we have

|u|p−1u ∈ L1((0, T ), Lq(Ω)). This implies that u ∈ C([0, T ], Lq(Ω)). (Recall that, in a general setting, if

f ∈ L1((0, T ), X) and u(t) =
∫ t

0

T (t− s)f(s) ds, then u ∈ C([0, T ], X).)

Next, we prove that u ∈ L∞loc((0, T ), L∞(Ω)). Indeed, we have u ∈ L∞loc((0, T ), Lpq(Ω)). Therefore, we

may apply Theorem 1.6.7 (with q replaced by pq and σ =
pq

p− 1
) on every interval (ε, T −ε), with a = |u|p−1.

Note that the choice of T depends only on M . This establishes the last assertion in Theorem 3.9.1.

For the proof of the existence part in Theorem 3.9.1 when q =
N(p− 1)

2
and q > 1, we will use the

following lemma.

Lemma 3.9.7. Given a compact set K ⊂ Lq(Ω) and q < r ≤ ∞, there exists a function γ : (0, 1] → (0,∞)

with

lim
t↓0

γ(t) = 0,

such that

tα‖T (t)u0‖Lr ≤ γ(t),
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for all t ∈ (0, 1) and all u0 ∈ K, where α =
N

2

(
1
q
− 1
r

)
.

Proof. If K is reduced to a single point u0, the result is clear. Indeed, for any v0 ∈ L∞(Ω)

tα‖T (t)u0‖Lr ≤ tα‖T (t)(u0 − v0)‖Lr + tα‖T (t)v0‖Lr

≤ ‖u0 − v0‖Lq + Ctα‖v0‖L∞ ;

and so

lim sup
t↓0

tα‖T (t)u0‖Lr ≤ ‖u0 − v0‖Lq .

The assertion follows since v0 is arbitrary.

In the general case, given any ρ > 0, there is a finite covering of K by balls B(ui, ρ) in Lq(Ω). Any

u0 ∈ K belongs to some B(ui, ρ), and we then write

tα‖T (t)u0‖Lr ≤ tα‖T (t)(u0 − ui)‖Lr + tα‖T (t)ui‖Lr

≤ ‖u0 − ui‖Lq + tα‖T (t)ui‖Lr

≤ ρ+ tα‖T (t)ui‖Lr .

The conclusion of the lemma then follows from the first assertion.

Proof of the existence part in Theorem 3.9.1 when q =
N(p− 1)

2
and q > 1. The strategy is the

same as in the case q =
N(p− 1)

2
, with some minor technical differences. Fix any r ∈ (q, pq), r ≥ p, and set

Ẽ = L∞((0, T ), Lq(Ω)) ∩ {u ∈ L∞loc((0, T ), Lr(Ω)); tαu ∈ L∞((0, T ), Lr(Ω))},

and

E = L∞((0, T ), Lq(Ω)) ∩ {u ∈ L∞loc((0, T ), Lr(Ω)); tαu ∈ C0([0, T ], Lr(Ω))},

with α =
N

2

(
1
q
− 1
r

)
<

1
p
< 1 (since r < pq). Here C0 means that we consider functions which vanish at

t = 0. Fix M ≥ ‖u0‖Lq . Given δ > 0 to be chosen later, let

K̃ = K̃(T ) = {u ∈ Ẽ; ‖u(t)‖Lq ≤M + 1 and tα‖u(t)‖Lr ≤ δ for t ∈ (0, T )},

and

K = K(T ) = K̃ ∩ E.

We equip K̃ with the distance

d(u, v) = sup
0<t<T

tα‖u(t)− v(t)‖Lr ,

so that (K̃, d) and (K, d) are nonempty complete metric spaces. Consider the same mapping Φ as in the

proof of the existence part when q =
N(p− 1)

2
and q > 1. Let a =

N

2

(
p

r
− 1
q

)
. For u ∈ K̃, we have by

using the smoothing effect L
r
p → Lq (note that r < pq, so that r/p < q),

‖Φ(u)(t)‖Lq ≤ ‖u0‖Lq +
∫ t

0

(t− s)−a‖u(s)‖p
Lr ds

≤ ‖u0‖Lq +
(

sup
0<t<T

tα‖u(t)‖Lr

)p ∫ t

0

(t− s)−as−pα ds

≤ ‖u0‖Lq + C1δ
p,

(3.9.8)
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since a+pα = 1. Here the constant C1 (and the constants C2, C3 below) depends only on p, q, r,N . Therefore,

‖Φ(u)(t)‖Lq ≤M + 1,

provided

C1δ
p ≤ 1. (3.9.9)

Next, using the smoothing effect L
r
p → Lr, we have

tα‖Φ(u)(t)‖Lr ≤ sup
0<t<T

tα‖T (t)u0‖Lr + tα
∫ t

0

(t− s)−
N(p−1)

2r ‖u(s)‖p
Lr ds

≤ sup
0<t<T

tα‖T (t)u0‖Lr +
(

sup
0<t<T

tα‖u(t)‖Lr

)p

tα
∫ t

0

(t− s)−
N(p−1)

2r s−pα ds

≤ sup
0<t<T

tα‖T (t)u0‖Lr + C2δ
p,

(3.9.10)

since pα+
N(p− 1)

2r
= α+ 1. Therefore,

sup
0<t<T

tα‖Φ(u)(t)‖Lr ≤ sup
0<t<T

tα‖T (t)u0‖Lr +
δ

2
, (3.9.11)

provided

C2δ
p−1 ≤ 1

2
. (3.9.12)

Similarly, one shows that for u, v ∈ K̃,

sup
0<t<T

tα‖Φ(u)(t)− Φ(v)(t)‖Lr ≤ C3δ
p−1d(u, v) ≤ 1

2
d(u, v), (3.9.13)

provided

C3δ
p−1 ≤ 1

2
, (3.9.14)

for some constant C3. It follows from the above estimates that Φ : K̃ → Ẽ.

We fix any δ > 0 small enough so that (3.9.9), (3.9.12) and (3.9.14) are satisfied. The choice of δ depends

only on N, p, q, r.

Next, we fix T > 0 such that

sup
0<t<T

tα‖T (t)u0‖Lr ≤ δ

2
. (3.9.15)

In view of Lemma 3.9.7, the choice of T depends only on the compact set K ⊂ Lq(Ω). This establishes the

last assertion in Theorem 3.9.1.

By (3.9.13),(3.9.11) and (3.9.15), Φ : K̃ → K̃ is a strict contraction, and thus has a unique fixed point

in K̃.

Next, we claim that this fixed point belongs to K. For this purpose, it suffices to verify that Φ : K → K.

We have to check that Φ(u) ∈ C((0, T ], Lr(Ω)) and that lim
t↓0

tαΦ(u)(t) = 0 in Lr(Ω). Since by Lemma 3.9.7

T (t)u0 satisfies the above requirements, we may always assume that u0 = 0. It is clear that Φ(u) ∈ K

when u ∈ C([0, T ], L∞(Ω)). Since K ∩C([0, T ], L∞(Ω)) is dense in K equipped with the metric d, the result

follows from (3.9.13).
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We now show that u ∈ L∞loc((0, T ), L∞(Ω)). Indeed, we have u ∈ L∞loc((0, T ), Lr(Ω)). Therefore, we can

apply Theorem 1.6.7 (with σ =
r

p− 1
) on every interval (ε, T − ε), with a = |u|p−1. Indeed, r ≥ p > p− 1,

so that σ > 1; r > q =
N(p− 1)

2
, so that σ >

N

2
; and r ≥ p, so that r ≥ σ′.

Finally, we show that u ∈ C([0, T ], Lq(Ω)). Indeed, we have u ∈ K, so that in particular u ∈

C((0, T ], Lr(Ω)) ⊂ C((0, T ], Lq(Ω)). Therefore, it remains to show that u(t) − T (t)u0−→
t↓0

0 in Lq(Ω). As

in (3.9.8) we have

‖u(t)− T (t)u0‖Lq ≤ C1 sup
0<s<t

(sα‖u(s)‖Lr )p−→
t↓0

0,

since u ∈ E.

Proof of the uniqueness in Theorem 3.9.1. For every u0 ∈ Lq(Ω), we denote by U(t)u0 the solution

constructed via the above contraction argument on some interval [0, T (u0)]. We shall need the following

lemma.

Lemma 3.9.8. Let u0 ∈ L∞(Ω) and consider the classical solution ũ of (3.9.1) defined on the maximal

interval [0, Tm(u0)). Then T (u0) < Tm(u0) and ũ(t) = U(t)u0 for all t ∈ [0, T (u0)].

Proof. It is clear that ũ ∈ K(τ) for some 0 < τ ≤ T (u0) sufficiently small. By uniqueness in K(τ) we have

ũ(t) = U(t)u0, for 0 ≤ t ≤ τ.

After time τ , both ũ(t) and U(t)u0 are classical solutions. Hence the result.

End of the proof of the uniqueness in Theorem 3.9.1. Here we use the same idea as in [18].

We give the proof only in the critical case q =
N(p− 1)

2
and q > 1; the other case is simpler. Let

v ∈ C([0, T ], Lq(Ω))∩L∞loc((0, T ), L∞(Ω)) be a solution of (3.9.1) with v(0) = u0. Recall that v is a classical

solution of (3.9.1) on (0, T ) × Ω. We are going to prove that v(t) = U(t)u0 on some interval [0, T ′). Then,

v(t) = U(t)u0 as long as both exist, by standard uniqueness in L∞(Ω).

Set

K = v([0, T ]),

and

M = sup
0≤t≤T

‖v(t)‖Lq .

Since K is a compact set in Lq(Ω), there is a uniform T1 > 0 such that U(t)v0 is well defined for all v0 ∈ K

and all t ∈ [0, T1]. Moreover, since U(t)v(s) ∈ K(T1) (considered as a function of t), we have

‖U(t)v(s)‖Lq ≤M + 1,

tα‖U(t)v(s)‖Lr ≤ δ,
(3.9.16)

for all s ∈ (0, T ) and all t ∈ (0, T1).

Fix any 0 < s < T . It follows from Lemma 3.9.8 that

v(t+ s) = U(t)v(s) for 0 ≤ t ≤ min{T − s, T1}. (3.9.17)

CHAPTER 3—PAGE 37



Combining (3.9.16) and (3.9.17) we obtain

‖v(t+ s)‖Lq ≤M + 1,

tα‖v(t+ s)‖Lr ≤ δ,

for t+ s < T and t < T1. Passing to the limit as s ↓ 0, we deduce that

‖v(t)‖Lq ≤M + 1,

tα‖v(t)‖Lr ≤ δ,

for 0 < t < min{T, T1}. Therefore, v(t) ∈ K̃(T ′) where T ′ = min{T, T1}. We may now argue as in

Remark 3.9.6 to assert that

v(t) = T (t)u0 +
∫ t

0

T (t− s)|v(s)|p−1v(s) ds, (3.9.18)

i.e. v = Φ(v). By (3.9.13) we deduce v(t) = U(t)u0 on [0, T ′].

Proof of (i), (ii) and (iii) in Theorem 3.9.1 (Smoothing effect and stability). To prove (3.9.2)

we consider three cases. The methods are essentially the same in all three cases with some minor technical

changes.

Case a: q >
N(p− 1)

2
, q ≥ p− 1 and q ≥ 1;

Case b: q >
N(p− 1)

2
and 1 ≤ q < p− 1;

Case c: q =
N(p− 1)

2
and q > 1;

Case a: q >
N(p− 1)

2
and q ≥ p − 1. We apply Theorem 1.6.7 with a given by (3.9.6). We have

|a| ≤ p(|u|p−1 + |v|p−1), so that a ∈ L∞((0, T ), Lσ(Ω)) with σ =
q

p− 1
>
N

2
, σ ≥ 1. By (1.6.7) we have

‖u(t)− v(t)‖L∞ ≤ CeCt‖a‖α
L∞((0,T ),Lσ)(t−

N
2q + 1)‖u0 − v0‖Lq ,

with α =
N(p− 1)

2pq
. By construction, u, v ∈ K where M is chosen such that M ≥ ‖u0‖Lq and M ≥ ‖u0‖Lq ;

and thus, the L∞ estimate of (3.9.2) follows.

On the other hand, we have.

‖u(t)− v(t)‖Lq ≤ ‖u0 − v0‖Lq + C

∫ t

0

(‖u‖p−1
Lpq + ‖v‖p−1

Lpq )‖u− v‖Lpq .

Since u, v ∈ K, we have

‖u(s)‖p−1
Lpq + ‖v(s)‖p−1

Lpq ≤
C

sα(p−1)
(M + 1)p−1.

Therefore,

sup
0<t<T

‖u(t)− v(t)‖Lq ≤ ‖u0 − v0‖Lq + C(M + 1)p−1 sup
0<t<T

tα‖u(t)− v(t)‖Lpq . (3.9.19)

Here, we use the fact that αp < 1. Furthermore, by using the Lq(Ω) → Lpq(Ω) smoothing effect, we have

‖u(t)− v(t)‖Lpq ≤ t−α‖u0 − v0‖Lq + CA

∫ t

0

(t− s)−αs−α(p−1)‖u− v‖Lpq ,
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where A = sup
0<s<T

sα(p−1)(‖u(s)‖p−1
Lpq + ‖v(s)‖p−1

Lpq ). From the singular Gronwall lemma (Proposition A.5.7),

we deduce

sup
0<t<T

tα‖u(t)− v(t)‖Lpq ≤ C‖u0 − v0‖Lq . (3.9.20)

Combining (3.9.19) and (3.9.20) we obtain the Lq estimate of (3.9.2).

Case b. Here, we cannot apply Theorem 1.6.7 since σ =
q

p− 1
< 1. However, the second part of the proof

in unchanged and we deduce as above that

‖u(t)− v(t)‖Lq + tα‖u(t)− v(t)‖Lpq ≤ C‖u0 − v0‖Lq ,

for all t ∈ [0, T ]. This establishes the Lq estimate of (3.9.2).

We now turn to the proof of the L∞ estimate of (3.9.2). First note that

‖u(t/2)− v(t/2)‖Lpq ≤ Ct−α‖u0 − v0‖Lq .

We now apply Theorem 1.6.7 on the interval (t/2, t) with q replaced by = pq and σ =
pq

p− 1
> 1 and with a

given by (3.9.6). Since |a| ≤ p(|u|p−1 + |v|p−1), we have that a ∈ L∞((t/2, t), Lσ(Ω)); and ‖a‖L∞((t/2,t),Lσ) ≤

C(M + 1)p−1t−α(p−1). It follows that

‖u(t)− v(t)‖L∞ ≤ C exp
(
Ct(M + 1)

2σ(p−1)
2σ−N (t−α(p−1))

2σ
2σ−N

)
(1 + t−

N
2pq )‖u(t/2)− v(t/2)‖Lpq ;

and so,

‖u(t)− v(t)‖L∞ ≤ C exp
(
C(M + 1)

2σ(p−1)
2σ−N tγ

)
(1 + t−

N
2pq )‖u(t/2)− v(t/2)‖Lpq ,

with γ = 1− 2σα(p− 1)
2σ −N

. Since γ > 0, we obtain

‖u(t)− v(t)‖L∞ ≤ Ct−
N
2pq ‖u(t/2)− v(t/2)‖Lpq .

Therefore,

‖u(t)− v(t)‖L∞ ≤ Ct−
N
2pq t−α‖u0 − v0‖Lq = Ct−

N
2q ‖u0 − v0‖Lq ,

which is the L∞ estimate of (3.9.2).

Case c: q =
N(p− 1)

2
and q > 1. Since u − v = T (t)(u0 − v0) + Φ(u) − Φ(v), it follows from (3.9.13)

that

sup
0<t<T

tα‖u(t)− v(t)‖Lr ≤ sup
0<t<T

tα‖T (t)(u0 − v0)‖Lr +
1
2

sup
0<t<T

tα‖u(t)− v(t)‖Lr ,

with α =
N(r − q)

2qr
; and so,

sup
0<t<T

tα‖u(t)− v(t)‖Lr ≤ 2 sup
0<t<T

tα‖T (t)(u0 − v0)‖Lr ≤ 2‖u0 − v0‖Lq . (3.9.21)

Furthermore (as in (3.9.8)) we have,

‖u(t)− v(t)‖Lq ≤ ‖u0 − v0‖Lq + C

∫ t

0

(t− s)−a(‖u(s)‖p−1
Lr + ‖v(s)‖p−1

Lr )‖u(s)− v(s)‖Lr ds

‖u0 − v0‖Lq + Cδp−1 sup
0<s<t

tα‖u(s)− v(s)‖Lr

∫ t

0

(t− s)−as−αp ds

≤ C‖u0 − v0‖Lq ,
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by (3.9.21). This establishes the Lq estimate of (3.9.2).

To prove the L∞ estimate, we apply Theorem 1.6.7 on the interval (t/2, t) with σ =
r

p− 1
>
N

2
, σ > 1,

and with a given by (3.9.6). We have |a| ≤ p(|u|p−1 + |v|p−1), so that a ∈ L∞((t/2, t), Lσ(Ω)); and since

u, v ∈ K, ‖a‖L∞((t/2,t),Lσ) ≤ Ct−α(p−1). It follows that

‖u(t)− v(t)‖L∞ ≤ C exp
(
Ct(t−α(p−1))

2σ
2σ−N

)
(1 + t−

N
2r )‖u(t/2)− v(t/2)‖Lr .

But 1− 2σα(p− 1)
2σ −N

= 0; and so,

‖u(t)− v(t)‖L∞ ≤ C(1 + t−
N
2r )‖u(t/2)− v(t/2)‖Lr . (3.9.22)

Combining (3.9.21) and (3.9.22), we obtain

‖u(t)− v(t)‖L∞ ≤ Ct−
N
2r t−α‖u0 − v0‖Lq = Ct−

N
2q ‖u0 − v0‖Lq ,

which is the desired estimate. In fact in this case the constant C in (3.9.2) is independent of ‖u0‖Lq and

‖u0‖Lq .

Finally, (ii) and (iii) are clearly true when u0 ∈ L∞(Ω), and the general case follows by continuous

dependence (3.9.2).

Remark 3.9.9. Even when q < p, the uniqueness property in Theorem 3.9.1 holds in a class larger

than C([0, T ], Lq(Ω)) ∩ L∞loc((0, T ), L∞(Ω)). More precisely, uniqueness holds in the class C([0, T ], Lq(Ω)) ∩

L∞loc((0, T ), Lp(Ω)). Indeed, note first that the equation makes sense in that class (since then |u|p−1u ∈

L∞loc((0, T ), L1(Ω))). Furthermore, if u ∈ L∞loc((0, T ), Lp(Ω)), then |u|p−1 ∈ L∞loc((0, T ), L
p

p−1 (Ω)). We

have p > q =
N(p− 1)

2
, so that

p

p− 1
>

N

2
. Therefore, it follows from Theorem 1.6.7 that u ∈

L∞loc((0, T ), L∞(Ω)).

Remark 3.9.10. The above results hold for more general nonlinearities with similar proofs. More precisely,

one can replace |u|p−1u by g(u) where g : R → R verifies |g(x)− g(y)| ≤ C(1 + |x|p−1 + |y|p−1)|x− y|.

Remark 3.9.11 (The “doubly critical” case q =
N(p− 1)

2
and q = p in Theorem 3.9.4). As we

have already mentioned in Remark 3.9.5, if q =
N(p− 1)

2
and q = p, i.e. q = p =

N

N − 2
(N ≥ 3), then

the conclusion of Theorem 3.9.4 fails, i.e. uniqueness fails in the class C([0, T ], Lq(Ω)). This is a result of Ni

and Sacks [82], and we sketch their argument. First, a simple lemma.

Lemma 3.9.12. Let ϕ, f ∈ L1(Ω) satisfy the equation{−4ϕ = f in Ω,

ϕ = 0 in ∂Ω,

in the sense that

−
∫

Ω

ϕ4ζ =
∫

Ω

fζ, (3.9.23)
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for all ζ ∈ C2(Ω) with ζ = 0 on ∂Ω. Then

ϕ = T (t)ϕ+
∫ t

0

T (s)f ds, (3.9.24)

for all t ≥ 0.

Proof. The conclusion is trivial if ϕ is smooth. In the general case, let (fn)n≥0 ⊂ D(Ω) be such that

fn −→
n→∞

f in L1(Ω) and let ϕn be the corresponding solution of (3.9.23). Then ϕn → ϕ in L1(Ω) (see e.g.

Lemma 3.7.9 above) and one passes to the limit in (3.9.24).

In the case Ω = the unit ball of RN , Ni and Sacks [82] have constructed a radial function ψ ∈ C2(Ω\{0}),

ψ > 0 in Ω, ψ = 0 on ∂Ω, ψ ∈ Lp(Ω), lim
x→0

ψ(x) = +∞, satisfying the equation

−4ψ = ψp in Ω with p =
N

N − 2
,

ψ = 0 in ∂Ω,

in the sense that

−
∫

Ω

ψ4ζ =
∫

Ω

ψpζ,

for all ζ ∈ C2(Ω) with ζ = 0 on ∂Ω. In view of Lemma 3.9.12, v(t) ≡ ψ is a solution of (3.9.18) in

C([0,∞), Lp(Ω)). On the other hand, the solution u of (3.9.1) (with initial condition ψ) given by Theo-

rem 3.9.1 has a smoothing effect. Hence, the two solutions are distinct.

Remark 3.9.13 (the “doubly critical” case q =
N(p− 1)

2
and q = 1 in Theorem 3.9.1). If

q =
N(p− 1)

2
and q = 1, i.e. p =

N + 2
N

(N ≥ 1) Theorem 3.9.1 does not apply and we suspect that

the conclusions fail. (This concerns for example the simple case N = 1, p = 3, q = 1.) See Open Prob-

lems 3.14.7—3.14.10. Here is some evidence suggesting that the answers to these open problems might be

positive. (See also Exercise 3.13.20.)

Theorem 3.9.14. Assume again p =
N + 2
N

, q = 1. There is some u0 ∈ L1(Ω), u0 ≥ 0 such that for every

T > 0 problem (3.9.1) has no nonnegative solution u ∈ C([0, T ], L1(Ω)) ∩ L∞loc((0, T ), L∞(Ω)).

Here N ≥ 1 and Ω can be arbitrary.

Proof. Fix any open ball ω ⊂ Ω with ω ⊂ Ω. Let u0 ∈ L1(Ω), u0 ≥ 0 be such that v(t) = T (t)u0 satisfies∫ 1

0

∫
ω

vp(t, x) dx dt = +∞. (3.9.25)

(See Exercise 3.13.21. Note that v ≥ 0 by the maximum principle.)

Assume by contradiction that for some T > 0 there is a nonnegative solution u ∈ C([0, T ], L1(Ω)) ∩

L∞loc((0, T ), L∞(Ω)) of (3.9.1). We have

u(t+ s) ≥ T (t)u(s),
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for all t ≥ 0, s > 0, t+ s < T . As s ↓ 0 we find

u(t) ≥ T (t)u0 = v(t), (3.9.26)

for all t ∈ [0, T ]. Since u is a classical solution of (3.9.1) for t ∈ (0, T ), we may multiply (3.9.1) by ζ ∈ D(Ω),

ζ ≥ 0 on Ω, ζ ≥ 1 on ω and we obtain

d

dt

∫
Ω

uζ +
∫

Ω

u(−4ζ) =
∫

Ω

upζ ≥
∫

ω

up.

Integrating on (ε, T ) and letting ε ↓ 0 (since u ∈ C([0, T ], L1(Ω))), we deduce that∫ T

0

∫
ω

up <∞,

which contradicts (3.9.25) and (3.9.26).

Remark 3.9.15. Baras [6] has given examples showing that uniqueness for problem (3.9.1) fails in the

class C([0, T ], Lq(Ω)) ∩ L∞loc((0, T ), L∞(Ω)) for 1 ≤ q <
N(p− 1)

2
. Here, the initial condition can be any

smooth function u0, for example u0 = 0. Such a phenomenon had been observed earlier by Haraux and

Weissler [59] when Ω = RN .

Remark 3.9.16. Let u0 ∈ L∞(Ω), let u be the corresponding solution of (3.9.1) and assume that Tm <∞.

Suppose in addition that u0 ∈ H2(Ω) ∩H1
0 (Ω) and that 4u0 + |u0|p−1u0 ≥ 0 a.e. in Ω. If

N(p− 1)
2

> 1,

then lim
t↑Tm

‖u(t)‖
L

N(p−1)
2

= +∞. Indeed, suppose by contradiction that lim inf
t↑Tm

‖u(t)‖
L

N(p−1)
2

< ∞ and let

(tn)n≥0 be a sequence such that tn ↑ Tm as n → ∞ and sup
n≥0

‖u(tn)‖
L

N(p−1)
2

< ∞. We claim that u(tn)

is contained in a compact set of L
N(p−1)

2 (Ω). This is indeed the case since, by the maximum principle,

ut(t, x) ≥ 0 on (0, Tm)× Ω; and thus (u(tn))n≥0 is a nonincreasing sequence and has a limit in L
N(p−1)

2 (Ω).

Applying Theorem 3.9.1 with u(tn) as initial condition, we obtain a uniform T > 0. Thus Tm ≥ tn +T . This

is impossible as n → ∞. The same conclusion holds for more general nonlinearities (see Remark 3.9.10).

Note that in the case N ≥ 3, the result follows from Theorem 3.8.3.

3.10. Initial conditions in L1(Ω) or measures. In this section, we consider the two problems
ut −4u = |u|p−1u in (0, T )× Ω,

u = 0 in (0, T )× ∂Ω,

u(0, x) = u0(x) in Ω,

(3.10.1)

and 
ut −4u+ |u|p−1u = 0 in (0, T )× Ω,

u = 0 in (0, T )× ∂Ω,

u(0, x) = u0(x) in Ω,

(3.10.2)

and we shall concentrate on the case where u0 is either in L1(Ω) or a measure. We first recall a special case

of Theorem 3.9.1.
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Theorem 3.10.1. Assume

p <
N + 2
N

. (3.10.3)

Then, given any u0 ∈ L1(Ω), there exist a time T = T (u0) > 0 and a unique function u ∈ C([0, T ], L1(Ω))

with u(0) = u0, which is a classical solution of (3.10.1) on (0, T )× Ω.

This result can be extended to the case where the initial condition is a measure, u0 ∈M(Ω),

M(Ω) = C0(Ω)∗,

and C0(Ω) denotes the space of continuous functions on Ω which vanish on ∂Ω.

Theorem 3.10.2. Assume (3.10.3). Then, given any u0 ∈M(Ω), there exist a time T = T (u0) > 0 and a

unique function u which is a classical solution of (3.10.1) on (0, T )×Ω and which satisfies the initial condition

u(0) = u0 in the sense

lim
t↓0

∫
Ω

u(t, x)ϕ(x) dx =
∫

Ω

u0ϕ, (3.10.4)

for every ϕ ∈ C0(Ω).

Moreover, ∫ T

0

∫
Ω

|u(t, x)|p dx dt <∞, (3.10.5)

and

u(t) = T (t)u0 +
∫ t

0

T (t− s)|u(s)|p−1u(s) ds, (3.10.6)

for all t ∈ (0, T ). In particular, u(t)− T (t)u0 ∈ C([0, T ], L1(Ω)).

Proof. The proof is almost the same as the proof of Theorem 3.9.1. We first establish the existence of a

solution u ∈ L∞((0, T ), L1(Ω)) ∩ L∞loc((0, T ), Lp(Ω)). Fix M ≥ ‖u0‖M(Ω) and let

E = L∞((0, T ), L1(Ω)) ∩ L∞loc((0, T ), Lp(Ω)),

and

K = K(T ) = {u ∈ E; ‖u(t)‖L1 ≤M + 1 and tα‖u(t)‖Lp ≤M + 1 for t ∈ (0, T )},

with α =
N(p− 1)

2p
<

1
p
< 1. We equip K with the distance

d(u, v) = sup
0<t<T

tα‖u(t)− v(t)‖Lp ,

so that (K, d) is a nonempty complete metric space. Given u ∈ K, we set

Φ(u)(t) = T (t)u0 +
∫ t

0

T (t− s)|u(s)|p−1u(s) ds.

For u ∈ K, we have by (1.4.13)

‖Φ(u)(t)‖L1 ≤ ‖u0‖M(Ω) +
∫ t

0

‖u(s)‖p
Lp ds

≤ ‖u0‖M(Ω) +
(

sup
0<t<T

tα‖u(t)‖Lp

)p ∫ t

0

s−pα ds

≤ ‖u0‖M(Ω) +
T 1−pα

1− pα
(M + 1)p.
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Next, using again (1.4.13)

tα‖Φ(u)(t)‖Lp ≤ ‖u0‖M(Ω) + tα
∫ t

0

(t− s)−α‖u(s)‖p
Lp ds

≤ ‖u0‖M(Ω) + tα(M + 1)p

∫ t

0

(t− s)−αs−pα ds

≤ ‖u0‖M(Ω) + T 1−pα(M + 1)p

∫ 1

0

(1− σ)−ασ−pα dσ.

Similarly, one shows that for u, v ∈ K,

tα‖Φ(u)(t)− Φ(v)(t)‖Lp ≤ CT 1−pα(M + 1)p−1d(u, v).

It follows from the above estimates that if T is small enough (depending on M), then Φ : K → K is a strict

contraction. Thus Φ has a unique fixed point in K, which is a solution of (3.10.6).

Next, we prove that u ∈ L∞loc((0, T ), L∞(Ω)). Indeed, we have u ∈ L∞loc((0, T ), Lp(Ω)). Therefore, we

may apply Theorem 1.6.7 (with q replaced by p and σ =
p

p− 1
) on every interval (ε, T − ε), with a = |u|p−1.

Since u ∈ L∞loc((0, T ), L∞(Ω)), it must be a classical solution on (0, T ) × Ω; and since u ∈ K and pα < 1,

we have |u|p−1u ∈ L1((0, T )× Ω). This implies that u verifies (3.10.5). This also implies (by (3.10.6)) that

u(t)− T (t)u0 ∈ C([0, T ], L1(Ω)) and using (1.4.15), we deduce (3.10.4).

Note that the choice of T depends only on M .

We now establish uniqueness. For every u0 ∈M(Ω), we denote by U(t)u0 the solution constructed via

the above contraction argument on some interval [0, T (u0)]. Let v be any solution as in the statement of the

theorem. We are going to prove that v(t) = U(t)u0 on some interval [0, T ′). Then, v(t) = U(t)u0 as long

as both exist, by standard uniqueness in L∞(Ω). We observe that (3.10.4) means that v(t) → u0 in M(Ω)

weak-?. This implies (since v is smooth for t > 0) that

M = sup
0≤t≤T

‖v(t)‖M(Ω) <∞.

Set

K = v([0, T ]).

Since M < ∞,there is a uniform T1 > 0 such that U(t)v0 is well defined for all v0 ∈ K and all t ∈ [0, T1].

Moreover, since U(t)v(s) ∈ K(T1) (considered as a function of t), we have

‖U(t)v(s)‖L1 ≤M + 1,

tα‖U(t)v(s)‖Lp ≤M + 1,
(3.10.7)

for all s ∈ (0, T ) and all t ∈ (0, T1).

Fix any 0 < s < T . It follows from Lemma 3.9.8 that

v(t+ s) = U(t)v(s) for 0 ≤ t ≤ min{T − s, T1}. (3.10.8)

Combining (3.10.7) and (3.10.8) we obtain

‖v(t+ s)‖L1 ≤M + 1,

tα‖v(t+ s)‖Lp ≤M + 1,
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for t+ s < T and t < T1. Passing to the limit as s ↓ 0, we deduce that

‖v(t)‖L1 ≤M + 1,

tα‖v(t)‖Lp ≤M + 1,
(3.10.9)

for 0 < t < min{T, T1}. Therefore, v(t) ∈ K(T ′) where T ′ = min{T, T1}. Given ε ∈ (0, T ′), we have

v(t+ ε) = T (t)v(ε)−
∫ t

0

T (t− s)|v(ε+ s)|p−1v(ε+ s) ds, (3.10.10)

for all 0 ≤ t ≤ T ′ − ε. We now let ε ↓ 0. It follows from (3.10.9) that the integral on the right-hand side

of (3.10.10) converges to ∫ t

0

T (t− s)|v(s)|p−1v(s) ds,

and it follows from Theorem 1.4.25 (v) (since v(ε)−→
ε↓0

u0 in M(Ω) weak-?) that T (t)v(ε)−→
ε↓0

T (t)u0 in C0(Ω);

and so,

v(t) = T (t)u0 −
∫ t

0

T (t− s)|v(s)|p−1v(s) ds,

which implies that v(t) = U(t)u0 on [0, T ′].

In the “good case” (3.10.2), we have a similar result with the additional property that the solution is

now global.

Theorem 3.10.3. Assume (3.10.3). Then, given any u0 ∈M(Ω), there exists a unique function u which is

a classical solution of (3.10.2) on (0,∞)× Ω and which satisfies the initial condition u(0) = u0 in the sense

(3.10.4).

Moreover, u satisfies (3.10.5) and

u(t) = T (t)u0 −
∫ t

0

T (t− s)|u(s)|p−1u(s) ds, (3.10.11)

for all t > 0. In particular, u(t)− T (t)u0 ∈ C([0,∞), L1(Ω)).

Local existence and uniqueness follows from the argument of the proof of Theorem 3.10.2. The solution

being classical at t > 0 is global by Theorem 3.3.1.

Condition (3.10.3) is essential in Theorem 3.10.3. We suspect that it is also essential in the “bad case”

Theorem 3.10.2 (see open Problem 3.14.14). More precisely, if u0 = δ0 the Dirac mass at 0 and 0 ∈ Ω, there

is no solution of (3.10.2) in the weakest possible sense:

Theorem 3.10.4. Suppose

p ≥ N + 2
N

.

Given any T > 0, there is no function u ∈ Lp
loc((0, T )×Ω satisfying (3.10.2) in D′((0, T )×Ω) and such that

ess lim
t↓0

∫
Ω

u(t, x)ϕ(x) dx = ϕ(0),

for all ϕ ∈ Cc(Ω).
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See Brezis and Friedman [21] for the proof of Theorem 3.10.4. The method uses a statement about

removable singularities for the equation (3.10.2). See also Section 3.12.

In particular the equation ut − uxx + u3 = 0 in Ω = (−1, 1) has no solution with u0 = δ0.

Remark 3.10.5. Note that the nonexistence result is purely local. No boundary condition is prescribed.

Remark 3.10.6. Consider the problem (3.10.2) with p ≥ N + 2
N

. Suppose (u0,j)j≥0 is a sequence of

smooth initial data which converges weak-? to δ0. Let (uj)j≥0 is a sequence of corresponding solutions

of (3.10.2). Note that we have good estimates on (uj)j≥0: ‖uj‖L∞((0,∞),L1(Ω)) ≤ C and ‖uj(t)‖L∞ ≤ Ct−
N
2

(see the proof of Theorem 3.10.8). The reader may wonder what happens to the sequence (uj)j≥0, since the

limiting problem has no solution. The answer is that uj −→
j→∞

0 uniformly on [ε,∞] × Ω for any ε > 0. See

Brezis and Friedman [21]. This shows that the initial condition may be lost in the process of passing

to the limit under weak convergence of the initial conditions.

Remark 3.10.7. It is possible to solve the problem (3.10.2) for some values of p ≥ N + 2
N

and some

measures u0 less singular than δ0 (for example, a distribution of charges on a surface). Baras and Pierre [8]

have described precise conditions on u0.

We conclude this section with an existence result for (3.10.2) where 1 ≤ p < ∞ is arbitrary and

u0 ∈ L1(Ω).

Theorem 3.10.8. Given any u0 ∈ L1(Ω), there exists a unique function u ∈ C([0,∞), L1(Ω)) with u(0) =

u0, which is a classical solution of (3.10.2) on (0,∞)× Ω.

Moreover, u satisfies (3.10.5) and we continuous dependence and have smoothing effect, namely

‖u(t)− v(t)‖L1 ≤ ‖u0 − v0‖L1 , (3.10.12)

and

t
N
2 ‖u(t)− v(t)‖L∞ ≤ ‖u0 − v0‖L1 , (3.10.13)

for all t ≥ 0.

Proof. Let (u0,j)j≥0 ⊂ D(Ω) with u0,j −→
j→∞

u0 in L1(Ω), and let uj be the corresponding global, smooth

solutions of (3.10.2). We claim that

‖uj(t)− uk(t)‖L1 +
∫ t

0

∫
Ω

∣∣|uj |p−1uj − |uk|p−1uk

∣∣ dx dt ≤ ‖u0,j − u0,k‖L1 , (3.10.14)

for all t ≥ 0. To establish (3.10.14), we multiply the equation

(uj − uk)t −4(uj − uk) + |uj |p−1uj − |uk|p−1uk = 0,

by θm(uj − uk) where θm is a smooth approximation of the signum function, and we let m→∞.

Thus, (uj)j≥0 is a Cauchy sequence in C([0,∞), L1(Ω)) and (|uj |p−1uj)j>0 is a Cauchy sequence in

L1((0,∞)×Ω). Hence uj −→
j→∞

u in C([0,∞), L1(Ω)) and |uj |p−1uj −→
j→∞

|u|p−1u in L1((0,∞)×Ω), for some
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u ∈ C([0,∞), L1(Ω)) ∩ Lp((0,∞)× Ω). This implies that u satisfies (3.10.11). To obtain further estimates,

we use Kato’s inequality (Theorem A.5.20). Setting ϕj = |uj |, we have

∂ϕj

∂t
−4ϕj ≤

(
∂uj

∂t
−4uj

)
signuj = −|uj |p ≤ 0.

By the maximum principle, ϕj(t) ≤ T (t)|u0,j | ≤ t−
N
2 ‖u0,j‖L1 . This implies that u(t) ∈ L∞(Ω) for all t > 0

and thus is a classical solution.

We now prove uniqueness and the estimates (3.10.12) and (3.10.13). Let u(t) and v(t) be two solutions

with initial values u0 and v0. Applying Kato’s inequality and the maximum principle as above, we obtain

the pointwise estimate

|u(t)− v(t)| ≤ T (t)|u0 − v0|,

in Ω for all t > 0. The result follows.

Remark 3.10.9. The conclusion of Theorem 3.10.8 holds if we replace the nonlinearity |u|p−1u by any

locally Lipschitz function f(u) which is monotone nondecreasing in u.

3.11. Further results.

3.11.1. The necessary (and almost sufficient) condition of Baras and Pierre for the existence

of a solution on (0, T ). Consider the problem
ut −4u = up in (0, T )× Ω,

u = 0 in (0, T )× ∂Ω,

u(0) = u0 in Ω,

(3.11.1)

with u0 ∈ L∞(Ω) and u0 ≥ 0. It has a solution on (0, Tm)×Ω. Let us first derive a simple condition relating

u0 and Tm.

Fix T < Tm, let h ∈ C∞([0, T ]×Ω), h ≥ 0, h ≡ 0 on a neighborhood of [0, T ]× ∂Ω, h(T, ·) 6≡ 0, and let

ζ(t) =
∫ T

t

T (s− t)h(s) ds,

for 0 ≤ t ≤ T , so that ζ verifies 
− ζt −4ζ = h in (0, T )× Ω,

ζ = 0 in (0, T )× ∂Ω,

ζ(T ) = 0 in Ω,

and ζ > 0 on (0, T )× Ω.

Multiplying the equation (3.11.1) by ζ and integrating on (0, T )× Ω, we obtain∫
Ω

ζ(0)u0 =
∫ T

0

∫
Ω

uh−
∫ T

0

∫
Ω

upζ. (3.11.2)

Recall Young’s inequality |ab| ≤ |a|p + Cp|b|p
′
, with Cp = (p− 1)p−p′ . We deduce from (3.11.2)∫

Ω

ζ(0)u0 ≤ Cp

∫ T

0

∫
Ω

(
h

ζ

)p′

ζ. (3.11.3)
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Note that u has disappeared in inequlity (3.11.3). This is a necessary condition on u0 for the existence of

a solution up to time T . (In particular, this shows that if we fix T and u0, the problem (3.11.1) with the

initial condition λu0 does not have a solution for λ sufficiently large.)

A remarkable fact is that condition (3.11.3) is almost a sufficient condition. More precisely:

Theorem 3.11.1. Suppose u0 ∈ L∞(Ω), u0 ≥ 0, satisfies∫
Ω

ζ(0)u0 ≤ C

∫ T

0

∫
Ω

(
h

ζ

)p′

ζ. (3.11.4)

for some constant C < Cp and every h as above. Then (3.11.1) has a classical solution on (0, T ) × Ω, i.e.

Tm(u0) ≥ T .

Sketch of the proof. There are two main ingredients.

Step 1. A remarkable result of Baras and Pierre [8] asserts that the condition (3.11.3) is also a sufficient

condition for the existence of a weak solution of (3.11.1) on (0, T ) × Ω. Here, a weak solution of (3.11.1)

on (0, T ) × Ω is ameasurable function on (0, T ) × Ω, u ≥ 0, such that for all S < T , u ∈ L1((0, S) × Ω),

upδ ∈ L1((0, S)× Ω) (where δ(x) = dist(x, ∂Ω)), and∫ T

0

∫
Ω

upξ = −
∫ T

0

∫
Ω

u(ξt +4ξ)−
∫

Ω

u0ξ(0), (3.11.5)

for every ξ ∈ C2([0, T ]× Ω) such that ξ = 0 on (0, T )× ∂Ω and ξ(t, x) = 0 for all x ∈ Ω and all t near T .

At this stage it is not clear that this u is a classical solution. In fact, it is plausible that such a u need

not be a classical solution on (0, T ). See Open Problem 3.14.16.

Step 2. Suppose now that u0 satisfies (3.11.4). Then by Step 1 there is a weak solution of the equation
ut −4u = λup in (0, T )× Ω,

u = 0 in (0, T )× ∂Ω,

u(0) = u0 in Ω,

for some λ > 1.

We claim that for any ε ∈ (0, 1) the problem
vt −4v = (1− ε)λvp in (0, T )× Ω,

v = 0 in (0, T )× ∂Ω,

v(0) = u0 in Ω,

(3.11.6)

has a classical solution on (0, T ).

To prove this, one uses the same kind of device as in [20]. Namely, fix A ≥ ‖u0‖L∞ and consider the

function

Φ(t) =


t for 0 ≤ t ≤ A,(

ε

Ap−1
+

1− ε

tp−1

)− 1
p−1

for t ≥ A.

This function is bounded, monotone increasing and concave. Moreover,

Φ′(t) ≥ (1− ε)
Φ(t)p

tp
, (3.11.7)
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for all t ≥ 0. Next, observe that w = Φ(u) is a supersolution of the problem (3.11.6). Indeed, by Kato’s

inequality (see Lemma 3.7.10 and Theorem A.5.20) w satisfies

wt −4w ≥ Φ′(u)(ut −4u) = Φ′(u)λup ≥ (1− ε)λwp,

by (3.11.7). (Clearly, w(0) = u0.) By the maximum principle, v ≤ w, thus v is a classical solution on (0, T )

(recall that w is bounded).

Finally, we choose 1− ε =
1
λ

.

3.11.2. Complete blow up after Tm: is there a life after death? Let p > 1 and given u0 ∈ L∞(Ω)

consider the solution u of the equation (3.11.1) defined on the maximal interval [0, Tm). Suppose that

Tm <∞.

A natural question is the following: can one extend the solution u after the blow up time Tm as a

“weak” solution on [0, T ), Tm < T ≤ ∞? For this purpose, we propose a simple strategy: approximate the

nonlinearity g by a sequence of nonlineartities (gn)n≥0 which are globally bounded (or globally lipschitz), so

that the solution un of the problem
∂un

∂t
−4un = gn(un) in (0,∞)× Ω,

un = 0 in (0,∞)× ∂Ω,

un(0, x) = u0 in Ω,

(3.11.8)

is global; then let n→∞ and study the existence of a pointwise limit of un(t, x) for t > Tm.

Baras and Cohen [7] have shown that in many situations, u blows up completely after Tm in the sense

that for every x ∈ Ω and every t > Tm, un(t, x) → ∞ as n → ∞. More precisely, we have the following

result (see Baras and Cohen [7] and Martel [79]).

Theorem 3.11.2. Let u0 ∈ L∞(Ω), u0 ≥ 0, and consider the solution u of the equation (3.11.1) defined

on the maximal interval [0, Tm). Suppose that Tm <∞. Suppose furthermore that u0 ∈ H2(Ω)∩H1
0 (Ω) and

that 4u0 + up
0 ≥ 0 a.e. in Ω.

Let (gn)n≥0 be any sequence of locally Lipschitz functions [0,∞) → [0,∞) such that

0 ≤ gn(s) ≤ n for n ≥ 0, s ≥ 0,

gn(s) ↑ sp as n→∞ for s ≥ 0,
(3.11.9)

and for every n > 0, let un be the (global) solution of the equation (3.11.8).

Then for every T < Tm, un −→
n→∞

u uniformly on [0, T ]× Ω;

and for every T > Tm

un(t, x)
δ(x)

−→
n→∞

+∞, (3.11.10)

uniformly on [T,+∞)× Ω, where δ is the function distance to the boundary, δ(x) = dist(x, ∂Ω).

Sketch of the proof. We follow the argument of Martel [79]. We first observe that by the maximum

principle (see the proof of Theorem 3.8.3),

ut ≥ 0, (3.11.11)
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on (0, Tm)× Ω. For convenience, we set

g(s) = sp.

We now proceed in four steps.

Step 1. For every t ∈ (0, Tm), there exists c(t) > 0 such that u(t) ≥ u0 + c(t)δ a.e. in Ω.

Fix τ ∈ (0, Tm) and let ε ∈ (0, 1) be such that τ − ε > 0.

We first claim that u(τ − ε) − u0 ≥ 0, u(τ − ε) − u0 6≡ 0. Indeed, note that by (3.11.11) u(t) is a

nondecreasing function of t. Therefore, if u(τ − ε) = u0, it follows that u is constant on (0, τ − ε), from

which we deduce easily that u0 is a stationary solution; and so Tm = +∞, which is absurd.

Next, we claim that

u(τ) ≥ u0 + T (ε)(u(τ − ε)− u0). (3.11.12)

Indeed, we have

u(τ) = T (ε)u(τ − ε) +
∫ ε

0

T (ε− s)g(u(τ − ε+ s)) ds

= T (ε)(u(τ − ε)− u0) + T (ε)u0 +
∫ ε

0

T (ε− s)g(u(τ − ε+ s)) ds.

Since u(t) is a nondecreasing function of t, we have g(u(τ − ε+ s)) ≥ g(u(s)) and also

u(ε) = T (ε)u0 +
∫ ε

0

T (ε− s)g(u(s)) ds ≥ u0;

and so we deduce (3.11.12).

The result now follows from (3.11.12) and the inequality

T (t)ϕ ≥ e−
C
t ‖ϕδ‖L1δ, (3.11.13)

for all ϕ ≥ 0 (see Exercise 1.8.12).

Step 2. un −→
n→∞

u in L∞((0, T )×Ω) for every T < Tm. Indeed, note that gn −→
n→∞

g uniformly on bounded

subsets of [0,∞). Furthermore, note that un ≥ 0; and that, since gn ≤ g, un ≤ u on (0, Tm)×Ω. The result

now follows from a classical continuous dependence argument.

Step 3. Fix any τ ∈ (0, Tm) and let T = Tm + τ . Then

lim
n→∞

‖un(T )δ‖L1 = +∞. (3.11.14)

We argue by contradiction and we assume that

lim
n→∞

‖un(T )δ‖L1 <∞. (3.11.15)

The idea is the following. Assuming (3.11.15), we show:

(i) that un converges to a “weak solution” u of (3.11.1) on [0, T ),

(ii) using that weak solution, we construct a bounded supersolution of (3.11.1) on [0, Tm), which contradicts

the blow up alternative.
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Proof of (i). Consider f ∈ L∞((τ, T )× Ω), ζ ∈ H1
0 (Ω) and let ξ be the solution of the equation

− ξt −4ξ = f in (τ, T )× Ω,

ξ = 0 in (τ, T )× ∂Ω,

ξ(T ) = ζ in Ω.

(3.11.16)

Multiplying the equation (3.11.8) by ξ and integrating on (τ, T )× Ω, we obtain after integration by parts∫ T

τ

∫
Ω

gn(un)ξ =
∫ T

τ

∫
Ω

unf +
∫

Ω

un(T )ζ −
∫

Ω

un(τ)ξ(τ). (3.11.17)

We first choose ζ = ϕ1 and f ≡ 0, so that ξ(t) = e−λ1(T−t)ϕ1 (here, λ1 is the first eigenvalue of −4 in

H1
0 (Ω) and ϕ1 is a corresponding, positive eigenvector). We obtain

e−λ1T

∫ T

τ

∫
Ω

gn(un)ϕ1 ≤
∫

Ω

un(T )ϕ1.

Since ϕ1 ≈ δ, we deduce by applying (3.11.15)

sup
n≥0

∫ T

τ

∫
Ω

gn(un)δ <∞. (3.11.18)

We next take ζ = 0 and f ≡ 1 in (3.11.17), and we obtain∫ T

τ

∫
Ω

un =
∫ T

τ

∫
Ω

gn(un)ξ +
∫

Ω

un(τ)ξ(τ).

Since ξ(t) ≤ Cδ for some C independent of t ∈ [0, T ] (by (3.7.19)), we obtain from the above inequality

and (3.11.18)

sup
n≥0

∫ T

τ

∫
Ω

un <∞. (3.11.19)

Note that gn is nondecreasing in n, so that un is also nondecreasing in n. Therefore, it follows from the

monotone convergence theorem and the estimate (3.11.19), and from Step 2, that there exists a function

u ∈ L1((0, T )× Ω) such that

un ↑ u in L1((0, T )× Ω) and a.e. in (0, T )× Ω.

In addition,

u = u on (0, Tm)× Ω.

Next, since un ↑ u and gn ↑ g, we deduce that gn(un) → g(u) a.e. in (0, T )× Ω. Therefore, we deduce from

(3.11.18) and the dominated convergence theorem (and Step 2) that g(u)δ ∈ L1((0, T )× Ω), and that

gn(un)δ −→
n→∞

g(u)δ in L1((0, T )× Ω) and a.e. in (0, T )× Ω.

Passing to the limit in (3.11.17), we obtain that∫ T

τ

∫
Ω

g(u)ξ =
∫ T

τ

∫
Ω

uf −
∫

Ω

u(τ)ξ(τ),

for all f ∈ L∞((τ, T ) × Ω), where ξ is the solution of (3.11.16) with ζ = 0. In other words, u is a weak

solution of the equation (3.11.1) on the interval (0, T ) (cf. the proof of Theorem 3.11.1, Step 1).

CHAPTER 3—PAGE 51



Proof of (ii). It follows from Step 1 that there is a constant c0 > 0 such that

u(τ) ≥ u0 + c0δ. (3.11.20)

Fix ε > 0 small enough so that the solution Z of the equation
Zt −4Z = −ε in (0, Tm)× Ω,

Z = 0 in (0, Tm)× ∂Ω,

Z(0) = c0δ in Ω,

(3.11.21)

satisfies Z ≥ 0 on (0, Tm)× Ω (see Lemma 3.7.12). Set z(t) = u(t) + Z(t) ≥ u(t). We have
zt −4z = up − ε ≤ zp − ε ≤ (zp − ε)+ in (0, Tm)× Ω,

z = 0 in (0, Tm)× ∂Ω,

z(0) = u0 + c0δ.

Fix A ≥ ‖u(τ)‖L∞ , A > ε
1
p and consider the function

Φ(t) =


t for 0 ≤ t ≤ A,

h−1

(
1

p− 1
(A1−p − t1−p)

)
for t ≥ A,

where

h(s) =
∫ s

A

dσ

σp − ε
.

The function Φ is bounded, monotone increasing and concave. Moreover,

Φ′(t) ≥ (Φ(t)p − ε)+

tp
, (3.11.22)

for all t ≥ 0.

Let w = Φ(u), so that w is bounded on [0, T ) × Ω. Next, observe that by Kato’s inequality (see

Lemma 3.7.10 and Theorem A.5.20) the function w satisfies (in the weak sense)

wt −4w ≥ Φ′(u)(ut −4u) = Φ′(u)up ≥ (wp − ε)+,

by (3.11.22). Set now

v(t) = w(t+ τ),

for 0 ≤ t < Tm, so that v is bounded on [0, Tm)× Ω. We have

vt −4v ≥ (vp − ε)+.

Furthermore, v(0) = w(τ) = u(τ) ≥ u0 + c0δ = z(0). Therefore, it follows from the maximum principle that

z ≤ v on [0, Tm). Since u ≤ z and v is bounded, this yields a contradiction with the blow up alternative.

This completes the proof of Step 3, i.e. lim
n→∞

‖un(t)δ‖L1 = +∞ for every t ∈ (Tm, 2Tm).

Step 4. Proof of (3.11.10). Fix any t0 > Tm. Fix any t′ < t0 with Tm < t′ < 2Tm. By Step 3,

‖un(t′)δ‖L1 −→
n→∞

+∞.
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Since un(t0) ≥ T (t0−t′)un(t′) (here, T (·) refers to the heat semigroup), it follows from the inequality (3.11.13)

that
un(t0)
δ

−→
n→∞

+∞, (3.11.23)

uniformly on Ω.

It remains to prove that the convergence in (3.11.10) is uniform in t on [t0,+∞). We proceed as follows.

Given any K > 0, we construct a function v such that v ≥ Kδ and such that v is a subsolution of the

equation (3.11.8) on [t0,∞).

Let ϕ1 be a first eigenfunction of −4 in H1
0 (Ω), normalized such that

max
Ω

ϕ1 = 2. (3.11.24)

Note that there exists a constant γ > 0 such that

ϕ1 ≥ γδ. (3.11.25)

Let ψ be the solution of the elliptic equation{ −4ψ = (ϕ1 − 1)+,

ψ|∂Ω = 0.

Since (ϕ1 − 1)+ 6≡ 0, there exist two constants 0 < α0 < α1 <∞ such that

α0ϕ1 ≤ ψ ≤ α1ϕ1.

Let now ` =
1
α0

and w = `ψ. We have

ϕ1 ≤ w ≤ `α1ϕ1,

and { −4w = `(ϕ1 − 1)+ ≤ `(w − 1)+,

w|∂Ω = 0.
(3.11.26)

On the other hand,

sp ≥ `(s− c)+,

with c = `
1

p−1 Fix now

K ≥ c+ 1.

Since gn ↑ g as n→∞, uniformly on bounded sets, it follows that for n large enough

gn(s) ≥ `(s− c− 1)+ for 0 ≤ s ≤ 2K`α1. (3.11.27)

Setting

v = Kw,

we deduce from (3.11.24) and (3.11.26) that

Kϕ1 ≤ v ≤ K`α1ϕ1 ≤ 2K`α1, (3.11.28)
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and that { −4v ≤ `(v −K)+ ≤ `(v − c− 1)+,

v|∂Ω = 0.

By (3.11.27) and (3.11.28), this implies that for n large enough{ −4v ≤ gn(v),

v|∂Ω = 0.

By (3.11.23) and (3.11.28), we have un(t0) ≥ v for n large enough; and so, v is a subsolution of the

equation (3.11.8) on [t0,∞). It follows from the maximum principle that un(t) ≥ v for all t ≥ t0; and

by (3.11.25) and (3.11.28) we deduce
un(t)
δ

≥ Kγ,

in Ω for all t ≥ t0, provided n is large enough. Since t0 > Tm and K ≥ c + 1 are arbitrary, this completes

the proof.

Corollary 3.11.3. Let u0 ∈ L∞(Ω) ∩H2(Ω) ∩H1
0 (Ω), u0 ≥ 0, and assume 4u0 + up

0 ≥ 0 a.e. in Ω. Let u

be a weak solution of the equation (3.11.1) on [0, T ) for some T > 0, in the sense of (3.11.5). Then T ≤ Tm.

This corollary settles the question we raised at the beginning of for the special initial conditions u0 as

in Corollary 3.11.3, i.e. for nondecreasing (in time) solutions: there is no way of extending the solution after

Tm, even in the weak sense (3.11.5).

Remark 3.11.4. The reader may wonder whether any weak solution in Corollary 3.11.3 coincides with

the usual solution on [0, T ). This need not be the case: even if u0 = 0, there exist nontrivial weak solutions.

(See Baras [6] and Haraux and Weissler [59].) The only property we have is that any weak solution is larger

than or equal to the classical solution (see the proof of Corollary 3.11.3).

A verifier

Proof of Corollary 3.11.3. For any n ∈ N, let

gn(t) = min{tp, n},

and let un be the (global, classical) solution of (3.11.8). We claim that

u ≥ un on (0, T )× Ω. (3.11.29)

The conclusion of Corollary 3.11.3 now follows from Theorem 3.11.2.

We now prove claim (3.11.29). Set

v = (un − u)+,

so that by Kato’s inequality (see Lemma 3.7.10 and Theorem A.5.20)

vt −4v ≤ (gn(un)− g(u))sign+(un − u)

≤ (gn(un)− gn(u))sign+(un − u)

≤ Lnv,
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where Ln is the Lipschitz constant of gn. Since v(0) = 0, we have v ≤ 0 by the maximum principle.

In Theorem 3.11.2, we made the assumption 4u0 + up
0 ≥ 0. We now discuss whether this assumption

is essential. The answer seems to depend on p.

Remark 3.11.5. If p <
N + 2
N − 2

and u0 ∈ L∞(Ω), u0 ≥ 0, then lim
n→∞

un(t, x) = +∞ for all t > Tm and

x ∈ Ω (presumably,
un(t)
δ

−→
n→∞

+∞ uniformly on [T,∞) × Ω, T > Tm, but we have not checked it). See

Baras and Cohen [7]. Incidentally, the proof is rather complicated, and it would be interesting to have a

simple proof. We suspect that the same conclusion holds for p =
N + 2
N − 2

.

consulter Yvan. Si pas de reponse, mettre un probleme ouvert

Remark 3.11.6. When p >
N + 2
N − 2

, it seems that there might be life after death for some initial conditions.

Under some further restrictions on p, Galaktionov and Vazquez [48] have constructed solutions of

ut −4u = up in (0,+∞)×RN ,

which are smooth except at t = T > 0 and with lim
t↑T

‖u(t)‖L∞ = +∞. It would be very interesting to

investigate whether a similar phenomenon holds in bounded domains. Can one have a situation where

u = lim
n→∞

un has a “cascade” of blow up times and/or blows up completely after some time T > Tm? See

Open Problems 3.14.16 and 3.14.17.

3.11.3. ???

3.12. Comments.

Even if Ω is not smooth, the conclusion of Theorem 3.1.1 hold, provided |Ω| <∞. Note that in this case,

the solution u belongs to C((0, Tm), L∞(Ω)) and to C([0, Tm), Lp(Ω)) for any p ∈ [1,∞) (see Remark 3.1.2).

In the case |Ω| = ∞, then we have the following result.

Theorem 3.12.?. Given p ∈ [1,∞) and u0 ∈ Lp(Ω)∩L∞(Ω), there exists a unique weak solution u of (3.1),

defined on a maximal time interval [0, Tm), i.e. u ∈ L∞((0, T )× Ω) ∩ L∞((0, T ), Lp(Ω)) for all T < Tm and

u solves (3.1.1) for all t ∈ [0, Tm). Moreover, we have the alternative

either Tm = +∞,

or Tm <∞ and lim
t↑Tm

‖u(t)‖L∞ = +∞.

In addition, u depends continuously on u0. The mapping u0 7→ Tm is lower semicontinuous Lp(Ω) ∩

L∞(Ω) → R, and for every T < Tm there exists ε > 0 and C < ∞ such that if ‖v0 − u0‖L∞ ≤ ε, then

‖v−u‖L∞((0,T )×Ω) ≤ C‖v0−u0‖L∞(Ω) and ‖v−u‖L∞((0,T ),Lp(Ω)) ≤ C‖v0−u0‖Lp(Ω), where v is the solution

of (3.1.1) with the initial value v0.

Note that in this case, the solution u belongs to C((0, Tm), L∞(Ω)) and to C([0, Tm), Lp(Ω)).
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Le Theorem 3.10.3 est du a Brezis and Friedman [21]

La methode de suite de Cauchy du Theorem 3.10.8 est adaptee de Brezis and Strauss [26]

Etudier (evt dans les problemes ouverts) ce qui se passe lorsqu’une suite (u0,n)n≥0 converge faiblement

vers u0. (Phenomenes de perte de condition initiale ???)

3.13. Exercises. Unless otherwise specified, we still assume that Ω is a smooth bounded open subset of

RN .

Exercise 3.13.1. Let g : Ω× R → R be locally Lipschitz in u, and assume that

ug(x, u) ≤ Au2,

for almost all x ∈ Ω and |u| ≥M . Let u0 ∈ L∞(Ω) and let u be the solution of (3.1.5).

• Show that ‖u(t)‖L∞ ≤ max{‖u0‖L∞ ,M}eAt for all t ≥ 0. (Hint: Show that max{‖u0‖L∞ ,M}eAt is a

super-solution of (3.1.5).)

Exercise 3.13.2. Under the assumptions of Exercise 3.13.1, show that if A < λ1, with λ1 the first eigen-

value of −4 in H1
0 (Ω), then ‖u(t)‖L∞ ≤ Cmax{‖u0‖L∞ ,M} for all t ≥ 0. (Hint: Consider the solution

ϕ ∈ H1
0 (Ω) of −4ϕ = A(ϕ+ 1), and show that max{‖u0‖L∞ ,M}(1 + ϕ) is a super-solution of (3.1.5).)

Exercise 3.13.3. Let g and u be as in Exercise 3.13.1, and assume that A > λ1, with λ1 the first eigenvalue

of −4 in H1
0 (Ω). The object of this exercise is to show that ‖u(t)‖L∞ ≤ Cmax{‖u0‖L∞ ,M}e(A−λ1)t for all

t ≥ 0.

Let B ≥ 0 and consider the solution v of
vt −4v = λ1v +Be−(A−λ1)t in (0,∞)× Ω,

v = 0 in (0,∞)× ∂Ω,

v(0) = ‖u0‖L∞ in Ω.

• Show that ‖v(t)‖L∞ ≤ eλ1t

(
‖u0‖L∞ +

B

A

)
. (Observe that 0 is a sub-solution of the equation and that

eλ1t

(
‖u0‖L∞ +

B

A
(1− e−At)

)
is a super-solution.)

• Multiply the equation by v, and show that ‖v(t)‖L2 ≤ |Ω| 12
(
‖u0‖L∞ +

B

A− λ1

)
.

• Let σ >
N

2
and 1 ≤ q ≤ r ≤ ∞ be such that

1
σ

=
1
q
− 1
r
. Show that

‖v(t+ s)‖Lr ≤ Cs−
N
2σ ‖v(t)‖Lq + λ1

∫ s

0

‖v(t+ τ)‖Lr dτ +
B

A− λ1
|Ω| 1r ,

and that ‖v(t+ 1)‖Lr ≤ C(‖v(t)‖Lq + 1).

• Iterate this estimate, and show that there exists an integer m such that ‖v(t+m)‖L∞ ≤ C(‖v(t)‖L2 +1).

• Show that ‖v(t)‖L∞ ≤ Cmax{‖u0‖L∞ ,M}.
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• Show that e(A−λ1)tv(t) is a super-solution of (3.1.5) provided B is large enough, and conclude.

Exercise 3.13.4. Let g and u be as in Exercise 3.13.1, and assume that A = λ1, with λ1 the first eigenvalue

of −4 in H1
0 (Ω). The object of this exercise is to show that ‖u(t)‖L∞ ≤ C(‖u0‖L∞ + t) for all t ≥ 0.

Consider the solution v of 
vt −4v = λ1v +B in (0,∞)× Ω,

v = 0 in (0,∞)× ∂Ω,

v(0) = ‖u0‖L∞ in Ω.

• Show that ‖v(t)‖L∞ ≤ C(‖u0‖L∞ + t) for all t ≥ 0, and that v is a super-solution of (3.1.5) provided B

is large enough. (c.f. Exercise 3.13.3.)

Exercise 3.13.5. Let a ∈ L∞(Ω), let v0 ∈ L∞(Ω) and let v be the solution of
vt −4v + av = 0 in (0,∞)× Ω,

v = 0 in (0,∞)× ∂Ω,

v(0) = v0 in Ω.

• Show that

‖v(t)‖L∞ ≤ Ce−λ1t‖v0‖L∞ ,

for all t ≥ 0, where C is independent of v0 and λ1 = λ1(−4 + a). (Hint: Show that ‖v(t)‖L2 ≤

e−λ1t‖u0‖L2 , and use the smoothing effect.)

Exercise 3.13.6. Assume N ≥ 3. Let q >
N + 2
N − 2

and set g(u) = |u|q−1u. The object of this exercise is to

show that for every ε > 0 there exists u0 ∈ H1
0 (Ω)∩L∞(Ω) such that ‖u0‖H1 ≤ ε and such that the solution

u of (3.1) blows up in finite time.

• Let B ⊂ Ω be a ball. Show that there exists v0 ∈ D(B), v0 ≥ 0, such that the solution v of (3.1) with

Ω = B blows up in finite time, say at time T .

• Define ṽ in (0, T )× RN by

ṽ(t, x) =

{
v(t, x) if x ∈ B,

0 if x ∈ RN \B.

Show that ṽt −4ṽ ≤ |ṽ|q−1ṽ in D′(RN ) for all t ∈ (0, T ).

• Given λ ∈ (0, 1), set

ṽλ(t, x) = λ−
2

q−1 ṽ

(
t

λ2
,
x

λ

)
.

Let uλ be the solution of (3.1) with the initial value uλ
0 = ṽλ(0). Show that uλ(t) ≥ ṽλ(t) in Ω for all

t ∈ (0,min{λ2T, Tm(uλ
0 )}), and conclude.

Exercise 3.13.7. Let g and u be as in Exercise 3.13.1, and assume that

ug(u) ≥ λ1u
2, ug(u) 6≡ λ1u

2,
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with λ1 the first eigenvalue of −4 in H1
0 (Ω). The object of this exercise is to show that ‖u(t)‖L∞ −→

t→∞
∞

for certain u0.

• Assuming g(u) ≥ λ1u + ε for 0 ≤ a < u < b, with ε > 0, let ϕ1 > 0 be the first eigenvector of −4 in

H1
0 (Ω) such that ‖ϕ1‖L∞ = b.

• Set u0 = ϕ1, and show that u ≥ ϕ1.

• Show that
d

dt

∫
Ω

u(t, x)ϕ1(x) dx ≥ ε

∫
{a<u<b}

ϕ1.

• Assume by contradiction that sup
t≥0

‖u(t)‖L∞ < ∞, and show that u is bounded in C0, 1
2 (Ω) (use the

analyticity of the semigroup in Lp(Ω)).

• Show that there exists δ > 0 such that
d

dt

∫
Ω

u(t, x)ϕ1(x) dx ≥ δ and conclude.

Exercise 3.13.8. Let g : R → R be locally Lipschitz, and assume that there exist a < 0 < b such that

g(a) = g(b) = 0.

Let u0 ∈ L∞(Ω) and let u be the solution of (3.1). If a ≤ u0 ≤ b, show that Tm = +∞ and that a ≤ u(t) ≤ b

for all t ≥ 0.

Exercise 3.13.9. Let g : R → R be locally Lipschitz, and assume that there exist a > 0 such that g(a) = 0,

and that

lim sup
u→−∞

g(u)
u

<∞.

Let u0 ∈ L∞(Ω) and let u be the solution of (3.1). If u0 ≤ a, show that Tm = +∞ and that u(t) ≤ a for all

t ≥ 0.

Exercise 3.13.10. Let g : R → R be a locally Lipschitz function such that

ug(u) ≤ λ1 − ε

2
u2 for |u| ≤ α,

with α > 0 and λ1 the first eigenvalue of −4 in H1
0 (Ω). The object of this exercise is to show that for every

constant M , there exists δM > 0 such that if u0 ∈ L∞(Ω) ∩H1
0 (Ω) verifies ‖u0‖L∞ ≤M and ‖u0‖H1 ≤ δM ,

then the solution u of (3.1) is globally defined.

Let δM > 0 to be chosen, and set T = sup{t ∈ [0, Tm); ‖u(s)‖L∞ ≤ 8M on [0, t]}. In the sequel, the

constants depend on M , but not on u.

• With the argument of Step 1 of the proof of Theorem 3.4.1, show that ‖u(t)‖H1 ≤ 2δM for all t ∈ [0, T ],

provided δM is small enough. (Observe that E(u) ≤ C‖u‖2H1 and that ug(u) ≤ λ1 − ε

2
u2 + C|u|q for

1 < q <
2N
N − 2

.)

• Show that g(u) = fu with f ∈ L∞((0, T ), L∞(Ω)) (observe that |g(u)| ≤ C|u|).

• Show that ‖u‖L∞((0,T ),L∞) ≤ 4‖u0‖L∞ + CδM (apply Theorem 1.6.6).

• Show that if δM is small enough, then ‖u‖L∞((0,T ),L∞) ≤ 6‖u0‖L∞ , and conclude.
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Exercise 3.13.11. Assume that g verifies (3.6.8) for u ≥ α > 0, where h : (α,∞) → (0,∞) is a convex

function such that (3.6.9) holds. Show that there exists β > 0 such that if u0 ∈ L∞(Ω), u0 ≥ 0 and∫
Ω

u0(x)ϕ1(x) dx ≥ β,

then the solution of (3.1) blows up in finite time.

Exercise 3.13.12. Let g : R → R be locally Lipschitz, and assume that

ug(u) ≥ (2 + ε)G(u) = (2 + ε)
∫ u

0

g(s) ds,

for |u| ≥M , with ε > 0. Show that there exists a constant K such that if

E(u0) =
1
2

∫
Ω

|∇u2|2 −
∫

Ω

G(u0) ≤ −K,

then the solution u of (3.1) blows up in finite time.

Exercise 3.13.13. The object of this exercise is to prove the following result.

Theorem. Let g : R → R be locally Lipschitz. Assume that there exists ε > 0 and M <∞ such that

ug(u) ≥ (2 + ε)
∫ u

0

g(s) ds, for |u| ≥M. (3.13.1)

If N ≥ 3, assume further that there exists p <
N + 2
N − 2

such that

|g(u)| ≤ C(1 + |u|p), (3.13.2)

for all u ∈ R; and if N = 2, assume that

lim
|u|→∞

e−µu2
|g(u)| = 0, (3.13.3)

for all µ > 0 (no condition if N = 1). If u0 ∈ L∞(Ω) is such that the solution u of (3.1) is global, then

sup
t≥0

‖u(t)‖L∞ <∞.

Step 1. Show that u verifies sup
t≥0

‖u(t)‖L2 <∞ and
∫ ∞

1

∫
Ω

u2
t <∞.

To prove this, show that (with the notation of Theorem 3.6.4),

d

dt
‖u(t)‖2L2 ≥ ε

∫
Ω

|∇u|2 − (4 + 2ε)E(u(1))− C|Ω|+ (4 + 2ε)
∫ t

1

∫
Ω

u2
t ,

for t ≥ 1. Show that
d

dt
‖u(t)‖2L2 ≥ ελ1‖u(t)‖2L2 − (4 + 2ε)E(u(1))− C|Ω|,

and conclude.

Step 2. Show that there exists B independent of t ≥ 1 such that if ‖ut(t)‖L2 ≤ 1, then ‖u(t)‖H1 ≤ B.

To show this, suppose that ‖ut(t)‖L2 ≤ 1 for some t ≥ 1, and show that

ε

∫
Ω

|∇u|2 ≤ d

dt
‖u(t)‖2L2 + (4 + 2ε)E(u(1)) + C|Ω| ≤ 2‖u(t)‖L2‖ut(t)‖L2 + (4 + 2ε)E(u(1)) + C|Ω|,
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and apply Step 1.

Step 3. Conclude, if N = 1 or N = 2.

Observe that by the local existence theory (see the proof of Theorem 3.1.1), there exists δ1 > 0 such that

if ‖v0‖L∞ ≤ B1, then the solution v of (3.1) with the initial value v0 exists on [0, δ1] and sup
0≤t≤δ1

‖v(t)‖L∞ ≤

B1 + 1. Show that if t ≥ 1 is such that ‖ut(t)‖L2 ≤ 1, then

sup
t≤s≤t+δ1

‖u(s)‖L∞ ≤ B1 + 1.

Show that there exists T <∞ such that∫ ∞

T

∫
Ω

ut(t, x)2 dxdt < δ1.

Show that sup
t≥T+δ1

‖u(t)‖L∞ ≤ B1 + 1. Conclude.

Step 4. Conclude, if N ≥ 3.

Show that for any M > 0, there exists δM > 0 independent of t ≥ 0 such that if ‖u(t)‖
L

2N
N−2

≤M , then

‖u(t+ s)‖
L

2N
N−2

≤M + 1 for 0 ≤ s ≤ δM . (Use the growth assumption on g.)

Deduce that sup
t≥0

‖u(t)‖
L

2N
N−2

<∞ (cf. Step 3).

Apply Theorem 1.6.6 to conclude.

Exercise 3.13.14. Consider the operator L = −4− a(x) with a ∈ L∞(Ω) and λ1(L) = 0. Let ϕ1 > 0 be

the first eigenfunction of L. Let w ∈ H1
0 (Ω) satisfy

Lw ≤ 0, (3.13.4)

in Ω. Prove that

(-) either w ≤ 0 on Ω

(-) or w = kϕ1 for some constant k > 0.

Hint: Multiply (3.13.4) by w+ and deduce that w+ = kϕ1 for some constant k ≥ 0.

Exercise 3.13.15. The object of this exercise is to prove the conclusions of Remark 3.7.15 (i). Suppose

that N ≤ 9, and for 0 < λ < λ∗ consider the minimal solution uλ of (3.7.4) with g(u) = eu (see Lemma 3.7.4).

• Show that 2k
∫

Ω

e2kuλ |∇uλ|2 = λ

∫
Ω

euλ(e2kuλ − 1) for all k > 0.

• Show that k2

∫
Ω

e2kuλ |∇uλ|2 ≥ λ

∫
Ω

euλ(ekuλ−1)2 for all k > 0 (apply the property λ1(−4−λeuλ) > 0).

• Show that lim sup
λ↑λ∗

∫
Ω

e(2k+1)uλ <∞ for 0 < k < 2.

• Show that lim sup
λ<λ∗

‖uλ‖L∞ < ∞ (hint: use the equation to derive that uλ is bounded in W 2,p(Ω) for

every 1 ≤ p < 5).

• Show that uλ converges as λ ↑ λ∗ to a solution u∗ ∈ L∞ of (3.7.4) with λ = λ∗.

• Show that λ1(−4− λ∗eu∗) = 0 (use the maximality of the interval (0, λ∗)).
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• Let v be a smooth solution of (3.7.4) with λ = λ∗. Show that v = u∗. (Using the convexity of the

exponential, show that f = −4(v−u∗)−λ∗eu∗(v−u∗) ≥ 0. Next, recall that λ1(−4−λ∗eu∗) = 0 and

let ϕ > 0 be the corresponding eigenfunction. Note that
∫
fϕ = 0 and conclude that f ≡ 0.)

• Consider now u0 ∈ L∞(Ω) and let u be the solution of (3.7.1) with λ = λ∗. If u0 ≤ u∗, show that u is

global and converges to u∗ as t→∞.

• Suppose now u0 ≥ u∗, u0 6≡ u∗. Let ϕ be the first eigenfunction of −4− λ∗eu∗ . Show that
d

dt

∫
Ω

(u−

u∗)ϕ = λ∗
∫

Ω

(
eu − eu∗ − eu∗(u− u∗)

)
ϕ ≥ λ∗

2

∫
Ω

(u− u∗)2ϕ.

• Show that Tm <∞.

Exercise 3.13.16. Consider the equation (3.7.1) with λ > 0, where g(u) = (1 + u)p and 0 < p < 1.

The object of this exercise is to show that there exists a unique stationary solution uλ, and that for every

u0 ∈ L∞(Ω), the solution u of (3.7.1) is global and converges exponentially to uλ as t→∞. For convenience,

set g(u) = λ(1 + |u|)p.

• Show that there exists a stationary solution (for example, minimize
∫
{|∇u|2 −G(u)}).

• Show that all stationary solutions are nonnegative.

• Show that if u is a stationary solution, then λ1(−4 − g′(u)) > 0 (minimize
∫
{|∇w|2 − g′(u)w2} on

{w ∈ H1
0 (Ω); ‖w‖L2 = 1}, and show that

∫
w[g(u)− ug′(u)] = λ1

∫
uw).

• Show that if u is a stationary solution, then any other stationary solution v verifies v ≤ u (use the

property λ1(−4− g′(u)) > 0).

• Show the uniqueness of the stationary solution.

• Show that for every u0 ∈ L∞(Ω), the solution u of (3.7.1) is global and converges exponentially to uλ

as t→∞ (use the energy to show that u is bounded).

Exercise 3.13.17. Consider the equation
ut −4u = λ(A− e−u) in (0, T )× Ω,

u = 0 in (0, T )× ∂Ω,

u(0, x) = u0(x) in Ω,

(3.13.5)

where λ > 0 and A > 1.

• Show that there exists a unique stationary solution uλ ≥ 0 and that λ1(−4− λe−uλ) > 0.

• Show that for every u0 ∈ L∞(Ω), u0 ≥ 0, the solution u of (3.13.5) is global and converges exponentially

to uλ as t→∞.

Exercise 3.13.18. Consider the equation
ut − uxx = |u|p−1u in (0, T )× Ω,

u = 0 in (0, T )× ∂Ω,

u(0, x) = u0(x) in Ω,

(3.13.6)
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where p > 1 and Ω = (0, 1).

• Show that there exists a unique positive stationary solution ϕ.

• Show that for every u0 ∈ L∞(Ω), 0 ≤ u0 ≤ ϕ, u0 6≡ ϕ, the solution u of (3.13.6) is global and converges

exponentially to 0 as t→∞ (compute
d

dt

∫
ϕ(u− ϕ)).

• Show that for every u0 ∈ L∞(Ω), u0 ≥ ϕ, u0 6≡ ϕ, the solution u of (3.13.6) blows up in finite time (one

can use the property uϕ(up−1 − ϕp−1) ≥ δ(ϕ(u− ϕ))
p+1
2 for some δ > 0).

Exercise 3.13.19. Let g(u) = |u|p−1u with p > 1 +
4
N

and (N − 2)p < N + 2. Let u0 ∈ H2(Ω) ∩

H1
0 (Ω) ∩ L∞(Ω) be such that u0 ≥ 0 and 4u0 + up

0 ≥ 0 a.e. in Ω, and let u be the corresponding solution

of (3.1). The object of this exercise is to show by an energy method that if Tm < ∞, then ‖u(t)‖Lq −→
t↑Tm

∞

for q =
N(p− 1)

2
.

• Show that u(t) ≥ 0 and ut(t) ≥ 0 a.e. in Ω for all t ∈ [0, Tm).

• Set Eq(t) =
1
p2

∫
Ω

|∇u
q
2 |2 − 1

p+ q − 1

∫
Ω

up+q−1, and show that Eq(t) ≤ Eq(0) for all t ∈ [0, Tm).

• Show that
d

dt

∫
Ω

uq = −q(q − 1)Eq(t) +
p(p+ 1− q)
p+ q − 1

∫
Ω

up+q−1.

• Show that ‖u(t)‖Lq −→
t↑Tm

∞ (hint: apply Theorem 3.8.1).

Exercise 3.13.20. The object of this exercise is to show that if Ω is a smooth bounded domain of R2,

then there exists u0 ∈ L1(Ω) such that the equation{
ut −4u = u2,

u(0) = u0,
(3.13.7)

does not have any solution u ∈ C([0, T ], L1(Ω)) ∩ L1
loc((0, T ), L2(Ω)) for any T > 0.

Let u ∈ C([0, T ], L1(Ω)) ∩ L1
loc((0, T ), L2(Ω)) be a solution of (3.13.7), and set v(t) = T (t)u0, where

(T (t))t≥0 is the semigroup of the heat equation.

• Show that u(t) ≥ v(t). (Hint: write Duhamel’s formula between ε > 0 and t, then let ε ↓ 0.)

• Show that ζu ∈ L2((0, T ) × Ω), for every ζ ∈ D(Ω), ζ ≥ 0. (Hint: multiply the equation by ζ and

integrate on (0, T )× Ω.)

• Assuming u0 ≥ 0, show that ζv ∈ L2((0, T )× Ω).

• Conclude. (Apply Exercise 3.13.21 below.)

Exercise 3.13.21. Let N ≥ 1 and let Ω ⊂ RN be an arbitrary open domain. Fix any open ball ω ⊂ Ω with

ω ⊂ Ω. The object of this exercise is to show that there is some u0 ∈ L1(Ω), u0 ≥ 0 such that v(t) = T (t)u0

satisfies ∫ 1

0

∫
ω

v
N+2

N (t, x) dx dt = +∞.

Argue by contradiction and suppose that for every u0 ∈ L1(Ω), u0 ≥ 0,∫ 1

0

∫
ω

v
N+2

N (t, x) dx dt <∞.
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• Show that
∫ 1

0

∫
ω

|v|
N+2

N (t, x) dx dt <∞, for every u0 ∈ L1(Ω).

• Show that there is a constant C such that∫ 1

0

∫
ω

|v|
N+2

N (t, x) dx dt ≤ C‖u0‖
N+2

N

L1 , (3.13.8)

for every u0 ∈ L1(Ω). (Apply the closed graph theorem to the operator u0 7→ v|(0,1)×ω.)

• Let K(t) be the fundamental solution of the heat equation in RN , i.e. K(t, x) = (4πt)−
N
2 e−

|x|2
4t . Let d

be the distance of ω to ∂Ω, i.e. d = inf{|x − y|; x ∈ ω, y ∈ ∂Ω}. Show that for all u0 ∈ D(RN ) with

supp(u) ⊂ ω and u0 ≥ 0,

(K(t) ? u0)|Ω ≤ T (t)u0 + c

∫
Ω

u0,

for all t ≥ 0, where c = sup
t>0

(4πt)−
N
2 e−

d2
4t . (Compare u(t) = T (t)u0 and v(t) = (K(t) ? u0)|Ω− c‖u0‖L1 .)

• Show that ∫ 1

0

∫
ω

|K(t, x)|
N+2

N (x) dx dt <∞.

(Consider a sequence (un
0 )n≥0 ∈ D(ω) such that un

0 ≥ 0, ‖un
0‖L1 ≤ 1 and un

0 −→
n→∞

δ (= the Dirac mass

at x0 ∈ ω) in the weak? topology of measures, apply (3.13.8) to the corresponding solutions vn(t, x) and

use Fatou’s lemma.)

• Show by a direct calculation that
∫ 1

0

∫
ω

|K(t, x)|
N+2

N (t, x) dx dt = ∞ and conclude.

3.14. Open problems.

Open Problem 3.14.1. What hapens if q =
N + 2
N − 2

in Exercise 3.13.6?

(cf. Júlia)

Open Problem 3.14.2. What happens in Theorem 3.4.1 if q =
N + 2
N − 2

? (See Remark 3.4.3).

(cf. Júlia)

Open Problem 3.14.3. What happens if q =
N(p− 1)

2
in Theorem 3.8.1? Does there exist µ > 0 such

that lim sup
t↑Tm

| log(Tm − t)|−µ‖u(t)‖Lq > 0?

Open Problem 3.14.4. What happens in Exercise 3.13.13 if g does not satisfy the growth assump-

tions (3.13.2) or (3.13.3)?

Open Problem 3.14.5. Assume N ≥ 3, and let u ∈ C([0, T ], L
N

N−2 (Ω)) solve the equation
ut −4u = |u|

2
N−2u,

u|∂Ω = 0,

u(0, x) = 0,

Does one have u ≡ 0?

Open Problem 3.14.6. Recall that in the critical case q =
N(p− 1)

2
and q > 1 in Theorem 3.9.1, the

time of existence T (u0) depends (in our proof of Theorem 3.9.1) on u0 and not only on ‖u0‖Lq . It would
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be interesting to clarify this point. In particular, is it possible to construct a sequence of initial conditions

(un
0 )n≥0 which is bounded in Lq(Ω) and such that Tm(un

0 ) −→
n→∞

0?

Open Problem 3.14.7. Is there some u0 ∈ L1(Ω) for which there is no (local) solution of (3.9.1)? This

means that there is no T > 0 and no function u ∈ C([0, T ], L1(Ω))∩L∞loc((0, T ), L∞(Ω)) satisfying (3.9.1) in

the sense of Theorem 3.9.1.

Open problem 3.14.8. Is there some u0 ∈ L1(Ω) for which uniqueness fails in the class C([0, T ], L1(Ω))∩

L∞loc((0, T ), L∞(Ω)) for some T > 0?

Open problem 3.14.9. Could there be failure of the maximum principle? More precisely, is there some

u0 ∈ L1(Ω), u0 ≥ 0 and a solution u ∈ C([0, T ], L1(Ω))∩L∞loc((0, T ), L∞(Ω)) for some T > 0 which does not

preserve the positivity?

Open problem 3.14.10. Is there some u0 ∈ L1(Ω), u0 ≥ 0 such that problem (3.9.1) with the “truncated”

initial condition

un
0 = min{u0, n},

has a (classical) solution un on some maximal interval [0, Tm(un
0 )) satisfying Tm(un

0 ) −→
n→∞

0?

Alternatively, consider the “truncated” problem
un

t −4un = gn(un) in (0,∞)× Ω,

un = 0 on (0,∞)× ∂Ω,

un(0) = u0 in Ω,

where gn(t) = min{|t|p, n} signt. Is there some u0 ∈ L1(Ω), u0 ≥ 0 such that un(t, x) −→
n→∞

+∞ for all x ∈ Ω

and all t > 0?

Open Problem 3.14.11. Is there some u0 ∈ Lq(Ω) for which there is no (local) solution of (3.9.1)?

This means that given any T > 0 (as small as we please) there is no function u ∈ C([0, T ], Lq(Ω)) ∩

L∞loc((0, T ), L∞(Ω)) satisfying (3.9.1).

Here is a suggestion how to construct such a u0. Let Ω be the unit ball in RN , and let ϕ = ϕ(r) with

r = |x|, ϕ ∈ C1(Ω) , ϕ > 0 in Ω, ϕ = 0 on ∂Ω, ϕ′(r) < 0 for r ∈ (0, 1), ϕ′′(0) < 0 and 4ϕ+ ϕp ≥ 0 in Ω be

such that the solution v of (3.9.1) with the initial condition v(0) = ϕ blows up in finite time Tm. (It is well

known that such a ϕ exists.) By Theorem 2.4 of Friedman and McLeod [43],

sup
0≤t<Tm

‖v(t)‖Lq <∞ for all 1 ≤ q <
N(p− 1)

2
.

Set

u0 = lim
t↑Tm

v(t).

This u0 belongs to Lq(Ω) for all 1 ≤ q <
N(p− 1)

2
. We suspect that for such an initial condition u0, there

exists no local solution of (3.9.1) in any reasonable sense. That there is no nonnegative solution follows from
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Baras and Cohen [7]. Indeed, suppose there is a nonnegative solution u of (3.9.1) with the initial condition

u(0) = u0 on [0, T ] for some T > 0. Set

w(t) =

{
v(t) for 0 < t ≤ Tm,

u(t− Tm) for Tm ≤ t ≤ Tm + T.

This is an integral solution of (3.9.1) in the sense of Baras-Cohen [7] and Baras-Pierre [8] which blows up

at t = Tm. From [7], one knows that the only way to continue a solution beyond blow up time is by +∞

everywhere.

Open Problem 3.14.12. What happens if N = 1 or N = 2 in Theorem 3.8.3? (Note that by Re-

mark 3.9.16, the conclusion of the theorem holds under more restrictive assumptions on g.)

Open Problem 3.14.13. Does ‖u(t)‖Lq remain bounded as t ↑ Tm, for any u0 ∈ L∞(Ω) with Tm < ∞

and any q, 1 ≤ q <
N(p− 1)

2
? (The answer is positive in some cases, see Theorem 2.4 of Friedman and

McLeod [43].)

Attention, suivre les developpements!

Open Problem 3.14.14. Assume p ≥ N + 2
N

and 0 ∈ Ω. Prove or disprove that given any T > 0, there

is a function u ∈ Lp
loc((0, T )× Ω) satisfying (3.10.1) in D′((0, T )× Ω) and such that

ess lim
t↓0

∫
Ω

u(t, x)ϕ(x) dx = ϕ(0),

for all ϕ ∈ Cc(Ω). (We suspect that the answer is negative. One knows that there is no solution u ≥ 0. The

proof is the same as in Theorem 3.9.14.)

Open Problem 3.14.15. We know by Theorem 3.1.1 that the mapping u0 7→ Tm(u0) is lower semicon-

tinuous on L∞(Ω). Prove or disprove that this mapping is continuous on L∞(Ω).

In connection with this problem, we call attention to a positive result of Baras and Cohen [7] when

g(u) = up with p <
N + 2
N − 2

and u0 ≥ 0. A possible suggestion to construct a discontinuity of Tm when

p ≥ N + 2
N − 2

would be the following: consider an initial condition u0 ≥ 0 such that the problem


ut −4u = up,

u|∂Ω = 0,

u(0) = u0,

has a “weak” solution u on (0, T )×Ω which blows up (in the L∞ norm) at some Tm < T . For the existence

of such a u, see Open Problem 3.14.16. By Theorem ???, Tm((1− ε)u0) ≥ T , and thus Tm((1− ε)u0) cannot

converge to Tm(u0).

Open Problem 3.14.16. peaking solutions

Open Problem 3.14.17. peut-on avoir une solution qui explose a Tm, qui peut etre etendue a [0, T )

Tm < T <∞, et qui explose totalement en T?
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Appendix.

In this chapter, we introduce the basic tools that are necessary for the study of evolution equations.

They concern functional analysis, integration theory, Sobolev spaces, elliptic equations and some inequalities.

As a rule, we only give the proof of those results that do not appear frequently in the litterature in the present

form, or whose proof is especially simple. We give references for the results that we do not prove.

A.1. Functional analysis. We recall here some useful theorems of functional analysis. Some of those

results are quite classical and can be found in any textbook on elementary functional analysis (see for example

Brezis [17], Yosida [102]).

Theorem A.1.1. (The Banach fixed point Theorem) Let (E, d) be a complete metric space and let

f : E → E be Lipschitz continuous with Lipschitz constant L. If L < 1, then f has a unique fixed point

x0 ∈ E.

Theorem A.1.2. (The closed graph Theorem) Let X and Y be Banach spaces and let A : X → Y be a

linear mapping. Then A ∈ L(X,Y ) if and only if the graph of A (i.e. the set of (x, y) ∈ X × Y such that

y = Ax) is a closed subspace of X × Y .

Theorem A.1.3. (The Lax-Milgram Theorem) Let H be a Hilbert space with norm ‖ · ‖H and consider

a bilinear functional a : H ×H → R. If there exist C <∞ and α > 0 such that{ |a(u, v)| ≤ C‖u‖ ‖v‖H , for all (u, v) ∈ H ×H(continuity),

|a(u, u)| ≥ α‖u‖2H , for all u ∈ H (coerciveness),

then, for every f ∈ H? (the dual space of H), the equation

a(u, v) = 〈f, v〉H?,H , for all v ∈ H,

has a unique solution u ∈ H.

Proposition A.1.4. Let X and Y be Banach spaces, let E be a subset of X, and let (Aλ)λ∈(−1,1) be a

bounded family in L(X,Y ). If lim
λ→0

Aλx = 0, for all x ∈ E, then lim
λ→0

Aλx = 0, for all x ∈ E.

Proof. Let x ∈ E and let (xn)n∈N ⊂ E converge to x as n → ∞. There exists C < ∞ such that for all

n ∈ N,

‖Aλx‖ ≤ ‖Aλxn‖+ C‖x− xn‖.

Given ε > 0, we have C‖x− xn0‖ ≤ ε/2, for n0 large enough. Then for λ small enough, we have ‖Aλxn0‖ ≤

ε/2. Hence the result.

Proposition A.1.5. Let X and Y be two Banach spaces such that X ↪→ Y (i.e. X ⊂ Y with continuous

injection), with dense embedding. Then, the following properties hold:

(i) Y ? ↪→ X?, where the embedding is defined by 〈f, x〉X?,X = 〈f, x〉Y ?,Y , for all x ∈ X and f ∈ Y ?;
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(ii) if X is reflexive, then the embedding Y ? ↪→ X? is dense.

Proof. (i) Consider y′ ∈ Y ? and x ∈ X ↪→ Y . Let Φy′(x) = 〈y′, x〉Y ?,Y . It is clear that Φ ∈ L(Y ?, X?).

Suppose that Φy′ = Φz′ , for some y′, z′ ∈ Y ?. Then 〈y′ − z′, x〉Y ?,Y = 0, for every x ∈ X. By density, it

follows that 〈y′ − z′, y〉Y ?,Y = 0, for every y ∈ Y ; and so y′ = z′. Hence (i), Φ being the embedding.

(ii) Assume to the contrary that Y ? 6= X?. Then there exists x0 ∈ X?? = X such that 〈y′, x0〉X?,X = 0,

for every y′ ∈ Y ? (see Brezis [17], Corollary I.8). Let E = Rx0 ⊂ Y , and let f ∈ E? be defined by f(λx0) = λ,

for λ ∈ R. We have ‖f‖E? = 1, and by Hahn-Banach theorem (see Brezis [17], Corollary I.2) there exists y′ ∈

Y ? such that ‖y′‖Y ? = 1 and 〈y′, x0〉Y ?,Y = 1, which is a contradiction, since 〈y′, x0〉Y ?,Y = 〈y′, x0〉X?,X = 0.

Remark A.1.6. Reflexivity is important in property (ii). For example, if X = `1(N) and Y = `2(N), then

X ↪→ Y with dense embedding. However, X? = `∞(N) and Y ? = `2(N), and the embedding `2(N) ↪→ `∞(N)

is not dense.

If X is a separable Banach space, then its dual X? needs not be separable. (For example X = L1(Ω) is

separable, but it dual L∞(Ω) is not). However, X? is weak? separable, as shows the following result.

Lemma A.1.7. Let X be a separable Banach space and let X? be its dual. There exists a sequence

(x′n)n∈N ⊂ X? such that for every x′ ∈ X?, there exists a subsequence (x′nk
)k∈N with the following properties:

(i) x′nk
→ x′ weak-? as k →∞.

(ii) ‖x′nk
‖X? ≤ ‖x′‖X? .

(iii) ‖x′nk
‖X? → ‖x′‖X? as k →∞.

Proof. When equipped with the weak-? topology of X?, B′ = {x′ ∈ X?; ‖x‖X? ≤ 1} is a compact metric

space. In particular, B′ is separable and we denote by (y′n)n∈N a dense sequence in B′. Let (x′n)n∈N be the

sequence ∪
λ∈Q
n∈N

{λy′n}. Given x′ ∈ X?, there exists a sequence (nk)k∈N such that y′nk
→ x′

‖x′‖X?

weak-? as

k → ∞. Consider now a sequence (λk)k∈N such that λk → ‖x′‖X? as k → ∞ and 0 < λk ≤ ‖x′‖X? . It

follows that λky
′
nk
→ x′ weak-? as k → ∞. Furthermore, ‖λky

′
nk
‖X? ≤ |λk|‖y′nk

‖X? ≤ ‖x′‖X? . Since also

‖x′‖X? ≤ lim inf
k→∞

‖λky
′
nk
‖X? , the result follows.

Lemma A.1.8. Let X ↪→ Y be two Banach spaces and let (xn)n∈N ⊂ X. If xn ⇀ x in X, as n→∞, then

xn ⇀ x in Y , as n→∞.

Proof. The embedding is continuous X → Y ; and so, it is also continuous X → Y for the weak topologies.

The result follows.

Lemma A.1.9. Let X ↪→ Y be two Banach spaces and let (xn)n∈N ⊂ X be a bounded sequence in X such

that xn ⇀ y in Y , as n→∞, for some y ∈ Y . If X is reflexive, then y ∈ X and xn ⇀ y in X, as n→∞.
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Proof. Let us first prove that y ∈ X. There exists x ∈ X and a subsequence nk such that xnk
⇀ x in X,

as k →∞. Therefore, by Lemma A.1.8, xnk
⇀ x in Y , as k →∞. It follows that y = x ∈ X.

Let us prove that xn ⇀ y in X by contradiction. If not, there exists x′ ∈ X?, ε > 0 and a subsequence

nk such that |〈x′, xnk
− y〉| ≥ ε, for every k ∈ N. On the other hand, there exists x ∈ X and a subsequence

nkj such that xnkj
⇀ x in X as j → ∞. In particular, x = y; and so xnkj

⇀ y in X as j → ∞, which is a

contradiction.

Corollary A.1.10. Let X ↪→ Y be two Banach spaces. If Y is separable and X is reflexive, then X is

separable.

Proof. Let B be the closed unit ball of X. Since B ⊂ Y and Y is separable, it follows that B is separable

for the Y norm. Therefore, there exists a sequence (xn)n∈N ⊂ B such that for every x ∈ X, there exists a

subsequence (xnk
)k∈N which converges to x strongly in Y , hence weakly in X by Lemma A.1.9. Therefore,

B is contained in, hence equal to the weak X closure of the set (xn)n∈N. In particular, B is also the weak X

closure of the convex hull C of the set (xn)n∈N. Since the weak and strong closures of convex sets coincide,

it follows that C is strongly X dense in B. Since the convex hull of a countable set is clearly separable, it

follows that B is separable, which completes the proof.

Remark A.1.11. Note that if X is not reflexive, then the conclusion of Corollary A.1.10 may be invalid.

For example, if Ω is a bounded subset of RN , then L∞(Ω) ↪→ L2(Ω) but L∞(Ω) is not separable.

Corollary A.1.12. Let X ↪→ Y be two Banach spaces, let I be a bounded, open interval of R, and let

u : I → Y be a weakly continuous function. Assume that there exists a dense subset E of I such that

(i) u(t) ∈ X, for all t ∈ E,

(ii) sup{‖u(t)‖X , t ∈ E} = K <∞.

If X is reflexive, then u(t) ∈ X for all t ∈ I and u : I → X is weakly continuous.

Proof. Let t ∈ I and let (tn)n∈N ⊂ E converge to t, as n → ∞. Since u(tn) ⇀ u(t) in Y , it follows from

Lemma A.1.9 that u(t) ∈ X and that

‖u(t)‖X ≤ lim inf
n→∞

‖u(tn)‖X ≤ K.

Let now t ∈ I and let (tn)n∈N ⊂ I converge to t, as n→∞. Since u(tn) ⇀ u(t) in Y and u(tn) is bounded

in X, it follows from Lemma A.1.9 that u(tn) ⇀ u(t) in X. Hence the result.

The proofs of the following two lemmas are similar to the proof of Corollary A.1.12 above and are left

to the reader.

Lemma A.1.13. Let X be a uniformly convex Banach space, let I be a bounded, open interval of R and

let u : I → X be weakly continuous. If t 7→ ‖u(t)‖X is continuous I → R, then u ∈ C(I,X).
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Lemma A.1.14. Let X be a Banach space, let I be a bounded, open interval of R and let u : I → X

be weakly continuous. If there exists a Banach space B such that X ↪→ B with compact embedding, then

u ∈ C(I,B).

The following compactness result is very helpful for passing to the limit in certain nonlinear evolution

equations. Its proof is quite simple.

Proposition A.1.15. Let X ↪→ Y be two Banach spaces, let I be a bounded, open interval of R and

let (fn)n∈N be a bounded sequence in C(I, Y ). Assume that fn(t) ∈ X, for all (n, t) ∈ N × I and

sup{‖fn(t)‖X ; (n, t) ∈ N × I} = K < ∞, and that fn is uniformly equicontinuous in Y (i.e. ∀ε > 0,∃δ >

0,∀n, s, t ∈ N × I × I, ‖fn(t) − fn(s)‖Y ≤ ε if |t − s| ≤ δ). If X is reflexive, then the following properties

hold:

(i) there exists a function f ∈ C(I, Y ) which is weakly continuous I → X and a subsequence nk such that

fnk
(t) ⇀ f(t) in X as k →∞, for all t ∈ I;

(ii) if there exists a uniformly convex Banach space B such that X ↪→ B ↪→ Y and if (fn)n∈N ⊂ C(I,B)

and ‖fnk
(t)‖B → ‖f(t)‖B as k →∞, uniformly on I, then also f ∈ C(I,B) and fnk

→ f in C(I,B) as

k →∞;

(iii) if there exists a Banach space B such that X ↪→ B ↪→ Y , where the embedding X ↪→ B is compact,

then also f ∈ C(I,B) and fnk
→ f in C(I,B) as k →∞.

Proof. (i) Let (tn)n∈N be a representation of Q ∩ I. It follows easily from the reflexivity of X and the

diagonal procedure that there exists a subsequence nk and a function f : Q∩I → X such that fnk
(tj) ⇀ f(tj)

in X (hence in Y ) as k → ∞, for all j ∈ N. It follows from the uniform equicontinuity of (fn)n∈N and the

weak lower semicontinuity of the norm that f can be extended to a function of C(I, Y ). Furthermore, by

Lemma A.1.9 and Corollary A.1.12, f : I → X is weakly continuous and sup{‖f(t)‖X , t ∈ I} ≤ K. Consider

now t ∈ I, let (tj)j∈N ⊂ Q ∩ I converge to t and let y′ ∈ Y ?. We have

|〈y′, fnk
(t)− f(t)〉Y ?,Y | ≤ |〈y′, fnk

(t)− fnk
(tj)〉Y ?,Y |

+ |〈y′, f(t)− f(tj)〉Y ?,Y |+ |〈y′, fnk
(tj)− f(tj)〉Y ?,Y |.

Given ε > 0, it follows from the uniform equicontinuity that the first and second terms of the right-hand

side are less than ε/4 for j large enough. Given such a j, the third term is less than ε/2 for k large enough;

and so

|〈x′, fnk
(t)− f(t)〉Y ?,Y | → 0, as k →∞.

It follows that fnk
(t) ⇀ f(t) in Y ; and so fnk

(t) ⇀ f(t) in X, by Lemma A.1.9. Hence (i).

(ii) Note first that f : I → B is weakly continuous. Also, ‖f‖B : I → R is continuous; and so

(Lemma A.1.13) f ∈ C(I,B). It remains to prove that fnk
→ f in C(I,B). We argue by contradiction,

and we assume that there exists a sequence (tk)k∈/N ⊂ I and ε > 0 such that ‖fnk
(tk) − f(tk)‖B ≥ ε, for

every k ∈ N. We may assume that tk → t ∈ I, as k → ∞. It follows from (i) and uniform continuity that
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fnk
(tk) ⇀ f(t) in Y , as k →∞. Since (fn)n∈N is bounded in C(I,B), we have as well fnk

(tk) ⇀ f(t) in B,

as k →∞. Furthermore,

| ‖fnk
(tk)‖B − ‖f(t)‖B | ≤ | ‖fnk

(tk)‖B − ‖f(tk)‖B |+ | ‖f(tk)‖B − ‖f(t)‖B |.

It follows that ‖fnk
(tk)‖B → ‖f(t)‖B ; and so, fnk

(tk) → f(t) in B, as k →∞, which is a contradiction.

(iii) It follows from Lemma A.1.14 that (fn)n∈N ⊂ C(I,B) and f ∈ C(I,B). It remains to prove that

fnk
→ f in C(I,B). We argue by contradiction, and we assume that there exists a sequence (tk)k∈N ⊂ I

and ε > 0 such that ‖fnk
(tk)− f(tk)‖B ≥ ε, for every k ∈ N. It follows from (i) and uniform continuity that

fnk
(tk)− f(tk) ⇀ 0 in Y , as k →∞. It follows that ‖fnk

(tk)− f(tk)‖B → 0, which is a contradiction.

The following compactness result is very helpful for passing to the limit in certain nonlinear evolution

equations. Its proof is quite simple.

Theorem A.1.16. Let X be a Banach space, let T > 0 and let f ∈ C([0, T ), X). Assume that f is

right-differentiable for all t ∈ [0, T ). If
d+f

dt
∈ C([0, T ), X), then f ∈ C1([0, T ), X) and

df

dt
=
d+f

dt
.

Proof. Set

g(t) = f(t)− f(0)−
∫ t

0

d+f

dt
ds,

for all t ∈ [0, T ). It follows that g ∈ C([0, T ), X), g(0) = 0, g is right-differentiable for all t ∈ [0, T )

and
d+g

dt
= 0. Let now ξ ∈ X?, and set h(t) = 〈ξ, g(t)〉X?,X . We have h ∈ C([0, T )), h(0) = 0, h is

right-differentiable for all t ∈ [0, T ) and
d+h

dt
= 0. We show that h ≡ 0. To see this, let ε > 0, set

hε(t) = h(t) − εt, and let us show that hε ≤ 0. Otherwise, there exists t ∈ [0, T ) such that hε(t) > 0. Let

τ = inf{t ∈ [0, T ); hε(t) > 0}. We have hε(τ) = 0, and there exists tn ↓ τ such that hε(tn) > 0. It follows

that

lim sup
t↓τ

hε(t)− hε(τ)
t− τ

≥ 0.

On the other hand, we have
d+hε

dt
= −ε, which is a contradiction. Therefore, hε ≤ 0. Since ε > 0 is arbitrary,

we have h ≤ 0. Applying the same argument to −h, we obtain as well h ≥ 0, hence h ≡ 0. Therefore, given

t ∈ [0, T ), we have 〈ξ, g(t)〉X?,X = 0 for all ξ ∈ X?; and so, g(t) ≡ 0. The result follows easily.

We will also use some properties of the intersection and sum of Banach spaces. Consider two Banach

spaces X1 and X2 that are subsets of a Hausdorff topological vector space X . Let

X1 ∩X2 = {x ∈ X ; x ∈ X1, x ∈ X2},

and

X1 +X2 = {x ∈ X ; ∃x1 ∈ X1, ∃x2 ∈ X2, x = x1 + x2}.

Define

‖x‖X1∩X2 = ‖x‖X1 + ‖x‖X2 , for x ∈ X1 ∩X2,
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and

‖x‖X1+X2 = Inf{‖x1‖X1 + ‖x2‖X2 ; x = x1 + x2}, for x ∈ X1 +X2.

We have the following result.

Proposition A.1.17. (X1 ∩ X2, ‖ ‖X1∩X2) and (X1 + X2, ‖ ‖X1+X2) are Banach spaces. If furthermore

X1 ∩X2 is a dense subset of both X1 and X2, then the following properties hold:

(i) (X1 ∩X2)? = X?
1 +X?

2 and (X1 +X2)? = X?
1 ∩X?

2 ;

(ii) 〈f, x1 + x2〉X?
1∩X?

2 ,X1+X2 = 〈f, x1〉X?
1 ,X1 + 〈f, x2〉X?

2 ,X2 , for all f ∈ X?
1 ∩X?

2 and (x1, x2) ∈ X1 ×X2;

(iii) 〈f1 + f2, x〉X?
1 +X?

2 ,X1∩X2 = 〈f1, x〉X?
1 ,X1 + 〈f2, x〉X?

2 ,X2 , for all (f1, f2) ∈ X?
1 ×X?

2 and x ∈ X1 ∩X2;

(iv) if X1 and X2 are reflexive, then X1 ∩X2 and X1 +X2 are reflexive.

Proof. The first properties follow from Bergh and Löfström [13] (Lemma 2.3.1 and Theorem 2.7.1), as well

as properties (ii) and (iii) (proof of Theorem 2.7.1). Finally, it remains to prove Property (iv). By (i), it is

sufficient to show that X1 ∩X2 is reflexive. By applying Eberlein-Šmulian’s theorem, we need to show that

every bounded sequence (xn)n∈N ⊂ X1 ∩X2 has a weakly convergent subsequence. Since xn is bounded in

both X1 and X2, there exists x ∈ X1 ∩X2 and a subsequence, which we still denote by (xn)n∈N, such that

xn ⇀ x, in X1 and in X2. Given (f1, f2) ∈ X?
1 ×X?

2 , we have

〈f1, xn〉X?
1 ,X1 + 〈f2, xn〉X?

2 ,X2 −→n→∞
〈f1, x〉X?

1 ,X1 + 〈f2, x〉X?
2 ,X2 .

By property (iii), this implies that xn ⇀ x in X1 ∩X2.

Remark A.1.18. It is clear that the definition of the spaces X1∩X2 and X1+X2 as well as their properties

described in Proposition A.1.17 are independent of the Hausdorff space X . It follows that an element of

X1 +X2 is equal to zero if and only if it is equal to zero in some Hausdorff space containing X1 ∪X2. In

particular, if X1 and X2 are spaces of distributions on some open set Ω ⊂ RN , then an element of X1 +X2

is equal to zero if and only if it is equal to zero in D′(Ω).

Finally, we recall below the main properties of the exponential of a linear continuous operator. Consider

a Banach space and a linear continuous operator A ∈ L(X,X). We recall that eA (the exponential of A) is

the sum of the series
∞∑

n=0

1
n!
An.

It is clear that the series is normally convergent in L(X) and that ‖eA‖ ≤ e‖A‖. Furthermore, if A and B

commute then eA+B = eAeB . In addition, the function t 7→ etA is in C∞(R,L(X)) and

detA

dt
= AetA = etAA,

for all t ∈ R.
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Proposition A.1.19. For every x ∈ X, there exists a unique solution u ∈ C(R, X) of the following

problem: 
du

dt
= Au(t), for all t ∈ R

u(0) = x.

This solution is given by u(t) = etAx, for t ∈ R

Proof. It is clear that etAx is a solution of the problem. Let v be another solution and let w(t) = e−tAv(t).

It follows that
dw

dt
= e−tAAv(t)−Ae−tAv(t) = 0, for every t ∈ R.

Therefore, w(t) ≡ w(0) = x; and so v ≡ etAx.

A.2. Vector integration. Vector integration is essential in the study of evolution equation. Even though

most existence and regularity results are stated in terms of continuous functions, weaker regularity classes

often appear in intermediate steps.

We present here a few basic results on vector integration that are essential in the theory of evolution

equations. Throughout this section, X is a Banach space with the norm ‖ ‖ and I is an open interval of

R (bounded or unbounded) equipped with the Lebesgue measure. We will use the basic theorems of real

valued integration (Fatou’s lemma, the monotone convergence theorem, the dominated convergence theorem,

Egorov’s theorem in particular). We will also use the main result of the Lebesgue’s points theory, which we

recall below (see Dunford and Schwartz [39], Theorem III.12.8, p. 217, Rudin [89], Theorem 8.8, p. 158).

Theorem A.2.1. Let f : R → R be locally integrable and let

Fh(t) =
1
h

∫ t+h

t

f(s) ds, for all t ∈ R and all h 6= 0.

There exists a set E of measure 0, such that lim
h→0

Fh(t) = f(t), for all t ∈ R \ E. The set R \ E is called the

set of Lebesgue’s points of f . In particular, the function

t 7→
∫ t

0

f(s) ds

is differentiable almost everywhere and its derivative is equal to f almost everywhere.

Finally, we will use the following well known property.

Theorem A.2.2. Let f : R → R and 1 ≤ p ≤ ∞. If there exists ϕ,ψ ∈ Lp(R) such that

|f(t)− f(s)| ≤
∣∣∣∣∫ t

s

ϕ(σ) dσ
∣∣∣∣+ |t− s| |ψ(s)|,

for almost all s, t ∈ R, then the following properties hold:

(i) f is differentiable almost everywhere.

(ii) f ′ ∈ Lp(R) and |f ′| ≤ |ϕ|+ |ψ| almost everywhere.
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(iii) f(t) = f(0) +
∫ t

0

f ′(s) ds for all t ∈ R.

Proof. Observe that f ∈ Lp
loc(R). We show that there exists g ∈ Lp(R) such that∫

R
g(t)θ(t) dt = −

∫
R
f(t)θ′(t) dt, (A.2.1)

for all θ ∈ C1
c (R). For almost all h > 0, define fh(t) =

f(t+ h)− f(t)
h

. It follows that

|fh(t)| ≤ 1
h

∫ t+h

t

|ϕ(σ)| dσ + |ψ(t)|.

In particular, fh is bounded in Lp(R) (see Proposition A.2.22 below). If p > 1, it follows that there exist

a sequence hn ↓ 0 and g ∈ Lp(R) such that fhn → g as n → ∞, in Lp(R) weak (weak-? if p = ∞). In

particular, ∫
R
fhn

(t)θ(t) dt −→
n→∞

∫
R
g(t)θ(t) dt, (A.2.2)

for all θ ∈ C1
c (R). If p = 1, it follows from Proposition A.2.22 below that

1
h

∫ ·+h

·
ϕ(σ) dσ−→

h↓0
ϕ(·)

in L1(R). In particular, there exists a sequence hn ↓ 0 and γ ∈ L1(R) such that

| 1
hn

∫ t+hn

t

ϕ(σ) dσ| ≤ γ(t),

almost everywhere. Therefore, |fhn(t)| ≤ γ(t) + |ψ(t)| almost everywhere and it follows from the deep

Dunford-Pettis theorem (see Dunford and Pettis [38]) that there exists g ∈ L1(R) such that (A.2.2) holds.

Now ∫
R
fhn(t)θ(t) dt = −

∫
R
f(t)

θ(t− hn)− θ(t)
−hn

dt −→
n→∞

−
∫

R
f(t)θ′(t) dt.

(A.2.1) follows from (A.2.2) and the above identity. Next, let (gn)n∈N ⊂ C1
c (R) be such that gn → g in

Lp(R) (in L∞(R) weak-? if p = ∞). For every θ ∈ C1
c (R), we have∫

R

∫ t

0

g(s) dsθ′(t) dt = lim
n→∞

∫
R

∫ t

0

gn(s) dsθ′(t) dt

= − lim
n→∞

∫
R
gn(t)θ(t) dt = −

∫
R
g(t)θ(t) dt.

Therefore, it follows from (A.2.1) that∫
R

(
f(t)−

∫ t

0

g(s) ds
)
θ′(t) dt = 0,

for all θ ∈ C1
c (R). It follows from Lemma A.2.26 below that there exists a ∈ R such that

f(t) = a+
∫ t

0

g(s) ds,

for all t ∈ R. The result now follows from Theorem A.2.1.

Theorem A.2.2 is not anymore valid for functions f with values in a Banach space X. However, it holds

when X is a reflexive Banach space. (See Theorem A.2.27 below.)
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A.2.1. Measurable functions.

Definition A.2.3. A function f : I → X is measurable if there exists a set N ⊂ I of measure 0 and a

sequence (fn)n∈N ⊂ Cc(I,X) such that lim
n→∞

fn(t) = f(t), for all t ∈ I \N .

Remark A.2.4. It follows easily from Definition A.2.3 that if f : I → X is measurable, then ‖f‖ : I → R is

also measurable. Many properties of vector valued measurable functions follow either immediately from the

definition or else from the properties of real valued measurable functions applied to ‖f − fn‖. In particular,

one can show easily the following results.

(i) If f : I → X is measurable and if Y is a Banach space such that X ↪→ Y , then f : I → Y is measurable.

(ii) If a sequence (fn)n∈N of measurable functions I → X converges almost everywhere (in the X topology)

to a function f : I → X, then f is measurable.

(iii) If f : I → X and ϕ : I → R are measurable, then fϕ : I → X is measurable. In particular, if f : I → X

is measurable and if J ⊂ I is an open interval, then f|J : J → X is measurable (take ϕ = 1J).

(iv) If (xn)n∈N is a family of elements of X and if (ωn)n∈N is a family of measurable subsets of I such that

ωi ∩ ωj = ∅ for i 6= j, then
∞∑

n=0

xn1ωn : I → X is measurable.

In Definition A.2.3 and Remark A.2.4, the strong topology of X is involved. However, in many appli-

cations, one needs to prove measurability of a function which is only the limit in the weak topology of X of

a sequence of measurable functions. For that purpose, a most useful tool is the following result.

Theorem A.2.5. (Pettis’ Theorem) Consider f : I → X. Then f is measurable if and only if it satisfies

the following two conditions:

(i) f is weakly measurable (i.e. for every x′ ∈ X?, the function t 7→ 〈x′, f(t)〉 is measurable I → X);

(ii) there exists a set N ⊂ I of measure 0 such that f(I \N) is separable.

Proof. It is clear that measurability implies weak measurability; and so (i) is necessary. If f is measurable

and if (fn)n∈N ⊂ Cc(I,X) converges to f on I \N with |N | = 0, then fn(I \N) is separable; and so f(I \N)

is also separable. Therefore (ii) is also necessary.

Let now f satisfy (i) and (ii). By possibly replacing X by the smallest closed subspace of X containing

f(I \ N), we may assume that X is separable. We first establish that for every x ∈ X, the function

t 7→ ‖f(t)− x‖ is measurable. Indeed, for a ≥ 0, we have

{t ∈ I, ‖f(t)− x‖ ≤ a} =
⋂

x′∈S′

{t ∈ I, |〈x′, f(t)− x〉| ≤ a},

where S′ is the unit ball of X?. It follows from Lemma A.1.7 that there exists a sequence (x′n)n∈N ⊂ S′such

that

{t ∈ I, ‖f(t)− x‖ ≤ a} =
⋂
n∈N

{t ∈ I, |〈x′n, f(t)− x〉| ≤ a}.
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The set on the right-hand side of the above identity is clearly measurable by assumption (i); and so the

function t 7→ ‖f(t)− x‖ is measurable.

Consider now n ∈ N. The set f(I) being separable, it can be covered by a countable union of balls Bn
j of

center xn
j and radius 1/n. Consider fn : I → X defined by fn =

∞∑
j=0

xn
j 1ωn

j
, where ωn

0 = {t ∈ I, f(t) ∈ Bn
0 }

and ωn
j = {t ∈ I, f(t) ∈ Bn

j \ ∩
j−1

k=0
Bn

k }, for j ≥ 1. It is immediate that ‖f(t) − fn(t)‖ ≤ 1/n, for all

t ∈ I. Furthermore, since the function t 7→ ‖f(t) − x‖ is measurable for all x ∈ X, it follows that the sets

ωn
j are measurable; and so, by Remark A.2.4, (iv), fn is measurable. Therefore, by Remark A.2.4, (ii) f is

measurable.

Corollary A.2.6. If f : I → X is weakly continuous (i.e. t 7→ 〈x′, f(t)〉X?,X is continuous for every

x′ ∈ X?), then f is measurable.

Proof. f is clearly weakly measurable; and so by Theorem A.2.5, it is sufficient to prove that f(I) is

separable. It follows from the weak continuity of f that f(I) ⊂ E, where E is the weak closure of the convex

hull of f(I ∩Q). On the other hand, E = f(I ∩Q); and so E is separable. Hence the result.

Corollary A.2.7. Let (fn)n∈N be a sequence of measurable functions I → X and let f : I → X. If, for

almost all t ∈ I, fn(t) ⇀ f(t) in X as n→∞, then f is measurable.

Proof. Let x′ ∈ X?. Since 〈x′, fn(t)〉 → 〈x′, f(t)〉 almost everywhere, it follows that the function t 7→

〈x′, f(t)〉 is measurable; and so f is weakly measurable.

On the other hand, it follows from Theorem A.2.5 that for every n ∈ N, there exists a set Nn of measure

0 such that fn(I \ Nn) is separable. Consider the set N = ∪∞n=0Nn, which is also of measure 0, and let C

be the convex hull of ∪∞n=0fn(I \E). Clearly f(I \E) ⊂ C̃, where C̃ is the weak closure of C. Furthermore,

C̃ = C; and so C̃ is separable. Hence the result, by Theorem A.2.5.

Corollary A.2.8. Let X ↪→ Y be two Banach spaces and let u : I → Y be weakly continuous. Assume

that there exists a dense subset E of I such that

(i) u(t) ∈ X, for all t ∈ E,

(ii) sup{‖u(t)‖X , t ∈ E} = K <∞.

If X is reflexive, then u(t) ∈ X, for all t ∈ I, and u : I → X is measurable.

Proof. The result follows from Corollaries A.1.12 and A.2.6.

Remark A.2.9. Consider two Banach spaces X ↪→ Y , and a measurable function f : I → Y . Assume

that f(t) ∈ X, for almost all t ∈ I. It is natural to ask whether f : I → X is measurable. In general,

the answer is negative, as shows the following example. Let I = Ω = (0, 1) and consider the function

u : I → L∞(Ω) given by u(t) = 1(0,t), for 0 < t < 1. One verifies easily that u ∈ C0,1/p(I, Lp(Ω)), for every

p ∈ [1,∞). In particular, u : I → Lp(Ω) is measurable, for every p ∈ [1,∞). Furthermore, u(t) ∈ L∞(Ω)

APPENDIX—PAGE 10



for all t ∈ I. However, u : I → L∞(Ω) is not measurable. To see this, observe that ‖u(t) − u(s)‖L∞ = 1,

if t 6= s. Therefore, u(I) is a discrete subset of L∞(Ω); and so, given any non-countable subset A of I,

u(A) ⊂ L∞(Ω) is discrete and non-countable, hence non-separable. In particular, given a subset N of I of

measure 0, u(I \N) is not a separable subset of L∞(Ω). Therefore, by Theorem A.2.5, u : I → L∞(Ω) is not

measurable. Note that u is an elementary example of a non-measurable function. However, one can obtain

measurability results under additional assumptions. This is the object of the following result.

Proposition A.2.10. Let X ↪→ Y be two Banach spaces and let f : I → Y be a measurable function. If

f(t) ∈ X for almost all t ∈ I and if X is reflexive, then f : I → X is measurable.

Proof. By applying Theorem A.2.5 and by modifying f on a set of measure 0, we may assume that

f(I) ⊂ X and that f(I) is a separable subset of Y . By replacing X by the smallest closed subspace of X

containing f(I), then by replacing Y by the closure of X in Y , we may assume that Y is separable and that

the embedding X ↪→ Y is dense. By applying Lemma A.1.10, it follows that X is separable. Therefore, by

applying again Theorem A.2.5, we need only check that f is weakly measurable I → X. To see this, consider

x′ ∈ X?. It follows from Proposition A.1.5 that there exists (y′n)n∈N ⊂ Y ? such that y′n −→
n→∞

x′ in X?. In

particular,

〈y′n, f(t)〉X?,X −→
n→∞

〈x′, f(t)〉X?,X , for all t ∈ I.

On the other hand, it follows from Proposition A.1.5 that 〈y′n, f(t)〉X?,X = 〈y′n, f(t)〉Y ?,Y . Therefore,

t 7→ 〈y′n, f(t)〉X?,X is measurable; and so, t 7→ 〈x′, f(t)〉X?,X is measurable. Hence the result.

A.2.2. Integrable functions.

Definition A.2.11. A measurable function f : I → X is integrable if there exists a sequence (fn)n∈N ⊂

Cc(I,X) such that lim
n→∞

∫
I

‖fn(t) − f(t)‖ dt = 0. Note that by Remark A.2.4, ‖fn − f‖ : I → R is a

nonnegative measurable function, so that

∫
I

‖fn(t)− f(t)‖ dt makes sense.

Lemma A.2.12. Let f : I → X be integrable. There exists i(f) ∈ X such that for any sequence

(fn)n∈N ⊂ Cc(I,X) verifying

lim
n→∞

∫
I

‖fn(t)− f(t)‖ dt = 0,

one has

lim
n→∞

∫
I

fn(t) dt = i(f),

the above limit being for the strong topology of X.

Proof. Let (fn)n∈N ⊂ Cc(I,X) verify the assumption of the lemma. We have

‖
∫

I

fn(t) dt−
∫

I

fp(t) dt‖ ≤
∫

I

‖fn(t)− fp(t)‖ dt

≤
∫

I

‖fn(t)− f(t)‖ dt+
∫

I

‖fp(t)− f(t)‖ dt.
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Therefore,
∫

I

fn(t) dt is a Cauchy sequence, that converges to some element x ∈ X. Consider another

sequence (gn)n∈N ⊂ Cc(I,X). We have

‖
∫

I

gn(t) dt− x‖ ≤ ‖
∫

I

gn(t)− f(t) dt‖+ ‖
∫

I

f(t)− fn(t) dt‖+ ‖
∫

I

fn(t) dt− x‖

≤
∫

I

‖gn(t)− f(t)‖ dt+
∫

I

‖fn(t)− f(t)‖ dt+ ‖
∫

I

fn(t) dt− x‖

Therefore,
∫

I

gn(t) dt converges also to x, as n→∞. Hence the result, with i(f) = x.

Definition A.2.13. The element i(f) constructed in Lemma A.2.12 is called the integral of f on I. We

note

i(f) =
∫
f =

∫
I

f =
∫

I

f(t) dt.

If I = (a, b), we also note

i(f) =
∫ b

a

f =
∫ b

a

f(t) dt.

As for real-valued functions, it is convenient to note∫ β

α

f(t) dt = −
∫ α

β

f(t) dt,

if β < α.

Theorem A.2.14. (Bochner’s Theorem) Let f : I → X be measurable. Then f is integrable if and only

if ‖f‖ : I → R is integrable. In addition,

‖
∫

I

f(t) dt‖ ≤
∫

I

‖f(t)‖ dt,

for all integrable function f : I → X.

Proof. Assume that f is integrable, and consider a sequence (fn)n∈N ⊂ Cc(I,X) such that

lim
n→∞

∫
I

‖fn(t)− f(t)‖ dt = 0.

We have

‖f‖ ≤ ‖fn‖+ ‖fn − f‖;

and so ‖f‖ is integrable.

Conversely, suppose that f is measurable and that ‖f‖ is integrable. Let (gn)n∈N ⊂ Cc(I,R) be a

sequence such that gn → ‖f‖ in L1(I) and almost everywhere, and such that |gn| ≤ g almost everywhere,

for some g ∈ L1(I). Let (fn)n∈N ⊂ Cc(I,X) be a sequence such that fn → f almost everywhere. Finally, let

hn =
fn|gn|

‖fn‖+ 1/n
.

It is clear that hn ∈ Cc(I,X), that ‖hn‖ ≤ g almost everywhere and that hn → f in X almost everywhere,

as n→∞. It follows from the dominated convergence theorem that

lim
n→∞

∫
‖hn(t)− f(t)‖ dt = 0;
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and so f is integrable. Finally,

‖
∫
f(t) dt‖ = lim

n→∞
‖
∫
hn(t) dt‖ ≤ lim

n→∞

∫
‖hn(t)‖ dt ≤

∫
‖f(t)‖ dt,

where the last inequality follows from the dominated convergence theorem. This completes the proof.

Remark A.2.15. Theorem A.2.14 allows one to deal with vector valued integrable functions like one deals

with real valued integrable functions. It suffices in general to apply the usual convergence theorems to ‖f‖.

For example, one can easily establish the following results.

(i) If f : I → X is integrable and ϕ ∈ L∞(I), then fϕ : I → X is integrable. In particular, if f : I → X is

integrable and if J ⊂ I is an open interval, then f|J : J → X is integrable (take ϕ = 1J).

(ii) (the dominated convergence theorem) Let (fn)n∈N be a sequence of integrable functions I → X, let

f : I → X and let g ∈ L1(I). If
‖fn(t)‖ ≤ g(t), for almost all t ∈ I and all n ∈ N,

lim
n→∞

fn(t) = f(t) for almost all t ∈ I,

then f is integrable and
∫

I

f(t) dt = lim
n→∞

∫
I

fn(t) dt.

(iii) If Y is a Banach space, if A ∈ L(X,Y ), and if f : I → X is integrable, then Af : I → Y is integrable

and ∫
I

Af(t) dt = A

(∫
I

f(t) dt
)
.

In particular, if X ↪→ Y and if f : I → X is integrable, then the integral of f in the sense of X coincides

with the integral of f in the sense of Y .

Finally, we have the following important geometric property of integrable functions.

Proposition A.2.16. Suppose |I| < ∞, let K ⊂ X be a closed convex set, let f : I → X be integrable

and let y =
1
|I|

∫
I

f(t) dt. If f(t) ∈ K for almost all t ∈ I, then y ∈ K.

Proof. We argue by contradiction and we assume that y 6∈ K. It follows from Hahn-Banach’s theorem (see

Brezis [17], Théorème 1.7 p.7) that there exists x′ ∈ X? and ε > 0 such that 〈x′, x〉X?,X ≤ 〈x′, y〉X?,X − ε,

for all x ∈ K. In particular,

〈x′, f(t)〉X?,X ≤ 〈x′, y〉X?,X − ε,

for almost all t ∈ I. Integrating that above inequality and applying Remark A.2.15 (iii), we obtain

〈x′, y〉X?,X =
1
|I|
〈x′,

∫
I

f(t) dt〉X?,X =
1
|I|

∫
I

〈x′, f(t)〉X?,X dt ≤ 〈x′, y〉X?,X − ε,

which is a contradiction. Hence the result.

A.2.3. The spaces Lp(I,X).
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Definition A.2.17. Let p ∈ [1,∞]. One denotes by Lp(I,X) the set of (classes of) measurable functions

f : I → X such that the function t 7→ ‖f(t)‖ belongs to Lp(I). For f ∈ Lp(I,X), one defines

‖f‖Lp(I,X) =
{∫

I

‖f(t)‖p dt

} 1
p

, if p <∞,

‖f‖Lp(I,X) = ess sup
t∈I

‖f(t)‖ if p = ∞.

When there is no risk of confusion, we denote ‖ ‖Lp(I,X) by ‖ ‖Lp(I) or ‖ ‖Lp or ‖ ‖p. One denotes by

Lp
loc(I,X) the set of f : I → X such that f|J ∈ Lp(J,X), for every bounded sub-interval J of I.

Remark A.2.18. The space Lp(I,X) enjoys most of the properties of the space Lp(I) = Lp(I,R), by the

same proofs or by applying the classical results to the function t 7→ ‖f(t)‖. In particular, one obtains easily

the following results.

(i) ‖ ‖Lp(I,X) is a norm on the space Lp(I,X). Lp(I,X) equipped with that norm is a Banach space. If p <

∞, then C∞0 (I,X) is dense in Lp(I,X) (apply the classical procedure by truncation and regularization).

In particular, if Y is a Banach space such that Y ↪→ X with dense embedding, then C∞0 (I, Y ) is dense

in Lp(I,X) (since C∞0 (I, Y ) is dense in Cc(I,X) for the norm of Cb(I,X)).

(ii) A measurable function f : I → X belongs to Lp(I,X) if and only if there exists a function g ∈ Lp(I)

such that ‖f‖ ≤ g almost everywhere on I.

(iii) If f ∈ Lp(I,X) and ϕ ∈ Lq(I) with
1
p

+
1
q

=
1
r
≤ 1, then ϕf ∈ Lr(I,X) and

‖ϕf‖Lr(I,X) ≤ ‖f‖Lp(I,X) ‖ϕ‖Lq(I).

In particular, if f ∈ Lp(I,X) and if J is an open sub-interval of I, then f|J ∈ Lp(J,X).

(iv) If f ∈ Lp(I,X) and g ∈ Lq(I,X?) with
1
p

+
1
q

=
1
r
≤ 1, then the function h defined by h(t) =

〈g(t), f(t)〉X?,X is in Lr(I) and we have ‖h‖Lr ≤ ‖f‖Lp(I,X) ‖g‖Lq(I,X?).

(v) If f ∈ Lp(I,X) ∩ Lq(I,X) with p < q, then f ∈ Lr(I,X), for every r ∈ [p, q], and

‖f‖Lr(I,X) ≤ ‖f‖θ
Lp(I,X) ‖f‖

1−θ
Lq(I,X),

where
1
r

=
θ

p
+

1− θ

q
.

(vi) If I is bounded and p ≤ q, then Lq(I,X) ↪→ Lp(I,X) and

‖f‖Lp(I,X) ≤ |I|
q−p
pq ‖f‖Lq(I,X),

for all f ∈ Lq(I,X).

(vii) Suppose f : I → X is measurable. If f ∈ Lp(J,X) for all J ⊂⊂ I and if ‖f‖Lp(J,X) ≤ C for some C

independent of J , then f ∈ Lp(I,X) and ‖f‖Lp(I,X) ≤ C.

(viii) If Y is a Banach space and if A ∈ L(X,Y ), then for every f ∈ Lp(I,X) we have Af ∈ Lp(I, Y ) and

‖Af‖Lp(I,Y ) ≤ ‖A‖L(X,Y ) ‖f‖Lp(I,X).
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In particular, if X ↪→ Y and if f ∈ Lp(I,X), then f ∈ Lp(I, Y ).

(ix) (The dominated convergence theorem) Let (fn)n∈N ⊂ Lp(I,X) and let g ∈ Lp(I). If p <∞ and
‖fn(t)‖ ≤ g(t), for almost all t ∈ I and all n ∈ N,

lim
n→∞

fn(t) exists for almost all t ∈ I,

then f := lim
n→∞

fn ∈ Lp(I,X) and lim
n→∞

fn = f in Lp(I,X).

(x) Let (fn)n∈N ⊂ Lp(I,X) and let f ∈ Lp(I,X). If lim
n→∞

fn = f in Lp(I,X), then there exists g ∈ Lp(I)

and a subsequence (nk)n∈N such that ‖fnk
(t)‖ ≤ g(t) for almost all t ∈ I and for every k ∈ N.

Remark A.2.19. Duality theorems for the spaces Lp(I,X) are much more difficult to obtain than for the

spaces Lp(I). However, if X is reflexive and if 1 < p <∞, then it known that Lp(I,X) is reflexive and that

(Lp(I,X))? ≈ Lp′(I,X?) (see Dinculeanu [37], Chapter 13, Corollary 1 of Theorem 8, p. 252). If 1 ≤ p <∞

and if X is reflexive or if X? is separable, then (Lp(I,X))? ≈ Lp′(I,X?) (see Dinculeanu [37], Edwards [40]).

Below are some special cases, in which such results are easily obtained.

(i) If X is a Hilbert space with the scalar product (·, ·), then L2(I,X) is a Hilbert space, for the scalar

product

〈〈f, g〉〉 =
∫

I

(f(t), g(t)) dt, for f, g ∈ L2(I,X).

It follows that L2(I,X) is reflexive, and by Riesz’ representation theorem, we have (L2(I,X))? ≈

L2(I,X) (or (L2(I,X))? ≈ L2(I,X?) if one does not identify X? with X).

(ii) Let Ω be an open subset of RN and let 1 ≤ p < ∞. It follows easily from Fubini’s Theorem and a

density argument that the operator T defined on Lp(I, Lp(Ω)) by Tu(t, x) = u(t)(x) is an isometry from

Lp(I, Lp(Ω)) onto Lp(I × Ω); and so, Lp(I, Lp(Ω)) is reflexive and (Lp(I, Lp(Ω)))? ≈ Lp′(I, Lp′(Ω)) for

every 1 < p <∞.

(iii) The results of (ii) above are not anymore valid for p = ∞. For example, let I = Ω = (0, 1) and consider

the function u : I → L∞(Ω) given by u(t) = 1(0,t), for 0 < t < 1. Evidently Tu ∈ L∞(I × Ω), but u 6∈

L∞(I, L∞(Ω)). In fact, u : I → L∞(Ω) is not even measurable, as follows from Remark A.2.9. (However,

observe that u ∈ C0,1/p(I, Lp(Ω)), for every p ∈ [1,∞).) It follows in particular that (L1(I, L1(Ω)))? 6≈

L∞(I, L∞(Ω)) since the linear form f on L1(I, L1(Ω)) defined by

f(v) =
∫

I

∫
Ω

v(t)u(t) dx dt

is continuous but cannot be written as

f(v) =
∫

I

∫
Ω

v(t)z(t) dx dt

for some z ∈ L∞(I, L∞(Ω)). Indeed, the definition of f makes sense, since if v ∈ L1(I, L1(Ω)), then

vu ∈ L1(I, L1(Ω)); and on the other hand, if z would exist, we would obtain easily that Tz = Tu, hence

z = u.
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Theorem A.2.20. Let 1 ≤ p ≤ ∞ and let (fn)n∈N be a bounded sequence in Lp(I,X). If there exists

f : I → X such that fn(t) ⇀ f(t) in X as n→∞, for almost all t ∈ I, then the following properties hold:

(i) f ∈ Lp(I,X) and ‖f‖Lp(I,X) ≤ lim inf
n→∞

‖fn‖Lp(I,X);

(ii) if p > 1, then

∫
I

fn(t)ϕ(t) dt ⇀
∫

I

f(t)ϕ(t) dt as n→∞, for every ϕ ∈ Lp′(I).

Proof. By Corollary A.2.7, f is measurable. If p <∞, it follows from Fatou’s lemma that∫
I

lim inf
n→∞

‖fn(t)‖p dt ≤ lim inf
n→∞

∫
I

‖fn(t)‖p dt.

By weak lower semicontinuity of the norm, we have∫
I

‖f(t)‖p dt ≤
∫

I

lim inf
n→∞

‖fn(t)‖p dt;

and so, ∫
I

‖f(t)‖p dt ≤ lim inf
n→∞

∫
I

‖fn(t)‖p dt,

from which (i) follows. The case p = ∞ follows from an obvious adaptation of this argument. Hence

property (i).

We now prove (ii). Consider first ϕ ∈ Cc(I). Let x′ ∈ X? and set

hn(t) = 〈x′, fn(t)− f(t)〉X?,Xϕ(t),

for almost all t ∈ I. It follows that hn(t) −→
n→∞

0, for almost all t ∈ I and that hn is bounded in Lp(I), as

n→∞. Since hn is supported in a compact interval, it follows easily from Lemma A.3.20 below that hn → 0

in L1(I). In particular,

〈x′,
∫

I

fn(t)ϕ(t) dt〉X?,X −→
n→∞

〈x′,
∫

I

f(t)ϕ(t) dt〉X?,X ,

from which property (ii) follows, since x′ is arbitrary. In the general case ϕ ∈ Lp′(I), let (ϕ`)`≥0 ⊂ Cc(I) be

such that ϕ` −→
`→∞

ϕ in Lp′(I). Given x′ ∈ X?, we have

∣∣∣〈x′,∫
I

(fn(t)− f(t))ϕ(t) dt〉X?,X

∣∣∣ ≤ ∣∣∣〈x′,∫
I

(fn(t)− f(t))(ϕ(t)− ϕ`(t) dt〉X?,X

∣∣∣
+
∣∣∣〈x′,∫

I

(fn(t)− f(t))ϕ`(t) dt〉X?,X

∣∣∣.
Given ε > 0, we estimate the first term on the right-hand side by ‖x′‖X?(‖fn‖Lp(I,X) + ‖f‖Lp(I,X))‖ϕ` −

ϕ‖Lp′ ≤ ε/2 if ` is large enough. Given such a `, the second term on the right-hand side is smaller than ε/2

for n large enough by what precedes. Since ε > 0 and x′ ∈ X? are arbitrary, the result follows.

Lemma A.2.21. Let (fn)n∈N ⊂ Lp(I,X) and f ∈ Lp(I,X), where 1 ≤ p ≤ ∞. If fn ⇀ f in Lp(I,X) as

n→∞, then ∫
I

fn(t)ϕ(t) dt ⇀
∫

I

f(t)ϕ(t) dt,

as n→∞ for every ϕ ∈ Cc(I).
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Proof. Without loss of generality, we may assume that f = 0. Consider ϕ ∈ C∞0 (I) and x′ ∈ X? and

define the linear functional F on Lp(I,X) by

F (g) = 〈x,
∫

I

g(t)ϕ(t) dt〉X?,X ,

for every g ∈ Lp(I,X). It follows from Remark A.2.18 (iii) that F is continuous. Therefore, F ∈ (Lp(I,X))?,

which implies that F (fn) → 0 as n→∞. Since x′ is arbitrary, this implies the result.

Proposition A.2.22. Let f ∈ Lp(R, X) and set

Thf(t) =
1
h

∫ t+h

t

f(s) ds, for t ∈ R and h 6= 0. (A.2.3)

Then Thf ∈ Lp(R, X) ∩ Cb(R, X) and Th is a contraction on Lp(R, X). Furthermore, if p < ∞, then

lim
h→0

Thf = f in Lp(R, X) and almost everywhere.

Proof. It follows easily from the dominated convergence theorem that Thf ∈ C(R, X). Furthermore,

applying Hölder’s inequality, we obtain if p <∞

‖Thf(t)‖p ≤ 1
h

∫ t+h

t

‖f(s)‖p dt ≤ 1
h
‖f‖p

Lp(R,X), for t ∈ R and h 6= 0;

and so Thf ∈ Cb(R, X). Furthermore,∫ +∞

−∞
‖Thf(t)‖p dt ≤ 1

h

∫ +∞

−∞

∫ t+h

t

‖f(s)‖p ds dt ≤ 1
h

∫ +∞

−∞

∫ s

s−h

‖f(s)‖p dt ds

≤
∫ +∞

−∞
‖f(s)‖p ds.

Therefore, Th is a contraction on Lp(R, X). The same holds in the case p = ∞ with an obvious modification

of the argument.

Assume now p < ∞. It is well known that if f ∈ Cc(R, X), then (Th − I)f → 0 in Lp(R, X), as

h → 0. By density (Remark A.2.18 (i)) and uniform boundedness of the operators Th, it follows that for

every f ∈ Lp(R, X), (Th − I)f → 0 in Lp(R, X), as h→ 0 (Proposition A.1.4).

Let now (fn)n∈N ⊂ C∞0 (R, X) be a sequence such that fn(t) → f(t) as n → ∞, for all t ∈ R \ N ,

where N is a set of measure 0 (such a sequence exists by Remark A.2.18 (i)). Given n ∈ N, the function

‖f(·)− fn(·)‖ is in L1
loc(R); and so, by Theorem A.2.1, there exists a set Nn of measure 0 such that

lim
h→0

1
h

∫ t+h

t

‖f(s)− fn(s)‖ ds = ‖f(t)− fn(t)‖ for all t ∈ R \Nn.

Note also that for every n ∈ N and t ∈ R, ‖Thfn(t)− fn(t)‖ → 0 as h→ 0. Let E = N ∪ ( ∪
n∈N

Nn), so that

E is a set of measure 0. Consider ε > 0. For t ∈ R \ E, we have

‖Thf(t)− f(t)‖ ≤‖f(t)− fn(t)‖+
1
h

∫ t+h

t

‖f(s)− fn(s)‖ ds

+ ‖Thfn(t)− fn(t)‖.
(A.2.4)

For n0 large enough, the first term in the right-hand side of (A.2.4) is less than ε/3. Choosing n = n0

in (A.2.4), the second and third terms in the right-hand side are both less than ε/3 if h is small enough.

Therefore, ‖Thf(t)− f(t)‖ ≤ ε if h is small enough. It follows that Thf → f almost everywhere, as h→ 0.

APPENDIX—PAGE 17



Corollary A.2.23. Let g ∈ L1
loc(I,X), t0 ∈ I and let the function f ∈ C(I,X) be defined by f(t) =∫ t

t0

g(s) ds, for t ∈ I. Then, the following properties hold:

(i) f is differentiable almost everywhere and f ′ = g almost everywhere;

(ii)
∫

I

g(t)ϕ(t) dt = −
∫

I

f(t)ϕ′(t) dt for all ϕ ∈ C1
c (I).

Proof. Since properties (i) and (ii) are local, we may assume that I = R and g ∈ L1(I,X). We have

Thg(t) =
f(t+ h)− f(t)

h
,

where Th is defined by (A.2.3). Therefore, (i) follows from Proposition A.2.22.

Consider now ϕ ∈ C1
c (R). Note that

ϕ(t+ h)− ϕ(t)
h

→ ϕ′ as h→ 0, uniformly on R. Therefore,

−
∫

R
f(t)ϕ′(t) dt = − lim

h→0

∫
R
f(t)

ϕ(t+ h)− ϕ(t)
h

dt

= lim
h→0

∫
R

f(t− h)− f(t)
−h

ϕ(t) dt

= lim
h→0

∫
R
T−hg(t)ϕ(t) dt =

∫
R
g(t)ϕ(t) dt,

where the last inequality is a consequence of Proposition A.2.22. Hence (ii).

Lemma A.2.24. If f ∈ L1
loc(I,X) is such that∫

I

f(t)ϕ(t) dt = 0,

for every ϕ ∈ C∞c (I), then f = 0 almost everywhere.

Proof. By Pettis’ theorem, there exists a set N ⊂ I of measure 0 such that f(I\N) is separable. Therefore,

by replacing X by its smallest closed subspace containing f(I \N), we may assume that X is separable. Let

B′ be the closed unit ball of X? and let (x′n)n∈N be a weak-? dense sequence of B′ (such a sequence exists

by Lemma A.1.7). For every n ∈ N and every ϕ ∈ C∞c (I), we have

0 = 〈x′n,
∫

I

f(t)ϕ(t) dt〉X?,X =
∫

I

〈x′n, f(t)〉X?,Xϕ(t) dt,

where the last identity follows from Remark A.2.15 (iii). It follows easily that there exists a set N of measure

0 such that 〈x′n, f(t)〉X?,X = 0 for all t ∈ I \N and all n ∈ N. Hence the result.

Lemma A.2.25. If f ∈ L1
loc(I,X) verifies ∫

I

f(t)ϕ′(t) dt = 0,

for all ϕ ∈ C∞c (I), then there exists x0 ∈ X such that f(t) = x0 for almost all t ∈ I.

Proof. Let θ ∈ C∞c (I) be such that
∫

I

θ(t) dt = 1. Let ψ ∈ C∞c (I). Consider t0 ∈ I such that θ(t) =

ψ(t) = 0 for t ≤ t0, and let ϕ ∈ C∞c (I) be given by

ϕ(t) =
∫ t

t0

{
ψ(s)−

(∫
I

ψ(σ) dσ
)
θ(s)

}
ds.
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We have ϕ′ = ψ −
(∫

I

ψ(σ) dσ
)
θ. Therefore,

0 =
∫

I

f(t)ψ(t) dt− x0

∫
I

ψ(σ) dσ,

where

x0 =
∫

I

f(t)θ(t) dt;

and so, ∫
I

(f(t)− x0)ψ(t) dt = 0,

for every ψ ∈ C∞c (I). The result now follows from Lemma A.2.24.

Lemma A.2.26. If f, g ∈ L1
loc(I,X) verify∫

I

g(t)ϕ(t) dt = −
∫

I

f(t)ϕ′(t) dt,

for all ϕ ∈ C∞c (I), then given t0 ∈ I there exists x0 ∈ X such that

f(t) = x0 +
∫ t

t0

g(s) ds,

for almost all t ∈ I.

Proof. By replacing g by ξg with ξ ∈ C∞c (I), we may assume that I = R and that g ∈ L1(R, X). Let

(gn)n∈N ⊂ C∞c (R, X) be such that gn −→
n→∞

g in L1(R, X). For every ϕ ∈ C∞c (R), we have

∫
R
g(t)ϕ(t) dt = lim

n→∞

∫
R
gn(t)ϕ(t) dt

= − lim
n→∞

∫
R

(∫ t

0

gn(s) ds
)
ϕ′(t) dt

= −
∫

R

(∫ t

0

g(s) ds
)
ϕ′(t) dt,

by integration by parts. It follows that∫
R

(
f(t)−

∫ t

0

g(s) ds
)
ϕ′(t) dt = 0,

for every ϕ ∈ C∞c (I), and the result follows from Lemma A.2.25.

We are now in a position to state and prove a vector valued generalization of Theorem A.2.2.

Theorem A.2.27. Let f : R → X and 1 ≤ p ≤ ∞. If there exists ϕ ∈ Lp(R) such that

‖f(t)− f(s)‖ ≤
∣∣∣∣∫ t

s

ϕ(σ) dσ
∣∣∣∣ ,

for all s, t ∈ R and if X is reflexive, then the following properties hold:

(i) f is differentiable almost everywhere;
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(ii) f ′ ∈ Lp(R, X) and ‖f ′‖ ≤ |ϕ| almost everywhere;

(iii) f(t) = f(0) +
∫ t

0

f ′(s) ds for all t ∈ R.

Proof. For h 6= 0, set

fh(t) =
f(t+ h)− f(t)

h
, for all t ∈ R.

It follows that

‖fh(t)‖ ≤

∣∣∣∣∣ 1h
∫ t+h

t

ϕ(s) ds

∣∣∣∣∣ , for all t ∈ R,

and it follows easily from Proposition A.2.22 that ‖fh‖Lp(R,X) ≤ ‖ϕ‖Lp(R). Since f is clearly continuous,

f(R) is separable. Therefore, by possibly replacing X by its smaller closed subspace containing f(R), we

may assume that X is both reflexive and separable; and so, that X? is separable. Let (x′n)n∈N be a dense

sequence in X?. For every n ∈ N, the function ψn(·) = 〈x′n, f(·)〉 verifies

|ψn(t)− ψn(s)| ≤ ‖x′n‖ |
∫ t

s

ϕ(σ) dσ|, for all s, t ∈ R.

It follows from Theorem A.2.2 that ψn is differentiable on R\Nn, where Nn is a set of measure 0. Considering

N = ∪
n∈N

En, we have |N | = 0 and

lim
h→0

〈fh(t), x′n〉 = ψ′n(t), for all n ∈ N and t ∈ R \N.

Let F be the complement of the set of Lebesgue’s points of ϕ. We have |F | = 0 and it follows from

Theorem A.2.1 that for every t ∈ R \ F ,

‖fh(t)‖ ≤ 2|ϕ(t)|, for h small enough (depending on t).

Take t ∈ R \ (N ∪ F ). Since X is reflexive and ‖fh(t)‖ is bounded, there exists a sequence hn → 0 and an

element x(t) ∈ X such that

lim
n→∞

fhn
(t) = x(t), in X weak.

In particular, we have 〈x′n, x(t)〉 = ψ′n(t), for all n ∈ N. Since the sequence (x′n)n∈N is dense in X?, x(t) is

independent of the sequence hn; and so fh(t) → x(t) in X weak, as h→ 0. Since fh is bounded in Lp(R, X),

it follows from Theorem A.2.20 that x ∈ Lp(R, X) and that for every θ ∈ C∞c (R),∫
R
fh(t)θ(t) dt−→

h→0

∫
R
f(t)θ(t) dt.

Since ∫
R
fh(t)θ(t) dt = −

∫
R
f(t)

θ(t− h)− θ(t)
−h

dt ⇀ −
∫

R
f(t)θ′(t) dt,

as h ↓ 0, we obtain ∫
R
x(t)θ(t) dt = −

∫
R
f(t)θ′(t) dt.

Since θ is arbitrary, it follows from Lemma A.2.26 that there exists x0 ∈ X such that

f(t) = x0 +
∫ t

0

x(s) ds.
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The result now follows from Corollary A.2.23.

A.2.4. The Sobolev spaces Wm,p(I,X). We begin with the case m = 1.

Definition A.2.28. Let 1 ≤ p ≤ ∞. We say that f ∈ W 1,p(I,X) if f ∈ Lp(I,X) and if there exists

g ∈ Lp(I,X) such that ∫
I

g(t)ϕ(t) dt = −
∫

I

f(t)ϕ′(t) dt,

for all ϕ ∈ C1
c (I). By Lemma A.2.24 g is unique, and we set f ′ =

df

dt
= g. For f ∈W 1,p(I,X), we set

‖f‖W 1,p(I,X) = ‖f‖Lp(I,X) + ‖f ′‖Lp(I,X).

When there is no risk of confusion, we denote ‖ ‖W 1,p(I,X) by ‖ ‖W 1,p(I) or ‖ ‖W 1,p .

Remark A.2.29. The space W 1,p(I,X) enjoys most properties of the space W 1,p(I) = W 1,p(I,R), with

essentially the same proofs. In particular, one obtains easily the following results.

(i) ‖ ‖W 1,p(I,X) is a norm on the space W 1,p(I,X). The space W 1,p(I,X) equipped with the norm

‖ ‖W 1,p(I,X) is a Banach space.

(ii) If f ∈W 1,p(I,X) and if J is an open sub-interval of I, then f|J ∈W 1,p(J,X).

(iii) If f ∈W 1,p(I,X) ∩W 1,q(I,X) with p < q, then for every r ∈ [p, q] we have f ∈W 1,r(I,X).

(iv) If I is bounded and p ≤ q, then W 1,q(I,X) ↪→W 1,p(I,X).

(v) Suppose f ∈ Lp(I,X). If f ∈W 1,p(J,X) for all J ⊂⊂ I and if ‖f ′‖Lp(J,X) ≤ C for some C independent

of J , then f ∈W 1,p(I,X) and ‖f ′‖Lp(I,X) ≤ C.

(vi) If Y is a Banach space and if A ∈ L(X,Y ) then for every f ∈W 1,p(I,X), Af ∈W 1,p(I, Y ) and

‖Af‖W 1,p(I,Y ) ≤ ‖A‖L(X,Y ) ‖f‖W 1,p(I,X).

In particular, if X ↪→ Y and if f ∈W 1,p(I,X), then f ∈W 1,p(I, Y ) (take A to be the embedding).

(vii) If p < ∞, then C∞0 (R, X) is dense in W 1,p(R, X). (This follows from the classical truncation and

regularization procedure.)

(viii) If (fn)n≥1 ⊂W 1,p(I,X) is such that fn → f and f ′n → g in Lp(I,X) as n→∞ for some f, g ∈ Lp(I,X),

then f ∈W 1,p(I,X) and f ′ = g.

Theorem A.2.30. Let 1 ≤ p ≤ ∞ and f ∈ Lp(I,X). The following properties are equivalent:

(i) f ∈W 1,p(I,X);

(ii) there exists g ∈ Lp(I,X) such that for almost all s, t ∈ I we have f(t) = f(s) +
∫ t

s

g(σ) dσ;

In addition, if f satisfies these properties, then one can take g = f ′ in property (ii).

Proof. (i)⇒(ii) follows from Lemma A.2.26 and (ii)⇒(i) follows from Corollary A.2.23.
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Corollary A.2.31. W 1,p(I,X) ↪→ Cb,u(I,X). In particular, W 1,p(I,X) ↪→ L∞(I,X).

Proof. Let f ∈W 1,p(I,X). It follows from Theorem A.2.30 that

‖f(t)− f(s)‖ ≤
∫ t

s

‖f ′(σ)‖ dσ,

for almost all s, t ∈ I. Since X is complete, one can modify f on a set of measure 0 so that the above

inequality holds for all s, t ∈ I (see the proof of Theorem A.2.37). Hence uniform continuity. Furthermore, if

we set h = ‖f‖, we have |h(t)− h(s)| ≤ ‖f(t)− f(s)‖; and so, by Theorem A.2.30 and the above inequality,

h ∈W 1,p(I) ↪→ L∞(I). By Theorem A.3.34 below, W 1,p(I) ↪→ L∞(I), which completes the proof.

Remark A.2.32. Note that the inclusion W 1,p(I,X) ⊂ Cb,u(I,X) is modulo modification of the functions

on a set of measure 0. In other words, this means that for every u ∈W 1,p(I,X), there exists v ∈ Cb,u(I,X)

such that v = u almost everywhere.

Corollary A.2.33 Let I = (a, b), with −∞ ≤ a < b ≤ ∞ and let and let Y be a Banach space such

that X ↪→ Y . There exists a linear mapping A that maps functions defined almost everywhere I → Y to

functions defined almost everywhere R → Y and that has the following properties:

(i) Af(t) = f(t), for almost all t ∈ I all f defined almost everywhere I → Y ;

(ii) Af is supported in (−a− 1, b+ 1);

(iii) A ∈ L(W 1,p(I, Y ),W 1,p(R, Y )), for every 1 ≤ p ≤ ∞;

(iv) A ∈ L(Lp(I,X), Lp(R, X)), for every 1 ≤ p ≤ ∞.

Proof. Suppose I = (0, 1). Given f defined almost everywhere I → Y , define f̃ for almost all t ∈ (−1, 2)

by

f̃(t) =


f(−t), if − 1 < t < 0;

f(t), if 0 < t < 1;

f(2− t), if 1 < t < 2.

Evidently, f̃(t) = f(t) for almost all t ∈ I. In addition, one verifies easily that the mapping f 7→ f̃ is

continuous Lp(I,X) → Lp((−1, 2), X) for all 1 ≤ p ≤ ∞. Consider 1 ≤ p ≤ ∞ and let f ∈ W 1,p(I, Y ). In

particular, f̃ ∈ Lp((−1, 2), Y ). Furthermore, it follows easily from Theorem A.2.30 that f̃ ∈W 1,p((−1, 2), Y )

and that

(f̃)′(t) =


− f ′(−t), if − 1 < t < 0;

f ′(t), if 0 < t < 1;

− f ′(2− t), if 1 < t < 2.

Therefore, the mapping f 7→ f̃ is continuous W 1,p(I,X) → W 1,p((−1, 2), X) for all 1 ≤ p ≤ ∞. Finally,

consider a ∈ D(−1, 2) such that a ≡ 1 on I. Given f defined almost everywhere I → Y , define Af for almost

all t ∈ (−1, 2) by

Af(t) =


0, if t < −1;

a(t)f̃(t), if − 1 < t < 2;

0, if 2 < t.
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It follows easily from what precedes that properties (i) through (iv) are satisfied. The case I = (a, b) with

−∞ < a < b < ∞ is treated by the same method, and the cases I = (a,+∞) and I = (−∞, b) follow from

an obvious modification.

Corollary A.2.34. If p < ∞, then C∞c (I,X) is dense in W 1,p(I,X). Moreover, if Y is a Banach space

such that Y ↪→ X with dense embedding, then C∞c (I, Y ) is dense in W 1,p(I,X).

Proof. Applying Corollary A.2.33, it suffices to consider the case I = R. Density of C∞c (R, X) follows

from Remark A.2.29 (vii). Finally, density of C∞c (R, Y ) follows from the density of C∞c (R, Y ) in C1
c (R, X)

for the norm of C1
b (R, X).

Corollary A.2.35. If p > 1, then W 1,p(I,X) ↪→ C0,α(I,X), with α =
p− 1
p

. Furthermore,

‖f(t)− f(s)‖ ≤ |t− s|α‖f ′‖Lp ,

for all f ∈W 1,p(I,X) and s, t ∈ I.

Proof. It follows from Theorem A.2.30 and Hölder’s inequality that

‖f(t+ h)− f(t)‖ ≤ h
1
p′

(∫ t+h

t

‖f ′(s)‖p ds

) 1
p

≤ h
1
p′ ‖f ′‖Lp .

Hence the result, by Corollary A.2.31.

Corollary A.2.36. If [a, b] ⊂ I and p <∞, then

lim
h→0

f(·+ h)− f(·)
h

= f ′, in Lp((a, b), X),

for every f ∈W 1,p(I,X).

Proof. By Corollary A.2.33, we may assume I = [a, b] = R. The result now follows from Theorem A.2.30

and Proposition A.2.22.

Theorem A.2.37. Assume X is reflexive and let f ∈ Lp(I,X). Then f ∈ W 1,p(I,X) if and only if there

exists ϕ ∈ Lp(I) and a set N of measure 0 such that

‖f(t)− f(s)‖ ≤ |
∫ t

s

ϕ(σ) dσ|, for all t, s ∈ I \N. (A.2.5)

In addition,

‖f ′‖Lp(I,X) ≤ ‖ϕ‖Lp(I), (A.2.6)

whenever f and ϕ verify (A.2.5).

Proof. It follows from Theorem A.2.30 that (A.2.5) is necessary, with for example ϕ = ‖f ′‖. Conversely,

assume that (A.2.5) holds. We first modify f on the set N in such a way that (A.2.5) holds for all s, t ∈ I.
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To do this, consider t ∈ N and let (tn)n∈N ⊂ I \N be such that tn → t, as n→∞. It follows from (A.2.5)

that f(tn) is a Cauchy sequence in X. Let xt be its limit. It is clear, again by (A.2.5) that xt is independent

of the sequence (tn). We set f(t) = xt, for t ∈ N . We may pass to the limit in (A.2.5); and so (A.2.5) holds

for every s, t ∈ I. In particular, f is continuous on I; and so, it is not difficult to extend f to a function of

Lp(R, X) having the same properties. Therefore, we may assume that I = R and that (A.2.5) holds for all

s, t ∈ R. The result now follows from Theorems A.2.27 and A.2.30.

As an immediate consequence of Theorem A.2.37, we have the following result, which is very useful.

Corollary A.2.38. Assume that X is reflexive. If f : I → X is Lipschitz continuous and bounded, then

f ∈W 1,∞(I,X) and ‖f ′‖L∞(I,X) ≤ L, where L is the Lipschitz constant of f .

Corollary A.2.39. Let 1 ≤ p ≤ ∞, let (fn)n∈N be a bounded sequence of W 1,p(I,X) and let f : I → X

be such that fn(t) ⇀ f(t) in X as n → ∞, for almost all t ∈ I. If X is reflexive and if p > 1, then

f ∈W 1,p(I,X) and

‖f‖Lp(I,X) ≤ lim inf
n→∞

‖fn‖Lp(I,X),

and

‖f ′‖Lp(I,X) ≤ lim inf
n→∞

‖f ′n‖Lp(I,X).

In particular,

‖f‖W 1,p(I,X) ≤ lim inf
n→∞

‖fn‖W 1,p(I,X).

In addition, ∫
I

fn(t)ϕ(t) dt ⇀
∫

I

f(t)ϕ(t) dt, (A.2.7)

and ∫
I

f ′n(t)ϕ(t) dt ⇀
∫

I

f ′(t)ϕ(t) dt, (A.2.8)

as n→∞, for all ϕ ∈ Cc(I).

Proof. It follows from Theorem A.2.20 that f ∈ Lp(I,X),

‖f‖Lp(I,X) ≤ lim inf
n→∞

‖fn‖Lp(I,X),

and that (A.2.7) holds. Let N be a set of measure 0 such that fn(t) ⇀ f(t) in X as n→∞, for all t ∈ I \N .

We have

‖f(t)− f(s)‖ ≤ lim inf
n→∞

‖fn(t)− fn(s)‖ ≤ lim inf
n→∞

∫ t

s

ϕn(σ) dσ, (A.2.9)

for all s, t ∈ I \ N , where ϕn = ‖f ′n‖. Since ϕn is bounded in Lp(I), there exists a subsequence nk and a

function ϕ ∈ Lp(I) such that ϕnk
→ ϕ in Lp(I) weak? as k →∞, and

lim inf
k→∞

‖ϕnk
‖Lp(I) = lim inf

n→∞
‖ϕn‖Lp(I).

In particular, we have
‖ϕ‖Lp(I) ≤ lim inf

n→∞
‖f ′n‖Lp(I,X),

lim
k→∞

∫ t

s

ϕnk
(σ) dσ =

∫ t

s

ϕ(σ) dσ, for all s, t ∈ I.
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Applying (A.2.9), we obtain

‖f(t)− f(s)‖ ≤
∫ t

s

ϕ(σ) dσ, for all s, t ∈ I \N.

We deduce from Theorem A.2.37 that f ∈ W 1,p(I,X) and ‖f ′‖Lp(I,X) ≤ lim inf
n→∞

‖f ′n‖Lp(I,X). Finally, we

prove formula (A.2.8). Let ϕ ∈ C1
c (I). We have∫

I

f ′n(t)ϕ(t) dt = −
∫

I

fn(t)ϕ′(t) dt −→
n→∞

−
∫

I

f(t)ϕ′(t) dt =
∫

I

f ′(t)ϕ(t) dt,

by (A.2.7). This proves (A.2.8) for ϕ ∈ C1
c (I). The general case follows from a density argument (see the

proof of Theorem A.2.20 (ii)).

Corollary A.2.40. Let 1 ≤ p ≤ ∞ and f ∈ Lp(I,X). Assume that there exists K such that for all J ⊂⊂ I

and all |h| < dist (J, ∂I), ‖f(·+ h)− f(·)‖Lp(J,X) ≤ K|h|. If p > 1 and X is reflexive, then f ∈ W 1,p(I,X)

and ‖f ′‖Lp(I,X) ≤ K.

Proof. Let J ⊂⊂ I, |h| < dist (J, ∂I), h 6= 0 and set

fh(t) =
1
h

∫ t+h

t

f(s) ds,

for t ∈ J . It follows from Theorem A.2.30 that fh ∈W 1,p(J,X) and

f ′h(t) =
f(t+ h)− f(t)

h
,

for a.a. t ∈ J . In particular, ‖f ′h‖Lp(J,X) ≤ K. Since fh → f a.e. on J (see Corollary A.2.33 and

Proposition A.2.22), we deduce from Corollary A.2.39 that f ∈W 1,p(J,X) and ‖f ′‖Lp(J,X) ≤ K. The result

now follows from Remark A.2.29 (v).

Corollary A.2.41 Consider two Banach spaces X ↪→ Y and 1 < p, q ≤ ∞. Let (fn)n≥0 be a bounded

sequence in Lq(I, Y ) and let f : I → Y be such that fn(t) ⇀ f(t) in Y as n→∞, for a.a. t ∈ I. If (fn)n≥0

is bounded in Lp(I,X) and if X is reflexive, then f ∈ Lp(I,X) and ‖f‖Lp(I,X) ≤ lim inf
n→∞

‖fn‖Lp(I,X).

Proof. It follows from Theorem A.2.20 (i) that f ∈ Lq(I, Y ). Given k ∈ N, let Ik = I ∩ (−k, k). Fix t0 ∈ I

and consider k large enough so that t0 ∈ Ik. Set

un(t) =
∫ t

t0

fn(s) ds, u(t) =
∫ t

t0

f(s) ds.

It follows from Theorem A.2.20 (ii) that un(t) ⇀ u(t) in Y as n→∞, for a.a. t ∈ I. On the other hand,

‖un(t)‖X ≤ |t0 − t| ‖fn‖Lp(I,X),

so that by Lemma A.1.9, un(t) ∈ X for a.a. t ∈ Ik and un(t) ⇀ u(t) in X as n → ∞, for a.a. t ∈ I. Since

un is bounded in W 1,p(Ik, X), we deduce from Corollary A.2.39 that u ∈ Lp(Ik, X) and that

‖u′‖Lp(Ik,X) ≤ lim inf
n→∞

‖u′n‖Lp(Ik,X).
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Finally, we have u′ = f in Y . Applying formula (A.2.8) in Y then in X, we obtain that that u′ = f in Y .

In particular, f ∈ Lp(Ik, X) and

‖f‖Lp(Ik,X) ≤ lim inf
n→∞

‖fn‖Lp(Ik,X) ≤ lim inf
n→∞

‖fn‖Lp(I,X).

Since k is arbitrary, the result follows from Fatou’s lemma.

Remark A.2.42. Note that when X is not reflexive, the conclusions of Theorem A.2.37 may be invalid.

This can be seen easily on the following example. Let θ = 1[1,2] ∈ L∞(R) and consider the function

ψ(t) = θ(·+ t). It is clear that ψ ∈ C(R, L1(R)). Let now

g(t) =
∫ t

0

ψ(s) ds, for t ∈ R.

Note that we have also

g(t, x) =
∫ x+t

x

θ(s) ds, for all t, x ∈ R.

It is clear that g ∈ C1(I, L1(R)) and that

‖g(t)− g(s)‖L∞(R) ≤ |t− s| =
∫ t

s

ϕ(σ) dσ, (A.2.10)

where ϕ ≡ 1. Let now Ω = (0, 1) and let X = C(Ω), equipped with the L∞-norm. If we set f = g|Ω, we

have f ∈ C1(R, L1(Ω)) and f ′ = ψ|Ω, and it follows from (A.2.10) that

‖f(t)− f(s)‖X ≤
∫ t

s

ϕ(σ) dσ.

Therefore f satisfies (A.2.5) with ϕ ∈ L∞, but we claim that f /∈ W 1,1((0, 1), X). Indeed, if f were in

W 1,1((0, 1), X), then the derivatives of f in the senses of X and L1(Ω) would coincide, since X ↪→ L1(Ω).

Therefore, we would have f ′ = ψ|Ω, which is absurd since ψ|Ω /∈ X, for 0 < t < 2.

Remark A.2.43. Let us observe that if X is not reflexive or if p = 1, the conclusions of Corollary A.2.39

may also be invalid.

Indeed, with the notation of the preceding remark, consider a sequence (θn)n∈N ⊂ D(R) such that

sup
n∈N

‖θn‖L∞(R) <∞, and lim
n→∞

θn = θ almost everywhere.

Let ψn(t) = θn(· + t), gn(t) =
∫ t

0

ψn(s) ds and fn = (gn)|Ω. We have fn ∈ C1(R, X) and it is not difficult

to check that fn is bounded in W 1,∞(R, X). In addition, fn converges to f in C(R, X), but we know that

f /∈W 1,1((0, 1), X).

Now if p = 1, consider x ∈ X, x 6= 0 and assume for example that I = [0, 2]. Let fn : I → X be defined

by

fn(t) =


x, if t ≤ 1,

(1− n(t− 1))x, if 1 ≤ t ≤ 1 +
1
n
,

0, if 1 +
1
n
≤ t.
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One verifies easily that fn is bounded in W 1,1(I,X) and that fn(t) has a limit f(t) for all t 6= 1, where

f(t) =

{
x, if t < 1,

0, if 1 < t.

Therefore, f /∈ C(I,X), and so f /∈W 1,1(I,X).

Remark A.2.44. The mapping f 7→ (f, f ′) identifies the space W 1,p(I,X) with a closed subspace of

Lp(I,X)× Lp(I,X). Therefore, if Lp(I,X) is reflexive, then W 1,p(I,X) is also reflexive.

The compactness properties of the spaces W 1,p(I,X) are rather delicate. One of the first results in

that direction is due to Aubin [4]. For more recent results, see for example Brezis and Browder [19] and

Simon [91]. Below are two quite useful compactness results.

Theorem A.2.45. Consider three Banach spaces X ↪→ B ↪→ Y , where the embedding X ↪→ B is compact.

Let 1 ≤ p, r ≤ ∞ (with r > 1 if p = ∞) and let E be a bounded subset of W 1,r(I, Y ). If E is also bounded

in Lp(I,X) (i.e. every f ∈ E belongs to Lp(I,X) and sup{‖f‖Lp(I,X), f ∈ E} < ∞) and if I is bounded,

then E is a relatively compact subset of Lp(I,B) (of C(I,B) if p = ∞).

Proof. Observe first that if p = ∞ and f ∈ E, then by Corollary A.2.31 f : I → Y is continuous and

f : I → X is bounded; and so (Lemma A.1.14) f ∈ C(I,B). Therefore, we only have to prove compactness

in Lp(I,X).

The proof proceeds in two steps.

Step 1. Let us first show that E is a relatively compact subset of Lp(I, Y ).

We may assume without loss of generality that I = (0, T ), for some T > 0. Observe that there exists

M <∞ such that

sup
f∈E

‖f‖L∞(I,Y ) + sup
f∈E

‖f ′‖Lr(I,Y ) + sup
f∈E

‖f‖Lp(I,X) ≤M (A.2.11)

For 0 < ε < T/2, we define the set Eε = {(Tεf)|[0,T/2], f ∈ E}, where Tε is defined by (A.2.3). For f ∈ E,

we have

Tεf(t)− f(t) =
1
ε

∫ ε

0

(τsf − f)(t) ds, for every t ∈ [0, T/2],

where τsf = f(·+ s). It follows easily (see the proof of Proposition A.2.22) that

‖Tεf − f‖Lp((0,T/2),Y ) ≤ sup
0<s<ε

‖τsf − f‖Lp((0,T/2),Y ). (A.2.12)

For every t ∈ R, we have

‖τsf(t)− f(t)‖Y ≤
∫ t+s

t

‖f ′(σ)‖Y dσ. (A.2.13)

Therefore,

‖τsf − f‖L1((0,T/2),Y ) ≤
∫ T/2

0

∫ t+s

t

‖f ′(σ)‖ dσ dt

≤ s‖f ′‖L1((0,T ),Y ) ≤ sT
1
r′M,
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where the last inequality follows from Hölder’s inequality; and so, if p <∞,

‖τsf − f‖Lp((0,T/2),Y ) ≤ ‖τsf − f‖1−
1
p

L∞((0,T/2),Y )‖τsf − f‖
1
p

L1((0,T/2),Y )

≤ 2MT
1

pr′ s
1
p ,

by (A.2.11). If p = ∞, it follows from (A.2.13) and Hölder’s inequality that ‖τsf − f‖Lp((0,T/2),Y ) ≤ s
1
r′M .

Therefore, there exists C <∞ such that

‖τsf − f‖Lp((0,T/2),Y ) ≤ Cmin(s
1
r′ , s

1
p ). (A.2.14)

It follows from (A.2.12) and (A.2.14) that for every δ > 0, there exists ε > 0 such that

sup
f∈F

dist(f,Eε) ≤ δ, (A.2.15)

where the distance is in Lp((0, T/2), Y ). Given ε > 0 and t ∈ [0, T/2], we have

‖Tεf(t)‖X ≤ ε
1
p′−1‖f‖Lp(I,X) ≤Mε−

1
p ;

and so

sup
f∈Eε

sup
t∈[0,T/2]

‖f(t)‖X ≤Mε−
1
p . (A.2.16)

In adition, for every t, t′ ∈ [0, T/2],

‖Tεf(t)− Tεf(t′)‖Y = ‖1
ε

∫ t+ε

t

(τt′−tf − f)‖ ≤ 1
ε
‖τt′−tf − f‖L1((0,T/2),Y ).

When (A.2.14) is applied, it follows that Eε is uniformly equicontinuous in Y . Therefore, taking in account

(A.2.16) and the compactness of the embedding X ↪→ Y , we may apply Ascoli’s theorem; and so Eε is

relatively compact in Lp((0, T/2), Y ). By (A.2.15), E is also relatively compact in Lp((0, T/2), Y ), as the

uniform limit of the sets Eε. When t is changed to T − t, it follows as well that E is relatively compact in

Lp((T/2, T ), Y ), hence in Lp(I, Y ).

Step 2. From the relative compactness in Lp(I, Y ), we deduce the relative compactness in Lp(I,B). For

this, we need the standard inequality:

∀η > 0,∃C(η) <∞,∀z ∈ X, ‖z‖B ≤ η‖z‖X + C(η)‖z‖Y . (A.2.17)

To see this, let η > 0 and consider Bn = {z ∈ B, ‖z‖B < η + n‖z‖Y }. (Bn)n∈N is an increasing sequence

of open subsets of B, and its union covers B. Since the unit ball U of X is relatively compact in B, there

exists n0 such that U ⊂ Bn0 . Therefore,

‖z‖B ≤ η + n0‖z‖Y ,∀z ∈ U,

and (A.2.17) follows from homogeneity. Since E is relatively compact in Lp(I, Y ), for every δ > 0, there

exists a finite subset {fj}j∈J of E such that

sup
f∈E

inf
j∈J

‖f − fj‖Lp(I,Y ) ≤ δ.
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It follows easily from (A.2.11) and (A.2.17) that for every f ∈ E, j ∈ J and η > 0,

sup
f∈E

inf
j∈J

‖f − fj‖Lp(I,B) ≤ ηM + C(η)δ.

Therefore, given ε > 0, and chosing η = ε/2M , δ = ε/2C(η), we get

sup
f∈E

inf
j∈J

‖f − fj‖Lp(I,B) ≤ ε.

Thus E is relatively compact in Lp(I, Y ).

Proposition A.2.46. Let X ↪→ Y be two Banach spaces and let fn be a bounded sequence of L∞(I,X)∩

W 1,r(I, Y ), for some r > 1. If X is reflexive and if I is bounded, then the following properties hold:

(i) there exists f ∈ L∞(I,X), f : I → X being weakly continuous, and a subsequence nk such that

fnk
(t) ⇀ f(t) in X as k →∞, for every t ∈ I. In particular,∫

I

fn(t)ϕ(t) dt ⇀
∫

I

f(t)ϕ(t) dt

as n→∞ for every ϕ ∈ Cc(I);

(ii) if Y is reflexive, then also f ∈W 1,r(I, Y );

(iii) if there exists a uniformly convex Banach space B such that X ↪→ B ↪→ Y and if (fn)n∈N ⊂ C(I,B)

and ‖fnk
(t)‖B → ‖f(t)‖B as k →∞, uniformly on I, then also f ∈ C(I,B) and fnk

→ f in C(I,B) as

k →∞.

Proof. By Corollary A.2.35, properties (i) and (iii) follow from Proposition A.1.5. Property (ii) follows

from Corollary A.2.39.

Remark A.2.47. One can define higher order vector valued Sobolev spaces as follows. For 1 ≤ p ≤ ∞,

one defines

W 2,p(I,X) = {f ∈W 1,p(I,X),
df

dt
∈W 1,p(I,X)},

with the correspinding norm. For f ∈W 1,p(I,X), one defines

d2f

dt2
=

d

dt

df

dt
.

It is clear that ∫
I

d2f

dt2
ϕ(t) dt =

∫
I

f(t)
d2ϕ

dt2
(t) dt = −

∫
I

df

dt

dϕ

dt
(t) dt,

for all ϕ ∈ C2
c (I), and it follows from Corollaries A.2.31 and A.2.35 that W 2,1(I,X) ↪→ C1(I,X) and that

W 2,p(I,X) ↪→ C1,α(I,X) with α =
p− 1
p

, if p > 1. More generally, one defines by induction on m

Wm,p(I,X) = {f ∈Wm−1,p(I,X),
df

dt
∈Wm−1,p(I,X)},

with the correspinding norm. For f ∈Wm,p(I,X), one defines

dmf

dtm
=

d

dt

dmf

dtm
.
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It is clear that ∫
I

dmf

dtm
ϕ(t) dt = (−1)m

∫
I

f(t)
dmϕ

dtm
(t) dt = (−1)m−j

∫
I

djf

dtj
dm−jϕ

dtm−j
(t) dt,

for 1 ≤ j ≤ m and for all ϕ ∈ Cm
c (I), and it follows from Corollaries A.2.31 and A.2.35 that Wm,1(I,X) ↪→

Cm−1(I,X) and that Wm,p(I,X) ↪→ Cm−1,α(I,X) with α =
p− 1
p

, if p > 1.

We know that if p <∞, then C∞c (I,X) is dense in Lp(I,X) and in W 1,p(I,X). However, it is sometimes

useful to have density of smooth functions in spaces of the type Lp(I,X)∩W 1,q(I, Y ). This is the object of

the following result.

Proposition A.2.48. Let 1 ≤ p, q < ∞ and let X ↪→ Y be two Banach spaces. Then C∞c (I,X) is dense

in Lp(I,X) ∩W 1,q(I, Y ). Moreover, if Z is a Banach space such that Z ↪→ X with dense embedding, then

C∞c (I, Z) is dense in Lp(I,X) ∩W 1,q(I, Y ).

Proof. By Corollary A.2.33, we may assume that I = R. The first statement now follows from the

standard procedure of truncation an regularization by convolution with a sequence of mollifiers, and the

second statement from density of C∞c (R, Z) in C1
c (R, X) for the norm of C1

b (R, X).

Remark A.2.49. Let Ω be an open subset of RN , and let 1 ≤ p <∞. Consider u ∈W 1,1(I, Lp(Ω)). Then,
du

dt
∈ L1(I, Lp(Ω)). In particular,

du

dt
∈ L1

loc(I × Ω) ⊂ D′(I × Ω). On the other hand, u can be considered

as a function of L1
loc(I ×Ω). In particular,

∂u

∂t
∈ D′(I ×Ω). One verifies easily that

∂u

∂t
=
du

dt
in D′(I ×Ω).

Therefore, for functions u defined on I × Ω, we will in general identify
∂u

∂t
and

du

dt
.

A.3. Sobolev spaces. Sobolev spaces have become an essential tool in the study of partial differential

equations. We recall below the most useful and significant results of the theory. A general reference for

Sobolev spaces is Adams [1].

A.3.1. Definitions. Throughout Section A.3, Ω is an open subset of RN . We consider only real-valued

functions, and we refer to Section A.3.7 for the case of complex-valued functions. We recall that D(Ω) is

equipped with the topology induced by the family of seminorms dK,m where K is a compact subset of Ω and

m ∈ N, defined by

dK,m(ϕ) = sup
x∈K

∑
|α|=m

|Dαϕ(x)|, for all ϕ ∈ D(Ω).

The set of distributions on Ω, D′(Ω), is the dual space of D(Ω). If T ∈ D′(Ω) and if α ∈ NN is a multi-index,

one defines the distribution

DαT =
∂α1

∂xα1
1

· · · ∂
αn

∂xαn
n
T ∈ D′(Ω)

by

〈DαT, ϕ〉 = (−1)|α|〈T,Dαϕ〉, for all ϕ ∈ D(Ω).

A function f ∈ L1
loc(Ω) defines a distribution Tf ∈ D′(Ω) by

〈Tf , ϕ〉 =
∫

Ω

f(x)ϕ(x) dx, for all ϕ ∈ D(Ω).
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It is well known that if Tf = Tg, then f = g almost everywhere. A distribution T ∈ D′(Ω) is said to belong

to Lp(Ω) if there exists f ∈ Lp(Ω) such that T = Tf . In this case, f is unique.

For m ∈ N and 1 ≤ p ≤ ∞, the Sobolev space Wm,p(Ω) is defined by

Wm,p(Ω) = {u ∈ Lp(Ω), Dαu ∈ Lp(Ω) for |α| ≤ m}.

Wm,p(Ω) is a Banach space when equipped with the norm ‖ ‖W m,p = ‖ ‖W m,p(Ω) defined by

‖u‖W m,p =
∑

0≤|α|≤m

‖Dαu‖Lp(Ω).

For 1 ≤ p <∞, one defines the closed subset Wm,p
0 (Ω) of Wm,p(Ω) as the closure of D(Ω) in Wm,p(Ω). One

defines Wm,p
loc (Ω) as the set of u ∈ L1

loc(Ω) such that u|Ω′ ∈Wm,p(Ω′), for every Ω′ ⊂⊂ Ω. When p = 2, one

sets Wm,p
loc (Ω) = Hm

loc(Ω), Wm,p(Ω) = Hm(Ω) and Wm,p
0 (Ω) = Hm

0 (Ω) and one rather equips Hm(Ω) with

the equivalent norm

‖u‖Hm(Ω) = ‖u‖Hm =

 ∑
0≤|α|≤m

∫
Ω

|Dαu(x)|2 dx

 1
2

.

Hm(Ω) (hence Hm
0 (Ω)) is then a Hilbert space with the scalar product

(u, v)Hm =
∑

0≤|α|≤m

∫
Ω

Dαu(x)Dαv(x) dx.

Note that when Ω = RN , Hm can be equivalently defined in terms of the Fourier transform. The following

result is an immediate consequence of Plancherel’s formula.

Proposition A.3.1. For every m ∈ N, the following properties hold:

(i) Hm(RN ) = {u ∈ S ′(RN ); (1 + |ξ|2)m/2û(ξ) ∈ L2(RN )};

(ii) ‖u‖Hm ≈ ‖(1 + |ξ|2)m/2û(ξ)‖L2 .

In the statement of Sobolev’s embedding theorems, we will need the following spaces of continuous

functions. C(Ω) is the space of continuous functions Ω → R. Cb(Ω) is the Banach space of continuous and

bounded functions Ω → R, equipped with the L∞ norm. Given a nonnegative integer m, Cm
b (Ω) is the

Banach space of functions u ∈ Cb(Ω) such that Dαu ∈ Cb(Ω), for all α ∈ NN such that |α| ≤ m, equipped

with the norm of Wm,∞(Ω). Cb,u(Ω) is the Banach space of uniformly continuous and bounded functions

Ω → R, equipped with the L∞ norm. Cm
b,u(Ω) is the Banach space of functions u ∈ Cb,u(Ω) such that

Dαu ∈ Cb,u(Ω), for every multi-index α such that |α| ≤ m. Cm
b,u(Ω) is equipped with the norm of Wm,∞(Ω).

Cm,α(Ω) for 0 ≤ α ≤ 1, is the Banach space of functions u ∈ Cm
b,u(Ω) such that

‖u‖Cm,α = ‖u‖W m,∞ + sup
{
|Dβu(x)−Dβu(y)|

|x− y|α
; x, y ∈ Ω, |β| = m

}
<∞.

Finally, C0(Ω) is the closure of D(Ω) in L∞(Ω).

Remark A.3.2. Note that one alway have the following inclusions: C0(Ω) ⊂ Cb,u(Ω), Cb,u(Ω) ⊂ Cb(Ω),

Cb,u(Ω) ⊂ C(Ω). Furthermore, C0(Ω) 6= Cb,u(Ω) 6= Cb(Ω), but if Ω is bounded, then Cb,u(Ω) = C(Ω).
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We will need the notion of regularity of the domain Ω. Given x ∈ RN , z ∈ SN−1, θ ∈ (0, π/2) and

δ > 0, the cone with vertex x, direction z, polar angle θ and heigth δ is the set

C(x, z, θ, δ) = {y ∈ RN ; ∃λ > 0, |y − (x+ λz)| < λsin(θ)} ∩ {y ∈ RN ; |y − x| < δ}.

We now make the following definitions.

Definition A.3.3. Let Ω be an open subset of RN .

(i) We say that x ∈ ∂Ω has the exterior (respectively interior) cone property, if there exists z ∈ SN−1,

θ ∈ (0, π/2) and δ > 0 such that C(x, z, θ, δ) ∩ Ω = ∅ (respectively C(x, z, θ, δ) ⊂ Ω).

(ii) We say that Ω has the cone property, if there exists θ ∈ (0, π/2) and δ > 0 such that for every x ∈ Ω,

there exists zx ∈ SN−1 such that C(x, zx, θ, δ) ⊂ Ω.

(iii) We say that Ω has a Lipschitz continuous boundary if for any x ∈ ∂Ω there exists a neighbourhood Ux

of x in RN and a Lipschitz continuous function φx : RN−1 → R such that for some system of cartesian

coordinates (ξx,1 · · · , ξx,N ), the set Ω ∩ Ux is represented by the equation

ξx,N < φx(ξx,1 · · · , ξx,N−1).

If the Lipschitz constants of φx are bounded independently of x ∈ ∂Ω and if there exists δ > 0 such

that Ux contains the ball of center x and radius δ, Ω is said to have a uniformly Lipschitz boundary.

(iv) Given a positive integer k, we say that Ω has a Ck boundary if for any x ∈ ∂Ω there exists a neigh-

bourhood Ux of x in RN and a one-to-one mapping Φx from Ux onto the unit ball B of RN such

that 
Φx(Ω ∩ Ux) ⊂ RN

+ = {(x1, · · · , xN ); xN > 0},

Φx(∂Ω ∩ Ux) ⊂ ∂RN
+ = {(x1, · · · , xN ); xN = 0},

Φx and Φ−1
x are Ck.

If the Ck norms of Φx and Φ−1
x are bounded independently of x ∈ ∂Ω and if there exists δ > 0 such

that Ux contains the ball of center x and radius δ, Ω is said to have a uniformly Ck boundary.

Remark A.3.4. Here a few simple observations concerning regularity of domains.

(i) One verifies easily that if the domain Ω has a bounded (hence compact) boundary, then the local and

uniform regularity properties are equivalent.

(ii) It is not difficult to verify that a domain Ω with a C1 (respectively uniformly C1) boundary has

a Lipschitz (respectively uniformly Lipschitz) boundary. One verifies as well that a domain with a

uniformly Lipschitz boundary posesses the cone property, and that every x ∈ ∂Ω has both the interior

and exterior cone property.

(iii) Note also that the regularity properties are neither stable by intersection nor by union. For example, the

subsets Ω1 and Ω2 of R2 defined by Ω1 = {(x, y) ∈ R2, |x− 1|2 + |y|2 > 1} and Ω2 = {(x, y) ∈ R2, |x−

2|2 + |y|2 < 2} both have a uniformly Cm boundary for every integer m. However, Ω1 ∪Ω2 = RN \ {0}

does not have a Lipschitz boundary, and Ω1 ∩ Ω2 does not even have the cone property.
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A.3.2. Basic properties of the space Wm,p(Ω). We begin with the following well known result (see

for example Adams [1], Theorem 3.5.).

Proposition A.3.5. If 1 < p <∞, then the spaces Wm,p(Ω) and Wm,p
0 (Ω) are uniformly convex Banach

spaces.

For every function u defined almost everywhere on Ω, let us define the function u almost everywhere on RN

by

u =

{
u, on Ω,

0, on RN \ Ω.
(A.3.1)

For u as above, z ∈ RN \ {0}, h ∈ R \ {0} and i ∈ {1, · · · , N}, let us set

τzu = u(·+ z)|Ω, (A.3.2)

∂h
i u =

(
u(·+ hei)− u(·)

h

)
|Ω
, (A.3.3)

where ei is the vector of RN whose components are equal to 0 except the ith one which is equal to 1. We

have the following characterization of W 1,p(Ω) (see Brezis [17], Proposition IX.3).

Proposition A.3.6. let 1 < p ≤ ∞ and let u ∈ Lp(Ω). Then the following properties are equivalent:

(i) u ∈W 1,p(Ω);

(ii) there exists C such that for every ϕ ∈ D(Ω) and 1 ≤ i ≤ N , |
∫

Ω

u∂iϕ| ≤ C‖ϕ‖Lp′ ;

(iii) there exists C such that for every ω ⊂⊂ Ω and every z ∈ RN \ {0} with |z| ≤ dist(ω,RN \ Ω) one has

‖τzu− u‖Lp(ω) ≤ C|z|;

(iv) there exists C such that for every ω ⊂⊂ Ω, every 1 ≤ i ≤ N and every h ∈ R \ {0} satisfying

|h| ≤ dist(ω,RN \ Ω) one has ‖∂h
i u‖Lp(ω) ≤ C.

Furthermore, if u satisfies these properties, then one can take C = ‖∇u‖Lp(Ω) in (ii), (iii) and (iv).

Remark A.3.7. If p = 1, then (i)⇒(ii) ⇔(iii)⇔(iv). The functions satisfying (ii) (or (iii), or (iv)) are the

functions with bounded variation (i.e. the functions of L1 whose all derivatives of order 1 in the sense of

distributions are bounded measures). See see Brezis [17], Remarque 6 p. 153.

Lemma A.3.8. Let 1 ≤ p ≤ ∞. If u ∈ W 1,p(Ω), then for every ω ⊂⊂ Ω we have ∂h
i u → ∂iu in Lq(ω) as

h ↓ 0, for every i ∈ {1, · · · , N} and every 1 ≤ q ≤ p such that q <∞, where ∂h
i is defined by (A.3.3).

Proof. Consider ω ⊂⊂ Ω, and let ϕ ∈ D(Ω) be such that ϕ ≡ 1 on a neighborhood of ω. One verifies easily

that v = ϕu ∈ W 1,q
0 (Ω) (apply for example Corollary A.3.33 below). In particular, there exists a sequence

(vn)n∈N ⊂ D(Ω) such that vn → v in W 1,q(Ω). For every n ∈ N, we have (∂h
i − ∂i)vn → 0 in Lq(ω), as h ↓ 0.

It follows easily from Proposition A.3.6 (or Remark A.3.7 if p = 1) and Proposition A.1.4 that (∂h
i −∂i)v → 0

in Lq(ω), as h ↓ 0. The result follows, since u ≡ v on a neighborhood of ω.
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Remark A.3.9. Here are some simple consequences of the above results.

(i) Assume Ω is connected. Then it follows from Proposition A.3.6 ((i)⇔(iii)) that W 1,∞(Ω) is the set

of functions u such that there exists a constant C for which |u(x) − u(y)| ≤ dΩ(x, y) for almost all

x, y ∈ Ω, where dΩ is the geodesic distance (i.e. dΩ(x, y) is the infimum of the length of polygonal lines

in Ω joining x to y). In particular, if Ω has a uniformly Lipschitz boundary, dΩ is comparable with the

usual distance in RN ; and so W 1,∞(Ω) = C0,1(Ω). If ∂Ω is not Lipschitz, functions of W 1,∞(Ω) are not

necessarily Lipschitz continuous, as shows the following example. Let B be the ball of R2 of center 0

and radius 2, and let Ω = B \ [−1, 1]× {0}. Let ϕ ∈ D(R) be supported in (-1,1) and verify ϕ(0) = 1.

Define the function u ∈ C∞(Ω) by

u(x, y) =

{
ϕ(x), on Ω ∩ {y > 0},

0, on Ω ∩ {y ≤ 0}.

Then u ∈W 1,∞(Ω), but u is not Lipschitz continuous. However, note that for any domain Ω, Lipschitz

continuous and bounded functions are in W 1,∞(Ω).

(ii) It follows from Proposition A.3.6 ((i)⇒(iii)) and Remark A.3.7 above that if (un)n∈N is a bounded

sequence of W 1,p(Ω), 1 ≤ p ≤ ∞, then ((un)|ω)n∈N is a relatively compact subset of L1(ω), for ev-

ery ω ⊂⊂ Ω. In particular, there exists a subsequence (unk
)k∈N converging almost everywhere in ω.

Therefore, one constructs easily a subsequence of (un)n∈N converging almost everywhere in Ω.

(iii) It follows immediately from the definition that if u ∈ Cm(Ω), then u ∈ Wm,∞
loc (Ω), and the classical

derivatives of u up to order m coincide vith the distributional derivatives. If furthermore all classical

derivatives of u up to order m belong to Lp(Ω) for some 1 ≤ p ≤ ∞, then u ∈Wm,p(Ω).

Corollary A.3.10. Let m ≥ 1 and 1 < p ≤ ∞. If (un)n∈N is a bounded sequence of Wm,p(Ω), then there

exist u ∈Wm,p(Ω) and a subsequence (unk
)k∈N such that unk

→ u almost everywhere as k →∞ and

‖u‖W m,p ≤ lim inf
n→∞

‖un‖W m,p .

If p <∞, then also unk
⇀ u in Wm,p. If p <∞ and (un)n∈N ⊂Wm,p

0 (Ω), then u ∈Wm,p
0 (Ω).

Proof. Consider a subsequence (nk)k∈N such that

lim
k→∞

‖unk
‖W m,p = lim inf

n→∞
‖un‖W 1,p .

There exist u ∈ Lp(Ω) and a subsequence, which we still denote by (nk)k∈N, such that unk
→ u in Lp weak

(in L∞ weak?, if p = ∞). By Remark A.3.9 (ii), we may also assume that unk
→ u almost everywhere. Let

α be a multi-index, |α| ≤ m. From the weak (or weak?) convergence in Lp, it follows that unk
→ u in D′(Ω);

and so Dαunk
→ Dαu in D′(Ω). Since Dαunk

is bounded in Lp, it follows that Dαu ∈ Lp and that for some

subsequence, which we still denote by nk, Dαunk
→ Dαu in Lp weak (or weak?). Thus, u ∈Wm,p(Ω) and

‖u‖W m,p ≤ lim
k→∞

‖unk
‖W m,p = lim inf

n→∞
‖un‖W m,p .

The other properties follow from the reflexivity of Wm,p when 1 < p <∞.
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Corollary A.3.11. Let m ≥ 0, let 1 < p ≤ ∞ and let (un)n∈N be a bounded sequence of Wm,p(Ω). If

there exits u : Ω → R such that un → u almost everywhere as n→∞, then u ∈Wm,p(Ω) and

‖u‖W m,p ≤ lim inf
n→∞

‖un‖W m,p .

If p <∞, then also un ⇀ u in Wm,p. If p <∞ and (un)n∈N ⊂Wm,p
0 (Ω), then u ∈Wm,p

0 (Ω).

Proof. The result follows immediately from Corollary A.3.10.

Theorem A.3.12. Let F : R → R be a Lipschitz continuous function such that F (0) = 0, and let p ∈ [1,∞].

If u ∈ W 1,p(Ω), then F (u) ∈ W 1,p(Ω) and ∇F (u) = F ′(u)∇u almost everywhere on Ω. Moreover, if p <∞

then the mapping u 7→ F (u) is continuous from W 1,p(Ω) to W 1,p(Ω).

Remark A.3.13. Theorem A.3.12 is due to Marcus and Mizel [75,76,77]. See also Bourdaud and Meyer [14]

for the case where W 1,p(Ω) is replaced by W s,p(Ω). Note that the formula ∇F (u) = F ′(u)∇u almost

everywhere makes sense. Indeed, it follows from Step 2 of the proof that if f = g almost everywhere, then

f(u)∇u = g(u)∇u almost everywhere. Note that it is important that p < ∞ in order that the mapping

u 7→ F (u) be continuous. For example, the mapping u→ u+ is not continuous W 1,∞(Ω) →W 1,∞(Ω). To see

this, take Ω = (0, 1). Let u(x) = x, for x ∈ Ω and un(x) = x−1/n, for x ∈ Ω. We have ‖un−u‖W 1,∞ = 1/n,

but ‖∇(u+
n − u+)‖L∞ = 1 for every n. On the other hand, one shows easily that the mapping u 7→ F (u) is

continuous from W 1,∞(Ω) strong to W 1,∞(Ω) weak-?.

Proof of Theorem A.3.12. We proceed in four steps.

Step 1. If we assume in addition that F ∈ C1(R), then F (u) ∈ W 1,p(Ω) for every u ∈ W 1,p(Ω), and

∇F (u) = F ′(u)∇u almost everywhere on Ω. This is well known. The idea of the proof is to approximate

u by a sequence (un)n∈N ⊂W 1,p(Ω) ∩ C∞(Ω) (see for example Brezis [17], Proposition IX.5).

Step 2. Let 1 ≤ p ≤ ∞ and let f ∈ W 1,p(Ω). If A ⊂ R is a set of measure 0, then ∇f = 0 almost

everywhere on the set {x ∈ Ω; u(x) ∈ A}. We follow the proof of Almgren and Lieb [3]. Let U ⊂ R be an

open set with finite measure and let

M(t) =
∫ t

0

1U (s) ds.

We claim that ∫
Ω

M(f)∇ · φdx = −
∫

Ω

1{f∈U}∇f · φdx, (A.3.4)

for every φ ∈ D(Ω)N . To prove this, consider a sequence 0 ≤ g1 ≤ · · · ≤ gj ≤ · · · ≤ 1 of continuous functions

such that gj ↑ 1U almost everywhere and set

Nj(t) =
∫ t

0

gj(s) ds.

It follows from Step 1 that ∇Nj(f) = N ′
j(f)∇f = gj(f)∇f almost everywhere. Therefore,∫

Ω

Nj(f)∇ · φdx = −
∫

Ω

gj(f)∇f · φdx. (A.3.5)
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It follows from the dominated convergence theorem that Nj(f) →M(f) almost everywhere. Since |Nj(f)| ≤

|M(f)| almost everywhere, it follows by dominated convergence that the left-hand side of (A.3.5) converges

to the left-hand side of (A.3.4) as j → ∞. As well, since gj → 1U almost everywhere and 0 ≤ gj ≤ 1,

it follows by dominated convergence that the right-hand side of (A.3.5) converges to the right-hand side

of (A.3.4) as j →∞. Hence (A.3.4). Let now U1 ⊃ U2 ⊃ · · · be a decreasing sequence of open subsets of R

such that A ⊂ Uj and |Uj | → 0 as j →∞, and set E = ∩
j∈N

Uj ⊃ A. We apply formula (A.3.4) with U = Uj .

It follows that ∫
Ω

Mj(f)∇ · φdx = −
∫

Ω

1{f∈Uj}∇f · φdx, (A.3.6)

for every φ ∈ D(Ω)N , where

Mj(t) =
∫ t

0

1Uj
(s) ds.

It follows from the dominated convergence theorem that Mj(f) → 0 almost everywhere. Since |Mj(t)| ≤ |t|

almost everywhere, it follows by dominated convergence that the left-hand side of (A.3.6) converges to zero.

As well, since 1Uj → 1E almost everywhere and 0 ≤ 1Uj ≤ 1, it follows by dominated convergence that the

right-hand side of (A.3.6) converges to

−
∫

Ω

1{f∈E}∇f · φdx.

It follows that ∫
Ω

1{f∈E}∇f · φdx = 0.

Since φ is arbitrary, this implies that 1{f∈E}∇f = 0 almost everywhere, which is the desired result, since

A ⊂ E.

Step 3. We show that F (u) ∈ W 1,p(Ω) and ∇F (u) = ψ almost everywhere on Ω, where ψ = F ′(u)∇u.

Since F (u) ∈ Lp(Ω), we need only show that ∇F (u) ∈ Lp(Ω) and that ∇F (u) = ψ. To see this, define

Fn(t) = n

∫ 1
n

0

(F (t+ s)− F (s)) ds,

for n ∈ N. It follows easily that Fn(t) ≤ L|t| and that Fn → F uniformly as n → ∞. Furthermore,

Fn ∈ C1(R) and

F ′n(t) = n

∫ 1
n

0

F ′(t+ s) ds,

which implies that |F ′n(t)| ≤ L and that F ′n(t) → F ′(t) as n → ∞ for every t ∈ L, where L ∈ R is such

that |R \ L| = 0. It now follows from Step 1 that Fn(u) ∈ W 1,p(Ω) and that ∇Fn(u) = F ′n(u)∇u. If

u(x) ∈ L, then F ′n(u(x)) → F ′(u(x)) as n → ∞; and so, ∇Fn(u) → F ′(u)∇u almost everywhere on the set

{x ∈ Ω; u(x) ∈ L}. Since |R \ L| = 0, it follows from Step 2 that ∇Fn(u) = 0 almost everywhere on the set

{x ∈ Ω; u(x) 6∈ L}. It follows that ∇Fn(u) → ψ almost everywhere on Ω. Since |∇Fn(u)| ≤ L|∇u| ∈ Lp(Ω),

it follows that ∇Fn(u) → ψ in Lp(Ω) (in L∞(Ω) weak-? if p = ∞). Since Fn(u) → F (u) in Lp(Ω), hence in

D′(Ω), it follows that ∇F (u) = ψ ∈ Lp(Ω).

Step 4. Continuity. Note that the mapping u 7→ F (u) is continuous Lp(Ω) → Lp(Ω). Therefore, we need

only show that if un → u in W 1,p(Ω), then there exists a subsequence (unk
)k∈N such that ∇F (unk

) → ∇F (u)
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as k → ∞ in Lp(Ω). Suppose first that p > 1. It follows from Step 3 that ∇F (un) is bounded in Lp(Ω).

Therefore, if p > 1, then there exists z ∈ Lp(Ω) and a subsequence, which we still denote by (un)n∈N such

that ∇F (un) → z in Lp(Ω) weak. In particular, ∇F (un) → z in D′(Ω), which implies that z = ∇F (u).

Since Lp(Ω) is uniformly convex, it remains to show that ‖∇F (un)‖Lp → ‖∇F (u)‖Lp . Let f = 1E where E

is a measurable subset of R. Set now g = f − 1/2, so that |g| = 1/2. We have

‖g(un)∇un‖Lp =
1
2
‖∇un‖Lp −→

n→∞

1
2
‖∇u‖Lp = ‖g(u)∇u‖Lp ;

Therefore, if we set

G(t) =
∫ t

0

g(s) s,

then it follows from what precedes that G(un) → G(u) in W 1,p(Ω), as n → ∞ (note that G verifies the

assumptions of the theorem); and so,

‖f(un)∇un‖Lp −→
n→∞

‖f(u)∇u‖Lp .

It easily follows that the above property holds when f =
m∑

j=1

1Ej
where the Ej ’s are disjoint measurable

subsets of R and m <∞. Let now ε > 0. Since F ′ ∈ L∞(R), we can write F ′ = f + h where f is as above

and ‖h‖L∞ ≤ ε. It follows that

| ‖∇F (un)‖Lp − ‖f(un)∇un‖Lp | ≤ ε‖∇un‖Lp ,

and

| ‖∇F (u)‖Lp − ‖f(u)∇u‖Lp | ≤ ε‖∇u‖Lp ;

and so,

lim sup
n→∞

| ‖∇F (un)‖Lp − ‖∇F (u)‖Lp | ≤ ε lim sup
n→∞

(‖∇un‖Lp + ‖∇u‖Lp).

Since ε is arbitrary, the result follows. The case p = 1 is more complicated, and we refer the reader to

Marcus and Mizel [77].

Corollary A.3.14. Let 1 ≤ p, q, r ≤ ∞ and α > 0 be such that
1
r

=
α

p
+

1
q

and let F : R → R be a locally

Lipschitz function such that F (0) = 0 and

|F (y)− F (x)| ≤ L(|y|α + |x|α)|y − x|,

for all x, y ∈ R. Then, for every u ∈ W 1,q(Ω) ∩ Lp(Ω), we have F (u) ∈ W 1,r(Ω) and ‖F (u)‖W 1,r ≤

2L‖u‖α
Lp‖u‖W 1,q . Furthermore, |∇F (u)| ≤ 2L|u|α|∇u| almost everywhere on Ω.

Proof. Consider the function Fn defined by

Fn(x) =


F (n), if n < x,

F (x), if − n ≤ x ≤ n,

F (−n), if − n < x.
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It follows that Fn is globally Lipschitz. The result now follows rather easily by applying Theorem A.3.12

then passing to the limit as n→∞ (apply Dunford-Pettis’ theorem to pass to the limit if r = 1).

Corollary A.3.15. Let p ∈ [1,∞]. If u ∈W 1,p(Ω), then u+, u−, |u| ∈W 1,p(Ω) and

∇u+ =

{∇u, if u > 0,

0, if u ≤ 0;
∇u− =

{−∇u, if u < 0,

0, if u ≥ 0;
∇|u| =


∇u, if u > 0,

0, if u = 0,

−∇u, if u < 0;

almost everywhere in Ω. In particular, |∇|u| | = |∇u| almost everywhere. If p < ∞, then the mappings

u 7→ u+, u 7→ u− and u 7→ |u| are continuous on W 1,p(Ω).

Corollary A.3.16. Let p ∈ [1,∞]. If u, v ∈W 1,p(Ω), then max(u, v) ∈W 1,p(Ω) and min(u, v) ∈W 1,p(Ω).

Proof. max(u, v) = u + (v − u)+ and min(u, v) = u − (u − v)+; and so, the result follows from Corol-

lary A.3.15.

Corollary A.3.17. Let p ∈ [1,∞]. Consider M ∈W 1,p
loc (Ω) such that ∇M ∈ Lp(Ω). If M− ∈ Lp(Ω), then

(u−M)+ ∈W 1,p(Ω) for every u ∈W 1,p(Ω), and

∇(u−M)+ =

{∇u−∇M, if u > M ;

0, if u ≤M ;

almost everywhere. Moreover, if p <∞, then the mapping u 7→ (u−M)+ is continuous W 1,p(Ω) →W 1,p(Ω).

In particular, these results apply to the case where M is a nonnegative constant.

Proof. We have (u−M) ∈W 1,p
loc (Ω). When Corollary A.3.15 is applied, it follows easily that (u−M)+ ∈

W 1,p
loc (Ω) and that

∇(u−M)+ =

{∇u−∇M, if u > M ;

0, if u ≤M ;

almost everywhere. In particular, |∇(u−M)+| ≤ |∇u|+|∇M | ∈ Lp(Ω). Since (u−M)+ ≤ |u|+M− ∈ Lp(Ω)

it follows that (u−M) ∈W 1,p(Ω). Continuity is proved by the technique of proof of Theorem A.3.12.

Remark A.3.18. These properties are specific to the case m = 1. For example, consider Ω = (−1, 1),

F (x) = |x| and u(x) = sin(πx). Then u ∈ C∞(Ω) but F (u) 6∈W 2,1(Ω).

Proposition A.3.19. Let 1 ≤ p ≤ ∞. If u, v ∈ W 1,p(Ω) ∩ L∞(Ω), then uv ∈ W 1,p(Ω) ∩ L∞(Ω) and

∇(uv) = u∇v + v∇u almost everywhere in Ω.

Proof. See Brezis [17], Proposition IX.4, p.155.

Finally, we recall below a quite useful result concerning Lp spaces.

Lemma A.3.20. Let 1 ≤ p ≤ ∞, let u : Ω → R and let (un)n∈N be a bounded sequence of Lp(Ω) such

that un → u almost everywhere as n → ∞. If p > 1, then u ∈ Lp(Ω) and un → u as n → ∞ in Lq(Ω′),
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for every Ω′ ⊂ Ω of finite measure and every q ∈ [1, p). In particular, un → u as n → ∞, in Lp(Ω) weak if

p <∞, and in L∞(Ω) weak? if p = ∞.

Proof. By extending the functions by 0 outside Ω, we may assume that Ω = RN . Observe that by Fatou’s

lemma, we have u ∈ Lp(RN ). Let Ω′ ⊂ RN have a finite measure and let q ∈ [1, p). Consider ε > 0. By

Egorov’s theorem, there exists a measurable subset E of Ω′ such that un → u uniformly on Ω′ \ E and

|E|
p−q

p sup
n≥0

(∫
RN

|un − u|p
) q

p

≤ ε/2.

Let n0 be large enough so that |un − u|q ≤ ε/2|Ω′| on Ω′ \ E, for n ≥ n0. It follows that∫
Ω′
|un − u|q =

∫
E

|un − u|q +
∫

Ω′\E
|un − u|q

≤ |E|
p−q

p

(∫
E

|un − u|p
) q

p

+ |Ω′ \ E| sup
Ω′\E

|un − u|q

≤ ε.

Hence the result, since ε is arbitrary.

A.3.3. Basic properties of the space Wm,p
0 (Ω). Basically, Wm,p

0 (Ω) is the set of functions ofWm,p(Ω)

that “vanish on ∂Ω”. In this section, we give some characterizations of Wm,p
0 (Ω). The case Ω = RN is quite

simple, as shows the following result.

Proposition A.3.21. Let 1 ≤ p, q < ∞ and let m, j be nonnegative integers. Then, D(RN ) is dense in

Wm,p(RN ) ∩W j,q(RN ). In particular, Wm,p
0 (RN ) = Wm,p(RN ).

Proof. By the standard procedure of truncation and regularization.

Remark A.3.22. Note that if Ω 6= RN , then Wm,p
0 (Ω) is a strict subset of Wm,p(Ω).

Proposition A.3.23. Let 1 ≤ p <∞. For every u ∈W 1,p(Ω) ∩ C(Ω), the following properties hold:

(i) if u = 0 on ∂Ω, then u ∈W 1,p
0 (Ω);

(ii) if u ∈W 1,p
0 (Ω) and if Ω has a C1 boundary, then u = 0 on ∂Ω.

Proof. See Brezis [17], Theorem IX.17 and Remark 20.

Remark A.3.24. The smoothness assumption on Ω is essential in property (ii). For example, asume

N ≥ 2, let Ω = RN \ {0} and consider u ∈ D(RN ) such that u(0) = 1. Then it is easily verified that

u ∈ H1
0 (Ω), but u ≡ 1 on ∂Ω.

Proposition A.3.25. Let 1 ≤ p < ∞, let u ∈ Lp(Ω) and let u be defined by (A.3.1). Then the following

holds:

(i) if u ∈W 1,p
0 (Ω), then u ∈W 1,p(RN );
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(ii) if u ∈W 1,p(RN ) and if Ω has a C1 boundary, then u ∈W 1,p
0 (Ω).

Proof. See Brezis [17], Theorem IX.18 and Remark 21.

Remark A.3.26. Property (ii) is not anymore valid without some smoothness assumption on Ω, as shows

the following simple example. Let ϕ ∈ D(R) be such that ϕ(0) = 1. Let Ω = (−∞, 0) ∪ (0,∞) and let

u = ϕ|Ω almost everywhere. Obviously, u = ϕ almost everywhere. However, u ∈W 1,p(R) but u 6∈W 1,p
0 (Ω).

Corollary A.3.27. Let 1 ≤ p, q < ∞. If u ∈ W 1,p
0 (Ω) ∩ W 1,q(Ω) and if Ω has a C1 boundary, then

u ∈W 1,q
0 (Ω).

Proof. Let u be defined by (A.3.1). It follows from Proposition A.3.25 (i) that u ∈W 1,p(RN ). We clearly

have u ∈ Lq(RN ), and since

∇u =

{∇u on Ω,

0 on RN \ Ω,

we have ∇u ∈ Lq(RN ). Therefore u ∈W 1,q(RN ); and so, u ∈W 1,q
0 (Ω) by Proposition A.3.25 (ii).

Proposition A.3.28. Let 1 ≤ p < ∞ and u ∈ W 1,p(Ω). If there exists Ω′ ⊂⊂ Ω such that u = 0 almost

everywhere on Ω \ Ω′, then u ∈W 1,p
0 (Ω).

Proof. See Brezis [17], Lemma IX.5.

Corollary A.3.29. Let F : R → R be a Lipschitz continuous function such that F (0) = 0, and let

p ∈ [1,∞). Then the mapping u 7→ F (u) is continuous from W 1,p
0 (Ω) to W 1,p

0 (Ω).

Proof. By assumption, there exists (ϕn)n∈N ⊂ D(Ω) such that ϕn → u in W 1,p(Ω). By Proposition A.3.28,

we have F (ϕn) ∈ W 1,p
0 (Ω). On the other hand, it follows from Theorem A.3.12 that F (ϕn) → F (u) in

W 1,p(Ω). Hence the result.

Corollary A.3.30. Let p ∈ [1,∞). If u ∈ W 1,p
0 (Ω), then u+, u−, |u| ∈ W 1,p

0 (Ω). Moreover, the mappings

u 7→ u+, u 7→ u− and u 7→ |u| are continuous on W 1,p
0 (Ω).

Corollary A.3.31. If 1 ≤ p <∞ and u, v ∈W 1,p
0 (Ω), then max(u, v) ∈W 1,p

0 (Ω) and min(u, v) ∈W 1,p
0 (Ω).

Proof. max(u, v) = u + (v − u)+ and min(u, v) = u − (u − v)+; and so, the result follows from Corol-

lary A.3.30.

Corollary A.3.32. Let p, q, r, α and F be as in Corollary A.3.14. If q, r < ∞, then for every u ∈

W 1,q
0 (Ω) ∩ Lp(Ω), we have F (u) ∈W 1,r

0 (Ω).

Proof. The proof is similar to that of Corollary A.3.14, by applying Corollary A.3.29 instead of Theo-

rem A.3.12.
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Corollary A.3.33. Let 1 ≤ p <∞. If u ∈W 1,p(Ω) and ϕ ∈ D(Ω), then ϕu ∈W 1,p
0 (Ω).

Proof. It follows from Proposition A.3.19 that ϕu ∈W 1,p(Ω). Since ϕu is supported in a compact subset

of Ω, the result follows from Proposition A.3.28.

Proposition A.3.34. Let 1 ≤ p <∞ and let u ∈W 1,p(Ω). If there exists v ∈W 1,p
0 (Ω) such that |u| ≤ |v|

almost everywhere, then u ∈W 1,p
0 (Ω).

Proof. It follows from Corollary A.3.30 that |v| ∈W 1,p
0 (Ω). Let (wn)n∈N ⊂ D(Ω) be such that wn −→

n→∞
|v|

in W 1,p(Ω). It follows from Corollary A.3.15 that (wn − u+)+ → (|v| − u+)+ in W 1,p(Ω). On the other

hand, supp (wn − u+)+ ⊂ supp (wn), thus (wn − u+)+ ∈ H1
0 (Ω) by Proposition A.3.28. This implies

(|v| − u+)+ ∈ W 1,p
0 (Ω). Since |v| ≥ |u| ≥ u+, we have (|v| − u+)+ ≡ |v| − u+; and so, |v| − u+ ∈ W 1,p

0 (Ω),

from which we get u+ ∈ W 1,p
0 (Ω). One shows with the same argument that u− ∈ W 1,p

0 (Ω). Therefore,

u = u+ − u− ∈W 1,p
0 (Ω).

Corollary A.3.35. Let 1 ≤ p < ∞ and let M ∈ W 1,p
loc (Ω) be such that ∇M ∈ Lp(Ω). If there exists

w ∈ W 1,p
0 (Ω) such that M ≥ w almost everywhere, then (u − M)+ ∈ W 1,p

0 (Ω) for every u ∈ W 1,p
0 (Ω).

Moreover, the mapping u 7→ (u −M)+ is continuous W 1,p
0 (Ω) → W 1,p

0 (Ω). In particular, the above results

apply to the case where M is a nonnegative constant.

Proof. Note that (u−M)+ ≤ |u|+M− ≤ |u|+w ∈W 1,p
0 (Ω). Therefore, it follows from Proposition A.3.34

that (u−M)+ ∈W 1,p
0 (Ω). Continuity follows from Corollary A.3.17.

A.3.4. Sobolev’s inequalities. We recall below the most useful embedding theorems and Sobolev’s

inequalities concerning Sobolev’s spaces.

Remark A.3.36. It may be convenient to approximate functions of Wm,p(Ω) by smooth functions or to

extend functions of Wm,p(Ω) to functions of Wm,p(RN ). This can be done as follows.

(i) If Ω has a uniformly Lipschitz boundary and if 1 ≤ p < ∞, then the restriction to Ω of functions of

D(RN ) is dense in Wm,p(Ω) (see Adams [1], Theorem 3.18).

(ii) If p ∈ [1,∞), then Wm,p(Ω) ∩ C∞(Ω) is dense in Wm,p(Ω) (see Adams [1], Theorem 3.16).

(iii) If Ω has a bounded Cm boundary, then there exists an operator E ∈ L(Wm,p(Ω),Wm,p(RN )) such that

Eu|Ω = u, for every u ∈Wm,p(Ω) (see Adams [1], Theorem 4.26).

Theorem A.3.37. (Poincaré’s inequality) If |Ω| is finite (or if Ω is bounded in one direction) and if

1 ≤ p <∞, then there exists a constant C such that

‖u‖Lp ≤ C‖∇u‖Lp , (A.3.7)

for every u ∈W 1,p
0 (Ω).
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Proof. By density, we only have to prove the estimate for u ∈ D(RN ) with supp(u) ⊂ Ω.

Assume first that |Ω| <∞. In the case p = 1, It follows from (A.3.8) below that ‖u‖
L

N
N−1

≤ C‖∇u‖L1 ;

and so ‖u‖L1 ≤ C|Ω|1/N‖∇u‖L1 , which is the desired estimate. If p > 1, It follows from (A.3.8) that

‖u‖Lp ≤ C‖∇u‖a
Lp‖u‖1−a

L1 , with a =
N(p− 1)

N(p− 1) + p
∈ (0, 1). Hence the result, since ‖u‖L1 ≤ |Ω|1/p′‖u‖Lp .

Assume now that Ω is bounded in one direction. Without loss of generality, we may assume that

Ω ⊂ (0, a)×RN−1, for some a > 0. Given (x2, · · · , xN ) ∈ RN−1, the function x1 7→ u(x1, · · · , xN ) belongs to

D(0, a). It follows from the first step of the proof that there exists C such that ‖u(·, x2, · · · , xN )‖Lp(0,a) ≤

C‖∂1u(·, x2, · · · , xN )‖Lp(0,a), from which we get easily ‖u‖Lp(Ω) ≤ C‖∂1u‖Lp(Ω).

Remark A.3.38. Here are some simple observations concerning Poincaré’s inequality.

(i) Inequality (A.3.7) holds under the more general assumption that Ω ⊂ ω×RN−k, where 0 ≤ k ≤ N and

ω is an open subset of Rk of finite measure, the proof being the same.

(ii) The boundedness assumption on Ω is essential in Theorem A.3.37. In particular, if Ω = RN , then

inequality (A.3.7) does not hold. To see this, consider ϕ ∈ D(RN ), ϕ 6≡ 0. For λ > 0, let ϕλ(x) = ϕ(x/λ).

Then ‖ϕλ‖Lp = λ
N
p ‖ϕ‖Lp and ‖∇ϕλ‖Lp = λ

N
p −1‖∇ϕ‖Lp . Therefore

‖ϕλ‖Lp

‖∇ϕλ‖Lp

= λ
‖ϕ‖Lp

‖∇ϕ‖Lp

−→
λ→∞

∞.

Corollary A.3.39. If Ω is as in Theorem A.3.37, then ‖∇u‖Lp(Ω) is an equivalent norm to ‖u‖W 1,p(Ω) on

W 1,p
0 (Ω).

Theorem A.3.40. (Sobolev’s embedding theorem) If Ω has the cone property, then the following prop-

erties hold:

(i) if 1 ≤ mp < N and j ≥ 0, then W j+m,p(Ω) ↪→W j,q(Ω), for every q ∈ [p,
Np

N −mp
];

(ii) if mp = N and j ≥ 0, then W j+m,p(Ω) ↪→W j,q(Ω), for every q ∈ [p,∞);

(iii) if j ≥ 0, then W j+N,1(Ω) ↪→ Cj
b (Ω). In particular, WN,1(Ω) ↪→ L∞(Ω);

(iv) if mp > N and j ≥ 0, then W j+m,p(Ω) ↪→ Cj
b (Ω). In particular, Wm,p(Ω) ↪→ L∞(Ω).

If Ω has a uniformly Lipschitz boundary, then also

(v) if mp > N > (m− 1)p and j ≥ 0, then W j+m,p(Ω) ↪→ Cj,α(Ω), where α =
mp−N

p
.

Proof. See Adams [1], Theorem 5.4.

Theorem A.3.41. (Rellich’s compactness theorem) If Ω is bounded and has a Lipschitz boundary. then

the following properties hold:

(i) ifmp ≤ N and j ≥ 0, then the embeddingW j+m,p(Ω) ↪→W j,q(Ω) is compact, for every q ∈ [p,
Np

N −mp
);

(ii) if mp > N and j ≥ 0, then the embedding W j+m,p(Ω) ↪→ Cj
b (Ω) is compact;

(iii) if mp > N ≥ (m − 1)p and j ≥ 0, then the embedding W j+m,p(Ω) ↪→ C0,λ(Ω) is compact, for all

λ ∈ (0,
mp−N

p
).
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Proof. See Adams [1], Theorem 6.2. Note that since Ω is bounded, its boundary is uniformly Lipschitz.

Theorem A.3.42. The conclusions of Theorems A.3.40 and A.3.41 remain valid without any smoothness

assumption on Ω if one replaces Wm,p(Ω) by Wm,p
0 (Ω) (note that Ω still needs to be bounded for the compact

embedding).

Proof. See Adams [1], Theorem 5.4, part III and Theorem 6.2., part IV.

Remark A.3.69. If p = N > 1, then W 1,p(Ω) ↪→ Lq(Ω) for every p ≤ q < ∞, but W 1,p(Ω) 6↪→ L∞(Ω).

However, Sobolev’s embedding theorem can be improved by Trudinger’s inequality. In particular, if N = 2,

then for every M <∞ there exists µ > 0 and K <∞ such that∫
Ω

(
eµ‖u‖2 − 1

)
≤ K,

for every u ∈ H1
0 (Ω) with ‖u‖H1 ≤M (see Adams [1]).

Theorem A.3.44. (Gagliardo-Nirenberg’s inequality) Let 1 ≤ p, q, r ≤ ∞ and let j,m be two integers,

0 ≤ j < m. If
1
p

=
j

N
+ a

(
1
r
− m

N

)
+

(1− a)
q

,

for some a ∈ [
j

m
, 1] (a < 1 if r > 1 and m− j − N

r
= 0), then there exists a constant C(N,m, j, p, q, r) such

that ∑
|α|=j

‖Dαu‖Lp ≤ C

 ∑
|α|=m

‖Dαu‖Lr

a

‖u‖1−a
Lq , (A.3.8)

for every u ∈ D(RN ).

Proof. See Friedman [42], Theorem 9.3, for the general case. The case a = r = 1, m− j = N is treated in

Brezis [17], Chapter IX, Remark 14.

Remark A.3.45. Here are some simple consequences of Theorem A.3.44.

(i) By density (Proposition A.3.21), inequality (A.3.8) holds for every u ∈ Wm,r(RN ) ∩ Lq(RN ), provided

q, r < ∞. If q = ∞ and N < mr < ∞, then Wm,r(RN ) ↪→ Lq(RN ), and again by density inequal-

ity (A.3.8) holds for every u ∈Wm,r(RN );

(ii) also by density (see Proposition A.3.58 below), inequality (A.3.8) is valid for every u ∈Wm,r
0 (Ω)∩Lq(Ω),

where Ω is any open domain of RN , provided q, r <∞, or q = ∞ and N < mr <∞;

(iii) It follows easily from (A.3.8) and (ii) above that for every open subset Ω of RN and every integers

0 ≤ j ≤ m, one has

‖u‖Hj(Ω) ≤ C‖u‖
j
m

Hm(Ω)‖u‖
m−j

m

L2(Ω),

for every u ∈ Hm
0 (Ω). More generally, if p <∞, then

‖u‖W j,p(Ω) ≤ C‖u‖
j
m

W m,p(Ω)‖u‖
m−j

m

Lp(Ω), (A.3.9)
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for every u ∈Wm,p
0 (Ω).

(iv) Let Ω be a domain having a bounded Cm boundary. It follows from Adams [1], Theorem 4.26 that if

q, r <∞, then there exists an operator E mapping functions defined almost everywhere in Ω to functions

defined almost everywhere in RN such that E ∈ L(Wm,r(Ω),Wm,r(RN )), E ∈ L(Lq(Ω), Lq(RN )), and

Eu = u almost everywhere in Ω. In fact, the proof of Theorem 4.26 in Adams [1] shows that the same

conclusion holds with the spaces Lq(Ω) and Lq(RN ) replaced by the spaces Cb,u(Ω) and Cb,u(RN ),

respectively. Therefore, if u ∈Wm,r(Ω) ∩ Lr(Ω) and if q, r <∞ or if q = ∞ and N < mr <∞, then it

follows from (i) above and inequality (A.3.8) that∑
|α|=j

‖Dαu‖Lp(Ω) =
∑
|α|=j

‖DαEu‖Lp(RN ) ≤ C‖Eu‖a
W m,r(RN )‖Eu‖

1−a
Lq(RN )

≤ C‖u‖a
W m,r(Ω)‖u‖

1−a
Lq(Ω);

and so, the inequality ∑
|α|=j

‖Dαu‖Lp(Ω) ≤ C‖u‖a
W m,r(Ω)‖u‖

1−a
Lq(Ω), (A.3.10)

holds for every u ∈Wm,r(Ω) ∩ Lr(Ω), provided q, r <∞ or q = ∞ and N < mr <∞.

Corollary A.3.46. If mp > N , then Wm,p
0 (Ω) ↪→ C0(Ω).

Proof. By definition of C0(Ω), this follows immediately from the density of D(Ω) in Wm,p
0 (Ω) and the

embedding Wm,p(Ω) ↪→ L∞(Ω).

Corollary A.3.47. If Ω has a uniformly C1 boundary and if mp > N , then Wm,p(Ω)∩W 1,p
0 (Ω) ↪→ C0(Ω).

Before proceeding to the proof of Corollary A.3.47, we need the following characterization of C0(Ω).

Lemma A.3.48. C0(Ω) is the set of u ∈ C(Ω) verifying the following properties:

(i) u(x) = 0, for all x ∈ ∂Ω;

(ii) for all ε > 0, there exists M <∞ such that |u(x)| ≤ ε, for all x ∈ Ω such that |x| ≥M .

Proof. It follows easily from the definition of C0(Ω) that every u ∈ C0(Ω) belongs to C(Ω) and verifies (i)

and (ii). Conversely, consider u ∈ C(Ω) verifying (i) and (ii), and let ε > 0. It follows easily from (i) and

(ii) that

{x ∈ Ω; |v(x)| ≥ ε/2} is a compact subset of Ω. (A.3.11)

Define v ∈ C(RN ) by

v(x) =

{
(u− ε/2)+ − (u+ ε/2)−, in Ω;

0, in RN \ Ω.

We have v ∈ Cc(RN ) and it follows from (A.3.11) that Supp(v) is a compact subset of Ω. Furthermore,

‖u− v|Ω‖L∞ ≤ ε/2. (A.3.12)
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Finally, let (ρn)n∈N be a sequence of mollifiers, and let vn = ρn ∗ v. We have vn ∈ D(RN ), and vn −→
n→∞

v in

L∞(RN ) (see Brezis [17], Proposition IV.21, p.70). Furthermore, for n large enough, Supp(vn) is a compact

subset of Ω. Choose n large enough, so that Supp(vn) is a compact subset of Ω and

‖v − vn‖L∞ ≤ ε/2, (A.3.13)

and set uε = (vn)|Ω. We have uε ∈ D(Ω), and it follows from (A.3.12) and (A.3.13) that ‖u − uε‖L∞ ≤ ε.

Since ε is arbitrary, it follows that u ∈ C0(Ω). Hence the result.

Remark A.3.49. Here are some simple observations about Lemma A.3.48.

(i) It follows from Lemma A.3.48 that if Ω is bounded, then C0(Ω) = {u ∈ C(Ω); u|∂Ω = 0}. If Ω is

unbounded, then C0(Ω) is the set of u ∈ C(Ω) that vanish on ∂Ω and such that |u(x)| → 0, as |x| → ∞,

x ∈ Ω.

(ii) It follows immediately from Lemma A.3.48 that if u ∈ C0(Ω), then also u+, u− ∈ C0(Ω).

Corollary A.3.50 Let 1 ≤ p <∞. If Ω has a C1 boundary, then W 1,p
0 (Ω) ∩ Cb,u(Ω) ⊂ C0(Ω).

Proof. Consider u ∈W 1,p
0 (Ω)∩Cb,u(Ω). In particular, u is uniformly continuous, and since also u ∈ Lp(Ω),

it follows easily that |u(x)| → 0, as |x| → ∞, x ∈ Ω. On the other hand, it follows from Proposition A.3.23 (ii)

that u|∂Ω = 0; and so, u ∈ C0(Ω).

Proof of Corollary A.3.47. The result follows from the embedding Wm,p(Ω) ↪→ Cb,u(Ω) (see Theo-

rem A.3.40 (v)) and from Corollary A.3.50.

A.3.5. The Sobolev spaces W−m,q(Ω).

Definition A.3.51. For 1 ≤ p < ∞ and m ∈ N, one defines W−m,p′(Ω) as the (topological) dual of

Wm,p
0 (Ω). One defines H−m(Ω) = W−m,2(Ω), so that H−m(Ω) = (Hm

0 (Ω))?.

Remark A.3.52. Here are some simple consequences of Definition A.3.51.

(i) It follows from the dense embedding D(Ω) ↪→ Wm,p
0 (Ω) that W−m,p′(Ω) is a space of distributions on

Ω. In particular,

〈f, ϕ〉W−m,p′ ,W m,p
0

= 〈f, ϕ〉D′,D,

for every f ∈W−m,p′(Ω) and ϕ ∈ D(Ω). Furthermore, it follows from the dense embedding Wm,p
0 (Ω) ↪→

Lp(Ω) and Proposition A.1.5 that Lp′(Ω) ↪→ W−m,p′(Ω). If p > 1, then the embedding is dense by

Proposition A.3.5 and Proposition A.1.5. In particular, D(Ω) is dense in W−m,p′(Ω). Furthermore,

〈f, ϕ〉W−m,p′ ,W m,p
0

=
∫

Ω

fϕ dx,
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for every f ∈ Lp′(Ω) and ϕ ∈ D(Ω) (and, by density, for every ϕ ∈ Wm,p
0 (Ω)). Note also that a

distribution T ∈ D′(Ω) defines (by density of D(Ω) in Wm,p
0 (Ω)) an element of W−m,p′(Ω), if and only

if there exists a constant C such that

|〈T, ϕ〉D′,D| ≤ C‖ϕ‖W m,p ,

for all ϕ ∈ D(Ω).

(ii) Assume that that 1 ≤ q ≤ ∞ is such that Wm,p
0 (Ω) ↪→ Lq(Ω). Then Lq′(Ω) ↪→ W−m,p′(Ω). Further-

more, if p > 1, then the embedding is dense. In the case q <∞, the result follows from Proposition A.1.5

(observe that if p > 1, D(Ω) ⊂Wm,p
0 (Ω); and so, the embedding Wm,p

0 (Ω) ↪→ Lq(Ω) is dense). Suppose

now that q = ∞, that is Wm,p
0 (Ω) ↪→ L∞(Ω). It follows that the linear form Wm,p

0 (Ω) → R defined by

ϕf : u 7→
∫

Ω

u(x)f(x) dx,

is continuous for every f ∈ L1(Ω). This defines a mapping L1(Ω) → W−m,p′(Ω). This mapping is

injective since D(Ω) ⊂Wm,p
0 (Ω); and so L1(Ω) ↪→W−m,p′(Ω). If furthermore p > 1, then by (i) above,

D(Ω) is dense in W−m,p′(Ω); and so L1(Ω) ⊃ D(Ω) is dense in W−m,p′(Ω).

(iii) Like any distribution, an element of W−m,p′(Ω) can be localized. Indeed, if T ∈ W−m,p′(Ω) and Ω′ is

an open subset of Ω, then one defines T|Ω′ as follows. Let ϕ ∈ D(Ω′) and let ϕ̃ ∈ D(Ω) be equal to ϕ on

Ω′ and to 0 on Ω \ Ω′. Then

Ψ(ϕ) = 〈ϕ̃, T 〉W m,p
0 (Ω),W−m,p′ (Ω)

defines a distribution Ψ ∈ D′(Ω′). Since ‖ϕ̃‖W m,p
0 (Ω′) ≤ ‖ϕ‖W m,p

0 (Ω), it follows that Ψ ∈ W−m,p′(Ω′),

and one sets T|Ω′ = Ψ. It is clear that the operator

PΩ′ :

W−m,p′(Ω) →W−m,p′(Ω′)

T 7→ T|Ω′

is linear and continuous, and is consistent with the usual restriction of functions.

(iv) Even though Hm
0 (Ω) is a Hilbert space, one generally does not identify H−m(Ω) with Hm

0 (Ω). One

rather identifies L2(Ω) with its dual, so that H−m(Ω) becomes a subspace of D′(Ω) containing L2(Ω).

In particular, if u ∈ Hm
0 (Ω) and v ∈ L2(Ω), then

〈u, v〉Hm
0 ,H−m =

∫
Ω

u(x)v(x) dx. (A.3.14)

Taking u = v ∈ Hm
0 (Ω) in (A.3.14), it follows that

‖u‖2L2 ≤ ‖u‖Hm
0
‖u‖H−m , for all u ∈ Hm

0 (Ω). (A.3.15)

In addition, since by definition ‖u‖H−m = sup{〈u, v〉H−m,Hm
0

; ‖v‖Hm = 1}, we deduce from (A.3.14)

that

‖u‖H−m ≤ ‖u‖L2 , (A.3.16)

for all u ∈ L2(Ω).
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(v) Since Dα is bounded from Hk
0 (Ω) to Hk−j

0 (Ω), for every k ≥ j and every multi-index α of length j, it

follows easily from the definition and identity (A.3.14) that Dα is a bounded operator from H−m(Ω)

to H−m−j(Ω), for every m ∈ N. Since also Dα is bounded from Hk(Ω) to Hk−j(Ω), for every k ≥ j, it

follows easily that if k ≤ j, then Dα is bounded from Hk(Ω) to Hk−j(Ω).

(vi) In particular, 4 defines a linear, continuous operator from H1(Ω) to H−1(Ω). Note that for u ∈ H1(Ω),

the linear form 4u ∈ H−1(Ω) on H1
0 (Ω) is defined by

〈4u, v〉 = −
∫

Ω

∇u(x) · ∇v(x) dx, for v ∈ H1
0 (Ω). (A.3.17)

This is clear for v ∈ D(Ω) and follows by density for v ∈ H1
0 (Ω). We will see in Section A.5 that for λ

not too negative, 4− λI defines an isomorphism from H1
0 (Ω) onto H−1(Ω).

Proposition A.3.53. Let 1 ≤ p <∞. Then a distribution T ∈ D′(Ω) belongs to W−1,p′(Ω) if and only if

there exists f, g1, · · · , gN ∈ Lp′(Ω) such that

T = f +
N∑

j=1

∂gj

∂xj
, in D′(Ω).

Furthermore, one can choose f, g1, · · · , gN such that ‖T‖W−m,p′ = ‖f‖Lp′ + ‖g1‖Lp′ + · · ·+ ‖gN‖Lp′ .

Proof. See Brezis [17], Proposition IX.20.

Remark A.3.54. It is easily verified that the decomposition of Proposition A.3.53 is not unique.

When Ω = RN , one can define H−m in terms of the Fourier transform. More precisely, the following

result is an easy consequence of Proposition A.3.1.

Proposition A.3.55. For every m ∈ N, the following properties hold:

(i) H−m(RN ) = {u ∈ S ′(RN ); (1 + |ξ|2)−m/2û(ξ) ∈ L2(RN )};

(ii) ‖u‖H−m ≈ ‖(1 + |ξ|2)−m/2û(ξ)‖L2 .

Corollary A.3.56. If m, j are nonnegative integers, then

‖u‖L2(RN ) ≤ ‖u‖
m

j+m

Hj(RN )
‖u‖

j
j+m

H−m(RN )
,

for all u ∈ Hj(RN ).

Proof. We have

‖u‖2L2(RN ) = ‖û‖2L2(RN ) =
∫

RN

|(1 + |ξ|2)j/2û(ξ)|
2m

j+m |(1 + |ξ|2)−m/2û(ξ)|
2j

j+m dξ.

Applying Hölder’s inequality, we get

‖u‖2L2(RN ) ≤ ‖(1 + | · |2)j/2û‖
2m

j+m

L2(RN )
‖(1 + | · |2)−m/2û‖

2m
j+m

L2(RN )
.
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Hence the result, by Propositions A.3.1 and A.3.55.

Corollary A.3.57. If m, j are nonnegative integers, then

‖u‖L2(Ω) ≤ ‖u‖
m

j+m

Hj
0(Ω)

‖u‖
j

j+m

H−m(Ω),

for all u ∈ Hj
0(Ω).

Proof. By density, it suffices to establish the result for u ∈ D(Ω). Then the result follows by applying

Corollary A.3.56 to u defined by (A.3.1)

We end this section with a useful density result.

Proposition A.3.58. Let m, j be nonnegative integers and let 1 ≤ p, q < ∞. The following properties

hold:

(i) D(Ω) is dense in Wm,p
0 (Ω) ∩W j,q

0 (Ω);

(ii) if q > 1, then D(Ω) is dense in Wm,p
0 (Ω) ∩W−j,q′(Ω);

(iii) if p, q > 1, then D(Ω) is dense in W−m,p′(Ω) ∩W−j,q′(Ω);

(iv) D(Ω) is dense in Wm,p
0 (Ω) ∩ C0(Ω);

(v) if p > 1, then D(Ω) is dense in W−m,p′(Ω) ∩ C0(Ω);

Proof. LetX = Wm,p
0 (Ω)∩W j,q

0 (Ω). It follows from Proposition A.1.17 thatX? = W−m,p′(Ω)+W−j,q′(Ω).

Suppose that f ∈ X? is such that 〈f, ϕ〉X?,X = 0 for all ϕ ∈ D(Ω) and write f = f1+f2 with f1 ∈W−m,p′(Ω)

and f2 ∈W−j,q′(Ω). We have (see Proposition A.1.17)

〈f, ϕ〉X?,X = 〈f1, ϕ〉W−m,p′ ,W m,p
0

+ 〈f2, ϕ〉W−j,q′ ,W j,q
0

= 〈f1, ϕ〉D′,D + 〈f2, ϕ〉D′,D

= 〈f1 + f2, ϕ〉D′,D = 〈f, ϕ〉D′,D.

It follows that f = 0 in D′(Ω), hence in X? (see Remark A.1.18). Therefore, D(Ω) is dense in X. This

proves property (i), and properties (ii) and (iii) are proved by the same argument (note that if p > 1, then

Wm,p
0 (Ω) is reflexive; and so, (W−m,p′(Ω))? = Wm,p

0 (Ω)). Properties (iv) and (v) are also proved by the

same argument, since the dual of C0(Ω) is also a space of distributions (since D(Ω) is dense in C0(Ω)).

Remark A.3.59. Since D(Ω) is not dense in L∞(Ω), it is clear that D(Ω) is neither dense in Wm,p
0 (Ω) ∩

L∞(Ω) nor in W−m,p′(Ω)∩L∞(Ω). However, one shows easily, by a standard truncation and regularization

argument, that if u ∈Wm,p
0 (RN )∩L∞(RN ) for some nonnegative integerm and some p ∈ [1,∞) (respectively,

if u ∈W−m,p′(RN )∩L∞(RN )), then there exists a sequence (un)n∈N ⊂ D(RN ) such that ‖un‖L∞ ≤ ‖u‖L∞

and such that un ⇀ u in Wm,p
0 (RN ) (respectively, in W−m,p′(RN )) as n→∞.

A.3.6. Time-dependent functions with values in Sobolev spaces. In this section, we consider an

open interval I of R (bounded or not) and we collect a few results concerning functions from I with values

in Sobolev spaces. We begin with some compactness results.
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Lemma A.3.60. If I is an interval of R and if m, j are nonnegative integers, j ≥ 1, then L∞(I,Hj
0(Ω)) ∩

W 1,∞(I,H−m(Ω)) ↪→ C0, j
j+m (I, L2(Ω)). Furthermore,

‖f(t)− f(s)‖2L2 ≤ 2|t− s|
j

j+m ‖f‖
m

j+m

L∞(I,Hj
0)
‖f ′‖

j
j+m

L∞(I,H−m),

for all f ∈ L∞(I,Hj
0(Ω)) ∩W 1,∞(I,H−m(Ω)) and s, t ∈ I.

Proof. Let f ∈ L∞(I,Hj
0(Ω))∩W 1,∞(I,H−m(Ω)) and s, t ∈ I. By Corollaries A.3.57 and A.2.35, we have

‖f(t)− f(s)‖L2 ≤ ‖f(t)− f(s)‖
m

j+m

Hj
0
‖f(t)− f(s)‖

j
j+m

H−m

≤ 2
m

j+m |t− s| ‖f‖
m

j+m

L∞(I,Hj
0)
‖f ′‖

j
j+m

L∞(I,H−m).

Hence the result.

Proposition A.3.61. Let I be a bounded interval of Rand let m, j be nonnegative integers, j ≥ 1. If

(fn)n∈N is a bounded sequence of L∞(I,Hj
0(Ω)) ∩W 1,∞(I,H−m(Ω)), then the following properties hold:

(i) There exists f ∈ L∞(I,Hj
0(Ω)) ∩W 1,∞(I,H−m(Ω)) and a subsequence (fnk

)k∈N such that for every

t ∈ I, fnk
(t) ⇀ f(t) in Hj

0(Ω), as k →∞. In particular,∫
I

fnk
(t)ϕ(t) dt ⇀

∫
I

f(t)ϕ(t) dt,

in Hj
0(Ω), for every ϕ ∈ Cc(I);

(ii) if Ω is bounded, then also fnk
→ f in C(I, L2(Ω));

(iii) if ‖fnk
(t)‖L2 → ‖f(t)‖L2 as k →∞, uniformly on I, then also fnk

→ f in C(I, L2(Ω)) as k →∞;

(iv) if (fn)n∈N ⊂ C(I,Hj
0(Ω)) and ‖fnk

(t)‖Hj → ‖f(t)‖Hj as k → ∞, uniformly on I, then also f ∈

C(I,Hj
0(Ω)) and fnk

→ f in C(I,Hj
0(Ω)) as k →∞.

Proof. (i) follows from Proposition A.2.46 (i) and (ii) applied with r = ∞, X = Hj
0(Ω) and Y = H−m(Ω).

(ii) follows from Theorem A.3.42 and Proposition A.2.46 (iv) (or Theorem A.2.45) applied with X = Hj
0(Ω),

Y = H−m(Ω) and B = L2(Ω). (iii) follows from Lemma A.3.60 and Proposition A.2.46 (iii) applied

with X = Hj
0(Ω), Y = H−m(Ω) and B = L2(Ω). (iv) follows from Proposition A.2.46 (iii) applied with

X = B = Hj
0(Ω) and Y = H−m(Ω).

Proposition A.3.62. Let I be a bounded interval of R, let m, j be nonnegative integers, j ≥ 1 and let

(fn)n∈N be a bounded sequence of L∞(I,Hj(Ω)) ∩W 1,∞(I,H−m(Ω)). If Ω is bounded and has the cone

property, then there exist f ∈ L∞(I,Hj(Ω)) ∩ W 1,∞(I,H−m(Ω)) and a subsequence (fnk
)k∈N such that

fnk
→ f in C(I, L2(Ω)).

Proof. The result follows from Theorem A.3.41, and Theorem A.2.45 applied with X = Hj(Ω), Y =

H−m(Ω) and B = L2(Ω). Property f ∈ L∞(I,Hj(Ω)) ∩W 1,∞(I,H−m(Ω)) follows from Theorem A.2.20

and Corollary A.2.39.
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Lemma A.3.63. Let F : R → R be a Lipschitz continuous function such that F (0) = 0 and set

G(x) =
∫ x

0

F (s) ds.

If u ∈ C1(I, L2(Ω)), then the function f(t) =
∫

Ω

G(u(t)) dx belongs to C1(I), and

f ′(t) =
∫

Ω

F (u(t))ut(t) dx, (A.3.18)

for all t ∈ I.

Proof. Let L denote the Lipschitz constant of F . Since |G(x)| ≤ Lx2/2, it follows that G(u(t)) ∈ L1(Ω)

for all t ∈ I; and so, f is well defined. Furthermore, since |G(y)−G(x)| ≤ L|y + x| |y − x|/2, it follows that

f ∈ C(I). Finally, observe that

|G(y)−G(x)− (y − x)F (x)| ≤ L

2
|y − x|2;

and so,∣∣∣∣ 1h
{∫

Ω

G(u(t+ h)) dx−
∫

Ω

G(u(t)) dx
}
−
∫

Ω

F (u(t))
u(t+ h)− u(t)

h
dx

∣∣∣∣ ≤
L

2

∫
Ω

u(t)
u(t+ h)− u(t)

h
dx,

for all t ∈ I and h 6= 0 such that t+ h ∈ I. The result follows by letting h ↓ 0.

Corollary A.3.64. Let m be a positive integer and let 1 < p <∞. Then the following properties hold:

(i) Lp(I,Hm
0 (Ω)) ∩W 1,p′(I,H−m(Ω)) ↪→ Cb(I, L2(Ω));

(ii) if u ∈ Lp(I,Hm
0 (Ω)) ∩W 1,p′(I,H−m(Ω)), then the function f(t) = ‖u(t)‖2L2 belongs to W 1,1(I) and

f ′(t) = 〈ut(t), u(t)〉H−m,Hm
0
,

for almost all t ∈ I.

Proof. Let u ∈ C1
c (I,Hm

0 (Ω)). Applying Lemma A.3.63 with F (x) = x and identity (A.3.14), we get

‖u(t)‖2L2 = ‖u(s)‖2L2 + 2
∫ t

s

〈u(σ), ut(σ)〉Hm
0 ,H−m dσ, (A.3.19)

for all s, t ∈ I. Applying Hölder’s inequality in time, we obtain easily

‖u(t)‖p
L2 ≤ C(‖u(s)‖2L2 + ‖u‖p

Lp(I,Hm
0 ) + ‖ut‖p

Lp(I,H−m)).

Integration in s yields

‖u‖p
L∞(I,L2) ≤ C(‖u‖p

Lp(I,Hm
0 ) + ‖ut‖p

Lp(I,H−m)),

and property (i) follows by density (see Proposition A.2.48). Finally, consider a function u ∈ Lp(I,Hm
0 (Ω))∩

W 1,p′(I,H−m(Ω)) and let (un)n∈N ⊂ C1
c (I,Hm

0 (Ω)) be such that un −→
n→∞

both in Lp(I,Hm
0 (Ω)) and in
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W 1,p′(I,H−m(Ω)). After possibly extracting a subsequence, we may assume that there exist f ∈ Lp(I)

and g ∈ Lp′(I) such that ‖un(t)‖Hm ≤ f(t) and ‖(un)t(t)‖H−m ≤ g(t) for almost all t ∈ I, and that

un(t) −→
n→∞

u(t) and (un)t(t) −→
n→∞

ut(t) for almost all t ∈ I. Applying identity (A.3.19) to un, then letting

n→∞ and applying property (i) and the dominated convergence theorem, it follows that (A.3.19) holds for

u as well. Hence property (ii).

Corollary A.3.65. Let F and G be as in Lemma A.3.63, let m be a positive integer and let 1 < p < ∞.

If u ∈ Lp(I,Hm
0 (Ω)) ∩W 1,p′(I,H−m(Ω)), then the function f(t) =

∫
Ω

G(u(t)) dx belongs to W 1,1(I), and

f ′(t) = 〈ut(t), F (u(t))〉H−1,H1
0
,

for almost all t ∈ I.

Proof. The proof is identical to the proof of property (ii) of Corollary A.3.64 above, by applying the

integrated version of formula (A.3.18) instead of formula (A.3.19).

Proposition A.3.66. Let 1 ≤ p ≤ ∞ and let f ∈ L1(I, Lp(Ω)). If f(t) ≥ 0 almost everywhere on Ω for

almost all t ∈ I, then

∫
I

f(t) dt ≥ 0 almost everywhere on Ω.

Proof. Since the set {u ∈ Lp(Ω); u ≥ 0 almost everywhere on Ω} is a closed convex cone, the result follows

from Proposition A.2.16 if I is bounded, then from an obvious truncation argument if I is unbounded.

Corollary A.3.67 Let 1 < p < ∞ and let u ∈ Lp(I,H1(Ω)) ∩W 1,p′(I,H−1(Ω)) and v ∈ Lp(I,H1
0 (Ω))

be such that u(t) ≤ v(t) almost everywhere on Ω for almost all t ∈ I. There exist (un)n∈N ⊂ C1
c (I,H1(Ω))

and (vn)n∈N ⊂ C1
c (I,H1

0 (Ω)) such that un(t) ≤ vn(t) almost everywhere on Ω for all t ∈ I and such that

un −→
n→∞

u in Lp(I,H1(Ω)) ∩W 1,p′(I,H−1(Ω)) and vn −→
n→∞

v in Lp(I,H1
0 (Ω)).

Proof. It is sufficient to repeat the steps of the proof of Proposition A.2.48. By applying the extension

operator constructed in Corollary A.2.33 with a ≥ 0, one is reduced to the case I = R (note that if a ≥ 0,

then the extension operator is order preserving). As well, truncation by a nonnegative function is order

preserving. Finally, it follows from Proposition A.3.66 that convolution with a sequence of nonnegative

mollifiers is order preserving. Hence the result.

Corollary A.3.68. Let 1 < p < ∞ and let u ∈ Lp(I,H1(Ω)) ∩ W 1,p′(I,H−1(Ω)). If there exists v ∈

Lp(I,H1
0 (Ω)) such that u(t) ≤ v(t) almost everywhere on Ω for almost all t ∈ I and if u ∈ C(I, L2(Ω)), then

the function f(t) =
∫

Ω

u+(t)2 dx belongs to W 1,1(I), and

f ′(t) = 2〈ut(t), u+(t)〉H−1,H1
0
,

for almost all t ∈ I.

Proof. We proceed in two steps.
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Step 1. Suppose first that u ∈ C1
c (I,H1(Ω)) and v ∈ C1

c (I,H1
0 (Ω)). It follows from Lemma A.3.63 that∫

Ω

u+(t)2 dx =
∫

Ω

u+(s)2 dx+
∫ t

s

∫
Ω

u+(σ)ut(σ) dσ,

for all s, t ∈ I. By Corollary A.3.35 (applied with u = 0, M = −u and w = −v) and identity (A.3.14), we

get ∫
Ω

u+(t)2 dx =
∫

Ω

u+(s)2 dx+
∫ t

s

〈u+(σ), ut(σ)〉H1
0 ,H−1 ,

for all s, t ∈ I.

Step 2. Let now u and v satisfy the assumptions of the corollary, and apply Corollary A.3.67. It follows

from step 1 that ∫
Ω

u+
n (t)2 dx =

∫
Ω

u+
n (s)2 dx+

∫ t

s

〈u+
n (σ), (un)t(σ)〉H1

0 ,H−1 , (A.3.20)

for all s, t ∈ I. After possibly extracting a subsequence, we may assume that there exist f ∈ Lp(I) and

g ∈ Lp′(I) such that ‖un(t)‖H1 ≤ f(t) and ‖(un)t(t)‖H−1 ≤ g(t) for almost all t ∈ I, and that un(t) −→
n→∞

u(t)

in H1(Ω) and (un)t(t) −→
n→∞

ut(t) in H−1(Ω) for almost all t ∈ I. Note that u+
n (t) −→

n→∞
u+(t) in H1(Ω) for

almost all t ∈ I, by Corollary A.3.15. Since u+(t) ∈ H1
0 (Ω) for almost all t ∈ I (Corollary A.3.35), it follows

that u+
n (t) −→

n→∞
u+(t) in H1

0 (Ω) for almost all t ∈ I. Therefore, letting n → ∞ in identity (A.3.20) and

applying the dominated convergence theorem, we obtain∫
Ω

u+(t)2 dx =
∫

Ω

u+(s)2 dx+
∫ t

s

〈u+(σ), ut(σ)〉H1
0 ,H−1 , (A.3.21)

for almost all s, t ∈ I. Since the term on the right of (A.3.21) is a continuous function of s, t and since

u ∈ C(I, L2(Ω)), it follows that (A.3.21) holds for all s, t ∈ I. Hence the result.

A.3.7. The case of complex-valued functions. Throughout Section A.3, we considered real valued

functions but the same theory can be developped for complex valued functions, with obvious modifications

which we describe below.

One has to consider the spaces D(Ω,C) and Lp(Ω,C) instead of the spaces D(Ω,R) and Lp(Ω,R). In

particular, a function f ∈ L1
loc(Ω,C) defines a distribution Tf ∈ D′(Ω,C) by the formula

〈Tf , ϕ〉 =
∫

Ω

Re(f(x)ϕ(x))dx, for all ϕ ∈ D(Ω,C).

In particular, Wm,p(Ω,C) ≈ Wm,p(Ω,R) × Wm,p(Ω,R). In other words, a complex-valued function u

belongs to Wm,p(Ω,C) if, and only if Re(u) ∈Wm,p(Ω,R) and Im(u) ∈Wm,p(Ω,R). As well, Wm,p
0 (Ω,C) ≈

Wm,p
0 (Ω,R)×Wm,p

0 (Ω,R), and it follows in particular that W−m,p′(Ω,C) ≈W−m,p′(Ω,R)×W−m,p′(Ω,R).

The scalar product on Hm(Ω,C) is defined by

(u, v)Hm =
∑

0≤|α|≤m

∫
Ω

Re(Dαu(x)Dαv(x)) dx. (A.3.22)

Formula (A.3.14) becomes

〈u, v〉Hm
0 ,H−m = Re

(∫
Ω

u(x)v(x) dx
)
, (A.3.23)
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and formula (A.3.17) becomes

〈4u, v〉 = −Re
(∫

Ω

∇u(x) · ∇v(x) dx
)
, for v ∈ H1

0 (Ω,C). (A.3.24)

Therefore, most of the results that we established for real-valued functions still hold for complex-valued

functions, and are proved by considering separately the real and imaginary parts. The only exceptions are

Corollaries A.3.16, A.3.17, A.3.30, A.3.31, A.3.35, A.3.68 and Proposition A.3.66 that do not make sense

anymore, and Theorem A.3.12 and Corollaries A.3.14, A.3.15, A.3.29, A.3.30 and A.3.32 which must be

modified as follows.

Theorem A.3.69. If F : C → C is a Lipschitz continuous function such that F (0) = 0 and if 1 ≤ p ≤ ∞,

then the following properties hold.

(i) F (u) ∈W 1,p(Ω,C), for every u ∈W 1,p(Ω,C).

(ii) If |F (z1) − F (z2)| ≤ L(z1, z2)|z1 − z2| for all z1, z2 ∈ C, where L : C × C → [0,∞) is some continous

function, then |∇F (u)| ≤ L(u, u)|∇u| a.e. for every u ∈W 1,p(Ω,C).

(iii) If F is C1 (considered as a function R2 → R2) except at a finite number of points, then ∇F (u) =

DF (u)∇u a.e. for every u ∈ W 1,p(Ω,C). If moreover p <∞, then the mapping u 7→ F (u) is continous

W 1,p(Ω,C) →W 1,p(Ω,C).

(iv) If p <∞, then in properties (i) and (iii) above, one may replace W 1,p(Ω,C) by W 1,p
0 (Ω,C).

Proof. We proceed in five steps.

Step 1. Suppose F is C1 (considered as a function R2 → R2), then F (u) ∈ W 1,p(Ω,C) and ∇F (u) =

DF (u)∇u a.e. for every u ∈ W 1,p(Ω,C). This is established as in Brezis [17], Proposition IX.5. The idea

of the proof is to approximate u by a sequence (un)n∈N ⊂W 1,p(Ω,C) ∩ C∞(Ω,C).

Step 2. Proof of Property (i). Consider a sequence of mollifiers (ρj)j∈N ⊂ D(R2) and set Fj = ρj ? F .

It follows that Fj −→
j→∞

F uniformly on C. Moreover, we have |Fj(z1)− Fj(z2)| ≤ L|z1 − z2|, where L is the

Lipschitz constant of F . Given u ∈W 1,p(Ω,C), it follows from Step 1 that Fj(u) ∈W 1,p(Ω,C) and that

∇Fj(u) = DFj(u)∇u.

In particular, |∇Fj(u)| ≤ L|∇u|. This implies that (up to a subsequence) ∇Fj(u) converges in Lp weak

(weak-? if p = ∞) to some function ψ (apply Dunford-Pettis’ theorem if p = 1). Since Fj(u) → F (u) in

Lp(Ω,C), it follows that ψ = ∇F (u); and so, F (u) ∈W 1,p(Ω) .

Step 3. Proof of Property (ii). Let Fj be as in Step 2. We have |DFj(z)| ≤ L(z, z); and so, |∇Fj(u)| ≤

L(u, u)|∇u|. Since ∇Fj(u) converges in Lp weak (weak-? if p = ∞) to ∇F (u) (see Step 2), we deduce that

|∇F (u)| ≤ L(u, u)|∇u|. To see this, we need only show that if a sequence (fn)n≥0 ⊂ Lp(Ω) verifies fn −→
n→∞

f

and |fn| ≤ g a.e., then |f | ≤ g a.e. Let ϕ ∈ Lp′(Ω), ϕ ≥ 0. We have∫
Ω

gϕ ≥
∫

Ω

fnϕ −→
n→∞

∫
Ω

fϕ;
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and so, ∫
Ω

(g − f)ϕ ≥ 0,

which implies that g ≥ f a.e.

Step 4. Proof of Property (iii). Let E = (xi)1≤i≤k be such that F ∈ C1(C \ E,C), and let again Fj be

as in Step 2. Note that DF ∈ L∞(C,C2), so that F ′j = ρj ? F
′ (see Brezis [17], Lemme IX.1). It follows

that F ′j → F ′ on C \ E. Since ∇u = 0 a.e. on ω = {x ∈ Ω; u(x) ∈ E}, we see that DFj(u)∇u converges to

DF (u)∇u a.e. It follows that ∇F (u) = DF (u)∇u. Suppose now un −→
n→∞

u in W 1,p(Ω,C). We have

∇F (un)−∇F (u) = (DF (un)−DF (u))∇u+DF (u)(∇un −∇u).

Since DF (un(x)) −→
n→∞

DF (u(x)) if x 6∈ ω and ∇u = 0 a.e. in ω, we see that ∇F (un) −→
n→∞

∇F (u) a.e. If

p <∞, then it follows that ∇F (un) −→
n→∞

∇F (u) in Lp(Ω,C) by dominated convergence.

Step 5. Proof of Property (iv). Let u ∈W 1,p
0 (Ω,C) and let (un)n≥0 ⊂ D(Ω,C) be such that un −→

n→∞
u in

W 1,p(Ω,C). Up to a subsequence, we may assume that there exists ψ ∈ Lp(Ω) such that |∇un| ≤ ψ a.e. It

follows from (ii) that |∇F (un)| ≤ Lψ a.e., where L is the Lipschitz constant of F . We deduce as in Step 1

that F (un) −→
n→∞

F (u) in W 1,p(Ω,C) weak; and so F (u) ∈W 1,p
0 (Ω,C).

Remark A.3.70. When F does not satisfy the assumption of (iii), we do not know if the mapping u 7→ F (u)

is continuous W 1,p(Ω,C) → W 1,p(Ω,C). Note that the formula “∇F (u) = DF (u)∇u” does not hold in

general, even for smooth functions u. Indeed, take for example

F (u) =


u if |u| ≤ 1,
u

|u|
if |u| ≥ 1.

F is C∞, except on the set {|u| = 1} where DF is not defined. Taking for example u(x) = eia·x, with

a ∈ RN , we see that F (u) = u, so that ∇F (u) = iaeia·x, but DF (u)∇u is not defined a.e. What happens is

that (as opposed to the real valued case) if E ⊂ C is a set of measure 0, then ∇u need not vanish a.e. on

the set {u ∈ E}. Take for example u as above and E = {|z| = 1}.

Remark A.3.71. Corollaries A.3.15 and A.3.30 must be modified as follows. If u ∈W 1,p(Ω,C), it follows

that Re(u), Im(u), |u| ∈ W 1,p(Ω,R). In addition, one has almost everywhere ∇Re(u) = Re(∇u), ∇Im(u) =

Im(∇u) and

|∇|u| |2 =


0, if u = 0,

|∇u|2 −
∣∣∣∣Im(u∇u|u|

)∣∣∣∣2 , if u 6= 0.

(In particular, one has |∇|u| | ≤ |∇u|, but in general |∇|u| | 6≡ |∇u|. Note that this is in contrast with

the real valued case.) If p < ∞, then the mappings u 7→ Re(u), u 7→ Im(u) and u 7→ |u| are continous

W 1,p(Ω,C) → W 1,p(Ω,R). Moreover, if u ∈ W 1,p
0 (Ω,C), then Re(u), Im(u), |u| ∈ W 1,p

0 (Ω,R). This follows

from properties (iii) and (iv) of Theorem A.3.69.

Corollary A.3.72. Let 1 ≤ p, q, r ≤ ∞ and α > 0 be such that
1
r

=
α

p
+

1
q

and let F : C → C be a locally

Lipschitz function such that F (0) = 0 and

|F (z1)− F (z2)| ≤ L(|z1|α + |z2|α)|z1 − z2|,
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for all z1, z2 ∈ C. Then, for every u ∈W 1,q(Ω,C)∩Lp(Ω,C), we have F (u) ∈W 1,r(Ω,C) and ‖F (u)‖W 1,r ≤

2L‖u‖α
Lp‖u‖W 1,q . Furthermore, |∇F (u)| ≤ 2L|u|α|∇u| almost everywhere on Ω. In addition, if q, r <∞ and

if u ∈W 1,q
0 (Ω,C), then F (u) ∈W 1,r

0 (Ω,C).

Proof. Consider the function Fn defined by

Fn(z) =


F (z), if |z| ≤ n,

F

(
n
z

|z|

)
, if − n ≤ |z| ≥ n.

It follows that Fn is globally Lipschitz. The result now follows rather easily by applying Theorem A.3.69 (ii)

then passing to the limit as n→∞ (apply Dunford-Pettis’ theorem to pass to the limit if r = 1).

A.4. Elliptic equations. Throughout this section, we consider an open subset Ω ⊂ RN . We consider

real-valued functions, and we refer to Section A.4.6 for the case of complex-valued functions. We describe

some existence and regularity results of solutions of some second order elliptic equations with Dirichlet

boundary conditions. For that purpose, it is convenient to define λ1 = λ1(Ω) ∈ R by

λ1 = inf
{∫

Ω

|∇u|2, u ∈ H1
0 (Ω),

∫
Ω

|u|2 = 1
}
. (A.4.1)

Remark A.4.1. It follows from (A.4.1) that λ1 ≥ 0. The property λ1 > 0 is equivalent to Poincaré’s

inequality (A.3.7) for p = 2 and depends therefore on geometric properties of Ω. In particular, if Ω is

bounded in one direction or if |Ω| is finite, then λ1 > 0 (see Theorem A.3.37). On the other hand, if

Ω = RN , then λ1 = 0 (see Remark A.3.38, (ii)).

We begin with a simple coercivity inequality.

Lemma A.4.2. Let λ1 be defined by (A.4.1). If λ > −λ1, then

min

{
1,
λ+ λ1

1 + λ1

}
‖u‖2H1 ≤

∫
Ω

{|∇u|2 + λ|u|2} dx ≤ max

{
1,
λ+ λ1

1 + λ1

}
‖u‖2H1 ,

for all u ∈ H1
0 (Ω). In particular,

‖|u‖|2 =
∫

Ω

{|∇u|2 + λ|u|2} dx (A.4.2)

defines an equivalent norm on H1
0 (Ω).

Proof. Let ‖|·‖| be defined by (A.4.2) (this makes sense by (A.4.1)). Assume first that λ ≥ 1. In particular,
λ+ λ1

1 + λ1
≥ 1. Given ε > 0, it follows from (A.4.1) that

‖u‖2H1 = (1− ε)
∫

Ω

|∇u|2 dx+ ε

∫
Ω

|∇u|2 dx+
∫

Ω

|u|2 dx

≥ (1− ε)
∫

Ω

|∇u|2 dx+ (ελ1 + 1)
∫

Ω

|u|2 dx.

Choosing ε =
λ− 1
λ+ λ1

, we see

‖u‖2H1 ≥
1 + λ1

λ+ λ1
‖|u‖|2.
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Since obviously ‖|u‖|2 ≥ ‖u‖2H1 , the result follows. Assume now that λ ≤ 1 (i.e.
λ+ λ1

1 + λ1
≤ 1). Given ε > 0,

it follows from (A.4.1) that

‖|u‖|2 = (1− ε)
∫

Ω

|∇u|2 dx+ ε

∫
Ω

|∇u|2 dx+ λ

∫
Ω

|u|2 dx

≥ (1− ε)
∫

Ω

|∇u|2 dx+ (ελ1 + λ)
∫

Ω

|u|2 dx.

Choosing ε =
1− λ

λ+ λ1
, we get

‖|u‖|2 ≥ λ+ λ1

1 + λ1
‖u‖2H1 .

Since obviously ‖|u‖|2 ≤ ‖u‖2H1 , the proof is complete.

We equip H−1(Ω) with the dual norm, that is

‖u‖H−1 = sup{〈u, v〉H−1,H1
0
, v ∈ H1

0 (Ω), ‖v‖H1
0

= 1},

and we denote by ()H−1 the scalar product of H−1(Ω).

A.4.1. Existence. We begin with a simple consequence of Lax-Milgram’s theorem.

Lemma A.4.3. For every f ∈ H−1(Ω), there exists a unique solution u ∈ H1
0 (Ω) of equation

−4u+ u = f, in H−1(Ω).

Furthermore,

‖f‖H−1 = ‖u‖H1 . (A.4.3)

In particular,

‖u‖H1 ≤ ‖f‖L2 , (A.4.4)

whenever f ∈ L2(Ω).

Proof. By Theorem A.1.3, for every f ∈ H−1(Ω) there exists a unique u ∈ H1
0 (Ω) such that

(u, v)H1 = 〈f, v〉H−1,H1
0
, for every v ∈ H1

0 (Ω). (A.4.5)

(A.4.5) is equivalent, by density, to equation∫
Ω

∇u · ∇v + uv = 〈f, v〉H−1,H1
0
, for every v ∈ D(Ω),

which is equivalent to

−4u+ u = f, in H−1(Ω).

Furthermore, taking v = u in (A.4.5) yields ‖u‖2H1 ≤ ‖f‖H−1‖u‖H1 ; and so ‖u‖H1 ≤ ‖f‖H−1 . In addition,

it follows again from (A.4.5) that

|〈f, v〉H−1,H1
0
| ≤ ‖u‖H1‖v‖H1 ,
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for all v ∈ H1(Ω). Therefore, ‖f‖H−1 ≤ ‖u‖H1 , from which (A.4.3) follows. (A.4.4) is a consequence

of (A.4.3) and (A.3.16).

Remark A.4.4. Here are some simple applications of Lemma A.4.3.

(i) It follows from Lemma A.4.3 that the differential operator −4+I defines an isometry from H1
0 (Ω) onto

H−1(Ω).

(ii) It follows from (A.4.3) that for every u, v ∈ H1
0 (Ω), (u, v)H1 = (−4u+ u,−4v + v)H−1 .

(iii) It follows from property (ii) above and (A.3.17) that

(−4u+ u, u)H−1 = (u, v)H1 =
∫

Ω

∇u · ∇v + uv =
∫

Ω

u(−4v + v) =
∫

Ω

u2,

if u ∈ H1
0 (Ω) and if v ∈ H1

0 (Ω) solves equation −4v + v = u.

Theorem A.4.5. Let λ1 be defined by (A.4.1). For every λ > −λ1, the following holds:

(i) for every f ∈ H−1(Ω), there exists a unique element u ∈ H1
0 (Ω) such that

−4u+ λu = f, in H−1(Ω); (A.4.6)

(ii) ‖|f‖| = ‖u‖H1(Ω) defines on H−1(Ω) an equivalent norm to the H1 norm;

(iii) λ‖u‖H−1 ≤ ‖f‖H−1 ;

(iv) if f ∈ L2(Ω), then 4u ∈ L2(Ω), the equation makes sense in L2(Ω) and λ‖u‖L2(Ω) ≤ ‖f‖L2(Ω).

Proof. (i) For u, v ∈ H1
0 (Ω), let

b(u, v) =
∫

Ω

{∇u · ∇v + λuv} dx.

It follows easily from Lemma A.4.2 that b verifies the assumptions of Theorem A.1.3; and so, given f ∈

H−1(Ω), there exists a unique u ∈ H1
0 (Ω) such that

b(u, v) = 〈f, v〉H−1,H1
0
, for every v ∈ H1

0 (Ω). (A.4.7)

We claim that (A.4.7) is equivalent to (A.4.6). Indeed, by density, (A.4.7) is equivalent to

b(u, v) = 〈f, v〉H−1,H1
0
, for every v ∈ D(Ω).

It folows from (A.3.14) and (A.3.15) that the above equation is equivalent to

−4u+ λu = f, in D′(Ω),

which is equivalent to (A.4.6), since all terms in the equation belong to H−1(Ω). Hence (i).

(ii) It follows from Remark A.3.52, (vi) that for some constant C, ‖f‖H−1 ≤ C‖u‖H1 = ‖|f‖|. Taking

v = u in (A.4.7) yields ‖|f‖| = ‖u‖H1 ≤ C ′‖f‖H−1 . Hence (ii)
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(iii) Take the scalar product in H−1(Ω) of (A.4.6) with u. It follows that

(−4u+ u, u)H−1 + (λ− 1)‖u‖2H−1 = (f, u)H−1 .

Taking in account Remark A.4.4 (i) and (iii), we obtain

λ‖u‖2H−1 ≤ ‖u‖2L2 + (λ− 1)‖u‖2H−1 ≤ ‖f‖H−1‖u‖H−1 .

Hence (iii).

(iv) Assume f ∈ L2(Ω). Then λu + f ∈ L2(Ω); and so 4u ∈ L2(Ω). Furthermore, taking v = u in

(A.4.7) and applying (A.3.14), it follows that

λ‖u‖2L2 ≤
∫

Ω

fu ≤ ‖f‖L2‖u‖L2 .

Hence the result.

These results can be generalized in the following way. Consider a function a ∈ L1
loc(Ω) and let

σ = N/2 if N ≥ 3(σ = 1 if N = 1;σ any number > 1 if N = 2). (A.4.8)

Assume that there exist a1 ∈ Lσ(Ω) and a2 ∈ L∞(Ω) such that a = a1 + a2 almost everywhere. In other

words, assume that

a ∈ Lσ(Ω) + L∞(Ω). (A.4.9)

Note that in this splitting, we may always assume that ‖u‖Lσ is small. Indeed, given a nonnegative integer

m, we always may write a1 = αm + βm, where

αm =

{
a1, if |a1| ≥ m,

0, if |a1| < m.

Clearly, αm ∈ Lσ(Ω), βm ∈ L∞(Ω) and ‖αm‖Lσ → 0, as m→∞.

It follows from Sobolev’s embedding theorem that H1
0 (Ω) ↪→ Lr(Ω), with

r =
2σ
σ − 1

(A.4.10)

Therefore, there exists a constant K such that∣∣∣∣∫
Ω

a1uv dx

∣∣∣∣ ≤ K‖a1‖Lσ‖u‖H1‖v‖H1 , for every u, v ∈ H1
0 (Ω).

By the preceding observation, we may assume that∣∣∣∣∫
Ω

a1uv dx

∣∣∣∣ ≤ 1
2
‖u‖H1‖v‖H1 , for every u, v ∈ H1

0 (Ω).

It follows that ∣∣∣∣∫
Ω

auv dx

∣∣∣∣ ≤ 1
2
‖u‖H1‖v‖H1 +M‖u‖L2‖v‖L2 , for every u, v ∈ H1

0 (Ω), (A.4.11)
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where M = ‖a2‖L∞ . Note also that by Hölder’s inequality, ‖a1u‖Lr′ ≤ ‖a1‖Lσ‖u‖Lr and ‖a2u‖L2 ≤

‖a2‖L∞‖u‖L2 , for every u ∈ H1
0 (Ω). Since H1

0 (Ω) ↪→ Lr(Ω), it follows from Remark A.3.52 (ii) that

Lr′(Ω) ↪→ H−1(Ω). Therefore,

au ∈ H−1(Ω), for every u ∈ H1
0 (Ω). (A.4.12)

Let

λ1(−4+ a) = inf
{∫

Ω

|∇u|2 +
∫

Ω

a|u|2; u ∈ H1
0 (Ω),

∫
Ω

|u|2 = 1
}
. (A.4.13)

It follows from (A.4.11) that λ1(−4 + a) is finite, but now λ1 may be positive, negative or zero. We have

the following result.

Lemma A.4.6. Let a verify (A.4.8) and (A.4.9), and let λ1(−4 + a) be defined by (A.4.13). If λ >

−λ1(−4+ a), then

p(u) =
(∫

Ω

{|∇u|2 + a|u|2 + λ|u|2} dx
)1/2

(A.4.14)

defines on H1
0 (Ω) an equivalent norm to the H1 norm.

Proof. It follows from (A.4.13) that (A.4.14) makes sense. Furthermore, given u ∈ H1
0 (Ω), it follows from

(A.4.11) that

p(u)2 ≤ 3
2
‖∇u‖2L2 + (M + 1 + λ)‖u‖2L2 ≤ max

{
3
2
,M + 1 + λ

}
‖u‖2H1 .

On the other hand, given ε ∈ (0, 1), it follows from (A.4.13) and (A.4.11) that for every u ∈ H1
0 (Ω),

p(u)2 ≥ ε

∫
Ω

|∇u|2 + a|u|2 dx+ ((1− ε)λ1(−4+ a) + λ)
∫

Ω

|u|2 dx

≥ ε

2

∫
Ω

|∇u|2 dx+ (λ+ λ1(−4+ a)− ε(M + 1 + λ1(−4+ a)))
∫

Ω

|u|2 dx.

For ε small enough, we have λ + λ1(−4+ a) − ε(M + 1 + λ1(−4+ a)) > 0. Therefore, there exists η > 0

such that

p(u)2 ≥ η‖u‖2H1 ,

for all u ∈ H1
0 (Ω). This completes the proof.

Theorem A.4.7. Let a verify (A.4.8) and (A.4.9), and let λ1(−4 + a) be defined by (A.4.13). If λ >

−λ1(−4+ a), then for every f ∈ H−1(Ω), there exists a unique element u ∈ H1
0 (Ω) such that

−4u+ au+ λu = f, (A.4.15)

in H−1(Ω). In addition, ‖u‖H1 ≤ C‖f‖H−1 , for some constant C independent of f .

Proof. Note first that by (A.4.12), equation (A.4.15) makes sense. For u, v ∈ H1
0 (Ω), let

b(u, v) =
∫

Ω

{∇u · ∇v + auv + λuv} dx.

It follows from Lemma A.4.6 that b verifies the assumptions of Theorem A.1.3. Therefore, given f ∈ H−1(Ω),

there exists a unique u ∈ H1
0 (Ω) such that

b(u, v) = 〈f, v〉H−1,H1
0
, for every v ∈ H1

0 (Ω). (A.4.16)
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It is easily verified (see the proof of Theorem A.4.5) that (A.4.16) is equivalent to (A.4.15). The result

follows easily.

A.4.2. Hm regularity. The Hm regularity is described by the following result (see Brezis [17], Theo-

rem IX.25, Gilbarg and Trudinger [54], Theorems 8.12 and 8.13).

Theorem A.4.8. Assume Ω has a bounded boundary of class C2, let f ∈ H−1(Ω) and let λ ∈ R. If

u ∈ H1
0 (Ω) solves (A.4.6), then the following properties hold:

(i) if f ∈ L2(Ω), then u ∈ H2(Ω) and there exists a constant C depending only on Ω such that ‖u‖H2 ≤

C‖f‖L2 ;

(ii) if furthermore f ∈ Hm(Ω) for some m > 0 and if the boundary of Ω is of class Cm+2, then u ∈ Hm+2(Ω)

and there exists a constant C depending only on Ω and m such that ‖u‖Hm+2 ≤ C‖f‖Hm ;

(iii) in particular, if f ∈ C∞(Ω), and if Ω is bounded with boundary of class C∞, then u ∈ C∞(Ω).

Remark A.4.9. Smoothness is required in Theorem A.4.8 in order to apply the method of translations to

obtain estimates of u near the boundary. However, without any regularity assumption on Ω, one can still

obtain interior regularity. This is the object of the next result, and follows rather easily from the charac-

terization of Hm(RN ) in terms of the Fourier transform (see also Gilbarg and Trudinger [54], Theorems 8.8

and 8.10, and Corollary 8.9).

Proposition A.4.10. Let f ∈ D′(Ω) and let λ ∈ R. If u ∈ L1
loc(Ω) solves equation (A.4.6) in D′(Ω), then

the following properties hold:

(i) if f ∈ Hm
loc(Ω) for some m ≥ 0, then u ∈ Hm+2

loc (Ω). In addition, for every Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω, there exists

a constant C (depending only on m,Ω′ and Ω′′) such that ‖u‖Hm+2(Ω′′) ≤ C(‖f‖Hm(Ω′) + ‖u‖L2(Ω′));

(ii) if f ∈ C∞(Ω), then u ∈ C∞(Ω).

Proof. We proceed in several steps.

Step 1. Let m ∈ Z, v ∈ S ′(RN ) and h ∈ Hm(RN ) be such that −4v + v = h, in S ′(RN ). Then,

v ∈ Hm+2(RN ), and there exists a constant C such that ‖v‖Hm+2 ≤ C‖h‖Hm . Indeed, we have (1 +

4π2|ξ|2)v̂ = ĥ in S ′(RN ). It follows that (1 + 4π2|ξ|2)m+2
2 v̂ = (1 + 4π2|ξ|2)m/2v̂, and the result follows from

Propositions A.3.1 and A.3.55.

Step 2. Consider ω′′ ⊂⊂ ω′ ⊂⊂ Ω. Let k ∈ Z, u ∈ Hk(ω′) and f ∈ Hk−1(ω′) solve equation (A.4.6) in

D′(ω′). Then, u ∈ Hk+1(ω′′), and there exists C such that ‖u‖Hk+1(ω′′) ≤ C(‖f‖Hk−1(ω′) + ‖u‖Hk(ω′)). To

show this, consider ρ ∈ D(RN ) such that ρ ≡ 1 on ω′′ and Supp(ρ) ⊂ ω′ and define v ∈ D′(RN ) by

〈v, ϕ〉D′(RN ),D(RN ) = 〈u, ρϕ〉D′(Ω),D(Ω).

It follows easily that v ∈ Hk(RN ) and that ‖v‖Hk(RN ) ≤ C‖u‖Hk(ω′). An easy calculation shows that v

solves equation

−4v + v = T1 + T2 + T3, (A.4.17)
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in D′(RN ), where the distributions T1, T2 and T3 are defined by

〈T1, ϕ〉D′(RN ),D(RN ) = 〈f + (1− λ)u, ρϕ〉D′(ω′),D(ω′),

〈T2, ϕ〉D′(RN ),D(RN ) = −〈u, ϕ4ρ〉D′(ω′),D(ω′),

〈T3, ϕ〉D′(RN ),D(RN ) = −〈∇u, ϕ∇ρ〉D′(ω′),D(ω′),

for every ϕ ∈ D(RN ). It follows easily that Tj ∈ Hk−1(RN ) and that ‖Tj‖Hk−1(RN ) ≤ C(‖f‖Hk−1(ω′) +

‖u‖Hk(ω′)), for j = 1, 2, 3. Applying (A.4.17) and Step 1, we get v ∈ Hk+1(RN ) and ‖v‖Hk+1(RN ) ≤

C(‖f‖Hk−1(ω′) + ‖u‖Hk(ω′)). The result follows, since the restrictions of u and v to ω′′ coincide.

Step 3. Conclusion. Assume that f ∈ Hm
loc(Ω), for some m ≥ 0. Consider Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω. Note that

u ∈ L1(Ω′), so that in particular u ∈ H−`(Ω′) where ` ∈ N is such that 2` > N . Consider now a family

(ωj)0≤j≤m+1 of open subsets of Ω, such that ωm+`+1 = Ω′′ and

ωm+`+1 ⊂⊂ · · · ⊂⊂ ω0 ⊂⊂ Ω′

(one constructs easily such a family). It follows from Step 2 that u ∈ H−`+1(ω0) and that

‖u‖H−`+1(ω0) ≤ C(‖f‖H−`−1(Ω′) + ‖u‖H−`(Ω′))

≤ C(‖f‖Hm(Ω′) + ‖u‖L1(Ω′)).
(A.4.18)

Applying (A.4.18) and Step 1, we get u ∈ H−`+2(ω1), and

‖u‖H−`+2(ω1) ≤ C(‖f‖H−`(ω0) + ‖u‖H−`+1(ω0))

≤ C(‖f‖Hm(Ω′) + ‖u‖L1(Ω′)).

Iterating the above argument, one shows as well that u ∈ Hm+2(ωm+`+1) = Hm+2(Ω′′), and that there exists

C such that ‖u‖Hm+2(Ω′′) ≤ C(‖f‖Hm(Ω′) + ‖u‖L1(Ω′)). Hence property (i), since Ω′ and Ω′′ are arbitrary.

Property (ii) follows from the inclusion C∞(Ω) ⊂ Hm
loc(Ω), for every m ≥ 0. This completes the proof.

A.4.3. Lp regularity and estimates.

Theorem A.4.11. Let λ > 0, let f ∈ H−1(Ω) and let u ∈ H1
0 (Ω) be the solution of (A.4.6). If f ∈ Lp(Ω)

for some p ∈ [1,∞], then u ∈ Lp(Ω) and λ‖u‖Lp ≤ ‖f‖Lp .

Proof. Consider ϕ ∈ C1(R,R) and assume that ϕ is nondecreasing and has bounded derivative, and that

ϕ(0) = 0. It follows from (A.4.7), (A.3.14), Corollary A.3.29 and Theorem A.3.12 that∫
Ω

ϕ′(u)|∇u|2 dx+ λ

∫
Ω

uϕ(u) dx =
∫

Ω

fϕ(u) dx;

and so

λ

∫
Ω

uϕ(u) dx ≤
∫

Ω

fϕ(u) dx.

Assume that |ϕ(u)| ≤ |u|p−1. Then |ϕ(u)|
p

p−1 ≤ uϕ(u); and so

λ

∫
Ω

uϕ(u) dx ≤ ‖f‖Lp

(∫
Ω

uϕ(u) dx
) p−1

p

.
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Since uϕ(u) ≤ C|u|2 ∈ L1(Ω), it follows that

λ

(∫
Ω

uϕ(u) dx
) 1

p

≤ ‖f‖Lp .

Assume first that p ≤ 2. Given ε > 0, take ϕ(u) = u(ε+ u2)
p−2
2 . It follows from the preceding calculations

that

λ

(∫
Ω

u2(ε+ u2)
p−2
2 dx

) 1
p

≤ ‖f‖Lp .

Letting ε ↓ 0 and applying Fatou’s Lemma yields the desired result.

Assume now 2 < p ≤ ∞. We use a duality argument. Given h ∈ C∞c (Ω), let v ∈ H1
0 (Ω) be the solution

of (A.4.6) with f replaced by h. We have∫
Ω

uh = (u,−4v + λv)H1
0 ,H−1 = (−4u+ λu, v)H−1,H1

0
= (f, v)H−1,H1

0
=
∫

Ω

fv.

Therefore, ∣∣∣∫
Ω

uh
∣∣∣ ≤ ‖f‖Lp‖v‖Lp′ ≤

1
λ
‖f‖Lp‖h‖Lp′ ,

since p′ < 2. Since h ∈ C∞c (Ω) is arbitrary, we deduce that ‖u‖Lp ≤ λ−1‖f‖Lp .

Theorem A.4.12. Let a verify (A.4.8) and (A.4.9), and assume that a ≥ 0 almost everywhere. Let λ > 0,

let f ∈ H−1(Ω) and let u ∈ H1
0 (Ω) be the solution of (A.4.15). If f ∈ Lp(Ω) for some 1 ≤ p ≤ ∞, then

u ∈ Lp(Ω) and λ‖u‖Lp ≤ ‖f‖Lp .

Proof. Taking in account that a ≥ 0, the proof is the same as that of Theorem A.4.11. Note that in this

case, we have λ1(−4+ a) ≥ 0, thus in particular, λ > −λ1(−4+ a).

When λ < 0, one can still obtain L∞ regularity results. This is also the case for the solutions of equation

(A.4.15). More precisely, we have the following.

Theorem A.4.13. Let a verify (A.4.8) and (A.4.9), let λ1(−4 + a) be defined by (A.4.13) and let λ >

−λ1(−4+ a). Assume further that a− ∈ Lq(Ω) +L∞(Ω) for some q > 1, q > N/2. Let f ∈ H−1(Ω) and let

u ∈ H1
0 (Ω) be the solution of (A.4.15). If f ∈ Lp(Ω) + L∞(Ω) for some p > 1, p > N/2, then u ∈ L∞(Ω).

Moreover, given 1 ≤ r <∞, there exists a constant C independent of f such that

‖u‖L∞ ≤ C(‖f‖Lp+L∞ + ‖u‖Lr ).

In particular, ‖u‖L∞ ≤ C(‖f‖Lp+L∞ + ‖f‖H−1).

Proof. The proof is adapted from Hartman and Stampacchia [60] (see also Brezis and Lions [23]). By

homogeneity, we may assume that ‖u‖Lr + ‖f‖Lp+L∞ ≤ 1. In particular, f = f1 + f2 with ‖f1‖Lp ≤ 1 and

‖f2‖L∞ ≤ 1. We also write a− = g1 + g2 with g1 ∈ Lq(Ω) and g2 ∈ L∞(Ω). Now, since −u solves the same

equation as u, with f replaced by −f (which satisfies the same assumptions), it is sufficient to estimate

‖u+‖L∞ . Set T = ‖u+‖L∞ ∈ [0,∞], and assume that T > 0. For t ∈ (0, T ), set v(t) = (u − t)+. We have
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v(t) ∈ H1
0 (Ω), by Corollary A.3.35. Let now α(t) = meas{x ∈ Ω, u(x) > t}, for t > 0. Note that α(t) is

always finite. In particular, since v(t) ∈ L2(Ω) is supported in {x ∈ Ω, u(x) > t}, we have v(t) ∈ L1(Ω). Set

β(t) =
∫

Ω

v(t) dx. (A.4.19)

On applying Fubini’s Theorem to the function 1{u>t}(x), we obtain

β(t) =
∫ ∞

t

α(s) ds,

so that β ∈W 1,1
loc (0,∞) and

β′(t) = −α(t), (A.4.20)

for almost all t > 0. The idea of the proof is to obtain a differential inequality on β(t) which implies that

β(t) must vanish for t large enough. It follows from (A.4.16) that

b(u, v(t)) = 〈f, v(t)〉H−1,H1
0
, for every t > 0,

with the notation of the proof of Theorem A.4.7. Therefore, by applying Theorem A.3.12 and the property

v(t) ∈ L1(Ω), we get ∫
Ω

{|∇v(t)|2 + a|v(t)|2 + λ|v(t)|2} dx =
∫

Ω

{f − t(a+ λ)}v(t) dx.

Therefore, it folows from Lemma A.4.6 that

‖v(t)‖2H1 ≤ C

∫
Ω

{f − t(a+ λ)}v(t) dx.

We now estimate the right-hand side of the above inequality.∫
Ω

fv(t) =
∫

Ω

(f1 + f2)v(t)

≤ ‖f1‖Lp‖v(t)‖Lp′ + ‖f2‖L∞‖v(t)‖L1

≤ ‖v(t)‖Lp′ + ‖v(t)‖L1 .

Furthermore,

−tλ
∫

Ω

v(t) ≤ t|λ|
∫

Ω

v(t),

and

−t
∫

Ω

av(t) ≤ t

∫
Ω

a−v(t) ≤ Ct(‖v(t)‖Lq′ + ‖v(t)‖L1).

Therefore,

‖v(t)‖2H1 ≤ C(1 + t)(‖v(t)‖Lp′ + ‖v(t)‖Lq′ + ‖v(t)‖L1). (A.4.21)

Consider now ρ ≥ max{q′, 1} such that ρ > 2p′ and ρ ≤ 2N
N − 2

(ρ ≤ ∞ if N = 1, ρ <∞ if N = 2). It follows

from the assumptions that such a ρ exists. Furthermore, it follows from Sobolev’s embedding theorem that

H1
0 (Ω) ↪→ Lρ(Ω). Next, given 1 ≤ σ ≤ ρ, it follows from Hölder’s inequality that

‖v(t)‖Lσ ≤ α(t)
1
σ−

1
ρ ‖v(t)‖Lρ ≤ Cα(t)

1
σ−

1
ρ ‖v(t)‖H1 ;
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and so, by (A.4.21),

‖v(t)‖2H1 ≤ C(1 + t)(α(t)
1
p′ + α(t)

1
q′ + α(t))α(t)−

1
ρ ‖v(t)‖H1 .

Therefore, by Sobolev’s embedding theorem,

‖v(t)‖Lρ ≤ C(1 + t)(α(t)
1
p′ + α(t)

1
q′ + α(t))α(t)−

1
ρ .

Finally, since ‖v(t)‖L1 ≤ α(t)1−
1
ρ ‖v(t)‖Lρ , we obtain

β(t) ≤ C(1 + t)(α(t)
1
p′ + α(t)

1
q′ + α(t))α(t)1−

2
ρ ,

which we can write as

β(t) ≤ C(1 + t)F (α(t)),

with F (s) = s2−
2
p−

2
ρ + s2−

2
q−

2
ρ + s2−

2
ρ . It follows that

−α(t) + F−1

(
β(t)

C(1 + t)

)
≤ 0. (A.4.22)

Setting z(t) =
β(t)

C(1 + t)
, it follows from (A.4.20) and (A.4.22) that

z′ +
ψ(z(t))
C(1 + t)

≤ 0,

with ψ(s) = F−1(s) + Cs. Integrating the above differential inequality yields∫ t

s

dσ

C(1 + σ)
≤
∫ z(s)

z(t)

dσ

ψ(σ)
,

for all 0 < s < t < T . If T ≤ 1, then by definition ‖u+‖L∞ ≤ 1. Otherwise, we obtain∫ t

1

dσ

C(1 + σ)
≤
∫ z(1)

z(t)

dσ

ψ(σ)
,

which implies in particular that ∫ T

1

dσ

C(1 + σ)
≤
∫ z(1)

0

dσ

ψ(σ)
.

Note that by assumption, there exists θ < 1 such that F−1(s) ≥ sθ for s small, so that 1/ψ is integrable

near zero. Since 1/(1 + σ) is not integrable at the origin, this implies that T = ‖u+‖L∞ < ∞. Moreover,

‖u+‖L∞ is estimated in terms of z(1), and

z(1) =
1
C

∫
Ω

(u− 1)+ ≤ 1
C

∫
{u>1}

u ≤ 1
C

∫
{u>1}

ur ≤ 1
C
.

The result follows.

Open problem. We do not know if, under the assumptions of Theorem A.4.13, the inequality ‖u‖L∞ ≤

C‖f‖Lp+L∞ holds.

One can improve the Lp estimates by using Sobolev’s inequalities. In particular, we have the following

result.
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Theorem A.4.14. Let a verify (A.4.8) and (A.4.9), and assume that a ≥ 0 almost everywhere. Let λ > 0,

f ∈ H−1(Ω) and let u ∈ H1
0 (Ω) be the solution of (A.4.15). If f ∈ Lp(Ω) for some p ∈ (1,∞], then the

following properties hold:

(i) If p > N/2, then u ∈ Lp(Ω) ∩ L∞(Ω), and there exists a constant C independent of f such that

‖u‖Lr ≤ C‖f‖Lp ,

for all r ∈ [p,∞];

(ii) if p = N/2 and N ≥ 3, then u ∈ Lr(Ω) for all r ∈ [p,∞), and there exist constants C(r) independent of

f such that

‖u‖Lr ≤ C(r)‖f‖Lp ,

for all r ∈ [p,∞);

(iii) if 1 < p < N/2 and N ≥ 3, then u ∈ Lp(Ω) ∩ L
Np

N−2p (Ω), and there exists a constant C independent of

f such that

‖u‖Lr ≤ C‖f‖Lp ,

for all r ∈ [p,
Np

N − 2p
].

Proof. Property (i) follows from Theorems A.4.12 and A.4.13 and Hölder’s inequality. It remains to

establish properties (ii) and (iii). Note that in this case N ≥ 3. By density (Proposition A.3.58), it

is sufficient to establish these properties for f ∈ D(Ω). In this case, we have u ∈ L1(Ω) ∩ L∞(Ω) by

Theorem A.4.11. Consider an odd, increasing function ϕ : R → R, such that ϕ′ is bounded. Define

ψ(x) =
∫ x

0

√
ϕ′(s) ds. (A.4.23)

It follows that ψ is odd, nondecreasing, and that ψ′ is bounded. It follows from Theorem A.3.12 and

Corollary A.3.29 that ϕ(u) and ψ(u) belong to H1
0 (Ω), and that

|∇ψ(u)|2 = ϕ′(u)|∇u|2 = ∇u · ∇(ϕ(u)), (A.4.24)

almost everywhere. Applying formula (A.4.16) with v = ϕ(u), it follows from (A.4.24) that∫
Ω

(|∇(ψ(u))|2 + λuϕ(u) + auϕ(u)) dx = 〈f, ϕ(u)〉H−1,H1
0
.

In addition, xϕ(x) ≥ 0, and it follows from (A.4.23) and Cauchy-Schwarz inequality that xϕ(x) ≥ |ψ(x)|2.

Therefore, it follows from Lemma A.4.6 that there exists a constant C such that

‖ψ(u)‖2H1 ≤ C〈f, ϕ(u)〉H−1,H1
0
.

Therefore, given p ∈ [1,∞], we have

‖ψ(u)‖2H1 ≤ C‖f‖Lp‖ϕ(u)‖Lp′ .
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Since N ≥ 3, we have

H1
0 (Ω) ↪→ L

2N
N−2 (Ω). (A.4.25)

It follows that, after possibly modifying C,

‖ψ(u)‖2
L

2N
N−2

≤ C‖f‖Lp‖ϕ(u)‖Lp′ . (A.4.26)

Consider now 1 < q < ∞ such that (q − 1)p′ ≥ 1. If q ≤ 2, let ϕε(x) = x(ε + x2)
q−2
2 . If q > 2, take

ϕε(x) = x|x|q−2(1 + εx2)
2−q
2 . It follows that |ϕε(x)| ≤ C|x|q−1 and that |ϕε(x)| −→

ε↓0
|x|q−1. One verifies

easily that |ψε(x)|2 ≤ C|x|q and that |ψε(x)|2 → 4(q−1)
q2 |x|q. Applying (A.4.26), then letting ε ↓ 0 and

applying the dominated convergence theorem, it follows that

‖u‖q

L
Nq

N−2
≤ C

q2

q − 1
‖f‖Lp‖u‖q−1

L(q−1)p′ , (A.4.27)

for all 1 < q < ∞ such that (q − 1)p′ ≥ 1. We now prove property (ii). Suppose that N ≥ 3 and that

p = N/2. Apply (A.4.27) with q > N/2. It follows that

‖u‖q

L
Nq

N−2
≤ C

q2

q − 1
‖f‖LN/2‖u‖q−1

L
N(q−1)

N−2

. (A.4.28)

On the other hand, it follows from Hölder’s inequality that

‖u‖q−1

L
N(q−1)

N−2

≤ ‖u‖
(2q−N)q
2q−N+2

L
Nq

N−2
‖u‖

N−2
2q−N+2

LN/2 .

Applying Theorem A.4.12, it follows that

‖u‖q−1

L
N(q−1)

N−2

≤ ‖u‖
(2q−N)q
2q−N+2

L
Nq

N−2
‖f‖

N−2
2q−N+2

LN/2 .

Substitution in (A.4.28) yields

‖u‖
L

Nq
N−2

≤ C(q)‖f‖LN/2 .

Property (ii) follows from the above estimate and Theorem A.4.12, since q is arbitrary. Finally, we prove

property (iii). Let q =
(N − 2)p
N − 2p

. In particular,
Nq

N − 2
= (q − 1)p′ =

Np

N − 2p
, and it follows from (A.4.27)

that

‖u‖
L

Np
N−2p

≤ C ′‖f‖Lp .

Property (iii) follows from the above estimate and Theorem A.4.12.

Corollary A.4.15. Let a and λ be as in Theorem A.4.14. If f ∈ H−1(Ω) ∩ L1(Ω), then the following

properties hold:

(i) if N = 1, then u ∈ L1(Ω) ∩ L∞(Ω), and there exists a constant C independent of f such that

‖u‖Lr ≤ C‖f‖L1 ,

for all r ∈ [1,∞];

(ii) if N ≥ 2, then u ∈ Lr(Ω) for all r ∈
[
1,

N

N − 2

)
(r ∈ [1,∞) if N = 2), and there exist constants C(r)

independent of f such that

‖u‖Lr ≤ C(r)‖f‖L1 ,
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for all r ∈
[
1,

N

N − 2

)
(r ∈ [1,∞) if N = 2).

Proof. If N = 1, then we have u ∈ H1
0 (Ω) ↪→ L∞(Ω). Furthermore, it follows from Lemma A.4.6 (note

that λ1(−4+ a) ≥ 0, since a ≥ 0) that there exists µ > 0 such that

µ‖u‖2H1 ≤ 〈f, u〉H−1,H1
0
≤ ‖f‖L1‖u‖L∞ ≤ C‖f‖L1‖u‖H1 .

Therefore, µ‖u‖H1 ≤ C‖f‖L1 , and (i) follows.

In the case N ≥ 2, we use a duality argument. Let u and f be as in the statement of the theorem. It

follows from Theorem A.4.12 that u ∈ L1(Ω) and

‖u‖L1 ≤ C‖f‖L1 .

Let now θ ∈ [1,∞) be such that u ∈ Lθ(Ω). Fix q > N/2. Let h ∈ C∞c (Ω), and let ϕ ∈ H1
0 (Ω) be the

solution of the equation −4ϕ+ aϕ+ λϕ = h. It follows from Theorem A.4.14 that

‖ϕ‖L∞ ≤ C‖h‖Lq .

Since

〈f, ϕ〉H−1,H1
0

= 〈−4u+ au+ λu, ϕ〉H−1,H1
0

= 〈u,−4ϕ+ aϕ+ λϕ〉H1
0 ,H−1 = 〈u, h〉H1

0 ,H−1 ,

we deduce ∣∣∣∣∫
Ω

uh

∣∣∣∣ ≤ ‖f‖L1‖ϕ‖L∞ ≤ C‖f‖L1‖h‖Lq .

Since ϕ ∈ C∞c (Ω) is arbitrary, we obtain

‖u‖Lq′ ≤ C‖f‖L1 .

Since q ∈
(
N

2
,∞
]

is arbitrary, q′ ∈
[
1,

N

N − 2

)
is arbitrary and the result follows.

Remark A.4.16. The estimates of Theorem A.4.14 and Corollary A.4.15 are optimal in the following

sense.

(i) If N ≥ 2 and f ∈ L
N
2 (Ω), then u is not necessarily in L∞(Ω). For example, let Ω be the unit ball,

and let u(x) = (− log |x|)γ with γ > 0. Then u 6∈ L∞(Ω). On the other hand, one verifies easily

that if 0 < γ <
1
2

in the case N = 2 and 0 < γ < 1 − 2
N

in the case N ≥ 3, then u ∈ H1
0 (Ω) and

−4u+ u ∈ LN
2 (Ω).

(ii) If N ≥ 3 and f ∈ L1(Ω), then there is no estimate of the form ‖u‖
L

N
N−2

≤ C‖f‖L1 . (Note that since

u ∈ H1
0 (Ω), we always have u ∈ L

N
N−2 (Ω).) One constructs easily a counter example as follows. Let Ω

be the unit ball, and let u = zϕ with ϕ ∈ D(Ω), ϕ(0) 6= 0, and z(x) = |x|2−N (− log |x|)γ with γ < 0.

Then −4u+ u ∈ L1(Ω) and u 6∈ L
N

N−2 (Ω). By approximating u by smooth functions, one deduces that

there is no estimate of the form ‖u‖
L

N
N−2

≤ C‖f‖L1 .
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(iii) If N ≥ 3 and 1 < p < N/2, then by arguing as above one shows the following properties. There is

no estimate of the form ‖u‖Lq ≤ C‖f‖L1 for q >
Np

N − 2p
. Moreover, if f ∈ Lp(Ω), then in general

u 6∈ Lq(Ω) for q >
Np

N − 2p
, q >

2N
N − 2

.

Corollary A.4.17. Let λ > 0, let f ∈ H−1(Ω) and let u ∈ H1
0 (Ω) be the solution of (A.4.6). If f ∈ Lp(Ω)

for some p ∈ (N/2,∞), p ≥ 1 or if f ∈ C0(Ω), then u ∈ Cb(Ω).

Proof. By density (Proposition A.3.58), the result follows from Theorem A.4.14, Corollary A.4.15 and

Proposition A.4.10.

Remark A.4.18. Under some smoothness assumptions on Ω, one can establish higher order Lp estimates.

However, the proof of these estimates is considerably more delicate. In particular, one has the following

results.

(i) If Ω has a bounded boundary of class C2 (in fact, C1,1 is enough) and if 1 < p < ∞, then one can

show that for every λ > 0 and f ∈ Lp(Ω), there exists a unique solution u ∈ W 1,p
0 (Ω) ∩W 2,p(Ω) of

equation (A.4.6), and that

‖u‖W 2,p ≤ C(‖u‖Lp + ‖f‖Lp),

for some constant C independent of f (see Gilbarg and Trudinger [54], Theorem 9.15, p.241). One shows

as well that for every f ∈W−1,p(Ω), there exists a unique solution u ∈W 1,p
0 (Ω) of equation (A.4.6) (see

Agmon, Douglis and Nirenberg [2]).

(ii) Let f ∈ H−1(Ω) and let u ∈ H1
0 (Ω) be the solution of (A.4.6). It follows from the preceding result that

if in addition f ∈ Lp(Ω) for some p ∈ (1,∞), then u ∈W 2,p(Ω) ∩W 1,p
0 (Ω). Indeed, by density and the

estimate of (i) above, one needs only consider the case ϕ ∈ D(Ω). In this case, u ∈ H2(Ω)∩H1
0 (Ω)∩C0(Ω)

by Theorem A.4.8 and Theorem A.4.28 below. On the other hand, equation (A.4.6) has a unique solution

v ∈ W 1,p
0 (Ω) ∩W 2,p(Ω) by (i) above. So we need only show that u = v. If Ω is bounded, then both

u and v are solutions in W 1,q
0 (Ω) ∩ W 2,q(Ω) with q = min{p, 2}, and so u = v by uniqueness in

W 1,q
0 (Ω) ∩W 2,q(Ω). If Ω is unbounded, then we use uniqueness in C0(Ω) (Corollary A.4.33 below); so

we are reduced to show that v ∈ C0(Ω). We observe that, since ∂Ω is bounded, there exists R <∞ such

that {|x| > R} ⊂ Ω. Chose R possibly larger so that supp(f) ⊂ {|x| < R} and consider ρ ∈ D(RN )

such that ρ ≡ 1 on {|x| < R}. Set v = w + z with w = ρz and z = (1− ρ)z. We have −4w + λw = g

with g = ρf − v4ρ− 2∇v · ∇ρ. Since v ∈ C∞(Ω) (Proposition A.4.10) and ∇ρ and 4ρ have compact

support in Ω, we have g ∈ D(Ω). Since furthermore w and g are supported in {|x| < R}, we are reduced

to the case of a bounded domain, and it follows by uniqueness that w ∈ W 1,q
0 (Ω) ∩W 2,q(Ω) for every

q < ∞. In particular, w ∈ C0(Ω) (Corollary A.3.47). Finally, z ∈ Lp({|x| > R}) ∩ C∞({|x| ≥ R})

verifies −4z+ λz = −v4ρ− 2∇v · ∇ρ. In particular, −4z+ λz = 0 for |x| large. It follows easily from

Proposition A.4.10 that for every ε > 0, there exists δ > 0 such that if z(x0) ≥ ε, then z(x) ≥ ε/2 for

|x− x0| ≤ δ. Since z ∈ Lp(Ω), we deduce that z(x) → 0 as |x| → ∞. This implies that z ∈ C0(Ω) and

completes the proof.
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(iii) Note that if f ∈ Lp(Ω) and if u ∈W 1,p
0 (Ω) ∩W 2,p(Ω) is the solution of (A.4.6), then

λ‖u‖Lp ≤ ‖f‖Lp .

This follows from Theorem A.4.11 and a density argument, by using the estimate of (i) and the regularity

property of (ii).

(iv) One has partial results in the cases p = 1 and p = ∞. In particular, if Ω is bounded and smooth

enough, then for every λ > 0 and f ∈ L1(Ω), there exists a unique solution u ∈ W 1,1
0 (Ω), such that

4u ∈ L1(Ω), of equation (A.4.6) (see Pazy [85], Theorem 3.10, p.218). It follows that λ‖u‖L1 ≤ ‖f‖L1 .

Moreover, if f ∈ H−1(Ω) ∩ L1(Ω) and if u ∈ H1
0 (Ω) is the solution of (A.4.6), then u ∈ W 1,1

0 (Ω). (See

the argument of (ii) and (iii)) In general, u 6∈W 2,1(Ω). If Ω is bounded, it follows from Theorems A.4.5

and A.4.11 that for every λ > 0 and f ∈ L∞(Ω), there exists a unique solution u ∈ H1
0 (Ω) ∩ L∞(Ω),

such that 4u ∈ L∞(Ω), of equation (A.4.6). It follows from Theorem A.4.11 that λ‖u‖L∞ ≤ ‖f‖L∞ .

In general, u 6∈ W 2,∞(Ω), even if Ω is smooth. On the other hand, it follows from property (i) above

that u ∈W 1,p
0 (Ω), for every p <∞.

A.4.4. The maximum principle. Let T ∈ D′(Ω). We recall that (by definition), we have T ≥ 0

(respectively T ≤ 0) if and only if 〈T, ϕ〉D′,D ≥ 0 (respectively 〈T, ϕ〉 ≤ 0), for every ϕ ∈ D(Ω), ϕ ≥ 0 on Ω.

Clearly, if T ∈ L1
loc(Ω), then T ≥ 0 as a distribution if and only if T ≥ 0 almost everywhere on Ω.

Lemma A.4.19. Let u ∈ H1
0 (Ω). If u ≥ 0 almost everywhere, then there exists a sequence (un)n∈N ⊂ D(Ω)

such that un ≥ 0 and un −→
n→∞

u in H1
0 (Ω).

Proof. Consider ε > 0. It follows from the definition of H1
0 (Ω) and Corollary A.3.30 that there exists

v ∈ D(Ω) such that ‖v+ − u‖H1 ≤ ε/2. By convolution of v+ with a sequence of nonnegative mollifiers, one

can construct w ∈ D(Ω), w ≥ 0 such that ‖v+ − w‖H1 ≤ ε/2. It follows that ‖u − w‖H1 ≤ ε. Hence the

result, since ε is arbitrary.

Corollary A.4.20. Consider a distribution f ∈ H−1(Ω). Then f ≥ 0 (respectively f ≤ 0) if and only if

〈f, ϕ〉H−1,H1
0
≥ 0 (respectively 〈f, ϕ〉H−1,H1

0
≤ 0), for every ϕ ∈ H1

0 (Ω), ϕ ≥ 0 almost everywhere on Ω.

Proof. The result follows immediately from Lemma A.4.19.

We have the following result (the weak maximum principle).

Proposition A.4.21. Let a verify (A.4.8) and (A.4.9), let λ1(−4 + a) be defined by (A.4.13) and let

λ > −λ1(−4 + a). Let f ∈ H−1(Ω), and let u ∈ H1
0 (Ω) be the solution of (A.4.15). If f ≥ 0 (respectively

f ≤ 0) in D′(Ω), then u ≥ 0 almost everywhere on Ω (respectively u ≤ 0 almost everywhere in Ω).

Proof. By considering −u, it is sufficient to establish the result when f ≥ 0. Apply (A.4.16) with v =

−u− ∈ H1
0 (Ω). It follows that

b(v, v) = 〈f, v〉H−1,H1
0
.
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Since v ≤ 0 almost everywhere on Ω, we have (Corollary A.4.20) 〈f, v〉H−1,H1
0
≤ 0, and it follows from the

coerciveness of b that v = 0. Hence the result.

Corollary A.4.22. Let a verify (A.4.8) and (A.4.9), let λ1(−4 + a) be defined by (A.4.13) and let λ >

−λ1(−4+ a). Consider f, g ∈ H−1(Ω) and let u, v ∈ H1
0 (Ω) be the corresponding solutions of (A.4.15). If

f ≤ g in D′(Ω), then u ≤ v almost everywhere in Ω.

Proof. Apply Proposition A.4.21 to v − u.

We will need to compare solutions of equation (A.4.15) with functions u that do not satisfy the boundary

condition u = 0 on ∂Ω (by this, we mean that u 6∈ H1
0 (Ω)). Let a verify (A.4.8) and (A.4.9), and let r be

defined by (A.4.10). Given u ∈ H1(Ω) ∩ Lr(Ω), one verifies easily (see the proof of (A.4.11)) that∣∣∣∣∫
Ω

auv dx

∣∣∣∣ ≤ C‖v‖H1 ,

for all v ∈ H1
0 (Ω). It follows that

au ∈ H−1(Ω),

for every u ∈ H1(Ω) ∩ Lr(Ω). In particular, we have

−4u+ au+ λu ∈ H−1(Ω),

for every u ∈ H1(Ω) ∩ Lr(Ω) and every λ ∈ R, and

〈−4u+ au+ λu, v〉H−1,H1
0

=
∫

Ω

∇u · ∇v + auv + λuv, (A.4.31)

for all v ∈ H1
0 (Ω). We make the following definition.

Definition A.4.23. Let a verify (A.4.8) and (A.4.9), and let r be defined by (A.4.10). Given f ∈ H−1(Ω),

a supersolution (respectively subsolution) of equation (A.4.15) is a function u ∈ H1(Ω) ∩ Lr(Ω) such that

u− ∈ H1
0 (Ω) (respectively, u+ ∈ H1

0 (Ω)) and

−4u+ au+ λu ≥ f(respectively ≤ f),

in D′(Ω).

Remark A.4.24. The assumption u− ∈ H1
0 (Ω) (respectively, u+ ∈ H1

0 (Ω)) is a weak formulation of the

property u ≥ 0 on ∂Ω (respectively, u ≤ 0 on ∂Ω).

We have the following characterization of supersolutions and subsolutions.

Lemma A.4.25. Let a verify (A.4.8) and (A.4.9), and let r be defined by (A.4.10). Consider f ∈ H−1(Ω)

and u ∈ H1(Ω) ∩ Lr(Ω) such that u− ∈ H1
0 (Ω) (respectively, u+ ∈ H1

0 (Ω)). Then, u is a supersolution

(respectively, a subsolution) of equation (A.4.15) if, and only if∫
Ω

∇u · ∇v + auv + λuv ≥ 〈f, v〉H−1,H1
0
(respectively, ≤ 〈f, v〉H−1,H1

0
), (A.4.32)
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for all v ∈ H1
0 (Ω) such that v ≥ 0 almost everywhere.

Proof. The result follows from (A.4.31) and Corollary A.4.20.

Proposition A.4.26. Let a verify (A.4.8) and (A.4.9), let λ1(−4 + a) be defined by (A.4.13) and let

λ > −λ1(−4+ a). If u ∈ H1(Ω) is a supersolution (respectively, subsolution) of (A.4.15) with f = 0, then

u ≥ 0 almost everywhere on Ω (respectively, u ≤ 0 almost everywhere on Ω).

Proof. By considering −u, we only have to establish the result for supersolutions. Take v = u− in formula

(A.4.32). Applying Corollary A.3.15, it follows that∫
Ω

|∇u−|2 + a(u−)2 + λ(u−)2 ≤ 0;

and so u− = 0, by (A.4.16). Hence the result.

Corollary A.4.27. Let a verify (A.4.8) and (A.4.9), let λ1(−4 + a) be defined by (A.4.13) and let λ >

−λ1(−4+a). Consider f ∈ H−1(Ω) and let u ∈ H1
0 (Ω) be the solution of (A.4.15). If v is a supersolution of

(A.4.15), then u ≤ v almost everywhere on Ω. Similarly, if v is a subsolution of (A.4.15), then u ≥ v almost

everywhere on Ω.

Proof. It is clear that u − v is a subsolution of equation (A.4.15) with f = 0 (see Corollary 1.2.28), and

the result follows from Proposition A.4.26.

When Ω satisfies some smoothness conditions, the L∞ regularity of Theorem A.4.11 can be improved

by making use of super and subsolutions, and in fact u is continuous on Ω. More precisely, we have the

following result.

Theorem A.4.28. If N ≥ 2, assume that every x ∈ ∂Ω has the exterior cone property. Let λ > 0,

let f ∈ H−1(Ω) and let u ∈ H1
0 (Ω) be the solution of (A.4.6). If f ∈ C0(Ω) or if f ∈ Lp(Ω) for some

p ∈ (N/2,∞), p > 1, then u ∈ C0(Ω).

Proof. Let us first proceed to several reductions. First, note that by density (Proposition A.3.58) and

Theorem A.4.11, it is sufficient to establish the result for f ∈ D(Ω). Consider now f ∈ D(Ω). It follows from

Proposition A.4.10 that

u ∈ C∞(Ω). (A.4.33)

Next, let R > 0 be such that Supp(f) ⊂ {x ∈ RN ; |x| ≤ R}, and let M = ‖f‖L∞ . Choose K large enough,

so that

Kλe−
√

1+ λ
2 R2 ≥ 2M,

and consider

v(x) = Ke−
√

1+ λ
2 r2

, (A.4.34)
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where r = |x|. We have v ∈ S(RN ); and so, v|Ω ∈ H1(Ω). Furthermore,

−4v + λv =

λ
2

+
λ
(
1 + (N − 1)

(
1 + λ

2 r
2
)

+
(
1 + λ

2 r
2
)1/2

)
2
(
1 + λ

2 r
2
)3/2

 v ≥ λv

2
≥ f.

Therefore, v is a supersolution of (A.4.6). Applying Corollary A.4.27, we get u ≤ v almost everywhere in Ω.

Since −v is a subsolution of equation (A.4.6), one obtains as well that u ≥ −v; and so,

|u(x)| → 0 as |x| → ∞, x ∈ Ω. (A.4.35)

We now claim that for every x0 ∈ ∂Ω, there exist α, η > 0 such that

|u(x)| ≤ |x− x0|α, for every x ∈ Ω such that |x− x0| < η. (A.4.36)

Suppose for a moment that (A.4.36) holds. Then, comparing with (A.4.33), we get u ∈ C(Ω) and u|∂Ω = 0;

and so, it follows from (A.4.35) and Lemma A.3.48 that u ∈ C0(Ω), which is the desired result.

Finally, it remains to establish property (A.4.36). This follows from the concept of barrier function. In

order to construct a local barrier at x0, we need the following two lemmas.

Lemma A.4.29. Given k ≥ 0 and 0 < θ < π/2, there exist γ > 0 and a function f ∈ C2([0, π − θ]), such

that

(i) 1/2 ≤ f(t) ≤ 1, for all t ∈ [0, π − θ];

(ii) f ′(0) = 0;

(iii) f ′′(t) + k
cost
sint

f ′(t) + γf(t) = 0, for all t ∈ (0, π − θ].

Proof. The idea is to solve equation

f ′′ + k
cost
sint

f ′ + γf = 0, (A.4.37)

with the initial conditions f(0) = 1 and f ′(0) = 0 (note that the singularity of 1/sint at t = 0 is eliminated by

the condition f ′(0) = 0) and to observe that the solution depends contunuously on γ, uniformly on compact

subsets of [0, π). The result will follow, since the solution for γ = 0 is f(t) ≡ 1. More precisely, consider

E = {f ∈ C([0, π − θ]); 1/2 ≤ f ≤ 1}, and equip E with the distance d(f, g) = ‖g − f‖L∞(0,π−θ). It is clear

that (E, d) is a complete metric space. Given f ∈ E, let

Af(t) =
∫ t

0

1
(sins)k

∫ s

0

(sinσ)kf(σ) dσ.

It follows easily that Af ∈ C2([0, π−θ]) and f ′(0) = 0. Furthermore, consider 0 ≤ σ ≤ s ≤ π−θ. If s ≤ π/2,

one has sinσ ≤ sins. If s > π/2, then sins ≥ sin(π − θ) = sinθ; and so, sinσ ≤ 1 =
sinθ
sinθ

≤ sins
sinθ

. Therefore,

we have in both cases sinσ ≤ sins
sinθ

. It follows that

0 ≤ Af(t) ≤ (π − θ)2

2sinθk
‖f‖L∞ ≤ π2

2sinεk
.
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In particular, if γ is small enough, we have

0 ≤ γAf(t) ≤ 1/2, for all f ∈ E and t ∈ [0, π − θ].

It follows that for γ small enough, the mapping

f 7→ Tf = 1− γAf,

maps E → E and is a contraction of Lipschitz constant L ≤ 1/2. Applying Theorem A.1.1, it follows that T

has a unique fixed point f ∈ E, which solves equation f(t) = 1− γAf(t), for all t ∈ [0, π − θ]. One verifies

easily that f solves equation (A.4.37), which completes the proof.

Lemma A.4.30. Let x0 ∈ ∂Ω. If N ≥ 2, assume that x0 has the exterior cone property. For δ > 0, define

Ωδ = {x ∈ Ω; |x− x0| < δ}. Then, there exists δ, α > 0 and a function h ∈ C(Ωδ) ∩ C2(Ωδ) ∩H1(Ωδ) such

that

(i) 4h = 0, in Ωδ;

(ii)
1
2
|x− x0|α ≤ h(x) ≤ |x− x0|α, for all x ∈ Ωδ.

Proof. If N = 1, take α = δ = 1, and h(x) = |x− x0|. It is clear that h has the desired properties.

In the case N ≥ 2, by assumption, there exist θ ∈ (0, π/2), z∈ SN−1 and δ > 0, such that C(x0, z, θ, δ)∩

Ω = ∅ (compare Definition A.3.3). Without loss of generality, we may assume that x0 = 0 and z =

(0, · · · , 0,−1). In particular,

Ωδ ⊂ {x ∈ RN ; 0 < |x| < δ and xN > −|x|cosθ}. (A.4.38)

Given x ∈ Ωδ, define t ∈ [0, π − θ) by

cost =
xN

|x|
.

One has t ∈ C∞(U) ∩W 1,∞
loc (Ωδ), where U = {x ∈ Ωδ; t 6= 0}. In addition,

|∇t|2 = 1/|x|2, and 4t = (N − 2)
cost
sint

.

Given α > 0 and f ∈ C2([0, π − θ]) such that f ′(0) = 0, define

h(x) = |x|αf(t(x)).

We have h ∈ C(Ωδ). Furthermore, we have ∇h = α|x|α(f(t)x + f ′(t)∇t). Since f ′(0) = 0, it follows easily

that h ∈ C1(Ωδ), and that |∇h| ≤ C|x|α−1 ∈ L2(Ωδ). In particular, h ∈ H1(Ωδ). Furthermore, a tedious

but easy calculation shows that h ∈ C2(Ωδ), and that

4h = |x|α−2

(
f ′′(t) + (N − 2)

cost
sint

f ′(t) + α(α+N − 2)f(t)
)
, for all x ∈ U.

Applying Lemma A.4.29, it follows that there exists α > 0 such that one can choose f with 1/2 ≤ f ≤ 1,

and for which 4h = 0 in Ωδ. This completes the proof.
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End of the proof of Theorem A.4.28. Consider x0 ∈ ∂Ω, and let α, δ, h be given by Lemma A.4.30.

By choosing δ possibly smaller, we may assume, with the notation of Lemma A.4.30, that Ωδ ∩Supp(f) = ∅.

In particular, we have

−4u+ λu = 0, in D′(Ωδ) (A.4.39)

Let M be large enough, so that

M

(
δ

2

)α

≥ 2‖f‖L∞ , (A.4.40)

and let

H =
Mh

λ
. (A.4.41)

Setting w = u|Ωδ
, it follows from Lemma A.4.30 and (A.4.39) that

−4(w −H) + λ(w −H) = −λH ≤ 0 in D′(Ωδ). (A.4.42)

Therefore, if we show that

(w −H)+ ∈ H1
0 (Ωδ), (A.4.43)

then it follows from Proposition A.4.26 that w ≤ H, almost everywhere in Ωδ. One shows similarly that

w ≥ −H, so that this proves the estimate (A.4.36) and completes the proof of the theorem. To prove (A.4.43),

consider ϕ ∈ D(RN ) such that 0 ≤ ϕ ≤ 1 in RN , ϕ ≡ 1 on the set {x ∈ RN ; |x| ≤ δ/2}, and ϕ ≡ 0 on

the set {x ∈ RN ; |x| ≥ δ}. Note that λH(x) ≥ ‖f‖L∞ , on the set {x ∈ Ωδ; |x| ≥ δ/2} (compare (A.4.40)

and (A.4.41)). On the other hand, it follows from Theorem A.4.12 that λ‖u‖L∞ ≤ ‖f‖L∞ ; and so, |u| ≤ H

on the set {x ∈ Ωδ; |x| ≥ δ/2}. Therefore, (w − H)+ = (ϕw − H)+ in Ωδ. Let (un)n∈N ⊂ D(Ω) be

such that un −→
n→∞

u in H1
0 (Ω), and set vn = (ϕun)|Ωδ

. It is clear that vn −→
n→∞

ϕw in H1(Ωδ); and so,

(vn −H)+ −→
n→∞

(ϕw −H)+ in H1(Ωδ). Therefore, it only remains to show that (vn −H)+ ∈ H1
0 (Ωδ). This

follows from Proposition A.3.23, since vn −H = −H ≤ 0 on ∂Ωδ.

Remark A.4.31. If the smoothness assumption on Ω does not hold, the conclusion of Theorem A.4.28

may be invalid, even for f ∈ D(Ω), as shows the following example. For N ≥ 2, let Ω = RN \ {0}. Define

ϕ(x) = coshx1. We have ϕ ∈ C∞(RN ), and −4ϕ + ϕ = 0. Let now ψ ∈ D(RN ) be such that ψ ≡ 1, for

|x| ≤ 1 and ψ ≡ 0, for |x| ≥ 2. Set u = ϕψ. We have u ∈ D(RN ), and also u ∈ H1
0 (Ω) (cf. Remark A.3.24).

On the other hand, −4u+ u = 0 for |x| ≤ 1 and for |x| ≥ 2. In particular, if we set f = −4u+ u, we have

f ∈ D(Ω). Finally, u 6∈ C0(Ω), since u = 1 on ∂Ω.

Under a more restrictive smoothness assumption on Ω, one can improve the conclusion of Theo-

rem A.4.28. More precisely, we have the following result.

Theorem A.4.32. If N ≥ 2 suppose that there exists ρ > 0 such that for every x0 ∈ ∂Ω there exists

y(x0) ∈ RN such that |x0 − y(x0)| = ρ and such that B(y0, ρ)∩Ω = ∅. (In other words, we replace the cone

property by a uniform “ball” property.) Let λ > 0, f ∈ H−1(Ω)∩L∞(Ω) and let u ∈ H1
0 (Ω) be the solution

of (A.4.6). It follows that

|u(x)| ≤ C‖f‖L∞dist(x, ∂Ω),
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for all x ∈ Ω, where C is independent of f .

Proof. We may assume without loss of generality that |f | ≤ 1, so that |u| ≤ λ−1. We may also suppose

N ≥ 2, for the case N = 1 is immediate. We now construct a local barrier at every point of ∂Ω. Given c > 0,

set

w(x) =


1
4
(ρ2 − |x|2) + c log

(
|x|
ρ

)
if N = 2,

1
2N

(ρ2 − |x|2) + c(ρ2−N − |x|2−N ) if N ≥ 3.

It follows that −4w = 1 in RN \ {0}. Furthermore, we see that if c is large enough, then there exists

ρ1 > ρ0 > ρ such that w(x) > 0 for ρ < |x| ≤ ρ1 and w(x) ≥ λ−1 for ρ0 ≤ |x| ≤ ρ1. Given c as above, we

observe that there exists a constant K such that w(x) ≤ K(|x| − ρ) for ρ ≤ |x| ≤ ρ1.

Let now x ∈ Ω such that 2dist(x, ∂Ω) < ρ1 − ρ, and let x0 ∈ ∂Ω be such that |x − x0| ≤ 2dist(x, ∂Ω).

Let Ω̃ = {x ∈ Ω; ρ < |x− y(x0)| < ρ1} and set v(x) = w(x− y(x0)) for x ∈ Ω̃. It follows that

0 ≤ v(x) ≤ K(|x− y(x0)| − ρ) ≤ K(|x− x0|+ |x0 − y(x0)| − ρ) = K|x− x0| ≤ 2Kdist(x, ∂Ω),

for all x ∈ Ω̃. On the other hand,

−4(u− v) + λ(u− v) = f − (1 + λv) ≤ f − 1 ≤ 0,

in Ω̃. We claim that

(u− v)+ ∈ H1
0 (Ω̃). (A.4.44)

It then follows from the maximum principle that u(x) ≤ v(x) ≤ 2Kdist(x, ∂Ω) for a.a. x ∈ Ω̃. Changing u

to −u, one obtains as well that −u ≤ v, so that |u(x)| ≤ 2Kdist(x, ∂Ω) for a.a. x ∈ Ω̃. For x ∈ Ω such that

2dist(x, ∂Ω) ≥ ρ1 − ρ, we have u(x) ≤ λ−1 ≤ 2λ−1(ρ1 − ρ)−1dist(x, ∂Ω), and the result follows.

It thus remain to establish the claim (A.4.44). One proceeds as in the proof of Theorem A.4.28. Let

ϕ ∈ C∞c (RN ) be such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on the set {|x − y(x0)| ≤ ρ0} and ϕ ≡ 0 on the set

{|x−y(x0)| ≥ ρ1}. Since u ≤ λ−1 ≤ v on Ω̃∩{|x−y(x0)| ≥ ρ0} and ϕu−v = u−v on Ω̃∩{|x−y(x0)| ≤ ρ0},

we see that (u− v)+ = (ϕu− v)+ in Ω̃. Let now (un)n≥0 ⊂ C∞c (Ω) be such that un −→
n→∞

u in H1(Ω). We see

that (ϕun − v)+ −→
n→∞

(ϕu− v)+ = (u− v)+ in H1(Ω̃). Thus, we need only verify that (ϕun − v)+ ∈ H1
0 (Ω̃).

This is immediate, though, because ϕun = 0 and v ≥ 0 on ∂Ω̃.

Corollary A.4.33. If N ≥ 2, assume that every x ∈ ∂Ω has the exterior cone property. For every λ > 0

and for every f ∈ C0(Ω), there exists a unique solution u ∈ C0(Ω) of equation

−4u+ λu = f, in D′(Ω).

In addition, the following properties hold:

(i) 4u ∈ C0(Ω);

(ii) u ∈ H2
loc(Ω);

(iii) λ‖u‖L∞ ≤ ‖f‖L∞ .
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Proof. We proceed in three steps.

Step 1. Uniqueness. Consider two solutions u, v and let w = v − u. We have w ∈ C0(Ω), and

−4w + λw = 0, in D′(Ω).

Given ε > 0, note that (w−ε)+ has a compact support in Ω. Let Ω′ ⊂⊂ Ω be such that Supp((w−ε)+) ⊂ Ω′.

Since w ∈ H1(Ω′) by Proposition A.4.10, it follows from Proposition A.3.28 that (w−ε)+ ∈ H1
0 (Ω′). Applying

(A.3.17), we get ∫
Ω′
∇w · ∇((w − ε)+) + λw(w − ε)+ = 0.

Therefore, by Corollary A.3.17,∫
Ω′
|∇((w − ε)+)|2 + λ|(w − ε)+|2 = −λε

∫
Ω′

(w − ε)+ ≤ 0;

and so, w ≤ ε in Ω′, hence in Ω. Since ε is arbitrary, we get w ≤ 0. Changing w to −w, it follows as well

that w ≥ 0. Therefore, w = 0, which proves uniqueness.

Step 2. Existence. Consider (fn)n∈N ⊂ D(Ω) such that fn −→
n→∞

f in C0(Ω), and let (un)n∈N be the

corresponding solutions of (A.4.6). It follows from Theorem A.4.11 that (un)n∈N is a Cauchy sequence in

L∞(Ω), and since un ∈ C0(Ω) by Theorem A.4.28, un has a limit u in C0(Ω). It is clear that u solves

equation −4u+ λu = f , in D′(Ω).

Step 3. Conclusion. Property (i) follows from the equation. Property (ii) follows from Propositon A.4.10,

since u ∈ L2
loc(Ω). Finally, given a solution u, it follows from uniqueness that u is the limit of the sequence

(un)n∈N constructed in Step 2. Since λ‖un‖L∞ ≤ ‖fn‖L∞ by Theorem A.4.11, one obtains (iii) by letting

n→∞. This completes the proof.

A.4.5. Eigenvalues of the Laplacian. Throughout this section, we assume that Ω is bounded. It

follows from Poincaré’s inequality that λ1 defined by (A.4.1) is positive.

Let f ∈ L2(Ω), and let u ∈ H1
0 (Ω) be the solution of the equation

−4u = f, in H−1(Ω).

Let us set u = Kf . By Theorem A.4.5, K is bounded L2(Ω) → H1
0 (Ω). Therefore, by Theorem A.3.42, K is

compact L2(Ω) → L2(Ω). We claim that K is self adjoint. Indeed, let f, g ∈ L2(Ω) and let u = Kf , v = Kg.

We have

(u, g)L2 − (f, v)L2 = −〈4v, u〉H−1,H1
0

+ 〈4u, v〉H−1,H1
0

= 0,

by (A.3.17). It is clear that K−1(0) = {0} and that (Kf, f)L2 ≥ 0, for every f ∈ L2(Ω). Therefore (see

Brezis [17], Theorem VI.11), L2(Ω) possesses a Hilbert basis (ϕn)n≥1 of eigenvectors of K and the eigenvalues

of K consist of a sequence (σn)n≥1 ⊂ (0,∞) converging to 0, as n→∞. Let us set

λn =
1
σn
, for n ≥ 1.
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We have 0 < λ1 < λ2 < · · ·, and λn →∞ as n→∞. In addition, ϕn ∈ H1
0 (Ω) and

−4ϕn = λnϕn, in H−1(Ω).

Below are some important properties concerning the spectral decomposition of −4.

Proposition A.4.34. Assume Ω is connected. The following properties hold:

(i) ϕn ∈ L∞(Ω) ∩ C∞(Ω), for every n ≥ 1;

(ii) λ1 is a simple eigenvalue;

(iii) one can chose ϕ1 such that ϕ1 > 0 on Ω;

(iv) λ1 = λ1(Ω), where λ1(Ω) is defined by (A.4.1).

Proof. We will prove these properties in a more general framework in Proposition A.4.35 below, except

for property ϕn ∈ C∞(Ω). To see this property, write −4ϕn = −λnϕn. We have λnϕn ∈ H1
0 (Ω), and it

follows from Proposition A.4.10 that ϕn ∈ H3
loc(Ω). Therefore, by applying again Proposition A.4.10, we

obtain ϕn ∈ H5
loc(Ω). An obvious iteration argument shows that ϕn ∈ Hm

loc(Ω), for every integer m. The

result now follows from Sobolev’s embedding theorem.

We generalize the above observations. Consider a ∈ L∞(Ω) and α > −λ1(−4+ a), where λ1(−4+ a)

is defined by (A.4.13). Let f ∈ L2(Ω), and let u ∈ H1
0 (Ω) be the solution of the equation

−4u+ au+ αu = f, in H−1(Ω).

Let us set u = Kaf . By Theorem A.4.7, Ka is bounded L2(Ω) → H1
0 (Ω). Therefore, by Theorem A.3.42,

Ka is compact L2(Ω) → L2(Ω). We claim that Ka is self adjoint. Indeed, let f, g ∈ L2(Ω) and let u = Kaf ,

v = Kag. We have

(u, g)L2 − (f, v)L2 = 〈4v, u〉H−1,H1
0
− 〈4u, v〉H−1,H1

0
= 0,

by (A.3.17). It is clear that K−1
a (0) = {0} and that (Kaf, f)L2 ≥ 0, for every f ∈ L2(Ω). Therefore

(see Brezis [17], Theorem VI.11), L2(Ω) possesses a Hilbert basis (ϕn)n≥1 of eigenvectors of Ka and the

eigenvalues of Ka consist of a sequence (σn)n≥1 ⊂ (0,∞) converging to 0, as n→∞. Let us set

λn =
1
σn

− α, for n ≥ 1.

We have λ1 < λ2 < · · ·, and λn →∞ as n→∞. In addition, ϕn ∈ H1
0 (Ω) and

−4ϕn + aϕn = λnϕn, in H−1(Ω).

Below are some important properties concerning the spectral decomposition of −4+ a.

Proposition A.4.35. Assume Ω is connected. If a ∈ L∞(Ω), then the following properties hold:

(i) ϕn ∈ L∞(Ω) ∩ C(Ω), for every n ≥ 1;
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(ii) λ1 is a simple eigenvalue;

(iii) one can chose ϕ1 such that ϕ1 > 0 on Ω;

(iv) λ1 = λ1(−4+ a), where λ1(−4+ a) is defined by (A.4.13).

Proof. (i) Let fn = (1 + λn − a)ϕn. We have

−4ϕn + ϕn = fn.

Note that ϕn ∈ H1
0 (Ω). If N = 1 or N = 2, we have in particular fn ∈ Lp(Ω), for all 2 ≤ p <∞. Applying

Theorem A.4.14 (i), it follows that ϕn ∈ L∞(Ω). If N ≥ 3, let j be a nonnegative integer such that

2N
N − 2j

≤ N

2
<

2N
N − 2(j + 1)

.

Starting from the property fn ∈ L2(Ω) and applying iteratively Theorem A.4.14 (iii), it follows that fn ∈

L
2N

N−2(j+1) (Ω). Applying now Theorem A.4.14 (i), we get fn ∈ L∞(Ω). Continuity follows from the same

estimates and by approximating fn in H1
0 (Ω) by a sequence (h`)`∈N ⊂ C∞0 (Ω). Hence (i).

Properties (ii) and (iii) are established in Gilbarg and Trudinger [54], Theorem 8.38.

(iv) It follows from formula (A.4.16) that

b(ϕ1, ϕ1) = λ1

∫
Ω

|ϕ1|2 dx;

and so λ1 ≥ λ1(−4 + a). Consider a minimizing sequence (uj)j∈N of (A.4.12). By coerciveness, (uj)j∈N

is bounded in H1
0 (Ω). Therefore (Corollary A.3.10 and Theorem A.3.42) there exists u ∈ H1

0 (Ω) and a

subsequence that we still denote by uj such that uj → u strongly in L2(Ω), weakly in H1
0 (Ω) and almost

everywhere. In particular, we have ∫
Ω

|u|2 dx = 1,

and

lim inf
j→∞

∫
Ω

|∇uj |2 dx ≤
∫

Ω

|∇u|2 dx.

One shows easily that also

lim inf
j→∞

∫
Ω

a|uj |2 dx ≤
∫

Ω

a|u|2 dx

It follows that u achieves the minimum in (A.4.12); and so u solves the Euler equation

−4u+ au = λ1(−4+ a)u.

Therefore, λ1(−4+ a) is an eigenvalue; and so λ1(−4+ a) ≥ λ1. Hence (iv). This completes the proof.

Remark A.4.36. Here are some comments concerning the above results.

(i) Connexity of Ω is required only for properties (ii) and (iii) of Proposition A.4.34 and Proposition A.4.35.

Without connexity, these two properties may not hold, as shows the following example. Let Ω =
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(0, π) ∩ (π, 2π). Then λ1 = 1, and the corresponding eigenspace is two-dimensional. More precisely, it

is the spaces spanned by the two functions ϕ1 and ϕ̃1 defined by

ϕ1(x) =

{
sinx if 0 < x < π,

0 if π < x < 2π,
ϕ̃1(x) =

{
0 if 0 < x < π,

− sinx if π < x < 2π.

In particular, both ϕ1 and ϕ̃1 vanish on a connected component of Ω.

(ii) The conclusions of Theorem A.4.35 still hold in the case where a ∈ L∞(Ω) + Lp(Ω), for some p > 1,

p > N/2. The proof (i) has to be slightly modified. The rest of the proof is unchanged.

A.4.6. Complex-valued solutions. Throughout Section A.4, we considered real valued functions but

a similar theory can be developped for complex valued functions, with obvious modifications. In particular,

we have the following results.

Lemma A.4.37. Let ν be defined by

ν = inf
{∫

Ω

|∇u|2, u ∈ H1
0 (Ω,C),

∫
Ω

|u|2 = 1
}
.

Then ν = λ1, where λ1 is defined by (A.4.1).

Proof. Since H1
0 (Ω,R) ⊂ H1

0 (Ω,C), it is clear that ν ≤ λ1. On the other hand, given u ∈ H1
0 (Ω,C) such

that ‖u‖L2 = 1, let v = |u|. Then, v ∈ H1
0 (Ω,R), ‖u‖L2 = 1 and |∇v| ≤ |∇u| almost everywhere (see

Section A.3.7); and so, ν ≥ λ1.

Lemma A.4.38. For every f ∈ H−1(Ω,C), there exists a unique solution u ∈ H1
0 (Ω,C) of equation

−4u+ u = f, in H−1(Ω,C).

Furthermore,

‖f‖H−1 = ‖u‖H1 .

In addition,

‖u‖H1 ≤ ‖f‖L2 ,

whenever f ∈ L2(Ω).

Proof. The proof is the same as that of Lemma A.4.3.

Remark A.4.39. The conclusions of Remark A.4.4 also hold in the complex case.

Theorem A.4.40. Let λ1 be defined by (A.4.1) and let λ ∈ C. If Reλ > −λ1, then the following properties

hold:

(i) For every f ∈ H−1(Ω,C), there exists a unique element u ∈ H1
0 (Ω,C) such that

−4u+ λu = f, in H−1(Ω,C);
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(ii) ‖|f‖| = ‖u‖H1(Ω) defines an equivalent norm on H−1(Ω,C);

(iii) Reλ‖u‖H−1 ≤ ‖f‖H−1 ;

(iv) if f ∈ L2(Ω,C), then4u ∈ L2(Ω,C), the equation makes sense in L2(Ω,C) and Reλ‖u‖L2(Ω) ≤ ‖f‖L2(Ω).

Proof. The proof is the same as that of Theorem A.4.5, by considering the bilinear functional

a(u, v) = Re
{∫

Ω

{∇u · ∇v + λuv}
}
.

Note that

a(u, u) =
∫

Ω

|∇u|2 + Re(λ)
∫

Ω

|u|2,

for all u ∈ H1
0 (Ω,C).

Consider now a ∈ Lσ(Ω,C) + L∞(Ω,C) for some σ verifying (A.4.8), and let

ν(a) = inf
{∫

Ω

|∇u|2 +
∫

Ω

Re(a)|u|2; u ∈ H1
0 (Ω,C),

∫
Ω

|u|2 = 1
}
. (A.4.45)

Note that ν(a) = λ1(−4+ Re(a)), where λ1(·) is defined by (A.4.13). In particular, ν(a) is finite. We have

the following result.

Theorem A.4.41. Let a be as above, let ν(a) be defined by (A.4.45) and let λ ∈ C. If Reλ > −λ1(−4+a),

then for every f ∈ H−1(Ω,C), there exists a unique solution u ∈ H1
0 (Ω,C) of equation (A.4.15) in H−1(Ω,C).

In addition,

‖u‖H1 ≤ C‖f‖H−1 ,

for some constant C independent of f .

Proof. The proof is the same as that of Theorem A.4.7, by considering the bilinear form

b(u, v) = Re
{∫

Ω

{∇u · ∇v + λuv + auv}
}
.

Note that

b(u, u) =
∫

Ω

|∇u|2 + Re(λ)
∫

Ω

|u|2 +
∫

Ω

Re(a)|u|2,

for all u ∈ H1
0 (Ω,C).

Theorem A.4.42. Let a be as in Theorem A.4.41 and let λ ∈ C. Assume that Re(a) ≥ 0 almost

everywhere and that Reλ > 0. Given f ∈ H−1(Ω,C), let u ∈ H1
0 (Ω,C) be the solution of (A.4.15) given by

Theorem A.4.41. If f ∈ Lp(Ω,C) for some 1 ≤ p ≤ ∞, then u ∈ Lp(Ω,C) and Re(λ)‖u‖Lp ≤ ‖f‖Lp .

Proof. One proceeds as for Theorems A.4.11 and A.4.12, by using the following identity, which generalizes

formula (A.4.24).

Re (∇u · ∇(f(|u|)u)) = f(|u|)|∇u|2 +
f ′(|u|)
|u|

|Re(u∇u)|2 almost everywhere. (A.4.46)
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Identity (A.4.46) holds for every u ∈ H1
0 (Ω,C) and for every smooth function f : (0,∞) → [0,∞) such that

f(s) and sf ′(s) are bounded on (0,∞). In particular, if f, f ′ ≥ 0, then

Re
{∫

Ω

∇u · ∇(f(|u|)u)
}
≥ 0,

for all u ∈ H1
0 (Ω,C). If 1 ≤ p ≤ 2, one takes f(s) = (ε + s2)

p−2
2 , and if 2 ≤ p < ∞, one takes f(s) =(

s2

1 + εs2

) p−2
2

. One concludes as for Theorem A.4.11.

Remark A.4.43. We summarize below more results of Section A.4 that still hold true for complex-valued

solutions.

(i) The conclusions of Theorem A.4.8 and Proposition A.4.10 hold for complex-valued solutions, and for

every λ ∈ C. The proofs are essentially the same.

(ii) The conclusion of Theorem A.4.13 holds for complex-valued solutions, provided λ ∈ R and a ≥ 0. This

is easily seen by considering the real and imaginary parts of the solution.

(iii) The conclusions of Theorem A.4.14 hold for complex-valued solutions, when a and λ are as in Theo-

rem A.4.42. The result is obtained by the same method, and by making use of formula (A.4.46) instead

of formula (A.4.24).

(iv) The conclusion of Corollary A.4.17 holds for complex-valued solutions, when λ ∈ C and Reλ > 0. The

result is obtained by the same method.

(v) The conclusion of Theorem A.4.28 holds for complex-valued solutions, provided λ ∈ R and a ≥ 0. This

is obtained by considering the real and imaginary parts of the solution.

A.5. Inequalities. This section is devoted to various useful inequalities.

A.5.1. Jensen’s inequality.

Theorem A.5.1. (Jensen’s inequality) Consider a set X endowed with a positive measure µ such that∫
X

dµ = 1, and let F : R → R be a convex function. Then for every f ∈ L1(X, dµ) such that F (f) ∈

L1(X, dµ), we have

F

(∫
X

f(x) dµ(x)
)
≤
∫

X

F (f(x)) dµ(x).

Proof. Since F is convex, F has left and right derivatives F±(t) at every t ∈ R; F± are nondecreasing

functions and F−(t) ≤ F+(t), for every t ∈ R. For s < t we have

F (t)− F (s)
t− s

≤ F−(t) ≤ F+(t),

and for s > t we have
F (s)− F (t)

s− t
≥ F+(t);

and so

F (t)− F (s) ≤ F+(t)(t− s), for every s, t ∈ R.
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Take t =
∫

X

f(x) dµ(x) and s = f(x), for x ∈ X. It follows that

F

(∫
X

f(x) dµ(x)
)
≤ F (f(x)) + F+(t)

(∫
X

f(x) dµ(x)− f(x)
)
,

for almost all x ∈ X. Integrating the above inequality over X yields the desired estimate.

Corollary A.5.2. Let Ω be an open subset of RN , let ϕ be a nonnegative function of L1(Ω) such that∫
Ω

ϕ(x) dx = 1 and let F : R → R be a convex function. Then,

F

(∫
Ω

f(x)ϕ(x) dx
)
≤
∫

Ω

F (f(x))ϕ(x) dx,

for every f ∈ L1
loc(Ω) such that fϕ ∈ L1(Ω) and F (f)ϕ ∈ L1(Ω).

Proof. Apply Theorem A.5.1 with X = Ω and dµ(x) = ϕ(x)dx.

A.5.2. A differential inequality.

Theorem A.5.3. Let 0 < T ≤ ∞ and let ϕ ∈ C1([0, T )), ϕ ≥ 0. If there exist α,A > 0 such that

ϕ′(t) +Aϕ(t)1+α ≤ 0,

for all t ∈ [0, T ), then

ϕ(t) ≤
(

1
αAt

) 1
α

,

for all t ∈ (0, T ).

Proof. Note that ϕ′ ≤ 0 on [0, T ). Therefore, if ϕ(t0) = 0 for some t0 ∈ [0, T ), then ϕ ≡ 0 on [t0, T ).

Therefore, we may assume that there exists t0 ∈ (0, T ) such that ϕ > 0 on [0, t0). It follows that(
At− 1

αϕ(t)α

)′
≤ 0,

on [0, t0). Integrating the above inequality, we obtain

At− 1
αϕ(t)α

≤ − 1
αϕ(t0)α

≤ 0,

for all t ∈ [0, t0), from which the result follows.

Remark. It is surprising (and very useful) that the estimate of ϕ does not depend on ϕ(0).

A.5.3. Gronwall’s lemma.

Theorem A.5.4. (Gronwall’s lemma) Let T > 0, A ≥ 0 and let f ∈ L1(0, T ) be a nonnegative function.

Consider a nonnegative function ϕ ∈ C([0, T ]) such that

ϕ(t) ≤ A+
∫ t

0

f(s)ϕ(s) ds,
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for every t ∈ [0, T ].Then,

ϕ(t) ≤ A exp
(∫ t

0

f(s) ds
)
,

for every t ∈ [0, T ].

Proof. Set ψ(t) = A +
∫ t

0

f(s)ϕ(s) ds and h(t) = ψ(t) exp
(
−
∫ t

0

f(s) ds
)

. ψ, h ∈ W 1,1 and (see Sec-

tion A.2)

h′(t) = (ψ′(t)− f(t)ψ(t)) exp
(
−
∫ t

0

f(s) ds
)

≤ (f(t)ϕ(t)− f(t)ψ(t)) exp
(
−
∫ t

0

f(s) ds
)
≤ 0.

It follows that h(t) ≤ h(0), from which the result follows.

In fact, Theorem A.5.4 is a particular case of the following result.

Proposition A.5.5. Let T > 0, A ≥ 0 and let f ∈ L1(0, T ) and g ∈ C([0, T ]) be nonnegative functions.

Consider a nonnegative function ϕ ∈ C([0, T ]) such that

ϕ(t) ≤ g(t) +
∫ t

0

f(s)ϕ(s) ds,

for every t ∈ [0, T ]. Then,

ϕ(t) ≤ g(t) +
∫ t

0

f(s)g(s) exp
(∫ t

s

f(σ) dσ
)
ds,

for every t ∈ [0, T ].

Proof. Let ψ(t) =
∫ t

0

f(s)ϕ(s) ds, for t ∈ [0, T ]. We have ψ ∈W 1,1(0, T ) and

ψ′(t) = f(t)ϕ(t) ≤ f(t)ψ(t) + f(t)g(t), for almost all t ∈ [0, T ].

Consider now

θ(t) = exp
(
−
∫ t

0

f(s) ds
)
ψ(t), for t ∈ [0, T ].

It follows that θ ∈W 1,1(0, T ) and that

θ′(t) ≤ f(t)g(t) exp
(
−
∫ t

0

f(s) ds
)

almost everywhere.

The result follows by integrating the above inequality.

Remark A.5.6. In particular, if ϕ verifies the hypotheses of Theorem A.5.4 with A = 0, then ϕ ≡ 0.

Theorem A.5.4 has many variants, in particular in the the case where the integrand is replaced by: An

expression depending on also on t (and possibly with a singular behavior); expressions involving a nonlinear

dependence in ϕ. We describe some of them below.
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Proposition A.5.7. Let T > 0, A ≥ 0, 0 ≤ α, β ≤ 1 and let f be a nonnegative function with f ∈ Lp(0, T )

for some p > 1 such that p′ max{α, β} < 1. Consider a nonnegative function ϕ ∈ L∞(0, T ) such that

ϕ(t) ≤ A t−α +
∫ t

0

(t− s)−βf(s)ϕ(s) ds, for almost all t ∈ [0, T ].

Then there exists C, depending only on T , α, β, p and ‖f‖Lp such that

ϕ(t) ≤ A C t−α,

for almost all t ∈ [0, T ].

Proof. Consider t0 ∈ [0, T ] and δ ∈ (0, 1) small enough so that

t
1
p′−β

0 ‖(1− σ)−βσ−α‖Lp′ (0,1) ‖f‖Lp(0,T ) ≤
1
2
, (A.5.1)

T
1
p′−β ‖f‖Lp(0,T ) (1− δ)−α ‖σ−β‖Lp′ (0,δT ) ≤

1
2
. (A.5.2)

Let ψ(t) = ess sup{sαϕ(s), s ∈ [0, t]}. We have

tαϕ(t) ≤ A+ tα
∫ t

0

(t− s)−βs−αf(s)ψ(s) ds. (A.5.3)

For almost all 0 ≤ t ≤ t0, we have by (A.5.3) and (A.5.1)

tαϕ(t) ≤ A+ tα ‖(t− s)−βs−α‖Lp′ (0,t) ‖f‖Lp(0,t) ψ(t)

≤ A+ t
1
p′−β ‖(1− σ)−βσ−α‖Lp′ (0,1) ‖f‖Lp(0,T ) ψ(t)

≤ A+
1
2
ψ(t).

(A.5.4)

For almost all t0 ≤ t ≤ T , we have by (A.5.3)

tαϕ(t) ≤ A+ tα
∫ (1−δ)t

0

(t− s)−βs−αf(s)ψ(s) ds+ tα ψ(t)
∫ t

(1−δ)t

(t− s)−βs−αf(s) ds

≤ A+ I1 + I2

(A.5.5)

On (0, (1− δ)t) we have (t− s)−β ≤ (δt)−β ≤ (δt0)−β ; and so

I1 ≤ Tα (δt0)−β

∫ t

0

s−αf(s)ψ(s) ds. (A.5.6)

On ((1− δ)t), t) we have s−α ≤ ((1− δ)t)−α; and so, by (A.5.2)

I2 ≤ (1− δ)−α ‖(t− s)−β‖Lp′ ((1−δ)t,t) ‖f‖Lp(0,t) ψ(t)

≤ (1− δ)−α t
1
p′−β ‖σ−β‖Lp′ (0,δT ) ‖f‖Lp(0,T ) ψ(t)

≤ 1
2
ψ(t).

(A.5.7)

It follows from (A.5.4), (A.5.5), (A.5.6) and (A.5.7) that

tα ϕ(t) ≤ A+ (δt0)−β Tα

∫ t

0

s−αf(s)ψ(s) ds+
1
2
ψ(t);
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and so,

ψ(t) ≤ A+ (δt0)−β Tα

∫ t

0

s−αf(s)ψ(s) ds+
1
2
ψ(t),

and we conclude with Theorem A.5.4, since s−αf(s) ∈ L1(0, T ) by our assumption on f .

Proposition A.5.8. Let F ∈ C([0,∞),R) and assume that F is a nondecreasing function such that

F (0) = 0 and F (t) > 0 for t > 0. Define the increasing function H ∈ C(0,∞) by

H(t) =
∫ t

1

ds

F (s)
.

Let T > 0, A ≥ 0 and let ϕ ∈ C([0, T ]) be a nonnegative function such that

ϕ(t) ≤ A+
∫ t

0

F (ϕ(s)) ds, for all t ∈ [0, T ].

Then

(i) if H(t) →∞ as t→∞, then ϕ(t) ≤ H−1(H(1 +A) + t) for all t ∈ [0, T ];

(ii) if A = 0 and H(t) → −∞ as t→ 0, then ϕ ≡ 0.

Proof. Let ψ(t) = A+
∫ t

0

F (ϕ(s)) ds. We have ψ ∈W 1,1(0, T ) and ψ′ ≤ F (ψ), ψ(0) = A.

Assume first that A = 0 and H(t) → −∞ as t → 0. If ψ ≡ 0, then (ii) holds. Otherwise, there exists

t ∈ [0, T ] such that ψ(t) > 0. Let t0 be the infimum of such t’s. Without loss of generality we may assume

that t0 = 0, and since ψ is nondecreasing, we have ψ(t) > 0 for t > 0. Since (H(ψ(t))′ ≤ 1, we have for

every 0 < s ≤ t < T

H(ψ(t)) ≤ H(ψ(s)) + (t− s) ≤ H(ψ(s)) + t.

Letting s→ 0, we obtain H(ψ(t)) = −∞, which is absurd. Hence (ii).

Assume now that H(t) → ∞ as t → ∞. Without loss of generality we may assume that A > 0.

Therefore ψ(t) > 0 on [0, T ] and (H(ψ(t))′ ≤ 1. It follows that

H(ψ(t)) ≤ H(A) + t.

Therefore, ψ(t) ≤ H−1(H(A) + t) ≤ H−1(H(1 +A) + t). This proves (i).

Remark A.5.9. If F (t) ≤ C(1 + |Log(t)|) for all t ≥ 0, then H(t) → +∞ as t→ +∞ and H(t) → −∞ as

t→ 0. Therefore we can apply both (i) and (ii).

Theorem A.5.10. let T > 0 and f, g ∈ C([0, T )) with f, g ≥ 0. Suppose there exist 0 ≤ α < 1, 1 < p <
1
α

and C ≥ 0 such that

f(t+ s) ≤ s−αg(t) + C + C

∫ s

0

(s− σ)−αf(t+ σ)p dσ,

for all 0 < t < t+ s < T . If

lim sup
t↑T

f(t) = +∞,
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then

lim inf
t↑T

(T − t)γg(t) > 0,

with γ =
1− αp

p− 1
.

Proof. We consider two cases.

Case 1. α > 0. Without loss of generality, we may assume that g(t) ≥ 1 for all t ∈ [0, T ) (otherwise,

replace g(t) by g(t) + 1). Setting θ(s) = sαf(t+ s), we deduce

θ(s) ≤ g(t) + Csα + Csα

∫ s

0

(s− σ)−ασ−pαθ(σ)p dσ.

Set now Θ(s) = sup
0≤σ≤s

θ(σ). We have

θ(s) ≤ g(t) + Csα + CsαΘ(s)p

∫ s

0

(s− σ)−ασ−pα dσ.

Since

sα

∫ s

0

(s− σ)−ασ−pαdσ = s1−pα

∫ 1

0

dτ

(1− τ)ατpα
= as1−pα,

for some constant a, we deduce that

θ(s) ≤ g(t) + Csα + Cs1−pαΘ(s)p.

and so,

Θ(s) ≤ g(t) + Csα + Cs1−pαΘ(s)p.

We have Θ(0) = 0 and Θ(T − s)−→
s↑t

∞. Therefore, there exists τ ∈ (0, T − t) such that Θ(τ) = 2g(t). By

applying the above inequality with s = τ , we find

g(t) ≤ Cτα + Cτ1−pαg(t)p ≤ C(T − t)α + C(T − t)1−pαg(t)p.

Note that C(T − t)α ≤ 1
2
g(t) for T − t small enough; and so

1
2
g(t) ≤ C(T − t)1−pαg(t)p,

which yields the desired estimate.

Case 2. α = 0. In this case, we have

f(t+ s) ≤ g(t) + C + C

∫ s

0

f(t+ σ)p dσ.

Set

G(s) = g(t) + C + C

∫ s

0

f(t+ σ)p dσ,

so that

G′(s) = Cf(t+ s)p ≤ CG(s)p.
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Integrating this inequality, we obtain

G1−p(s)−G1−p(0)
1− p

≤ Cs,

for every 0 < s < T −t. Now we let s ↑ T −t. Note that G(s) → +∞ as s ↑ T −t. Indeed, G is nondecreasing

and lim sup
s↑T−t

G(s) ≥ lim sup
τ↑T

f(τ) = +∞. Thus we obtain

G1−p(0) ≤ C(p− 1)(T − t).

On the other hand, G(0) = g(t) + C. This yields the desired conclusion.

A.5.4. Interpolation inequalities. We begin with the well known Riesz-Thorin interpolation theorem.

Theorem A.5.11. Let Ω be an open subset of RN , let 1 ≤ p0, p1, q0, q1 ≤ ∞, and let T : Lp0(Ω)∩Lp1(Ω) →

Lq0(Ω) ∩ Lq1(Ω) be a linear mapping. If there exist constants M0,M1 such that ‖Tu‖Lqj ≤ Mj‖u‖Lpj for

j = 0, 1 and all u ∈ Lp0(Ω) ∩ Lp1(Ω), then

‖Tu‖Lqθ ≤M1−θ
0 Mθ

1 ‖u‖Lpθ ,

for all u ∈ Lp0(Ω) ∩ Lp1(Ω) and all 0 < θ < 1, where
1
pθ

=
1− θ

p0
+

θ

p1
and

1
qθ

=
1− θ

q0
+

θ

q1
.

Proof. See for example Bergh and Löfström [13], Theorem 5.1.1, p. 106. Note that the theorem is stated

for Lp spaces of complex valued functions. However, if one considers real valued spaces, then one can define

T : Lpi(Ω,C) → Lqi(Ω,C) by Tu = Tf if u = f + ig. It is clear that ‖T‖L(Lpθ ,Lqθ ) ≤ C(pθ, qθ)‖T‖L(Lpθ ,Lqθ ).

Concerning vector valued Lp spaces, we have the following results of Bergh and Löfström.

Theorem A.5.12. Let Ω be an open subset of RN , let 1 ≤ p0, p1 < ∞ and 1 ≤ q0, q1 ≤ ∞, and let I be

an open interval of R. let X be a Banach space and let T : Lp0(I, Lq0(Ω)) ∩ Lp1(I, Lq1(Ω)) → X be a linear

mapping. If there exist constants C0, C1 such that ‖Tf‖X ≤ Cj‖f‖Lpj (I,Lqj ) for all f ∈ Lp0(I, Lq0(Ω)) ∩

Lp1(I, Lq1(Ω)) and j = 1, 2, then

‖Tf‖X ≤ C1−θ
0 Cθ

1‖f‖Lpθ (I,Lqθ ),

for every f ∈ Lp0(I, Lq0(Ω)) ∩ Lp1(I, Lq1(Ω)) and for every 0 < θ < 1, where
1
pθ

=
1− θ

p0
+

θ

p1
and

1
qθ

=
1− θ

q0
+

θ

q1
.

Proof. It follows from Bergh and Löfstrom [13], Theorem 4.4.1, p. 90 that T is continuous

(Lp0(I, Lq0(Ω)), Lp1(I, Lq1(Ω)))[θ] → (X,X)[θ] = X,

with norm C1−θ
0 Cθ

1 . Next, It follows from Bergh and Löfstrom [13], Theorems 5.1.1 and 5.1.2, pp. 106

and 107 that

(Lp0(I, Lq0(Ω)), Lp1(I, Lq1(Ω)))[θ] = Lpθ (I, (Lq0(Ω), Lq1(Ω))[θ]) = Lpθ (I, Lqθ (Ω)).
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Hence the result.

Theorem A.5.13. Let Ω be an open subset of RN , let 1 ≤ p0
0, p

0
1, p

1
0, p

1
1 < ∞ and 1 ≤ q00 , q

0
1 , q

1
0 , q

1
1 ≤ ∞,

and let I be an open interval of R. let T : Lp0
0(I, Lq0

0 (Ω))∩Lp0
1(I, Lq0

1 (Ω)) → Lp1
0(I, Lq1

0 (Ω))∩Lp1
1(I, Lq1

1 (Ω))

be a linear mapping. If there exist constants C0, C1 such that ‖Tf‖
L

p1
j (I,L

q1
j )
≤ Cj‖f‖

L
p0

j (I,L
q0
j )

for all

f ∈ Lp0
0(I, Lq0

0 (Ω)) ∩ Lp0
1(I, Lq0

1 (Ω)) and j = 1, 2, then

‖Tf‖
L

p1
θ (I,L

q1
θ )
≤ C1−θ

0 Cθ
1‖f‖L

p0
θ (I,L

q0
θ )
,

for every f ∈ Lp0
0(I, Lq0

0 (Ω)) ∩ Lp0
1(I, Lq0

1 (Ω)) and for every 0 < θ < 1, where
1
pj

θ

=
1− θ

pj
0

+
θ

pj
1

and

1
qj
θ

=
1− θ

qj
0

+
θ

qj
1

.

Proof. The proof is the same as that of Theorem A.5.12.

Remark A.5.14. Theorems A.5.12 and A.5.13 are valid with pj = ∞ or p`
j = ∞, provided one replaces

the space L∞(I,X) by the closure in L∞(I,X) of the space spanned by the functions of the form 1E where

E is a measurable subset of I (see Bergh and Löfström [13]).

A.5.5. Convolution estimates. We begin with the well known Young’s interpolation inequality.

Theorem A.5.15. Let N be a positive integer and let 1 ≤ p, q, r ≤ ∞ be such that

1
r

=
1
p

+
1
q
− 1.

If f ∈ Lp(RN ) and g ∈ Lq(RN ), then f ? g ∈ Lr(RN ) and

‖f ? g‖Lr ≤ ‖f‖Lp‖g‖Lq ,

where

f ? g(x) =
∫

RN

f(y)g(x− y) dx,

for almost all x ∈ RN .

Note that one cannot apply Young’s inequality to functions of the type f(x) = |x|−α, α > 0 since

this function does not belong to any space Lp(RN ). The following Riesz potentials inequality extends some

Young’s inequalities in this case.

Theorem A.5.16. Let 0 < α < N . Given u ∈ Cc(RN ), define I(u) ∈ C(RN ) by

I(u)(x) =
∫

RN

|x− y|−N+αu(y) dy = (| · |−N+α ? u) (x).

Then I(u) ∈ Lq(RN ) for every 1 < q <∞. Moreover, for every 1 < p < q <∞ such that
1
q

=
1
p
− α

N
, there

exists a constant C(p, q) such that

‖I(u)‖Lq(RN ) ≤ C(p, q)‖u‖Lp(RN ),
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for all u ∈ Cc(RN ).

The following corollary is useful for estimating solutions of nonhomogeneous evolution equations.

Corollary A.5.17. Let I be an interval of R and let X be a Banach space. Let 0 < σ < 1 and t0 ∈ I, and

given f ∈ Cc(I,X), define If ∈ C(I,X) by

If (t) =
∫ t

t0

|t− s|−σf(s) ds.

Then If ∈ Lq(I,X) for every 1 < q < ∞. Moreover, for every 1 < p < q < ∞ such that
1
q

=
1
p

+ σ − 1,

there exists a constant C(p, q) such that

‖If‖Lq(I,X) ≤ C(p, q)‖f‖Lp(I,X),

for all f ∈ Cc(I,X).

Proof. For f as above, define f̃ ∈ Cc(R, X) by

f̃(t) =

{
f(t), if t ∈ I;

0, if t 6∈ I;

and g ∈ Cc(R) by g(t) = ‖f̃(t)‖. We have

‖If (t)‖X ≤
∫ +∞

−∞
|t− s|−σ‖f̃(s)‖ ds = I(g)(t),

where I(g) is defined in Theorem A.5.16. The result now follows by applying Theorem A.5.16 with N = 1

and α = 1− σ.

Remark A.5.18. Note that the constant C(p, q) in Corollary A.5.17 depends only on p, q. In particular,

it is independent of I and t0 ∈ I.

A.5.6. Kato’s inequality. Even if u : RN → R is smooth, |u|may have singular second order derivatives.

In particular, one cannot compare 4u and 4|u| as functions. However, one can prove an inequality in the

sense of distributions. This is the object of the following result.

Theorem A.5.19. (Kato’s inequality) Let Ω be an open subset of RN and define

signx =


1 if x > 0,

0 if x = 0,

− 1 if x < 0.

If u ∈ L1
loc(Ω) is such that 4u ∈ L1

loc(Ω), then 4|u| ≥ (4u)signu in D′(Ω).

Proof. Since the property is local, we may assume that Ω = RN . The proof proceeds in three steps.

Step 1. If j ∈ C2(R,R) is convex and if u ∈ C2(RN ), then 4j(u) ≥ j′(u)4u. Indeed, an elementary

calculation shows that 4j(u) = j′′(u)|∇u|2 + j′(u)4u ≥ j′(u)4u.
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Step 2. If j ∈ C2(R,R) ∩ W 2,∞(R) is convex and if u ∈ L1
loc(RN ) is such that 4u ∈ L1

loc(RN ), then

4j(u) ≥ j′(u)4u in D′(RN ). Let (ρn)n∈N be a sequence of mollifiers and set un = ρn ? u. It follows that

un ∈ C2(RN ); and so, by Step 1, 4j(un) ≥ j′(un)4un. Consider now 0 < R < ∞ and set B = {x ∈

RN ; |x| < R}. It follows from Brezis [17], Théorème IV.22, p. 71 that un → u and 4un = ρn ?4u → 4u

in L1(B). We also may assume, by possibly substracting a subsequence that un → u and 4un → 4u

almost everywhere and that there exists f ∈ L1(B) such that |un| + |4un| ≤ f almost everywhere. It

follows that j(un) → j(u) in L1(B) and that j′(un)4un → j′(u)4u in L1(B). In particular, it follows that

4j(un)−j′(un)4un →4j(u)−j′(u)4u in D′(B). Since R is arbitrary, it follows that4j(un)−j′(un)4un →

4j(u)− j′(u)4u in D′(RN ). Hence the result.

Step 3. Conclusion. Let u be as in the statement of the theorem and, given ε > 0, set jε(x) = (ε2+t2)1/2.

It follows from Step 2 that 4jε(u) − j′ε(u)4u ≥ 0 in D′(RN ). The result follows, since jε(x) → |x| and

j′ε(x) → signx as ε ↓ 0 (see the proof of Step 2).

Kato’s inequality has a parabolic version which we describe below.

Theorem A.5.20. Let T > 0 and let Ω be an open subset of RN . If u(t, x) ∈ L1
loc((0, T )×Ω) is such that

ut ∈ L1
loc((0, T )× Ω) and 4u ∈ L1

loc((0, T )× Ω), then
∂

∂t
|u| − 4|u| ≤

(
∂u

∂t
−4u

)
signu in D′((0, T )× Ω),

where sign is as defined in Theorem A.5.19.

Proof. The proof is the same as the proof of Theorem A.5.19.
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