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1. INTRODUCTION
Consider the problem

—Au = f(x,u) on Q,
u=z0, u#0 on Q. 1)
u=20 on a2

where Q C RY is a bounded domain with smooth boundary and f(x.u):Q X [0, =) —R.
We make the following assumptions:

fora.e. x € Q the function u+> f(x, u) is continuous on @
[0, =) and the function u+ f{x, u)/u is decreasing on (0. *)
for each u = 0 the function x = f(x, u) belongs to L*(L2): 3)
there is a constant C > 0 such that @
fx.u)<Cu+1)forae.x€Q, VYu=0.

Set
ag(x) = lip})f(x, u)/u
a.(x) = liTnlf(x, w)/u

so that —= < gg(x) < += and —® < a.(x) < —=. By a solution of (1) we mean a function
u € HY(Q) N L*(Q) satisfying (1). It follows from (2), (3), (4) that f(x, u) € L*(Q); indeed
we have

—1fG )| < fxu@) < C(Ju)] + 1)

Consequently a solution of (1) belongs to W22(Q) for every p <=.
Our main result is the following:

TueoreM 1. There is at most one solution of (1). Moreover, a solution of (1) exists if and only
if

A=A —ag(x)) <0 (5)
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and
A (=B = ax(x)) >0 (6)

Here 4,(—A — a(x)) denotes the first eigenvalue of =4 — a(x) with zero Dirichlet condition.
Since a(x) may take the values == the precise meaning of (5) and (6) will be explained in
Section 3. In the special case where flx,u) = flu)is independent of x, then (5)~(6) is equivalent
to

a. < A (—A)<ay.

Theorem 1 is closely related to a number of earlier results. We refer in particular to
Krasnoselskii [12, theorems 7.14, 7.15], Keller and Cohen [11]. Cohen and Laetsch [6]. Keller
[10], Simpson and Cohen [14], Laetsch {13], Amann [1,2]. Hess [9]. DeFigueiredo [7].
Berestycki [5], and Smoller and Wasserman [15].

The main novelties in our approach are the following:

(a) Our proof of uniqueness involves a simple “‘energy” device which is reminiscent of the
device used in the theory of monotone operators—in contrast with all the previous proofs
based on a comparison argument and on the maximum principle.

(b) Our proof of existence relies on a minimization technique while the earlier works used

most often a sub-super-solution method. In addition, we point out that the functional to be
minimized, namely ‘

E(u) = %J |Vulr = [ F(x, u) where F(x,u) = Ju fx,s)dx

is convex with respect to the variable p = u®. This factis based on an observation of Benguria
[3] (see also [4]).

(¢) In most earlier works it has not been noticed—or explicitly stated—that, under assump-
tions (2)—(4), there is indeed a simple necessary and sufficient condition for the existence of a
solution of (1).

Our paper is organized as follows: 1. Introduction; 2. Uniqueness; 3. Condition (3)—(6) is
necessary; 4. Condition (5)-(6) is sufficient.

2. UNIQUENESS
Here we use only assumptions (2) and (3). We start with the following lemma.

Lemua 1. Assume (2), (3) and let u be a solution of (1). Then we have

u>0 on Q Q)
and
ou <0 onaQ (8)
on

(n denotes the outward normal direction).

Proof. Since u < |[ul- it follows that

focw) _ fle Nule)

w o lulls
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and therefore
flx,u)=-Mu  onQ
for some constant M = 0. Hence u satisfies
-Au+Mu=0 on
?gx](; the conclusion follows from the strong maximum principle (see. e.g. Gilbarg and Trudinger
Proof of uniqueness. Suppose u, and u; are two solutions of (1). We write

_ﬂl+ é”_zzf(-\'-lh) _ flxus)
u, u, I s ®)

Ztllltipc}y (9) through by ui — u3 and integrate over Q. Note that u3/u, and u}/u, belong to
L an

2 2 4
us s us us u 2
2y 2 2 . 1 1 u
v(—u ) =2—=Vu, - =5 Vu,, v(—):z—wl - —vu,.

1 Uy uj U/ U us

7
(We use here the fact that u,/u, and u»/u, belong to L*, which is a consequence of lemma 1.)
After some rearrangements we obtain the identity

Au,  Aus\ , u 2 . 2
J(———-+—)(Lq—u§)=f\Vul—“—qu3% +‘Vu2-—“—'Tul
2 1

Uy Us i,

=0. (10)

We deduce from (9) and (10) that
J’(f(x, ) _f(-\’- u-)

Uy 125

>(u:1 —u3)=0
and we conclude (using assumption (2)) that u; = u.

Remark 1. 1f insteaq of (2) we just assume that the function u ~ f(x. u)/u is nonincreasing
(for a.e. x € Q), uniqueness may fail. However. we obtain }

Vo _Vuy o flew) flow)

u, Uy u, U,

:Vhlch implies in particular that uy/u, is a constant. In many cases we can still conclude that
= Us.

3. CONDITION (5)-(6) IS NECESSARY
First we observe that
a.(x) <f(x,1) and ay(x)=f(x, 1) fora.e. x€Q
and hence there is a constant C = 0 such that

a.(x)<C and ag(x)=-C fora.e.x € Q.
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The precise meamag of 4,(—A = a(x)) is

M(-A-a@) = Inf {[1vor -] a0?).

#0
lloila=1 (o0l

Note that [0 a¢? makes sense if a(x) is any measurable function such that either a(x) = C
or a(x) = —C a.e. on Q. In the first case A(=A = a(x)) € (—=. +*] and in the second case
A(=A = a(x)) € [-=, +%).
Proof of (5). By definition of A,(—A - ap(x)), and since u >0 on Q. we have
J|Vul* - J apu’
ll(—A—ao(x))S——T‘lF’—o—.

On the other hand we have
quF = Jf(x wu < J'ao(x)u2

and (5) follows.

Proof of (6). Set

and
=i (—A —a(x)).
Let y denote the corresponding eigenfunction. that is,
—Ay —ay=uy on Q
y>0 on &
y=0 ond<Q.

Multiplying (1) through by ¥ and integrating on Q we find
J' u(@(x)y + uy) = Jf(x, wy.
On the other hand we have f(x, u) > @(x)u and thus we obtain u J uy > 0; hence u > 0. Finally
we claim that
AM(—A—a)=u
(since a.(x) = a(x)) and the conclusion follows.
4. EXISTENCE

We shall establish an existence result slightly stronger than announced in theorem 1. Instead
of (2) we just assume that

fora.e. x € Q the function u = f(x, u) is continuous on [0. =). (11)
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However, we also assume that
for each & > O there is a constant C5 = 0 such that f(x, u) = —Csu
Vu €0, d], a.e.x € Q. (12)

(Note that (12) is a weaker assumption that (2) + (3).)
Set
20(x) = lim int L&)
u U
[l u)

u

a.(x) = “TTSEP

Under assumptions (12) and (4) there is a constant C such that a,(x) = —C and a.(x) < C.
THEOREM 2. Assume that (3), (4), (11), (12), (5) and (6) hold. Then there is a solution of (1).
Proof. Consider the functional
E(u) = %J' |Vul? - fF(x, u), ue H)(Q)

where F(x.‘u) = [4 f(x,t) dr and f(x, u) is extended to be f(x, 0) for u < 0. Note that E(u) €
(—=. +x] is well-defined since F(x, u) < C(3u® + |u|) Yu € R. We claim that:

E is coercive on H}, thatis, lim E(u) = =; (13)
i H[l}ﬂ!

Eisl.s.c. for the weak H| topology; (14)

there is some ¢ € H| such that E(¢) <0. 15)

Proof of (13). Assume, by contradiction, that there is some sequence (u,) in H} such that

lunlgy—=>= and  E(u,)<C.

We have
%j\Vu,,{zsfF(x,u,,)JrC (16)
and consequently we obtain
%fqunF < Cf(ui +1). (17)
Set
tr=lul.  and v, =/t

[t follows from (17) that

=%, Joaa =1 and |o,llgy <C.
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We may therefore assume that
v, — v weakly in H}, v, — v strongly in L?and a.e. with|lof, = 1.
We claim that

lim supJMSiJ a.v’. (18)

2
e th (0>0]
Indeed we write

f F(x,t,0,) = J F(x,t,v7) + j Flx,t,07) + [ F(x.t,0,). (19)
{e>0} [v=0] “lon=0]
We estimate the second integral by
J F(x.t,05) < CJ (B +1
[o=0] (0=0]
and we deduce that
J ﬂx—iiu—"—) < o(1) asn—> = (20)
(<0} n
since v, — v in L.
We estimate the third integral by
[ Fwnodsc[ulvl
{vn=0]
and thus we obtain
F(x,t,v,
J —(ﬁ—;ﬁ—)so(l) asn— x. (21)
[va=0] "
We now turn to the first integral. We note that
lim sup F(x,’u) < ta.(x) fora.e. x EQ
u— +x u-
and therefore
F(x, 07 (x)) .
lim sup — < $a.(x)v"(x) a.e.on[v>0] (22)
n— +x - .

n

On the other hand we have

F(x, 1,05 .
n Iy
and since v, — v in L? we may find a fixed function 4 € L' such that (for some subsequence)
Feton) _ 0 ge on@, v (23)
L
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From (22). (23) and Fatou's lemma we obtain

. F(x,t,vy N
lim sup { (—X;—U—zs{:J' a.v*. (24)
" o) b [0>0]

Combining (19), (20), (21) and (24) we see that (18) holds. Passing to the limit in (16) we find
(using (18))

Finally we have (by definition of «)

[wort - [ = ool (26)

[v>0}
where a = A(—A — a*(x)) > 0.

Combining (25) and (26) we deduce that v™ = 0 and going back to (25) we obtain v = 0—
a contradiction since |Jof, = 1.

Proof of (14). Suppose u,— u weakly in H}. Since F(x,u,} < C(u? + 1) we may apply
Fatou's lemma and conclude that

lim sup J Flx,u,) < JF(x, u).

Proof of (15). We fix any ¢ € Hj satisfying

f\vqp\z - J agp* <0
lo=0]
(such a ¢ exists by assumption (5)).

We may always assume that @ >0 and that ¢ € L* (otherwise we replace ¢ by |¢| and
truncate ¢). We note that

gt £ =
and thus
tim ot ﬂ%ﬂxd)) = 4ay(x)9*(x)  a.e.on[¢ #0].
On the other hand we deduce from (12) that
e 29) -C¢* = -C.

E2
We may therefore apply Fatou's lemma and conclude that

F(x, ,
lim inf j (x:£0) 4 J ay9;

£ [p#0} [p=0]
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thus we have
F(x, € 5
1iminfj—————(x £¢) aéj a,9°.
0 € [p#0]
Hence we obtain
L [Fx.e9)
o - )<

for £ > 0 small enough.

Proof of theorem 2 concluded. Using (13), (14) and (15) we see that uénﬁf& E(u) is achieved
by some u % 0. We may always assume that 1 = 0O—otherwise we replace u by u” and use tk_)e
fact that F(x, u) < F(x,u™) (which holds since F(x.u)=f(x,0u=<0foru S 0)..If we kpew in
addition that u € L* we would easily conclude that u is a solution of (1). We claim that indeed
we may also assume that

u€ L™ (27
For this purpose we introduce a truncated problem. We set, for each integer k>0

Fr(x, u) = Max{f(x, u). —ku} ifu=0
FHCx 1) = f4(x. 0) = f(x,0) ifu<0

and

foxw)

af(x) = lix;nlig\f p

frxw)

u

ak(x) = listup
Assumptions (3), (4), (11) and (12) hold for f¥(x, u). Assumption (5) holds for a* since

M(=A —af(0) =< A(—A = ay(x) <0

because f =< f* and thus ag < a%. Moreover, assumption (6) holds for a* proyided Ik< is large
enough. Indeed, it is easy to check that A=A —ak() 1 A(-A— a.(x)) since a% | ax as
kT =

Set

E.(¥) =éJWulz - JF"(x, w), u€H).

It follows from the previous argument that Infl E,(u) is achieved by some u. Moreover, U
satisfies ueH,

—Auy = f (x,uy) onQ

Uy = 0, Ug $ 0 on Q

U, = ondQ

(note that E, is of class C' since IF4(x, w) < Cellul + 1))
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A standard bootstrap argument shows that u, € L™.
Set :
v = Min{u. u,}.
We claim that
E(v) < E(u), (28)

and this will conclude the proof of (27).

Indeed. we have

%quklz —J’F“'(x.uk)séf\qul: —JF“'(X, ) Vo € H. (29)
In (29) we choose ¢ = Max{u, u;} and we find

%J’ Vil —f FA(x, ug) s%j [Vul? —J F¥(x. ). (30)
[uk<u]

{uk<u] {uk<u] [uk <u}

On the other hand we have

E(v) — E(u) = f 3Iucl? = HVul® — Flx. uy) + F(x.w)}

(k<]

and using (30) we obtain

F¥(x, u) — F*(x, ) — Fx.uy) + Flx,u) = f [fle, ) = fF(x.n]dr <0
uk
on the set [u; < u]. Thus (28) is proved.

Remark 2. We assume again that (2) holds. Then the functional E is convex with respect to
the variable p = u*. More precisely, the functional p ~ E(Vp) defined on the convex set

K={p€L';p=0a.e. and Vp€E Hj}

is convex. Indeed, it is known (and easy to prove) that the functional p — fI¥Vpl? is convex
(see [3] and also [4]) while the function p ~ —F(x, Vp) is convex since its derivative

e Vo)
Vp
is increasing.
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