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The usual Sobolev incquality in 8", 1 > 3. asserts that |V/ 1228, /15, with S,
being the sharp constant. This paper is concerned, instead, with functions restricted
to bounded domains £2 < B”. Two kinds of incqualitics arc established: (i) If £ =0
on A then IVAI32 S, 0/ 1+ COV I, with p = 2%/2and [VFI22 8, 11134
DS WY Il;;‘ with g =n/tn —1). (i) I f #0 on 82, then [V 1,4+ C(82) I/ WV oies 2

SY 2 [0y with g = 2(n ~ 1)/(n — 2). Some further results and open problems in this
arca arc also presented. ¢ 1985 Acadennic Press, Ine

l. INTRODUCTION

The usual Sobolev inequality in R”, n >3, for the L? norm of the
gradicnt is

VA= S, 0.

(L.1)
2% =2n/(n-2),

for all functions /" with Vfe L? and with f vanishing at infinity in the weak

sense that meas{x || /(x)|>a} <oo for all a>0 (sce [12]). The sharp
constant S, is known to be

Sy=mn(n=2)[1'(n/2)/1(n)]>" (1.2)
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74 BREZIS AND LIEB

The constant S, is achieved in (1.1) if and only if
SIx)=ale? + [x — p|2]? ™2 (1.3)

for some aeC, £#0, and yeR" [1,2,6,7,9, 11].

In this paper we consider appropriate modifications of (1.1) when R” is
replaced by a hounded domain 2 < R”. There arc two main problems:

ProBLEM A. If f=0 on 02, then (1.1) still holds (with L” norms in €.
of course), since f can be cxtended to be zero outside of Q. In this case (1.1)
becomes a strict inequality when f#0 (in view of (1.3)). However, S, is
still the sharp constant in (1.1 (since |V/ ||,/ £ [l,. is scale invariant). QOur
goal, in this case, is to give a lower bound to the difference of the two sides

in (1.1) for f'e H{(£2). In Scction 11 we shall prove the following inequalitics
(1.4) and (1.6):

IVIEZ S, /13 + C@) 11112 (1.4)

pow

where C(£2) depends on € (and n), p‘= nf(n—2)=2*/2, and w denotes the
weak L” norm defined by

1/ e =sup AT Y7 ] 0],
A A

with A being a set of finitc measure |A|.
The inequality (1.4) was motivated by the weaker inequality in [3],

V132 S, /15 + Ce) 1S 112, (15)

which holds for all p <n/(n—2) (with C,(82) >0 as p—>nf(n-2)). The
proof of (1.5) in [3] was very indirect compared to the proof of (1.4) given
here. Incquality (1.4) is best possible in the sense that (1.5) cannot hold
with p=n/(n—2); this can be shown by taking the f in (1.3), applying a
cutoll function to make f vanish on the boundary, and then expanding the
integrals (as in [3]) necar £=0.

An incquality stronger than (1.4), and involving the gradicnt norm is

g

V132 S 1 15+ D) IV 12 (1.6)

with ¢ =n/(n—1). (The reason that (1.6) is stronger than (1.4) is that the
Sobolev inequality has an extension to the weak norms, by Young's
incqualities in weak L” spaces.)

Among the open questions concerning (1.4)-(1.6) arc the following;:
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(a) What arc the sharp constants in (1.4)-(1.6)7 Arc they achicved?
Lxcept in one case, they are not known, even for a ball. If n =3, € is a ball

of radius R and p=2 in (1.5), then C,(2)=n?/(4R?); however, this con-
stant is not achicved [3].

(b)  What can replace the right side of (1.4)-(1.6) when £2 is unboun-
ded, c.g., a half-space?

{¢) Is there a natural way to bound |V/f 13 =5, 0 /113 from below in
terms of the “distance” of f from the set of optimal functions (1.3)?

ProsLem B, I f 50 on 082, then (1.1) does not hold in £ (simply take

S=11in Q). Let us assume now that € is not only bounded but that Q2

(the boundary of 2} has cnough smoothness. Then (1.1) might be expected
to hold if suitable boundary intcgrals arc added to the left side. In Sce-
tion HI we shall prove that for f = constant = f(0§2) on

IV 3+ B 1 /)1 2 S, 1| f113.. (L.7)

On the other hand, if /is not constant on A€, then the following two
incqualitics hold.

IVINZ A+ FES) WS W pniags 2 Su LS 130 (1.8)
IVA + GEY NS Mo 2 S0 e (19)

with ¢ = 2(n — 1)/{n — 2), which is sharp. (Notc the abscnce of the cxponent
2in (1.9))

In addition to the obvious analogues of questions (a) (¢) for Problem B,
one can also ask whether (1.9) can be improved to

IVFN+ HEQ) NN o= SIS (1.10)

We do not know.

If € is a ball of radius R, we shall cstablish that the sharp constant in
(1.7)is E(Q)=0,R""*/(n—2), where a, is the surface arca of the ball of
unit radius in R™. With this E($2), (1.7} is a strict incquality. Given this
fact, one suspects (in view of the solution to Problem A) that some term
could be added to the right side of (1.7). However, such a term cannot be
any L"(£2) norm of /. as will bc shown. i

To conclude this Introduction, let us mention two related incqualitics.
First, if one is willing to replace S, on the right side of (1.10) by the smaller
constant 27¥"S, then for a ball one can obtain the incquality

I IV 12+ KNS W22 7S, 1S 13 (L1
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This is proved in Scction II1. Incqualitics related to
Cherrier [4] for gencral manifolds.

Sccond, one can consider the doubly weighted Hardy- Littlewood -
Sobolev inequality [7, 10] which in some sense is the dual of (1.1), namely,

(1.11) were derived by

mf(-“)f(y)lx—~)'l T e dy | <P S (112)

with p'=2n/(A+2a), 0<i<n O0<La< nip' Il fis restricted to have sup-
port in a bounded domain Q and if P is (by definition) the sharp constant
in R", one should expect to be able to add some additional term to the left
side of (1.12). When p =2 this is indeed possible, and the additional term is

2
J, 10| {j.f(x) Ix| u/.\-} . (1.13)

This was proved in [5]forn=3,1=2 a= 4, and Q being a ball, but the
method easily extends (for a ball) to other n, 4. The result (1.13) further
cxtends to general Q2 (with the same constant J,) by using the Riesz
rearrangement inequality. On the other hand, when p # 2, it does not scem
to be casy to find the additional term on the left side of (1.12): at least we

have not succeeded in doing so. This is an open problem. In particular, in
Section 1 we prove that when p = on=3 =1, a=0, onc cannot cven
add || f1I7 to the left side of (1.12).

II. Proor oF INEQUALITIES (1.4) AND (1.0)

Proof of Incquality (1.4). By the rearrangement incquality for the L?
norm of the gradient we have

IV/*1, < IV, (2.1)
(sce, e.g., [8]); in addition we have

WS * e =1/ 0 oe

) ) (2.2)
W= 10

Here, /* denotes the symmetric decreasing rearrangement of the function /

extended to be zero outside Q. Therefore, it sulfices to consider the case in
which @ is a ball of radius R (chosen to have the same volume as the
original domain) and f is symmetric decreasing.
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Let ge L™ (§2) and dcfine u (o be the solution of

Au=g in £,

(2.3)
u=0 on 0£.
Let
)+ u(x)+ ||, in £, ’
X)=<" . 24
px) {nun AR/ 2 in Q. (=4)
The Sobolev inequality in all of R” applied to ¢ yields
[ 19+ 01+ 02 R 3n=2) 0,2 5, 1 712 (2.5)
A 14
since 20 and w4 flu|, =0. Here
a,=2(n)"/1'(n/2)
is the surface arca of the unit ball in R”. Therefore, we find
(1970 =2 [ e+ [ 1V 4kl 28,0705 (20)

where k= R *(n—2)0,. Replacing g by g and u by Au and optimizing
with respect to 4 we obtain

frressom e ([&) | cm | e

[n incquality (2.7) we can obviously maximize the right side with respect
to g. In view of the definition of the weak norm we shall in fact restrict our
attention to g = 1 ,, namely, the characteristic function of some sct A in §2.
We shall now establish some simple estimates for all the quantities in (2.7)
i which C, gencrically denotes constants depending only on n,

Jm=Lﬁ (2.8)

[1vaz<c,iap o, (29)

i, < C, A2 (2.10)
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Indeed we have, by multiplying (2.3) by « and using Holder's inequality,

JIVW: —j WS ull e | A2 F M
A
<S8, 2 Vull, 4] (211

which implics (2.9). Next we have, by comparison with the solution in R”,

lul <C,1x] "2 (1)

(2.12)
<G, 1A
since the function |x] "' 2 belongs to L™ 2, Since |A| < 82| = a, R"/n we
obtain

J‘lvulz_l_k “““iscn lAld nRn 2‘ (213)

Hence (1.4) has been proved (for all £2) with a constant

C(Q2)=C, Q2 mm (2.14)

Proof of Inequality (1.6). To a certain extent the previous proof can be
imitated cxcept for onc important ingredient, namely, the rearrangement
technique cannot be used since it is not truc that |[V/| aw AV ¥
(However, it is still true that we can replace /by | | withoul changing any
of the norms in (1.6), and thus we may and still assume that /2 0.) Con-
scquently we have to use a direct approach and the constant D(82) in (1.6)
will not depend only on |£2{; it will in fact depend on the capacity of €. It
is an open question whether (1.6) halds with D(£2) depending only on [},
Our result is that

D(§2)=C,[cap(£2). (2.15)

We begin as before with (2.3), but (2.4) is replaced by

[+ u+|lul., in Q,
=1 2.16
? {l]uh LU in Q° ( )
where v is the solution of
Adv =10 in Q)
(2.17)

v=1 on 082,

SUBOGLEV INEGUALITHES 79

with ¢ — 0 at infinity. By definition,

cap(sz)=f (Vo). (2.18)

Incquality (2.7) still holds but with the const

ant & replace y k= ci
Also we note that (2.7) can be written Paced by & L)

das

. . . I
[ |V,/|22-S,, W03 + (J‘ V_/'Vll) /[I IVul? + k el 2 J, (2.19)

\I\;I'uchl h’olds for any ne CJ (). By density, (2.19) still holds for cvery u in
'_,,ﬁ . Hl\lc reason is that for every such i there is asequence i e Cy (£2)
with u, — 1 in 1) and e i, =y, ). o

We now choose « to be the solution of (2.3) with

o oI of )
g —r\_i[(sgn 3}7) I,,J. (2.20)

This function v is in £ 7 as we now verify. We can write
w=w+h,

where w satisfics = £ i all of R, namecly,

w=C, |x|? "xg (2.21)

Clearly 4 is harmonic and = —w on 00, Therelore 4|, < [l <
. . . Y ’ -‘ =
wll, and hence o), <2 lwll .. On the other hand, o

0 of )
=C [ 2 rg2om f
el [

< Cn=2) )5 " a1

and thus
0 (2.22)
Since |x]' "e L7 1 we obtain

hall, <2 0wll, < Ay, (2.23)

Next, let us estimate [ 1Vu)2. Multiplying (2.3) by « we have

[ IVi® = j (sgn fJax,) | (dufdx,) < U IVu|? lm [A]"2

AU NSNS
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and thus

J|V1¢|2<1A|. (2.24)

Finally, since =0 on 092,

[vr-vu= —jfdu=j \fjox) 1. (2.25)

Using these estimates in (2.19) we find

[ =500+, (L l«’f/ﬁ.\',l) / (cap(€2) 141",

since [A|'" "< |Q|' M < Sy cap(£2) by Sobolev's incquality applied
to the function # = in 2 and §=1 in Q. This completes the proof of (1.6)
with the constant given in (2.15).

HI. PrROOFs OF (1.7)-(1.9) AND RELATED MATTERS

Proof of (1.8). Let us define

¢={f in Q, )

w in

where w is the harmonic function that vanishes at infinity and agrees with f
on 022. Using ¢ in (1.1) we find

AR\ A TS (3.2)
V0 «Q
On the other hand, we have

|9~ W (3.3)

This concludes the proof of (1.8).

Proof of (1.7). Now supposc that fis a constant on 2. Wc shall first
investigate the case that Q is a ball of radius R centered at zero. In this case
w(x)=f(02) R" *|x|?" ". Incquality (3.2) then yields (1.7) with

E(Q)=cap(Q)=0,R" /(n—2)
n 191{ - }2 (3.4)

n—2 (niQ|
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Furthermore, (1.7) is a strict incquality with this £(£2) because the function
¢ in (3.1) is not of the form (1.3). Also. L(82) given by (3.4) is the sharp
constant in (3.4). To sce this we apply (1.7) with £ = f, given by (1.3) with
a=1 and y=0=center of the ball. We have

A AN (3.5)

On the other hand, as £ =0

2 /A Ak

(3.6)
=j IV/.12 4+ cap(2) | £.(02)12 + (1),
12
Here we have to note that as & =0 for | > R
Sx) = x|

in the appropriate topologics. On the other hand,

== -

L= nre=] i

Thus

1SN g = NS0+ 0(1). (3.7)

This proves that £(£2) in (1.7) is greater than or cqual to cap() when £ is
a ball, and thus that (3.4) is sharp.

The same calculation with f, as above shows that if £ is a ball there is no
inequality of the type

[ 1V cap@) 10122 5, 111+ d 1 /1 (38)
2

with d >0, because the additional term || £,]l, = O(1) as £ = 0.

Now we consider a gencral domain with f(d€) = constant = C. We can
assume C 20 and note that we can also assume /2= C in . (This is so
because replacing /by | f — C| + C 2 f does not decrease the L2 norm and
leaves IV, invariant.) Consider the function g=/f—C=0 which
vanishes on 7@ and hence can be extended to be zero on Q¢ Apply to g the
rearrangement inequality for the L? norm of the gradient, as was donce in
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Scction 1. Finally consider = g* + C in the ball 2* whose volume is |21
Since f(9R2*)= C = f(02) we have

[ 971+ 02 /@22 S, 1T e e
«@*

As we remarked, [|[V/ 1, (V7 |,. Also since £ = C, it is casy to check that
0 Ny =0Tl e

The conclusion to be drawn from this excrcise is that (1.7) holds for
general © with E(Q) given by (3.4), namely, cap(22*). We also notc that
(1.7), with this E(€2), is strict, since it is strict for a ball.

QuesTioN.  Is E£(82) given by (3.4) the sharp constant in gencral?

Proof of (1.9). Given fin £ we consider the harmonic function / in
which equals f on Q. We write

f=h+u (3.9)
with 1 =0 on 02 and thus
[ 1V 2.5, ;.. (3.10)
On the one hand
[ 1z = [iver = mz = [ v = 19 (3.11)

(note that fo, |VA|? = [, h(h/dn) = g f1h/On) = [, V) Vi) On the other
hand, by the triangle incquality,

Bultae = 0/ W20 = Al 5e (3.12)
Inserting (3.11) and (3.12) in (3.10) we obtain
VA s+ Wl = S22 S e (3.13)
Next we claim that
il <GV N SN0 (3.14)

with ¢ =2(n — 1)/(n —2), which will complete the proof of (1.9). The proof
ol (3.14) is a standard duality argument. Indecd, Ict ¥ be the solution of

Ay =Y in £,

(3.15)
W =0 on 082,
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where Y is some arbitrary function in L'. We have, by multiplying by /i and
integrating by parts,

L
= — 31¢
Lz I j..‘u / on (3.16)

However, the L” regularity theory shows that e W with [l g, <
CIYl,. In particular, VY|l 50, < C LYY, and, by trace incqualitics,

\
ﬂ <Civl,. (17)
o, o
where
T__n=t . (3.18)
roin-—1)

Therefore, by (3.16) and Holder’s incquality,

“h}'

where 1/r+ 1/¢ = 1. Since (3.19) holds for all ¥ we conclude that

SCHSMyaou 1Y, (3.19)

Wl < CUL My

which coincides with (3.14) since ¢ =2* when g =2(n— 1)/(n—2).
Finally, we claim that there is no incquality of the type (1.9) with

¢ <2(n—=1)/(n—=2). Indeed, suppose (1.9) holds with some such ¢. We

choose /= f, as in (1.3) with ¢ =1 and ye Q2. 1t is obvious that as ¢ = 0

Jwwrie ], =2,

[ (] 1nr =iz o,

while

[ VAR =S e and L1 £l = o)),
-
This contradicts (1.9).

Remark.  The last exercise with f, given above shows that it is not
possible to apply rearrangement techniques when fis not constant on 0¢2,
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even if £ is a ball. It also shows that there is no incquality for all fe H' of
the type

IV IS+ CUS 0= Sl S 13

with ¢ <2*,

Proof of (1.11).  Let £ be a ball of radius R centered at zero. For sim-
plicity, assume R = 1. Deline

glx)=

[7(x), I (3.20)

x| <1,
[ R I R N P
and apply the usual Sobolev incquality (1.1) to g. We note {by a change of
variables) that

oy
(3.21)
[ Vel = [ 191 = 20 10
£2 @
Inserting (3.21) into (1.1) yields (1.11) with 1(£2) = (n — 2)/2.
REMARK ON THE HARDY-LITTLEWOOD-SOBOLEV INEQUALITY
Consider the incquality (in 1Y)
HOSPUS N (3.22)
with
If)= ” ) ) e =¥l Vdvdy 20, (3.23)

The sharp constant P is known to be [7]

P=4%[31'7], (3.24)

Let Q be a ball of radius one centered at zero and assume that £ =0 out-

side £2. In this case, (3.22) is strict because the only functions that give
cquality in (3.22) are of the form [7]

Sly=ale’ +x—y?] "2 (3.25)
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For /=0 outside £, we ask whether (3.22) can be improved to
CUHf+ISPUSNEs. (3.26)

Our conclusion is that (3.26) fails for any C>0.
Take f=f,=f,1, with £, given by (3.25) and with v =0 and with a =dq,

chosen so that || f,ll¢/s.ur = 1. The function f, satisfics the following (Euler)
cquation on R,

ﬁ x f,= P15, , (3.27)

However, for x| < i

| 1 .
(O TR L TR
Ry Ry

where K, is a constant bounded above by D, = IN 1 [, Multiply (3.27) by

7. and integrate over €. Then

WD+ TTNE 2 K70+ K, [ 1= PUTNGE= PUT NS (3.29)

6/8 6y

where T, =D, /| J.. From (3.29), wc sce that (3.26) fails if C> T, for any
£>0. However, it is obvious that 7, - 0 as ¢ — 0.
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Let " be a o finite von Neumann factor acting in a compiex Hilbert space and
+ be the logic of all projections in . v: -+ C will denote a finite-additive
bounded measure on / (sup{(v(P) pE€ 7 } < o).

Turores.  If the 1ype of the factor v is different from 1,, then there exists a
linear functional f: = — C extending v.

The theorem constitutes a complement and generalization to the reasoning ot
Lodkin (Funkional. Anal. i PriloZen. 8. vyp. 4 (1974), 54-58).
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0. INTRODUCTION

Throughout the paper, .+ will be a o-finite von Neumann factor of a type
different from /,, consisting of operators acting in a complex Hilbert space
H (basic information on von Neumann factors can be found in |6]). 7', §,
S*. 5, will denote, respectively, the logic of all projections €.+, the space
of sclf-adjoint operators € .+, the set of positive sclf-adjoint operators €.+,
the sct of positive sell-adjoint operators €., with norm 1. We shall
investigate any measurc v: 7’ — C which is finite-additive (P, Q€ ', P 1 Q,
implies v(P + ¢) = v(P) + v(Q)). and bounded (sup{|[v(P): P € '} < ).

0.1. THEOREM. If the type of the factor .« is different from I,. then

there exists a linear functional f: & — C extending v (AP)=v(P) for
Pe )

The proof of the thecorem constitutes a complement and generalization to
Lodkin's rcasoning |5]| and occupies five sections of this paper. Our
Theorem 0.1 is a positive solution to a general problem of the linearity of the
so-called physical state on a C*-algebra .« (Aarnes [1]) in the special case
when %" is a von Neumann factor.

Section 6 includes the simplest conclusions resulting from Theorem 0.1.
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