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PERIODIC SOLUTIONS OF NONLINEAR WAVE EQUATIONS 

AND HAMILTONIAN SYSTEMS 


By HAIM BREZIS and JEAN-MICHEL CORON 

Abstract. We consider the nonlinear vibrating string equation 
u,, - uxx + h ( u )  = 0 under Dirichlet boundary conditions on a finite in- 
terval. We assume that h is nondecreasing, h(0)  = 0 and l i m l u i  -, 
[ h ( u ) / u ]= 0 .  We prove that for T sufficiently large, there is a nontrivial 
T-periodic solution. A similar result holds for Hamiltonian systems. 

0. Introduction. Consider the following nonlinear wave equation: 

u,, - u ,  + h ( u )= 0 0 < x < n,  t E R. ( 1 )  

under the boundary conditions: 

where h : R - R is a continuous nondecreasing function such that h(0)  = 

0 .  We assume: 

N u )
lim --- 0 

u - m  U 

There exists a constant R such that h ( u )  # 0 for I u ( r R.  (4) 
We seek nontrivial solutions of ( I ) ,  ( 2 )which are T-periodic (in t ) .  By 

"nontrivial" we mean that h(u(x ,  t ) )  # 0 on a set ( x ,  t )  of positive 
measure; in particular, u(x ,  t )  # 0 on that set. 

In Section 1 we prove the following 

THEOREM1. There exists To > 0 such that for every T 1 To, with 
T/n rational, Problem ( I ) ,  ( 2 )  admits a nontrivial T-periodic (weak) solu- 
tion u E L m .  
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By a result of [4], weak solutions are in fact smooth if h is smooth and 
strictly increasing. 

The existence of nontrivial solutions for ( I ) ,  (2) has been considered 
by several authors under assumptions which differ from ours (see [ I ,  4, 5, 
7, 81). 

In Section 2 we discuss a comparable result for Hamiltonian systems. 
Our investigation has been stimulated by the results of [3] (Section 

4). Our technique relies on a duality device used in [6] for Hamiltonian 
systems and subsequently in [5] for the wave equation. 

We thank P. Rabinowitz for helpful discussions. 

Proof of Theorem 1. The proof is divided into five steps. 

Step 1 Generalities about Au = u,, - u,. 
Step 2 Determination of To. 
Step 3 Existence of a nontrivial solution for 

Au + h(u) + EU = 0 (E > 0 small). 

Step 4 Estimates. 

Step 5 Passage to the limit as E - 0. 


Step 1 Generalities about Au = u,, - uxx 
Since T /n  E Q we may write T = 2nb/tr where tr and h are coprime 

integers. Let H = L2(0) with 0 = (0, n) X (0, T) .  In H we consider the 
operator 

acting on functions satisfying (2) and which are T-periodic in t. 
We summarize some of the main properties of A which we shall use 

(see e.g. [4] and the references in [4]): 

i) A* = A  
ii) N(A) consists of functions of the form 

2 n  T+x) -p(t -x). wherep has period -= -and !:p =01 
a b 

iii) R(A) is closed and R(A) = N(A)I ; whenever u E H we shall write 
zr = i l l  + u2 with u ,  E R(A), u2 E N ( A ) .  
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iv) The eigenvalues of A are j2 - [ (2  n/T)kI2, j  = 1 ,  2 ,  3 ,  . . . and 
k = 0, 1 ,  2,  . . . . The corresponding eigenfunctions are 

sin jx sin($ k t )  and sin jx cos( y-k t ) .  

We denote by h - , ( T )  the first negative eigenvalue. Note that 
h - , ( T )  - 0 as T - m .  Indeed, let 1= j2  - [ (2n /T)kI2with j = 1 and 
k = [ T / 2 n ]+ 1 .  We have 1 - [ l  + (2n /T)I25 1 < 0 and so 

v) Given f E R ( A ) ,there exists a unique u E R(A)  fl ~ ( 2 )such that 
Au = f .  

We set 

I /  = Kf' = ( A- 1.1'). 

We have 

K is a compact self-adjoint operator in R ( A ) .  

Step 2  Determination of To  
We set 

so that H,  is convex and we denote by He* its conjugate convex function 
(He*is C 1and (He*)' is the inverse function of h(u) + E U ) .  We shall use 
the same "duality" approach as in [ S ] .  
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On R(A) we define: 

The following lemma plays a crucial role: 

LEMMA1. There exists To > 0 such that if T > To and T/n is ra- 
tional, then 

Proof of Lemma 1. By (4) we may assume that 

for some constants p > 0 and C. Hence 

and 

H,*(v) 5 C for I v 1 Ip. 

As a testing function for evaluating InfR(,) F, we choose an eigenfunc- 
tion of A corresponding to the eigenvalue h-,(T).  More precisely, let 
v = p sin jx sin[(2n/T)kt] with j2- [(2a/T)kl2 = h P l ( T ) .  Thus, 

provided T 2 To for some large To. 
In what follows we,fh T r To. 

Step 3 Existence of a nontrivial solution for 

Au + h(u) + EU = 0 ( E> 0 small) 
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We start with 

F,(v)  r allvll:2 - c vv E R(A) ,vc 5 I / 4 ( h p l l .  

Proof of Lemma 2 .  Let 6 = l/4 1 h p l I . By ( 3 )there is a constant C 
such that 

6 
H ( u ) ~ - - l u ( ~ + C  Vu.

2 

Thus 

and 

On the other hand, 

and the conclusion follows. 
It is now clear that for E Il/4 1 I , MinR(A)F, is achieved a t  some 

v,. Indeed if v,, is a minimizing sequence, then by Lemma 2,  v,, is bounded 
in L2 and we may assume that v,, converges weakly to some v in L2.Then 
lim S Kv,, .v,, = 1 Kv.v  and lim 1 H,*(v,,) r 1H,*(v) (by the convexity 
of H,"). 

Clearly, we have 

Kv,  + (H,*)'(v,)  = x € N ( A ) .  

Set 

so that v, = h(u,)  + E U ,  and A u ,  + h(u,)  + E U ,  = 0. Note that v, f 0 
since F,(v,) 5 -1 .  
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Step 4. Estimates 
In what follows we denote by C various constants independent of 6 

(E 5 1/4 1 h- 1 ). By Lemma 2 we already know that I I v, I ( ~ 52 C. Thus 
I I A u , ~ ~ ~ ~  5 C.5 C a n d  so I l u l , I I L ~  


We shall now prove 


LEMMA^. I I u , ~ ~ ~ o DIC. 

Proof of Lemma 3. We follow the same technique as in [2]. We first 
prove that ( I u, I I L~ I C. Indeed 

Therefore 

Next we show that I I u2, I Lrn 5 C. We write 

where p has period T/band Srb = 0. ( p  depends on E, but we omit the 
subscript 6 in order to simplify the notations.) Since ( ( u 2 ,  ( ( , I  5 C we have 

1 p 1 1  L I  I C. On the other hand, we recall that given $ E L2(0), then $ E 
N(A)I if and only if 

(indeed $ E N ( A ) I  iff $(s,t)[q(t + x) - q(t - s ) ]  = 0 for every func- 
tion q periodic with period T/h) .  

Since g(u,) + 6u2, E N(A)I it follows that 



PERIODIC SOLUTIONS AND HAMILTONIAN SYSTEMS 

But 

and 

(because 1 1 1  ,,1 Lrn I C and p has period T/b). Therefore for a.e. t .  

We conclude as in [2] that I l p  1 1 L m  5 C. 

Step 5. Passage to the limit as E - 0. 
Using the estimates of Step 4 we may extract a subsequence E,, - 0 

such that 

Applying Minty's device as in [2] (or in [4])we find that h(u) = v and so 
Au + h(u) = 0. 

Finally we prove that u is a nontrivial solution. Indeed we have 

and in particular 
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On the other hand. v,,, = k(i/,, ,)+ E ~ I , , ,- I> and so '/z I K v . v  r - 1 .  
Therefore, v + 0. 

2. Nontrivial periodic solutions of Hamiltonian systems. Let 
H:R211- R be a C1convex function such that H(0) = H,(O) = 0. Con-
sider the Hamiltonian system 

where 

( p  and q are n-tuples) and J = 

We assume 

H(u)lim --- 0 
u - m  1ul2 

We 5eek nonconstant solutions of (5) which are T-periodic. Our main 
result is the following 

THEOREM There exists To > 0 such thatfor every T > To,Prob-2. 
lem (5)possesses a solution with minimal period T. 

Remark. Theorem 2 is closely related to Theorem 4.7 in [3]. In [3] 
there is no convexity assumption; however, they assume (7) and 

Theorem 2 is also related to the main result of [6] and our technique has 
been inspired by the duality device of [6]. Note, however, that we make no 
assumption about the behavior of H near 0 ;  while the result of [6] requires 
the additional assumption 
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H(u)lim 7> 0. 
l T 0 lul 

Proof of Theorem 2. The proof follows essentially the same pattern 
as the proof of Theorem 1 and we shall omit some details; it is somewhat 
simpler since dim N(A) c oo. 

In H = L2(0, T)2" we consider the operator 

acting on functions which are T-periodic. We summarize some properties 
of A: 

i) A* = A. 
ii) N(A) consists of constants. 

iii) R(A) is closed and R(A) = N(A)I;  whenever u E H we shall write 
u = u ,  + u2 with u ,  E R(A), u2 E N(A). 

iv) The eigenvalues of A are (2 r /T)k ,  k E Z, and the corresponding 
eigenfunctions are 

u(t) = a sin(-$ kt) + Ja  cos(-$ kt) 

where a E R2" is arbitrary (a # 0). Note that h-,  = -2 T/T. 
v) Given f E R(A) there exists a unique u E R(A) such that Au = f. 

We set 

K is a compact self-adjoint operator in R(A). 
Given E > 0 we set 

and we denote by H,*(v) its conjugate convex function. Note that He*  is C1 
and that (He*), is the inverse mapping of (H, + EI). 

On R(A) we define 
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We first prove: 

LEMMA4. There exists T o  > 0 such that if T > T o ,  then 

Inf F, I -1. 
R(A) 

Proof. From (7) and the convexity of H we deduce that 

for some constants p > 0 and C. 
Therefore 

H,*(v) I C for I vl 5 p.  

Let 

where a E R2" is arbitrary with / a / = 1. So Kv = - (T /2  a)v and 

provided T r T o for some large T o .  
In what follows we fix T r To.  Next we observe (see Lemma 2) that 

where CY > 0 and Care independent of 6. Therefore, MinR(,, F, is achieved at 
some v, ( E  5 l/4 / h- ,  1 ) and we have 

Kv, + (H,*),(v,) = x E N ( A ) .  

Set 
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so that 

H,(u,) + E U ,  = V ,  

and 

A u ,  + Hl,(uE)+ E U ,  = 0 .  

Clearly, 1 1 v, 1 IL2 5 C ; thus I I A u ,  I 1 ~ 25 C and so ( 1 u , , 1 1  LC= 5 C. 
Next we have, by the convexity of H and (7) 

Therefore 

Consequently, I I u , 1 1 LC= 5 C [since dim N ( A )  < a]and u Eis even rela- 
tively compact in C([O, Therefore we may extract a subsequence 
E,, - 0 such that u,,, -- u in C([O, and so 

Moreover, we have 

(since HE* 5 H*). On the other hand, v,,) = H,,(u,,,)+ E,,u,,~-- v = 

H,,(u)in C([O, It is easy to pass to the limit in ( 8 )and we obtain 

It follows as in [6] that v has minimal period T. Otherwise, suppose that I> 

is periodic of period T/k for some integer k > 1. 
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Set S(t)= v( t /k ) for 0 < t < T. Then we have S E R ( A )and 


k k - 1  ,l-


F(S)= - 1 K11.v + H*(v) = F(v)+ --),K v v  < F(v)  
s o  

a contradiction. 

REFERENCES 

[ l ]  H. 	Amann and E. Zehnder, "Nontrivial solutions for a class of nonresonance prob-
lems and applications to nonlinear differential equations," Ann. Sc. Norm. 
Sup. Pisa 7 (1980), pp. 539-603. 

[2] A. Bahri and H. Brezis, "Periodic solutions of a nonlinear wave equation," Proc. Roy. 
Soc. Edinburgh, 85 (1980), pp. 313-320. 

[3] 	V. Benci and P. Rabinowitz, "Critical points theorems for indefinite functionals," 
Invetitioties Math. 52 (1979), pp. 241-273. 

[4] H. Brezis and L. Nirenberg, "Forced vibrations for a nonlinear wave equation," Comm. 
Pure Appl. Math. 31 (1978), pp. 1-30. 

[5] H. Brezis, J. M. Coron, and L. Nirenberg, "Fre vibrations for a nonlinear wave equation 
and a theorem of P. Rabinowitz," Comm. Pure Appl. Math. 33 (1980), 
pp. 667-689. 

[6] F. 	 Clarke and I. Ekeland, "Hamiltonian trajectories having prescribed minimal 
period," Comm. Pure Appl. Math 33 (1980), pp. 103-116. 

[7] J. M. Coron, "Rtsolution de I'kquation Au + Bu =f oh A est lintaire et B dCrive d'un 
potentiel convexe," Ann. Fac. Sc. Toulouse 1 (1979), pp. 215-234 and 
C. R. Acad. Sc. Paris 288 (1979), pp. 805-808. 

[8] P. Rabinowitz, "Free 	 vibrations for a semilinear wave equation," Comm. Pure Appl. 
Math. 31 (1978). pp. 31-68. 


