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In the course of writing a chapter of a book we observed some simple facts
dealing with the Palais Smale property and critical points of functions. Some of
these facts turned out to be known, though not weli-known, and we think it worth-
while to make them more available. In addition, we present some other recent
results which we believe will prove to be useful—in particular, a result of Ghoussoub
and Preiss; see [9], [8]. There are two useful techniques used in obtaining critical
points, One is Ekeland’s Principle (see below), the other is based on deformation
arguments. We will use versions of both of them, In particular we present a rather
general deformation result.

Throughout this paper we consider real C! functions F defined on a Banach
space X. When looking for critical points of F it has become standard to assume
the following “‘compactness condition™:

any sequence (u,) in X such that F(u,) = a

PS),
(FS) and || F'(u,) || = 0 has a convergent subsequence .

If this holds for every a € R one says that F satisfies (PS)—a condition originally
introduced by Palais and Smale; see [13].

1. Some Applications of Ekeland's Principle

We start with an elementary statement in which (PS) is not assumed.

PropPOSITION 1. If

(1 « = lim inf F(u) s finite

Haelj-> o0

then there exists a sequence (u,) in X such that ||u,| - oo, F(u,) = «a, and
I F'(u) || = 0.
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9f10 H. BREZIS AND L. NIRENBERG

The proof relies on Ekeland’s Principle (see [7]and [3] Chapter 5.3) which we
shall use in the following form:

EKELAND'S PRINCIPLE. Let M be a complete metric space with metric
dix,y). Lety: M — (—c0, +0 ], ¥ = +o0, be a lower semi-continuous function

bounded from below. Then. given ¢ > 0 and Zg € M there exists a point zE M
such that “

(2) Wx) = ¥(2) +ed(x,2)20, YxeM.

(3) W(z) S ¥(z0) — ed(z, z) .
Proof of Proposition 1:  Set, for r = 0,

m(r):= inf F(u),

el & »

: Clearly m is a nondecreasing function and lim,., ., m(r) = a. Then for any positive
¢ < 1 we have Bada

- 0. e = 2
a—e’=m(r) for rz7. AR

) YA L)
We may take 7 2 ¢!, Choose z, with [zl = 27 such that
Flzg) <m(2rY+ 2 S a + £2.

Applying Ekeland’s Principle in the region {IIxll = 7} we find some z, ||z]| = 7
satisfying

F(x) = F(z)+elx—z] 20 provided (x| =7,

a—e? S m(F) = F(z) = F(z) ~ellz — z]) . = VT 1) £F17)= 009 ¢t
R

It follows that ||z — z)| £ 2e. Hence ||z| > 7 and we may conciude that
IF(2)] = e I T KRN ) B A R A L

” ”COROLLARY 1. If Fis hounded below and satisfies (PS) then F(u) — oo as
ul| = .

This result was proved by S. J. Li in [10] using a gradient flow and by Costa
and de Silva in [6] using Ekeland’s Principle in a similar way.,

Remark 1. The conclusion of Proposition | can be strengthened in the finite
dimensional case. There exists a sequence (u,), as in the proposition, satisfying in
addition: /"'(u,) is a multiple of u,. This is done by moving a suitable radially
symmetric function until it touches the graph of F.

-
P S P S LT A T I T T e B T SR

Fr0 A% v 2w
ros T,

e x ¥V

Assume (PS) in the following sense: any sequence (u,) such that
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PROPOSITION 2.  Assume F is bounded below and satisfies (PS). Then every
minimizing sequence has a convergent subsequence,

Proof: Let { x,) be a minimizing sequence. For a subsequence, still denoted
(x,), we may assume that F(x,) = inf F + 1/n*?. By Ekeland’s Principle there
exists y, in X such that

Fyy—Fy)+/mly—ylz0 VyeXx,

F(ya) = F(x,) — (1/m) | x, — pall

Thus | F'(y)ll 2 1/n, F(y,) S inf F+ (1/n?) and || x, — y,[| £ 1/n. By (PS) the
sequence (y,) has a convergent subsequence (y,,), and (x,,) also converges.

Here are some other results proved using the same kind of argument:

PROPOSITION 3. Assume F is bounded below and satisfies (PS). Suppose that
all the critical points of F lie in { |u|| = R}. Set

M(r)y:= inf F(u).

flulf = r
Then, for r > R, M(r) is strictly increasing and continuous from the right.

There is a localized version of this for functions F € C'({llull = R}) assumed
to satisfy (PS) in the following sense: any sequence (u,) such that |u,|| = R’ < R,
for all n, with F(it,) bounded and || F'(u,)]| = 0, has a convergent subsequence.

PROPOSITION 4.  Let F be a C' function on ||u| = R satisfying (PS) as above.
Assume F(0) = 0, F{u) > 0 for 0 < |ull < R and F has no critical poini in |u] <
R except 1t = 0. Then there exists 0 < ry = R stich that M is strictly increasing in
[0, ro) and strictly decreasing on [rg, R).

Proof of Proposition 4: Fix R’ < R. It is easy to see that M is upper semicon-
tinuous on [0, R'] and so achieves its maximum at some point.ry € [0, R']. The
conclusion of the proposition follows easily with the aid of the following lemma—
on letting R — R,

LEMMA 1. Let F he a non-negative C' function in the ring

. R={0Sas|ul<b)}. C

at+téslul=b-3

s
i

e Vet S
Jor some & > 0 with F(u,) bounded and || F'(u,)|| = 0 has a compact subsequence.
Assume F has no critical points in a < |[u|| < b. Then the function

M(ry:= inf F(x)

Hatl = r



?42 H. BREZIS AND L. NIRENBERG
satisfies: ifa <ry<r<r<b

(4) M(ry>min{M(r)), M(r)}.

' Proof of Lemma 1: Suppose for some r; < ¥ < 5, (4) does not hold. There
is a sequence (x,), satisfying

{
lxdl =7,  F(x,) <M(r)+ pr
Applying Ekeland in R = {r, = | x| = ry}, 3y, in that region such that
1 .
(5) F(2)~F(yn)+;|IZ~y,,IIEO forz€ R

(6) F(v) S FOx) =+ =yl

Thus y, is not on 4R, for if it were, say || v,|| = r., we would have

1
M(r) = F(x,) 5 x5 = yall = M(r) + ni —%(r— r)

I
éM(r,)+-}~2—2--;(r—r]).

This is impossible for # large. Therefore | F'(y,)]| = 0. By (PS), (»,) has a sub-
sequence which converges to a critical point of Fin R. Impossible.

Proof of Proposition 3:  That M is strictly increasing follows easily from Lemma
| and the fact that M(r) — 400 as r — oo {by Corollary 1). Since M is also upper
semicontinuous it must be continuous from the right.

Another immediate consequence of Lemma | is the following

COROLLARY 2. Let F be as in Lemma 1, with a = 0, and assume that the
origin is a critical point of F which is not a local minimum. Then M(r) is strictly
decreasing on [0, b). '

Remark 2. In Proposition 4 the number ry, might be R but in general it is less
than R. Here is an example in R2:

Flx,y)= x> = (x— 1)%y?,

S —
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Choose R in such a way that
Flx,v)>0 for 0<x?+y?<R?
and
F(Xo, 30) =0 forsome Xx.3, with x§+ p§=R2.

This function in R? serves also as an example for which the Mountain Pass
Lemma (MPL) (see [2]) fails beeaiise 1 PS) is not satisfied. For the convenience of
the reader we recall the setting of MI'L. Let F: X = R be a C' function satisfying
the condition:

there is an open neighbourhood U of 0 and some point u & U
(7)
such that  F(0), Flip) < = F(u) Yu&dl.

Consider the family A of all continuous paths A joining 0 to 1, and set

(8) . ¢:= inf max F(u).
Ae A ue A

Clearly ¢ 2 ¢, and we would expect that c is a critical value. This seems intuitively
obvious, but it is not true in general, The function F(x, y) above satisfies (7) with
U = small disc about the origin, ¢, > 0 and 1, = any point outside the disc with
F(1g) = 0. It is easy to check that (0, 0) is the only critical point of F and that ¢
of (8), which is positive, cannot be a critical value. The correct statement is the
following (see [2]):

STANDARD MPL. Under condition (7) and ¢ given by (8) there exists a se-
quence (u,) in X such that

F(u,)=>c¢ and | F'(u,)| = 0.
If in addition we assume (PS), with. ¢ given by (8), then c is a critical value.

In connection with this well-known MPL we would like to call attention to the
following two forms: As before F is a real C' function on a Banach space X. Let

" K be a compact metric space and let K* be a nonempty closed subset # K. Let

!
v

A={pEC(K;X); p=p*onk*}]
where p* is a fixed continuous map on K. Define

) ¢ = inf max F(p(£)),

pEA teEK
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T

so that

cZ max F(p* §)).
tE K

THEOREM 1. Assume that for every p € A, max,cx F(p(£)) is attained at
some point in K\K*.! Then there exists a sequence (u,) in X. such that

FGu)—>c¢ and | F'(u)| 0.

If in addition F satisfies (PS),, then c is a critical value. Moreover, if (p,) is any
sequence in A such that

max F(p,(&) > c.
te K

then there exists a sequence (£,) in K such that Fip,(£,)) — ¢ and
IF (paE) Il = 0.

The standard MPL is clearly a special case of this with K = [0, 1], K* = {0, 1}
and with p*(t) = tuy. We shall present two proofs of the theorem. The first is based
on Ekeland’s Principle; the second, in the Appendix, uses the Deformation Theorem
of Section 2.

Proof of Theorem [; For £ € K, set
d(£) = min {dist(&, K*), 1},
and consider for any fixed ¢ > 0, and p € A,

G(p, &) = F(p(§)) + ed(§) .

(The idea of perturbing the function is taken from N. Ghoussoub and D. Preiss
(see [9]); they perturb F'; our perturbation is different.) Set

Y.(p) = reneaz G(p(£).§),
(10)
¢. = inf ¢.(p).
pe A

Clearlyc= ¢, Sc+ e
For M = A (equipped with the usual metric) we see easily that ¥.{p) is con-
tinuous on M. By Ekeland’s Principle, 3p € A such that

v(q) —.(p) +ed(p,g)2 0 Vge A,
(1)

(S SY(p)ScteSc+ 2.

"It is equivalent 1o assume that for every p € A there is some point £ € K\K™* such that Fiptéz e
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By our main hypothesis, Ll ’;,:} ‘
AL
(12) Ve(p) > max F(p(£)) . N
L€ K* 2 v b
§ ! W (e
Set L : ,
et i
1t
B.(p) = (E€ K G(p(H). ) = w(p)} . \J\\aﬁ S
J ' L s fﬁ
We shall prove that there is some & € B.(p) such that = !
(13) | F'(pCE)) = 2e.

The conclusion of the first part of the theorem then follows by choosing e = 1/n

and u, = p(&o). o _ 4 N
We shall use the following result which is proved with the aid of a partition of

unity as in the construction of a pseudo-gradient (see, €.g., Theorem A2in [15]).

LEMMA 2. Let N be a metric space and let [ © N — X* be a continuous map.
Then, given ¢ > 0, there exists a locally Lipschitz map v: N — X such that Jor all
EEN,

lo(H)l =1
&, v 2 1B~

Applying Lemma 2 with N = K and f(¢) = F'(p(£)) we obtain a continuous
map v: K — X such that for all { € K,

(14) loe)l s 1, (F@E) . v 2 [F (Nl ~e.

By (12), B.(p) C K\K*. Thus there is a continuous non;negative function
a(£) £ 1 on K which equals 1 on B,(p), and vanishes on K*. We shall take for g,
in (11}, small variations of the path p:

gi(§) = p(E) — hw(§)

for 0 < # small, and w(§) = a(£)v(§).
In what follows, ¢ > 0 is fixed while we let i = 0. Observe that ,

¥.(4y) = maxee x G(84(8), £)

is attain/ed at some point £, € K. For a suitable sequence /1, = 0, &, converges 10
some £, which belongs to B,(p). By (11}, with ¢ = g,, and by (14), we obtain

(15) F(p(Ey) — hw(E)) + ed(E) —(p) +eh 20
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on the other hand, it is easy to check that as 4 — 0.
(16)  F(p(&) — hw(E)) = F(p(£,)) — (F'(p(£4)), hw(£,)) + o(h) .
Combining (15) and (16) we see that
—h(F (&), wltn)) + ch + o(h) 2 0
(note that F(p(&,)) + ed(&,) = y.(p)). Hence
CF'(p(En)) s w(En)) S e+ o(1).

As b — 0 we find

(17) CF'(pl&o)) . v(ko)) e

which, by (14), yields (13).
The last assertion of Theorem 1 is established by constructing first, via Ekeland’s
Principle, a sequence (g,) in A such that

Ver(@) — ¥plgn) + 6, d(a,,) 20  VgE A
\M(q’n) = ‘lbt,z,(pn) ] d(pn’ an) .

Here (e,) is a sequence of positive numbers, ¢, = 0, such that max;c ¢ F(p,(£)) £
¢ + 2. It follows that d(pu. G») = 2e,. The preceding argument (applied with g,
in place of p) leads to the existence of some £, € K such that

Flgu(£)) =c+ 0(eh),  [F'(gu(ED)] = 2¢, .

This is the desired sequence (£,). Indeed, by (PS)., a subsequence of g,(£,) converges
to a critical point and the corresponding subsequence of p,(£,) converges to the
same limit. A standard argument shows that for the full sequence, F(p,(£,)) = ¢
and || F'(p,(£,)) | = 0. Theorem 1 is proved.

Next we present a theorem of Ghoussoub (see [8]) which contains earlier results
of Pucci and Serrin (see [14]) as special cases. We believe this theorem will prove

very useful; in particular we use it in the proof of Theorems 4 and 5 below.

THEOREM 2. Assume the conditions of Theorem | and that there is a closed
set Z in X, disjoint from p*(K*), on which

(18) F 2 ¢ (defined in (8))
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and such that
vpe A, p(K) intersects Z .
Then there is a sequence (1) in X satisfying
Flu,y=>c, |[|F(u,)) =0 and dist(u,, Z)—>0.

In general, ¢ is unknown, so the condition (18) may be difficuit to verify. This
theorem will be used when ¢ = maxg« F(p*(£)).

COROLLARY 3. Under the condition of Theorem 2, if F satisfies in addition
(PS),, then there is a critical point u in Z, with F(u) = c.

Unlike the previous proof, and the proof of Ghoussoub, our proof of Theorem
2—in Section 2—makes use of a general deformation theorem. Paul Rabinowitz
has still another proof of Theorem 2 using the dual max-min principles of [2] (see
also Theorem 3.2 in [15]}).

2. A General Deformation Theorem

We consider a function F € C'! in X and set
F,={u€eX ,Fu)sa},

K, = set of critical points of F where FF =a.

THEOREM 3 (Deformation Theorem). Let ¢ & R. For any given § < } there
exists a continuous deformation n - [0, 1] X X — X such that

(19) 70, u) =u Yue X
20) 7(t, ) is a homeomorphism of X onto X, Yt e [0, 1]
(21) nt,w)=u VIE[0,1] i |F(u)~cl =25 orif |[F'(u)l| =Vs

(22) 0= F(u)— F(n(t, u)) = 46 Yue X, vie [0, 1]

. 23) In(r,u) — ull < 16V5  VuE X, Vi [0, 1]

(24) Ifu &€ F.., then either

() w(L,WEF. _;or
(i) for some {, € [0, 1], we have

|F'(nz,, w)] < 2V6 .
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-

(25) More generally, let + € [0, 1] and assume that

Jorall 1 € [0, 7). n(1. 1) belongs to the set

N

{VE X |F(v)—¢|l Sdand | F'(v)] 2 2Vs),
then F(n(r. 1)) = F(u) — 7/4.

Before the proof, some corollaries.

COROLLARY 4. In Theorem 3, if F also satisfies (PS).. then given ¢ > 0,

36 < e and deformation v as above., so that in addition:

If u€F., and F(n(l.u))>c¢—8,
(26)

then | F'(n(t, u))| <e VIE€[0,1].

Proof of Corollary 4:  Observe first that for all ¢ > 0. 38 > 0 such that

o |F(x)—c| S8, 1 F'(x)] =2V5 and lx— pll =32Vs,

= [F'(l=se.
Otherwise there would exist ¢, > 0, and sequences (x,), (¥n), with F(x,) = ¢,
[F' (ol = 0. [lx, =yl = 0 and | F'(y,) || 2 . Impossible. Choose such § <

{ and § < ¢ for the given e. Then alternative {24)(it) must hold, and (26) follows
from (23) and (27). |

(_.‘OROI_LARY 5. Assume F satisfies (PS),. Given ¢ > 0 and a neighbourhood
O of K, there exist § < ¢ and deformation y as in Theorem 3 satisfiing, in addition:

(28) Ifu€ F., \O, then alternative (24)(i) holds .

Proof: By (PS),. there exists « > 0 such that
U={u€X |Fl)-cl <a and |F'(u)j<alCO.
We may suppose ¢ < a and apply Corollary 4. With 8, # as in that corollary we see
thatif u € F., ;\ @ and (24)(i) does not hold, then ¢ — § < F(n(1. u)) = Flu) =
c+é,and | F'(u)]| = ¢. This means that u € U C @—contradiction.

COROLLARY 6. Assume F satisfies the conditions of Theorem 2 and (PS ) and
suppose

c>max F(p*(£)).
Ee K
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Then ¥e > 0,35 > 0 and 3p € A such that

max F(p(E§))<c+ 6
te K

and
|F(p(£)) —cl <d= [ F'(p(&Nl <e.

Proof: Given ¢ > 0, choose 8 > 0 as in Corollary 4 with
20 <c— maxgeg- F(P*(E)).

Let po € A such that maxex F(po(£)) < ¢ + 6. Then the path
p(£) = n{1, po(£)) vas the desired properties.

Corollary 5 is an extension of a well-known deformation theorem; see Theorem
A.41in [15]. Paul Rabinowitz pointed out to us that Coroliary 6 also follows easily
from a variant of Theorem A.4 in [15]. The form of Theorem 3 presented here
was suggested by an unpublished result due to H. Berestycki and C. Taubes. Indeed,
the existence of a special path. as in Corollary 6, was proved by Taubes in Lemma
5.2 of [17] for the Yang-Mills functional.

Like all deformation theorems, to obtain the deformation the idea is to follow
negative gradient flow. But since F is only in C', one replaces ' by a pseudo-
gradient on the set { F'(1t) #0}. This is a locally Lipschitz vector field v(u) satisfying

lo() = 2 F'(a)l| and  (F'(u),v(u)) 2 [ F'(u)]?.

See Lemma A.2 in [15]. AT B STy P ) T e
| RLY N e
Proof of Theorem 3: In addition to the set N in (25) we shall make use of the
set

N={ueEX:|Fa)=c|l <25 and [F'(u)]>Va}.

Since N and N° are disjoint closed sets there is a locally Lipschitz non-negative

function g = 1 satislying

1 on N A
&7 0 outside N. \\‘57
For example, . Q\
Ly ~-)’\‘
o) = dist(u, N©) (Q

dist(u, N°Y + dist(#. N) ' -

b
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Consider the vector field

—glu) T——=r vin on N

Fuy = o (: )”2
0 outside N
where v is a pseudogradient defined on { F'(2) # 0}, Clearly V' is locally Llpschltz

}?n Xand |V (u)]| < 1/V5, forall 1 € X. Consider the flow n(t) = n{1, u) defined
y

dn
E:L(U% Moo= u.

Clearly. 7 is defined for r € [0, 1] and satisfies (19)-(21 ) and

d . 1
—;1‘(11(1‘));5'"2,?(77(!)) Yue X, V€0, 1].

In particular. we have

(29) J;H(n(-\‘))dvé4(F(u)— F(a(0))) .

Proof of (22): If { F(u) — ¢| = 28, then (¢, u) = u, forall r € 10, 1] and the
conclusion is obvious. Hence we may assume that | F(u) - ¢| < 2. If F( (1)) =
¢ — 28, the proof is finished. Suppose that F(n(1)) < ¢ — 25, Then 3¢, € [0, 1]
such that F(n(¢,)) = ¢ — 26 and since n(1) = n(¢,) for 1 2 1, it follows that
FGoy = F(n(1))y = FO) — F(n(t,)) £ ¢+ 28 — (¢ — 28) = 4.

Proof of (23):

-l s [ H ()

< g(n(S))dssf _g(n(s)) f
jn,:mmmu;m Tl = Jioain penmemt TF (a(s) ]~ 1/— 2(nls)) ds

4
S — I(u) - F(p{))) £ 16\/‘ by (29) and (22) .

ds = fnwn(s )i ds

Proof of (25): W) E NforO = =
of (25) follows from (29),

7, then g(n(7)) = | and the assertion
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Theorem 2 follows easily from Theorem 3 by suitable deformation of “paths™
P € oA on which max F is close to ¢. There is a new ingredient however: the time
¢ for which we consider the deformed path n(t, p(£)) will vary with £.

Proof of Theorem 2: For any given § > O we shall show that there is a point
i such that ¢ < F(d) < c + 8, |F'(iD)| < 2V5 and dist(d, 2) = 32V5. Letting
6 — 0 through a sequence 8, the corresponding i, have the desired properties.

We take § < } and so that 32V3 < dist(Z, p*(K*)). Let n be a deformation in
Theorem 3. Let p € A be such that max, e ¢ F(p(€)) <c+ 8. LetO = {(v) =1 be
a continuous function on X which equals | if dist(v, Z) = 16V 5, and vanishes if
dist(v, £) = 32V,

Consider the “path”™

q(&) = n($(p(E)), p(€)) .

Clearly g € A. Let it € g(K) N Z. So 1 = n(§(p(£)). p(§)) for some £ € K. Set
= p(§). By property (23)

la(e, p(E)) — p(B)l < 16V W E[0, 1], .

and so {(p()) = L. Hence & = n(1, u), and ¢ £ F(n(s, p(£))) < ¢ + 8, for all
t € [0, 1]. So alternative (24)(ii) in Theorem 3 must hold, and hence, for some
1, €10, 11, i = n(t,, p(E)) satisfies

VF () <2Vs.
Furthermore | — @] = 32V3, by (23).

3. Critical Points in the Presence of Splitting

We are going to apply Theorem 2 to functions which are bounded below and
satisfy (PS). Let X be a Banach space with a direct sum decomposition

X=X 90X,

with k =dim X, < co. Wewrite any u &€ X as u = v, + 1y = (I — P)u + Pu where

~ Pis the projection onto X; along X, .

THEOREM 4. Let F be a C' function on X with F(0) = 0, satisfying (PS) and

assume that, for some R > 0

F(uyz 0, for ucX,,
Fu)=0, for u€ X,

lul =R,

(30)
lull = R.

o s Floy £ 0

s T

)
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Assume also that F is bounded below and infy F < 0. Then F has at least two
nonzero critical points.

This theorem is related to results of K. C. Chang in [5] and later results of
J.Q. Liuand 8. J. Liin [12] and J. Q. Liu in {11] {which also contains other
references). Their arguments rely on Morse theory while ours uses Theorem 2
together with an idea of K. C. Chang (personal communication ) involving a negative
gradient flow, and linking, In [16] E. Silva has extended results of [12]. He assumes
(30) and replaces the assumption that F is bounded from below by conditions like
those of [12]. One of the ingredients of our proof is the following extension of a
result of Rabinowitz (see, e.g., [15]).

LEMMA 3. Assume that in the decomposition, 0 < dim X, = o0, and let v be
a fixed unit vector in X,. Set

K={u=sv+u:ne€X, |lul =1 and §s20}.
Consider any continuous map p . K — X satisfying

Py} = uy i 1wEX, and |ul £ 1

(31) .
lpG)l 27r>0 i u€ K and |ul = 1.

Then, for any r > 0, the image p(3K) “links” the set of points in X, with norm
p-<r.Thatis, forany O < p < r, there exists ii € K such that

Pp(i) =0
Ip(i)) =p.

Proof of Lemma 3: In X; = X, ® span{v} consider the map T: K — X3,
T(u) = Pp(u) + (I~ Pyp(u)|v.

To prove the lemma it suffices to show that for some point # € K, T{ii) = pv. We
use finite dimensional degree to do this. Since p < rit follows from conditions (31)
that for all v € 9K, T(u) # pv. Consequently deg( T, K, pv) is defined. We shall
prove that it equals 1, and this yields the desired result. As we know, the degree
depends only on the boundary values of 7. So we may consider only T'|,.. Set

A={(u,0) 1€ X, and |u, = 1}

and

B=AueK:|ul=1}.
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We have 3K = AU B. Clearly Tu = uforu € dand |[Tu| 2 r' > 0foru € B. On
dK define

. u if ueAd
Tu/|Tul if uEB.

Using (31) we see that 7 and 7 are homotopic in X3\ pv through

Tu=1Tu+ (1 —0Tu, t€[0,1].

Note that T(B) C B and that T = id on 8B. Since B is homeomorphic to a pal'l
there is a continuous deformation 7, connecting 7 to the identity in B with T, =
id on 0B for all ¢+ € [0, 1]. It follows that 7|.x is homotopic to the identity in
X:i\pv and thus deg(T, K, pv) = deg(id, K, pv) = 1.

Our proof of Theorem 4 also makes use of the following
LEMMA 4. Let F be a C' function defined on a Banach space X satisfying (PS)
and: for some uy € X

F(u) > Fluy) Yu + uy .

Let v be a pseudo-gradient for F on the set {1 € X; F'(u) # 0} (see, €.g..
Lemma A2 [15)). Let y # uy be such that F'(y) # 0, and F has no critical value
in (FQup), F(¥)). Lhen the “negative gradient flow™ starting at v, defined by

dx _ v(x)

32 LoafE, S e
(32) &~ " Tl

x(0) =y,

exists for a maximal finite time 0 = t = T(y) and x(T(y)) = 1.

Proof: We may suppose 1y = 0, F(ip) = 0. On the integral curve of (32),

ar _ |
dt 4

by the standard properties of the pseudo-gradient. Thus the solution x(r) of (32)
exists on a maximal open interval (0, T) with T <4 F(3),and 0 < F(x(¢)) < F(y)

on (0, T). We will show that x(¢t) > 0Oast— T,

Case 1. There exists § > 0 such that | F'(x(£))]| = 6 on (0, T). Then
lotx(Ol 2 | F'(x(e)l = 6, and

T dx )
L n dt  exists

Consequently lim, .. r x(¢) = x{T) exists. Moreover x( T) is necessarily O for oth-
erwise the solution x(/) could be continued beyond 1 = T.
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Cuse 2. If we are not in Case 1, there exists a sequence {; — 7T such that
I I ?\'(!,?)H — 0. By (PS), a subsequence, x({,) converges to a critical point
of I, which can only be 0. Therefore lim, . ; F(x{(1)) = 0 and by Propositicn 2.
xX(1y—~0Qast— T.

Proof of Theorem 4: We know that F achieves its minimum at some point
tty. Supposing 0 and 1, to be the only critical points we will be led to a contradiction.
We consider first the case that k and dim X, are positive. We may suppose R =
I < Jlugll.

Since atevery point p €.X, with || y{| = [, F'(y) # 0, we may apply the preceding

Lemma 4 to conclude that the flow starting at v, described by (32), exists on a

maximal open interval 0 < { < T(y) < —4F(uy). and x(1) - uy as
t— T(y).
Applying Proposition 2, we see that 35 > 0 such that the set { F(u) < F(u) + 5}
liesin 11 — uoll < [uoli /2. By choosing & sufficiently small there is a unique value
= 1{1) < T(y)such that F(x{/(»))) = F(u) + 8. It is a simple exercise to verify
that ¢(y) is continuous in .
For v a unit vector in X, let K denote the set

(33) K={u=w+u,:10,€X,,520 and |u| =1}.
We now define a continuous map p* of ék = K* into X. Any v # v on 9K,
with uil = 1, has the unique representation
(34) u=sv+ gy
with0=s=1.yeX, |yl=10<e=1,ie,s, o vare unique. Define
(35) pMuwy=u forue X, Jull =1, and p*v) = u,.

For 1 given by (34), define
(36) p*sv + o) = x(2st(p)) for0=ss=4

where x(!} is our solution of (32). So pHiv + ay) = x(41(»)) and it lies in
lx = tl < g, Finally define

(37) pHsv+ o) = (25 = 1)y + (2 ~ 25)x(1(y)) ford =s5s<1.

As s goes from } to |, the right-hand side traverses the straight segment from
x(1{y))to uy, and so for s = 4,

[p*(sv+ 1) = ol = lupil/2 .
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The mapping p* is clearly continuous and on its image we have F £ Q. In
addition we see that

Ip¥w)lzr>0 forfull =1.

We have r S.1. Fix 0 < p < r, We are now going to use Lemma 3, according to
which the image of p* links the set £ = {ue X,; |u| = p}.ie, for any continuous
extension p of p* to all of K, the image of p intersects =,

Denoting by A the set of all such maps p, we are now in a position to apply a
min max argument, namely Theorem 2. According to that theorem the non-negative
number

¢ = inf max F(p(u))
pEA neE kXN

is a critical value of F. If ¢ > 0 we have obtained a second nonzero critical point.
If ¢ = 0, according to Theorem 2, there is a critical point on Z, and so different
from the origin, where F = Q.

Before considering the other cases in the theorem, a remark:

Remark 3. The last part of the argument proves the following:

Let Fbea C' function on X satisfying ( PS). Assume there is a continuous map
p* of the boundary of the half ball:

K={u=sv+tiu;1EX,,520.|ul =R}
where v is a fixed unit vector in X, into X, with the following properties:
pMu) = u for u € Xy, ful = R, lipM()] = rp > 0 for [ull = R,
and F{(p*(uw)) = 0 Yu € dK. Assume furthermore that for some positive p < ry.
Flayz 0 foru € X, ull =p.

Then F has a nonzero critical point where F 2 0,

Returning to the theorem, suppose k¥ = 0. In that case, assuming t,, the min-
imum point of £, is the only nonzero stationary point, we see that in a neighborhood

of the origin, F{1t) > 0 for u # 0. By Proposition 4 we have

F(i)Z ¢ >0 on |uf = rsmall.

Applying MPL we find F has a critical value 2 ¢.

The last case to consider is when dim X, = 0. In this case we may even permit
k = oo. Applying Proposition 4 again (to — F) we see that F(u) £ —¢, < 0 for
Ire!| = r small, and we recall that F{1) = co as [lu]} = oo, and so we may again
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aﬁply MPL to - F, considering paths joining 0 to a point w where F{w) > 0 and
such that uy is not on the segment joining 0 to w,

Remark 4. In Theorem 4, in case F is a (2 function in a finite dimensional
space and 0 is a nondegenerate critical point, i.e., the Hessian F"(0) is nonsingular,
then conditions (30) automatically hold. If 0 is a degenerate critical point the
conclusion of Theorem 4 need not hold. Here is an example in the plane. Consider
the function £ defined in polar coordinates r,

F(r,0) = (1 + cos 8)/(r) + (1 ~ cos 8)r?

where f(r) is a smooth strictly increasing function on [0, oo ) satisfying (i) f(r) = r?
forr< 1, (i) f(r)>rforr> 1, (iii) f has only one positive critical point, say
r=2,and f"(2) = 0. The function F tends to +oo at infinity, achieves its minimum
at (0, 0) and has only one other critical point namely (2, 0). At that point one
eigenvalue of F(0) is negative and the other is zero. If (ii) is replaced by

(i)’ fAr)<r? forr>1 and JNN—> w0 asr— o,

the function F has again critical points only at (0, 0) and (2, (). At the latter, F"(0)
has one positive eigenvalue and the other is zero. The index of F' at (2, 0) is zero.
The proof of Theorem 4 yields in fact a somewhat stronger result;

THEOREM 5. Let F be as in Theorem d—with k> 1. Assume that F has only
a finite number of critical points where F < 0 and that each one is a local minimum
point of F. Then there is another critical point # 0.

In particular, if F is an even functior satisfying all the conditions of Theorem
4. and if k > |, then F has at least two pairs of nonzero critical points.

Proof:  Supposing the conclusion of the theorem is false we will obtain a con-
tradiction. Let ug, u,, - -+, Uy, be the critical points of F where F < 0, and fix
r> 0 so that the balls B, = { |lu — ull =r},j=0,-+, m, are disjoint and do not
contain the origin. We may suppose R, in (30}, so small that By = {||u| = R}
does not touch any B;. Using Proposition 4 we see that there is a number 6 > 0
such that the component €@;, containing u;, of the set {F(u) < F(u;) + 8} lies
in B,.

Let y be a point in X; with || v| = R. Then F'(y) # 0 and, as in the proof of
Lemma 4, we find that the “negative gradient flow” starting at y, defined by (32)
exists for a finite time T(y) < —4 min F', and that there is a uniqué valye ¢ = H(y)
such that x(t(y)) first encounters U; (8€@)). Suppose x(t(y)) € JdCy. Then for
(y) <t < T(y), x(t) lies in @,. Thus the flow curve starting at y ends up in @,.
It follows that for z € X3, lying close to y on 9B, the “negative gradient flow”
curve from z also ends up in @,. Since k > I, the set X; M 8B is connected and
t follows that the flow curve starting at every point in that set ends up in @,.

o
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If dim X; > 0 we may follow the remainder of thezprgof of Thegrem 4 and

i critical point of F where, of course, F = (.
Obtzspigszngiex;o& = 0. }p{ere we may assume 1 < & = co. We apply the standard
MPL to —~F, to obtain a critical value ¢ > 0 of —F and a sequence of curves
(p.) such that max, (—F) — c¢. By our assumption, _F.‘ equals ¢ at some of
the (u,). Consider such u; and a ball B(w,) of small radius such that on 4B;,
—FsS¢— e, with ¢ > 0. We construct a new sequence of paths (g,) as f0119ws.
Replace each arc of (p,) lying in B, by one on d5; .with the same end pomts.
Clearly max,,(~ F) -» ¢, and by Theorem 1 there exists a sequence of points x,
on g, such that —F(x,) —= ¢ and | F'(x,)|| = 0. By (PS) a subsequence of x,
converges to one of our y;—impossible,

Theorem 5 is a generalization of Lemma 2.2 of Ambrosetti and Lupo (see [1])
which is proved using the Morse inequalities. .
Here is a simple application of Theorem 4. Consider the problem

—-Au+ a(x)u=Ag(u) inQ,

(38) . u=90 on aQ .

We assume that a € L™, g is smooth with

(39) g(0)=¢g'(0)=0,
and
(40) lim -g—(”—)<o.

lul+e U

In addition we assume that

G(u)=f g()dt >0 forsomeu.
J 0

In case (0 is an eigenvalue of — A + awe also assume that

(41) Gu)z 0 for |u|l =6 small.

THEOREM 6.  For every X\ sufficiently large there are at least two nontrivial
solutions of (38).

Example. g(u) = u® + u* — 15,

Prooflt Since, for A > some A, there is an a priori estimate for the_ solution (by
the maximum principle), we may also assume that g(u) = bu + ¢ with b < 0, for
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1

l1] large. Solutions of the modified problem will still be solutions of the original
problem. The functional

Flu) = —;f IVul* + qu’ - AIG(H)

is well defined on .Y = /1§ and we claim that it satisfies the conditions of Theo-
rem 4,

First, it is clear that inf F < 0 for A large enough. Indeed, since G(s) > O for
some s there exists a function w, € #7}, such that j G (1) > 0. Using (40) we readily
see that inf I" > — oo for A large.

Next we turn to the splitting X = X, ® X,. For X, we choose the (finite di-
mensional) space spanned by the eigenfunctions corresponding to nonpositive €i-
genvalues of — A + a, and X, is its orthogonal complement in Y. Using (39) and
the fact that G(1) < 0 for |¢] large we have. for any e > (),

(42) Gy S et + Cle[20n Dy

We deduce that on X, for some « > 0,
o > 2 “ 2 2nfin-2)
Fiuyz afu| =3 ut —.Cllul =0

for iy = llirll = R small. On X, which is finite dimensional, we have
F(u) 20 for |u| small

by (42)—and (41) in case 0 is an eigerivalue of —A + a. The (PS) condition is
easily verified for A large. Theorem 4 vields the conclusion.

As another application of Theorem 4 we prove the existence of nontrivial time-
periodic solutions of a system of ordinary differential equations for a vector-valued
function of time x(t}, taking its values in R":

(43) K= V(LX)

Here I"is a smooth function defined on R' X R which is periodic in ¢ of period,
say, 2. Assume

() ¥(r,0)=0,9.(1,0)=0,
(i} V(t, x) = 4o as | x| = oo uniformly in ¢.
(iii) For some constant vector .xy,

2r
f Ve, xp) dt <0,
0

[

N——
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(iv) For | x| 2 rsmall, and some integer & 2 0,
—Lk+ DY x2S (LX) £ - LX),

THEOREM 7. Under the conditions above. (43) has at least two nonzero so-

lutions of period 2.
J

Proof: x(¢) = 0 is a solution, and we seek two others as stationary points of
the functional

2
F(x) =J; B | X2+ V(1. .\'(I))] dr .

We work in the Hilbert space X of vector functions x(¢) having period 2= and
belonging to H' on [0, 27], with the standard norm

4

2r 1/2
||x|!:u l.i|2+|.\-}2} |

It is easy to verify that F satisfies (PS) and is bounded below: by (iii). inf F < 0.
Writing any x € X in Fourler series

o
x(1y = 2 ae”, a ;=4a;,
-

we set

k
X, = {x => aje'”}

-k

X

Xi= {xe,’(:x =3 a,e"’]‘
1l =k

Theorem 4 will give the desired result once condition (30) is verified. Choose
R > 0 so small that

fxl = R=[x|,, S7.
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Thenforxe X, | x| < R,

F(x) *f% Lx]* 4+ 1 (1, x)

i
Sv 3 Plal -4k [ a2 |
sk
!
= 2 gl (ljP- k) =s0. i
it=k ;
» - . . %
Similarly one verifies the first inequality of (30), and the conclusion follows |
from Theorem 4. |
The same proof yields a slightly more general result: 3
THEOREM 7', Theorem 7 holds if condition (iv) is replaced by the condition: {
. (iv)" For some r > 0, some integer I, 0 = ] S N, and for some non-negative f
integers ki, -« k. |
| / ]
o (k. + 12 < e _l l
2n§ m 1Y X0 S V(1 ¥, . x5, 0, ,0) = ~§m§lk,2,,xfn :
§
H
/ !
if 2 x5 30 andalso
| +
():5I"(I.O,"',O.xl.l,"',XN) [f inérz.
nr f
i
Proof:  We write any Fourier coefRicient a; of x as :
g i
N i
a = 2 afe,
nt =1
where ¢, is the unit vector pointing in the positive x,, direction, Then take
!
Xo=fxv= 3 e, a,’”e’”]

P HIS ko .
and X, — X4 the proof proceeds as before. i
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Appendix
A Proof of Theorem 1 Based on (Deformation) Theorem 3

(i) To prove the first statement we wish to show that

(A1) V6 < 4,3u suchthat |F(u)—c| >4 and |F'(11)] < 2Vs.

Taking a sequence of such 4, — 0, the corresponding u, have the desired properties.
Set d{u} = dist{u, p*(K*)). There exist a, C > 0, such that

(A2) Flysc+ Cdlu) if dinysa.

Suppose (A.1) is false. Then for some § < }, |F(u) —¢| <d = | F'(u)]| 2
2V5. Let n be the deformation in Theorem 3 corresponding to this . Let p € A
be such that max,c ¢ F(p(£)) < ¢ + 6. By (24) we see that

(A.3) WL p(E))EF. VEEK.
Let {(£) = min{max{ad(p(£)). dist(£, K*}), 1} where « is any constant >

max (4C, a™ ).
Consider the “path”™ g € A:

a(§) = n({(6). p(§)) VEEK.

By the main condition in Theorem 1, there exists £ € K\K*—hence {(£) > 0—
such that

cSF(gUEN S F(pd) <c+a.

By (A.3) we see that {(£) < L. so that d(p(£)) < a™' < a. If we apply (25) of
Theorem 3, with 7 = {(§) we find

S FgEN S FipB) = 38 S e+ CdpE)) - 38E) by (A2).

But this implies §(§) < 4Cd(p(E)) and thus d(p(£)) = 0; so {(£) = 0. Contra-
diction.

{ii) We turn to the last statement in Theorem i. Assuming (PS),. clearly ¢
is a critical value. Consider a sequence p, € A such that max, . x F(p,(£)) = ¢,
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We have 1o show that there is o sequence (£,) € A such that F(p, (£, 1) — ¢ and
st | -+ 0. The desired conclusion follows easily from the following

Claini, Given anv open neighbourhood @ of K, there exists & such that if
pE A with maxg,. , FIp(E) < ¢+ 8. then ptK)yN @ # ¢,

The proof makes use of Corollary 5.

Proof of Claim:  We will make use again of (A.2). Choose 4 > () and a defor-
mation » to satisfy the conditions of Corollary 5. (with ¢ = ), so that (28) holds.
Suppose there is a “path” p € A with max,e x F(p(E)) < c+ dand p(KYN O - ¢4,
Let 0 S {(£) S | be the same function on K as above. By (28),

(A4) ni.plHEL viEe K.
(Consider once more the “path™ in A
gley = U {(EY. (&) vEe K.

As belore, there exists é e KAVK* (so t(E) > 0) such that
¢ < FiqUE) S F(pEn .

By (A4}, we have tE) < 1. and so d(p(£)) < a. Applying once more (25) with
r = ¢} we find

s FlgtEn s FpEn  Yaby e b cdiptEy) - bdB by (A2).

This leads to a contradiction as ahove,

Some time after completion of this paper we Jearned that Corollary | of Prop-
osition 1, and a more general form. were proved using Ekeland’s principle by |
Caklovic, S, J. Li, and M. Willem; see [18]. In addition we learned that in [19},
M. Willem had presented a vamant of our Theorem 3.
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