HAIM BREZIS

Positive solutions of nonlinear elliptic
equations in the case of critical Sobolev
exponent

We report on a recent work with L. Nirenberg 51 Consider the following
problem. Assume @ c RN, N = 3, is a bounded (smooth) domain. Find a (smooth)

function u satisfying

u->20 inQ
-au = uP 4 Fu) inq (1)
u=20 on 3Q,
where p = %;% and f(u) is a "lower order perturbation" with f(0) =0 ; a

typical example is f(u) = Au (X € R). The exponent p = %;% is critical from

the point of view of the variational formulation. Indeed, solutions of (1)
. . . 1 2 1 +1
correspond to critical points of the functional 3 J|Vu| - E?T'Jup - [F(u)
where F is a primitive of f and p+l = ﬁ?%— is the Sobolev exponent for the
embedding Hy () < LP*!(0).
Our lecture is divided as follows. First we recall some results concerning

the easy case where p < ﬁé% and f(u) = Au. Then, we consider the case where

p = %;%- and f(u) = Au. Finally we turn to the case where f is nonlinear.

Our interest in problem (1) comes from the fact that it presents some
similarities with the Yamabe problem in geometry ; see e.qg. Trudinger [11]

and Th. Aubin [2].
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1. THE CASE p < g@% .

Throughout Section 1 we assume that p < %;% . Clearly, there is a solution

us>0 1dng
uP

1
=3
o

n

inQ

(2)

o
0]

0 on 3

Indeed, consider the following minimization problem

Inf

2
Iovi2
S | A
'
Ve H0 Lp+1

Since the injection H. < LP*1 is compact, the infimum in (3) is achieved

by some Vo We may always assume that Vo 2 0 (otherwise replace Vo by IVOI}

and that "VOH ptl = 1. Thus we obtain a Lagrange multiplier y e R such that
L .

'QVO = quP (4) b _:'

[+1]

=

a
=

]

IIVVOIZ > 0.

By stretching v we find a function u satisfying ' 4 l

1

1

q

u=0 ong, uto .

p ; T

-Au =4 on Q (5) 9 '
u=0 on 3Q 1 (

1
[more precisely u = kvo satisfies (5) provided k = uB:T]. It follows from the

strong maximum principle that u > 0 in Q.
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(The question of uniqueness for problem (2) is open when @ is starshaped.
When @ is an annulus and p is close to %;% the solution of (2) need not be
unique ; in fact there exist bﬁth spherical and non-spherical solutions, see
[51).

Let 11 denote the first eigenvalue of -A with zero Dirichlet boundary condi-

tion. Consider now the following problem : find u such that

us20 in Q
-au = uP + 9w in @ (6)
u=20 on 30

Then for each A ¢ (-w,Al) there is a solution of (6). Indeed

Iovi?, - AIvIZ,
L L (7)

f 7
1 [Ivil
Ve H0 I_|:»+1

is achieved by some v satisfying v = 0 on @ and |WOH = 1. Moreover
L

p+l
there is a Lagrange multiplier u ¢ R such that

- - - P
Avo Avo “Vo'

j  Thus u = [|VV0|2 - ljvg > 0 (since A < Al). By stretching V, as above we
obtain a solution of (6).
The restriction A ¢ (-~,Xy) is essential. Indeed suppose u is a solution of

(6). Let $1 > 0 in © be an eigenfunction corresponding to ll‘ We have

Al Ju¢1 = Jup¢1 + Aju¢l > A Ju¢1
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and thus X < 11.

2. THE CASE p = N2 AND f(u) = Au

N+2

Throughout Sections 2 and 3 we assume that p = . We consider now the

N-2
following problem : find u such that
us20 in Q
-au = uP +au in @ ' (A ¢R) (8)
u=20 on 3Q

The argument we have used on Section 1 does not hold anymore since the injec-
tion Hg c Lp+1 is not compact. In fact we know, by a result of Pohozaev 97,
that if Q is starshaped and A = 0 there is no solution of (8). Using the

same argument as in Pohozaev [9] one proves :

Theorem O : Assume Q is starshaped and A < 0. Then there is no solution of

(8).

Remark 1 : On the other hand if Q@ is an anwnulus then for every ) ¢ (==52q)

there is a spherical solution of (8). Indeed consider

v nfz - xnvnfz

Inf

2 (9)
1
Ve HI" "V "Lp+1

where Hi ={v ¢ Hé(Q) and v is spherically symmetric}.

The infimum in (9) is achieved since the injection of Hl into Lp+1 is compact.

Thus, after stretching, we obtain a spherical solution of (8).
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1

;$ Our main results are the following

heorem 1 : Assume Q < IRN, N =>4, <s any (smooth) bounded domain. Then for

every \ e (0,)\1) there exists a solution of (8). Moreover

(10)
I

ETheorem 2 : Assume Q s a ball in ]R3. Then for every A ¢ (jlu’ }\1) there is a

_ssolution of (8) ; moreover the infimum in (10) is achieved. When )\ < 7} there

iis no solution of (8).

[Remark 3 : When N > 3 and A » Al there is no solution of (8) (see Section 1).

?hen N =3 and Q is starshaped there is no solution of (8) for A < 0 (by

bRemark 4 : The generalization of Theorem 2 for starshaped domains is not

%efore we sketch the proofs we present same facts about Sobolev spaces :

a) Define the best Sobolev constant S to be
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2
iz,
S = Inf L

10 )2 -
v
v eHo Lp+1

In principle S depends on @ ; but in fact S depends only on N. This is an

vl
easy consequence of the invariance under scaling of the ratio HWEFﬁJ;_ (that
p+l

is, the ratio is unchanged if we replace u(x) by uk(x) = u(kx)).

b) The infimum in (11) is never achieved, on any bounded domain. Indeed,
suppose that the infimum in (11) is achieved by some function Vo 2 0. Let Q

be a ball containing ¢ and set

0 inQ\@Q
Thus, for & the infimum in (11) is achieved at v, and we find

p
U?O on Q

._*__
¥

=

< <
o

n H

0 on 30

for some constant p > 0. This contradicts Pohozaev's Theorem.

c) When @ =R\ the infimum in (11) is achieved by the function

u(x) =-—_—-l—~ﬁ:?_ or - after scaling - by any of the functions
(1+[x1%) T
u(x) = —““*E—F”N:g (e > 0)
(e+lx1%) &
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fsee Aubin [31, Talenti [107, Lieb [81.

k.  The following Lemma plays a crucial role in the proof of Theorem 1.

borma 1 : Assume N = 4. Then, for every A ¢ (O,Al) we have

2 2
vv ], = Al
12 L2

—_— 2
veul NIE 4y ) e
0 Lp

L The proof of Lemma 1 is rather technical ; for details see [57. The main

fdea - borrowed from Aubin [1] - consists of estimating the ratio

Ioulf’y - Al nfz
Q(u) =

u nfpﬂ

N-7 Where ¢ « D_(Q) is a fixed function such

};at ¢(x) = 1 near 0 (assuming 0 Q).

L A straightforward computation gives the following expansion as £ -+ 0 :

N
5-1

Qu) =S +0(e? ) -ace when N = 5

Qu.) =S +0(c) - ACe|log €| when N = 4

?mere C >0 is a constant. In both cases we see that Q(ue) <S for e > 0 suf-

ficiently small. We shall also use the following measure theoretic Temma.
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Lemma 2 : (Brezis-Lieb [4]) Suppose (vj) 18 a sequence in Lq(ﬂ) with

1 £q <> such that [Iv remains bounded and vj(x) + V(X) a.e. on Q. Then

il
359

Tim { f]vj|q - JiVj'qu} = }1V|q (13)
J-reo

Proof of Theorem 1 : Choose a minimzing sequence (vj) for (10) such that
v; 2 0on g, ij"Lp+1 =1 (14)

Ji“jlz Y Jv§ =5, +0 (1) (15)

Since vj is bounded in Hé we may assume, for a subsequence, that

. 1
Vj =~ v weakly in HO
Vj -V a.e. ong
.o, 2
vj + VvV  strongly in L
- - N ooyl
Set wj = Vj v so that ”j 0 weakly in Hu'

By Lemma 2 (applied with q = p+l) we have

+1

. -1 - p+l
Tim HWjILp+1 =1 HVHL

p+l°

Thus 2

—
1

BT]_'
= (M IPpay + IwglPri) w0 (1) s
L L (16)

A

2 2 .
. 0
V0 gt Ioghpg + 0 (1)
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On the other hand (since W, 0 weakly in Hé) we have
[|ij|2 = J|vv[2 + lewjl2 + 0 (1) (17)
Combining (15) (16) and (17) we obtain

2 2 2 2 2
levg - A[v + J|ij| < S)\vaHLp+I + "ijLp+11 +0 (1) (18)

By definition of S, we have |W[2 v s s Hv”2 and therefore
A x T p

1 2 2
b | |wwi|T < S W]l +0 (1)
1 J J A 3T

>\

s < J|ij|2 + o0 (1).
1 Since SA < S (by Lemma 1), it follows that JIVNjIZ -+ 0. Consequently

%j + v strongly in Hg (and in Lp*l). Passing to the Timit in (14) and (15)
?e conclude that the infimum in (11) is achieved by v. After stretching we

bobtain a solution of (8).

éL.In the proof of Theorem 2 we use

3 A
emma 3 @ Assume Q = {X ¢ R3 3 || < 1}. Then for each X « Lal,ll) we have

2 2

v, = Alv ™,

S. = Inf L L
AL Iv I
€ L

S (19)
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Proof : We estimate the ratio

2 2
[Pull®y = Al
L2 12

Q(u) = 5
u
iy

cos (3]x|)
for u(x) = uE{x) =

(e+]x|%)

A technical computatioh (see [5]) gives the following expansion as € > 0 :

2
Qu,) =S+ /e (7 - A) + 0(vE)
. 11 2
where C > 0 is a constant. Therefore if A > T (note that here AI =T ) we

see that Q(ue) < S for € > 0 sufficiently small.

Proof of Theorem 2 : The same argument as in the proof of Theorem 1 shows
A
that for every 2 ¢ Lﬂ;’kl) the infimum in (19) is achieved. Consequently we

obtain a solution of (8) for each ) ¢ (T%WAI). Next we must show that no so-
lution of (8) exists for A = i%—. By a result of Gidas-Ni-Nirenberg [77 we
know that any solution u of (8) in a ball must be spherically symmetric. We
write u(x) = u(r) (r = |x|) and so we have

—ut - Eut = u® 4w on (0,1) (20)

u'(0) = u(l) = 0. | (21)

Then we use an argument "a la Pohozaev" but with more complicated multi-

pliers. Namely we multiply (20) through by
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r2[r cos mr - b sin wrlu!

::'. and then by
rl- g{li-b?r)cos mr - 1'2"— sinmr + b sin 7r] u

b for some appropriate constant b. Integrating by parts and combining the two

2
bequalities Teads to A > % 5 for more details see 57.

{3, THE GENERAL CASE, -Au = uP + f(u) WITH p = o

Here again we take p = -g% Assume f is a Cl function on [0,+) such that

f(0) =0, f(u) 20 wvu=0 (22)
1im 1W _ (23)
W p

£1(0) < A, (28)

The problem is to find a function u satisfying

u>0 on
-y = uP 4 f(u) on Q (25)
u=20 on 99
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Our main results are the following

Theorem 3 : Assume N = 5, (22), (23), (24) and

f£0 (26)

Then there is a solution of (25).

Theorem 4 : Assume N = 4, (22), (23), (28) and either

£1(0) > 0 (27)
QI’
vim inf Fl) g (28)
U0 4

Then there is a solution of (25).

Theorem 5 : Assume N = 3, (22), (23), (24)

Tim flu) . +

U-+teo U
Then there is a solution of (25).

Remark 5 : Theorem 3, 4 and 5 admit appropriate extensions to the case where
f depends also on x with f(x,0) = 0. They may be used in order to prove the
following :
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Theorem 6 : Assume N > 3. Then there is a constant \* > 0 such that the pro-

blem

us>20 in Q
-au = A(1+u)P dn g P = §o (29)
u=20 on an

has at least two solutions for each X ¢ (0,3) and no solution for A > A",

(A similar result for p < ng had been obtained earlier by Crandall-

Rabinowitz [6]).

The idea of the proof is the following. Firstly one obtains (easily) a
minimal solution u of (29) for every A (0,3™) (see e.g. [6]). Then one
Tooks for a second solution of (29) of the form u =u+vwithv>20ona.
Thus v satisfies -av = ;\(1+H+v)p - A(lfg)p =P+ f(x,v) and we are reduced

to a problem of the type (25).

The proofs of Theorems 3,4 and 5 involve two ingredients. Fiﬁst]y a
geometrical result which is a variant of the Ambrosetti-Rabinowitz 17 moun-

tain pass Lemma without the (PS) condition (see Lemma 4). Secondly a technical

Lemma which has the same flavour as Lemma 1 or Lemma 3 (see Lemma 5).

b Lenma 4 : Assume ¢ s a C1 function on a Banach space E such that

20y = 0 (30)

there exist constants p > 0 and r > 0 such that d(u) 2 p
(31)

for every u e E with |uf|=r




®(v) < 0 for some vV € E with |v||> r. (32)

Set

c = Inf Sup &(p) (33)
PeF peP

where § denotes the class of all paths Jjoining 0 to v. Then there exists a

sequence (UJ-) in E such that d)(uj) + ¢ and CD'(UJ.) + 0 in E'.

The proof of Lemma 4 is essentially the same as the proof given in [1].
In order to prove Theorems3,4 and 5 we apply Lemma 4 in E = Hg to the func-

tional

o) = § [ Ivul? - B%TJ(U+)D+1 - JF(u+) (34)

u
where F(u) = J f(t)dt. Property (31) is an easy consequence of assumption
o
(28). For every u e H., u 2 0 inQ, u Z 0 we have Tlim o(tu) = -» . Hence,
[o] totoo
there are many v's satisfying (32). However it is essential to make a special
choice of v in order to be able to use properly the sequence (ui) given by

Lemma 4. More precisely we have

Lemma 5 : Under the assumptions of Theorems 3,4 and 5 there is some u, € H{IJ

u020£n§2, uoa_fOcmd

sup o(t ug) < 1 sV/2, (35)
t=0
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The proof is rather technical. Let ug(x) = ﬂwilil__N_z with ¢ ¢ ﬂ)+(Q)
(e+lx1?) 2

‘and ¢ = 1 near x = 0 (assuming 0 ¢ Q). We show by an expansion method (as in

Lemma 1) that u_ satisfies (35) provided € > 0 is sufficiently small. As was

already observed, the expansion technique is sensitive to the dimension N ;

the cases N =3, N =4 and N = 5 must be considered separately. (See the de-

tails in [5]).

Proofs of Theorem 3, 4 and 5 : By Lemma 5 there is some v ¢ Hé such that

]l > rs ®(v) < O and

1 (N/2

Sup o(tv) < § (36)
t=0
We apply Lemma 4 with such a v. From (33) it follows that
¢ <y sV/2 (37)
Let ("j) be the sequence given by Lemma 4. We have
1 2 1 +,p+l +
3 [Ivagl? - ohp WP fFad) =0 ) (38)
) _ (aFyP +
Au4 (uj) + f(uj) * g5 (39)
1

with 5 > 0 in Ho.

Combining (38) and (39) it is easy to show that lhj||1 remains hounded.
H
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Thus we may assume that

u, ~u weakly in H;

From (39) we deduce that

-u = (uhP s Fh) in H (40)
By the maximum principle we have u = 0 and so

—au = uPtl 4 f(u).

It remains to prove that u # 0. Suppose by contradiction that u = 0. Using

(23) we obtain
JF(u;) >0, Jf(u;)uj >0 (41)

We may always assume that

J|Vuj|2 > (42)
and by (39)
JhPt o (43)
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From {(38) we deduce that

On the other hand we have (by Sobolev inequality)

2

2
f10517 = SlogIP

2

+

z Slu.
31 e

and therefore at the limit

2

L = S8 p+1

Thus

L= SN/2

and (by (44))

.1 N2

C=q

a contradiction with(37). Therefore u # 0.
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