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Abstract

Consider the problem:{
−∆S3U = λU + U5, U > 0 onB ′,
U = 0 on∂B ′,

whereB ′ is a ball onS3 with geodesic radiusθ1, and∆S3 is the Laplace–Beltrami operator onS3. We prove that for any
θ1 ∈ (π/2,π) and anyk > 1, there exist at least 2k solutions of this problem forλ sufficiently large negative.To cite this
article: H. Brezis, L.A. Peletier, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Équations elliptiques avec exposant critique sur S3 : nouvelles solutions non-minimisantes. On considère le problème{
−∆S3U = λU + U5, U > 0 surB ′,
U = 0 sur∂B ′,

où B ′ est une boule surS3 de rayon geodésiqueθ1, et ∆S3 est l’opérateur Laplace–Beltrami surS3. On montre que pou
tout θ1 ∈ (π/2,π), et toutk > 1, ce problème possède au moins 2k solutions pourλ < 0 avec|λ| assez grand.Pour citer cet
article : H. Brezis, L.A. Peletier, C. R. Acad. Sci. Paris, Ser. I 339 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

We study the Dirichlet problem on the unit sphereS3 in R4:
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1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crma.2004.07.010
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{ −∆S3U = λU + U5, U > 0 onB ′, (1)

U = 0 on∂B ′. (2)

Here∆S3 is the Laplace–Beltrami operator onS3, andB ′ is the geodesic ball centered at the North pole with g
desic radiusθ1. Note that the geodesic radius of the upper half sphere isθ1 = π/2, and of the full sphere it isθ1 = π .

The exponent 5 is the Sobolev exponent inR3 and is known to be critical for existence of a solution.
The analogous problem inRN , with the Laplace–Beltrami operator replaced by the ordinary Laplacian, h

been studied since 1983, when it was proposed by Brezis and Nirenberg [5]. Specifically they proved thaB ′ is
replaced by the ballBR with radiusR, andN = 3, then there exists a solution if and only if

π2

4R2
< λ <

π2

R2
= λ1(−∆). (3)

In recent papers by Bandle, Benguria and Peletier [3,4], it was shown that on the sphereS3 the situation is
significantly different. They showed that in the rangeλ > −3/4, there is a solution if and only if

π2 − 4θ2
1

4θ2
1

< λ <
π2 − θ2

1

θ2
1

. (4)

Thus, in this geometry, there do exist solutions of problem (1)–(2) if−3/4< λ < 0 andθ1 > π

2
√

λ+1
.

For λ � −3/4 it was shown in [3], by means of a Pohozaev type identity [7], that there exist no soluti
θ1 � π/2, and it was conjectured in [3] that for everyλ < −3/4 and everyθ1 < π with π − θ1 sufficiently small
(depending onλ), a solution would indeed exist. This conjecture is still open. More recently, in [1] and [2] it
proved that givenθ1 ∈ (π/2,π) there exists aΛ(θ1) < 0 such that for everyλ < Λ(θ1) a solution exists. In addition
a detailed numerical study [8] revealed multibump solutions in the rangeλ < −3/4 andπ/2 < θ1 < π ; a family
which becomes increasingly rich asλ → −∞. This fact is extremely interesting because in this range ofλ, the
minimum of the corresponding variational problem isneverachieved.

In the present Note we only deal withradial solutions and denote the North pole by 0: we establish the exist
of a countable family of solutions for values ofλ large enough negative. Specifically we prove:

Theorem 1.1. Given any geodesic radiusθ1 > π/2 and anyk � 1, then there exists a constantA = A(k, θ1) > 0
such that forλ < −A, problem(1)–(2)has at least2k solutions, such thatU(0) ∈ (0, |λ|1/4).

We also have strong evidence, partly numerical and partly rigorous of the following conjecture.

Conjecture. Let

λn = −1

4
(n2 − 1), n = 2,3, . . . . (5)

Let k � 1. Then, ifλ < λ2k , there exist at least2k solutions of problem(1)–(2)such thatU(0) < |λ|1/4 when the
geodesic radiusθ1 of B ′ is sufficiently close toπ .

Remark 1. The critical numbersλn are, up to a factor−1/4, equal to the ‘radial’ eigenvaluesµn of the eigenvalue
problem

−∆S3v = µv on S3. (6)

The radial eigenfunctions and their eigenvalues are given by

vn(θ) = sin(nθ)

sin(θ)
and µn = n2 − 1, n = 2,3, . . . . (7)
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A special role in the analysis of these solutions is played by a family ofground states, i.e., solutions of
Eq. (1) which exist and are positive and smooth on all ofS3. Branches of such solutions are found to eman
from the constant solutionU = |λ|1/4 of Eq. (1) at the special valuesλ = λ2k+1 = −k(k + 1), k = 1,2, . . . . These
critical values correspond to the odd eigenvaluesµ2n+1 associated with eigenfunctions which are symmetric w
respect toθ = π/2, i.e., with respect to the equatorial plane. We prove the following result about ground sta

Theorem 1.2. Letn � 1, and letλ < −n(n+1). Then there existn ground statesU1, . . . ,Un, whereUk = uk(θ) has
k local maxima(k = 1,2, . . . , n), or spikeson (0,π). They are all symmetric with respect to the equatorial pla
i.e.uk(θ) = uk(π − θ) for 0 � θ � π , and the maxima of the spikes increase with the distance from this plan

2. Sketch of the proofs

Using the stereographic projectionΣ−1 : S3 → R3 centered at the South pole, we transform the functioU

defined onB ′ ⊂ S3 to a functionw on the ballB ⊂ R3: w(x) = U(Σ x), x ∈ B = BR . Then problem (1)–(2
becomes

 − 1

ρ3 div(ρ∇w) = λw + w5, w > 0, x ∈ BR, (8a)

w = 0, x ∈ ∂BR, (8b)

where

ρ(x) = 2

1+ |x|2 , x ∈ BR. (9)

We look for solutions with radial symmetry, i.e. a solution of the formw = w(r), where we see from the geodes
projection thatr = tan(θ/2) andR = tan(θ1/2). Thus Eq. (8a) reduces to an ordinary differential equation with
radiusr as independent variable. We transform this equationonce more, bringing it into the form of a generalis
Emden–Fowlerequation. Thus, we put

2t = 1

r
− r and y(t) = |λ|−1/4w(r) and 2T = 1

R
− R. (10)

Problem (8) now transforms to{
y ′′ + |λ|a(t)(y5 − y) = 0, y > 0, T < t < ∞, (11a)
y(T ) = 0 and y ′(∞) = 0, (11b)

where

a(t) = 1

(1+ t2)2
. (12)

Note thatθ = 0, θ = π/2 andθ = π correspond tor = 0, r = 1 andr = ∞, and tot = ∞, t = 0 andt = −∞,
and that Eq. (11a) is symmetric with respect to the origin.

The proofs of both theorems are based on a shooting argument, combined with a continuation argumen
used in [6]. We fixu(0) = w(0) = |λ|1/4γ and hencey(∞) = γ , where 0< γ < 1 is an arbitrary constant. It i
well known that there then exists a unique solutiony = y(t;γ ) of the problem{

y ′′ + |λ|a(t)(y5 − y) = 0, t0 < t < ∞, (13a)
y(t) → γ as t → ∞, (13b)

on some interval(t0,∞). Since att = ∞, the solution starts below the constant solutiony = 1, its graph is convex
and there will be a timet1 = t1(γ ), at whichy = 1. In a left neighbourhood oft1 the graph ofy will be concave,
and for|λ| large enough it will intersecty = 1 again, say at the pointt2 = t2(γ ). In the interval(t2, t1), the graph of
y is concave, andy ′ has one zero, say atτ1 = τ1(γ ), a local maximum. Depending on the value of|λ|, the function
y(t) − 1 may have further zeros· · · < t4 < t3 < t2, and critical points· · · < τ3 < τ2 < τ1 in between the zeros. It i
readily established that
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tk(γ ) → t0
k and τk(γ ) → τ0

k asγ → 1−, (14)

where the pointst0
k and τ0

k are the zeros and the critical points of the solution of the equation we obta
linearising (13a) abouty = 1:

z′′ + 4|λ|a(t)z = 0, t ∈ R. (15)

This is Eq. (6) transformed to Emden–Fowler form, withµ replaced by 4|λ|, so that the zerost0
k and critical

pointsτ0
k are all explicitly known.

As γ decreases, the critical points are all shown to move tot = −∞. Hence, if a critical point starts onR+, i.e.
if τ0

k > 0, then it must pass the origin at someγk ∈ (0,1). By symmetry, we can then continue the solutiony(t;γk)

as an even function to form a ground state onR.
In the proof of Theorem 1.1 we put|λ| = ε−2 and viewe problem (11) as a singular perturbation problem.

fix T < 0 andT0 ∈ (T ,0). Givenε > 0 small enough we show that there exists aγ = γε small enough such tha
τ1(γε) = T0. Using the energy function

H(t) = ε2

2a(t)
y ′2(t) + F

(
y(t)

)
, F (y) =

y∫
0

(s5 − s)ds, (16)

which, since

H ′(t) = −ε2

2

a′(t)
a2(t)

y ′2(t), (17)

is decreasing onR− and increasing onR+, we show thaty(t;γε) has a first zeroTε < T0 and thatTε ↗ T0 as
ε → 0. Thus, by choosingε small enough, we can ensure thatTε > T . We now keepε fixed and we show tha
Tε(γ ) → −∞ as γ → γ±, where 0� γ− < γ+ < 1, so that there will be at least two values ofγ for which
Tε(γ ) = T . This yields two solutions, each with one spike: one neart = T and one near the origin.

Remembering the transformation (10) we can expressTε(γ ) in terms of the radiusRε(γ ) of the ballBR in
problem (8), and we find thatRε(γ ) → +∞ asγ → γ±.

Multi spike solutions are found is a similar manner by choosingγε such thatτk(γε) = T0 and showing that a
ε → 0, the additional spikes all concentrate at the origint = 0 i.e. around the equatorθ = π/2.
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