by A 5. ). Gremzinger and €, Witzgall

The verticics of §* cmbedded in R* are given by (0,0.0,0), (0,0.0,1),
(0.0.1,1), (0.1,1,1). The edge spheres have the equalions

AMLN +m.~.~vu+ﬁhuvu+ﬁhhv~l Xy =10

() + () + () +(xa) = xy = xy = 0

(P +{x) + ) o (g = xy = 3y = x = 0

() () + () () - xy 20+ 1=10
T..Lh+:~v~+?t~+?.LNI Xy—x;—2x4+1=140
(x) 4 () () +{ey) =X, = 20y —2x, +2 = 0.

The [irst two equations imply x, = 0, and the fast two imply x; =1, a contradic-
tion.
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Semilinear Lquations in R” Without Condition at Infinity
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Conununicated by I2. Kinderlchrer

Abstract. In this paper we establish that some nonlinear elliptic (and
parabolic)- problems are well posed in all of R¥ without prescribing the
behavior at infinity. A typical example is the following: Let 1 < p < e, For
every f € L} (R%) there is a unique ne L] (R*) satisfying

Tow!

-Au+ [u" 'u = f(x) onR".

1. Introduction

The purpose of this paper is to point out that some nonlinear elliptic (and
parabolic) problems are well-posed in all of B withoul condilions at infinity. A
typical example is Lthe [ollowing:

q.__nc_.a.:_.hQHAﬁAS.»ne__.%nc..\.mh__%%zv_,_Eammk._waa:..z.nzm
ue L) (RY) satisfying ,

—Au+ [u]P " w = f(x) in D(RY). (1)

Moreover, if f 20 ac. then uz 0 ae.

Remark 1. 1t was previously known that for every f € LYRY) there exists a
uniquc u € LP(®R™) satislying (1) (sec [3]. Theorem 5.11). However, we emphasize
that in Theorem 1 there is no fimitation on the growth at infinity of the datu [ and
the solution u is unigue without prescribing its behavior af infinity.



272 . Brezis
2. Prouf of Theorem 1
Existence
Let Bp={x €R"; [x} < R). We start with some local estimate:
Lemma L. Let R < R" and aysume u € Li.(Bg) &:,Sm..m

—Au - ) Yu= f{x) in 9By (2)
with { € L By.). Then

J,

where C depends only on p, R and R’

lulf < € Ib V] (3)

R

Remark 2. The conclusion of Lemma s a rather unusual focalization property:.
indeed, let £ and 2’ be bounded open sets in B such that R N’ =@ and et
be the sotution of (1). On the one hand the vafues of £ in R’ *alfect” Lhe solulion
w in €: for example, if £ > 0in €' and /= 0 outside Q' it [oflows [rom the strong
maximurm priaciple that « > 0 in §. On the other hand the values of [ in @ alfect

only “mildly” v in &: in view of (3) u|g may he estimated independently of f|gi. .

even if £ — oo on &, .\._g:u still remains bounded.
0

Proof of Lemma {. We use a device inlrodueed by P. Baras and M. Pierre [2]. By
Kalo’s inequality (see [10]) and (2) we have

— Alu| + ul” < If] in @'(Bg). ; (4)

Let { € 2(B, ) besuch that 0 g§ <1 and {=1 on Bg. Multiplying (4) (hrough
by {" where « is an inleger, and integrating we [ind

Sl < fin+ cfmig=r < finr+ ¢ flugerr, (s)

provided a—2 2 a/p,i.c, az 2p/( p —1)yand we [ix any such a. The conclusion
of Lemma 1 Tollows casily [rom (5). .

Proof of Theorens [ Existenceé

Let

f.(x) = f(x) il |x|<n

0o if [x] 2 0.

P
;
|
i
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Let u, € LP(R"}) be the unique solution of

(see [3], Theorem 5.11).
We deduce from Lemma 1 that there is a constant C such that

__::__h.:a.i s C

where C depends only on p, R and f. and thus we also have
lau iy in, < €.
It follows that (for some subsequence still denoted by u,) we have

u, - u in L' (RY)

u, - u a.c.onRY
We claim that
lugt7 " e, = [u]" "' in LY (RY).

It suffices to verify that |u,|?"tu, is a Cauchy sequence in L'(Bp) for any R. By
Kato's inequality and (6) we have

— Aju, — )+l e, — P | < 1 -

Let £ € 2(R™) be such that c,ﬂ,wmw aud { =1 on B, We have

Sl e, = 10,008 < fif, = fuld o+ [l = w88
and the RHS tend 10 zero as i, n —» o0, _um,mmm:_m to the limit in (6) we obtain (1).
Unigueness
We shall need the following:
Lemma 2. Assome we L (RY) savisfics
—Au+[u]" w0 in 2(RY). )

Then u <0 ae on RY,

Remark 3. Lemma 2 is closely related (o the results of J. Keiler {11] and R.
Osserman [13} (see also the earlier works quoled in (hese papers).
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‘Prooj. We usc a comparison function of the same Lype as in Osserman [13] (see
also C. Loewner and L. Nirenberg [12]). Sel

U(x) =———— in B,

where R> 0, a=2/(p—1) and C77' = 2amax{ N,a+1}. A dircct computation
shows Lhal

—AU+UP 0 in B, (8)
and thus
—A{ue—=U)+uf " —UT <0 in2'(8,). 9)

Using a variant of Kato's inequality (see Lemma A.1 in the Appendix) we deduce
from (9) that

—8{u—U) +{lu|""'u—U?)sign* (¢~ U) € 0 in @(8,) (10)
and thereforer - -

—A(u-U) <0 in2(B,). - . (11)
Fromi Lemma A.1 and (7) we deduce (hat

—dut+{u" )" <0 in @' (R")
and therefore

~Adut< 0 in D(RY),

i-e., u* is subharmonic and in particular u* & L2 (R*). It Jollows thal for some

&> 0 we have
(u—U) =0 forR—56<|x| <R (12)

(since U(x) = + o0 a5 |x} = R, x € B,). Combining (11) and (12) we oblain that
(u—U)'=0ac on By ic,ugUac on B,
Keeping x fixed and leiting R — 0o we see thal v <0 a.c. on RY,

Semilinear Equations 275
Proof of Theorem |. Uniqueness.

Let u; and u; be two solutions of (1) and lel v = u; — u,. By Kato's inequality we
have

—~ Afu| +|Juy |77y~ Py | < O in 27(RY). (13)
On the other _.E_:_. there is a constant § > Q-—depending only on p— such :_...__.

[la|”~'a —1b|7""'b| 2 8la — b|7 Vu.h € R. (14)
From (13) and (14) we deduce that

—Alu] + 8lu)” <0 in Z'(RY).
Using Lemma 2 we conclude thal u= 0.

3. Miscellancous Remarks and Generalizations

A. Monotone Nonlinearities -

The proof of Theorem 1 extends easily Lo the case where |u]”~ 'y is replaced by a
more general function g(u). Assume g:® — [ is a C! function such Lhat

Y

g'(u) > alu’™! Vu €R,
for some constants @ > 0 and 1 < p < oo (for example, g{u) =sinhuy, elc....).

.H,__aowa:_—..ﬁaﬁmcﬁ.._y\mh__o%ﬂzvSm_.mm.ﬁ...:unE.E:m:mh_ﬂ%ﬁzu_::.:__
glu)ye L' (R¥) satisfring :

—Au+g(u) = f(x) in2(R"Y). (16)
B.  Nonmonotone g’s
Let g{x,u):R* xR be measurable in x and conlinuous in u. We assume that:
glx,u)signu » alul” — w(x) forac. v €RY, forallueR (17
where w € L (R¥)and a>0, 1< p <co and also

hp(x) = sup |g(x.u) € LA (RY) forall M > 0. (18)
Jur| = A

Theorem 2 There exisis ue L{L_(RY) such that g{-,u) € L\ .(R") satisfying

—Au+g(x,u) =0 in2'(R"). (19)
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Skeich of the Proof. First we consider the case of a smoolh bounded domain
RcRM

Claim. There exists u € W'(Q) such that g(-, u) € LY(Q), satislying
—Au+g{x,u} =0 onf. {20)
This type of result is closely related—but not quite contained in [6]. Here it

sulflices to assume (17) with a = 0.
ForreR and n €N we sct

r il|r]<n
™=\ on ifrzun,
—an ifrg-n.

By the Schauder fixed point theorem there exists u, € W,-'(R) satislying

—Au, + g{x,7u,) =0 on (21)

Using the fact that — | Au,signu, = 0 we find
[0

-\._NAH. .._.:_..,.:v_ S Nc\-_ﬁ_
2 )

Therefore

lAu,| < N.\_aﬂ. {22)
9] 11}

Aflter extracting a subsequence we mnay assuine that

u, =« in Wl(Q)

i, - u ac

N

g(x,tu,) — glx,u) ac.

To show that g{x,7u,)— g(x,u) in LNR) we use a new device introduced
in [8] by Th. Gallouet and J. M. Morel (with an observation of L. Boecardo).
Sel

[ 1 ifr>M
pulr) = M 0 il-M<r<M
-1 iflr<—M

where reR and M > 0. It is well known that

- [auepy(u) 2 0 Vue W Q) bu e LY(Q).
43
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Therelore we have

h%ﬂk.ﬁ.:nvﬁkhtnv & O.

That is, . oo

[ glxmu,)sign(u,) < 0
fun| 3 A

and hence

\_ 1g{x. )| < 2 |} (23)

2| > M IAEYY

From (22) we see that |ju,||;; < C and thus M meas {|u,|> M]<C.

Given e> 0 we may fix M large enough so that w‘\. |w] <e.
Next, [or any measurable A T8, we have lug| > M

Slgmad < [ Iglnmud+ [ 1s(xmu,)
A A In

1) > M
li| 5 M

M.\\._r.:?v,;_. es 2e

provided meas 4 <& and § is small enough. In other words, we have established
that

Ve»0 35>0 st [ig(xmm)l < 2¢ when meas A < 8.
A

We conclude that g(x, m,u,) = g(x,u) in L\(Q).
We turn now to problem (19). For cach u let
Q, = {xeR" |x|<n).

n

By the previous sicp there exists w, € W, -4(f,) such that g(-,u,)e L}R,)
satislying

—Au, + glx,u,)=0 onf,. (24}
From Kato's inequality and (24) we oblain

- Alu,) + glx,u,)signu, < 0 in 2°(Q,).
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And therefore we also have

—Alu,| +alu,) €0 in2(R,) (25)

— Al |gle,u,)l < 2wl in 2°(L,). - (20)
Using Lthe same n_o:co as in the proofl of Theorem 1 we deduce from AN& that

. is bounded in L (RY).
It follows from (26) that
g(-.u,) is bounded in L' (RY)

and thus

Ay, is bounded in L\ _(R"}.
Hence we may assume that
R")

w,o— u in L}

7 lexe

N
u, = u ac.onlR’

"

g{x,u,) — g{x,u) aeonRY

Finally we prove that #(x.u,)— g(x,u) in L} (RY), By a variant of Kato's
inequality (sce Lemma A.2) we have
=8Py () + glx.u, ) pw(1,) < 0 in 27(2,)

where
t
Py(t} = R.._.u?.?v&?

Therefore we have

\_ | > _.__._h. .t:v_w\ _E_W + _Hq_._bw\ <w. € @. A@:v.

_==_ > M |re, | = Af

It follows casily that g{x, ) is cqui-integrable on bounded sets of R and thus
gla up)— g(x, w)in L (RY).

C.  Measures or More General Distributions as Right Hand Side Data

Let T be a distribution of the form T=f+ A¢ where f e L) _(R¥) and
¢ L (RY). Then the problem

—Au+ |ulP~'u =T inZ'(RY) ‘ (27)

has a unique solution v € L{ (R"Y). |

B i LT

Semilinear Equations 279

Indeed it sulfices lo consider the new unknown v =wu+ ¢ and Lo apply the
result of Section B to v (see also [8] for similar questions on bounded domains).

Suppose now thal T js a measure on RY (not nccessarily a bounded
-measure). Suppose 1< p < N/(¥ —2) (no restriction when N =1,2). Then there
exists a unique solution w< L (R") for (27). Relaled queslions for bounded
measures are considered in [5] and [8].

D.  Nonlinearities with Growth Close to Linear

Suppose g:R -+ R is continuous and g(u) behaves like z__cm ul* as [n|— o0 with
k>2 Then for every f& Ll (RY) there exists we L] (RY) wilh g(u)e
L'\ (R") satisfying

—Au+ glu) = in @ (RY).
As belore, we use Kalo's inequality to find

—Alul + g(u)signe < |f].
We multiply (28) through by 7= ¢~ /%" where 8 > 2/(k —2). Then we estimate
,\_:_ |An] with the _a_.v of Young’s incquality. Recently Gallouet and Morel have
proved the _.o__cs_:._m resull. Suppose g 18 — R is continuous, nondecreasing, odd,
convex, and ,\_ [G(x)]"%dx <oo where G is o primitive of g, Then for every
£ € L\ _(R") there exists a unique funclion v e LI RY)y with guye L' (RY)
salisfying — Au+ g(u)=f in @ (R"™).
E. Unbounded Domains , -

Let RcR*Y be any domain AcoEEE_ or unbounded) with smooth boundary.
Using the same prineiples as in the proof of Theorem 1 one can show that for
every f € L} (Q) and ¢ € L} _(32) there exists a unique u € L{ () satislying

—Au+uPlu=f nQ

u=¢ on 3%,
wlhere 1< p < o0 and the boundary condition is understood in some appropriate
sense.

F. Local Regularity

Let @ CR™ be any domain. Let g:R — R be a continuous and nondecreasing
function.

Theorem 3. Suppose € L3 () is such thar gludy e LY (Q) und satisfies

—du+glu) = f(x} in2(R) (29)
where f € L] (R) and 1 < g <.
Then ue i’ :nﬁm.

Progf. We may assume that zi0) = 0. We have
~djuf = glutdgau <+ inFUD
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and thus
—Au| < |f] in 2(8).

It follows that u& L] (). Sct
glr)y=glrr) and P(r)=sign __.%*n._ﬁ_i_al ds
1)

50 thal
[P < Irl g, {r)1"" ¥r €R.
By Lemma A2 and (29) wec have

AP (1) 2 [g,(u)* 'signulg(u)= 1] = lg, ()l = 1N g, ()77 (30)

_lnp, te2(Q) with 0 <{ <1; from {30) we sec that

‘\._.—u:ﬁ:u_;w: < ﬁ..\\_»azﬂzv_wnlu + .\._.3 _N:A:vbai_w:
< Cfiul 1g, (w7472 + fif g L)

where C is independent of w,
Fix any integer a3z 24; by Holder's incquality we have

Jlg e < cf  Quir+1A7).

supp ¥
As n — co we see that g{u) € L{,.(2).

G.  Parabolic Equations

Consider the problem

u,— Bu+u” =0 onR¥x{0,+o)}withl<p<oo

:AH.OVURQAMV on __H.z. Aubv

Using the same principles as in the prool of Theorem 1 one can show (hal for
every u, € LY (®¥) there is a unique function u€ CHR™ x(0, + )N
C([0, + =0); LY RY)) satisfying (31).
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Results of the same nature for the problem

u,—AQu|™ 'u)=0 onR" x(0,0)
u(x,0) =up(x) on RY

have been obtained by M. Herrero—M. Picrre [9] when O < m <1. When st > 1 the
situation is totally different; sce {1, 4, 7).

Appendix: Some Variants of Kate's Inequality
Let cRY be any open set.

Lemma A.l. Letue L) (Q) and f € L () be such that

lew:
Au 2 [ In@{Q).
Then

Au* = fsigntu in 9°(8).

Lemma A.2. Let p:R - R be a monotone, nondecreasing function such that p is
contintious except at « finite runber of jumps and p(R) is bounded.

Let P(r)= .ﬁﬁ?u ds and let u € L}, () with Aue L}_(Q).
Then

AP(u) 2 (&u)p(u) in 9'(R).

The proofs are easy modificalions of Kato's original argument in [10], and we
shall omit them,
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