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Laser beams and limiting cases of Sobolev

inequalities

[NTRODUCTION
I will first describe a joint work with T. Gallouet [21 concerning the nonli-

near Schrodinger egquation

;::.,{ - AU + k!u}zu = 0 on @ x {0,+<} where feR2
3

in order to solve this problem we rely on a limiting case of Sobalev's ine-

guality in dimension two.

in the second part of my talk, | will describe a joint work with S. Wainger{3]

dealing with more general limiting cases of Sobolev type inequalities in di-

mension N .

B. A NGM LINEAR SCHR! DINGER EQUATION

let R =« R2 be a smooth domain. In practice ¢ will be either a tounded do-
Ejin. or an exterior domain, or a half-plane etc.. .

e took for a function u{x,t) :0>{0,+=} » C such that

i %% - AU+ k]u]zu =0 on [ x (0,4n) (1)
u(x.,t}) = O on 30 x {0,+e) (2)
S u(x,0) = uo(x) on a,

where k ¢ R is a given constatit and i (x) is prescribed.

This xind of problem occurs in nonlinear optics and has been extensively
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studied when ¢ = Rz {see 111 (4] ,{51 , (8], {121) , but nothing seems

to have been known for @ F RZ .

On maip result s the following

Theoreén 1. daswme ua, ¢ H

2

n H}' . In addition csawme that zitier Kk 2 0

or k<0 with |k I |u°]2 < & . Then there exists a wiique solution u

of (1

), (2} . (3) such that

ue C(L0.m); K a HY) n cHro.=);L?) .

Ranerks. 1) If k < O, it may happen for some initial conditions that the

solution of (1), (2) « (3) , Which exists for a small time interval, blows

up in finite time (the example of Glassey [6]) can be extended to SOME exte-

rior domains; it iS not known whether blow-up may occur in finite time for

bounded domains}.

2)

(.t

an ex

When R = Rz and k =20, ft ir known (see [4]) that
) ”Lm = 0(19%1') ar t-»e . Such a result presumably holds when Q2 ir

terior domain. However if @ is bownded , {ju(.,t)]|] _ does nottend to
L

¢ as t+ = (except when u = 0), since |[u(.,t)]| , - lult 2 (see the

proof

of Theorem 1). However it §s plausible that [lu{.,t) i remains boun-

|
ded ab t » = . (The proof of Theorem 1 shows only that lfu{.,t}}]] =:¢ QOC)_

Ou

Lemma

" next Lemma fs an nssential tool for the proof of Theorem 1

|1. There extists a constunt C-dependirg only on @ - such that

lolj o = € 1+ toq(le fful Hzn”"’
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for gvery uc ne with v 15 1.
H

Sketch of the proof of Lenma 1

Using standard extension methods we can reduce the pr'oof of Lema 1 to the

case where = Rz . Let G denote the Fourier transform of u . We have

el s cla)f,
L L
Let R> O (to be chosen later); we write

ol = | HIEDISE) ey o + IR RO T

4217
1+[£] )0 L dg /2
= llestehset UlskR e ]
2., 1 172
+ 1 (1+]g])a() d
et ] o e )

From which it follows easily that

lall y <crios(er/® s cilull p0e)™
Since  [ju| ul = H(a+]e)ae) |l 2° 1.
We conclude by choosing R = {jul| 2 -

H

In order to prove the existence of a local solution we shall rely on the

following convenient variant of a classical result of |. Segal [10] :




Lemm

unbot
5(t)

Assun

8 2. Let X be a Banach cpace and let = A - D{A) c X ~ X b2 a iinzar
inded operator which gererates @ CONTINUOUS somi-group of contracticns

ne F @ D{A) -~ D(A} Zs a nonlinear mapping which is lLipsckitzian on

bourded scts of D(R) (for the graph norm).

Then

eqia

» for every U, ¢ D{A) ., thcre exists a unique iscal salution of the
tion
g% + Au=Fu on [D,T)
u(0) = vy
e C{06,TI:0(A)) n CH(I0.T):X) .

In dddition the solutiom U ean be extended to a marimal interval [0,T }

with

Tim

tfirax

max

the altermative : eithep Tma = = , op Tm <= gnd

X
(He(t)l] + HAu(t)]]) = = -

ax

Sketch of the proof of Theorem 1. We apply lemma 2 in X = LZ(Q;Ej with

Au = T av , D{A) = H2 fn Hé and Fu = ik{u{z u . We obtain a solution defi-
ned jor [D,Tmax} with the alternative : eftzer T, = or Toax <= and
Vim | flu(..t)]] 5, ==
t4 T H

ax
We Shall now prove that the second part of the alternative is excluded by

showfing that [Ju{.,t)!|

Firs

2 is bounded on every finite time interval.
H

t note that

Hugooexll 5 = flu I, vt 4
A L2 o LZ {(4)
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|

{

t suffices tO multiply (1) by U. inttgrate by parts and use the imagina-

ry| part}.

Next we have :

(1

k

Gag

3 !n (vugx.t) 2 o+ X fﬂ u(t) [ fax =, vt ()

b suffices to multiply (1) by = . integrate over Q@ and use the real

3u
at
rt).

It|follows thrt llu(.,t}[| , remains bounded. Indeed this is clear when
H

2 O . Otherwise when k ¢ O we have, by (5) and by an inequality of

{ liardo-Nirenberg 191

% fﬂ [9u(x,t) 2dx < € + J;-’- Ig|u(x.t)|4ax

s C+ J—;—L [ [u(x.t)lz dx ,[ﬂ |vu(x,t) 24x
Q

= C+ J—E—L flu,l fz Jg [Vu(x,t) Z4x

and the conclusion follows since IH ]|u° [|22<4 .
L

fifally we use the relation

t
u(t) = s(t)u, + [0 S{t-s)Fu(s)ds.

and thus

Ta

it

t
Au(t) = S(t) Au, + IO S{t-s)AFu(s)ds

ﬁing the L2 norm an both sides we find

t
HaCatdlf g sliugh o+ [ HFuts)f , s (6)

is easy to check. using again an inequality of Gagliardo-Nirenberg that




2 2
u < EH
jIFuf] W2 Cll”[!Lm [fuil ¥ hu (7)

it follows from (6) and (7) that
t 2
18O o e €4 C [ ot Z u sl 5 ds. (8)

on the other hand we deduce from Lema 1,which holds sincc Jju{.,t)]] pe C,

that

flut.s) | 5"’ < € [1+1og(1+ [u(.s)]] Hzn ' (9)

fombining {8) and (9) leads to

t
¢{t) « C+ C ( C1+log(i+e{s)) 1 ¢(s)ds
10

where (s} = [|¥(.,s)] Hz . We conclude (as in Gronwall's inequality} that

Bt
o{t) = %€ for seme constants « and § .

2, REMARKS ON SOBOLEV TYPE INEQUALITIES IN THE LIMITING CASE

Ke start with an.extension of Lema 1 to dimension N =2 . Let c,mN

Theorem 2. (see {3]) et 1sp<w ,| <qse, j ad k be such that

% - %_= 0 % - ﬁ <0 . Then there erists a constant C - depending only

mR,p,q, J aid k such that
X-1

. ) N
lull o 2 COteloglie flult o) ] .
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¥ uewrd such fhat  |lu]| jop < 1.
H

Sketeh of the proof We use the same method as in Lemma 1 with
decomposition.

Let | ¢ e D{RY) with' o(0) = | and Supp ¢<B(0,1). Let
Write

Next

and

for g

| ndes

and b

Nex t

92

atx) = [ e™urnyas = [ e™Pa(e) tolf) ¢ wif

we establish the following estimates
N-1
I1,( < ¢ Dlog(1+R)] N
1,] < Cllull , (1+R)S
2 yea
ome & >0
d we write
f ixc 2, jf2 .,. 1 £
[, = v 1+]g s ¢(g)d
1 J e " +|~=l ) a(z) (1+]E,l )3/2 ¢ R) g
= i(“*-li]z)'}/z G(e)) = 5(*—1—-2—372— ¢(§))
: (1+]g]")
y Hdlder
[ d sl o F— &N I
<jlu F Ty % )
I Ni.p ((1+I€| )3/2 R P
one proves {see [37 ) that

a

1)

(10)

"continuous®



N-1

1
fl ﬂW s (2) !!Lp. s C{log(1+R) ]

Similariy

1 A
[1,] < Cljul g f ?(mg v (@) lqu.

Next one proves (see [31) that

ey () )4 < C(1eR) ™S
ot () e = C0vm)
1

Finally we choose R = [ju]] ‘Sk q
H L]

Remerk. It would be interesting to find a proof of Theerem 2 which does not

aake use of Fourier transform.

We have tried-without success-to connect Theorem 2 with the well-known
fnequalities of Trudinger and Strichartz (see below). ¥e have made neverthe-
less some nav observations. First we recall these inequalities.

For simplicity we assume that & is bounded.

N
Theorem 3. {Trudinger [14]) . let u ¢ HI’N v then e"'{ﬁr L1 . In addi-
tion thiz "tnjection™ isg "optimal”.

We deduce directly

Corollary 4. et u« “j.p vt j 2 1,
N
then el ¥INT (1

Indeed, by Sobolev  yJ+P o yl+¥ .
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A few years later, trichartz C131 has improved Corollary 4 and shown

Theorem

Irn addi

We have
sul t-wh
The riza

in Lore

p
p-1
e[qu € 1.

5. Let we WP Lien jzlamf%-%=0;tken L

tion thie "Injection™ <z Yoptimal®.

tried to understand whv Corellary 4 did not provide the optimal re-
le Scbolev's and Trudinger's inequalities are in some sense sharp.
on is that Sotolev's inequality can be *stightly" improved by working

itz spaces imstead of Lcbhesgue space. True, the improvement is micros-

copic; however in some cases this inproveaent is "magnified". For example in

our sit
quality
Mre pr

Llet f{

We deno

Given

The prg

(P < ¥

924

iation we use Firs:t Sobolev and thewn Trudinger. Here Trudingor's ine-
plays the role of a "magnifying glass”.
ecisaly let us recall first the definition of Lorentz spaces :

x) be a measurable function on &. Set

aft) = meas {x e 2 ; [f{x)}| >t} , ts0
te by f'(t) tine reciprocal function of g : f* = a‘l

T<p<w and 1 <g <= wedefine the Lorentz space

1 fe
Lipwa) = {fs t/PF* (1) ¢ 190,05 &)

perties of Lorentz spaces are discussed in [7] and {11]. Recall that

Ll

L{p.p} = tP

Mp

L(p:“)
arcinkiewicz space = Wwesk LP space) ,

L{p,ay) « L{p,ay)  if 9y < 9y -




-lo-

The fol lowing result improves Sobolev's Theorem

Theorem 6. Let U « Wj'p witn p < K/, then U« L(P*.P) uiTh 1. 5N

Note that the usual conclusion asserts that u ¢ Lp‘ = L(p'.p*) - a larger
space than L{p*,p) .

Theorem 6 is an easy consequence of the results of Stein and 0'Neil concer-
ning convolutions in Lorentz spaces.

Next we need the following version of Trudinger's inequality in Lorentr spa-

ces -

a

et
Theorem 7. Asswme Du € L{N,a) for scme 1l<ase ., Then ¢ y L

(uel™ when « = 1} .

The proof of Theorem 7 is based on a new convolution inequality in Lorentr
spaces in the limiting case (which was not examined Ly Stein and 0'Reil) :

Assume f r L(p.ql) 1 g€ L(p',qz) , then u =f = g satisfies e[”lr !
1 1 1 - 1 1
vith = =1 - —- = ded == 4
: 3 g, Provide 9 C
Combining Theorems 6 and 7 we deduce directly Theorem ¢,

<1 (for the proof, see {3]) .
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