Équations aux dérivées partielles/Partial Differential Equations

H1 versus C1 local minimizers

Haim Brezis and Louis Nirenberg

Abstract – We consider functionals of the form $\Phi(u) = (1/2) \int_{\Omega} |\nabla u|^2 - \int_{\Omega} F(x, u)$. Under suitable assumptions we prove that a local minimizer of Φ in the C^1 topology must be a local minimizer in the H^1 topology. This result is especially useful when the corresponding equation admits a sub and super solution.

Minima locaux relatifs à C1 et H1

Résumé – On considère des fonctionnelles de la forme $\Phi(u) = (1/2) \int_{\Omega} |\nabla u|^2 - \int_{\Omega} F(x, u)$. Sous des hypothèses convenables on prouve qu'un minimum local de Φ au sens de la norme C^1 est nécessairement un minimum local au sens de la norme H^1 . Ce résultat est particulièrement utile dans le cas où l'équation correspondante admet une sous-solution et une sur-solution.

Version française abrégée - On considère la fonctionnelle

$$\Phi(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 - \int_{\Omega} F(x, u)$$

définie sur $H_0^1(\Omega)$ où Ω est un ouvert borné régulier de \mathbb{R}^n et $F(x, u) = \int_0^u f(x, s) ds$. On suppose que f est mesurable en x, continue en u et vérifie la condition naturelle de croissance $|f(x, u)| \le C(1 + |u|^p) \quad \text{avec} \quad p \le (n+2)/(n-2).$

Notre résultat principal est le suivant :

Théorème 1. — On suppose que $u_0 \in H^1_0(\Omega)$ est un minimum local de Φ pour la topologie C^1 , c'est-à-dire qu'il existe r>0 tel que

(2)
$$\Phi(u_0) \leq \Phi(u_0 + v), \quad \forall v \in C_0^1(\overline{\Omega}) \quad avec \quad ||v||_{C^1} \leq r.$$

Alors u_0 est aussi un minimum local de Φ pour la topologie H^1 , c'est-à-dire qu'il existe $\varepsilon_0 > 0$ tel que

(3)
$$\Phi(u_0) \leq \Phi(u_0 + v), \quad \forall v \in H_0^1(\Omega) \quad avec \quad ||v||_{H^1} \leq \varepsilon_0.$$

Le théorème 1 est particulièrement utile lorsque l'équation d'Euler associée à Φ,

(4)
$$\begin{vmatrix} -\Delta u = f(x, u) & \text{sur } \Omega \\ u = 0 & \text{sur } \partial \Omega \end{vmatrix}$$

admet une sous-solution et une sur-solution. Plus précisément, on suppose qu'il existe deux fonctions \underline{u} , $\overline{u} \in C(\overline{\Omega})$ vérifiant, au sens des distributions,

$$-\Delta \underline{u} - f(x, \underline{u}) \le 0 \le -\Delta \overline{u} - f(x, \overline{u}) \quad \text{sur } \Omega$$

ainsi que $\underline{u} \le 0 \le \overline{u}$ sur $\partial \Omega$. On suppose que \underline{u} et \overline{u} ne sont pas solutions de (4). On suppose enfin qu'il existe une constante k telle que

(5)
$$f(x, u) + ku$$
 soit croissante en u , p. p. en x .

Note présentée par Haïm Brezis.

0764-4442/93/03170465 \$ 2.00 @ Académie des Sciences

Théorème 2. — Sous les hypothèses précédentes il existe une solution u_0 de (4) avec $\underline{u} < u_0 < \overline{u}$, telle que, de plus, u_0 soit un minimum local de Φ dans $H_0^1(\Omega)$.

For functions u in $H_0^1(\Omega)$ in a bounded domain Ω in \mathbb{R}^n with smooth boundary, we consider the functional

$$\Phi(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 - F(x, u).$$

Here $F(x, u) = \int_0^u f(x, s) ds$ and we assume the natural growth condition

(1)
$$|f(x, u)| \le C(1 + |u|^p)$$
 with $p \le (n+2)/(n-2)$,

as well as the usual assumptions that f is measurable in x and continuous in u. Our main result is the following:

Theorem 1. – Assume $u_0 \in H_0^1(\Omega)$ is a local minimizer of Φ in the C^1 topology; this means that there is some r > 0 such that

(2)
$$\Phi(u_0) \leq \Phi(u_0 + v), \quad \forall v \in C_0^1(\bar{\Omega}) \text{ with } ||v||_{C_0^1} \leq r.$$

Then u_0 is a local minimizer of Φ in the H^1_0 topology, i.e. there exists $\epsilon_0 > 0$ such that

(3)
$$\Phi(u_0) \leq \Phi(u_0 + v), \quad \forall v \in H_0^1(\Omega) \quad with \quad ||v||_{H^1} \leq \varepsilon_0.$$

The theorem is somewhat surprising since an $H_0^1(\Omega)$ neighbourhood is much bigger than a C_0^1 neighbourhood. The proof involves the special structure of Φ -the claim would be false for a general functional Φ .

The proof is divided in 3 steps.

Step 1. – We claim that $u_0 \in C^{1,\alpha}(\overline{\Omega})$, $\forall \alpha < 1$. – Recall that u_0 satisfies in the weak sense

(4)
$$\begin{vmatrix} -\Delta u_0 = f(x, u_0) & \text{in } \Omega, \\ u_0 = 0 & \text{on } \partial\Omega. \end{vmatrix}$$

In case p < (n+2)/(n-2) it is easy to prove the regularity of u_0 by a bootstrap argument (see e.g. [5]). For p = (n+2)/(n-2) we present the argument—the standard bootstrap procedure does not work. We write $f(x, u_0)$ in the form

$$f(x, u_0) = a(x)u_0 + b(x)$$

with

$$a(x) = \begin{vmatrix} f(x, u_0(x))/u_0(x) & \text{where } |u_0(x)| > 1 \\ 0 & \text{where } |u_0(x)| \le 1 \end{vmatrix}$$

and

$$b(x) = \begin{vmatrix} 0 & \text{where } |u_0(x)| > 1 \\ f(x, u_0(x)) & \text{where } |u_0(x)| \le 1. \end{vmatrix}$$

From (1) we have $|a(x)| \le C |u_0(x)|^{p-1}$. By Sobolev, $u_0 \in L^{2n/(n-2)}$ and thus $a \in L^{n/2}$. On the other hand $b \in L^{\infty}$. Applying Theorem 2.3 in [6] we infer that $u_0 \in L^q$, $\forall q < \infty$. Hence $f(x, u_0) \in L^q$, $\forall q < \infty$. From (4) we deduce that $u_0 \in W^{2, q}$, $\forall q < \infty$. The claim is proved. Without loss of generality we may now assume that $u_0 = 0$.

Step 2. – Proof of Theorem 1 in the subcritical case p < (n+2)/(n-2). – Suppose the conclusion (3) does not hold. Then

(5)
$$\forall \varepsilon > 0, \quad \exists v_{\varepsilon} \in B_{\varepsilon} \quad \text{such that } \Phi(v_{\varepsilon}) < \Phi(0)$$

where $B_{\varepsilon} = \{u \in H_0^1; ||u||_{H^1} \le \varepsilon\}$. By a standard lower semicontinuity argument min Φ is

achieved at some point which we may still denote by v_{ε} . We shall prove that $v_{\varepsilon} \to 0$ in C^1 , but then (2) and (5) are contradictory (a similar argument is used in [11]). The corresponding Euler equation for v_{ε} involves a Lagrange multiplier $\mu_{\varepsilon} \le 0$, namely, v_{ε} satisfies

$$\left\langle \Phi'(v_{\epsilon}), \zeta \right\rangle_{H^{-1}, H_0^1} = \mu_{\epsilon}(v_{\epsilon}, \zeta)_{H_0^1}, \qquad \forall \zeta \in H_0^1.$$

i.e.

$$\int_{\Omega} \nabla v_{\varepsilon} \cdot \nabla \zeta - f(x, v_{\varepsilon}) \zeta = \mu_{\varepsilon} \int_{\Omega} \nabla v_{\varepsilon} \cdot \nabla \zeta, \qquad \forall \zeta \in H_0^1.$$

This means

(6)
$$-(1-\mu_{\varepsilon}) \Delta v_{\varepsilon} = f(x, v_{\varepsilon}).$$

Using (6) together with the assumption (1) with p < (n+2)/(n-2) and the essential fact that $\mu_{\varepsilon} \le 0$, one may bootstrap the bound $||v_{\varepsilon}||_{H^1} \le C$ to $||v_{\varepsilon}||_{C^{1/2}} \le C$ (independent of ε). Since $v_{\varepsilon} \to 0$ in H^1 , $v_{\varepsilon} \to 0$ in C^1 (by Ascoli). This concludes the proof in the subcritical case.

Step 3. – Proof of Theorem 1 in the critical case p = (n+2)/(n-2). – It is much more delicate, because the standard bootstrap argument mentioned above does not work. We rely once more on Theorem 2.3 of [6] in conjunction with the additional fact that $||v_{\varepsilon}||_{H^1} \to 0$ as $\varepsilon \to 0$. Suppose the conclusion (3) fails. Then (5) holds. For every j consider the truncation map

$$T_{j}(r) = \begin{vmatrix} -j & \text{if } r \leq -j, \\ r & \text{if } -j < r < j, \\ j & \text{if } r \geq j. \end{vmatrix}$$

Set

$$f_j(x, s) = f(x, T_j(s)), \qquad F_j(x, u) = \int_0^u f_j(x, s) ds$$

and

$$\Phi_j(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 - F_j(x, u).$$

Note that, for each $u \in H_0^1$, $\Phi_j(u) \to \Phi(u)$ as $j \to \infty$. Hence, for each $\varepsilon > 0$ there is some $j = j(\varepsilon) \ge 1$ such that $\Phi_j(v_\varepsilon) < \Phi(0)$. Clearly, $\min \Phi_{j(\varepsilon)}$ is achieved at some point, say w_ε .

We have

(7)
$$\Phi_{j(\varepsilon)}(w_{\varepsilon}) \leq \Phi_{j(\varepsilon)}(v_{\varepsilon}) < \Phi(0).$$

CLAIM. – One has $w_{\varepsilon} \in C_0^1$ and $w_{\varepsilon} \to 0$ in C^1 .

Assuming the Claim we see that, for ε small enough,

$$\Phi\left(w_{\varepsilon}\right) = \Phi_{j(\varepsilon)}\left(w_{\varepsilon}\right) < \Phi\left(0\right)$$

and this contradicts (2).

Proof of the Claim. – The Euler equation for w_{ε} is

(8)
$$-(1-\mu_{\varepsilon}) \Delta w_{\varepsilon} = f_{j}(x, w_{\varepsilon}).$$

Note that

(9)
$$|f_j(x, u)| \leq C(1 + |u|^p)$$

with p = (n+2)/(n-2) and C independent of j. Since $w_t \to 0$ in H_0^1 , it also converges in $L^{2n/(n-2)}$ and thus there is some fixed function $h \in L^{2n/(n-2)}$ such that, for a subsequence, still denoted (w_t) ,

$$|w_{\epsilon}| \leq h$$

(see e. g. [4], Théorème IV. 9). Therefore, by (9),

$$|f_j(x, w_{\varepsilon})| \leq C(1+a|w_{\varepsilon}|)$$

where $a = h^{4/(n-2)} \in L^{n/2}$. This implies, as before, that (w_{ε}) is bounded in any L^q space. Going back to (8), and using (9), we see that (w_{ε}) is bounded in $C^{1,\alpha}$. Consequently, $w_{\varepsilon} \to 0$ in C^1 since $w_{\varepsilon} \to 0$ in H^1_0 . Theorem 1 is proved.

Next, we present a simple, useful, application of Theorem 1.

Consider Φ as in Theorem 1 with f such that for some constant k,

$$f(x, u) + ku$$
 is nondecreasing in u for a.e. x.

Assume we have $C(\bar{\Omega})$ sub and supersolutions \underline{u} and \overline{u} , i.e. in the distribution sense

$$-\Delta \underline{u} - f(x, \underline{u}) \le 0 \le -\Delta \overline{u} - f(x, \overline{u}) \quad \text{in } \Omega,$$
$$\underline{u} \le 0 \le \overline{u} \quad \text{on } \partial \Omega.$$

Moreover, assume that neither u nor \overline{u} is a solution of (4).

THEOREM 2. – Under the assumptions above there is a solution u_0 of (4), $\underline{u} < u_0 < \overline{u}$, such that, in addition, u_0 is a local minimum of Φ in H_0^1 .

The proof relies on Theorem 1 as well as on the following

Theorem 3. – Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary $\partial \Omega$. Let $u \in L^1_{loc}(\Omega)$ and assume that, for some $k \ge 0$, u satisfies

$$-\Delta u + ku \ge 0 \quad \text{in } \Omega,$$

$$u \ge 0 \quad \text{on } \Omega.$$

Then either $u \equiv 0$, or there exists $\varepsilon > 0$ such that

(10)
$$u(x) \ge \varepsilon \operatorname{dist}(x, \partial\Omega) \quad in \ \Omega.$$

Proof of Theorem 3. – The measure $\mu = -\Delta u + ku$ is nonnegative in Ω . We may assume $u \neq 0$.

Case 1: $\mu \equiv 0$. In this case $u \in \mathbb{C}^{\infty}(\Omega)$,

$$-\Delta u + ku = 0$$
, $u \ge 0$ in Ω .

Since $u \neq 0$, $u \geq \delta > 0$ in some closed ball B in Ω . Let Ω_j be an expanding sequence of subdomains of Ω with smooth boundaries and $\bigcup \Omega_j = \Omega$; suppose $B \subset \Omega_j$, $\forall j$. Let h_j be

the solution in $\Omega_i \setminus B$ of

$$(-\Delta + k) h_j = 0$$
 in $\Omega_j \setminus B$
 $h_j = \delta$ on ∂B ,
 $h_j = 0$ on $\partial \Omega_j$.

Then $u \ge h_i$ in $\Omega_i \setminus B$. As $j \to \infty$, we find

$$u \ge h$$
 in $\Omega \setminus B$,

where h solves

$$(-\Delta + k) h = 0$$
 in $\Omega \setminus B$
 $h = \delta$ on ∂B ,
 $h = 0$ on $\partial \Omega$.

Using the Hopf lemma one finds

$$h(x) \ge \varepsilon \operatorname{dist}(x, \partial \Omega)$$
 in $\Omega \setminus B$

for some $\varepsilon > 0$. The conclusion of Theorem 3 then follows directly.

Case 2: $\mu \not\equiv 0$. Let $\zeta \in C_0^{\infty}(\Omega)$ be a cutoff function, $0 \le \zeta \le 1$, such that $\zeta \mu \not\equiv 0$. Let v be the solution of

$$(-\Delta + k) v = \zeta \mu$$
 in Ω ,
 $v = 0$ on $\partial \Omega$.

Since v is smooth outside a compact set $K \subset \Omega$, it follows, as above, by the Hopf lemma that

$$v(x) \ge \varepsilon \operatorname{dist}(x, \partial \Omega)$$
 in Ω

for some $\varepsilon > 0$. The conclusion of Theorem 3 is a direct consequence of the following.

CLAIM. – One has $u \ge v$ in Ω .

Proof of the Claim. - Given any $\alpha > 0$ we will prove that

$$\overline{u} = u + \alpha \ge v$$
 in Ω .

The Claim then follows.

Note that

$$w = \bar{u} - v$$

satisfies

(11)
$$(-\Delta + k) w = (1 - \zeta) \mu + k \alpha \ge 0 \quad \text{in } \Omega$$

(12)
$$w \ge 0 \text{ in } N_{\eta} = \{ x \in \Omega; \operatorname{dist}(x, \partial\Omega) < \eta \}$$

provided η is sufficiently small (depending on α). The last property (12) follows from the fact that v is smooth near $\partial\Omega$ and v=0 on $\partial\Omega$. Let (ρ_j) be a sequence of mollifiers

with supp
$$\rho_j \subset B(0, 1/j)$$
. Set $w_j(x) = \int_{\Omega} \rho_j(x-y) w(y)$.

Clearly w_j is smooth, and by (11) we have

$$(-\Delta+k)w_j \ge 0$$
 in $\Omega \setminus \bar{N}_{1/i}$.

On the other hand, we deduce from (12) that

$$w_j \ge 0$$
 in $N_{(n-1/j)}$

and in particular

$$w_j \ge 0$$
 on $\partial (\Omega \setminus \bar{N}_{1/j})$

provided $\eta > 2/j$. The maximum principle implies that

$$w_j \ge 0$$
 in $\Omega \setminus \bar{N}_{1/i}$

when $\eta > 2/j$. Passing to the limit as $j \to \infty$ we see that

$$w \ge 0$$
 in Ω

which is the desired conclusion.

Proof of Theorem 2. - We introduce an auxiliary functional. Set

$$\tilde{f}(x, s) = \begin{vmatrix} f(x, \underline{u}(x)) & \text{if } s < \underline{u}(x), \\ f(x, s) & \text{if } \underline{u}(x) \leq s \leq \overline{u}(x) \\ f(x, \overline{u}(x)) & \text{if } s > \overline{u}(x); \end{vmatrix}$$

it is continuous in s. Then set

$$\tilde{F}(x, u) = \int_0^u \tilde{f}(x, s) ds$$

and

$$\tilde{\Phi}(u) = \int_{\Omega} \frac{1}{2} |\nabla u|^2 - \tilde{F}(x, u).$$

Let u_0 be a minimizer of Φ on $H_0^1(\Omega)$; it is easily seen that the minimum is achieved and satisfies

$$-\Delta u_0 = \tilde{f}(x, u_0) \quad \text{in } \Omega.$$

Thus $u_0 \in W^{2, p}(\Omega)$, $\forall p < \infty$. We claim that $\underline{u} \leq u_0 \leq \overline{u}$; we will just prove the first inequality. Indeed we have

$$(13) -\Delta(\underline{u}-u_0) \leq f(x,\underline{u}) - \tilde{f}(x,u_0)$$

and in particular

$$-\Delta (\underline{u} - u_0) \le 0$$
 in $A = \{x \in \Omega; u_0(x) < \underline{u}(x)\}.$

Since $\underline{u} - u_0 \le 0$ on ∂A , it follows from the maximum principle that $\underline{u} - u_0 \le 0$ in A. Therefore $A = \emptyset$ and the claim is proved.

Returning to (13) we have

$$-\Delta (\underline{u} - u_0) + k (\underline{u} - u_0) \le (f(x, \underline{u}) + k \underline{u}) - (f(x, u_0) + k u_0) \le 0.$$

Since \underline{u} is not a solution, it follows from Theorem 3 that there is some $\varepsilon > 0$ such that

$$\underline{u}(x) - u_0(x) \le -\varepsilon \operatorname{dist}(x, \partial\Omega), \quad \forall x \in \Omega.$$

Similarly for u; thus

$$\underline{u}(x) + \varepsilon \operatorname{dist}(x, \partial\Omega) \leq u_0(x) \leq \overline{u}(x) - \varepsilon \operatorname{dist}(x, \partial\Omega). \quad \forall x \in \Omega.$$

It follows that if $u \in C_0^1(\overline{\Omega})$ and $||u - u_0||_{C^1} \le \varepsilon$ then

$$\underline{u} \le u \le \overline{u}$$
 in Ω .

Next, we use the fact that $\tilde{F}(x, u) - F(x, u)$ is a function of x alone for $u \in [\underline{u}(x), \overline{u}(x)]$. In particular, $\Phi(u) - \tilde{\Phi}(u)$ is constant for $||u - u_0||_{C^1} \le \varepsilon$. Hence, u_0 is a local minimum of Φ in the C^1 topology (since it is a global minimum for $\tilde{\Phi}$). Now, we invoke Theorem 1 to claim that u_0 is also a local minimum of Φ in the H_0^1 topology. This completes the proof of Theorem 2.

Remark 1. — The proof of existence of a solution between a sub and a supersolution by minimizing the modified functional Φ —or by minimizing Φ on the convex set $\{\underline{u} \le \underline{u} \le \overline{u}\}$ —is standard (see e. g. [14], [12], [8], [9], [16]). This yields a local minimizer of Φ in the C^1 topology. The point of Theorem 2 is that it is a local minimizer of Φ in the H^1 topology.

Remark 2. — Another standard approach is via a monotone iteration (see e. g. [2]). In this way one obtains a minimal solution u_1 and a maximal solution u_2 between \underline{u} and \overline{u} . They both satisfy (see e. g. [7])

$$\lambda_1 \left(-\Delta - f_u(x, u_i) \right) \ge 0, \qquad i = 1, 2$$

where λ_1 () denotes the first eigenvalue of the corresponding linearized problem. However, in principle, u_1 and u_2 need not be local minima of Φ .

Remark 3. — Theorem 2 holds if \underline{u} and \overline{u} belong to $H^1(\Omega)$ instead of $C(\overline{\Omega})$. The proof involves a slight modification of the above argument using Stampacchia's form of the maximum principle.

In many instances, one proves the existence of multiple solutions for problems of the form (4). A first solution is obtained via sub and super solutions and a second solution is then obtained with the aid of the mountain pass lemma (see e.g. [10], [11], [15]). Here are some other examples:

Example 1 ([7], [13]). - Consider the problem

(14)
$$\begin{vmatrix} -\Delta u = \lambda f(u), & u > 0, & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{aligned}$$

with f in C¹, f(0) = f'(0) = 0, f > 0 on (0, a) and f < 0 on $(a, +\infty)$.

Then, there is some $0 < \lambda^* < \infty$ such that

- a) for every $\lambda > \lambda^*$, (14) has at least two solutions $u_1 < u_2$,
- b) for $\lambda < \lambda^*$, (14) has no solution.

Example 2 [3]. - Consider the problem

(15)
$$\begin{vmatrix} -\Delta u = \lambda u^q + u^p, & u > 0, & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega \end{vmatrix}$$

with $0 < q < 1 < p \le (n+2)/(n-2)$. Then, there is some $0 < \lambda^* < \infty$ such that

- a) for every $0 < \lambda < \lambda^*$, (15) has at least two solutions $u_1 < u_2$.
- b) for $\lambda > \lambda^*$, (15) has no solution.

Example 3 [1]. - Consider the problem

(16)
$$\begin{vmatrix} -\Delta u - \lambda u = W(x) u^p, & u > 0, & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{vmatrix}$$

with $1 , W changing sign and <math>\int_{\Omega} W e_1^{p+1} < 0$ where e_1 is the principle positive eigenfunction of $-\Delta$. Then, there is some $\lambda^* > \lambda_1$ such that

- a) for $\lambda \in (\lambda_1, \lambda^*)$ (16) has at least two solutions,
- b) for $\lambda = \lambda_1$, (16) has at least one solution,
- c) for $\lambda > \lambda^*$, (16) has no solution.

Note remise le 7 juillet 1993, acceptée le 12 juillet 1993.

REFERENCES

- [1] S. Alama and G. Tarantello, On semilinear elliptic equations with indefinite nonlinearities (to appear).
- [2] H. AMANN, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18, 1976, pp. 620-709.
- [3] A. AMBROSETTI, H. BREZIS and G. CERAMI, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. (to appear).
 - [4] H. Brezis, Analyse Fonctionnelle, 3e tirage, Masson, 1992.
- [5] H. Brezis, Uniform estimates for solutions of $-\Delta u = V(x)u^p$, in Partial Differential Equations and related subjects, M. Miranda Ed., Longman, 1992, pp. 38-52.
- [6] H. Brezis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl., 58, 1979, pp. 137-151.
 - [7] H. Brezis and L. Nirenberg, Nonlinear Analysis (in preparation).
- [8] K. C. CHANG, Variational method and the sub- and super-solutions, Sci. Sinica Ser. A, 26, 1983, pp. 1256-1265.

- [9] K. C. CHANG, Infinite dimensional Morse theory and its applications, Presses de l'Université de Montréal, 1985.
- [10] M. CRANDALL and P. RABINOWITZ, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal., 58, 1975, pp. 207-218.
- [11] D. G. DE FIGUEIREDO, On the existence of multiple ordered solutions of nonlinear eigenvalue problems, J. Nonlinear Anal., 11, 1987, pp. 481-492.
- [12] P. HESS, On the solvability of nonlinear elliptic boundary value problems, *Indiana Univ. Math. J.*, 25, 1976, pp. 461-466.
- [13] P.-L. LIONS, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24, 1982, pp. 441-467.
- [14] J.-P. Puel, Sur des problèmes quasi-linéaires elliptiques et paraboliques d'ordre 2, C. R. Acad. Sci. Paris, 275, Series I, 1972, pp. 179-182.
- [15] P. RABINOWITZ, Minimax methods in critical point theory with applications to differential equations, CBMS Series, 65, Amer. Math. Soc., 1986.
 - [16] M. STRUWE, Variational methods, Springer, 1990.

H. B.: Analyse Numérique, Université Pierre-et-Marie-Curie, 4, place Jussieu, 75252 Paris Cedex 05, France;

L. N.: Courant Institute, New York University, 251 Mercer St., New York, NY 10012, USA.