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Equations aux dérivees partielles/ Partial Differential Equations

’ H?! versus C! local minimizers

Haim Brezis and Louis NIRENBERG

Abstract — We consider functionals of the form ® (x)=(1/2) |Vul?— | F(x, u). Under suitable

1] Q
assumptions we prove that a local minimizer of ® in the C! topology must be a local minimizer in
the H! topology. This result is especially useful when the corresponding equation admits a sub and
super solution.

Minima locaux relatifs a C! et H!

Résumé — On considére des fonctionnelles de la forme ¢(u)=(l/2)J [Vul2=| F(x. u). Sous des

n Q
hypothéses convenables on prouve qu'un minimum local de @ au sens de la norme C' est nécessaire-
ment un minimum local au sens de la norme H!. Ce résultat est particuliérement utile dans le cas ou
I'équation correspondante admet une sous-solution et une sur-solution.

Version frangaise abrégée — On considére la fonctionnelle

(D(u)='[ l‘Vulz—J F(x, u)
a2 o

définie sur H} () ou Q ést un ouvert borné régulier de R" et F(x, u)=J f(x, s)ds. On

suppose que f est mesurable en x, continue en u et vérifie la condition naturelole de croissance
0)) | f (x, u)|SC( +|ul?) avec p<(n+2)/(n—2).

Notre résultat principal est le suivant :

THEOREME 1. — On suppose que ug€Hg (Q) est un minimum local de ® pour la topologie ct,
Cest-a-dire qu'il existe r>0 tel que
?) D (uy) SO (4o +0), VoeCLl(Q) ave ||v ler 7.
Alors ugy est aussi un minimum local de ® pour la topologie H', ¢'est-d~dire qu'il existe £5>0
tel que
3 O (ug) SO (4o +0), YoeH(Q) avec ||v”H1 <eg,.

Le théoréme 1 est particuliérement utile lorsque PPéquation d’Euler associée a D,
@ —Au=f(x, u) sur Q
u=0 sur 0Q
admet une sous-solution et une sur-solution. Plus précisément, on suppose qu’il existe deux
fonctions #, ue C(Q) vérifiant, au sens des distributions,
—Au—f(x, )SOS —Au—f(x, u) sur Q
ainsi que ¥ <0<u sur §Q. On suppose que u et # ne sont pas solutions de (4). On suppose
enfin qu’il existe une constante k telle que :

) f (x, u)+ ku soit croissante en #, p.p. en X.
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THEOREME 2. — Sous: les hypothéses précédentes il existe une solution uy de (4) avec
u<ug<u, telle que, de plus, ug soit un minimum local de ® dans H}(Q).

For functions u in H}(Q) in a bounded domain Q in R" with smooth boundary, we
consider the functional

(D(u)=J. %IVuIZ—F(x, u).

Here F (x, u) =J J (x, s)ds and we assume the natural growth condition
0

(1) |/ w|SCU+[up)  with ps(n+2)in-2),

as well as the usual assumptions that fis measurable in x and continuous in u.
Our main result is the following:

THEOREM 1. — Assume uge Hy (Q) is a local minimizer of ® in the C* topology; this
means that there is some r>0 such that
) Q) SP(up+v), VoeCi(Q) with ||v]jcsr.

Then uy is a local minimizer of ® in the H} topology, i.e. there exists €9 >0 such that
(3) D (uy) O (uy+v), VoeHY(Q) with ” v H“1 =g,

The theorem is somewhat surprising since an H{ (Q) neighbourhood is much bigger
than a Cg neighbourhood. The proof involves the special structure of ®—the claim
would be false for a general functional ®.

The proof is divided in 3 steps.

Step 1. — We claim that u,eC**(), Va<1. — Recall that u, satisfies in the weak
sense
4 —Auy=f(x, uy) in Q,
up=0 on 0Q.

In case p<(n+2)/(n—2) it is easy to prove the regularity of u, by a bootstrap argument
(see e.g. [5]). For p=(n+2)/(n—2) we present the argument—the standard bootstrap
procedure does not work. We write f (x, u,) in the form

S (x, ug)=a(x)ug+b(x)

with ‘
a(x)= S (x, ug (x))/ug (x) where I“o (X)l> i
0 where |uy(x)|<1
and
_ 0 where |u, (x)|>1
b(x)= S (x, ug(x)) where |uz (x)|=1.

From (1) we have |a(x)|<C|u,(x)|P~*, By Sobolev, u,eL?*"*"~2) and thus ae L"?. On
the other hand be L®. Applying Theorem 2.3 in [6] we infer that u,el? VYqg<oo. Hence
S (x, up)eL?, Vg<oo. From (4) we deduce that u,e W24, Vg<oco. The claim is proved.
Without loss of generality we may now assume that uy=0.
Step 2. — Proof of Theorem 1 in the subcritical case p<(n+2)/(n—2). — Suppose the
conclusion (3) does not hold. Then

5 Ve>0, 3v,eB, such that ®(v)<®(0)
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where B, ={ueHyg; |||l S€}. By a standard lower semicontinuity argument min @ is
B,

achieved at some point which we may still denote by v,. We shall prove that v,— 0 in
C!, but then (2) and (5) are contradictory (a similar argument is used in [11]). The
corresponding Euler equation for v, involves a Lagrange multiplier p, <0, namely, v,
satisfies :

(O (), Edum 1wy =He (00 Ouyy  VEEHG,
ie.

J‘ V"s'VC‘f(xa ve)C=”eJ VU;'VC_” V';EH(I)
Q a

This means

(6) —(1—p)Av, =1 (x, v).

Using (6) together with the assumption (1) with p<(n+2)/(n—2) and the essential fact
that p, 0. one may bootstrap the bound || v, lat £C to ||z lct. 2 £ C (independent of €).
Since v, =0 in H', v, —» 0 in C! (by Ascoli). This concludes the proof in the subcritical
case.

Step 3. — Proof of Theorem 1 in the critical case p=(n+2)/(n—2). — It is much more
delicate, because the standard bootstrap argument mentioned above does not work. We
rely once more on Theorem 2.3 of [6] in conjunction with the additional fact that
Iz |l — 0 as € — 0. Suppose the conclusion (3) fails. Then (5) holds. For every j consider
the truncation map

—j if r2-j

T;,(nN=|r if —j<r<yj,
J if rzj
Set
fi(x, 9)=1(x, T;(), F;(x, u)=J fi(x, s)ds
0
and

Qj(14)=J lquIz--Fj(x, u).
)

Note that, for each ue Hg, ®;(u) » ®(u) as j—oc. Hence, for eache>0 there is some
j=j(g)21 such that ®;(v,) < (0). Clearly, min®;,,, is achieved at some point, say w,.
: B
We have |
@) D; oy (W) S ;) (v) <D (0).
CLAIM. — One has w,e C} and w,— 0 in C.
Assuming the Claim we see that, for € small enough,
O(w)=0; (w)<®(0)
and this contradicts (2).
Proof of the Claim. — The Euler vequation for w, is

(®) = (1= ) Aw=/f;(x, w).
Note that
€)] \f,(x, u)]§C(1+|u|")
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with p=(n+2)/(n—2) and C independent of j. Since w, - 0 in Hj, it also converges in
L?"=2) and thus there is some fixed function he L2~2 such that, for a subsequence,
still denoted (w,),

lw.|<h
(see e. g. [4], Théoréme IV .9). Therefore, by (9),
| fi(x, w)|SC(1+a|w,])
where a=h*""2eL"2. This implies, as before, that(w,) is bounded in any L? space.

Going back to (8), and using(9), we see that(w,) is bounded in C!°, Consequently,
w, =0 in C' since w, - 0 in H}. Theorem 1 is proved.

Next, we present a simple, useful, application of Theorem 1.
Consider @ as in Theorem 1 with f such that for some constant &,
S (x, u)+ku is nondecreasing in u for a.e. x.

Assume we have C () sub and supersolutions u and i, i.e. in the distribution sense
—Au—f(x, SO —Au—f(x,u) in Q,
u<0Zu on Q.
Moreover, assume that neither ¥ nor « is a solution of (4).
THEOREM 2. — Under the assumptions above there is a solution ug of (4), u<uy<u, such

that, in addition, uq is a local minimum of ® in H.
The proof relies on Theorem 1 as well as on the following

THEOREM 3. — Let Q be a bounded domain in R" with smooth boundary 0Q. Let
ueL) (Q) and assume that, for some k=0, u satisfies

—Au+kuz0 in Q,

uz0 on Q.
Then either u=0, or there exists £>0 such that
(10) u(x)zedist(x, Q) in Q.
Proof of Theorem 3. — The measure p=—Au+ku is nonnegative in Q. We may

assume u#0. ,
Case 1: p=0. In this case ue C®(Q),
—Au+ku=0, uz20 in Q.

Since u#0, u28>0 in some closed ball B in Q. Let Q; be an expanding sequence of
subdomains of Q with smooth boundaries and U=, suppose BcQ,, V. Let h; be
j

the solution in Q;\ B of
(—A+k)hj=0 in Q\B
h;j=% on ¢B,
h;=0 on ¢Q,.
Then uzh; in Q\B. As j — oo, we find
uzh in Q\B,
where h solves
(-A+k)h=0 in Q\B
h=8 on ¢B,
h=0 on Q.
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Using the Hopf lemma one finds
h(x)zedist(x, Q) in Q\ B
for somee>0. The conclusion of Theorem 3 then follows directly.

Case 2: u#0. Let {eCy (Q) be a cutoff function, 0 <{ <1, such that Cu#0. Let v be
the solution of - ’
(—A+k)v=Cu in Q

v=0 on 0Q.
Since v is smooth outside a compact set K<, it follows, as above, by the Hopf lemma
that
v(x)2edist(x, Q) in Q

for some £>0. The conclusion of Theorem 3 is a direct consequence of the following.

CLAIM. — One has uzv in Q.
Proof of the Claim. — Given any a>0 we will prove that
u=u+o=v in Q.

The Claim then follows.

Note that
w=u—vy
satisfies
(11) (—A+k)w=(1-Qp+ka=0 in Q
(12) w20 in N, ={xeQ; dist(x, 0Q)<n}

provided n is sufficiently small (depending on ). The last property (12) follows from
the fact that v is smooth near 8Q and v=0 on 3Q. Let(p;) be a sequence of mollifiers

with supp p;= B (0, 1/j). Set wj(x)=f pi(x=y)w(y).
Clearly w; is smooth, and by (11) v?/e have .
(=A+k)w;20 in O\N, ;.
On the other hand, we deduce from (12) that
w;20 in N_y)
and in particular
w;20 on J(Q\N,,)
provided n >2/;. The maximum principle implies that
w;20 in O\N,,;
when 1> 2/j. Passing to the limit as J = oo we see that
w20 in Q
which is the desired conclusion.
Proof of Theorem 2. — We introduce an auxiliary functional. Set
S (x, u(x) if s<u(x),

Jx 9= |f(xs) if u(x)Ss=u(x)
S (x, u(x) if s>u(x);
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it is continuous in s. Then set

F(x, u)=fu](x, s)ds
0

and

5(u)=f 1}Vu[z—f-‘(x, u).
a2

Let u, be a minimizer of ® on Hg (Q); it is easily seen that the minimum is achieved and
satisfies
—Auy=1(x, uy) in Q.

Thus uoe W*7(Q), ¥ p < oo. We claim that uSu,<u; we will just prove the first inequa-
lity. Indeed we have

(13) ~AU—ug) < (x, W=7 (x. uy)

and in particular
“A@-u)<0 in A={xeQ, o (Y) <u(x)}.

Since u—ua<0 on ¢A, it follows from the maximum principle that u~u,<0 in A.
Therefore A= ¥ and the claim is proved.
Returning to (13) we have

—Au—up)+k(u—uy) <(f (x, u)+ku)=(f(x. ug)+kug) <0.
Since u is not a solution, it follows from Theorem 3 that there is some £>0 such that
u(x)=u, (x) < —edist (x, dQ), VxeQ.

Similarly for u; thus
u(x) +edist (x, 0Q) Su, (x) Su(x) —edist (v, ¢Q). Vxel.

It follows that if ue C§ () and [|u—u,||c1 & then

usugu in Q.

Next, we use the fact that F(x, u)—F (x, u) is a function of x alone for uelu(x), u(x)].
In particular, ® (u)—® (u) is constant for lu=ug|lct <e. Hence, ug is a local minimum
of @ in the C! topology (since it is a global minimum for ). Now. we invoke Theorem 1
to claim that u, is also a local minimum of @ in.the Hy topology. This completes the
proof of Theorem 2. ‘

Remark 1. — The proof of existence of a solution between a sub and a supersolution
by minimizing the modified functional ® — or by minimizing ® on the convex set
{usus<u}—is standard (see e.g.[14], [12], [8], [9], [16]). This yields a local minimizer of
® in the C! topology. The point of Theorem 2 is that it is a local minimizer of ® in the
H! topology.

Remark 2. — Another standard approach is via a monotone iteration (seee. g [2]). In
this way one obtains a minimal solution u, and a maximal solution v, between u and u.
They both satisfy (see e. g. 7D

M(=A=f(x, u)20,  i=1.2

where A, () denotes the first eigenvalue of the corresponding linearized problem. Howe-
ver, in principle, u, and u, need not be local minima of O.
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Remark 3. — Theorem 2 holds if u and u belong to H! (Q) instead of C(Q). The proof
involves a slight modification of the above argument using Stampacchia’s form of the
maximum principle.

In many instances, one proves the existence of multiple solutions for problems of the
form (4). A first solution is obtained via sub and super solutions and a second solution
is then obtained with the aid of the mountain pass lemma (see e.g. [10], [11], [15]). Here
are some other examples:

Example 1 ([7], [13]). — Consider the problem
~Au=Xf(u), u>0, in Q,

(19 u=0 on 0Q,
with fin C!, £(0)=f"(0)=0, f>0 on (0, a) and f<0 on (a, + x).
Then, there is some 0 <A* < oo such that

a) for every A >A*, (14) has at least two solutions u, <u,,

b) for A<A*, (14) has no solution.

Example 2 [3]. — Consider the problem
—Au=hu?+u?, u>0, in Q,

u=0 on ¢Q

(15)

with 0<g<1l<pZ(n+2)/(n—2). Then, there is some 0 <A* < = such that
a) for every 0 <A <A*, (15) has at least two solutions u, <u,,
b) for A>A*, (15) has no solution.

Example 3 [1]. — Consider the problem
(16) —Au—Au=W(x)u?, u>0, in Q,
u=0 on dQ

with 1 <p<(n+2)/(n—2), W changing sign and J WeP*1 <0 where e, is the principle
Q
positive eigenfunction of —A. Then, there is some A*>X, such that
a) for Ae (A, A*) (16) has at least two solutions,
b) for A=1,, (16) has at least one solution,
¢) for A>L*, (16) has no solution.

Note remise le 7 juillet 1993, acceptée le 12 juillet 1993.
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