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MULTIPLE SOLUTIONS FOR A SEMILINEAR ELLIPTIC EQUATION
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CHAO-NIEN CHEN*

§0. Introduction. The existence of solutions of the semilinear equation

—Au = g(:l:,u) y TE RY s

u(z) -0 as |z| > o0

(0.1)

has received a great deal of attention in the last decade. Equations of this type arise in
various applications, for example in the description of waves for nonlinear Schrodinger
or Klein—-Gordon equations [2,4,19,38], in the study of various stellar dynamics mod-
els [1,32] and in determining metrics which realize given scalar or Gaussian curvatures
[5,23,26,30,31]. Problem (0.1) has also been studied for the function g having the form
g(z,u) = Mu + h(z,u)u with h(z,0) = 0; in this situation u = 0 is a trivial solution
for every A € R and the linearization about u = 0 has a continuous spectrum. Related
questions about nontrivial solutions bifurcate from the line of trivial solutions have been
investigated [6-9, 17-18,20,24,39,40].

Existence of infinitely many solutions to the boundary value problems like (0.1) has
been obtained by several authors [2,4,6,8,18,37,38] using variational methods. For N > 2,
the variational approach in general does not provide any information about the shape of
the solutions except for the existence of at least one positive solution. However, for a class
of ordinary differential equations, Heinz [16] obtained an interesting relation between the
Ljusternik—Schnirelman critical levels associated with a variational functional and nodal
properties of the solutions. More recently, considering both the one-dimensional case and
the radial case in higher dimensions, the author [6,8] used a Nehari’s idea [29] to obtain
the existence of solutions with any prescribed number of nodes. An additional advantage
of this approach is that one can also handle equations with nonlinearities not necessary to

be odd.

Besides the variational argument, the existence of radial solutions to (0.1), together
with information about their nodal properties, can be obtained by shooting method [3,7,11,
17,22, 27,30,32]. In some situations, the shooting method also provides information for
showing uniqueness results for the solutions [7,11,25,28]. However, in applying this method,
one needs to count the number of zeros when it jumps. There is an example [8] which
shows the number of zeros can jump in steps larger than one. Thus it could be a formidable
task in counting the nodes of the solutions.
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In this paper we are concerned with the existence of multiple solutions of

ot N=1,1 _ !
u u Au— F(p,u,u')u, 0<p<oo, (0.2)

() W) =0, [up)p" ldp < oo (0.9)

that is, we study the radially symmetric solutions to a class of nonlinear elliptic eigenvalue
problems of the following type:

~

—Au = u— F(z,u,Vu)u , zeRY,
u e L*RY) .

Variational approach is doomed because of the dependence of F' on u'. It seems to be
difficult to apply shooting argument to equations having complicated nonlinear terms. We
thus intend to use an approximation scheme to obtain the existence of nontrivial solutions

of problem (I).

It is assume that the function F' satisfies the following conditions.
(F1) | llilnll F(p,y,z) = 0 uniformly on compact subsets of [0, c0).
y|+|z|—0

(F2) F is continuous on [0,00) X R? and is locally Lipschitz continuous in y and z.
(F3) For fixed y € R, F(p,y,0) is a nondecreasing function of p.

(F4) For fixed p € [0,00) , F(p,y,0) is an increasing function of y if y > 0 and a
decreasing function of y if y < 0.

Furthermore, we assume that F' can be decomposed into the sum of two nonnegative
functions H(p,y) and G(p,y, z) with H being continuous and locally Lipschitz in y and
satisfying the following conditions:

(H1) There are positive numbers o; and continuous functions w; : [0,00) — (0,00)

o0
which satisfy fw_z/aipN_ldp < o0, ¢ = 1,2, such that H(p,y) > wi(p)|y|”* for

5 7
p€[0,00), y>0and H(p,y) > wy(p)ly|”* for p € [0,00) , y < 0.

(H2) For fixed p € [0,00), H(p,y) is an increasing function of y if y > 0 and a decreasing
function of y if y < 0.

Under the above assumptions, the existence of positive and negative solutions of prob-
lem (I) will be established.

Our next aim is concerned with the existence of solutions with multiple nodes. If
G(p,y,2) = 0 this question has been fairly understood [6,8,9,17,18,20]. However, it is left
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open if G(p,y, z) # 0; even in the case G does not depend on z. It seems to be a reasonable
starting point to treat G as a perturbation. A task here is to assure that there are no
nodes degenerating at infinity as the approximate solutions passing to the limit. Indeed,
the phenomenon of “losing nodes at infinity” can happen in some situations as an example
[8,9] illustrated. Motivated by a recent paper [9], we achieve this task by making use of
comparison argument to show that the nodes of the approximate solutions are uniformly
bounded away from the infinity. In doing so, we look at the functions y = £, (A, p) and
L_()\, z) defined by the positive and negative solutions of H(p,y) = A, where the function
H is defined by

H(p,y) = H(p, p*~M/2y) (0.4)

for (p,y) € (0,00) x R. For every A > 0, the functions £4(A,-) and L_(A,-) are well-
defined by (H2). Furthermore, by the implicit function theorem £y (),-) and £L_(A,-) are

continuously differentiable functions if H is continuously differentiable and y- a—yf}f( psy) >0

for p > 0 and y # 0. We will show the existence of solutions with any prescribed number
of nodes if the following additional assumptions are satisfied.

(£1) For any A > 0, there is a § € (0,)) and an X > 0 such that if p > X then
LLO+8,p) > 0, L0 +6,p) < 0, L4(A—8,p) < (A +6)2L_(A+6,p) and
LU =6,p) 2 A+ 6 2Li (A +6,p).

(G1) For any 6, u, M > 0, there is an X; > 0 such that if p > Xy, |y| < pA=N/2L(y, p)
and |z| < Mp=M/2L(p,p) then G(p,y,2) < §, where L(y, p) = Max(L4(p, p),

=L_(p, p))-

Note that the decomposition of F' into H and G may not be unique. For example,

if F(p,y,2) = w(p)lyl + ly|* + |2|?, we can take H(p,y) to be w(p)y| or w(p)ly| + [y[*.
Let us assume w(p) = pN="1/2¢" for p > 1 and choose H(p, y) = w(p)|y|- Then direct
computation yields L4 (A, p) = —L_(A,p) = Xe=?" and LL(Xp) ==L (\p) = 2Ape=F"
for p > 1. It is easy to check that condition (£1) is satisfied. Condition (G1) evidently
indicates that the existence result persists under “small” perturbation such as |u|? + |u'|?.
Indeed, for this H a much “stronger” perturbation like r1(p)|u [Pt +r2(p)|u'|P24+7(p)|u|P|u'|?
still satisfies (G1), provided that

lim [(r1(p))MP* + (ra(p))/P2 + (r(p))/ P+ p(1=N/2=0" ¢ |
p—00

Some examples for functions H satisfying condition (£1) can be found in [9].
There is no need to assume (F3) and (F4) if the function F' does not depend on z.
This generalize an existence result of [9] in the direction that F' needs not to be monotone

in y.



§1 Main Results. Let L2[0,00) be the weighted Hilbert space of u such that
Ofuz(p)pN_ldp < oo. Define H,[0,00) by u € H,[0,00) if and only if u € L2[0, o)

and u' € L2[0,00). By a solution of (I) we mean u € C?[0,00) N H}[0,00) which satisfies
(0.2), (0.3) and
lim pM=D/2y(p) = lim pMN=Y/2y/(p) =0 . (1.1)

p—00 p—00

THEOREM 1. Suppose that (F1)-(F4) and (H1) are satisfied. For every A > 0, there
is a positive solution of (I).

REMARK 1. (a) A negative solution for problem (I) can be obtained by the same
argument.
(b) If G(p,y,z) = 0, it has been proved that the positive solution as well as the negative
solution for problem (I) is unique. Such uniqueness result also holds for bounded interval
case under certain boundary conditions (see e.g. [6, Theorem 4.17]).

(c) It is easy to verify that u = 0 is the only solution of (I) if A <O0.

For A > 0 and n € N, let S;'(\) denote the set of u € C?[0,00) N H}[0,00) such that
u is a solution of (I), v > 0 in a deleted neighborhood of p = 0 and u has exactly n — 1
simple zeros in (0,00). Similarly S, (A) denotes the set v < 0 in a deleted neighborhood
of p=0.

THEOREM 2. Assume that (F1)-(F4), (H1), (H2), (G1) and (£1) are satisfied. Then
for every A >0 and n € N, ST()\) and S;; (\) are nonempty.

REMARK 2. If N = 1 or the function F' does not depend on 2z, there is no need to
assume (F3) and (F4) in Theorems 1 and 2. This will be clear in the proof and a further
discussion will be given in section 3.

To prove Theorems 1 and 2, we need some preliminary. Our strategy for ¢btaining
solutions of (I) is taking as approximate solutions those of

—((p+e)N )Y =Xp+ )N u—(p+ )N F(p,u,ulu, 0<p<b, (1.2)
(D,
u'(0) =u(b) =0, (1.3)
where € > 0 and b € (0,00). We note that equation (1.2) is equivalent to
N -1
pte

n
—u —

u' = Au— F(p,u,u’)u . (1.4)

If (I)p . is linearized about the trivial solution u = 0, we get

~((p+e)N 1) =XMp+e)V v,

v'(0) = v(b) =0. (1.5)
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It is known [12] that (1.5) possesses a sequence of eigenvalues
0 < pi(be) < pa(bye) < -+ < pn(bye) <--- . (1.6)

The functions p, are continuous in b and ¢, and are decreasing functions of b if € is fixed,
and satisfy
lm pn(be) = 00 (1.7)

e—07t
b—ot

and
lim pn(be)=0. (1.8)

e—0t
b—oo

For A > 0, let S;':E’n()\) denote the set of u € C*[0, b] such that u satisfies (I). , u > 0 in
a deleted neighborhood of p = 0 and u has exactly n — 1 simple zeros in (0, ). Similarly
Spen()) denotes the set u < 0 in a deleted neighborhood of p = 0. If (F1) and (F2) are
satisfied, a direct application of the global bifurcation theorem of Rabinowitz [36, Chap.
4] shows that (I); . possesses unbounded components C;f(b,¢e) and C}; (b, ¢) of solutions in
R x C'[0, b], containing (un(b,€), 0) and having the property that if (A\,u) € CE(b,¢) and
u # 0 then u € S’,fs’n(/\). Moreover, under the assumption that F(p,y,z) > 0, we have
some information about the solutions of (I) . as follows.

PROPOSITION 1. (i) If A < py(b,€) and u is a solution of (I); . then u = 0.
(i) If A < pn(b,€) and u is a solution of (I) . then u ¢ SE_ ().

b,e,n

The proof may proceed like that of [13, Corollary 2.11] by making use of standard
comparison theorem. We omit it.

We now state some results concerning upper bounds for u and u'.

LEMMA 1. Assume that (F2) and (H1) are satisfied. Let g > 0 and A > 0 be fixed.
For all ¢ € [0,e0] and b > 1 there are constant K; and K;, not depending on b and €, such
that if u is a solution of (I); . then

b
/(p + )V Y (w? +u?)dp < K, (1.9)
0
and
|lu|l Looto,e) < Ko - (1.10)

We omit the proof, which only requires slight modifications in those of [6, Lemma 4.8
and Lemma 4.12]. The next two lemmas will be proved in section 2.

)



LEMMA 2. Assume that (F2)-(F4) and (H1) are satisfied. Let Ao > 0 be fixed. There
are €9 and K3 such that for any A < Ao and b > 1, ife € [0,¢¢] and u is a solution of (I) .
then

|u'||ooo,8) < K3 . (1.11)

LEMMA 3. Assume that (F2) — (F4) and (H1) are satisfied. For any fixed v > 1, there
are €9 and Ky such that ife € [0,e9] , b > v and u is a solution of (I), . then

[W'(p)] < Kip (1.12)

for p € [0,7]. The number €y can be chosen independent of .

The estimates established in the above lemmas together with arguments used in [36,
Proposition 4.32] yields the existence of solutions of (I); . stated as follows.

PROPOSITION 2. Assume that (F1) — (F4) and (H1) are satisfied. For fixed A > 0,
there are positive numbers €9 and f3, such that Sfem()\) # ¢ if e € [0,e0] and b > f,.

The proof is straight, followed by the idea of [36, Proposition 4.32], and we omit it. The
next proposition provides somewhat barrier effect to prevent the limit of the approximate
solutions from degenerating to the trivial solution.

PROPOSITION 3. Assume that (F1) and (F2) are satisfied. Let un(b,¢) be defined as
in (1.6) and b,, be the number such that p,(b,,0) = A. Let U(,¢,-) be the solution of the

initial value problem

N1
pte
w(0)=¢, u'(0)=0,

u' = du—F(p,u,u')u,

which is understood to be extended to its maximal interval of definition. For every n € N,
there are positive numbers ¢, and 8, such that.if b > b,, € € [0,¢,] and 0 < |£] < &,
then U(&,¢€,-) has at least n zeros in (0, ).

The proof is similar to that of [7, Proposition 1.4]. We omit it.

Proof of Theorem 1. Let {bx} be an increasing sequence and {ex} be a decreasing
sequence such that by — oo and € — 0 as k — oco. For each k, by Proposition 2 there is a
function ug € S, ¢, ,1(A); that is, a positive solution of (I)p, ,. For each fixed I, we know
from Lemma 1 and Lemma 3 that

lukllcropg < Ca

and ,
up(p)

< (0,
p+Ek

pe(0,b;]

6



for all k > I, where C;,C; are constant. By the same lines of reasoning as in the proof of
[6, Theorem 4.18], there exist a subsequence {u; } and a function u € C?[0,00)NH [0, c0)
such that
C2
Up; —— U uniformly on compact subsets of [0, c0). (1.13)

This together with (1.12) shows u'(0) = 0. Also the same sort of arguments used in the
proof of [6, Theorem 4.18] shows that (1.1) holds.

We now show that u > 0 on [0,00). Let £; = uy;(0). It follows from Proposition 3
that {; > é; for all large j. Since u(0) = lim &; > 6; > 0, we know u # 0. Next we note
j—oo

that » > 0 on the whole interval [0,00) by virtue of (1.13) and the positivity of uz;. If
u(p) = 0 for some p € (0,00), we would have u'(p) = 0. Then a modified version of [36,
Lemma 4.12] would imply u = 0. This is impossible and hence completes the proof.

Proof of Theorem 2. Arguing like the proof of Theorem 1, with only uy € S; (M)
changed to ux € S,i ¢, .n(}), We obtain a subsequence, still denoted by {u}, and a function
u € C?[0,00) N H}[0,00), satisfying (1.1) and u'(0) = 0, such that

C2
Up — U uniformly on compact subsets of [0, c0). (1.14)

Furthermore, we see that u # 0 and all zeros of u must be simple zeros. Thus it remains
to show that u has exactly n — 1 zeros in (0, c0).

Indeed, using (1.14) and the fact that uy has exactly n —1 zeros in (0, bt ), we conclude
that v has at most n — 1 zeros in (0,00). The above argument also shows S;:O’n()\) # ¢
for all large b if we choose by = b for all k£ and let ey — 0 as k£ — oo. Thus we may let
er = 0 for all k in the beginning of the proof. To show u has exactly n — 1 zeros in (0, c0),
we need

LEMMA 4. Assume that (F1) - (F2), (H1), (H2), (G1) and (L£1) are satisfied. For any
fixed subinterval [ay,as] of (0,00), there is a positive number 8, depending on ay only,
such that for b > 8 and a € [a1,az], if U_ is a negative solution of

(II) —(pN M) = AN Tru = pN T R(pyuyw Y, b<p<c,
bye u(b) =u(c) =0

and U, is a positive solution of (II),; then
UL(b) <UL(b) . (1.15)
The inequality (1.15) also holds if Uy is a positive solution of

—(pN ) = AN T — pN T F(p,u,u Y, 0<p < b,
u'(O) = u(b) =0.
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We postpone the proof of Lemma 4 to the next section and continue the proof of
Theorem 2 now. Let n > 2. Suppose that u has exactly j — 1 zeros in (0,00) for some
J <n. Let z1,2,...,2j—1 be the zeros of u in (0,00) and z(k) , z2(k),...,2n—1(k) be the
zeros of ug in (0,b;), £ =1,2,3... . It follows from (1.14) that

lm z(k)=2;,1<i<j-—1
k—o0

and
lim z;(k)=00, <i<n-—-1.
k—o0

Let zj_1(k) = 01if j = 1 and 2zj41(k) = b if j = n — 1. We may assume without loss of
generality that ug(p) > 0 for p € (2j_1(k), 2;(k)) and ur(p) < 0 for p € (z;(k) , zj41(k)),
since the other case can be treated similarly. For each k, letting Ui(p) = ui(p) for
p € [zj—1(k), zj(k)] and U_(p) = ui(p) for p € [2;(k), zj4+1(k)], we see that

Ul (2i(F)) = ul(zi(k)) = U (z(k) - (1.16)

However, if k is sufficiently large, it follows from Lemma 4 that Ul (z;(k)) < U.(z;(k)),
which is incompatible with (1.16). Therefore v must have exactly n — 1 zeros in (0, 00)

and the proof is complete.

§2. Proofs of Preliminary Lemmas. We now prove several lemmas stated in
section 1. Since the proof of Lemma 2 is more involved, we prove Lemma 3 first.

Proof of Lemma 3. Integrating (1.2) over [0, p] together with (1.3) yields
p
(p+ )" () = [ 1Pt u = Nt + )" et
0
Invoking the mean value theorem for integrals, we obtain

(p+ )N u'(p) = Als)(s + )V "p,

where A(s) = [F(s,u(s),u'(s)) — Au(s) for some s € [0, p]. Thus (1.12) easily follows by
letting
Ki= Max [F(t,y,2)+Allyl

0<y<K,
0<2z< K3

where K, I3 are constant appeared in (1.10) and (1.11).

Proof of Lemma 2. If u =0, (1.11) is clearly satisfied. Let u be a nontrivial solution
of (I)p,e and R(p) = Au?(p) + u'?(p). It follows, with the aid of Eq. (1.4), that

> B(p) = Flp, ulp), v/ (0o} (p) — 2= u(p) (2.1)

pt+e
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Let s; be the first zero of u in (0,b]. We may assume without loss of generality that
u(p) > 0 for p € (0,s1), since the case u(p) < 0 for p € (0,5s;) can be treated similarly. We
claim

u'(p) <0 for pe€(0,s;]. (2.2)

Assuming (2.2) for now and using the hypothesis F' > 0, we conclude that R'(p) < 0 and
hence

u(p) < R(p) < R(0) = Mu*(0) < MJul|Feo (o

for p € [0,s1]. Invoking Lemma 1 yields

1w’ || Looto,61] < VA K, . (2.3)

To show (2.2), we prove indirectly. Suppose u'(p;) > 0 for some p; € (0,s;]. By the
continuity of u', we know that u' > 0 on an interval containing the point p;. Let [p2, p3]
be the largest subinterval of [0, s1] such that p; € [p2,p3] and u'(p) > 0 if p € [p2, p3].
Note that u'(s;) < 0, since u'(s1) = 0 would imply u = 0. Thus p3 < s; and u has a local
maximum at p3. Hence we have u'(p3) = 0 and u"(p3) < 0. It follows from Eq. (1.4) that

F(ps,u(p3),0) < A . (2.4)

Since u'(p1) > 0 and u'(p) > 0 for p € [p2, p3], we know that u(pz) < u(pz). This together
with (F4), (F3) and (2.4) yields

F(p27u(p2)70) < F(pZ’u(pS)’O) < F(p3,u(p3),0) < A (2'5)

Since u'(0) = 0, we know from the definition of [p2, p3] that u'(p;) = 0 and u has a local
minimum at p;. On the other hand, it follows from (1.4) and (2.5) that u"(p2) < O.
Clearly, a contradiction occurs and thus we conclude that (2.2) must be valid.

To prove the lemma for the case p > s;, we make the transformation v(p) =

(p 4 &)V =D/2y(p). Then (1.4) takes the form

R _(N_l)(N_3)__ !
v =\ TPESE Fp,v, 0o, (2.6)
where the function JF is defined by
N -1
Tp,,2) = Flp,(p+ )02y, (p 4 )00/ - WLy op-vanrayy - o7)

We have several estimates for v and v’ stated as follows.
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LEMMA 5. Assume that (F2) and (H1) are satisfied. Let b > a > 0. If v satisfies (2.6)
and v(a) = v(b) = 0, then

vl z2fa,e) < Ks (2.8)
0] L2ja) < Ko (2.9)
o]l zeofap) < K7 (2.10)
and
v Leofa,t) < Ks (2.11)
where
2 1 1/0; 0 1/2
K5 = Ks(Aa,e) = Y (A * 4—) Jurm oo a) @)
i=1 J
1\ 1/2
K = (/\ + ZE) Ks | (2.13)
K7 = (2Ks5 K¢)'/? (2.14)
and
1\ 172
Kg = (A + E) K . (2.15)

Assuming Lemma 5 for now, we continue the proof of Lemma 2. Let A < Ag. We claim
the following:

There are positive numbers €9 and sq such that if € € [0,¢0] and u, (2.16)

is a positive or a negative solution of (I), . then b > s.

To see this, we note that the function p(b, ), defined in (1.6), is continuous and satisfies
(1.7). Thus there are positive numbers ¢¢ and so such that p;(b,e) > Ag if € € [0,¢0] and
b € [0,s0]. By Proposition 1 (i), (I)s, cannot possess a nontrivial solution if ¢ € [0, o]
and b € [0, so]. Therefore (1.29) must hold.

By direct computation, u'(p) = (l;le(p—i-e)_(N“)/zv(p) +(p+e)1=M/2y'(p). Hence

we have

(N -1) (1-=N)/2

—(N+1)/2
st NI o) ooy iy + 5 10" 1o {01 47 - (2.17)

1w || Loo sy 0 <

For ¢ € [0,¢&0], we know from (2.16) that if u is a nontrivial solution of (I)s . and s; is the
first zero of u then s; > sg. It follows from (2.17) and Lemma 5 that

N-1) _ _
||u'||Lw[31,,,]g( 5 )30(N+1)/2K7(A,30,eo)+s§,1 M2 Kg(X, s0,€0) -

10



This together with (2.3) completes the proof of Lemma 2.

Proof of Lemma 5. Suppose first v > 0 in (a,b). Since v(a) = v(b) = 0, multiplying
(2.6) by v and integrating it by parts lead to

b

/v'2dp+ /bff(p,v,v')v2dp = /b (A _ W= DIV - 3)> v2dp . (2.18)

4(p+e)?

a a

From (2.7) and (H1) we know that
Tp,0,0") = Flp,u,u') > Hp,u) = wi(p)lul” = ws (ol (p + )1 -0m/2

This together with (2.18) yields

b b

b
/v12dp+/wl(p)|v|01+2(p+€)(1—N)a'1/2dpS <A+%) /vzdp )
a

a a a

Applying Holder inequality and arguing like the proof of [17, Lemma 3.6], we get

b 2/ b
1 & —2/0, N-1
/UQdPS A /wl (p+e)"dp

a a

; 1\ @Hon/en
/v'2dp < (/\ + —) /wl_z/”‘(p-f— e)yN"ldp .

and

4a?
a

Likewise, if v < 0 in (a, b) the same proof shows that

b L\ 2 b
/vzdp < (A + W) /wz_z/”’(p+6)N‘1dp

a

and

: 1\ @l ¢
/U'de < (/\ + m) /w; /02(p+ e)N"ldp .

Then the argument used in the proof [6, Lemma 1.45] shows that (2.8) and (2.9) are valid
even if v changes sign in (a,b).

To obtain L* bounds for v and v’, we note that a slightly modified version of the proof
of [6, Lemma 1.48] shows

1\ /2
||v'||Loo[a,b] < (/\—l- m) ”'UllLoo[a’b] . (2_19)

11



Then (2.10) and (2.11) follow from the same lines of reasoning as in the proof of [6,
Lemma 1.45].

The proof of Lemma 4 is based on comparison argument. This requires some pre-
liminary. Let ny(p) = pN"D/2U,(p) and n_(p) = pN=D72U_(p).  Since ny(b) =
b(N=D/27t (b) and 5’ (b) = bN-D/2U" (b), we will show

n4(b) < n_(b) (2.20)

to establish (1.15). The following lemma provides a lower bound for 5’ (5) in terms of the
function £_.

LEMMA 6. Assume that (F1), (F2), (H1) and (H2) are satisfied. Let § > 0 be given.
If b is sufficiently large, there is a p € (b, c) such that

0 (0) > A+ 8)Y2L_(A+6,p) . (2.21)

Proof. Since n_(b) = n—(c¢) = 0 and n-(p) < 0 for p € (b,¢), n— must attain its
minimum at a point p € (b, c). Note that n_ satisfies the equation

(N-1)(N-3)

-t = A 1 = 3(psnsn)| (2.22)
where the function F is defined by
N-1) _ '
p,3.2) = F(py o0y, g1 = B oy (o

For simplicity in notation, we drop the subscript from n_ in the remaining of the proof.

Given 6 > 0, we choose b large enough so that ‘-(N—_L%N;g) < 6. Then we see from (2.22)

that N
—n"" > [(A+6) = F(p,n,n")n

if p € (b,¢). It follows from n(p) <0, n'(p) =0 and "(p) > 0 that

(A4 8) = 3(pn(5),0) > "((”))

Since F(p,y,0) = F(p,p0 =M /2y | =D p=(N¥D/2y) > H(p, p(=N2y) = H(p, y), we
get (A +68) > H(p,n(p)). It follows from the definition of £L_ and (H2) that

n(p) >L_(A+6p) . (2.24)

12

P



Note that a modified version of [6, Lemma 1.48] shows

1 \1/2
"l oo, < (A + Zb—f) 01l zeo1p,q] - (2.25)
This together with § > g4z, —1'(0) < ||0'[|Leo(p,e] and —n(p) = ||n]|Leo[s,q leads to

n'(b) > (A + 8)2n(p) - (2.26)

Combining (2.24) with (2.26), we have (2.21).

Our strategy in obtaining estimates for 7/, (b) is to make use of a positive solution of

SV V]
N N

(IIT)n '

"' =(A=8v—-H(p,v)v , a<p<b, (
(

7)
v(a)=v(b)=0 8)

as a comparison function. It has been shown (e.g. [6]) that problem (III)4 3 has a unique
positive solution, which will be denoted by V(A — §,a,b,-), provided that § < A\ and
b — « is sufficiently large. We will choose a to be sufficiently large. Moreover, as a
direct consequence of [9, Lemma 5 and Lemma 6], we have the following estimates for

VI(A—6,a,b,b).

LEMMA 7. Assume that (F1), (F2), (H1) and (H2) are satisfied. Let §6 € (0,\) be
fixed. For any fixed a > 0, there is a number 8 > « such that if b > (3 then

VI(A = 6,0,b,b) < L'y (A — 6, po) (2.29)

for some pgy € (a,b).

We are now in the position for the

Proof of Lemma 4. As we mentioned earlier, the proof can be done by showing
' (b) < n_(d) for all sufficiently large b. (2.30)
We first claim the following:

For every fixed a > X there is a f = («a) such that

, , . (2.31)
0 (b) > VL(A = 6,a,b,b)if b>f .
Indeed, it follows from (£1) that
L (X = 8,p0) S (A +8)YV2L_(A+6,po) (2.32)
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and

L' (A+6,p)>0 (2.33)

if p > a. Let p and py be the numbers appeared in Lemma 6 and Lemma 7. Since
a < pg < b<p<e, it follows from (2.33) that

L_(A+6,p0) <L_(A+6,p) . (2.34)
Putting (2.21), (2.34), (2.32) and (2.29) together yields

nL(0) > (A4 8)PL_(A+6,p) > (A +8)2L_(A +6,p0)
> Li{-(A - 6’ PO) > V—:—()‘ - 6)0" b, b)a

provided that b > §, where § is a positive number such that (2.21) and (2.29) are valid if
b>p.

We now prove (2.30) by arguing indirectly. Suppose (2.30) is false. Then for any fixed
a > X, by virtue of (2.31), we can find a number b, as large as we pleased, such that

77,+(b) > V-|,-(/\ - 5,0‘, b> b) . (235)

Note that « can be chosen arbitrarily large in advance. Thus we are free to let o >
Max(aq, X1). Throughout the proof, welet v = Vi (A—6,a,b,-) and n = n4 for simplifying
notation. Since n(b) = v(b) = 0, it follows from (2.35) that n(p) < v(p) for p € (b —¢€,b)
and some ¢ > 0. Since v(a) = 0, v(p) > 0 for p € (a,b) and n(p) > 0 for p € [, b), there
is a t € (a,b) such that

n(t) = v(t) (2.36)

and n(p) < v(p) for p € (¢,b). It is clear that
n'(t) <o'(2) . (2.37)

Since n(b) = 0 < L4(A — 6,b), by the continuity of the functions n and L4 (A — §,-) we
know that n(p) < Ly (A — 6, p) for p € (b—¢€,b) and some ¢ > 0. Define

s =Inf{r|n(p) < Ly(A=6,p) if pe(r,b)}. (2.38)
We first consider the case s < ¢, in which we have
A—6>H(p,n(p)) if  peftb. (2.39)
We claim that if « is sufficiently large and s < ¢ for such an « then

—n"(p) > [(A = 8) = H(p,n(p))ln(p)  for pe€[t,b). (2.40)
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Let us assume (2.40) for now and recall that v satisfies Eq. (2.27). Multiplying (2.40) by
v and (2.27) by —n and adding together, we obtain

v"(p)n(p) — 0" (p)v(p) > [H(p,v(p)) — H(p,n(p))n(p)v(p)

by making use of the fact that 0 < n(p) < v(p) if p € (¢,b). This together with (H2) and
the identity v''n — n''v = (v'n — n'v)’ yields

(v'n—n'v)) >0 on (¢0b). (2.41)

Since v'(b)n(b) — n'(b)v(b) = 0, it follows from (2.41) that v'(¢t)n(t) — n'(t)v(t) < 0. On
the other hand, by virtue of (2.36) and (2.37), we see that v'(¢t)n(t) — n'(¢)v(t) = [v'(t) —
n'(¢)]n(t) > 0. Thus we conclude from the above contradition that s <t is not possible for
sufficiently large «, provided that (2.40) is valid.

We now prove (2.40). By (2.38) we know that

n(p) < Ly(A =6, p) (2.42)

if p € [s,b]. Let us assume for now that
7' (p)] < (A +8)1/2(p) (2.43)

if p € [t, b], where
7(p) = Max(L4(A— 6,p), ~L_(A+,p))

We recall that Uy (p) = p* =N /25(p) and U}, (p) = % Uys(p) +p=N/20(p). From (H2)
we see that J(p) < L(A+ 6, p). It follows from (2.42), (2.43) and (G1) that
F(p,n(p), ' (p)) — H(pn(p)) = F(p,Us(p), Ui (p)) — H(p, U1(p))

2.46
= G(p,U+(p), UL(p)) < g (2:46)

if p € [t,b). Moreover, we know that

CEDUEDINLENOEINE.

2.4
4p? 4a? 2 (2.47)

if p > « and « is large. Since 7n satisfies Eq. (2.22), we obtain (2.40) by using (2.46) and
(2.47).

It remains to show (2.43) to complete the proof of (2.40). We first note that for any
p € [t,b), if |n'(p)] < (A +6)/2J(p) the preceding proof shows

—n"(p) > [(A = &) = H(p,n(p)In(p) - (2.48)
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This together with (2.39) implies that
n"(p) < 0if p € [t,0) and |n'(p)] < (A +6)Y2J(p). (2.49)

In particular, we have

n"(p) < 0if p € [t,b) and n'(p) =0 . (2.50)

By Lemma 6 we know that n’_(b) > (A+6)/2L_(\+6, ) for some p > b. Since we assume
(2.30) is false, it follows that

n'(0) > (b)) > A+ 6)V2L_(A+6,5) .
Using the fact £ (A + 6, p) > 0 if p > «a, we conclude that
7'(6) > (A 4+ 6)Y2L_(\ + 6, p) (2.51)
if p € [, b]. By the continuity of n’, there is an € > 0 such that
0>7'(p) > A+ 8)Y2L_(\+6,p) (2.52)

if p € (b —¢€,b). Then n''(p) < 0 for such p as noted in (2.49). Suppose that n'(p) < 0 for
all p € [t,b]. Defining

t; = Inf{r|n"(p) <0 if pelr,b) Cltb)}, (2.53)

we have 0 > n'(p) > n'(b) for p € [t1,b]. This together with (2.51) implies that (2.52) and
hence (2.43) holds for p € [t1,b]. Then it follows that n"(¢;) < 0 as noted in (2.49). But
this contradicts (2.53) unless ¢; = t. Therefore we have (2.43) for p € [t, b].

Next we consider the case that n'(p) > 0 for some p € [t, ). From (2.50) and n'(d) < 0,
we know that 7 has exactly one critical point £ € (¢,b) and n'(p) > 0 for p € [t,1), n'(p) < 0
for p € (t,b]. Defining t, = Inf{r| n"(p) < 0if p € [r,b) C [f,b)} and arguing like the
proof of t; = t, we obtain (2.43) for p € [t,b]. Moreover, an argument used in the proof of
[6, Lemma 1.48] shows

' (p)] < (A +8)!/n()
if p € [t,f]. This together with (2.42) and the fact that £/, (A — §, p) < 0 yields

7'(P)] S A+ 8)V2L4(X = 6,) S (A +6)'/2L4(X = 6,p)

if p € [t,t]. So we have completed the proof of (2.43).
To complete the proof of the lemma, it remains to show that s > t is not possible
either, where we recall that s was defined in (2.38) and

t =Inf{r|n(p) <v(p) if pe(r,b)}.
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In this case we have

n"(p) <0if p € [s,0) and n'(p) =0 , (2.54)

by the same reasoning as showing (2.50). In view of (2.38), we know that
n'(s) < LL(A—8,s) . (2.55)

Since it follows from (L£1) that £l (A —é,s) < 0, we have n'(s) < 0. It is easy to see from
(2.54) that if p € (s,b) and n'(p) = 0 then n(p) must be the unique absolute maximum
of n in (s,b). Since n'(s) < 0 and n'(b) < 0, we conclude that n'(p) < 0 for all p € [s,b].
Letting t3 = Inf{7|n"(p) < 01if p € [1,b) C [s,b)} and arguing like the proof of t; = t, we
get t3 = s and hence (2.52) for p € [s, b]. In particular, we have

n'(s) > A+ 8)Y2L_(A+6,s) . (2.56)
From (£1) we know that
LA =8,8) < A+ 6)YEL_(A+6,s) . (2.57)

Putting (2.55) — (2.57) together yields n'(s) > n'(s), which is absurd. Thus the proof is
complete.

§3 Final Remarks. The analysis for N = 1 is simpler. In this case, L°-estimates
of u' easily follows from (1.10) and a modified version of [6, Lemma 1.48]; that is, a
simpler version of Lemma 2 can be obtained under the assumptions (F2) and (H1) only.
Furthermore Lemma 3 is redundant and thus we see that there is no need to assume (F3)
and (F4) in Theorems 1 and 2 if N = 1.

For N > 1, the assumptions (F3) and (F4) can also be dropped if Sup F(p,y,2) is
z€R

uniformly bounded on compact subsets of [0,00) x R; the reason is Lemma 3 can be
established without invoking Lemma 2. This is so in particular if F' does not depend on z.
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