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1.  Introduction
We are concerned with the question of existence (or nonexistence) and

uniqueness of solutions of the problem

(1) ~Au=p(xu®* in R*,n>3

with 0 < a <1 and p(x) 2 0, p not identically zero. We shall assume

@®

throughout the paper that p € L1 oc"

We look for a solution u > 0, u not
identically zero, so that, by the strong maximum principle, if such a solution exists

then u > 0 in R™.

We shall often use the following:

Definition: We say that a function p € LTOC(IRH), p > 0, has the property (H)
if the linear problem
(2) -~ AU =p in R"

has a bounded solution.

Our main result is
Theorem 1. Problem (1) has a bounded solution iff p satisfies (H). Moreover
there is a minimal positive solution of (1).

This minimal positive solution of (1) tends to zero at infinity in a sense to be



precised later. Moreover it is the unique positive solution of (1) which tends to

zero at infinity (see Theorem 2 below).

In Section 2 we prove Theorem 1 and in Section 3 we present uniqueness
results for (1). In Appendix I we summarize some properties of the linear Poisson
equation (2). In Appendix II we review the uniqueness question for equation (1) in
bounded domains.

Problem (1) for bounded domains with zero Dirichlet condition has been
extensively studied (even for more general sublinear functions). We refer in
particular to Krasnoselskii [9] (Theorem 7.14 and 7.15) and [1] (see also the
references therein). Problem (1) in all of space has been considered in [3], [4], and
[10] under more restrictive conditions on p (p is equivalent to a radial function
for large |x|).

The study of (1) is also related to the asymptotic behavior (as t — o) of

the solution of

(3) o) B= A i B« (0)

with m = 1/a > 1 which has recently been studied by Eidus [5] (see also [6]) for
a class of functions p tending to zero at infinity. In fact, separating variables, we

have a solution u(x,t) of (3) of the form u(xt) = C v/ D)t + 1) 1/(m-1)

provided v(x) is a solution of (1).

Proof of Theorem 1
A. Sufficient condition:
Let

Bp = {x ¢ R"; |x| < R}



and let up be the solution of

—Au = pu® in Bp,
|

u =0 on BBR.

It is well-known that up exists and is unique (see e.g. [9], [1] or Appendix II).
The sequence up is increasing with R. 'Indeed, let R’ > R. Then Up, is a
supersolution for the R-problem. We now construct a subsolution u for the
R-problem with u < up /- This will imply that there is a solution u for the
R-problem between u and up,- Since the unique solution is up it follows
that up < ug, in BR’ For u we may take €p; where v satisfies

- Agal = /\1 Py in BR ,

{ pp = 0 on 8BR .
We now prove that the sequence up remains bounded as R — «. In fact

up <CU
for some appropriate constant C. Indeed, C U is a supersolution for the
R-problem since
- A (CU) = Cp 2 p (CU)®
provided
cl™y |uj® .

Therefore u = lim up exists and u is a solution of (1) satisfying
R-o

(5) u<CU.

Clearly u is the minimal solution; indeed if u is another solution of (1) then

up ¢ u on By by the above argument and thus u < u.



B. Necessary condition

Suppose u is bounded positive solution of (1) and set

1 l1-a
vV = u .
l-a

Then

-Av = a 11_0‘_1|Vu|2

+tp2p.

The solution YR of the problem

WR = 0 on aBR

(6)

satisfies wp < v. Thus wp increases as R — o to a bounded solution of (2).

The meaning of Theorem 1 is that if p(x) decays fast enough at infinity
then Problem (1) has a solution. It need not exist if p(x) has a slow decay at
infinity. As we see in the next example, if p(x) decays like a power, the critical
exponent is two.

Example 1: Assume

o(x) = 1—p with p > 2
1 + |x|

or

p(x) = 1 with p > 2

(1 + |x|%)log(2+|x])|P

then Problem (1) has a bounded solution. Indeed the Poisson integral

C

|——In_2 * p provides a bounded positive solution of (2) where c/|x|n_2 is the
X

fundamental solution of - A.

Example 2: Assume

p(x) = S with p < 2

1+ |x|P



then Problem (1) has no solution. In fact a stronger nonexistence result holds.

Assume

(") | ihe=s,
|x|21

then there is no function u € L} Oc(IRn) satisfying

(8)

u > 0

{— Au = pu® in 2 'RY)
except u = 0. Indeed, assume we have a solution of (8). By local regularity,
u € W%c’)g for all q < o and if u is not identically zero then u > 0 in R™.

As above, set

so that — Av > p. It follows that
(9) YR <v

where wp is defined by (6)) As R1wo, wp 1o because of (7) (see Appendix
I). This is impossible by (9).

Remark 1. The minimal solution u obtained in Theorem 1 satisfies

@
(10) u(x) = ¢ j olyJu (y) 4y
R: |x-y |
and also
(11) lim u = 0
R-o SR

where J’ u denotes the average of u on the sphere of radius R (centered at
S
R

0). Indeed, u satisfies (5) for any positive solution U of (2); in particular we

can take U = L

| In_2 + p. We now apply Lemma A.4 in Appendix I to conclude
X



that (11) holds. As a consequence of (11) we have

lim inf u(x) = 0.
x| =@

Next, let f = pu® The linear equation — Av = { in R™ has a unique

solution satisfying

lim v=20,
R_’(D SR
namely v = —C—n_2 * f. Since u satisfies the same equation and also (11) we
| x|

obtain (10).

Remark 2. The minimal solution u of (1) depends monotonically on p. Indeed

let p; < p, andlet u;, u, be the corresponding minimal solutions of (1). Then
u, is a supersolution for the equation
_ a
- Au = pp u in BR
u=20 on BBR .

Thus U g < in Bp. Passing to the limit as R — o we find that

Remark 3. The minimal solution u obtained in Theorem satisfies

C1 yl@ €u<CyU. In general these bounds are sharp. For example if p

has compact support then both u and U behave at infinity like the fundamental
solution. However if p(x) ~ |x|™® at infinity with 2+(n-2)(1-a) < p < n then
a simple computation shows that U(x) ~ le—(p—2) and u(x) ~ |x|—(p—2)(1—a) .

3. Uniqueness

As we have noted the minimal solution u constructed above satisfies



(12) lim inf u(x) = 0.

x| =+
Our main uniqueness result is
Theorem 2. Assuming p has property (H), then there is exactly one bounded

positive solution of (1) satisfying (12).

Remark 4. There exist other bounded positive solutions of (1) which do not satisfy
(12). In fact, given any positive constant a, there exists a solution of (1)
satisfying

lim inf u(x) = a.
x| - o

Indeed, consider the problem

- Au =p u? in B
(13)

u=a on BBR ’
As subsolution for (13) we may take a and as supersolution we may take

(CU + a) where U = ﬁn_2 * p with C is large enough. We then let
b'e

R — o

The proof of Theorem 2 is divided into 3 steps:

Step 1. Assume py € Py and that they satisfy property (H). Given any bounded

positive solution uy of

- Aul = 9 ula in R"
(14)
lim uy =0
R-o SR

then there exists a bounded positive solution wu., of

2



- Auy = py u2a in R"
15)
lim Uy = 0
R-w SR

such that u <y

Proof. Clearly u, is a subsolution for (15) in the sense that

a
- Au1 $pyup .
Since u, is bounded we have
- Au1 <C Py
and by Lemma A.6 we find that
u, < C (L * po)
1 n-2 * P2 -
| x|

The right-hand side is a supersolution for (15) provided C is large enough. Using
the standard monotone iteration technique (directly in IRn) we obtain a solution

u, of (15) such that
1
uy € g < C(—|x|n_2 * py) -

The only difference with the usual case of bounded domains is that the Dirichlet

condition is replaced by the condition at infinity 1lim u = 0. The standard
R-’ﬂ) SR

maximum principle is replaced at each stage by Lemma A.6.

We shall now show that it suffices to prove Theorem 2 in the case p > 0.
Step 2. Assume we have proved uniqueness for any p > 0, then we also have

uniqueness for a general p > 0.

Proof Let p, = p + ch where h e C*®") n L'®") n L°(R®) with h > 0.



Let ug be the unique solution of

_ a n
—Aue = pg U, in R
16
(16) lim u€=0
R—’[D SR

Let u be any solution of

(17)

By Step 1 (and by the uniqueness of u_) we know that
(18) u<u

We prove that, as € | 0, ug | u where u is the minimal solution constructed

in Theorem 1. Indeed let U R and up be the positive solutions of

a .
(19) - Aue,R = P U R in Bp
with U R = 0 on BBR
and

- a ;
(20) - Aup = pug in Bp
with up = 0 on BBR.

We now use the same device as in Appendix II (method II), namely, we

multiply (19) by up and (20) by u_ g Integrating by parts we find

a a. l—a 1-a
JB pPu RUg (g g ~Ug )= JB (pg = Plug uec,!R
R R

and thus

a . l—a l1-a
JB pu . gUg (U g —ug )< Ce
R
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where C is independent of R. Passing to the limit as R — o (and using
Fatou) we obtain
J p usa u? (ui_a - gl_a) < Ce .
[Rn
Using (18) we have
ul—a) =0

J P u® 1_10 (ul-a _

and thus pu® = pu® Hence A(u - u) = 0 and therefore u = u (by the

condition at infinity).

The last step involves the use of parabolic equations as in [8]. As we already
mentioned in the Introduction if wu(x) is a solution of (1) then

Cul/mgx!

v(x, t) = (1 T)l/(m—l)
satisfies

(21) p = AV®

where m = 1/a and C = (m-1) /(m=1) gy proof of uniqueness for problem

(1), (12) relies heavily on existence, uniqueness and comparison properties of solution

of (21).

Step 3. We recall first a well-known fact about bounded domains (see e.g. [2]).
Let Q ¢ R be a smooth bounded domain, p € L°(Q), p> 6> 0 on €.

Then given any v, > 0 on Q, v, ¢ L®(Q), there exists a unique solution

v(x,t) of the problem
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p -gv-t— -AV® =0 in Q@ x(0,0)
(22) v =0 on 09 x(0,0)
v(x,0) = vy(x) in Q

Moreover if there is another solution V(x,t) of (22) with v(x,t) > 0 on

Mx(0,0) and V(x,0) > vo(x) then v(x,t) > v(x,t).

Let u be the minimal positive solution of (1) in the sense of Theorem 1.

Let u be any bounded positive solution of (1) satisfying (12). By Appendix I we

know that
lim u=20.
R—'m SR
Let VR be the solution of
ov
vR(x,t) =0 on 9Bp x(0,0)

vg (x,0) = u(x) in Bp

By comparison in bounded domains we see that
1/m
(23) vplot) ¢ &
R (t + 1)1/(m 1)
and also
ul/m(x)
VR(X,t) < W—(E].) .

As R T o the sequence vp increases to some limit vm(x,t) which satisfies

v
(25) p g —Av.T =0 in R™ x(0, n)

1]

(24)

and

(26) v (x,0) = u(x) .
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Moreover we have

(27) v (xt) < (—‘tlli_mg%/(m—l)

We already have a solution of (25), (26) namely (‘:1%%% f(me1) - We dlaim
that

(28) v (xt) = (1:1 i m1§1/(m'1) = v(x,t)

For this purpose we multiply

p-a%(w}——vm)—A({'m—vI:)=0

by the function K(x) = ¢ [L 1 _] and integrate over By x(0,T).

We find

. T .
JBRp(x) (7 = v )K()dx; _p + Jo(vm - v, ™)t g

T
L ~m m, 0K
= - J-O JGBR(V - Vm ) E_V- dS dt

The integral on the right hand side is bounded by

CT u
SR
which tends to zero as R- . Thus v = v, (since p > 0). Passing to the

limit in (24) we find

R 2P
(t + 1)1/(111—1) = 1;17im—1)’

Letting t — o we conclude that u < u.
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Remark 5. Assume p has property (H). As we know from Appendix I

lim U=0
R_'CD SR
where U = __c_n_2 + p, and thus lim inf U = 0. It may happen that
x| | -0

U(x) does not tend to zero as |x| — o . Here is a simple example for n > 4.
Let (x’) be the solution of

IRn—l

'_Ax/ vy = p(x’) in
[ }im v = 0

where p € Cg ([Rn_l), p >0 and p not identically zero. Then

U(x) = ¥ x’) x = (xq, x’)
provides such an example since U(xl, 0) = ¥0) does not tend to zero as
|x;| — @. In such a situation there is no solution u of (1) which tends to zero
at infinity because of the estimate from below gl_a > (1 - a) U (see the proof

of necessary condition in Theorem 1).

The uniqueness question becomes easier under a stronger assumption

Theorem 2’. Assume there is a solution U of (2) such that

(29) lim U(x) = 0.

x|+ @

Then there exists a unique positive solution u of (1) such that

lim u(x) = 0.
|x|- o

Proof. The existence part is clear since we already know that there is a solution
u of (1) such that u < CU. For the uniqueness we could invoke Theorem 2 but

we present instead a simple argument due to Louis Nirenberg.
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First we change the unknown. As in the proof of Theorem 1 we set

1 1-a
l1-a u

so that we find
(30) —av-Swit =,

for some positive constant C (depending on a). Uniqueness holds for (30) since

the function 1/v 1is decreasing in v. More precisely, suppose we have two

solutions vy, vo of (30) with lim v, =1lim v, =10. Then w = Vi =V,
|x|-a |x |-
satisfies
C C 2. _
—AW——V—IV(VI +vy) -+ VW + v, |Vvo|®w =0 .

Since the coefficient of w is nonnegative we may use the maximum principle to

conclude that w = 0.

Remark 6. Clearly if p is a radial function satisfying (H) then (29) holds. It
also holds if p is bounded by a radial function satisfying (H).

4. Some generalization

Our methods extend to more general problems of the form
- Au = p(x) f(u) in R®

under suitable assumptions of f and in particular f(u) behaves like u® near

u = 0. For simplicity we restrict our attention to the model problem

f(u) = u%1-u), ie.
(31) — Au = p(x) u¥1-u) in R™ .

Theorem 3. Assume p satisfies (H). Then there is a unique solution u,

0 <u<1 of (31) such that
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(32) lim inf u(x) = 0.

x| - a
Proof. For the existence part we proceed as in the proof of Theorem 1 (sufficient
condition). We obtain a minimal solution u with u <1 and u < CU. For
the uniqueness we proceed in two steps.

Step 1. Let u be any solution of (31), (32). Then there exists some € > 0
such that

(33) eusu.

It is useful to introduce the unique positive solution v of the problem
-Av = pv@ in R"
(34)

,{/ v — 0 asR —o
Sr
Note that u is a subsolution for (32) since
ua(l—u) < u®

and therefore, by monotone iteration and uniqueness of v, we obtain

u<v.
Next, we note that for € > 0 small enough ev is a subsolution for (31) since
~ A(ev) = epv® < p(ev)(1-ev).

It follows that ev < u, the minimal solution of (31) (to justify this we use

comparison in Bp and then let R — o). Thus (33) holds.

Step 2. We now follow the same technique as in Method III of Appendix II. Let
u be any solution of (31), (32) and let

A={telo,1]; tu< u}.
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We claim that 1 € A. Suppose not, that
tg = sup A <1
By Step 1 we know that t; > 0. Fix K large enough so that the function
f(t) + Kt is increasing on [0, 1]. We have
- Au - tou) + Kp(u - to“) 2 P[f(tou) - tof(u)]-
Note that for € > 0 small enough
f(tOu) -t f(u) > € f(u)

since

Thus we obtain

- Al -tgu-eu)20

and by Appendix I we conclude that u — tgu — € u 2 0. Hence tg + €€ A

which contradicts the maximality of ty -

Appendix I

Throughout the paper we have often used the property (H), namely that the

equation

(A.1) -AU=f in R"

has a bounded solution. We discuss here some equivalent forms and some

consequences. In what follows we always assume that f € LT o C(IRn), f>0 ae

and that f 1is not identically zero. Let up be the solution of
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R

up = 0 on BBR

- Au, = f in B
(A.2) [ R

Note that up is a nondecreasing sequence of positive functions (in BR) for R

large enough. Moreover up is given by

(A3) ug(x) = L}Gﬂxwfw)w
R

where GR is the Green's function relative to BR and zero boundary condition.

Let

u(x) = lim uR(x) (possibly + o).
® Rlo

Note that, by monotone convergence of GR’

1 c
u (x) = CJ - of(y)dy = — o * f
03] IRn lx_yln 2 |xln 2

(possibly + ©), where c/ len—2 is the fundamental solution. Remark that there
are only two possibilities, either u (x) = + o Vx or u(x) < + o Vx. Indeed
suppose for example that um(()) < + o
Write
3 = ¢ | v o
Iyl < 2x| <71 Iyl > 2)x| <7
The first integral is finite (for each fixed x) while the second integral is bounded

by 982 ¢ J 1) o dy. Hence u (x) < o.
lyl ™7 i

If we make the assumption that

um(O)zcj—fﬁﬂ dy < o

n-2

then um(x) is finite for each fixed x but it need not be uniformly bounded on

RT.
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Lemma A.1. f{ satisfies property (H) iff

(A.4) ﬁn_z « f e L°[R") .
X

Proof. Suppose first that (H) holds. By adding a constant we may always assume

that U >0 in R™ By the maximum principle

and therefore

(A.5) u =-S5 _xf<U.

o) n-2
| x|

Conversely, the function -l—-c-—l-n_2 * f provides a bounded solution of (A.1).
X

Since U could be any nonnegative solution of (A.1) we have

Corollary A.2. u_ is the minimal positive solution of (A.1).

As a consequence of minimality we have

Corollary A.3.

lim inf u (x) =0 .
x| 20 "

In fact, any bounded solution U of (A.1) such that

lim inf U(x) =0
x| -

coincides with u. This follows from the fact that the difference of any two
bounded solutions of (A.1) is a bounded harmonic function and thus it is a
constant.

A stronger way of expressing that u tends to zero at infinity is the

following
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Lemma A.4.

where /J’ denotes the average on the sphere of radius R.
S
R

Proof. By Fubini we have

dS
1 J _ 1 ¥y
- u(y)dS—ch(x)—_ J _dx.
r-1 SR ® y g0 r-1 IX—Yln 2
lyl=
Note that
dS R \n-2 .
CR f
I(x)=J E'T_F2={ (1) 1 |x| > R
with
dSs
|yl
ly|=R

(this is a consequence of the fact that I(x) is harmonic in |x|] < R and in
|x| > R; moreover I(x) = I(|x|) and in addition I(w) = 0).

Hence we have

,f'u - g_2j f(x)dx+cJ x4
SRm | x|

R
|x| <R |x| >R

Clearly the second integral tends to zero as R — o. We estimate the first one by

R%QJ f(x) dx + C J f(x) gy

||
|x|<R0 R0<|x|<R
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We first choose RO so that

and then R large enough so that

C J £
—_2 (X) dx < € .
RII

|x|<R0

Lemma A5. Any bounded solution U of (A.1) such that

coincides with u.
This is clear since the difference of two bounded solutions of (A.1) is a

constant.

Lemma A.6. Assume U € L® with AU € LY satisfies

loc
- AU < p in R"
and
,fU——-'O as R— o .
SR
Then U < u.
1]
Proof. Set g=-A8u -U)20.
Since (u -U)—0 as R — o
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we may apply Lemma A.5 to conclude that

= -C
um—U—|XIn_2*g20.

Appendix II

Here we briefly review several proofs of uniqueness for the problem

- Au = p(x) f(u) in Q
(A.6) { u>0 in Q
u=19%>0 on 0N

under the assumptions that %(;D is decreasing,  is a smooth bounded domain

and p > 0.

Method I. This is the method introduced in [1]. Let u; and u, be two
solutions of (A.6). We have
Au;  Au, f(u,) ) f(u

(A7) ", TS, T o

9)
Uy Uy

Multiplying (A.7) by (u% - ug) we obtain

u u f(u,) f(u,)
1 2 2 2 1 2/\ 2 2
JIVul - @ Vu2| + |Vu2 - u—l' Vu1| = Jp( ul - T2—)(111 - 112) .

It follows that u; = u, on the set [p > 0]. In particular pi(u;) = pf(u,) on

1. Going back to (A.6) we see that u; = u,.
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Method II. Let u; and uy be two solution of (A.6). We have

f(u)) A
(A.8) - () uy + (Auy) y; = pu1u2(—%— - 22)

) -

Integrating (A.8) on the set [u; > u,] = E we obtain formally

Ou Ou fuy) f(u,)

1 2 1 2

‘J?)Tz“z“LJ ?3‘17“1=JP“1“2(_111 - u2)
oE 0E E

Note that u; = u, and -aa—y(u1 - u2) <0 on OE. Thus the lefthand side is
nonnegative while the integrand on the righthand side is nonpositive. Similarly,

using F = [u; < u,], we are led to

f(ul) f(u2)

qu1u2|u u
Q 1 2

We conclude as above.

To make this argument rigorous we proceed as follows. Let f# be a smooth
nondecreasing function such that #(0) = 0 and 4(t) =1 for t > 1,
f(t) = -1 for t < — 1. Set

0_(t) = o(t/e)

Multiplying (A.8) by 6 _(u; — u,) and integrating we obtain

[UCru-uy = (Tug)uy) 0 () - uy)-¥(u; - uy)

f(u,) f(u

)
(A9) = JP Uty u uz ) O(uy - uy)
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Clearly LHS > J’(Vu2)(u2 - ) 0;_(u1 - u9)-V(uy - u,) -
Note that

J‘Vu2(u2 - u1)0t_’:(u1 - up)V(u; —uy) = - JVu2V7€(ul - u,)

t

where 7.(t) = J s 0/(s) ds .
0

Since |7,(t)] < Ce and Auy € L” we see that

LHS > -C e .

Going back to (A.9) we obtain, as € — 0,

J" uply |f(u1) f(?)
by 2

| =0.

Method III. This is a variant of Krasnoselkii's method [9]. Let u;, and wu, be

two solutions. Let
A={tel0l] tuy <u, on Q}.

Clearly A contains a neighbourhood of 0. We claim that 1 € A . Suppose
not, that

tg = sup A<1.
Then

= A(uy - tqu) = p f(uy) -ty p £(uy).

Fix a positive constant K large enough so that f(t) + Kt is increasing on

[0,Max u,]. Then
- Aug - tguy) + Kp(u, - tguy) = plf(uy) + Kuy - t4(f(u;) + Ku,)]

> plf(tyuy) + Ktgu; - to(f(uy) + Ku))] = plf(tyu;) - tof(uy)] 2 0
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(the last inequality follows from the fact that f(u)/u is decreasing). On 00 we

have U, - touy = (1 - tO) 0 > 0.

We distinguish two cases:
Case 1: ¢ = 0. Using the strong maximum principle we see that either
uy = tgu; >0 on Q  with -aa—u(u2 ~ tOul) < 0 on O . Then, clearly there
is some € > 0 such that uy - tguy 2 € uy. Thus tg + €€ A. Impossible.

Or uy — touy = 0. This case is also impossible since we would have, by the

equation pf(u,) = ty pf(uy), but f(tyu;) > tof(n,) -

Case 2: ¢ is not identically zero. We claim that there is some € > 0 such

that
w5u2—t0u125u1.
Suppose not, that for every € > 0 there is some point X € Q such that
w(x,) < euy(x,) -

Clearly x_ ¢ 8 (for ¢ small). Choosing a point of minimum for the function
(W - €u;) we may also assume that

Vw(xe) =€ Vu(x,) .
As € — 0 (through an appropriate sequence) x e — Xg € Q such that

w(xg) €0 and Vw(x)) =0

It follows that w(x)) = 0 and thus x, € 80 . This contradicts the strong
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maximum principle since we have

w>0 on 00,

{—Aw+pr20 in Q,
w not identically zero.

Method IV. This is a variant of Nirenberg's method already presented in the proof

of Theorem 2’. It requires further restrictions on f, namely, f is positive,

concave and ’ dt <
0 mj ® .

We use the new unknown
u
v = J‘ dt
or in other words u = h(v) where h satisfies

h'(s) = f(h(s)) .

The equation for v becomes
- Av - f’(h(v))|Vv|2 =9p.

Uniqueness holds provided the function f’(h(v)) is nonincreasing in v (see the

proof of Theorem 2’). This follows from the assumptions on f.

Acknowledgements. =~ We thank H. Berestycki, E. Gluskin, A. Edelson, H. Egnell,
D. Eidus, R. Kersner and L. Nirenberg for useful discussions.

Part of this paper was written while both authors were visiting IMA at the
University of Minnesota. The second author also thanks the Université Paris VI

and Rutgers University for their hospitality.



[1]
[2]
[3]
[4]
[5]

[6]
[7]

[8]

[9]
[10]

26
References

H. Brezis — L. Oswald, Remarks on sublinear elliptic equations, Nonlinear
Analysis, 10 (1986), p. 55-64.

E. DiBenedetto, Continuity of weak solutions to a general porous medium
equation, Indiana University, Math. J. 32 (1983), p. 83-118.

A.L. Edelson, Asymptotic properties of semilinear equations, Can. Math. Bull
32 (1989), p. 34-46.

H. Egnell, Asymptotic results for finitie energy solutions of semilinear elliptic
equations (to appear).

D. Eidus, The Cauchy problem for the nonlinear filtration equation in an
inhomogeneous medium, J. Diff. Eq. 84 (1990), p. 309-318.

D. Eidus - S. Kamin, in preparation.

P. Hess, On the uniqueness of positive solutions of nonlinear elliptic
boundary value problems, Math. Z. 154 (1977), p. 17-18.

S. Kamin — P. Rosenau, Nonlinear thermal evolution in an inhomogeneous
medium, J. Math. Phys. 23 (1982), p. 1385-1390.

M. Krasnoselskii, Positive solutions of operator equations, Noordhoff (1964).

M. Naito, A note on bounded positive entire solutions of semilinear elliptic
equations, Hiroshima Math. J. 14 (1984), p. 211-214.

Haim Brezis Shoshana Kamin
Université Paris IV Raymond and Beverly
4, pl. Jussieu Sackler Faculty of Exact Sciences
75252 Paris Cedex 05 Tel-Aviv University
and Tel-Aviv, Israel

Rutgers University
New Brunswick, NJ 08903



774
775

776
7

778

779
780
781

782
783

784
785

786
787
788
789
790
791
792
793
794
795
796
797

798
799

800
801
802
803
804
805
806
807
808

809
810

811
812

813

814

815

816

Recent IMA Preprints
Author/s Title

L.A. Peletier & W.C. Troy, Self-similar solutions for infiltration of dopant into semiconductors

H. Scott Dumas and James A. Ellison, Nekhoroshev’s theorem, ergodicity, and the motion of energetic
charged particles in crystals

Stathis Filippas and Robert V. Kohn, Refined asymptotics for the blowup of u; — Au = u?.

Patricia Bauman, Nicholas C. Owen and Daniel Phillips, Maximum principles and a priori estimates
for an incompressible material in nonlinear elasticity

Patricia Bauman, Nicholas C. Owen and Daniel Phillips, Maximal smoothness of solutions to certain
Euler-Lagrange equations from nonlinear elasticity

Jack Carr and Robert Pego, Self-similarity in a coarsening model in one dimension

J.M. Greenberg, The shock generation problem for a discrete gas with short range repulsive forces

George R. Sell and Mario Taboada, Local dissipativity and attractors for the Kuramoto-Sivashinsky
equation in thin 2D domains

T. Subba Rao, Analysis of nonlinear time series (and chaos) by bispectral methods

Nicholas Baumann, Daniel D. Joseph, Paul Mohr and Yuriko Renardy, Vortex rings of one fluid in another
free fall

Oscar Bruno, Avner Friedman and Fernando Reitich, Asymptotic behavior for a coalescence problem

Johannes C.C. Nitsche, Periodic surfaces which are extremal for energy functionals containing curvature
functions

F. Abergel and J.L. Bona, A mathematical theory for viscous, free-surface flows over a perturbed plane

Gunduz Caginalp and Xinfu Chen, Phase field equations in the singular limit of sharp interface problems

Robert P. Gilbert and Yongzhi Xu, An inverse problem for harmonic acoustics in stratified oceans

Roger Fosdick and Eric Volkmann, Normality and convexity of the yield surface in nonlinear plasticity

H.S. Brown, I.G. Kevrekidis and M.S. Jolly, A minimal model for spatio-temporal patterns in thin film flow

Chao—Nien Chen, On the uniqueness of solutions of some second order differential equations

Xinfu Chen and Avner Friedman, The thermistor problem for conductivity which vanishes at large temperature

Xinfu Chen and Avner Friedman, The thermistor problem with one-zero conductivity

E.G. Kalnins and W. Miller, Jr., Separation of variables for the Dirac equation in Kerr Newman space time

E. Knobloch, M.R.E. Proctor and N.O. Weiss, Finite-dimensional description of doubly diffusive convection

V.V. Pukhnachov, Mathematical model of natural convection under low gravity

M.C. Knaap, Existence and non-existence for quasi-linear elliptic equations with the p-laplacian involving
critical Sobolev exponents

Stathis Filippas and Wenxiong Liu, On the blowup of multidimensional semilinear heat equations

A.M. Meirmanov, The Stefan problem with surface tension in the three dimensional case with spherical
symmetry: non-existence of the classical solution

Bo Guan and Joel Spruck, Interior gradient estimates for solutions of prescribed curvature equations
of parabolic type

Hi Jun Choe, Regularity for solutions of nonlinear variational inequalities with gradient constraints

Peter Shi and Yongzhi Xu, Quasistatic linear thermoelasticity on the unit disk

Satyanad Kichenassamy and Peter J. Olver, Existence and non-existence of solitary wave solutions to higher
order model evolution equations

Dening Li, Regularity of solutions for a two-phase degenerate Stefan Problem

Marek Fila, Bernhard Kawohl and Howard A. Levine, Quenching for quasilinear equations

Yoshikazu Giga, Shun’ichi Goto and Hitoshi Ishii, Global existence of weak solutions for interface equations
coupled with diffusion equations

Mark J. Friedman and Eusebius J. Doedel, Computational methods for global analysis of homoclinic and hetero
clinic orbits: a case study

Mark J. Friedman, Numerical analysis and accurate computation of heteroclinic orbits in the case of center
manifolds

Peter W. Bates and Songmu Zheng, Inertial manifolds and inertial sets for the phase-field equations

J. Lépez Gémez, V. Marquez and N. Wolanski, Global behavior of positive solutions to a semilinear
equation with a nonlinear flux condition

Xinfu Chen and Fahuai Yi, Regularity of the free boundary of a continuous casting problem

Eden, A., Foias, C., Nicolaenko, B. and Temam, R., Inertial sets for dissipative evolution equations
Part I: Construction and applications

Jose—Francisco Rodrigues and Boris Zaltzman, On classical solutions of the two-phase steady-state Stefan
problem in strips

Viorel Barbu and Srdjan Stojanovic, Controlling the free boundary of elliptic variational inequalities on
a variable domain

Viorel Barbu and Srdjan Stojanovic, A variational approach to a free boundary problem arising in electro-
photography

B.H. Gilding and R. Kersner, Diffusion-convection-reaction, free boundaries, and an integral equation



817

818
819

820

821

822
823
824
825
826
827
828
829

830
831
832

833
834
835
836
837

838
839

840

841

842

843
844

845
846
847
848
849
850
851

852
853

854
855
856

857
858
859
860

861
862

Shoshana Kamin, Lambertus A. Peletier and Juan Luis Vazquez, On the Barenblatt equation of elasto-
plastic filtration

Avner Friedman and Bei Hu, The Stefan problem with kinetic condition at the free boundary

M.A. Grinfeld, The stress driven instabilities in crystals: mathematical models and physical
manifestations

Bei Hu and Lihe Wang, A free boundary problem arising in electrophotography: solutions with connected
toner region

Yongzhi Xu, T. Craig Poling, and Trent Brundage, Direct and inverse scattering of time harmonic
acoustic waves in an inhomogeneous shallow ocean

Steven J. Altschuler, Singularities of the curve shrinking flow for space curves

Steven J. Altschuler and Matthew A. Grayson, Shortening space curves and flow through singularities

Tong Li, On the Riemann problem of a combustion model

L.A. Peletier & W.C. Troy, Self-similar solutions for diffusion in semiconductors

C.J. van Duijn, L.A. Peletier & R.J. Schotting, On the analysis of brine transport in porous media

Minkyu Kwak, Finite dimensional description of convective reaction-diffusion equations

Minkyu Kwak, Finite dimensional inertial forms for the 2D Navier—Stokes equations

Victor A. Galaktionov and Sergey A. Posashkov, On some monotonicity in time properties for a quasilinear
parabolic equation with source

Victor A. Galaktionov, Remark on the fast diffusion equation in a ball

Hi Jun Choe and Lihe Wang, A regularity theory for degenerate vector valued variational inequalities

Vladimir I. Oliker and Nina N. Uraltseva, Evolution of nonparametric surfaces with speed depending on
curvature, II. The mean curvature case.

S. Kamin and W. Liu, Large time behavior of a nonlinear diffusion equation with a source

Shoshana Kamin and Juan Luis Vazquez, Singular solutions of some nonlinear parabolic equations

Bernhard Kawohl and Robert Kersner, On degenerate diffusion with very strong absorption

Avner Friedman and Fernandor Reitich, Parameter identification in reaction-diffusion models

E.G. Kalnins, H.L. Manocha and Willard Miller, Jr., Models of ¢-algebra representations I. Tensor
products of special unitary and oscillator algebras

Robert J. Sacker and George R. Sell, Dichotomies for linear evolutionary equations in Banach spaces

Oscar P. Bruno and Fernando Reitich, Numerical solution of diffraction problems: a method of variation
of boundaries

Oscar P. Bruno and Fernando Reitich, Solution of a boundary value problem for Helmholtz equation via
variation of the boundary into the complex domain

Victor A. Galaktionov and Juan L. Vazquez, Asymptotic behaviour for an equation of superslow diffusion.
The Cauchy problem

Josephus Hulshof and Juan Luis Vazquez, The Dipole solution for the porous medium equation in several
space dimensions

Shoshana Kamin and Juan Luis Vazquez, The propagation of turbulent bursts

Miguel Escobedo, Juan Luis Vazquez and Enrike Zuazua, Source-type solutions and asymptotic behaviour
for a diffusion-convection equation

Marco Biroli and Umberto Mosco, Discontinuous media and Dirichlet forms of diffusion type

Stathis Filippas and Jong-Shenq Guo, Quenching profiles for one-dimensional semilinear heat equations

H. Scott Dumas, A Nekhoroshev-like theory of classical particle channeling in perfect crystals

R. Natalini and A. Tesei, On a class of perturbed conservation laws

Paul K. Newton and Shinya Watanabe, The geometry of nonlinear Schrédinger standing waves

S.S. Sritharan, On the nonsmooth verification technique for the dynamic programming of viscous flow

Mario Taboada and Yuncheng You, Global attractor, inertial manifolds and stabilization of nonlinear
damped beam equations

Shigeru Sakaguchi, Critical points of solutions to the obstacle problem in the plane

F. Abergel, D. Hilhorst and F. Issard-Roch, On a dissolution-growth problem with surface tension
in the neighborhood of a stationary solution

Erasmus Langer, Numerical simulation of MOS transistors

Haim Brezis and Shoshana Kamin, Sublinear elliptic equations in R™

Johannes C.C. Nitsche, Boundary value problems for variational integrals involving surface
curvatures

Chao—Nien Chen, Multiple solutions for a semilinear elliptic equation on RN with nonlinear
dependence on the gradient

D. Brochet, X. Chen and D. Hilhorst, Finite dimensional exponential atttractor for the phase field
model

Joseph D. Fehribach, Mullins-Sekerka stability analysis for melting-freezing waves in helium-4

Walter Schempp, Quantum holography and neurocomputer architectures

D.V. Anosov, An introduction to Hilbert’s 21st problem

Herbert E Huppert and M Grae Worster, Vigorous motions in magma chambers and lava lakes



