SOME NONLINEAR ELLIPTIC EQUATIONS HAVE ONLY CONSTANT SOLUTIONS

Haïm Brezis^{(1),(2)} and Yanyan Li⁽³⁾

Dedicated to K. C. Chang with high esteem and warm friendship

Abstract: We study some nonlinear elliptic equations on compact Riemannian manifolds. Our main concern is to find conditions which imply that such equations admit only constant solutions.

Key words: Nonlinear elliptic equations, constant solutions

Subject classification number: 35J60

1. Introduction.

Motivated by some recent results and questions raised in [3], we study some nonlinear elliptic equations of the form

(1.1)
$$\begin{cases} -\Delta_g u = f(u) & \text{on } M, \\ u > 0 & \text{on } M, \end{cases}$$

where (M,g) is a compact Riemannian manifold of dimension $n \geq 2$, without boundary, and $f:(0,+\infty) \to \mathbb{R}$ is a smooth function. Our main concern is to find conditions on M and f which imply that (1.1) admits only constant solutions.

We will present results in two directions:

1) The case where $M = S^n, n \geq 3$, equipped with its standard metric g_0 .

In this case our first result is

Theorem 1. Assume that $(M,g) = (S^n, g_0), n \geq 3$, and

$$(1.2) h(t):=t^{-\frac{n+2}{n-2}}\left(f(t)+\frac{n(n-2)}{4}t\right) is decreasing on (0,\infty).$$

Then any solution of (1.1) is constant.

A typical example is the case

(1.3)
$$f(t) = t^p - \lambda t, p > 1, \lambda > 0,$$

so that (1.1) becomes

(1.4)
$$\begin{cases} -\Delta_g u = u^p - \lambda u & \text{on } S^n, \\ u > 0 & \text{on } S^n. \end{cases}$$

Corollary 1. Assume that $p \leq (n+2)/(n-2)$ and $\lambda \leq n(n-2)/4$, and at least one of these inequalities is strict. Then the only solution of (1.4) is the constant $u = \lambda^{1/(p-1)}$.

In fact, Corollary 1 is originally due to Gidas-Spruck [8]. But our argument is quite different from theirs; they rely on some remarkable identities while our method uses moving planes.

When p = (n+2)/(n-2) the conclusion of Corollary 1 is sharp. Indeed if $\lambda = n(n-2)/4$ there is a well-known family of nonconstant solutions; moreover all solutions of (1.4) belong to this family. However when p < (n+2)/(n-2), B. Gidas and J. Spruck established a better result which was later sharpened by M.F. Bidaut-Veron and L. Veron. Namely they proved

Theorem 2 ([8], [2]). Assume that p < (n+2)/(n-2) and $\lambda \le \frac{n}{p-1}$. Then the only solution of (1.4) is the constant $u = \lambda^{1/(p-1)}$.

Remark 1. The proof of Theorem 2 in [8] and [2] is based on some remarkable identities. Our proof of Theorem 1 uses the method of moving planes. It would be very interesting to find a proof of Theorem 2 based on moving planes.

On the other hand, bifurcation analysis (see [2] and Section 4 below) yields

Theorem 3. Assume p < (n+2)/(n-2) and $\lambda > n/(p-1)$ with $|\lambda - n/(p-1)|$ small. Then there exist nonconstant solutions of (1.4).

Remark 2. When $p > \frac{n+2}{n-2}$, there exist nonconstant solutions of (1.4) for some values of $\lambda < \frac{n(n-2)}{4}$. Indeed bifurcation theory (see Section 4 and Remark 7 there) implies the existence of a branch of nonconstant solutions emanating from the constant solutions at the value $\lambda = \frac{\nu}{\nu-1}$ where $\nu = n$ is the second eigenvalue

of $-\Delta_{g_0}$ on S^n ; note that $\frac{\nu}{p-1} < \frac{n(n-2)}{4}$ since $p > \frac{n+2}{n-2}$. These solutions exist for $\lambda < \frac{\nu}{p-1}$ and $|\lambda - \frac{\nu}{p-1}|$ sufficiently small.

Open Problem 1. When $p > \frac{n+2}{n-2}$, we do not know any result asserting that for some value of $\lambda > 0, \lambda$ small, equation (1.4) admits only the constant solution $u = \lambda^{1/(p-1)}$. In particular, it would be very interesting to decide what happens when n = 3, p > 5 and $\lambda > 0$ small.

Remark 3. Theorem 1 is reminiscent of Theorem 1.1 in [9], dealing with (1.1) on $M = \mathbb{R}^n$. One could start with (1.4) on S^n and transport it by stereographic projection to \mathbb{R}^n ; however the resulting equation does not satisfy the assumptions from [9]. Still there are some analogies.

2) The case of a general manifold.

Here our main result is the following

Theorem 4. Assume n=3. Then there exists some $\lambda^*=\lambda^*(M,g)>0$ such that (1.1) with $f(u) = u^5 - \lambda u$, $0 < \lambda < \lambda^*$, admits only the constant solution $u = \lambda^{1/4}$.

Remark 4. A similar result on a three dimensional smooth convex domain with zero Neumann boundary data was established in [13].

For comparison we recall a result of J.R. Licois and L. Veron:

Theorem 5. ([11]) Let $n \geq 2$, and assume 1 (any finitep>1 when n=2). Then there exists some $\lambda^*=\lambda^*(M,g,p)>0$ such that (1.1) with

$$f(u) = u^p - \lambda u, \ 0 < \lambda < \lambda^*,$$

admits only the constant solution $u = \lambda^{1/(p-1)}$.

Remark 5. A similar result on a smooth domain in the Euclidean space with zero Neumann boundary data was established in [12].

Open Problem 2. Is the conclusion of Theorem 5 valid for n > 3 and p =(n+2)/(n-2)? If not, identify necessary and sufficient conditions on (M,g), $n \geq 4$, under which the conclusion of Theorem 5 is valid.

The issue concerning Open Problem 2 is whether or not there exist some $\lambda > 0$ and $\bar{C} > 0$, depending on (M, g), such that $u \leq \bar{C}$ for all solutions of (1.1) with $f(u) = u^{\frac{n+2}{n-2}} - \lambda u, \ 0 < \lambda < \bar{\lambda}$. This is true in dimension n=3 (a consequence of results in [10]), but in dimension $n \geq 4$, we do not expect this to be true for all manifolds. To solve the open problem, efforts can be made in two directions. One is to establish the L^{∞} estimates of solutions under appropriate conditions on the manifold. The other is to construct blow-up solutions $\{u_{\lambda_i}\}$ for a sequence of $\lambda_i \to 0^+$ under appropriate conditions on the manifold. Such issues for related problems have been studied, see e.g. [6], [1], [5], and the references therein.

Remark 6. A sufficient condition in Open Problem 2 is that the Ricci curvature is positive — this is a consequence of Theorem B.1 in [8]. We have been informed by S.S. Bahoura that he has recently proved that the positivity of the scalar curvature is enough.

2. Proof of Theorem 1.

Let u be a solution of (1.1) on $M = S^n$. Let P be an arbitrary point on S^n , which we will rename the north pole N. Let $S: S^n \setminus \{N\} \to \mathbb{R}^n$ be the stereographic projection, and let

(2.1)
$$\xi(y) = \left(\frac{2}{1+|y|^2}\right)^{\frac{n-2}{2}}, \quad y \in \mathbb{R}^n.$$

Consider the new unknown v, defined on \mathbb{R}^n , by

(2.2)
$$v(y) = \xi(y) u(S^{-1}(y)).$$

A standard computation gives

$$(2.3) -\Delta v = F(y, v), v > 0, \text{ in } \mathbb{R}^n,$$

where

(2.4)
$$F(y,v) = \xi(y)^{\frac{n+2}{n-2}} f\left(\frac{v}{\xi(y)}\right) + \frac{n(n-2)}{4} \xi(y)^{\frac{4}{n-2}} v.$$

Since ξ depends only on r = |y|, we will write $\xi(r)$ and F(r, v).

By (1.2) and (2.4),

$$F(r,v) = v^{\frac{n+2}{n-2}} h\left(\frac{v}{\xi(r)}\right).$$

Thus, by (1.2),

(2.5) for every fixed
$$v > 0, r \mapsto F(r, v)$$
 is decreasing in $r > 0$.

Since u is regular at N, it is easy to see from (2.1) and (2.2) that $\frac{1}{|y|^{n-2}}v\left(\frac{y}{|y|^2}\right)$ is smooth and positive near y=0. From the theory of Gidas, Ni and Nirenberg, see [7], we know that any solution v of (2.3), with F satisfying (2.5), must be radially symmetric about the origin. Going back to u, this means that u is constant on every (n-1)- sphere |x-N|= constant. Since P is arbitrary on S^n , u must be a constant.

3. Proof of Theorem 4.

To prove Theorem 4, we first apply the results in [10] to establish

Lemma 1. Assume n = 3. Then there exist some constants $C_1, \varepsilon_1 > 0$ such that for $0 < \lambda < \varepsilon_1$, any solution u of (1.1), with $f(u) = u^5 - \lambda u$, satisfies

$$u < C_1$$
.

Proof. Suppose the contrary; then there exist $\lambda_i \to 0^+$, u_i satisfies (1.1) with $f(u) = u^5 - \lambda_i u$, such that

$$\max_{M} u_i \to \infty.$$

By the results in [10] (see in particular Theorem 0.2, Proposition 5.2, Proposition 4.1 and Proposition 3.1), there exist distinct points p_1, \ldots, p_m on $M, m \ge 1$, and $p_\ell^{(i)} \to p_\ell$ as $i \to \infty$, and $\ell = 1, \ldots, m$, such that

$$u_i(p_1^{(i)})u_i \to \eta \text{ in } C^2_{\text{loc}}(M \setminus \{p_1, \dots p_m\}), \text{ as } i \to \infty,$$

where η satisfies

$$\eta > 0 \text{ in } M \setminus \{p_1, \dots, p_m\},$$

$$\Delta_g \eta = 0 \text{ in } M \setminus \{p_1, \dots, p_m\},$$

$$\lim_{p \to p_\ell} \eta(p) = \infty \quad , \ell = 1, 2, \dots, m.$$

But this violates the maximum principle, since η clearly has an interior minimum point in $M \setminus \{p_1, \ldots, p_m\}$.

Proof of Theorem 4. Integrating equation (1.1) on M leads to, using Hölder inequality,

$$||u||_{L^5(M)} \le C\lambda^{1/4}.$$

Here and in the following, C denotes some positive constant depending only on (M, g).

By Lemma 1 and the equation satisfied by u,

$$|\Delta_g u| \le Cu$$
.

By elliptic estimates, in view of (3.1),

$$||u||_{L^{\infty}(M)} \le C\lambda^{1/4}.$$

Next, we use an argument due to J.R. Licois and L. Veron [11]. From (1.4) we have

(3.3)
$$\int_{M} \nabla u \nabla (u - \bar{u}) + \lambda \int_{M} u (u - \bar{u}) = \int_{M} u^{5} (u - \bar{u})$$

where $\bar{u} = \int_M u$. Clearly

(3.4)
$$\int_{M} \bar{u}(u - \bar{u}) = \int_{M} \bar{u}^{5}(u - \bar{u}) = 0.$$

By (3.3) and (3.4) we have

(3.5)
$$\int_{M} |\nabla(u - \bar{u})|^{2} + \lambda \int_{M} |u - \bar{u}|^{2} = \int_{M} (u^{5} - \bar{u}^{5})(u - \bar{u}).$$

Let ν_1 be the first positive eigenvalue of $-\Delta_g$. From (3.5) we deduce that

$$(3.6) (\nu_1 + \lambda) \|u - \bar{u}\|_{L^2}^2 \le 5 \|u\|_{L^\infty}^4 \|u - \bar{u}\|_{L^2}^2.$$

Combining (3.2) and (3.6) yields $u = \bar{u} = \lambda^{1/4}$ when λ is sufficiently small.

4. Bifurcation analysis. Proof of Theorem 3.

We now return to equation (1.1) with f given by (1.3), i.e.,

(4.1)
$$\begin{cases} -\Delta_g u = u^p - \lambda u \text{ on } M, \\ u > 0 \text{ on } M, \end{cases}$$

where $1 and <math>\lambda > 0$.

Writing the solution u as

$$u = \lambda^{1/(p-1)}v,$$

equation (4.1) becomes

$$\begin{cases}
-\Delta_g v &= \lambda(v^p - v) \text{ on } M, \\
v &> 0 & \text{ on } M.
\end{cases}$$

Next we set

$$w = v - 1$$

and we are led to

(4.2)
$$\begin{cases} -\Delta_g w = \lambda F(w) & \text{on } M, \\ w > -1 & \text{on } M, \end{cases}$$

where

$$F(w) = (w+1)^p - w - 1.$$

Clearly,

$$F(0) = 0$$
, $F'(0) = p - 1$, $F''(0) = p(p - 1)$, $F'''(0) = p(p - 1)(p - 2)$.

Bifurcation theory asserts that, under some assumptions, a branch of solutions of (4.2), parametrized as $(\lambda(t), w(t))$, bifurcates from the 0-solution with

(4.3)
$$\lambda(0)F'(0) = \lambda(0)(p-1) = \nu$$

and ν is an eigenvalue of $-\Delta_g$. In particular, if ν is a simple eigenvalue the result of Crandall-Rabinowitz [4, Theorem 1.7] applies and yields the existence of a smooth branch of solutions of (4.2) of the form $(\lambda(t), w(t)), t \in (-a, +a)$ satisfying (4.3) and

$$w(t) = t\varphi + \psi(t)$$

where

$$-\Delta_g \varphi = \nu \varphi, \varphi \neq 0$$

$$\psi(0) = 0, \quad \psi'(0) = 0,$$

$$\int_M \varphi \psi(t) = 0 \quad \forall t \in (-a, +a).$$

We now differentiate (4.2) with respect to t and obtain

$$-\Delta_g w' = \lambda F'(w)w' + \lambda' F(w),$$

$$(4.4) -\Delta_q w'' = \lambda [F''(w)(w')^2 + F'(w)w''] + 2\lambda' F'(w)w' + \lambda'' F(w).$$

Taking t = 0 in (4.4) yields

$$-\Delta_g \psi''(0) - \nu \psi''(0) = \nu p \varphi^2 + 2\lambda'(0)(p-1)\varphi$$

and thus

Lemma 2. We have

$$\lambda'(0) = -\frac{\nu p \int \varphi^3}{2(p-1) \int \varphi^2}.$$

When $\int \varphi^3 \neq 0$ we may be satisfied with the information $\lambda'(0) \neq 0$ which gives the existence of nonconstant solutions of (4.1), close to the constant solution $u = \lambda^{1/(p-1)}$, for all values of λ with $|\lambda - \nu/(p-1)|$ sufficiently small.

However when

we have $\lambda'(0) = 0$ and we must study $\lambda''(0)$. First observe that if (4.5) holds then $\psi''(0)$ is uniquely determined by the relations

(4.6)
$$-\Delta_g \psi''(0) - \nu \psi''(0) = \nu p \varphi^2$$

$$(4.7) \qquad \qquad \int \varphi \psi''(0) = 0.$$

Differentiating (4.4) with respect to t once more gives

(4.8)
$$-\Delta_g w^{"'} = \lambda [F^{"'}(w)(w')^3 + 3F^{"}(w)w'w^{"} + F^{\prime}(w)w^{"'}] + 3\lambda^{\prime} [F^{"}(w)(w')^2 + F^{\prime}(w)w^{"}] + 3\lambda^{"} F^{\prime}(w)w^{\prime} + \lambda^{\prime\prime\prime} F(w)w^{\prime\prime\prime}$$

Evaluating (4.8) at t = 0 yields

$$-\Delta_q \psi'''(0) - \nu \psi'''(0) = \nu [p(p-2)\varphi^3 + 3p\varphi \psi''(0)] + 3\lambda''(0)(p-1)\varphi$$

and thus

Lemma 3. We have

(4.9)
$$\lambda''(0) = -\frac{\nu p[(p-2) \int \varphi^4 + 3 \int \varphi^2 \psi''(0)]}{3(p-1) \int \varphi^2}.$$

We are now more specific and take $M=S^n$ equipped with its standard metric g_0 . The first positive eigenvalue of $-\Delta_{g_0}$ is $\nu_1=n$. Its multiplicity is (n+1) and the corresponding eigenvalues are the functions $\{x_1, x_2, \ldots, x_n, x_{n+1}\}$ restricted to S^n . We are going to look for solutions of (1.4) which are radial about a point N on S^n , say $N=(0,0,\ldots,1)$. Restricted to the class of radial functions the eigenvalue $\nu_1=n$ becomes simple and the corresponding eigenfunction is

$$\varphi = x_{n+1}$$
.

It is convenient to work with the variable $\theta = d_{S^n}(x, N) = \text{geodesic distance between } x \text{ and } N \text{ on } S^n$. In the θ -variable we have

$$\varphi(\theta) = \cos \theta$$

so that

$$\int_{S^n} \varphi^3 = C_n \int_0^\pi \cos^3 \theta d\theta = 0,$$

and thus $\lambda'(0) = 0$ by Lemma 2. We now proceed to compute $\lambda''(0)$ using Lemma 3.

Lemma 4. We have

(4.10)
$$\lambda''(0) = K_{p,m} \left[-p + \frac{(n+2)}{(n-2)} \right]$$

where $K_{p,m}$ is a positive constant depending only on p and n.

Proof. For simplicity we write Δ instead of Δ_{g_0} . We first determine $\psi''(0)$ using (4.6) - (4.7). Note that

(4.11)
$$\Delta \varphi^2 = 2\varphi \Delta \varphi + 2|\nabla \varphi|^2 = -2n\varphi^2 + 2|\nabla \varphi|^2.$$

On the other hand

$$|\nabla \varphi| = |\varphi_{\theta}| = \sin \theta$$

and therefore

$$(4.12) \qquad |\nabla \varphi|^2 = 1 - \varphi^2$$

Inserting this into (4.11) yields

$$\Delta \varphi^2 = -2(n+1)\varphi^2 + 2.$$

Thus the solution $\psi''(0)$ of (4.6)-(4.7) is given by

$$\psi''(0) = a\varphi^2 + b$$

with

$$(4.13) a = \frac{np}{n+2}$$

$$(4.14) b = \frac{-2p}{n+2}.$$

Going back to (4.9) we find

(4.15)
$$\lambda''(0) = -np \frac{[(p-2)+3a]}{3(p-1)} \frac{\int \varphi^4}{\int \varphi^2} - \frac{npb}{(p-1)}.$$

It remains to compute $\int \varphi^4/\int \varphi^2$. For this purpose we write

(4.16)
$$\Delta \varphi^4 = 4\varphi^3 \Delta \varphi + 12\varphi^2 |\nabla \varphi|^2 = -4n\varphi^4 + 12\varphi^2 (1 - \varphi^2) \text{ by (4.12)}.$$

Integrating (4.16) gives

$$\frac{\int \varphi^4}{\int \varphi^2} = \frac{3}{n+3}$$

Combining (4.15) with (4.13), (4.14) and (4.17) we are led to

$$\lambda''(0) = \frac{-3np}{(n+3)} \left[\frac{(p-2)}{3(p-1)} + \frac{np}{(p-1)(n+2)} \right] + \frac{2np^2}{(p-1)(n+2)}$$

$$= \frac{np}{(p-1)(n+2)(n+3)} \left[-(p-2)(n+2) - 3np + 2p(n+3) \right]$$

$$= \frac{2np(n-2)}{(p-1)(n+2)(n+3)} \left[-p + \frac{(n+2)}{(n-2)} \right].$$

Proof of Theorem 3. When p < (n+2)/(n-2) we obtain from Lemmas 3 and 4 that $\lambda'(0) = 0$ and $\lambda''(0) > 0$. Hence the branch of solutions of (4.2) (and thus (1.4)) emanating from $(\lambda(0), w(0)) = \left(\frac{n}{p-1}, 0\right)$ bends to the right of $\lambda(0)$. This was already observed in [2] based on Theorem 2.

Remark 7. When p > (n+2)/(n-2) we have $\lambda'(0) = 0$ and $\lambda''(0) < 0$. In this case the branch of solutions of (4.3) emanating from $\left(\frac{n}{p-1},0\right)$ bends to the left of $\lambda(0)$.

Remark 8. When p = (n+2)/(n-2) we have $\lambda'(0) = 0$ and $\lambda''(0) = 0$. In fact the branch of solutions of (4.2) emanating from $\left(\frac{n}{p-1},0\right)$ satisfies $\lambda(t) \equiv \lambda(0) = \frac{n(n-2)}{4}$, i.e., the branch is vertical and it corresponds to the standard solutions of (1.4) with $\lambda = n(n-2)/4$.

Acknowledgment. We are grateful to L. A Peletier, A. Ponce and L. Veron for very useful discussions. The first author (H.B) is also a member of the Institut Universitaire de France and his work is partially supported by an EC Grant through the RTN Program "Front-Singularities" HPRN-CT-2002-00274. The second author (Y. L.) is partially supported by NSF Grant DMS-0401118.

REFERENCES

- [1] M. Berti and A. Malchiodi, Non-compactness and multiplicity results for the Yamabe problem on S^n , J. Funct. Anal **180** (2001), 210-241.
- [2] M.F. Bidaut-Veron and L. Veron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Inventiones Math. 106 (1991), 489-539.

SOME NONLINEAR ELLIPTIC EQUATIONS HAVE ONLY CONSTANT SOLUTIONS 11

- [3] H. Brezis and L.A. Peletier, *Elliptic equations with critical exponent on spherical caps of* S^3 , Journal d'Analyse Mathematique, to appear.
- [4] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal 8 (1971), 321–340.
- [5] Y. Ge, R. Jing and F. Pacard, Bubble towers for supercritical semilinear elliptic equations, J. Funct. Anal 221 (2005), 251–302.
- [6] J. Giacomoni, J. Prajapat and M. Ramaswamy, Positive solution branch for elliptic problems with critical indefinite nonlinearity, Differential Integral Equations 18 (2005), 721-764.
- [7] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209–243.
- [8] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525–598.
- [9] Y.Y. Li and L. Zhang, Liouville type theorem and Harnack type inequalities for semilinear elliptic inequalities, J. d'Analyse Math. **90** (2003), 27-87.
- [10] Y.Y. Li and M. Zhu, Yamabe type equations on three dimensional Riemannian manifolds, Comm. in Contemp. Math. 1 (1999), 1-50.
- [11] J.R. Licois and L. Veron, A class of nonlinear conservative elliptic equations in cylinders, Ann. Sc. Norm. Sup. Pisa, Ser. IV 26 (1998), 249-283.
- [12] C.S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), 1-27.
- [13] M. Zhu, Uniqueness results through a priori estimates. I. A three dimensional Neumann problem, J. Differential Equations 154 (1999), 284-317.
 - (1) LABORATOIRE J.-L. LIONS
 UNIVERSITÉ P. ET M. CURIE, B.C. 187
 4 PL. JUSSIEU
 75252 PARIS CEDEX 05, FRANCE
 E-mail address: brezis@ccr.jussieu.fr
 - (2) RUTGERS UNIVERSITY
 DEPT. OF MATH., HILL CENTER, BUSCH CAMPUS
 110 FRELINGHUYSEN RD, PISCATAWAY, NJ 08854, USA
 E-mail address: brezis@math.rutgers.edu
 - (3) RUTGERS UNIVERSITY
 DEPT. OF MATH., HILL CENTER, BUSCH CAMPUS
 110 FRELINGHUYSEN RD, PISCATAWAY, NJ 08854, USA
 E-mail address: yyli@math.rutgers.edu