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Abstract: We study some nonlinear elliptic equations on compact Riemannian
manifolds. Our main concern is to find conditions which imply that such equations
admit only constant solutions.
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1. Introduction.
Motivated by some recent results and questions raised in [3], we study some
nonlinear elliptic equations of the form

(1.1) { —Agu = f(u) on M,

u >0 on M,

where (M, g) is a compact Riemannian manifold of dimension n > 2, without
boundary, and f : (0,4+00) — R is a smooth function. Our main concern is to find
conditions on M and f which imply that (1.1) admits only constant solutions.

We will present results in two directions:
1) The case where M = S™,n > 3, equipped with its standard metric g.

In this case our first result is
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Theorem 1. Assume that (M, g) = (S™,g0),n > 3, and

(1.2) h(t) := ¢~ (f(t) + #t) is decreasing on (0,00).

Then any solution of (1.1) is constant.

A typical example is the case
(1.3) f)=tP —xt,p>1,1A>0,

so that (1.1) becomes

(1.4) { —Agu=uP —Au on S,

u>0 on S™.

Corollary 1. Assume that p < (n+2)/(n —2) and A < n(n — 2)/4, and at least

one of these inequalities is strict. Then the only solution of (1.4) is the constant
u = \/(@-1),

In fact, Corollary 1 is originally due to Gidas-Spruck [8]. But our argument
is quite different from theirs; they rely on some remarkable identities while our
method uses moving planes.

When p = (n + 2)/(n — 2) the conclusion of Corollary 1 is sharp. Indeed if
A = n(n — 2)/4 there is a well-known family of nonconstant solutions; moreover
all solutions of (1.4) belong to this family. However when p < (n + 2)/(n — 2), B.
Gidas and J. Spruck established a better result which was later sharpened by M.F.
Bidaut-Veron and L. Veron. Namely they proved

Theorem 2 ([8], [2]). Assume that p < (n+2)/(n—2) and A < ;5. Then the
only solution of (1.4) is the constant u = \'/(P=1),

Remark 1. The proof of Theorem 2 in [8] and [2] is based on some remarkable
identities. Our proof of Theorem 1 uses the method of moving planes. It would be
very interesting to find a proof of Theorem 2 based on moving planes.

On the other hand, bifurcation analysis (see [2] and Section 4 below) yields

Theorem 3. Assumep < (n+2)/(n—2) and A > n/(p—1) with |\ —n/(p—1)|
small. Then there exist nonconstant solutions of (1.4).

Remark 2. When p > 2£2 there exist nonconstant solutions of (1.4) for some

values of A < W. Indeed bifurcation theory (see Section 4 and Remark 7
there) implies the existence of a branch of nonconstant solutions emanating from
the constant solutions at the value A = Iﬁ where v = n is the second eigenvalue
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of —Ag4, on S™; note that 23 < nn=2) ince p > 242, These solutions exist for

n—2
A < %5 and |A — ;%5 sufficiently small.

Open Problem 1. When p > Z—J_r;, we do not know any result asserting that
for some value of A > 0, A small, equation (1.4) admits only the constant solution
u = AY(®=1_ In particular, it would be very interesting to decide what happens

when n =3, p > 5 and A > 0 small.

Remark 3. Theorem 1 is reminiscent of Theorem 1.1 in [9], dealing with (1.1) on
M = R". One could start with (1.4) on S™ and transport it by stereographic
projection to R™; however the resulting equation does not satisfy the assumptions
from [9]. Still there are some analogies.

2) The case of a general manifold.
Here our main result is the following

Theorem 4. Assume n = 3. Then there exists some \* = X*(M, g) > 0 such that
(1.1) with f(u) = u® — Au,0 < A < X*, admits only the constant solution u = /4.

Remark 4. A similar result on a three dimensional smooth convex domain with
zero Neumann boundary data was established in [13].
For comparison we recall a result of J.R. Licois and L. Veron:

Theorem 5. ([11]) Let n > 2, and assume 1 < p < (n+ 2)/(n — 2) (any finite
p > 1 when n = 2). Then there exists some \* = X*(M, g,p) > 0 such that (1.1)
with

flu)=uP — Ay, 0 < A < A¥,

admits only the constant solution u = \V/®=1)

Remark 5. A similar result on a smooth domain in the Euclidean space with zero
Neumann boundary data was established in [12].

Open Problem 2. Is the conclusion of Theorem 5 valid for n > 3 and p =
(n+2)/(n — 2)? If not, identify necessary and sufficient conditions on (M, g),
n > 4, under which the conclusion of Theorem 5 is valid.

The issue concerning Open Problem 2 is whether or not there exist some A>0
and C' > 0, depending on (M, g), such that u < C for all solutions of (1.1) with

flu) = unT — Au, 0 < A < A. This is true in dimension n = 3 (a consequence
of results in [10]), but in dimension n > 4, we do not expect this to be true for
all manifolds. To solve the open problem, efforts can be made in two directions.
One is to establish the L>° estimates of solutions under appropriate conditions on
the manifold. The other is to construct blow-up solutions {uy,} for a sequence of
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X; — 07 under appropriate conditions on the manifold. Such issues for related
problems have been studied, see e.g. [6], [1], [5], and the references therein.

Remark 6. A sufficient condition in Open Problem 2 is that the Ricci curvature is
positive — this is a consequence of Theorem B.1 in [8]. We have been informed by
S.S. Bahoura that he has recently proved that the positivity of the scalar curvature
is enough.

2. Proof of Theorem 1.

Let u be a solution of (1.1) on M = S™. Let P be an arbitrary point on S™,
which we will rename the north pole N. Let S: S®\{N} — R™ be the stereographic
projection, and let

(1) = (15 )_ yER".

1+ y[?

Consider the new unknown v, defined on R", by

(2:2) v(y) =€) u (S (y)).

A standard computation gives

(2.3) —Av = F(y,v),v >0, in R,
where
(2.4 P = €0 (o ) + D=,

Since ¢ depends only on r = |y|, we will write £(r) and F(r,v).

By (1.2) and (2.4),
F(r,v) =vn»=—2h <%> .

Thus, by (1.2),

(2.5) for every fixed v > 0,7 — F(r,v) is decreasing in r > 0.

Since u is regular at N, it is easy to see from (2.1) and (2.2) that m%v (ﬁ)

is smooth and positive near y = 0. From the theory of Gidas, Ni and Nirenberg, see
[7], we know that any solution v of (2.3), with F' satisfying (2.5), must be radially
symmetric about the origin. Going back to u, this means that u is constant on
every (n — 1)- sphere |x — N| = constant. Since P is arbitrary on S™, u must be a
constant.
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3. Proof of Theorem 4.

To prove Theorem 4, we first apply the results in [10] to establish
Lemma 1. Assume n = 3. Then there exist some constants Cy,e1 > 0 such that

for 0 < X < g1, any solution u of (1.1), with f(u) = u® — \u, satisfies

USCl

Proof. Suppose the contrary; then there exist A; — 07, u; satisfies (1.1) with f(u) =
u® — \;u, such that
max u; — 00.
M

By the results in [10] (see in particular Theorem 0.2, Proposition 5.2, Proposition
4.1 and Proposition 3.1 ), there exist distinct points pq,...,p,m on M, m > 1, and

pg‘)_)pﬁ asi—)oo, and ¢/ = ]_,,,,,m, such that

uz(pgz))uZ — 7 in Cfoc(M \{p1,...pm}), asi— oo,
where 7 satisfies
n>0in M\ {p1,-.-,Pm},
Agn=0in M\ {p1,...,Pm}s

lim p(p) =0 ,£=1,2,...,m.
P—Pe

But this violates the maximum principle, since 7 clearly has an interior minimum
point in M \ {p1,-.-,Pm}-

Proof of Theorem /. Integrating equation (1.1) on M leads to, using Holder in-
equality,

(3.1) lull s ary < CAM™,
Here and in the following, C denotes some positive constant depending only on
(M, g).
By Lemma 1 and the equation satisfied by u,
|Agul < Cu.

By elliptic estimates, in view of (3.1),

(3:2) [l oo (ary < CAM.
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Next, we use an argument due to J.R. Licois and L. Veron [11]. From (1.4) we
have

(3.3) /M VuV(u— i) + A/M u(u — @) = /M u® (u — @)

where @ = J{, u. Clearly

(3.4) /M d(u— ) = /M @ (u— ) = 0.
By (3.3) and (3.4) we have

(3.5) /M\V(u—a)|2+)\/M u — a2 :/M(u5 @) (u— 7).

Let v; be the first positive eigenvalue of —A,. From (3.5) we deduce that
(3-6) (1 + Nllu = Gll7s < 5llullzellu — allZ.

Combining (3.2) and (3.6) yields v = @ = A'/* when ) is sufficiently small.

4. Bifurcation analysis. Proof of Theorem 3.
We now return to equation (1.1) with f given by (1.3), i.e.,

—Agu =uP — Au on M,
(4.1)
u >0 on M,
where 1 < p < oo and A > 0.

Writing the solution u as
u =A@y,
equation (4.1) becomes
{ —Agv = A(v? —v) on M,
v >0 on M.

Next we set

w=v-—1
and we are led to
(4.2) { —Ayw = AF(w) on M,

w > -1 on M,
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where
Flw)=(w+1)? —w—1.
Clearly,

"

F(0)=0, F'(0)=p—1, F'(0)=p(—1), F (0)=pm—1)(p—2).

Bifurcation theory asserts that, under some assumptions, a branch of solutions of
(4.2), parametrized as (A(t),w(t)), bifurcates from the 0-solution with

(4.3) AO)F'(0) = A(0)(p—1) = v

and v is an eigenvalue of —A,. In particular, if v is a simple eigenvalue the result of
Crandall-Rabinowitz [4, Theorem 1.7] applies and yields the existence of a smooth
branch of solutions of (4.2) of the form (A(t),w(t)),t € (—a,+a) satisfying (4.3)
and

w(t) = to +p(t)
where
—Agp=vp,0#0

¥(0) =0, ¢'(0)=0,
/ eY(t) =0 Vte (—a,+a).
M
We now differentiate (4.2) with respect to t and obtain

—Aguw' = MF'(w)w' + N F(w),

(4.4) —Agw = AF (w)(w)?+ F'(w)w |+ 2N F'(w)w' + X" F(w).
Taking t = 0 in (4.4) yields

Ay (0) = vip” (0) = wpg® +2X(0)(p — )¢
and thus

Lemma 2. We have 5
vp [

20—1) [¢*
When [¢? # 0 we may be satisfied with the information A'(0) # 0 which

gives the existence of nonconstant solutions of (4.1), close to the constant solution
u = AY/®=1_for all values of X\ with |\ — v/(p — 1)| sufficiently small.

N(0) = —
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However when

(4.5) /<p3 =0

"

we have A'(0) = 0 and we must study A (0). First observe that if (4.5) holds then
" (0) is uniquely determined by the relations

(4.6) ~Agy" (0) — vip” (0) = vpy?

(4.7) [ev'@=0.

Differentiating (4.4) with respect to ¢t once more gives

—Agwm = A[F (w)(w')? +3F" (w)w'w" + F'(w)w |+
+3X[F (w)(w')? + F'(w)w' ]+ 3\ F (w)w' + X" F(w).

Evaluating (4.8) at t = 0 yields

A" (0) — v (0) = v[p(p — 2)9* + 3pey” (0)] + 3N (0)(p — )¢
and thus

(4.8)

Lemma 3. We have

woo _z/p[(p —2) [*+ 3f</72¢”(0)]
(4.9) A (0) = 3(p—1) ] ¢ '

We are now more specific and take M = S™ equipped with its standard metric
go- The first positive eigenvalue of —Ag is 1 = n. Its multiplicity is (n + 1) and
the corresponding eigenvalues are the functions {x1,zs, .. ., Ty, Tn11} restricted to
S™. We are going to look for solutions of (1.4) which are radial about a point N on
S™, say N = (0,0,...,1). Restricted to the class of radial functions the eigenvalue
v1 = n becomes simple and the corresponding eigenfunction is

¥ = Tn+41-

It is convenient to work with the variable § = dgn(z, N) = geodesic distance be-
tween x and N on S™. In the #-variable we have

p(0) = cos b

/(p?’:C’n/ cos® 0df = 0,
n 0

and thus X' (0) = 0 by Lemma 2. We now proceed to compute )\”(O) using Lemma
3.

so that
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Lemma 4. We have

wos (n+2)
(4.10) A(0) = Ky m [—p o 2)}

where K, ., is a positive constant depending only on p and n.

Proof. For simplicity we write A instead of A, . We first determine ¥" (0) using
(4.6) - (4.7). Note that

(4.11) Ap® = 20Ap +2|Vp|? = —2np? + 2|Vp|2.
On the other hand
V| = |pg| = sinb
and therefore
(4.12) V| =1—¢?

Inserting this into (4.11) yields

Ap? = —2(n+1)* + 2.
Thus the solution " (0) of (4.6)-(4.7) is given by

"

Y (0) =ap®+b

with
np
4.13 =
(4.13) =
—2p
4.14 b= .
( ) n+2

Going back to (4.9) we find

o -2t 3] [ nph
19 YOI T -1

It remains to compute [ ¢*/ [ ©?. For this purpose we write

Ap* = 403 A + 12g02|Vg0|2

4.16
(4.16) = —dnp* +1202%(1 — p?) by (4.12).
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Integrating (4.16) gives

Jet _ 3
[ n+3

(4.17)

Combining (4.15) with (4.13), (4.14) and (4.17) we are led to

von_ =3mp [(0—2) np 2np”
A (0)_ (n+3) [3(p_1) (p—l)(n+2):| (p—l)(n+2)
np

= CERCESICEE) [—(p—2)(n+2) — 3np+2p(n+ 3)]

_ 2np(n — 2) [_ (n+ 2)]
(p—1)(n+2)(n+3) (n—2)]"

Proof of Theorem 3. When p < (n+ 2)/(n — 2) we obtain from Lemmas 3 and 4
that A(0) = 0 and A" (0) > 0. Hence the branch of solutions of (4.2) (and thus

(1.4)) emanating from (A(0), w(0)) = (ﬁ o) bends to the right of A(0). This was

already observed in [2] based on Theorem 2.

Remark 7. When p > (n+2)/(n—2) we have X'(0) = 0 and A" (0) < 0. In this case
the branch of solutions of (4.3) emanating from ( oo 0) bends to the left of A(0).

Remark 8. When p = (n+2)/(n—2) we have X'(0) = 0 and A" (0) = 0. In fact the

branch of solutions of (4.2) emanating from (1%, 0) satisfies A(t) = A\(0) = n(n4_2),

i.e., the branch is vertical and it corresponds to the standard solutions of (1.4) with
A=n(n—2)/4.
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