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For n ≥ 3, let Sn×n be the set of n×n real symmetric matrices, Sn×n+ ⊂ Sn×n be
the set of positive definite matrices, O(n) be the set of n×n real orthogonal matrices.

For a positive C2 function u, let

Au := −
2

n− 2
u−

n+2
n−2∇2u+

2n

(n− 2)2
u−

2n
n−2∇u⊗∇u−

2

(n− 2)2
u−

2n
n−2 |∇u|2I,

where I is the n× n identity matrix.
Let U ⊂ Sn×n be an open set satisfying

O−1UO = U, ∀ O ∈ O(n), (1)

and
U ∩ {M + tN | 0 < t <∞} is convex ∀ M ∈ Sn×n, N ∈ Sn×n+ . (2)

Let F ∈ C∞(U) satisfy

F (O−1MO) = F (M), ∀ M ∈ U, (3)

(Fij(M)) > 0, ∀ M ∈ U, (4)

where Fij(M) := ∂F
∂Mij

(M).
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For n ≥ 3, −∞ < p ≤ n+2
n−2

, we consider

F (Au) = up−
n+2
n−2 , Au ∈ U, u > 0 on R

n. (5)

Our main theorem is

Theorem 1 For n ≥ 3, let U ⊂ Sn×n satisfy (1), (2), and let F ∈ C2(U) satisfy
(3), (4). Assume that u ∈ C2(Rn) is a superharmonic solution of (5) for some
−∞ < p ≤ n+2

n−2
. Then either u ≡ constant or p = n+2

n−2
and for some x̄ ∈ R

n and
some positive constants a and b satisfying 2b2a−2I ∈ U and F (2b2a−2I) = 1,

u(x) ≡ (
a

1 + b2|x− x̄|2
)

n−2
2 , ∀ x ∈ R

n. (6)

Remark 1 About half a year ago, we established a slightly weaker version of Theo-
rem 1 for p < n+2

n−2
, and the proof was different than the one in the present paper. The

weaker result requires some additional (though minor, e.g., F being homogeneous of
degree 1 would be enough) assumptions on (F, U).

Theorem 1 for p = n+2
n−2

was established in [9], which extends earlier Liouville type
theorems for conformally invariant equations by Obata ([11]), Gidas, Ni and Niren-
berg ([4]), Caffarelli, Gadis and Spruck ([1]), Viaclovsky ([12] and [13]), Chang,
Gursky and Yang ([2] and [3]), and Li and Li ([6], [7], [8] and [9]).

The proof of Theorem 1 for p = n+2
n−2

in the present paper is simplier than that
in our earlier paper [9], though the most crucial ideas are the same. Theorem 1 for
−∞ < p < n+2

n−2
extends the corresponding result of Gidas and Spruck in [5]. The

proof of Theorem 1 for −∞ < p < n+2
n−2

is essentially the same as our simplified proof

of Theorem 1 for p = n+2
n−2

in this paper. Our proof of Theorem 1 makes use of the fol-

lowing lemma used in our first proof of Theorem 1 for p = n+2
n−2

(see theorem 1 in [9]).

Lemma 1 ([9]) For n ≥ 1, R > 0, let u ∈ C2(BR \ {0}) satisfying ∆u ≤ 0 in
BR \ {0}. Assume that there exist w, v ∈ C1(BR) satisfying

w(0) = v(0), ∇w(0) 6= ∇v(0),

and
u ≥ w, u ≥ v, in BR \ {0}.

Then
lim inf
x→0

u(x) > w(0).
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In fact, the above lemma was stated as lemma 2 in [9] under additional hypothe-
ses (w, v ∈ C2(BR) and ∆w ≤ 0, ∆v ≤ 0 in BR). However the proof of lemma 2 in
[9] did not use these extra hypotheses. Indeed, lemma 1 in [9] was first established
and hypothesis (11) there was not used in the proof. So the proof of lemma 2 in [9]
actually establishes Lemma 1 above.

Proof of Theorem 1 for p = n+2
n−2

. Since u is a positive superharmonic function,
we have, by the maximum principle, that

u(x) ≥
min
∂B1

u

|x|n−2
, ∀ |x| ≥ 1.

In particular
lim inf
|x|→∞

(|x|n−2u(x)) > 0. (7)

Lemma 2 For any x ∈ R
n, there exists λ0(x) > 0 such that

ux,λ(y) := (
λ

|y − x|
)n−2u(x+

λ2(y − x)

|y − x|2
) ≤ u(y), ∀ |y − x| ≥ λ, 0 < λ < λ0(x).

Proof of Lemma 2. This follows from the proof of lemma 2.1 in [10].

2

For any x ∈ R
n, set

λ̄(x) := sup{µ | ux,λ(y) ≤ u(y), ∀ |y − x| ≥ λ, 0 < λ < µ}.

Let
α := lim inf

|x|→∞
(|x|n−2u(x)). (8)

Because of (7),
0 < α ≤ ∞. (9)

If α = ∞, then the moving sphere procedure can never stop and therefore λ̄(x) = ∞
for any x ∈ R

n. This follows from arguments in [10], [7] and [8]. By the definition
of λ̄(x) and the fact λ̄(x) = ∞, we have,

ux,λ(y) ≤ u(y), ∀ |y − x| ≥ λ > 0.

By a calculus lemma (see e.g., lemma 11.2 in [10]), u ≡ constant, and Theorem 1
for p = n+2

n−2
is proved in this case (i.e. α = ∞). So, from now on, we assume
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0 < α <∞. (10)

By the definition of λ̄(x),

ux,λ(y) ≤ u(y), ∀ |y − x| ≥ λ, 0 < λ < λ̄(x).

Multiplying the above by |y|n−2 and sending |y| → ∞, we have,

α ≥ λn−2u(x), ∀ 0 < λ < λ̄(x).

Sending λ→ λ̄(x), we have (using (10)),

∞ > α ≥ λ̄(x)n−2u(x), ∀ x ∈ R
n. (11)

Since the moving sphere procedure stops at λ̄(x), we must have, by using the argu-
ments in [10], [7] and [8],

lim inf
|y|→∞

(u(y) − ux,λ̄(x)(y))|y|
n−2 = 0, (12)

i.e.,
α = λ̄(x)n−2u(x), ∀ x ∈ R

n. (13)

Let us switch to some more convenient notations. For a Mobius transformation φ,
we use notation

uφ := |Jφ|
n−2
2n (u ◦ φ),

where Jφ denotes the Jacobian of φ.
For x ∈ R

n, let

φ(x)(y) := x+
λ̄(x)2(y − x)

|y − x|2
,

we know that uφ(x) = ux,λ̄(x).
Let ψ(y) := y

|y|2
, and let

w(x) := (uφ(x))ψ = uφ(x)◦ψ.

For x ∈ R
n, the only possible singularity for w(x) (on R

n∪{∞}) is x
|x|2

. In particular,

y = 0 is a regular point of w(x). A direct calculation yields

w(x)(0) = λ̄(x)n−2u(x),
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and therefore, by (13),
w(x)(0) = α, ∀ x ∈ R

n. (14)

Clearly, uψ ∈ C2(Rn \ {0}), ∆uψ ≤ 0 in R
n \ {0}. We also know that

w(x)(0) = α ∀ x ∈ R
n, lim inf

y→0
uψ(y) = α,

and, for some δ(x) > 0,

w(x) ∈ C2(Bδ(x)), ∀ x ∈ R
n,

uψ ≥ w(x) in Bδ(x) \ {0}, ∀ x ∈ R
n,

∆w(x) ≤ 0 in Bδ(x), ∀ x ∈ R
n.

Lemma 3 ∇w(x)(0) = ∇w(0)(0), i.e., ∇w(x)(0) is independent of x ∈ R
n.

Proof of Lemma 3. This follows from Lemma 1. Indeed, for any x, x̃ ∈ R
n, let

v := w(x), w := w(x̃), u := uψ.

We know that w(0) = v(0), uψ ≥ w and uψ ≥ v near the origin, and we also know
that lim inf

y→0
uψ(y) = w(0), so, by Lemma 1, we must have ∇v(0) = ∇w(0), i.e.,

∇w(x)(0) = ∇w(x̃)(0). Lemma 3 is established.

2

For x ∈ R
n,

w(x)(y) =
1

|y|n−2

{

(
λ̄(x)

| y

|y|2
− x|

)n−2u(x+
λ̄(x)2( y

|y|2
− x)

| y

|y|2
− x|2

)
}

= (
λ̄(x)

| y
|y|

− |y|x|
)n−2u(x+

λ̄(x)2(y − |y|2x)

| y
|y|

− |y|x|2
)

= (
λ̄(x)2

1 − 2x · y + |y|2x
)

n−2
2 u(x+

λ̄(x)2(y − |y|2x)

1 − 2x · y + |y|2|x|2
).

So, for |y| small,

w(x)(y) = λ̄(x)n−2(1 + (n− 2)x · y)u(x+ λ̄(x)2y) +O(|y|2),

and, using (13),

∇w(x)(0) = (n− 2)λ̄(x)n−2u(x)x+ λ̄(x)n∇u(x) = (n− 2)αx+ α
n

n−2u(x)
n

2−n∇u(x).
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By Lemma 3, ~V := ∇w(x)(0) is a constant vector in R
n, so we have,

∇x(
n− 2

2
α

n
n−2u(x)−

2
n−2 −

(n− 2)α

2
|x|2 + ~V · x) ≡ 0.

Consequently, for some x̄ ∈ R
n and d ∈ R,

u(x)−
2

n−2 ≡ α− 2
n−2 |x− x̄|2 + dα− 2

n−2 .

Since u > 0, we must have d > 0. Thus

u(x) ≡ (
α

2
n−2

d+ |x− x̄|2
)

n−2
2 .

Let a = α
2

n−2d−1 and b = d−
1
2 . Then u is of the form (6). Clearly Au(0) = 2b2a−2I,

so 2b2a−2I ∈ U and F (2b2a−2I) = 1. Theorem 1 in the case p = n+2
n−2

is established.

2

Proof of Theorem 1 for −∞ < p < n+2
n−2

. In this case, the equation satisfied
by u is no longer conformally invariant, but it transforms to our advantage when
making reflections with respect to spheres, i.e., the inequalities have the right direc-
tion so that the strong maximum principle and the Hopf lemma can still be applied.
First, we still have (7) since this only requires the superharmonicity and the posi-
tivity of u. Lemma 2 still holds since it only uses (7) and the C1 regularity of u in
R
n. For x ∈ R

n, we still define λ̄(x) in the same way. We also define α as in (8) and
we still have (9).
For x ∈ R

n, λ > 0, the equation of ux,λ now takes the form

F (Aux,λ(y)) = (
λ

|y − x|
)(n−2)( n+2

n−2
−p)ux,λ(y)

p−n+2
n−2 , Aux,λ(y) ∈ U, ∀ y 6= x. (15)

Lemma 4 If α = ∞, then λ̄(x) = ∞ for any x ∈ R
n.

Proof of Lemma 4. Suppose the contrary, λ̄(x̄) < ∞ for some x̄ ∈ R
n. Without

loss of generality, we may assume x̄ = 0, and we use notations

λ̄ := λ̄(0), uλ := u0,λ, Bλ := Bλ(0).

By the definition of λ̄,
uλ̄ ≤ u on R

n \Bλ̄. (16)
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By (15),

F (Auλ̄) ≤ u
p−n+2

n−2

λ̄
, Auλ̄ ∈ U, on R

n \Bλ̄. (17)

Recall that u satisfies

F (Au) = up−
n+2
n−2 , Au ∈ U, on R

n \Bλ̄. (18)

By (17) and (18),

F (Auλ̄)−F (Au)− (u
p−n+2

n−2

λ̄
− up−

n+2
n−2 ) ≤ 0, Auλ̄ ∈ U, Au ∈ U, on R

n \Bλ̄. (19)

Since α = ∞, we have
lim inf
|y|→∞

|y|n−2(u− uλ̄)(y) > 0. (20)

The inequality in (19) goes the right direction. Thus, with (20), the arguments
for p = n+2

n−2
work essentially in the same way here and we obtain a contradiction

by continuing the moving sphere procedure a little bit further. This deserves some
explanations. Because of (20), and using arguments in [7] and [8], we only need to
show that

uλ̄(y) < u(y), ∀ |y| > λ̄, (21)

and
d

dr
(u− uλ̄)|∂Bλ̄

> 0, (22)

where d
dr

denotes the differentiation in the outer normal direction with repect to
∂Bλ̄.
If uλ̄(ȳ) = u(ȳ) for some |ȳ| > λ̄, then, using (19) as in the proof of lemma 2.1 in
[7], we know that uλ̄ − u satisfies that

L(uλ̄ − u) ≤ 0,

where L = −aij(x)∂ij +bi(x)∂i+c(x) with (aij) > 0 continuous and bi, c continuous.
Since uλ̄ − u ≤ 0 near ȳ, we have, by the strong maximum principle, uλ̄ ≡ u near
ȳ. For the same reason, uλ̄(y) ≡ u(y) for any |y| ≥ λ̄, violating (20). (21) has been
checked. Estimate (22) can be established in a similar way by using the Hopf lemma
(see the proof of lemma 2.1 in [7]). Thus Lemma 4 is established.

2

By Lemma 4 and the usual arguments, we know that if α = ∞, u must be a
constant, and Theorem 1 for −∞ < p < n+2

n−2
is also proved in this case.
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¿From now on, we always assume (10). As before, we obtain (11). Since the in-
equality in (17) goes the right direction, the arguments for p = n+2

n−2
(see also the

arguments in the proof of Lemma 4) essentially apply and we still have (12) and
(13). The rest of the arguments for p = n+2

n−2
apply and we have that u is of the form

(6) with some positive constants a and b. However, we know that, for u of the form

(6), Au ≡ 2b2a−2I and F (Au) ≡ constant. This violates (5) since up−
n+2
n−2 is not a

constant (recall that p < n+2
n−2

). Theorem 1 for −∞ < p < n+2
n−2

is established.

2
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