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For n > 3, let S"*" be the set of n x n real symmetric matrices, ST*" C S"*" be
the set of positive definite matrices, O(n) be the set of nxn real orthogonal matrices.

For a positive C? function u, let
2 n 2n

T =A vo T IV @ Vu — Lu‘w2 |Vul|*T
n—2 (n —2)2 (n —2)2 ’

AY = —

where [ is the n X n identity matrix.
Let U C 8™ be an open set satisfying

O~ 'vo =U, vV O € O(n), (1)
and
UN{M +tN |0<t<oo}isconvex VMeS"" NeS"". (2)
Let F' € C*(U) satisty
F(O'MO)=F(M), VYMEel, (3)
(F3;(M)) >0, VMelU, (4)
where Fj;(M) := B?Zj (M).
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For n >3, —oo < p < 22 we consider

+2

FAYY=uP™n=2, A"eU, u>0 onR" (5)
Our main theorem is

Theorem 1 Forn > 3, let U C 8™ satisfy (1), (2), and let F € C*(U) satisfy
(3), (4). Assume that u € C%*(R™) is a superharmonic solution of (5) for some

—o00 < p< Z—J_rg Then either u = constant or p = "—J_rz and for some T € R" and
some positive constants a and b satisfying 20°a=2I € U and F(20%a™%I) = 1,
a n—2
=(————75) 2, VzeR" 6
uw) = (=) T Ve (6)

Remark 1 About half a year ago, we established a slightly weaker version of Theo-
rem 1 forp < "+§, and the proof was different than the one in the present paper. The
weaker result requires some additional (though minor, e.q., F' being homogeneous of

degree 1 would be enough) assumptions on (F,U).

Theorem 1 for p = "—Jr; was established in [9], which extends earlier Liouville type
theorems for conformally invariant equations by Obata ([11]), Gidas, Ni and Niren-
berg ([4]), Caffarelli, Gadis and Spruck ([1]), Viaclovsky ([12] and [13]), Chang,
Gursky and Yang ([2] and [3]), and Li and Li ([6], [7], [8] and [9]).

The proof of Theorem 1 for p = Z—J_rg in the present paper is simplier than that
in our earlier paper [9], though the most crucial ideas are the same. Theorem 1 for

—00 < p< ”J_’2 extends the corresponding result of Gidas and Spruck in [5]. The
proof of Theorem 1 for —oo < p < 242

of Theorem 1 for p = "*2 in this paper Our proof of Theorem 1 makes use of the fol-
n_+2 (

is essentially the same as our simplified proof

lowing lemma used in our first proof of Theorem 1 for p = see theorem 1 in [9]).

Lemma 1 ([9]) Forn > 1, R > 0, let u € C*(Bg \ {0}) satisfying Au < 0 in
Bgr \ {0}. Assume that there exist w, v € C*(Bg) satisfying

w(0) = v(0),  Vw(0) # Vo(0),
and
u>w, w>wv, in Bg\{0}.
Then
lim inf u(z) > w(0).

z—0



In fact, the above lemma was stated as lemma 2 in [9] under additional hypothe-
ses (w,v € C*(Bg) and Aw < 0, Av <0 in Bg). However the proof of lemma 2 in
[9] did not use these extra hypotheses. Indeed, lemma 1 in [9] was first established
and hypothesis (11) there was not used in the proof. So the proof of lemma 2 in [9]
actually establishes Lemma 1 above.

Proof of Theorem 1 for p = Z—J_’g Since u is a positive superharmonic function,

we have, by the maximum principle, that

e
1
u(z) > P2 Vx| > 1
In particular
l‘ll‘ninf(|x\" 2u(z)) >0 (7)

Lemma 2 For any x € R, there exists A\o(x) > 0 such that

A N(y —x)

7t \n—2 < o > )

s (y) = (

Proof of Lemma 2. This follows from the proof of lemma 2.1 in [10].

O
For any = € R", set
Ax) = sup{p [ usn(y) <uly), V]y—a[ > A 0 <A< p}.
Let
= l‘ir‘ninf(|x\”_2u(x)). (8)
Because of (7),
0<a<oo (9)

If o = 0o, then the moving sphere procedure can never stop and therefore A(x) = oo
for any x € R". This follows from arguments in [10], [7] and [8]. By the definition
of A(z) and the fact A(x) = oo, we have,

ug\(y) <uly), Vg—az/>X1>0.

By a calculus lemma (see e.g., lemma 11.2 in [10]), u = constant, and Theorem 1

for p = 2£2 is proved in this case (i.e. @ =00). So, from now on, we assume



0<a<oo. (10)
By the definition of A(x),

U A (y) <uly), Vily—a| >N 0< A< A(2).
Multiplying the above by |y|"~2 and sending |y| — oo, we have,
a > A" u(r), V0 <A<Az).
Sending A — A(z), we have (using (10)),
0o >a > MNz)" 2u(z), Y recRrR"™ (11)

Since the moving sphere procedure stops at A(x), we must have, by using the argu-
ments in [10], [7] and [8],

lim inf (u(y) — w5 ()"~ = 0, (12)
ie., B
a=\z)"?u(x), VxcR" (13)

Let us switch to some more convenient notations. For a Mobius transformation ¢,
we use notation
n—2
ug = |Jg| 7 (uo ¢),

where Jy denotes the Jacobian of ¢.
For x € R", let -
Az)*(y — )

o(y) =+
ly —

Y

we know that uge) = Uy 5(p)-
Let ¢(y) := 3, and let

ly|2”

w® = (%u))w = Ug(@) oy

For z € R™, the only possible singularity for w® (on R"U{oc}) is - In particular,

y = 0 is a regular point of w®. A direct calculation yields

w®(0) = Mz)" ?u(z),



and therefore, by (13),
w(0)=a, VzecR" (14)

Clearly, uy € C*(R™\ {0}), Auy <0 in R™\ {0}. We also know that

w®(0)=a VacRr" lim inf uy, (y) = «,

g
and, for some §(z) > 0,
w® e 02(35(96)), VreR",
up > w in By \ {0}, Yz €R"

Aw® <0 in By, VY €R™
Lemma 3 Vw®(0) = Vw®(0), i.e., Vw®(0) is independent of x € R™.
Proof of Lemma 3. This follows from Lemma 1. Indeed, for any x, = € R", let

vi=w®, wi=w® .= U

We know that w(0) = v(0), uy, > w and uy, > v near the origin, and we also know
that hml(:)afud,( y) = w(0), so, by Lemma 1, we must have Vu(0) = Vw(0), i.e.,
y—>

Vw®(0) = Vw®(0). Lemma 3 is established.

O
For z € R,
N ANx) (2 —x
W (y) = 1_2{( LA(_) V=2 + ()L(|i : ))}
|y| ||y‘2 1'| ||y‘2 1'|
Na) s M@= i)
N L ey PR

1—2z-y+ |yl 1 —2x-y+ |y?|zf?

So, for |y| small,
w®(y) = Mz)" (1 + (n = 2)a - y)u(z + A(x)*y) + O(|y[*),
and, using (13),
Vw@(0) = (n — 2)A(@)" 2u(z)z + M2)"Vu(z) = (n — 2)ax + a7 2u(z) =7 Vu(z).



By Lemma 3, V= V@ (0) is a constant vector in R", so we have,

_2 n _2 i
n2 am2u(x) n22—w|z|2+v-x)50.

Vx(

Consequently, for some T € R” and d € R,

u(:):)_% = of%h: —z)* + do~ 77

Since u > 0, we must have d > 0. Thus

2

_ an-? n=2
u(z) = (d+ |z —:E|2) e
Let a = an2d~' and b= d~3. Then u is of the form (6). Clearly A“(0) = 2b%a~21,
so 2b%a~2] € U and F(2b%a~2I) = 1. Theorem 1 in the case p = 2£2 is established.

O

Proof of Theorem 1 for —oo < p < Z—J_’g In this case, the equation satisfied
by u is no longer conformally invariant, but it transforms to our advantage when
making reflections with respect to spheres, i.e., the inequalities have the right direc-
tion so that the strong maximum principle and the Hopf lemma can still be applied.
First, we still have (7) since this only requires the superharmonicity and the posi-
tivity of u. Lemma 2 still holds since it only uses (7) and the C! regularity of u in
R". For # € R", we still define \(x) in the same way. We also define « as in (8) and
we still have (9).

For x € R", A > 0, the equation of u, ) now takes the form

A n—2)(nt2 _ —nt2 u
A () = (2 )" D) A ) €U, Yy #a (15)

Lemma 4 If a = oo, then \(x) = co for any v € R".

Proof of Lemma 4. Suppose the contrary, A\(Z) < oo for some z € R". Without
loss of generality, we may assume z = 0, and we use notations

A= A0), uy:=ugy, Byx:=By0).

By the definition of X,
uy <u on R"\ Bj. (16)



By (15),
F(A) <o) 7% A% U, onR"\ By (17)
Recall that u satisfies
F(A") =uP~w2, A" €U, on R"\ B;. (18)
By (17) and (18),
p—nt2 n+42

F(A™) — F(A") = (uy "7 —u"%2) <0, A" €U, A"€U, on R"\B;. (19)

Since o = 0o, we have
i inf |y ~*(u — ux)(y) > 0. (20)
Y|—00
The inequality in (19) goes the right direction. Thus, with (20), the arguments
for p = Z—fg work essentially in the same way here and we obtain a contradiction
by continuing the moving sphere procedure a little bit further. This deserves some
explanations. Because of (20), and using arguments in [7] and [8], we only need to

show that

us(y) <uly), Vlyl> A, (21)

and p
d—(u —uy)|on; >0, (22)

”

where % denotes the differentiation in the outer normal direction with repect to
0Bs.

If us(7) = u(y) for some |y| > A, then, using (19) as in the proof of lemma 2.1 in
[7], we know that us — w satisfies that

L(uz —u) <0,

where L = —a;;(x)0;; + b;()0; + c¢(z) with (a;;) > 0 continuous and b;, ¢ continuous.
Since uz — u < 0 near g, we have, by the strong maximum principle, u5; = u near
. For the same reason, uy(y) = u(y) for any |y| > A, violating (20). (21) has been
checked. Estimate (22) can be established in a similar way by using the Hopf lemma
(see the proof of lemma 2.1 in [7]). Thus Lemma 4 is established.

O
By Lemma 4 and the usual arguments, we know that if @ = oo, u must be a
constant, and Theorem 1 for —oo < p < Z—J_’g is also proved in this case.



;From now on, we always assume (10). As before, we obtain (11). Since the in-
equality in (17) goes the right direction, the arguments for p = 2£2 (see also the
arguments in the proof of Lemma 4) essentially apply and we still have (12) and

(13). The rest of the arguments for p = 22 apply and we have that u is of the form

n—2
(6) with some positive constants a and b. However, we know that, for u of the form

(6), A* = 20262 and F(A") = constant. This violates (5) since u”~#2 is not a

constant (recall that p < Z—J_rg) Theorem 1 for —oo < p < Z—J_rg is established.

O
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