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1 Introduction

In this paper we study properties of positive solutions of semilinear elliptic equations
with critical exponent. We give different proofs, improvements, and extensions to
some previously established Liouville type theorems and Harnack type inequalities.

For µ > 0, x̄ ∈ Rn, n ≥ 3,

u(x) = (
µ

1 + µ2|x− x̄|2 )
n−2

2 (1)

satisfies
−∆u = n(n− 2)u

n+2
n−2 , u > 0, in Rn. (2)

The following celebrated Liouville type theorem was established by Caffarelli,
Gidas and Spruck.

Theorem 1.1 ([12]). A C2 solution of (2) is of the form (1).
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Under an additional hypothesis u(x) = O(|x|2−n) for large |x|, the result was
established earlier by Obata [49] and Gidas, Ni and Nirenberg ([30]). The proof
of Obata is more geometric, while the proof of Gidas, Ni and Nirenberg is by the
method of moving planes. The proof of Caffarelli, Gidas and Spruck is by a “measure
theoretic” variation of the method of moving planes. Such Liouville type theorems
have played a fundamental role in the study of semilinear elliptic equations with
critical exponent, which include the Yamabe problem and the Nirenberg problem.
The method of moving planes (and its variants including the method of moving
spheres, etc.) goes back to A.D. Alexandroff in his study of embedded constant
mean curvature surfaces. It was then used and developed through the work of Serrin
([54]) and Gidas, Ni and Nirenberg ([30] and [31]). In recent years, and stimulated
by a series of beautiful papers of Berestycki, Caffarelli and Nirenberg ([1]-[8]), the
method has been widely used and has become a powerful and user-friendly tool in
the study of nonlinear partial differential equations. In this paper we develop a
rather systematic, and simpler, approach to Liouville type theorems and Harnack
type inequalities along the line of [42] and [26] using the method of moving spheres.

For n ≥ 3, let Rn
+ = {x = (x′, t) ; t > 0} denote the half Euclidean space. For

µ > 0, x̄ = (x̄′, t̄) ∈ Rn,

u(x′, t) =

(
µ

1 + µ2|(x′, t)− (x̄′, t̄)|2

)n−2
2

(3)

satisfies 
−∆u = n(n− 2)u

n+2
n−2 , u > 0, in Rn

+,
∂u

∂t
= cu

n
n−2 , on ∂Rn

+,
(4)

where c = (n − 2)µt̄.
The following theorem was established by Li and Zhu.

Theorem 1.2 ([42]) A C2 solution of (4) is of the form (3) for some µ > 0,
x̄′ ∈ Rn−1, and t̄ = c

(n−2)µ
.

Under an additional hypothesis u(x) = O(|x|2−n) for large |x|, the result was
established earlier by Escobar ([28]). The proof of Escobar is along the line of the
proof of Obata, while the proof of Li and Zhu is by the method of moving spheres,
a variant of the method of moving planes.

Liouville type theorems in dimension n = 2 were established in [22], [27], [42], and
the references therein. Analogues for systems were established in [14]. Improvements
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to the results in [42] can be found in recent papers of Ou ([51]) and the second author
([55]).

For n ≥ 3, Liouville type theorems for more general semilinear equations

−∆u = g(u), u > 0, in Rn, (5)

and 
−∆u = g(u), u > 0, Rn

+,

∂u

∂t
= h(u) t = 0,

(6)

have been studied in [32], [22], [9], [15], [20], [26], [42], and the references therein.
The following two Liouville type theorems concerning (5) and (6) are improve-

ments of previous results.
Assume that

(g1) g is locally bounded in (0,∞),

(g2) g(s)s−
n+2
n−2 is non-increasing in (0,∞).

Theorem 1.3 Let g satisfy (g1) and (g2), and let u be a (continuous) solution of
(5). Then either

For some b > 0, bu is of the form (1) and

s−
n+2
n−2 g(s) ≡ n(n − 2)b

4
n−2 on (0, max

Rn
u];

or
u ≡ a for some constant a > 0 satisfying g(a) = 0.

Remark 1.1 Radial symmetry of solutions was established, under additional hy-
potheses, by Caffarelli, Gidas and Spruck ([12]). Under additional hypotheses that
g ≥ 0 and g is locally Lipschitz in (0,∞), Theorem 1.3 was established by Chen and
Lin ([15]), and by Bianchi ([9]). The locally Lipschitz assumption of g was weakened
to locally boundedness of g by Chen and Lin in [20]. Theorem 1.3 gives a further im-
provement by dropping the extra hypothesis that g ≥ 0. For g(s) = sp, 1 ≤ p < n+2

n−2
,

the non-existence of positive entire solutions was established by Gidas and Spruck
([32]). See also a closely related work [37] by Congming Li.

Remark 1.2 Taking g(s) = −sp, we recover the following well known result (a very
special case of the results in [10]): For n ≥ 1 and p > 1, there is no positive solution
of ∆u = up in Rn. Indeed, u can be viewed as a solution of the same equation in Rm

with p > (m + 2)/(m− 2) and m > n, and the result follows from Theorem 1.3.
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For half Euclidean space case we assume that h satisfies

(h1) h is locally Hölder continuous in (0,∞),

(h2) h(s)s−
n
n−2 is non-decreasing.

Theorem 1.4 Let g satisfy (g1) and (g2), and let h satisfy (h1) and (h2). Assume
that u is a (continuous) solution of (6). Then one of the following two alternatives
holds.

Alternative One. u depends only on t and satisfies the ordinary differential equa-
tion 

u′′ = −g(u), u > 0, in [0,∞),

u′(0) = h(u(0)).

Alternative Two. There exist some constants a and b, with b < −
√
− (n−2)a

n
when

a ≤ 0, such that 
g(s) = as

n+2
n−2 , for 0 < s ≤ maxRn+u,

h(s) = bs
n
n−2 , for 0 < s ≤ max∂Rn+ u.

Moreover
u(x) =

α

(|x− x̄|2 + β)
n−2

2

α > 0, x̄ ∈ Rn,

where x̄n = b
n−2

α
2

n−2 , and β = a
(n−2)n

α
4

n−2 .

Remark 1.3 Under additional hypotheses that g is locally Lipschitz, non-negative

and non-decreasing, Theorem 1.4 was established by Bianchi ([9]). For g(s) = as
n+2
n−2

and h(s) = bs
n
n−2 , see [42] and [26].

Remark 1.4 If we further assume g(s) ≥ 0 for s > 0, we have the following obser-
vation:
1◦. If g ≡ 0, there exist a ≥ 0 and b > 0 such that

u(x) = u(t) = at + b and h(b) = a.

2◦. If lim infs→∞ g(s) > 0, then Alternative One does not occur. This follows from
an elementary phase plane argument for ODE (see Appendix C).
3◦. If lim infs→∞ g(s) = 0, Alternative One may occur. Indeed, we can take u(x) =

u(t) = (1 + t)
1
2 , g(s) = 1

4
s−3, and h(s) = 1

2
s

n
n−2 .
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We point out that Theorem 1.4 and Remark 1.4 include a number of previously
established results of various authors as consequences.

Corollary 1.1 For n ≥ 3, −∞ < q < n
n−2

, there is no positive classical solution of
−∆u = 0, Rn

+,

∂u

∂t
= −uq, ∂Rn

+.

Proof: Let g(s) = 0 and h(s) = −sq. Clearly, Alternative Two in Theorem 1.4 does
not occur. By Remark 1.4, Alternative One can not occur either.

2

Remark 1.5 Corollary 1.1 in the case 1 ≤ q < n
n−2

was established by B. Hu in
[35].

Corollary 1.2 Suppose 0 ≤ p ≤ n+2
n−2

, −∞ < q ≤ n
n−2

, and p + q < (n+2
n−2

) + ( n
n−2

).
Then, for any positive constant a, there is no positive classical solution of

∆u + aup = 0, Rn
+,

∂u

∂t
= −uq, ∂Rn

+.

Proof: Let g(s) = asp and h(s) = −sq. By the assumptions on p and q we know
that (g1), (g2), (h1), (h2) are satisfied. The conclusion follows easily from Theorem
1.4 and Remark 1.4.

2

Remark 1.6 Corollary 1.2 under an additional hypothesis p, q > 1 was established
by Chipot, Chlebik, Fila and Shafrir in [25].

Corollary 1.3 (Lou and Zhu [48]) For n ≥ 1 and p, q > 1, there is no positive
classical solution of 

∆u = up, in Rn
+,

∂u

∂t
= uq, on ∂Rn

+.
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Proof: Let g(s) = −sp and h(s) = sq. u can be viewed as a solution of the same
equation in Rm with m > n large so that q > m/(m − 2). Then (g1), (g2), (h1),
(h2) are satisfied (with n replaced by m). Clearly, Alternative Two of Theorem 1.4
does not occur. By Remark 1.4, Alternative One does not occur either.

2

Corollary 1.4 (Lou and Zhu, [48]) For q > 1, the only positive classical solutions
of 

∆u = 0, in Rn
+,

∂u

∂t
= uq, on ∂Rn

+

are u = at + b with some positive constants a, b satisfying a = bq.

Proof: Choose large m such that q > m/(m− 2), and view u as a solution in Rm
+ .

2

Corollary 1.5 (Hu and Yin [36], Ou [50]) Let n ≥ 3, q ≤ n
n−2

, and let u be a
positive classical solution of

−∆u = 0, in Rn
+,

∂u

∂t
= −uq on ∂Rn

+.

Then q = n
n−2

, and, for some x̄′ ∈ Rn−1 and t̄ < 0,

u(x) =

(
−(n− 2)t̄

|x− (x̄′, t̄)|2

)n−2
2

.

Proof: Apply Theorem 1.4.

2

Based on the Liouville type theorem of Caffarelli, Gidas and Spruck (Theorem
1.1), Schoen established the following ground breaking Harnack type inequality.
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Theorem 1.5 ([52]) For n ≥ 3, let B3R be a ball of radius 3R in Rn, and let
u ∈ C2(B3R) be a positive solution of

−∆u = n(n− 2)u
n+2
n−2 , in B3R. (7)

Then
(max

BR

u)(min
B2R

u) ≤ C(n)R2−n. (8)

A consequence is the following energy estimate.

Corollary 1.6 ([52]) Let u be as in Theorem 1.5. Then∫
BR

(
|∇u|2 + u

2n
n−2

)
≤ C(n). (9)

Harnack type inequalities of this nature in dimension n = 2 were established by
Brezis, Li, and Shafrir ([11]), Chen and Lin ([17]), and Li ([41]). For n ≥ 3, Chen
and Lin ([15], [16] ) established such Harnack type inequalities for more general
right hand side g(x, u). In particular they established a slightly weaker version of
the following theorem.

Assuming that g satisfies

g is continuous and positive in (0,∞), and sup
0<s≤t

g(s) <∞, ∀ t <∞, (10)

s−
n+2
n−2 g(s) is non-increasing in (0,∞), (11)

and
lim
s→∞

s−
n+2
n−2 g(s) exists and belongs to (0,∞). (12)

Theorem 1.6 Let g satisfy the above, and let u be a (continuous) solution of

−∆u = g(u), u > 0, on B3R, (13)

with
max
BR

u ≥ 1.

Then
(max

BR

u)(min
B2R

u) ≤ CR2−n,

where C depends only on n and g.
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Remark 1.7 Under a slightly stronger hypothesis that g is locally Lipschitz in (0,∞),
the result was established by Chen and Lin (theorem 1.2 in [15]).

Remark 1.8 If we allow lims→∞ s−
n+2
n−2 g(s) = 0 in (12), the result no longer holds.

For instance, let g(s) = 1
4
(s + 1)−3, then g satisfies (10), (11) and

lims→∞ s−
n+2
n−2 g(s) = 0. However uj(x) =

√
x1 + j − 1 satisfies −∆uj = g(uj)

in B3, and minB2
uj → ∞. On the other hand, as shown in Appendix D, if

lims→∞ s−pg(s) ∈ (−∞, 0) for some p > 1, and sup0<s<t |g(s)| < ∞ for every t,
then any positive solution of −∆u = g(u) in B3 satisfies maxB1

u ≤ C(n, g).

Harnack type inequalities are closely related to works on pointwise estimates of
blow-up solutions to Yamabe type and scalar curvature type equations (e.g. [52],
[53], [38], [39], [40], [16], [18], [19], [46], [20], [21], [23], [34], [45], and the references
therein). They are also related to the work in [13].

The following theorem is an extension of the Harnack type inequality and the
energy estimate of Schoen to half Euclidean balls under geometrically natural bound-
ary conditions. We will use notation B+

R = {x = (x′, t) ∈ BR | t > 0} to denote the
half ball, and ∂ ′B+

R = ∂B+
R ∩ {t = 0}. For n ≥ 3 and c ∈ R, consider

∆u + n(n− 2)u
n+2
n−2 = 0, u > 0, in B+

3R,

∂u

∂t
= cu

n
n−2 , on ∂ ′B+

3R.

(14)

Theorem 1.7 For n ≥ 3, c ∈ R, let u ∈ C1(B+
3R) ∩ C2(B+

3R) be a solution of (14).
Then, for some constant C = C(n, c),

(max
B+
R

u)(min
∂B+

2R

u) ≤ CR2−n, (15)

and ∫
B+
R

(|∇u|2 + u
2n
n−2 )dx ≤ C. (16)

Remark 1.9 It is easy to see from the proof that for all c ≤ A, the constant C in
Theorem 1.7 depends only on n and A.

Remark 1.10 For c ≤ 0, the energy estimate (16) can easily be deduced from (15)
as in the derivation of (9) from (8) (see, e.g., page 974-975 of [16]). However our
proof of (16) for c > 0 is surprisingly elaborate. See Section 9 for details.
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Remark 1.11 The difference between Theorem 1.7 and the results in [34] is that
Theorem 1.7 is purely local (no assumption is made on the other part of the boundary
of ∂B+

3R). The difference is the same as that between [38] and [16]. Harnack type
inequality (15) plays an important role in deducing the energy estimate (16). It
implies that all the large local maximums of u must have comparable magnitudes if
they are not too close to ∂B+

3R ∩ Rn
+. Once the energy estimate (16) is established,

the results in [34] can be applied, i.e., any blow-up solutions {uj} must have isolated

simple blow-ups in B+
(3−β)R for any β > 0, and the distance between any two blow-up

points is bounded below by dR, d = d(n, c, β) > 0. Moreover

inf
RΛ1

u ≤ C(n, c, β, Λ1, Λ2) inf
RΛ2

u, (17)

for any solution u of (14) and any infinite subsets Λ1 and Λ2 of B+
(3−β). In particular,

min
∂B+

2R

u in (15) can be replaced by inf
RΛ

u for any infinite subset Λ of B+
2 (the C in (15)

then depends also on Λ). Estimate (17) will be established towards the end of Section
9.

We have also established the Harnack type inequality (15) for more general right
hand sides g and h.

We assume that h is locally Hölder continuous in (0,∞) and g is continuous in
(0,∞), and they satisfy

(G1) g(s) > 0 and sup
0<s≤t

g(s) <∞ ∀ t <∞,

(G2) s−
n+2
n−2 g(s) is non-increasing and lim

s→∞
s−

n+2
n−2 g(s) > 0,

(H1) inf
0<s≤1

h(s) > −∞,

(H2) s−
n
n−2 h(s) is non-decreasing and lim

t→∞
s−

n
n−2 h(s) <∞.

Theorem 1.8 Let g and h satisfy the above, and let u be a (continuous) positive
solution of 

−∆u = g(u), B+
3R,

∂u

∂t
= h(u), t = 0,

(18)

with max
B+
R

u ≥ 1. Then

(max
B+
R

u)(min
∂B+

2R

u) ≤ CR2−n,
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where C depends only on g, h and dimension n.

Harnack type inequalities for
∆u + K(x)u

n+2
n−2 = 0, u > 0, in B+

3R,

∂u

∂t
= c(x′)u

n
n−2 , on ∂ ′B+

3R,

with appropriate K(x) and c(x′) will be given in a subsequent paper of the second
author ([56]).

Recent works on pointwise estimates of blow-up solutions of critical exponent
equations with boundary conditions can be found in works of Li ([39]), Li and Zhu
([43] and [44]), Han and Li ([34]), Zhu ([57] and [58]), Chen and Li ([24]), Ghoussoub,
Gui and Zhu ([29]), Lin ([47]), Gui and Lin ([33]), Zhang ([56]), and the references
therein.

Our paper is organized as follows. In Section 2, we give a different proof of the
Liouville type theorem of Caffarelli, Gidas and Spruck (Theorem 1.1). For instance,
we do not reduce it to the radial symmetry of u and conclude by using ODE, rather
we catch the form of solutions using the method of moving spheres. This approach
was suggested in [42], while we have made significant simplifications in this paper.
Using the same approach, we prove Theorem 1.3 in Section 3, and Theorem 1.4 in
Section 4. In Section 5, we give a different proof of the Harnack type inequality
of Schoen (Theorem 1.5). In particular our proof does not rely on the Liouville
type theorem of Caffarelli, Gidas and Spruck. In Section 6, we establish Theorem
1.6 by essentially the same arguments in Section 5. Our proof is different from
the one given by Chen and Lin in [15]. In Section 7, we establish the Harnack type
inequality (15) in Theorem 1.7. In Section 8, we prove Theorem 1.8. In Section 9, we
establish the energy estimate (16), and therefore completing the proof of Theorem
1.7. In Appendix A, we prove a boundary lemma for linear second order elliptic
equations. In Appendix B, we include some calculus lemmas taken from [42] and
[26]. In Appendix C, we present an elementary proof of some statement concerning
ODE. In Appendix D, we present a result concerning Remark 1.8.

2 A different proof of the Liouville type theorem

of Caffarelli, Gidas and Spruck

In this section we give a different proof of the Liouville type theorem of Caffarelli,
Gidas and Spruck (Theorem 1.1). The theorem will be deduced from a number of
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lemmas as follows. For x ∈ Rn and λ > 0, consider the Kelvin transformation of u :

ux,λ(y) =
λn−2

|y − x|n−2
u(x +

λ2(y − x)

|y − x|2 ), y ∈ Rn \ {x}.

Our first lemma says that the method of moving spheres can get started.

Lemma 2.1 For every x ∈ Rn, there exists λ0(x) > 0 such that ux,λ(y) ≤ u(y), for
all 0 < λ < λ0(x) and |y − x| ≥ λ.

Set, for x ∈ Rn,

λ̄(x) = sup{µ > 0|ux,λ(y) ≤ u(y), for all |y − x| ≥ λ, 0 < λ ≤ µ}.

By Lemma 2.1, λ̄(x) is well defined and 0 < λ̄(x) ≤∞ for x ∈ Rn.
Then we show

Lemma 2.2 If λ̄(x) <∞ for some x ∈ Rn, then ux,λ̄(x) ≡ u on Rn\{x}.

Lemma 2.3 If λ̄(x̄) =∞ for some x̄ ∈ Rn, then λ̄(x) =∞ for all x ∈ Rn.

Lemma 2.4 λ̄(x) <∞ for all x ∈ Rn.

Proof of Theorem 1.1. It follows from Lemma 2.2 and Lemma 2.4 that for every
x ∈ Rn, there exists λ̄(x) > 0 such that ux,λ̄(x) ≡ u. Then by a calculus lemma in
Appendix A (Lemma 11.1), for some a, d > 0 and some x̄ ∈ Rn,

u(x) ≡ (
a

d + |x− x̄|2 )
n−2

2 .

Theorem 1.1 follows from the above and the fact that u is a solution of (2).

2

In the rest of this section we establish the above lemmas.
Proof of Lemma 2.1. Without loss of generality we may take x = 0. We use uλ

to denote u0,λ. Clearly, there exists r0 > 0 such that

d

dr
(r

n−2
2 u(r, θ)) > 0, ∀ 0 < r < r0, θ ∈ Sn−1.

Consequently,
uλ(y) < u(y), ∀ 0 < λ < |y| < r0. (19)
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By the super-harmonicity of u and the maximum principle,

u(y) ≥ (min
∂Br0

u)rn−2
0 |y|2−n, ∀ |y| ≥ r0. (20)

Let

λ0 = r0(
min∂Br0

u

maxBr0
u

)
1

n−2 ≤ r0.

Then for every 0 < λ < λ0, and |y| ≥ r0, we have

uλ(y) ≤ λ0
n−2

|y|n−2
(max

Br0

u) ≤
rn−2

0 min∂Br0
u

|y|n−2
. (21)

It follows from (20),(21) and (19) that for every 0 < λ < λ0,

uλ(y) ≤ u(y), |y| ≥ λ.

2

Proof of Lemma 2.2. Without loss of generality we take x = 0 and let λ̄ = λ̄(0),
uλ = u0,λ, and Σλ = {y; |y| > λ}. We wish to show uλ̄ ≡ u in Rn\{0}. Clearly, it
suffices to show

uλ̄ ≡ u on Σλ̄.

We know from the definition of λ̄ that

uλ̄ ≤ u on Σλ̄.

A simple calculation yields

∆uλ(y) = (
λ

|y|)
n+2∆u(

λ2y

|y|2 ),

and, in view of (2),

−∆uλ = n(n− 2)uλ

n+2
n−2 , λ > 0.

Therefore

−∆(u− uλ̄) = n(n− 2)(u
n+2
n−2 − u

n+2
n−2

λ̄
) ≥ 0 in Σλ̄. (22)

If u− uλ̄ ≡ 0 on Σλ̄, we stop. Otherwise, by the Hopf lemma and the compactness
of ∂Bλ̄, we have

d

dr
(u− uλ̄)|∂Bλ̄

≥ b > 0. (23)
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By the continuity of ∇u, there exists R > λ̄ such that

d

dr
(u− uλ) ≥

b

2
> 0, for λ̄ ≤ λ ≤ R, λ ≤ r ≤ R.

Consequently, since u− uλ = 0 on ∂Bλ, we have

u(y)− uλ(y) > 0, for λ̄ ≤ λ < R, λ < |y| ≤ R. (24)

Set c = min∂BR(u − uλ̄) > 0. It follows from the super-harmonicity of u − uλ̄

that

u(y)− uλ̄(y) ≥ cRn−2

|y|n−2
, ∀ |y| ≥ R. (25)

Therefore

u(y)− uλ(y) ≥ cRn−2

|y|n−2
− (uλ(y)− uλ̄(y)), |y| ≥ R. (26)

By the uniform continuity of u on B̄R, there exists 0 < ε < R− λ̄ such that for
all λ̄ ≤ λ ≤ λ̄ + ε,

|λn−2u(
λ2y

|y|2 )− λ̄n−2u(
λ̄2y

|y|2 )| < cR

2
, for |y| ≥ R.

It follows from (26) and the above that

u(y)− uλ(y) > 0, for λ̄ ≤ λ ≤ λ̄ + ε, |y| ≥ R. (27)

Estimates (24) and (27) violate the definition of λ̄.

2

Proof of Lemma 2.3. Since λ̄(x̄) =∞, we have

u(y) ≥ ux̄,λ(y), for all λ > 0 and |y − x̄| ≥ λ.

It follows that
lim
|y|→∞

|y|n−2u(y) =∞.

On the other hand, if λ̄(x) <∞ for some x ∈ Rn, then, by Lemma 2.2,

lim
|y|→∞

|y|n−2u(y) = lim
|y|→∞

|y|n−2ux,λ̄(x)(y) = λ̄(x)n−2u(x) <∞.

Contradiction.
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2

Proof of Lemma 2.4. We prove by contradiction argument. If λ̄(x̄) =∞ for some
x̄, then by Lemma 2.3, λ̄(x) =∞ for all x , i.e.

ux,λ(y) ≤ u(y), for all λ > 0 and x ∈ Rn, |y − x| ≥ λ.

This, by a calculus lemma in Appendix A (Lemma 11.2), implies that u ≡ constant,
a contradiction to (2).

2

3 Proof of Theorem 1.3, a Liouville type theorem

for more general equations in Rn

In this section we establish Theorem 1.3. The proof is along the same line of the
proof of Theorem 1.1, first establishing Lemma 2.1-2.3.

Proof of Lemma 2.1 under the hypothesis of Theorem 1.3. We follow the
proof of Lemma 2.1, since we can not use the super-harmonicity of u (g is allowed
to change signs), we need to prove that

lim inf
|y|→∞

(
|y|n−2u(y)

)
> 0. (28)

Once (28) is proved, we have, instead of (20),

u(y) ≥ c0|y|2−n for some c0 > 0 and ∀ |y| ≥ r0.

Then we pick some λ0 ∈ (0, r0) such that λn−2
0 (max

Br0

u) ≤ c0 to complete the proof

as in the proof of Lemma 2.1.
In the following we establish (28). Let

O = {y ; u(y) < |y|2−n}.

By (g2),

u(y)−
n+2
n−2 g(u(y)) ≥ (|y|2−n)−

n+2
n−2 g(|y|2−n) ≥ g(1), y ∈ O \B1.

It follows that

g(u(y))

u(y)
≥ g(1)u(y)

4
n−2 ≥ min{0, g(1)}

|y|4 , y ∈ O \B1,
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and therefore

−∆u(y) +
C

|y|4u(y) ≥ 0, y ∈ O \B1,

where C = max{0,−g(1)} ≥ 0. Let

ξ(y) = |y|2−n + |y|1−n. (29)

A simple calculation yields

−∆ξ(y) +
C

|y|4ξ(y) = −(n− 1)|y|−n−1 + C(|y|−n−2 + |y|−n−3).

Thus, for large R̄,

−∆ξ(y) +
C

|y|4ξ(y) ≤ 0, for |y| ≥ R̄.

Pick some small ε̄ > 0 such that

u(y) > ε̄ξ(y), for |y| = R̄,

and
u(y) = |y|2−n > ε̄ξ(y), on ∂O.

As a result, u− ε̄ξ satisfies

−∆(u− ε̄ξ) +
C

|y|4 (u− ε̄ξ) ≥ 0, in O \BR̄,

u− ε̄ξ ≥ 0, on ∂(O \BR̄),

lim inf|y|→∞(u(y)− ε̄ξ(y)) ≥ 0.

By the maximum principle, u− ε̄ξ ≥ 0 on O \BR, and therefore,

lim inf
y∈Ō,|y|→∞

(
|y|n−2u(y)

)
≥ lim inf

y∈Ō,|y|→∞

(
ε̄|y|n−2ξ(y)

)
> 0.

Estimate (28) follows immediately.

2

Proof of Lemma 2.2 under the hypothesis of Theorem 1.3. We follow the
proof of Lemma 2.2 and only provide necessary changes.
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The equation of uλ now is

−∆uλ = (
λ

|y|)
n+2g((

|y|
λ

)n−2uλ(y)), y ∈ Σλ.

Let

O :=

{
y ∈ Σλ̄ ; u(y) < min{( |y|

λ̄
)n−2, 2}uλ̄(y)

}
.

By (g2),

u−
n+2
n−2 g(u) ≥ u

−n+2
n−2

λ̄
(

λ̄

|y|)
n+2g((

|y|
λ̄

)n−2uλ̄), in O.

So, instead of (22), we have,

u−
n+2
n−2 ∆u ≤ u

−n+2
n−2

λ̄
∆uλ̄, in O. (30)

Write us = su + (1− s)uλ̄, we have, by (30), that

0 ≥
∫ 1

0

d

ds

(
u
−n+2
n−2

s ∆us

)
ds

=
(∫ 1

0
u
−n+2
n−2

s ds
)

∆(u− uλ̄) −
n + 2

n− 2

(∫ 1

0
u
− 2n
n−2

s ∆usds
)

(u− uλ̄), in O.(31)

We establish (23) as follows. For y0 ∈ ∂Bλ̄, if d
dr

(u−uλ̄)(y0) < (n−2)u(y0), then

d

dr

(
(
|y|
λ̄

)n−2uλ̄(y)− u(y)

)∣∣∣∣
y=y0

= (n− 2)u(y0)−
d

dr
(u− uλ̄)(y0) > 0.

So for some δ̄ > 0, Bδ̄(y0)∩Σλ̄ ⊂ O. By the Hopf lemma (see (31)), d
dr

(u−uλ̄)(y0) >
0. Estimate (23) is established. Clearly (24) still follows from (23). Next we
establish, instead of (25), the following estimate:

lim inf
|y|→∞

|y|n−2(u− uλ̄)(y) > 0. (32)

Once (32) is established, the rest of the proof of Lemma 2.2 is the same (note that
on Σλ̄ \ (O∪BR), u ≥ auλ̄ with a =: min{(R

λ̄
)n−2, 2} > 1, moreover, by (31) and the

strong maximum principle, u− uλ̄ > 0 in O).
To prove (32), we observe that for large R̄,

uλ̄(y) ≤ u(y) ≤ 2uλ̄(y) ≤ C|y|2−n < 1, in O \BR̄.
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It follows, by (g2) and the the equation of u, that

∆u = −g(u) ≤ −g(1)u
n+2
n−2 ≤ C

|y|n+2
, in O \BR̄.

Since both ( |y|
λ̄

)n−2uλ̄(y) and ( |y|
λ̄

)n−2u(y) stay in compact subset of (0,∞) for y ∈
O \BR̄,

1

C|y|n−2
≤ us(y) ≤ C

|y|n−2
, ∀ y ∈ O \BR̄, 0 ≤ s ≤ 1,

and, by the equation of uλ̄,

|∆uλ̄| ≤
C

|y|n+2
, in O \BR̄.

By (31) and the above estimates, we have, for some positive constant C,

−∆(u− uλ̄) +
C

|y|4 (u− uλ̄) ≥ 0 in O \BR̄.

Let ξ be given in (29), then for a possibly larger R̄,

−∆ξ(y) +
C

|y|4ξ(y) ≤ 0 for |y| ≥ R̄.

Since, u− uλ̄ > 0 in O, and

(u− uλ̄)(y) ≥ uλ̄(y) ≥
λ̄n−2 minBλ̄

u

|y|n−2
, in ∂O \BR̄,

there exists some ε̄ > 0 such that

(u− uλ̄ − ε̄ξ)(y) ≥ 0 on ∂(O \B2R̄).

By the maximum principle,

(u− uλ̄ − ε̄ξ)(y) ≥ 0 in O \B2R̄.

It follows that
lim inf

y∈Ō,|y|→∞
|y|n−2(u− uλ̄)(y) ≥ ε̄ > 0.

On the other hand, by the note below (32), for some a > 1,

lim inf
y∈Rn\O,|y|→∞

|y|n−2(u− uλ̄)(y) ≥ (a− 1) lim
|y|→∞

|y|n−2uλ̄(y) > 0.
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Estimate (32) is established.

2

Proof of Theorem 1.3. It follows from Lemma 2.1 and Lemma 2.3 that either
λ̄(x) =∞ for all x in Rn, or 0 < λ̄(x) < ∞ for all x in Rn. In the first case, u ≡ b
for some constant a by Lemma 11.2. In the second case, it follows from Lemma 2.2
that ux,λ̄(x) ≡ u for all x in Rn. Consequently, in view of Lemma 11.1,

u(x) ≡ (
a

d + |x− x̄|2 )
n−2

2 .

where a, d > 0. So for some constant c > 0.

−∆u = cu
n+2
n−2 = g(u).

Theorem 1.3 follows easily.

2

4 Proof of Theorem 1.4, a Liouville type theorem

on Rn
+

In this section we establish Theorem 1.4 through a number of lemmas as follows.
We still use ux,λ to denote the Kelvin transformation of u, as in Section 2, but
mainly work with x ∈ ∂Rn

+. We use notations Bλ(x) = {y ∈ Rn ; |y − x| < λ} and
Bλ = Bλ(0).

Lemma 4.1 For every x ∈ ∂Rn, there exists λ0(x) > 0 such that ux,λ(y) ≤ u(y),
for all 0 < λ < λ0(x) and y ∈ Rn

+ \Bλ(x).

Set, for x ∈ ∂Rn
+,

λ̄(x) = sup{µ > 0 ; ux,λ(y) ≤ u(y), for all y ∈ Rn
+ \Bλ(x), 0 < λ ≤ µ}.

Next we show

Lemma 4.2 If λ̄(x̄) <∞ for some x̄ ∈ ∂Rn
+, then ux̄,λ̄(x̄) ≡ u on Rn

+ \ {x̄}.

We continue to show

Lemma 4.3 If λ̄(x̄) =∞ for some x̄ ∈ ∂Rn
+, then λ̄(x) =∞ for all x ∈ ∂Rn

+.
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By Lemma 4.3, either λ̄(x) =∞ ∀ x ∈ ∂Rn
+, or λ̄(x) <∞ ∀ x ∈ ∂Rn

+. Theorem 1.4
then follows from the following two lemmas.

Lemma 4.4 If λ̄(x) = ∞ for all x ∈ ∂Rn, we have Alternative One in Theorem
1.4.

Lemma 4.5 If λ̄(x) < ∞ for all x ∈ ∂Rn
+, we have Alternative Two in Theorem

1.4.

Now the
Proof of Lemma 4.1. Without loss of generality we let x = 0 and use notations
uλ = u0,λ, λ̄ = λ̄(0).

A direct calculation gives

∆uλ(y) + (
λ

|y|)
n+2g((

|y|
λ

)n−2uλ(y)) = 0, (33)

and
∂uλ(y)

∂t
= (

λ

|y|)
nh((
|y|
λ

)n−2uλ(y)) on t = 0. (34)

By the same argument in the proof of Theorem 1.3, we only need to show that

lim inf
|y|→∞

|y|n−2u(y) > 0. (35)

Let
O = {y ∈ Rn

+ ; u(y) < |y|2−n}.
By (g2) and (h2),

g(u(y))

u(y)
≥ min{0, g(1)}

|y|4 , y ∈ O \B+
1 ,

and
h(u(y))

u(y)
≤ h(1)u(y)

2
n−2 ≤ max{0, h(1)}

|y|2 , y ∈ O \B+
1 .

It follows that 
−∆u +

C1

|y|4u ≥ 0, y ∈ O,

∂u

∂t
− C2

|y|2u ≤ 0, y ∈ ∂ ′O,
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where C1 = max{0,−g(1)} and C2 = max{0, h(1)}, and ∂ ′O = ∂O ∩ {t = 0}.
For A > 1, let

ξ(y) = |y − Aen|2−n + |y|1−n, (36)

where en = (0, · · · , 0, 1). It is easy to see that for large A and R = A2, we have
−∆ξ +

C1

|y|4ξ ≤ 0, y ∈ Rn
+ \BR,

∂ξ

∂t
− C2

|y|2ξ ≥ 0, {t = 0}.

Pick some small ε̄ > 0 such that u ≥ ε̄ξ on ∂(O \ BR), we have, by the maximum
principle,

u ≥ ε̄ξ on O \BR.

Estimate (35) follows from the above.

2

Proof of Lemma 4.2. Without loss of generality, x̄ = 0. The equation of uλ̄ are
given in (33) and (34). Let

O :=

{
y ∈ Rn

+ \Bλ̄ ; u(y) < min{( |y|
λ̄

)n−2, 2}uλ̄(y)

}
.

By (g2) and (h2),

u−
n+2
n−2 g(u) ≥ u

−n+2
n−2

λ̄
(

λ̄

|y|)
n+2g((

|y|
λ̄

)n−2uλ̄), in O,

and

u−
n
n−2 h(u) ≤ u

− n
n−2

λ̄
(

λ̄

|y|)
nh((
|y|
λ̄

)n−2uλ̄), in ∂ ′O,

where ∂ ′O = ∂O ∩ {t = 0}. Thus, by the equations of u and uλ̄, we have
u−

n+2
n−2 ∆u ≤ u

−n+2
n−2

λ̄
∆uλ̄, in O,

u−
n
n−2

∂u

∂t
≤ u

− n
n−2

λ̄

∂uλ̄

∂t
, on ∂ ′O.

(37)
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Let wλ = u − uλ and us = su + (1 − s)uλ̄, we have, by arguments below (30),
that 

∆wλ̄ ≤ (n+2
n−2

)
(∫ 1

0 u
−n+2
n−2

s ds
)−1 (∫ 1

0 u
− 2n
n−2

s ∆usds
)

wλ̄, in O,

∂wλ̄

∂t
≤ ( n

n−2
)
(∫ 1

0 u
− n
n−2

s ds
)−1

(∫ 1
0 u
−2(n−1)

n−2
s

∂us
∂t

ds

)
wλ̄, on ∂ ′O.

(38)

Our goal is to show wλ̄ ≡ 0 in Rn
+\Bλ̄. We prove it by contradiction. Suppose

wλ̄ 6≡ 0. Let ν denote the unit outer normal of ∂Bλ̄. For y0 ∈ ∂Bλ̄ ∩ Rn
+, if

∂wλ̄(y0)
∂ν

< (n− 2)u(y0), by arguments similar to that below (30), we have, for some

δ̄ > 0, Bδ̄(y0) ∩ (Rn
+ \ Bλ̄) ⊂ O. By the Hopf lemma and Lemma 10.1, ∂wλ̄(y0)

∂ν
> 0.

So we have shown that

∂wλ̄(y)

∂ν
> 0, for y ∈ ∂Bλ̄ ∩ Rn

+. (39)

By the maximum principle, we have

wλ̄(y) > 0, for y ∈ O ∪ (∂ ′O \ ∂Bλ̄).

Following the same arguments in the proof of Theorem 1.3, we reach a contra-
diction once we show

lim inf
|y|→∞

|y|n−2wλ̄(y) > 0. (40)

As in the proof of Theorem 1.3, for some large R̄ and some positive constants
C1 and C2, 

−∆wλ̄ +
C1

|y|4wλ̄ ≥ 0, y ∈ O \BR̄,

∂wλ̄

∂t
− C2

|y|2wλ̄ ≤ 0, y ∈ ∂ ′(O \BR̄).

Let ξ be given in (36) for sufficiently large A and let ε̄ > 0 be such that

wλ̄ ≥ ε̄ξ on ∂(O \B2R̄).

Applying the maximum principle in O \B2R̄ as in the proof of Lemma 4.1, we have

wλ̄ ≥ ε̄ξ on (O \B2R̄).

Estimate (40) follows from the above.
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2

The proof of Lemma 4.3 is the same as that of Lemma 2.3.

Proof of Lemma 4.4. Suppose that λ̄(x) = ∞ ∀ x ∈ ∂Rn
+. Then by a calculus

lemma (Lemma 11.3 with ν = n− 2), u depends only on t, and we have Alternative
One.

2

Proof of Lemma 4.5. By Lemma 4.2, u ≡ ux,λ̄(x) ∀ x ∈ ∂Rn
+. In particular,

a := lim
|y|→∞

|y|n−2u(y) = λ̄(x)n−2u(x) <∞ ∀ x ∈ ∂Rn
+. (41)

Applying a calculus lemma, Lemma 11.1, on ∂Rn
+, we have

u(x′, 0) =
a

(|x′ − x̄′|2 + d2)
n−2

2

, ∀ x′, (42)

where x̄′ ∈ ∂Rn
+ and a, d > 0.

The following arguments are taken from [26] and [9]. Consider spheres B(x, λ̄(x))
for x ∈ ∂Rn

+. From (41) and (42) we see that all these spheres pass through (x̄′,±d).
Let P = (x̄′,−d) and define

v(z) = (
2d

|z − P |)
n−2u(P +

4d2(z − P )

|z − P |2 ).

Then by direct computation and the properties of conformal transformation, Q :=
(x̄′, d) is mapped into itself and P is mapped to∞, and Rn

+ is mapped to |z−Q| < 2d.
Since u ≡ ux,λ̄(x) for all x ∈ ∂Rn

+, v is symmetric with respect to all hyperplanes
through Q, so v is radially symmetric about Q in |z−Q| ≤ 2d. The equations that
v satisfies are

∆v(z) + (
2d

|z − P |)
n+2g((

|z − P |
2d

)n−2v(z)) = 0, B(Q, 2d),

(2− n)v(z)

4d
− dv(z)

dν
= (
|z − P |

2d
)−nh((

|z − P |
2d

)n−2v(z)), ∂B(Q, 2d),

(43)

where ν denotes the unit outer normal to the boundary of |z − Q| ≤ 2d. Since v
is radially symmetric about Q, the right hand side of the second equation of (43)
equals a constant C on |z −Q| = 2d. Thus we must have

h(s) = bs
n
n−2 for 0 < s ≤ max

∂Rn+
u.
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Here we have used the fact that {|z−P |/2d)n−2v(z) : |z−Q| = 2d} = (0, max∂Rn+ u].
¿From the first equation of (43) we can deduce, for some c ∈ R,

g(s) = cs
n+2
n−2 0 < s ≤ max

Rn+
u. (44)

Indeed, since v is radially symmetric about Q, and Q 6= P , u(P + 4d2(z−P )
|z−P |2 ) =

( |z−P |
2d

)n−2v(z) is not constant on {|z − Q| = r}, i.e., minSr u < maxSr u, where

Sr = {P + 4d2(z−P )
|z−P |2 ; |z −Q| = r}. Thus, by the radial symmetry of v and the first

equation of (43), we have, for every r ∈ (0, 2d), g(s) = C(r)s
n+2
n−2 for minSr u ≤ s ≤

maxSr u. It is clear that C(r) is locally constant and therefore is independent of r.
Thus (44) follows from the fact that ∪0<r<2dSr = Rn. Therefore the first equation
of (43) becomes

∆v(z) + cv(z)
n+2
n−2 = 0 in |z −Q| < 2d.

Since v is radially symmetric about Q, by ODE argument, we have Alternative Two.

2

5 A different proof of the Harnack type inequal-

ity of R. Schoen

In this section we give a different proof of the Harnack inequality of R. Schoen
(Theorem 1.5). Our proof is more direct and does not rely on the Liouville type
theorem of Caffarelli, Gidas and Spruck. By making a transformation u(y) →
R

n−2
2 u(Ry) one sees easily that we only need to prove Theorem 1.5 for R = 1, which

will be assumed in this section.
First we have the following elementary lemma.

Lemma 5.1 Let u ∈ C0(B1) be a positive function. Then for every a > 0, there
exists |x| < 1 such that

u(x) ≥ 1

2a
max
Bσ(x)

u.

and

σau(x) ≥ 1

2a
u(0).

where σ = (1− |x|)/2.
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Proof. Consider
v(y) = (1− |y|)au(y).

Let x ∈ B1 be a maximum point of v and let σ = (1− |x|)/2. It is easy to see that
x and σ have the desired properties.
Proof of Theorem 1.5. The proof is by contradiction argument. Suppose the
contrary, then there exist solutions of (7) uj, j = 1, 2, ..., such that

uj(x̄j)min
B2

uj > j, (45)

where uj(x̄j) = maxB1
uj(y).

Applying Lemma 5.1 to u = uj(· + x̄j) and a = (n − 2)/2, we find xj ∈ B1(x̄j)
such that

uj(xj) ≥ 2
2−n

2 max
Bσj (xj)

uj,

and
(σj)

n−2
2 uj(xj) ≥ 2

2−n
2 uj(x̄j),

where

σj =
1

2
(1− |xj − x̄j|) ≤

1

2
.

It follows that
uj(xj) ≥ uj(x̄j), (46)

and, also using (45),

γj := uj(xj)
2

n−2 σj ≥
1

2
uj(x̄j)

2
n−2 ≥ 1

2
[uj(x̄j)min

B2

uj]
1

n−2 ≥ 1

2
j

1
n−2 →∞. (47)

Set

wj(y) =
1

uj(xj)
uj(xj +

y

uj(xj)
2

n−2

), |y| < Γj ,

where
Γj := uj(xj)

2
n−2 .

Then

−∆wj = n(n− 2)w
n+2
n−2

j , wj > 0, on BΓj , (48)

and
1 = wj(0) ≥ 2

2−n
2 max

Bγj

wj . (49)
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On |y| = Γj we have, by (45) and (46), that

min
∂BΓj

wj ≥
minB2

uj

uj(xj)
>

j

uj(xj)uj(x̄j)
≥ j

uj(xj)2
= jΓ2−n

j . (50)

For every fixed x ∈ Rn, as in the derivation of (19), we can find 0 < rx,j < 1 such
that

wj,x,λ(y) := (
λ

|y − x|)
n−2wj(x+

λ2(y − x)

|y − x|2 ) ≤ wj(y), ∀ 0 < λ ≤ |y−x| ≤ rx,j. (51)

It is then easy to find some λx,j ∈ (0, rx,j] such that

wj,x,λ(y) ≤ wj(y) for all 0 < λ ≤ λx,j, y ∈ BΓj \Brx,j (x). (52)

Indeed the above can be verified as in (21) with

λx,j = rx,j(
minBΓj

\Brx,j (x) wj

max|y−x|≤rx,j wj
)

1
n−2 ≤ rx,j.

Because of (51) and (52), we can define

λ̄j(x) = sup{0 < µ < Γj − |x|; wj,x,λ(y) ≤ wj(y), ∀y ∈ BΓj \Bλ(x), 0 < λ < µ}.
(53)

Lemma 5.2 For every x ∈ Rn,

lim
j→∞

λ̄j(x) =∞.

Proof. For simplicity, we take x = 0. Suppose the contrary, then (along a subse-
quence),

λ̄j ≤ C < γj, (54)

for some constant C independent of j. Here we have used the fact γj →∞
(see (47) ).

By the definition of λ̄j ,

wj,λ̄j ≤ wj in Σj := {y; λ̄j < |y| < Γj},
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and therefore

−∆(wj − wj,λ̄j) = n(n− 2)
(
w

n+2
n−2

j −w
n+2
n−2

j,λ̄j

)
≥ 0, in Σj. (55)

Also, by (49) and (54),
max
∂BΓj

wj,λ̄j ≤ CΓ2−n
j

for some constant C independent of j. Therefore, by (55) and (50), for large j,

min
∂BΓj

(wj − wj,λ̄j) > 0.

Recall that
wj − wj,λ̄j = 0 on ∂Bλ̄j .

An application of the Hopf Lemma and the strong maximum principle yields

(wj − wj,λ̄j)(y) > 0, λ̄j < |y| ≤ Γj, (56)

and
∂(wj −wj,λ̄j)

∂r
|∂Bλ̄j

> 0. (57)

Consequently (see the derivation of (19)), for some εj > 0,

wj,λ(y) ≤ wj(y), ∀λ̄j ≤ λ ≤ λ̄j + εj, λ ≤ |y| ≤ Γj .

This violates the definition of λ̄j .

2

Since γj →∞, one easily deduces from (48) and (49) that (along a subsequence)

wj → w in C2
loc(R

n)

for some solution w of

−∆w = n(n− 2)w
n+2
n−2 , w > 0, Rn. (58)

By Lemma 5.2 and the convergence of wj to w, we have

wx,λ(y) ≤ w(y), ∀ |y − x| ≥ λ > 0. (59)

It follows, by Lemma 11.2, w ≡ constant. This violates (58). Theorem 1.5 is
established.

2
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6 Proof of Theorem 1.6, a Harnack type inequal-

ity for more general equations in Rn

Essentially the same proof of Theorem 1.5 yields a
Proof of Theorem 1.6. The proof is by contradiction argument. Suppose the

contrary, then there exist solutions of (13) uj, j = 1, 2, ..., such that

uj(x̄j) min
B2Rj

uj >
j

Rn−2
j

, (60)

where
uj(x̄j) = max

BRj

uj ≥ 1. (61)

Applying Lemma 5.1 to u = ui(Rj ·+x̄j) and a = (n−2)/2, we can find xj ∈ BRj(x̄j)
such that

uj(xj) ≥ 2
2−n

2 max
Bσj (xj)

uj(x),

and
(σj)

n−2
2 uj(xj) ≥ (Rj/2)

n−2
2 uj(x̄j),

where

σj =
1

2
(Rj − |xj − x̄j|) ≤

Rj

2
.

It follows that
uj(xj) ≥ uj(x̄j), (62)

and, also using (60),

γj := uj(xj)
2

n−2 σj ≥
Rj

2
uj(x̄j)

2
n−2 ≥ Rj

2
[uj(x̄j) min

B2Rj

uj]
1

n−2 >
1

2
j

1
n−2 →∞, (63)

Set

wj(y) =
1

uj(xj)
uj(xj +

y

uj(xj)
2

n−2

), |y| < Γj ,

where
Γj = uj(xj)

2
n−2 Rj.

Then
−∆wj = uj(xj)

−n+2
n−2 g(uj(xj)wj) on BΓj , (64)
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1 = wj(0) ≥ 2
2−n

2 max
Bγj

wj . (65)

On |y| = Γj we have, by (60) and (62),

min
∂BΓj

wj ≥
minB2Rj

uj

uj(xj)
>

j

uj(xj)uj(x̄j)R
n−2
j

≥ j

uj(xj)2Rn−2
j

= jΓ2−n
j .

As in the proof of Theorem 1.5, for every x ∈ Rn, we can find 0 < λx,j < 1 such
that

wj,x,λ(y) := (
λ

|y − x|)
n−2wj(x +

λ2(y − x)

|y − x|2 ) ≤ wj(y), ∀ y ∈ BΓj \Bλ(x).

Define λ̄j(x) as in (53), then Lemma 5.2 still holds. Indeed only one change is needed
in the proof: the derivation of (56) and (57). Consider

O = {y ∈ BΓj \Bλ̄j ; wj(y) < (
|y|
λ̄j

)n−2wj,λ̄j(y)}.

As in the proof of (30), we have

w
−n+2
n−2

j ∆wj ≤ w
−n+2
n−2

j,λ̄j
∆wj,λ̄j , in O.

Since ∆wj and ∆wj,λ̄j are negative in O and wj ≥ wj,λ̄j in O, we have, instead of
(55),

∆wj ≤ ∆wj,λ̄j , in O.

(56) and (57) follow from arguments below (30).
Next we show

Lemma 6.1
‖wj‖C1(Bγj/2) ≤ C.

Proof. It follows from (11) and (10) that

g(s) ≤ C(1 + s
n+2
n−2 ), ∀ s > 0.

Therefore, by (64), (65) and (61),

|∆wj| ≤ C on Bγj .
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Lemma 6.1 follows from standard W 2,p estimates and Sobolev embedding theorems.

2

By Lemma 6.1, we know that along a subsequence,

wj → w in C0
loc(R

n),

where w satisfies w ≥ 0, w(0) = 1.
By the convergence of wj to w and the fact that λ̄j(x) → ∞ for every x ∈ Rn,

we have (59). Again, by Lemma 11.2, w ≡ constant.
Let

c = lim sup
j→∞

uj(xj) ≥ 1.

If c = ∞, we easily see, by (64), (12), and the convergence of wj to w, that for
some a > 0

−∆w = aw
n+2
n−2 , w > 0, on Rn.

If c <∞, then

−∆w = c−
n+2
n−2 g(cw) w > 0, on Rn.

Either of the above is impossible since w is identically a constant. Theorem 1.6
is established.

2

7 A Harnack type inequality on half Euclidean

balls, the first part of Theorem 1.7

In this section we establish the Harnack type inequality (15) in Theorem 1.7. For
x ∈ Rn, n ≥ 3, we use the notation x = (x′, t) where x′ = (x1, · · · , xn−1). We will
also use the following notations

BR(x) = B(x, R) = {y ∈ Rn ; |y − x| < R}, BR = BR(0),

BT
R(x) = B(x, R) ∩ {t > T}, B+

R (x) = B(x, R)∩ {t > 0}, B+
R = B+

R(0),

∂ ′′BT
R(x) = ∂BT

R(x)∩ {t > T}, ∂ ′BT
R(x) = ∂BT

R(x)∩ {t = T},
∂ ′B+

σ (x) = ∂B+
σ (x) ∩ ∂Rn

+, ∂ ′′B+
σ (x) = ∂B+

σ (x) ∩ Rn
+ B+

σ = B+
σ (0).
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In this section we give a proof of the Harnack type inequality (15) in Theorem
1.7.
Proof of (15) in Theorem 1.7. We prove it by contradiction argument. If (15)
were not true, we would have solutions {uj} of (14) on B+

3Rj
such that

uj(xj) inf
∂B+

2Rj

uj > jR2−n
j ,

where uj(xj) = max
B+
Rj

uj . It follows that

uj(xj)R
n−2

2
j →∞. (66)

Before we proceed, we present the following elementary lemma which is similar to
Lemma 5.1, we leave the simple proof to the reader.

Lemma 7.1 Let u ∈ C0(B−T
1 ) be a positive function, T ≥ 0. Then for every a > 0,

there exists x ∈ B1 ∩ {t ≥ −T} such that, for σ = (1− |x|)/2,

u(x) ≥ 1

2a
max

B−Tσ (x)

u.

and

σau(x) ≥ 1

2a
u(0).

Applying Lemma 7.1 to uj(xj + Rj
4
·) with a = n−2

2
and T = 4xjn/Rj (xjn denotes

the n−th component of xj), we find zj ∈ B(xj, Rj/4) ∩ Rn
+ such that

uj(zj) ≥ 2
2−n

2 uj(x) for x ∈ B(zj, σj) ∩ Rn
+, (67)

and

(2σj)
n−2

2 uj(zj) ≥ uj(xj)(
Rj

4
)
n−2

2 →∞, (68)

where σj = 1
2
(Rj

4
− |zj− xj|) ≤ Rj

8
. Set γj := uj(zj)

2
n−2 σj, and Γj := uj(zj)

2
n−2 Rj. It

follows from (66),(67) and (68) that

uj(zj) ≥ uj(xj), Γj ≥ 8γj →∞. (69)
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Consequently
uj(zj) inf

∂′′B+
2Rj

uj > jR2−n
j . (70)

Let
Tj := uj(zj)

2
n−2 zjn,

and set

vj(y) =
1

uj(zj)
uj

(
zj +

y

uj(zj)
2

n−2

)
, y ∈ Ωj,

where
Ωj = {y ; zj +

y

uj(zj)
2

n−2

∈ B+
2Rj
}.

Clearly vj satisfies

∆vj + n(n − 2)v
n+2
n−2

j = 0, in Ωj,

∂vj

∂t
= cv

n
n−2

j , on t = −Tj,

vj(0) = 1, and vj(y) ≤ 2
n−2

2 for y ∈ Ωj and |y| ≤ γj .

Let ∂ ′′Ωj = ∂Ωj ∩ {y ; yn > −Tj}, it is clear that

1

10
Γj ≤ dist(0, ∂ ′′Ωj) ≤ 10Γj ,

and, by (70) and the above,

inf
y∈∂′′Ωj

(|y|n−2vj(y)) ≥
uj(zj) inf∂′′B+

2Rj

uj

uj(zj)2
inf

y∈∂′′Ωj
(|y|n−2)→∞. (71)

We divide the remaining proof of Theorem 1.7 into two cases (after passing to a
subsequence).
Case 1: limj→∞ Tj =∞.
Case 2: limj→∞ Tj = T ∈ [0,∞).

Reach a contradiction in Case 1. Since min{γj, Tj} →∞, {vj}j=1,2.. is uniformly
bounded on compact subsets of Rn. It follows from standard elliptic estimates that,
vj (or a subsequence ) converges in C2 norm to some U on compact subsets of Rn,
where U is a positive solution of (2).
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For x ∈ Rn and λ < Tj/2, let vλ
j,x denote the Kelvin transformation of vj with

respect to the Bλ(x), i.e.

vλ
j,x(y) = (

λ

|y − x|)
n−2vj(x +

λ2(y − x)

|y − x|2 ), y ∈ Σλ
j,x := Ωj\Bλ(x).

Clearly vλ
j,x satisfies the same equation of vj in Σλ

j,x.
As in the proof of Theorem 1.5 we can find λj,x > 0 such that

vλ
j,x(y) < vj(y) for y ∈ Σλ

j,x and 0 < λ ≤ λj,x.

Define

λ̄j(x) := sup{µ > 0 : vλ
j,x(y) ≤ vj(y) for y ∈ Σλ

j,x and 0 < λ ≤ µ}.

Lemma 7.2 λ̄j(x)→∞ as j →∞.

Proof. Without loss of generality, we take x = 0. Suppose the contrary, along a
subsequence, λ̄j ≤ C. Let wλ = vj − vλ

j . To reach a contradiction we only need to
show that

∂wλ̄j

∂ν
(y) > 0 for y ∈ ∂Bλ̄j , (72)

and
wλ̄j(y) > 0 for y ∈ Σλ̄j \ ∂Bλ̄j , (73)

where ν denotes the unit outer normal of ∂Bλ̄j .

Indeed we easily deduce from (72) and (73) that wλ ≥ 0 on Σλ for λ close to λ̄j ,
violating the definition of λ̄j .

It is clear that
wλ̄j ≥ 0 in Σλ̄j ,

and
∆wλ̄j(y) + bj(y)wλ̄j(y) = 0 in Σλ̄j ,

where

bj(y) = n(n− 2)
vj(y)

n+2
n−2 − v

λ̄j
j (y)

n+2
n−2

vj(y)− v
λ̄j
j (y)

.

By (71) and the boundedness of λ̄j , wλ̄j > 0 on ∂ ′′Ωj , and thus, by the strong
maximum principle and the Hopf lemma, we have (72) and

wλ̄j(y) > 0 for y ∈ Σλ̄j .
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To show (73), we only need to establish

wλ̄j(y) > 0 on {t = −Tj} ∩ ∂Ωj.

This will follow from the following

Lemma 7.3 Suppose Tj → ∞ and {λ̄j} are bounded. Then for any N > 0, there
exists j0 > 1 such that for j > j0,

∂v
λ̄j
j (z)

∂t
> Nv

λ̄j
j (z)

n
n−2 , ∀z ∈ ∂Ωj ∩ {t = −Tj}.

Indeed, if for some z with zn = −Tj,

wλ̄j(z) = 0.

Then z is a minimum point and, by Lemma 7.3 and for large j,

0 ≤
∂wλ̄j

∂t
(z) = cvj(z)

n
n−2 −

∂v
λ̄j
j

∂t
(z) = c(v

λ̄j
j (z))

n
n−2 −

∂v
λ̄j
j

∂t
(z) < 0.

A contradiction.
Proof of Lemma 7.3. Since Tj →∞ and {λ̄j} is bounded from above by positive
constants, we have, for large j,

1

2
U(0) < vj(

λ̄2
jz

|z|2 ) < 2U(0) and |∇vj(
λ̄2

jz

|z|2 )| < |∇U(0)|+1, ∀z ∈ ∂Ωj∩{t = −Tj}.

By a direct computation

∂v
λ̄j
j

∂t
(z) ≥ (n− 2)λ̄n−2

j Tj|z|−nvj(
λ̄2

jz

|z|2 )− λ̄n
j |z|−n|∇vj(

λ̄2
jz

|z|2 )|

≥ mλ̄n−2
j Tj|z|−n > Nv

λ̄j
j (z)

n
n−2 ,

where m is a positive constant independent of j. Lemma 7.3 is established. So is
Lemma 7.2.

2
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It follows from Lemma 7.2 and the convergence of vj to U , we have, for every
x ∈ Rn, that

Ux,λ(y) := (
λ

|y − x|)
n−2U(x +

λ2(y − x)

|y − x|2 ) ≤ U(y), ∀ |y − x| ≥ λ > 0.

By Lemma 11.2, U ≡ constant, a contradiction.
We have reached a contradiction in Case 1. Now we

Reach a contradiction in Case 2.
For convenience, let v̂j be a translation of vj given by

v̂j(y) = vj(y − Tjen), y ∈ Ω̂j ,

where en = (0′, 1) and Ω̂j = Ωj + Tjen.
Clearly v̂j satisfies

∆v̂j + n(n− 2)v̂
n+2
n−2

j = 0, in Ω̂j ,

∂v̂j

∂t
= cv̂

n
n−2

j , on t = 0,

v̂j(Tjen) = 1, and v̂j(y) ≤ 2
n−2

2 for y ∈ Ω̂j and |y| ≤ γj − Tj.

Let ∂ ′′Ω̂j = ∂Ω̂j ∩ {y ; yn > 0}, then, for some positive constant C,

C−1Γj ≤ dist(0, ∂ ′′Ω̂j) ≤ CΓj,

and
inf
∂′′Ω̂j

(
v̂j(y)|y|n−2

)
→∞. (74)

It follows from standard elliptic estimates that, after passing to a subsequence, v̂j

converges in C2 norm to some Û on compact subsets of Rn
+, where Û is a solution

of (4).
For every fixed x ∈ ∂Rn

+, consider the Kelvin transformation of v̂j

v̂λ
j,x(y) = (

λ

|y − x|)
n−2v̂j(x +

λ2(y − x)

|y − x|2 ), y ∈ Σ̂λ,x,

where Σ̂λ,x := Ω̂j\Bλ(x). As usual, there exists λ̄x,j > 0 such that

v̂λ
j,x(y) ≤ v̂j(y) for y ∈ Σ̂λ,x and 0 < λ ≤ λx,j.
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Define

λ̄j(x) := sup{µ > 0 : v̂j(y) ≥ v̂λ
j,x(y) for y ∈ Σ̂λ,x, and 0 < λ ≤ µ}.

Lemma 7.4 λ̄j(x)→∞ as j →∞.

Proof. For simplicity we take x = 0. Suppose the contrary, along a subsequence,
λ̄j ≤ C. Let wλ = v̂j − v̂λ

j . To reach a contradiction, we only need to show that



wλ̄j > 0 in Σλ̄j ,

∂wλ̄j

∂ν
> 0 on ∂ ′′B+

λ̄j

wλ̄j > 0 on ∂ ′Σ̂λ̄j\Bλ̄j ,

(75)

and
∂wλ̄j

∂ν
(y) > 0, for y ∈ ∂Rn

+ ∩ ∂Bλ̄j , (76)

where ν denotes the unit outer normal of the sphere ∂Bλ̄j , and ∂ ′Σ̂λ̄j = ∂Σ̂λ̄j ∩{t =

0}. Indeed we easily deduce from (75) and (76) that wλ ≥ 0 on Σλ for λ bigger and
close to λ̄j , violating the definition of λ̄j .

It is clear that wλ satisfies
∆wλ + bλwλ = 0 in Σ̂λ,

∂wλ

∂t
=

cn

n− 2
ξ

2
n−2 wλ on t = 0,

where ξ(y) is, given by the mean value theorem, between v̂j(y) and v̂λ
j (y), and

bλ(y) = n(n − 2)
v̂j(y)

n+2
n−2 − v̂λ

j (y)
n+2
n−2

v̂j(y)− v̂λ
j (y)

.

Since {λj} is bounded, and v̂j converges to Û uniformly on compact subsets, we

have v̂
λ̄j
j (y)|y|n−2 ≤ C on ∂ ′′Ω̂j. So, by (74), we have, for large j, that

inf
∂′′Ω̂j

wλ̄j(y) > 0. (77)
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Estimate (75) follows from the strong maximum principle and the Hopf lemma, and
estimate (76) follows from Lemma 10.1 in Appendix A. Lemma 7.4 is established.

2

By Lemma 7.4 and the convergence of v̂j to Û , we have, for every x ∈ ∂Rn
+, that

Ûx,λ(y) := (
λ

|y − x|)
n−2Û (x+

λ2(y − x)

|y − x|2 ) ≤ Û(y), ∀ y ∈ Rn
+ and |y−x| ≥ λ > 0.

By Lemma 11.3 in Appendix B, Û depends on t only, a contradiction (see 2◦ in
Remark 1.4).

2

8 Harnack type inequality for more general equa-

tions on Rn
+, proof of Theorem 1.8

In this section, we establish Theorem 1.8. The proof is similar to the proof of (15)
in Theorem 1.7.
Proof of Theorem 1.8: We follow the same line of proof of Theorem 1.7, and
we often use the same notations there without explicitly saying so. Suppose the
contrary, then there exist solutions {uj} of (18) on B+

3Rj
such that

uj(xj) inf
∂B+

2Rj

uj > jR2−n
j ,

where uj(xj) = max
B+
Rj

uj ≥ 1. In the proof we need to pass to subsequences several

times, and we will just do so without any explicit mentioning. Following the same
selection process in the proof of Theorem 1.7, we can find {zj} ∈ B(xj, Rj/4) ∩ Rn

+

such that (67), (68), (69) and (70) hold. Define vj as in the proof of Theorem 1.7,
then vj(y) satisfies (71) and

∆vj(y) + uj(zj)
−n+2
n−2 g(uj(zj)vj(y)) = 0, in Ωj,

∂vj(y)

∂t
= uj(zj)

− n
n−2 h(uj(zj)vj(y)), on t = −Tj,

vj(0) = 1, and vj(y) ≤ 2
n−2

2 , for y ∈ Ωj and |y| ≤ γj .
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We divide the situation into two cases.

Case 1: limj→∞ Tj =∞.
Case 2: limj→∞ Tj = T ∈ [0,∞).

Reach a contradiction in Case 1. Most of the reasoning is like that in the proof
of Theorem 1.7. We will point out necessary changes.

We know that min{γj, Tj} → ∞, so on any given compact subset of Rn, {vj}
is bounded by 2

n−2
2 for j large. It follows from (G1) and (G2) that on any given

compact subset K of Rn, we have, for large j, that

uj(zj)
−n+2
n−2 g(uj(zj)vj(y)) ≤ g(vj(y)) ≤ C(K).

Here we have used the fact that u(zj) ≥ u(xj) ≥ 1. By standard elliptic estimates
vj (after passing to a subsequence) converges in C1 norm to some U on any compact
subsets of Rn. Clearly U(0) = 1. Since vj is super-harmonic, so is U , and therefore
U > 0 on Rn.

For a fixed x ∈ Rn, let vλ
j,x be the Kelvin transformation of vj as in the proof of

Theorem 1.7. As usual, for every x, we can find λj,x > 0 such that

vλ
j,x(y) < vj(y) for y ∈ Σλ

j,x and 0 < λ ≤ λj,x.

Define λ̄j(x) as in Section 7.

Lemma 8.1 For every x ∈ Rn, λ̄j(x)→∞ as j →∞.

Proof. Without loss of generality, we take x = 0. Suppose the contrary, along a
subsequence, λ̄j ≤ C. Let wλ = vj − vλ

j . To reach a contradiction we only need to
show (72) and (73).

Let

O = {y ∈ Σλ̄j \Bλ̄j ; vj(y) < (
|y|
λ̄j

)n−2v
λ̄j
j (y) }.

The derivation of (37) yields
v
−n+2
n−2

j ∆vj ≤ (v
λ̄j
j )−

n+2
n−2 ∆v

λ̄j
j , in O,

v
− n
n−2

j

∂vj

∂t
≤ (v

λ̄j
j )−

n
n−2

∂v
λ̄j
j

∂t
, on ∂ ′O,

where ∂ ′O = ∂O ∩ {t = 0}. Since ∆vj and ∆v
λ̄j
j are negative in O, we have

∆(vj − v
λ̄j
j ) ≤ 0, in O.
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The derivation of the second line in (38) yields, for some function cj(x′),

∂

∂t
(vj − v

λ̄j
j ) ≤ c(x′)(vj − v

λ̄j
j ), on ∂ ′O.

By (71) and the boundedness of λ̄j , wλ̄j > 0 on ∂ ′′Ωj. Estimate (72) and wλ̄j > 0
on Σλ̄j follow from arguments below (38). So we only need to show that it is not
possible to have wλ̄j(z) = 0 for some z with zn = −Tj. Indeed if this happened we
would have

0 ≤
∂wλ̄j

∂t
(z) = uj(zj)

− n
n−2 h(uj(zj)vj(z))−

∂v
λ̄j
j

∂t
(z).

By (H2),
uj(zj)

− n
n−2 h(uj(zj)vj(z)) ≤ Cvj(z)

n
n−2 .

where C is some constant independent of j.
Thus

∂v
λ̄j
j

∂t
(z) ≤ Cvj(z)

n
n−2 .

This violates Lemma 7.3.

2

It follows from Lemma 8.1 and the convergence of vj to U that for every x ∈ Rn,

Ux,λ(y) := (
λ

|y − x|)
n−2U(x +

λ2(y − x)

|y − x|2 ) ≤ U(y), ∀ |y − x| ≥ λ > 0.

By Lemma 11.2, U ≡ U(0) = 1. By (G2), we have, for some positive constant a,

−∆vj ≥ av
n+2
n−2

j in Ωj. Let j →∞, we have −∆U ≥ a > 0 in the distribution sense,
a contradiction (since U ≡ 1).

2

Reach a contradiction in Case 2. Let v̂j(y) be defined on Ω̂j as in Section 7.
The equation of v̂j(y) now becomes

∆v̂j(y) + uj(zj)
−n+2
n−2 g(uj(zj)v̂j(y)) = 0, y ∈ Ω̂j,

∂v̂j

∂t
(y) = uj(zj)

− n
n−2 h(uj(zj)v̂j(y)), on {t = 0},

v̂j(Tjen) = 1, and v̂j(y) ≤ 2
n−2

2 , for y ∈ Ω̂j and |y| ≤ γj − Tj.
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Estimate (74) still holds.
By (G1), (G2), and the fact that uj(zj) ≥ 1, we know from the equation of vj

that
0 ≤ −∆v̂j(y) = uj(zj)

−n+2
n−2 g(uj(zj)v̂j(y)) ≤ g(v̂j(y)) ≤ C,

for y ∈ Ω̂j and |y| ≤ γj − Tj. By (H1), (H2) and the fact that uj(zj) ≥ 1, we have

−C ≤ ∂v̂j

∂t
(y) = uj(zj)

− n
n−2 h(uj(zj)v̂j(y)) ≤ Cv̂j(y)

n
n−2 ≤ C, on ∂ ′Ω̂j,

where ∂ ′Ω̂j = ∂Ω̂j ∩ ∂Rn
+.

By standard elliptic estimates and the fact that γj → ∞, for 0 < α < 1 and
R > 1,

‖v̂j‖Cα(B+
R

)
≤ C(α, R).

It follows that, after we pass v̂j to a subsequence, v̂j converges to some Û in Cα norm

on compact subsets of Rn
+. In particular, Û(Ten) = 1. Since vj is super-harmonic

in Ω̂j, Û is super-harmonic in Rn
+, so Û is positive in Rn

+. Let j → ∞, either (if

uj(zj)→∞) Û satisfies, for some a > 0,

−∆Û = aÛ
n+2
n−2 , in Rn

+,

or (if uj(zj)→M ≥ 1)

−∆U1 = M−n+2
n−2 g(MU1), in Rn

+.

We define v̂λ
j,x, Σ̂λ,x, and λ̄j(x) as in Section 7, we still have

Lemma 8.2 For every x ∈ ∂Rn, λ̄j(x)→∞ as j →∞.

Proof. Without loss of generality, we take x = 0. Suppose the contrary, along a
subsequence, λ̄j ≤ C. Let wλ = vj − vλ

j . To reach a contradiction we only need to
show (75) and (76).

The equation of v̂λ
j now is


∆v̂λ

j (y) + (( |y|
λ

)n−2uj(zj))
−n+2
n−2 g(( |y|

λ
)n−2uj(zj)v̂λ

j (y)) = 0, in Σ̂λ,

∂v̂λ
j (y)

∂t
= ((
|y|
λ

)n−2uj(zj))
− n
n−2 h((

|y|
λ

)n−2uj(zj)v̂
λ
j (y)), on {t = 0}.
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Consider

O = {y ∈ Σ̂λ̄j ; vj(y) < (
|y|
λ̄j

)n−2v
λ̄j
j (y)}.

As usual, we can show

∆(v̂j − v̂
λ̄j
j ) ≤ 0, in O,

and, for some function c(x′),

∂

∂t
(v̂j − v̂

λ̄j
j ) ≤ c(x′)(v̂j − v̂

λ̄j
j ), on ∂ ′O,

where ∂ ′O = ∂O ∩ {t = 0}.
Since (77) still holds, wλ̄j is not identically zero, we can still apply the strong

maximum principle, the Hopf lemma, and Lemma 10.1 in O the usual way to obtain
(75) and (76).

We can still conclude that Û depends only on t, and, by passing limit in the
equation of v̂j, we know that either Û satisfies for some a > 0,

Û ′′(t) = aÛ(t), t > 0,

or for M = limj→∞ u(zj) <∞,

Û ′′(t) = M−n+2
n−2 g(MÛ ), t > 0.

This is impossible (see 2◦ in Remark 1.4).

2

9 Energy Estimate on half Euclidean balls, the

second part of Theorem 1.7

In this section we establish the energy estimate (16) in Theorem 1.7. We only
need to prove (16) for R = 1. The general case follows by applying the result to

v(·) = R
n−2

2 u(R·). In order to prove (16) for R = 1, we will analyze the interaction
between large local maximum points of a solution u of

∆u + n(n− 2)u
n+2
n−2 = 0, u > 0 in B+

3 ,
∂u

∂t
= cu

n
n−2 , on ∂ ′B+

3 .
(78)

The following Proposition indicates how the large local maximum points are deter-
mined, its proof is by standard blow up method based on the Liouville type theorems
of Caffarelli, Gidas and Spruck, and Li and Zhu. See [34] for a proof.
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Proposition 9.1 Suppose u is a solution of (78), then for any ε ∈ (0, 1), R > 1,
there exist some positive constants C∗0 = C∗0(ε, R, n), C∗1 = C∗1 (ε, R, n) > 1 such that,

if maxB+
1

u > C∗0 , there exists a set Z = {q1, ...qk} ⊂ B+
2 of local maximum points of

u such that for each 1 ≤ j ≤ k, one of the two situations occurs:
1. if qj ∈ B

+

2 \ {t = 0}, we have

‖u(qj)
−1u(u(qj)

− 2
n−2 y + qj)− (

1

1 + |y|2)
n−2

2 ‖
C2(B

−Tj
R )

< ε,

where Tj = u(qj)
2

n−2 qjn, qjn is the last component of qj.
2. if qj ∈ ∂ ′B+

2 , then

‖u(qj)
−1u(u(qj)

− 2
n−2 y + qj)− (

λc

1 + λ2
c(|y′|2 + |yn − tc|2)

)
n−2

2 ‖C2(B+
R(0)) < ε,

where λc = 1 + ( c
n−2

)2, tc = c
(n−2)λc

.

Moreover, let rj = u(qj)
− 2
n−2 R, we have

Bri(qi) ∩Brj(qj) = ∅, for i 6= j,

|qi − qj|
n−2

2 u(qj) > C∗0 , for j > i,

u(q) ≤ C∗1dist(q, Z)−
n−2

2 , for all q ∈ B+
3/2.

Energy estimate (16) in Theorem 1.7 will be deduced from the following Propo-
sition 9.2 which roughly says that every two bubbles must be separated by a positive
distance independent of u.

Proposition 9.2 For suitably large R (depending only on n and c) and 0 < ε ≤
e−R, there exists d = d(R, ε) > 0 such that for all solutions u of (78) satisfying
max

B+
1

u ≥ C∗0 , we have

min{dist(qi, qj) ; qi, qj ∈ Z ∩B
+
3/2, i 6= j} ≥ d,

where C∗0 is the constant in Lemma 9.1, Z is the set of large maximum points defined
in Lemma 9.1 and is determined by ε, R and C∗0 .

Proposition 9.2 will lead to (16) in Theorem 1.7. This will be given towards the
end of this section. Our main effort in this section is to establish Proposition 9.2.

We introduce the definition of isolated blow up points and indicate some standard
consequences.
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Definition 9.1 Let {uj} be a sequence of solutions of (78). Suppose {xj} is a

sequence of local maximum points of {uj} satisfying xj → x̄ ∈ B+
2 . Then we say

xj → x̄ is an isolated blow-up point of {uj} if limj→∞ uj(xj) = ∞ and, for some
C > 0 and r̄ > 0 (independent of j),

uj(x)|x− x̄|n−2
2 ≤ C, for |x− x̄| ≤ r̄.

The following Proposition 9.3 and Remark 9.1 can be found in [34] (see Propo-
sition 1.3 and Proposition 1.4 there).

Proposition 9.3 Let xj → x̄ ∈ B+
2 ∪∂ ′B+

2 be an isolated blow-up point of {uj}, then
for any sequence of positive numbers Rj →∞, εj → 0, there exists a subsequence of

{uj} (still denoted as {uj} ) such that rj := Rju
− 2
n−2

j (xj) → 0 and one of the two
assertions holds:
1. If xj ∈ Rn

+, then

‖uj(xj)
−1uj(uj(xj)

− 2
n−2 y + xj)− (

1

1 + |y|2 )
n−2

2 ‖
C2(B

−Tj
3Rj

(xj))
< εj,

where Tj = uj(xj)
2

n−2 xjn.
2. If xj ∈ ∂ ′B+

2 , then

‖uj(xj)
−1uj(uj(xj)

− 2
n−2 y + xj)− (

λc

1 + λ2
c(|y′|2 + |yn − tc|2)

)
n−2

2 ‖C2(B+
3Rj

(xj))
< εj,

where λc = 1 + ( c
n−2

)2 and tc = c
(n−2)λc

.

Moreover, there exists r1 ∈ (0, r̄) (independent of j) such that

uj(x) ≤ Cuj(xj)
−1|x− xj|2−n, for x ∈ B+

r1
\B2rj ,

where C is independent of j, r̄ is the one in Definition 9.1.

Proposition 9.4 Using all the notations in Proposition 9.3 we have

|Dkuj(x)| ≤ Ck

|x|n−2+k
uj(xj)

−1 for 2rj < |x− xj| < r1/2, xn > 0, (79)

where Dkuj is understood as all possible k derivatives of uj.
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Proof of Proposition 9.4: For any 4rj ≤ |x− xj| ≤ r1/4, set

vj(y) = rn−2uj(xj)uj(ry)

where r = |x − xj| and y ∈ Ω := {1
2

< |y| < 2 ; ry ∈ B+
2 }. By Proposition 9.3,

vj ≤ C in Ω. By the equations of uj, vj satisfies

−∆vj = n(n− 2)r−2uj(xj)
− 4
n−2 v

n+2
n−2

j , in Ω,

and, if ∂ ′Ω := ∂Ω∩ {y ; ry ∈ ∂ ′B+
2 } 6= ∅,

∂vj

∂t
= cr−1uj(xj)

− 2
n−2 v

n
n−2

j , on ∂ ′Ω.

Since r ≥ rj and Rj → ∞, the coefficients r−2uj(xj)
− 4
n−2 and r−1uj(xj)

− 2
n−2 tend

to zero. By standard elliptic estimates,

|Dkvj(y)| ≤ Ck, for k ≥ 1 and y ∈ Ω ∩ ∂B1,

which implies (79). Proposition 9.4 is established.

2

Remark 9.1 As a consequence of Proposition 9.3, for each isolated blow up point
xj → x̄ of uj, we have

uj(xj)uj → h in C2
loc(B

+
r1

(x̄)\{x̄})

for some h ∈ C2
loc(B

+
r1

(x̄)\{x̄}) satisfying

∆h(x) = 0 B+
r1

(x̄)\{x̄},

h(x)→∞ as x→ x̄,

∂h(x)

∂t
= 0 x ∈ ∂ ′Br1(x̄) if ∂ ′Br1(x̄) 6= ∅.

Remark 9.2 In fact, the domain of the harmonic function h, and the convergence
of uj(xj)uj to h, can be extended to B+

r̄ (x̄) \ ({x̄} ∪ ∂ ′′B+
r̄ (x̄)).
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Proof of Remark 9.2: This is rather standard. For reader′s convenience, we
include a proof. It is enough to show that for any r ∈ (0, r1/4), uj(xj)uj converges

in C2 norm over K = B+
r̄−r(x̄) \B+

r (x̄). It follows from Definition 9.1 that there
exists C = C(r) > 0 such that

uj ≤ C on B+
r̄−r/2(x̄) \B+

r/2(x̄)

Then uj satisfies  |∆uj| ≤ Cuj in K1,

|∂uj

∂t
| ≤ Cuj on ∂K1 ∩ {t = 0},

where K1 = B+
r̄−r/2(x̄) \ B+

r/2(x̄). By the Harnack inequality (see, e.g., Lemma
A.1 in [34]), maxK uj ≤ C minK uj. Then by Proposition 9.3, uj(xj)maxK uj ≤
Cuj(xj)minK uj ≤ C, i.e. uj(xj)uj is uniformly bounded over K. The equation
satisfied by uj(xj)uj is

∆(uj(xj)uj) + n(n − 2)uj(xj)
− 4
n−2 (uj(xj)uj)

n+2
n−2 = 0, K1,

∂(uj(xj)uj)

∂t
= cuj(xj)

− 2
n−2 (uj(xj)uj)

n
n−2 , ∂K1 ∩ {t = 0}.

Since uj(xj) → ∞, uj(xj)uj converges to a harmonic function h over K. Remark
9.2 is established.

2

We will first prove Proposition 9.2, and towards the end of this section we use
Proposition 9.2 to establish (16) in Theorem 1.7.

The following two lemmas say that the magnitudes of two bubbles in set Z are
comparable as long as they are not too close to ∂ ′′B+

3 . Note that in [34] two closest
bubbles can be found because the solution is defined on the whole manifold. Here
we do not have this privilege. The nature of our problem is purely local.

Lemma 9.1 Let u be a solution of (78), then there exists R0 = R0(n, c) ≥ 1, such
that for any R ≥ R0 and 0 < ε ≤ e−R, we have

u(q)u(x) ≥ C−1|x− q|2−n (80)

for any q ∈ Z and x ∈ B+
3/2 satisfying Ru(q)−

2
n−2 ≤ |x − q| ≤ 1

4
. Here Z is the set

defined in Proposition 9.1 with respect to R and ε, C is some constant depending
only on R0.
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Proof of Lemma 9.1: Let en = (0′, 1),

Ω = B(en, u(q)
2

n−2 ) ∩ {t > −u(q)
2

n−2 qn},

and let
v(y) = u(q)−1u(u(q)−

2
n−2 y + q), y ∈ Ω.

It follows from Proposition 9.1 that

‖v(y)− (
1

1 + |y|2 )
n−2

2 ‖C2(BR∩Ω) < ε,

or

‖v(y)− (
λc

1 + λ2
c(|y′|2 + |yn − tc|2)

)
n−2

2 ‖C2(BR∩Ω) < ε.

In either case we have, for some δ1 = δ1(n, c) > 0,

v(y) > δ1|y|2−n ∀ y ∈ Ω ∩ ∂BR.

Here we have used the largeness of R0.
To prove (80), we only need to show, for some δ2 = δ2(n, c) > 0,

v(y) ≥ δ2|y|2−n for y ∈
(
Ω \BR

)
∩B(en, u(q)

2
n−2 /2). (81)

To see this, we set

φ(y) = 2δ2(|y − en|2−n − u(q)−2),

where δ2 = min{δ1/4,
1

2
(

n− 2

|c|+ 1
)
n−2

2 }. Clearly,

v(y) > φ(y) on ∂BR ∩ Ω,

and
v(y) > 0 = φ(y) for |y − en| = u(q)

2
n−2 .

By a direct computation,

∂φ(y)

∂t
≥ 2δ2(n− 2)|y − en|−n > |c|φ(y)

n
n−2 , on {t = −u(q)

2
n−2 qn}.

It follows, for some ξ ≥ 0, that

∂(v − φ)

∂t
≤ |c|v n

n−2 − |c|φ n
n−2 ≤ ξ(v − φ), on {t = −u(q)

2
n−2 qn}.
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Since v−φ is super-harmonic in (Ω\BR)∩B(en, u(q)
2

n−2 /2), we apply the maximum

principle to obtain that v − φ ≥ 0 on (Ω\BR) ∩ B(en, u(q)
2

n−2 /2), from which (81)
follows.

2

Lemma 9.2 For suitably large R and 0 < ε ≤ e−R, there exists C = C(ε, R, n) such

that for any solution u of (78) and any q ∈ Z ∩B+
3/2, we have

u(x) ≤ C1u(q) for x ∈ B+(q, 1/12), (82)

where Z is the set of local maximum points of u defined in Proposition 9.1.

Proof of Lemma 9.2: By the Harnack type inequality (Theorem 1.7),

sup
B+(q,1/12)

u inf
B+(q,1/6)

u ≤ C.

Since u is well approximated by standard bubbles, so obviously, u(x) ≥ u(q)−1 for

|x− q| ≤ Ru(q)−
2

n−2 . Thus, by (80), we have minB+(q,1/6) u ≥ C−1u(q)−1. Estimate
(82) follows easily from above. Lemma 9.2 is established.

2

Proof of Proposition 9.2: Suppose the contrary, then for some fixed large R0 and
0 < ε0 ≤ e−R0 there is no such d = d(ε0, R0). Consequently, there exists a sequence
of solutions {uj} to (78) such that for some q1j ∈ Zj satisfying dist(q1j, Zj\{q1j})→
0 where Zj is the set of local maximum points of uj defined in Proposition 9.1
with respect to ε0 and R0. Let q2j be the local maximum of uj in Zj so that
dist(q1j, Zj\{q1j}) = |q1j − q2j|. Then we have

σj := |q1j − q2j| → 0.

By Proposition 9.1, we have

uj(y)dist(y, Zj)
n−2

2 ≤ C∗1(ε0, R0) y ∈ B+
2 (83)

Since B(q1j, uj(q1j)
− 2
n−2 R0) and B(q2j, uj(q2j)

− 2
n−2 R0) must be disjoint, we have σj >

uj(qlj)
− 2
n−2 R0, l = 1, 2. Consequently

uj(q1j), uj(q2j)→∞ as j →∞.
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For the sake of simplicity we will use q1 and q2 in stead of q1j and q2j later in this
section. Still by Proposition 9.1 we have

‖uj(ql)
−1uj(uj(ql)

− 2
n−2 y + ql)− (1 + |y|2)−n−2

2 ‖
C2(B

−Tjl
R0

)
< ε0, l = 1, 2,

or

‖uj(ql)
−1uj(uj(ql)

− 2
n−2 y+ql)−(

λc

1 + λ2
c(|y′|2 + |yn − tc|2)

)
n−2

2 ‖C2(B+
R0

) < ε0, l = 1, 2,

where Tjl = uj(ql)
− 2
n−2 qln.

Lemma 9.3 For any Nj →∞ and 0 < εj ≤ e−Nj , there exists a subsequence {uij}
(still denoted as {uj}) such that σj > uj(ql)

− 2
n−2 Nj for l = 1, 2, and one of the two

assertions holds:
1. If ql ∈ B+

3/2, we have

‖uj(ql)
−1uj(uj(ql)

− 2
n−2 y + ql)− (1 + |y|2)−n−2

2 ‖
C2(B

−Tjl
Nj

)
< εj. (84)

2. If ql ∈ {t = 0}, then

‖uj(ql)
−1uj(uj(ql)

− 2
n−2 y + ql)− (

λc

1 + λ2
c(|y′|2 + |yn − tc|2)

)
n−2

2 ‖C2(B+
Nj

) < εj. (85)

Proof. Let
vj(y) = uj(q1)

−1uj(uj(q1)
− 2
n−2 y + q1)

be defined in

Dom(vj) := B(0,
1

12
uj(q1)

2
n−2 ) ∩ {t > −uj(q1)

2
n−2 q1n}.

By Lemma 9.2, vj satisfies

∆vj(y) + n(n − 2)vj(y)
n+2
n−2 = 0, y ∈ Dom(vj),

∂vj(y)

∂t
= cv

n
n−2

j (y), on ∂ ′Dom(vj),

vj(0) = 1, vj(y) ≤ C, for y ∈ Dom(vj),
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where ∂ ′Dom(vj) = ∂Dom(vj) ∩ {t = −uj(q1)
2

n−2 q1n}. Since uj(q1) → ∞, vj is

uniformly bounded on any compact subset of {t ≥ − lim
j→∞

uj(q1)
2

n−2 q1n}. Pass {vj}
to a subsequence if necessary, then (84) or (85) follows from the Liouville type
theorems of Caffarelli-Gidas-Spruck and Li-Zhu. Similarly we have (84) or (85)
after applying the argument to q2. Since q2 is a local maximum points of uj, (84)

and (85) imply that σj > uj(q1)
− 2
n−2 Nj because for |y − q1| ≤ uj(q1)

− 2
n−2 Nj , q1 is

the only local maximum point of uj. So we have σj > uj(q1)
− 2
n−2 Nj. Similarly we

also have σj > uj(q2)
− 2
n−2 Nj. Lemma 9.3 is established.

2

It follows from the Lemma 9.3 that {B(ql, uj(ql)
− 2
n−2 Nj)}l=1,2 are disjoint and

uj(ql)σ
n−2

2
j → ∞, l = 1, 2. Then we rescale uj to wj so that the distance between

the two local maximum points corresponding to q1 and q2 become one. Indeed, let

wj(y) = σ
n−2

2
j uj(σjy + q1) . Then wj satisfies

∆wj(y) + n(n − 2)wj(y)
n+2
n−2 = 0, y ∈ B

−Tj
1/σj

,

∂wj(y)

∂t
= cwj(y)

n
n−2 , y ∈ ∂B

−Tj
1/σj
∩ {t = −Tj},

wj(0)→∞, wj(e)→∞,

where e = (q2 − q1)/σj and Tj = σ−1
j q1n.

By Lemma 9.1 (with u = uj, R = R0, and ε = ε0), we have

wj(z) ≥ C−1wj(0)
−1|z|2−n, R0σ

−1
j uj(q1)

− 2
n−2 ≤ |z| ≤

σ−1
j

4
, zn ≥ −Tj, (86)

and

wj(z) ≥ C−1wj(e)
−1|z−e|2−n, R0σ

−1
j uj(q2)

− 2
n−2 ≤ |z−e| ≤

σ−1
j

4
, zn ≥ −Tj, (87)

where C > 0 is a positive constant depending on n only.
We also know that

R0σ
−1
j uj(q1)

− 2
n−2 → 0, and R0σ

−1uj(q2)
− 2
n−2 → 0. (88)

In the rest part of the proof, we would always analyze how wj(0)wj approaches
a harmonic function and employ Pohozaev Identity to get a contradiction.
The following Lemma 9.4 and Remark 9.3 are in correspondence with Proposition
9.3 and Lemma 9.2.
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Lemma 9.4 Let Dj = wj(0)
2

n−2 Tj. After passing to a subsequence, we have
1. if Tj > 0,

‖wj(0)
−1wj(wj(0)

− 2
n−2 y)− (

1

1 + |y|2 )
n−2

2 ‖
C2(B

−Dj
Nj

)
≤ εj. (89)

2. if Tj = 0 for all large j then

‖wj(0)
−1wj(wj(0)

− 2
n−2 y)− (

λc

1 + λ2
c(|y′|2 + |yn − tc|2)

)
n−2

2 ‖
C2(B

−Dj
3Nj

)
< εj. (90)

In either case, let T = limj→∞ Tj ∈ [0,∞], then there exists a harmonic function h
defined on B−T

1 ∪ (∂B−T
1 ∩ {t = −T}) such that

lim
j→∞
‖wj(0)wj − h‖

C2(B
−Tj
1−β\Bβ)

= 0, ∀ 0 < β <
1

3
, (91)

where h satisfies

∆h(y) = 0, h ≥ 0, in B−T
1 \{0},

h(y)→∞, as y → 0,

∂h(y)

∂t
= 0, y ∈ ∂BT

1 ∩ {t = −T} if ∂BT
1 ∩ {t = −T} 6= ∅.

(92)

Proof of Lemma 9.4: Since

wj(0)
−1wj

(
wj(0)

− 2
n−2 y

)
= uj(q1)

−1uj

(
uj(q1)

− 2
n−2 y + q1

)
,

(89) and (90) are the same as (84) and (85) (l = 1). Let Ẑj = {σ−1
j (q−q1) ; q ∈ Zj}

be the set of large local maximum points of wj, the rescaled version of Zj for uj.
Since q2 is the nearest point in Zj to q1, and |q2 − q1| = σj, for any compact subset
K of B−T

1 ∪ ∂ ′B−T
1 , there exists C = C(K) such that

|y| ≤ C(K) dist(y, Ẑj) for all y ∈ K.

Consequently, by (83),

wj(y)|y|n−2
2 ≤ C(K) for y ∈ K.

Therefore 0 is an isolated blow up point of {wj}, and (91) and (92) follow from
Remark 9.1 (see also Remark 9.2). Lemma 9.4 is established.

2
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Remark 9.3 By Lemma 9.2 (with u = uj, R = R0 and ε = ε0), and the fact that
σj = |q1 − q2| → 0, we have

C−1wj(0) ≤ wj(e) ≤ Cwj(0), e =
q2 − q1

|q2 − q1|
.

Remark 9.4 It is not hard to see that the harmonic function h in Lemma 9.4 is of
the form h(y) = a|y|2−n + b(y) where a > 0 and b is harmonic on B−T

1 . Moreover,

if T = 0, b satisfies
∂b

∂t
= 0 on ∂ ′B+

1 .

To complete the proof of Proposition 9.2. We have the following two cases to rule
out:
Case 1: T = limj→∞ Tj ∈ (0,∞].
Case 2: T = limj→∞ Tj = 0.

We first
Rule out Case 1. Recall that wj(0)wj(y)→ a|y|2−n + b(y) on compact subsets of
B−T

1 \{0}. We will show that b > 0 on B−T
1 .

Step 1: b ≥ 0 on B−T
1 .

For 0 < ε < a, let

φj(y) = (a− ε)|y|2−n − (a− ε)σn−2
j .

We compare wj(0)wj and φj in B
−Tj

σ−1
j

\ B 1
j
. Since b is harmonic (and therefore

bounded) near 0, we have, for large j,

wj(0)wj(y) > φj(y), |y| = 1

j
or |y| = σ−1

j .

It is easy to see that for y ∈ {t = −Tj},

∂φj

∂t
≥ (n− 2)(a− ε)

2
n−2 Tjφ

n
n−2

j ,

and

∂(wj(0)wj(y))

∂t
= cwj(0)

− 2
n−2 (wj(0)wj(y))

n
n−2

< (n− 2)(a− ε)
2

n−2 Tj(wj(0)wj(y))
n
n−2 .

It follows, by the mean value theorem, that

∂[wj(0)wj(y)− φj(y)]

∂t
< ξj(y)[wj(0)wj(y)− φj(y)], y ∈ {t = −Tj},
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where ξj(y) > 0. By the maximum principle,

wj(0)wj ≥ φj, on B
−Tj

σ−1
j

\B 1
j
.

Sending j to infinity, we obtain, for any compact subset ω of B−T
1 \ {0},

a|y|2−n + b(y) ≥ (a− ε)|y|2−n, y ∈ ω.

Let ε→ 0+, we have b ≥ 0 on B−T
1 \ {0}.

Step 2: b > 0 on B−T
1 .

For any compact subset ω of B1 and j sufficiently large (may depend on ω), we
have, by (87) and (88), that

wj(y) ≥ C−1wj(e)
−1|y − e|2−n for y ∈ ω.

Letting j →∞, we have, by Remark 9.3,

a|y|2−n + b(y) ≥ C−1|y − ē|2−n, y ∈ B−T
1 \ {0},

where ē = limj→∞ e. It follows that limy∈B−T1 ,y→ē b(y) =∞. In particular, b(y) > 0

for y in B1 and y close to e. We already know that b is non-negative and harmonic
in B−T

1 , so by the maximum principle, b > 0 on B−T
1 .

In order to reach a contradiction, we need the following Pohozaev identity:

Lemma 9.5 Let Ω be a piecewise smooth bounded domain in Rn and u > 0 be a
C2(Ω̄) solution of

−∆u = n(n − 2)u
n+2
n−2 , Ω.

Then ∫
∂Ω
{x · ν(

(n − 2)2

2
u

2n
n−2 − |∇u|2

2
) +

∂u

∂ν
(x · ∇u) +

n − 2

2
u
∂u

∂ν
} = 0, (93)

where ν is the unit outer normal of ∂Ω.

A proof of Lemma 9.5 can be found in [38].
Let Ω = Br for 0 < r < 1 and apply Lemma 9.5 to wj. Then we multiply w2

j (0)
on both sides and let j →∞. Elementary computation (see proposition 1.1 in [38])
shows that the left hand side of (93) is negative for r sufficiently small, which is
clearly a contradiction. Case 1 is ruled out.

Now we Rule out Case 2.
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Recall that wj(0)wj(y)→ a|y|2−n + b(y) on all compact subsets of B+
1 with b(y)

harmonic in B+
1 and satisfying

∂b(y)

∂t
= 0 on ∂ ′B+

1 .

Let
φj(y) := (a− ε)|y −wj(0)

− 1
n−2 en|2−n − (a− ε)(σ−1

j − 1)2−n.

We compare wj(0)wj and φj on

Ωj = {y ∈ B
−Tj

σ−1
j

; |y − wj(0)
− 1
n−2 en| < σ−1

j − 1}.

It is clear that

wj(0)wj(y) > φj(y) for |y| = 3wj(0)
− 1
n−2 or |y − wj(0)

− 1
n−2 en| = σ−1

j − 1.

By computation, we have, for y ∈ {t = −Tj}, that

∂φj(y)

∂t
= (n− 2)(a− ε)

2
n−2 [wj(0)

− 1
n−2 + Tj]φ

n
n−2 ,

and

∂(wj(0)wj(y))

∂t
= cwj(0)

− 2
n−2 (wj(0)wj(y))

n
n−2

< (n − 2)(a− ε)
2

n−2 [wj(0)
− 1
n−2 + Tj](wj(0)wj(y))

n
n−2 .

By the mean value theorem,

∂[wj(0)wj(y)− φj(y)]

∂t
< ξj(y)[wj(0)wj(y)− φj(y)], y ∈ {t = −Tj},

where ξj(y) > 0. By the maximum principle,

wj(0)wj − φj > 0, on Ωj .

Let j →∞, we have

a|y|2−n + b(y) ≥ (a− ε)|y|2−n, y ∈ B+
1 .

Sending ε to 0, we have
b(y) ≥ 0, y ∈ B+

1 .

Argue as in Case 1, we have

b(y) > 0, y ∈ B+
1 .
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Since
∂b

∂t
(0) = 0, we have, by the Hopf Lemma, b(0) > 0. Still we apply Lemma 9.5

to wj and let Ω = B+
r . Then we multiply w2

j(0) on both sides of (93) and let j →∞.
b(0) > 0 makes the left hand side of (93) negative for r small. A contradiction. Case
2 is ruled out.

2

Once Proposition 9.2 is established, we can finish the proof of (16) in Theorem
1.7 as follows.
Proof of (16) in Theorem 1.7. Clearly, we only need to establish it for R = 1.

In fact, it is clearly enough to show that
∫
B+

1
2

(|∇u|2 + u
2n
n−2 )dx ≤ C(n, c). Suppose

the contrary, there exists a sequence of uj satisfying (78) such that∫
B+

1
2

(|∇uj|2 + u
2n
n−2

j )dx→∞.

Then, by standard elliptic estimates, max
B+

1

uj →∞. Let ε and R be the ones in

Proposition 9.2, and let Zj be defined in term of ε and R for uj. By Proposition 9.2,

every two points of Zj ∩ B+
3/2 are separated by a distance no less than d(ε, R) > 0.

In particular, the number of points in Zj ∩ B+
3/2 is bounded by a fixed number

k. Since max
B+

1

uj → ∞, max
z∈Zj∩B+

4/3

uj(z) → ∞. For any fixed r > 0, {uj}

is bounded on B+
4/3 \ ∪z∈ZjBr(z), and therefore, by the Harnack inequality, the

maximum and the minimum of uj on the set are comparable. So, by Proposition
9.3, the maximum of uj on the set tends to zero, and by standard elliptic estimates,∫
B+

1 \∪z∈ZjBr(z)
(|∇uj|2 + u

2n
n−2

j )→ 0. On the other hand, for every z ∈ Zj ∩ B+
4/3, we

have, by Proposition 9.3 and Proposition 9.4, that∫
B+(z,r)

(|∇uj|2 + u
2n
n−2

j )dx ≤ C.

Since Zj ∩B+
3/2 has at most k points, we have

∫
B+

4/3

(|∇uj|2 + u
2n
n−2

j )dx ≤ C.

A contradiction. Estimate (16) in Theorem 1.7 is established.

2
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As pointed out in Remark 1.10, if c ≤ 0, estimate (16) in Theorem 1.7 can be
established in a much simpler way. Indeed we have
Proof of (16) in Theorem 1.7 for c ≤ 0. We first show∫

B+
1

u
2n
n−2 ≤ C(c, n). (94)

For y, η ∈ B3, let

G1(y, η) =



1

n(n− 2)ωn
(|y − η|2−n − (

3

|η|)
n−2| 9η|η|2 − y|2−n), η 6= 0,

1

n(n− 2)ωn
(|y|2−n − 32−n), η = 0,

be the Green’s function on B3 with respect to Dirichlet boundary condition. Here
ωn is the volume of the unit ball B1. Set

G(y, η) = G1(y, η) + G1(y, η̄), y, η ∈ B+
3 ,

where η̄ = (η′,−ηn) is the reflection of η with respect to ∂Rn
+.

Then from above it is immediate to check that for fixed y ∈ B+
3 ∪ (∂ ′B+

3 \ ∂B+
3 ),

G satisfies 

−∆ηG(y, η) = δy η ∈ B+
3 ,

G(y, η) = 0 η ∈ ∂ ′′B+
3 ,

∂G(y, η)

∂ν
= 0 η ∈ ∂ ′B+

3 ,

∂G(y, η)

∂ν
< 0 η ∈ ∂ ′′B+

3 .

It is also clear that
G(y, η) ≥ C−1, y, η ∈ B+

2 ,

for some C ≥ 1.
Let u(y) = min

B+
2

u, y ∈ B+
2 . By the Green’s representation formula,

u(y) =
∫

B+
3

G(y, η)(−∆u)dη +
∫

∂B+
3

G(y, s)
∂u

∂ν
(y, s)ds−

∫
∂B+

3

∂G(y, s)

∂ν
u(s)ds

≥
∫

B+
3

G(y, η)u(η)
n+2
n−2 dη −

∫
∂′B+

3

G(y, η)cu(η)
n
n−2 dη −

∫
∂′′B+

3

∂G(y, s)

∂ν
u(s)ds

≥ C−1
∫

B+
1

u
n+2
n−2 (η)dη.
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Therefore ∫
B+

1

u
2n
n−2 ≤ max

B+
1

u
∫

B+
1

u
n+2
n−2 ≤ C(max

B+
1

u)(min
B+

2

u) ≤ C

2

The derivation of ∫
B+

1
2

|∇u|2 ≤ C (95)

from (94) is as follows: Let φ ∈ C∞(B+
3 ) such that

φ(y) ≡ 1 y ∈ B+
1
2

φ(y) ≡ 0 |y| ≥ 1/
√

2.

First we multiply φ2u on (78) and integrate by parts to obtain

c
∫

∂′B+
3

φ2u
2n−2
n−2 +

∫
B+

3

(φ2|∇u|2 + 2φu∇φ · ∇u− n(n− 2)φ2u
2n
n−2 ) = 0.

Then it follows by Hölder inequality that∫
B+

3

φ2|∇u|2 ≤ C(
∫

B+
3

|∇φ|2u 2n
n−2 +

∫
B+

3

φ2u2 +
∫

∂′B+
3

φ2u
2n−2
n−2 )

To estimate the last term of the above, we have, for |x′| < 1/2,

φ2(x′, 0)u
2n
n−2 (x′, 0) = |

∫ 1/
√

2

0

d

ds
(φ2(x′, s)u

2n−2
n−2 (x′, s))ds|

= |
∫ 1/

√
2

0
2φ

∂φ

∂xn
u

2n−2
n−2 ds +

∫ 1/
√

2

0
φ2 2n− 2

n− 2
u

n
n−2

∂u

∂xn
ds|

≤ C
∫ 1/

√
2

0
u

2n−2
n−2 ds + C(

∫ 1/
√

2

0
φ2(

∂u

∂xn

)2ds)
1
2 (
∫ 1/

√
2

0
φ2u

2n
n−2 ds)

1
2

≤ C
∫ 1/

√
2

0
u

2n−2
n−2 ds + ε

∫ 1/
√

2

0
φ2(

∂u

∂xn
)2ds +

C

ε

∫ 1/
√

2

0
u

2n
n−2 ds

Integrating with respect to x′ and choosing ε sufficiently small, we can derive (95)
in view of (94).

2

Proof of (17): We only need to prove it for R = 1. Without loss of generality we

may assume that and Λ1 and Λ2 are subsets of B+
1/2. We prove it by contradiction.

Suppose there is a sequence {uj} solving (78) such that

inf
Λ1

uj > j inf
Λ2

uj. (96)
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Then we must have max
B+

1

uj →∞, since otherwise, by the Harnack inequality, uj

on B+
1/2 would be bounded below and above by positive constants and (96) would

be impossible. Let Zj be as in the proof of (16), and we know that Zj ∩ B+
1 has

at most k points with k independent of j and the values of uj on Zj ∩ B+
1 are

comparable. So for r > 0 small, Λ1 \
(
∪z∈ZjBr(z)

)
and Λ2 \

(
∪z∈ZjBr(z)

)
are non-

empty. We know that the values of uj on B+
1 \ (∪z∈ZjBr(z)) are comparable, and

by Proposition 9.3, are all bounded above by C(r)u(z)−1 for z ∈ Zj ∩ B+
1 . So in

particular, infΛ1 uj ≤ C(r)u(z)−1 for z ∈ Zj ∩ B+
1 . On the other hand, by Lemma

9.1, infΛ2 uj ≥ C(r)−1u(z)−1 for z ∈ Zj∩B+
1 . It follows that infΛ1 uj ≤ C(r) infΛ2 uj,

violating (96). (17) is established.

2

10 Appendix A. A boundary lemma

In this section we let Ω be a domain of Rn, n ≥ 2 with the origin 0 on its boundary.
Assume that near 0 the boundary consists of two transversally intersecting C2 hy-
persurfaces ρ = 0 and σ = 0. Also we suppose ρ, σ > 0 in Ω. Let ν(y) be the unit
outer normal of the surface {σ = 0} ∩ ∂Ω at y.

Let {bi(y)} be L∞ functions, and let {aij(y)} be a n×n matrix function satisfying,
for some positive constant Λ ≥ 1,

Λ−1|ξ|2 ≤
∑
i,j

aij(y)ξiξj ≤ Λ|ξ|2 for ξ ∈ Rn, y ∈ Ω.

Under this setting we have the following

Lemma 10.1 Let u ∈ C2(Ω) ∩ C1(Ω) be positive in Ω, u(0) = 0, and satisfy, for
some positive constant A, that

∑n
i,j=1 aijuij +

∑n
i=1 biui ≤ Au, in Ω,

∂u

∂ν
≥ −Au, on {σ = 0, ρ > 0},

where ν denotes the unit outer normal. Then we have

∂u

∂ν′
(0) > 0,

where ν′ is any vector in the tangent space of {σ = 0} that enters into {ρ > 0}.
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Proof. Since the hypotheses and conclusions are invariant under change of coordi-
nates, and of the choices of the particular ρ and σ representing the bounding hyper-
surfaces. We may assume without loss of generality that ρ(y) ≡ y1 and σ(y) ≡ y2.
By the Hopf lemma, u > 0 on {y2 = 0, y1 > 0} (otherwise, by the boundary condi-
tion and the fact that u > 0 in Ω, u = 0 and ∂u

∂ν
= 0 at a point on {y2 = 0, y1 > 0},

violating the Hopf lemma). So we may, as in [30], assume without loss of generality
that u > 0 on Ω \ {0}, because we may replace y1 = 0 by a sphere tangent to y1 = 0
at the origin and then straighten the sphere to a hyperplane by a coordinate change
and call the new hyperplane y1 = 0.

Pick ε > 0 small so that {y1 > 0} ∩ {y2 > 0} ∩ B(0, 2ε) ⊂ Ω. We wish to
construct a function φ > 0 in Ω such that

1.
∑

i,j aijφij +
∑

i biφi ≥ Aφ in Ω ∩ B(0, ε),

2. φ = 0 on {y1 = 0} ∩B(0, ε),

3.
∂φ

∂ν
≤ −Aφ on {y2 = 0, y1 > 0} ∩ B(0, ε),

4. φ ≤ u on ∂B(0, ε)∩ Ω,

5.
∂φ

∂ν′
(0) > 0.

Once such φ is constructed, Lemma 10.1 can be proved as follows. Let w = u− φ,
then w satisfies

∑
i,j

aijwij +
∑

i

biwi − Aw ≤ 0, Ω ∩ B(0, ε),

w ≥ 0, on {y1 = 0} ∩B(0, ε) and ∂B(0, ε)∩ Ω,

∂w

∂ν
+ Aw ≥ 0, on {y2 = 0, y1 > 0} ∩B(0, ε),

By the maximum principle, w ≥ 0 on the closure of B(0, ε) ∩ Ω, and therefore by
w(0) = 0, we have

∂w

∂ν′
(0) ≥ 0.

Consequently
∂u

∂ν′
(0) ≥ ∂φ

∂ν′
(0) > 0.
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Such a φ can be given explicitly by setting

φ(y) = δ(eα2y1 − 1)eαy2 y ∈ Ω,

where α > 1 will be large and then δ > 0 will be chosen small.
By a direct calculation, we have, for large α,∑

i,j

aijφij +
∑

i

biφi ≥ δα3(cα− C)eα2y1eαy2 ≥ Aφ,

where c and C are generic positive constants.
On {y2 = 0}, for large α,

∂φ

∂y2
= αφ ≥ Aφ,

i.e.,
∂φ

∂ν
≤ −Aφ, on {σ = 0}.

Now we fix the value of α. Since u > 0 on Ω \ {0}, we chose δ > 0 small enough
such that

u > φ on ∂B(0, ε)∩ Ω.

Finally it is immediate to check that
∂φ

∂y1
(0) > 0, so all the desired properties

are satisfied. Lemma 10.1 is established.

2

11 Appendix B. Some calculus lemmas

In this section we present, for reader′s convenience, a few calculus lemmas and their
proofs taken from [42] (see also [26]).

Lemma 11.1 Let f ∈ C1(Rn), n ≥ 1, ν > 0. Suppose that for every x ∈ Rn, there
exists λ(x) > 0 such that

(
λ(x)

|y − x|)
νf(x +

λ(x)2(y − x)

|y − x|2 ) = f(y), y ∈ Rn\{x}. (97)

Then for some a ≥ 0, d > 0, x̄ ∈ Rn,

f(x) = ±(
a

d + |x− x̄|2 )
ν
2 .
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Proof. It follows from (97) that

B := lim
|y|→∞

|y|νf(y) = λ(x)νf(x), x ∈ Rn.

If B = 0, then f ≡ 0, we are done. If B 6= 0 then f(x) does not change sign.
Without loss of generality we may assume that B = 1 and f(x) > 0. For large y,
by making a Taylor expansion of the left hand side of (97) at 0 and x, we have

f(y) = (
λ(0)

|y| )ν(f(0) +
∂f

∂yi
(0)

λ(0)2yi

|y|2 + ◦( 1

|y|)), (98)

and

f(y) = (
λ(x)

|y − x|)
ν(f(x) +

∂f

∂yi
(x)

λ(x)2(yi − xi)

|y − x|2 + ◦( 1

|y|)). (99)

Combining (97),(98),(99), and our assumption B = 1, we have

f−1− 2
ν (x)

∂f

∂yi
(x) = f−1− 2

ν (0)
∂f

∂yi
(0)− νxi.

It follows that for some x̄ ∈ Rn, d > 0,

f−
2
ν (y) = |y − x̄|2 + d.

2

Lemma 11.2 Let f ∈ C1(Rn), n ≥ 1, ν > 0. Assume that(
λ

|y − x|

)ν

f(x +
λ2(y − x)

|y − x|2 ) ≤ f(y), ∀λ > 0, x ∈ Rn, |y − x| ≥ λ.

Then f ≡ constant.

Proof. For x ∈ Rn, λ > 0, set

gx,λ(z) = f(x + z)− (
λ

|z|)
νf(x +

λ2z

|z|2 ), |z| ≥ λ.

It is easy to see that 
gx,|z|(z) = 0

gx,|z|(rz) ≥ 0. ∀r ≥ 1.
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It follows that
d

dr
{gx,|z|(rz)}|r=1 ≥ 0.

A direct calculation yields

2∇f(z + x) · z + νf(z + x) ≥ 0.

Since z and x are arbitrary, by a change of variables, we have

2∇f(y) · (y − x) + νf(y) ≥ 0

Dividing the above by |x| and sending |x| to infinity, we have, ∇f(y) · θ ≤ 0 for all
x ∈ Rn and θ ∈ Sn−1. It follows that ∇f ≡ 0 in Rn.

2

Lemma 11.3 Let f ∈ C1(Rn
+), n ≥ 2, ν > 0. Assume that(

λ

|y − x|

)ν

f(x +
λ2(y − x)

|y − x|2 ) ≤ f(y), ∀λ > 0, x ∈ ∂Rn
+, |y − x| ≥ λ, y ∈ Rn

+.

Then
f(x) = f(x′, t) = f(0, t), ∀ x = (x′, t) ∈ Rn

+.

Proof. For x ∈ ∂Rn
+, λ > 0, set

gx,λ(z) = f(x + z)− (
λ

|z|)
νf(x +

λ2z

|z|2 ), z ∈ Rn
+, |z| ≥ λ.

As in the proof of Lemma 11.2, we have

2∇f(z + x) · z + νf(z + x) ≥ 0, ∀ x ∈ ∂Rn
+, z ∈ Rn

+.

Making a change of variables, we have

2∂y′f(y′, t) · (y′ − x′) + 2∂tf(y′, t)t + νf(y′, t) ≥ 0, ∀ x′, y′ ∈ Rn−1, t > 0.

Dividing the above by |x′| and sending |x′| to infinity, we have, ∂y′f(y′, t) · θ ≥ 0 for
all (y′t) ∈ Rn

+ and θ ∈ Sn−1. It follows that ∂y′f(y′, t) ≡ 0.

2
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12 Appendix C

In this appendix, we include some simple result which is needed for 2◦ in Remark
1.4. Namely we prove

Lemma 12.1 Let g be a positive continuous function on (0,∞) satisfying

lim inf
s→∞

g(s) > 0.

Then
u′′(t) + g(u(t)) = 0, 0 ≤ t <∞

does not have any positive solution u.

Proof. Let v = u′, then
d

dt

(
u
v

)
=

(
v

−g(u)

)
(100)

If v(0) < 0, we have from the second equation of (100) that v(t) < v(0) for all t > 0.
Then by the first equation, u(t) < u(0) + v(0)t. This is impossible for large t since
u is positive. If v(0) = 0, then, by the second equation, v(t) < 0 for t > 0. This
is impossible by the above argument since the system if autonomous. So we only
need to rule out that possibility that v(t) > 0 for all t ≥ 0. In this case, by the
first equation, u(t) > u(0) > 0 for all t, and therefore, by the hypothesis on g and
the second equation, there exists some δ > 0 such that v′(t) < −δt for all t. This is
impossible since v is assumed to be positive all the time.

2

13 Appendix D

In this appendix we present a result which we can not find in the literature.

Theorem 13.1 For n ≥ 1 and pj → p ∈ (1,∞), let {gj} be a sequence of measur-
able functions on (0,∞) satisfying

sup
j, 0<s<t

|gj(s)| <∞, ∀ t > 0,

and, for some a < 0,

lim
s→∞

(
sup

j
|gj(s)

spj
− a|

)
= 0, (101)
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and let {uj} be positive solutions (in the distribution sense) of

−∆uj = gj(uj), on B2R ⊂ Rn.

Then we have

lim sup
j→∞

(
sup
BR

uj

)
<∞. (102)

Remark 13.1 If 1 < p < n+2
n−2

, n ≥ 3, and a > 0, estimate (102) still holds. This
can be seen easily from the proof, by using the result of Gidas and Spruck: For such
p and n, −∆u = up has no positive solution in Rn.

Proof. It is easy to see that we only need to prove it for a = −1 and R = 1. Our
proof is by contradiction argument. Suppose the contrary, we may assume, without
loss of generality, that

uj(0)→∞.

By Lemma 5.1 (with a = 2
pj−1

), there exists |xj| < 1 such that

uj(xj) ≥ 2
2

1−pj sup
Bσj (xj)

uj,

and

σ
2

pj−1

j uj(xj) ≥ 2
2

1−pj uj(0)→∞,

where σj = 1−|xj |
2

.
Consider

wj(y) =
1

uj(xj)
uj(xj +

y

uj(xj)
pj−1

2

), |y| < σjuj(xj)
pj−1

2 →∞.

Then wj satisfies

−∆wj(y) =
gj(uj(xj)wj(y))

uj(xj)pj
, |y| < σjuj(xj)

pj−1

2 .

By the hypothesis on gj,
|gj(s)| ≤ C(1 + |s|pj),

and therefore
|∆wj| ≤ C.
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After passing to a subsequence (still denoted as {wj} etc.), we have, by standard
elliptic theories,

wj → w ≥ 0 in C1
loc(R

n).

Sending j to ∞ in the equation of wj, we have

∆w = wp, on Rn. (103)

Indeed, if uj(xj)wj(y) → ∞, then, by (101), uj(xj)−pjgj(uj(xj)wj(y)) → −w(y)p;
if uj(xj)wj(y) → 0, wj(y) → 0 = w(y), and then by the boundedness of {gj},
uj(xj)−pjgj(uj(xj)wj(y))→ 0 = −w(y)p. Since wj(0) = 1, w(0) = 1. By the strong
maximum principle, w is a positive solution of (103). A contradiction (see Remark
1.2).

2
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